WO2021169446A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2021169446A1
WO2021169446A1 PCT/CN2020/131800 CN2020131800W WO2021169446A1 WO 2021169446 A1 WO2021169446 A1 WO 2021169446A1 CN 2020131800 W CN2020131800 W CN 2020131800W WO 2021169446 A1 WO2021169446 A1 WO 2021169446A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
curvature
refractive power
radius
object side
Prior art date
Application number
PCT/CN2020/131800
Other languages
English (en)
French (fr)
Inventor
寺西孝亮
Original Assignee
诚瑞光学(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(深圳)有限公司 filed Critical 诚瑞光学(深圳)有限公司
Publication of WO2021169446A1 publication Critical patent/WO2021169446A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to the invention of a camera lens, and in particular to the use of a driver monitoring system or an indoor monitoring system to monitor people, it has good optical characteristics under near-infrared light, is small and has a bright F value (hereinafter referred to as Fno) an imaging lens consisting of 5 lenses.
  • Fno a bright F value
  • a driver monitoring system In recent years, in the driver monitoring system required for automatic driving, a driver monitoring system has been developed to capture the driver’s head movement, eyelid opening, eye direction, and behavior (smoking/smoker) from the image. Calling) waiting and warning system.
  • the indoor monitoring system has also developed a system that detects the posture of the occupant in the back seat, the presence or absence of a crib, and the child accidentally removes the seat belt, etc. and warns.
  • a camera lens is needed that has good optical characteristics under infrared light to monitor the driver/occupant, small size to reduce the presence of the camera, and bright Fno to make it even at night A camera lens that can also monitor clearly.
  • the imaging lens disclosed in the embodiment of Patent Document 1 provides an imaging lens consisting of a first lens with positive refractive power, a second lens with negative refractive power, and a lens with positive refractive power in order from the object side.
  • the third lens and the fourth lens with positive refractive power have good optical characteristics under near-infrared light.
  • TTL optical length
  • f focal length of the entire camera lens
  • Patent Document 1 Japanese Patent Application Publication No. 2018-13579
  • the object of the present invention is to provide an imaging lens composed of five lenses that has good optical characteristics under near-infrared light, is compact, and has a bright Fno.
  • the inventors arranged from the object side a first lens with a positive refractive power, a second lens with a negative refractive power, a third lens with a positive refractive power, a fourth lens with a negative refractive power,
  • an imaging lens composed of a fifth lens with negative refractive power the range of the refractive index to the d-line of the first lens, the relationship between the center thickness of the first lens and the focal length of the entire imaging lens, and the d-line of the first lens
  • the relationship between the refractive index of the first lens and the radius of curvature of the object side of the first lens and the focal length of the entire imaging lens, the refractive index of the d-line of the first lens and the radius of curvature of the image side of the first lens and the overall focal length of the imaging lens The relationship between the two was studied intensively, and as a result, it was found that an imaging lens that improved the problems of the prior art can be obtained, thereby completing
  • the imaging lens of claim 1 is characterized in that a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, and a lens having a negative refractive power are arranged in order from the object side.
  • the fourth lens and the fifth lens with negative refractive power and satisfy the following relational expressions (1) to (4):
  • nd1 is the refractive index of the d-line of the first lens
  • d1 is the center thickness of the first lens
  • f is the overall focal length of the camera lens
  • R1 is the curvature radius of the object side of the first lens
  • R2 is the radius of curvature of the image side surface of the first lens.
  • f is the overall focal length of the camera lens
  • f1 is the focal length of the first lens
  • f2 is the focal length of the second lens.
  • an imaging lens composed of five lenses which is suitable for driver monitoring or indoor monitoring, has good optical characteristics under near-infrared light, is small and has a bright Fno.
  • Fig. 1 is a diagram showing a schematic configuration of an imaging lens LA according to Example 1 of the present invention.
  • FIG. 2 is a diagram showing spherical aberration, curvature of field, and distortion of the imaging lens LA of Example 1 of the present invention.
  • Fig. 3 is a diagram showing a schematic configuration of an imaging lens LA according to Example 2 of the present invention.
  • FIG. 4 is a diagram showing spherical aberration, curvature of field, and distortion of imaging lens LA of Example 2 of the present invention.
  • Fig. 5 is a diagram showing a schematic configuration of an imaging lens LA according to Example 3 of the present invention.
  • FIG. 6 is a diagram showing spherical aberration, curvature of field, and distortion of imaging lens LA of Example 3 of the present invention.
  • Fig. 7 is a diagram showing a schematic configuration of an imaging lens LA according to Example 4 of the present invention.
  • FIG. 8 is a diagram showing spherical aberration, curvature of field, and distortion of the imaging lens LA of Example 4 of the present invention.
  • This imaging lens LA includes a lens system with a five-element structure in which a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 are arranged in this order from the object side to the image side.
  • a glass plate GF is arranged between the fifth lens L5 and the image surface.
  • this glass plate GF cover glass, various filters, etc. are conceived.
  • the glass plate GF may be arranged at different positions, or may be an omitted structure.
  • the first lens L1 is a lens with positive refractive power
  • the second lens L2 is a lens with negative refractive power
  • the third lens L3 is a lens with positive refractive power
  • the fourth lens L4 is a lens with negative refractive power
  • the lens L5 is a lens with negative refractive power.
  • the imaging lens LA satisfies the following relational expressions (1) to (4):
  • nd1 is the refractive index of the d-line of the first lens L1
  • d1 is the center thickness of the first lens L1
  • f is the overall focal length of the camera lens
  • R1 is the curvature radius of the object side surface of the first lens L1
  • R2 is the curvature radius of the image side surface of the first lens L1.
  • the relational expression (1) defines the refractive index nd1 of the d-line of the first lens L1.
  • nd1 refractive index of the d-line of the first lens L1.
  • the relational expression (2) is an expression that defines the relationship between the center thickness d1 of the first lens L1 and the focal length f of the imaging lens LA.
  • it is below the lower limit of the relational expression (2), it is difficult to correct spherical aberration and coma. , It is not preferable to brighten the Fno.
  • it is more than the upper limit, it is not preferable in terms of downsizing.
  • the relational expression (3) specifies the distribution of the positive refractive power of the radius of curvature R1 of the object side surface of the first lens L1
  • the relational expression (4) specifies the distribution of the negative refractive power of the radius of curvature R2 of the image side surface of the first lens L1.
  • the positive and negative refractive power distribution of R1 and R2 is not optimized, so it is not preferable to reduce the size and make the Fno brighter.
  • the imaging lens LA satisfies the following relational expressions (5) to (6):
  • f is the overall focal length of the camera lens
  • f1 is the focal length of the first lens
  • f2 is the focal length of the second lens.
  • the relational expression (5) is an expression that defines the relationship between the focal length f1 of the first lens L1 and the focal length f of the entire imaging lens.
  • the refractive power of the first lens When it is below the upper limit of the relational expression (5), the refractive power of the first lens does not become too weak, and it is easy to achieve downsizing. On the other hand, when it is above the lower limit, the refractive power of the first lens does not become too strong, which is advantageous for miniaturization, and it is easy to correct spherical aberration and coma.
  • the relational expression (6) is an expression that defines the relationship between the focal length f2 of the second lens L2 and the focal length f of the entire imaging lens.
  • the refractive power of the second lens is not insufficient, and it is easy to sufficiently correct chromatic aberration.
  • the refractive power of the second lens does not become too strong, it is easy to correct spherical aberration and coma, and the error sensitivity during manufacturing does not become severe.
  • the five lenses constituting the imaging lens LA By satisfying the above-mentioned structure and relational expressions by the five lenses constituting the imaging lens LA, it is possible to obtain an imaging lens having good optical characteristics under near-infrared light, a small size with TTL/f ⁇ 1.25, and a bright Fno.
  • the imaging lens LA of the present invention will be described using examples.
  • the symbols described in each example are as follows.
  • the unit of distance, radius, and center thickness is mm.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the curvature radius of the object side surface of the glass plate GF1;
  • R12 the radius of curvature of the image side surface of the glass plate GF1;
  • R13 the radius of curvature of the object side surface of the glass plate GF2;
  • R14 the radius of curvature of the image side surface of the glass plate GF2;
  • d the center thickness of the lens or the distance between the lenses
  • d0 the on-axis distance from the aperture stop STOP to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L2 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the glass plate GF;
  • d11 the center thickness of the glass plate GF1;
  • d12 the on-axis distance from the image side of the glass plate GF1 to the object side of the glass plate GF;
  • d14 the on-axis distance from the image side surface of the glass plate GF2 to the image surface
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the glass plate GF1;
  • nd7 the refractive index of the d-line of the glass plate GF2;
  • ⁇ 1 Abbe number of the first lens L1;
  • ⁇ 2 Abbe number of the second lens L2
  • ⁇ 3 Abbe number of the third lens L3
  • ⁇ 1 Abbe number of the fourth lens L4;
  • ⁇ 2 Abbe number of the fifth lens L5;
  • ⁇ 6 Abbe number of glass plate GF1;
  • TTL optical length (the on-axis distance from the object side of the first lens L1 to the image surface);
  • LB The on-axis distance from the image side surface of the fifth lens L5 to the image surface (including the thickness of the glass plate GF).
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (7).
  • the present invention is not particularly limited to the aspheric polynomial form of the formula (7).
  • FIG. 1 is a structural diagram showing the arrangement of an imaging lens LA of Example 1.
  • Table 1 shows the curvature radius R of the object side surface and the image side surface of each of the first lens L1 to the fifth lens L5 constituting the imaging lens LA of Example 1, the lens center thickness or the distance d between the lenses, the refractive index nd, and Abbe
  • Table 2 shows the conic coefficient k and aspherical coefficients
  • Table 3 shows 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, TTL, IH.
  • Table 11 shows the values of each of Examples 1 to 4 and the values corresponding to the parameters specified by the relational expressions (1) to (6).
  • Example 1 As shown in Table 11, the relational expressions (1) to (6) are satisfied.
  • FIG. 2 shows the spherical aberration, curvature of field, and distortion of the imaging lens LA of Example 1.
  • the curvature of field S in the figure is the curvature of field with respect to the sagittal direction
  • T is the curvature of field with respect to the meridional direction, and the same applies to the second to fourth embodiments.
  • FIG. 3 is a configuration diagram showing the arrangement of imaging lens LA of Example 2.
  • FIG. Table 4 shows the curvature radius R, the center thickness of the lens or the distance between the lenses d, the refractive index nd, and Abbe of the first lens L1 to the fifth lens L5 constituting the imaging lens LA of Example 2 respectively.
  • Table 5 shows the conic coefficient k and aspherical coefficients, and Table 6 shows 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, TTL, and IH.
  • Embodiment 2 As shown in Table 11, the relational expressions (1) to (6) are satisfied.
  • FIG. 5 is a configuration diagram showing the arrangement of imaging lens LA of Example 3.
  • Table 7 shows the curvature radius R, the center thickness of the lens or the distance between the lenses d, the refractive index nd, and Abbe of the first lens L1 to the fifth lens L5 constituting the imaging lens LA of Example 3, respectively.
  • Table 8 shows the conic coefficient k and aspheric coefficients, and Table 9 shows 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, TTL, IH.
  • Embodiment 3 as shown in Table 11, satisfies relational expressions (1) to (6).
  • FIG. 7 is a configuration diagram showing the arrangement of imaging lens LA of Example 4.
  • Table 10 shows the curvature radius R, the center thickness of the lens or the distance between the lenses d, the refractive index nd, and Abbe of the first lens L1 to the fifth lens L5 constituting the imaging lens LA of Example 4, respectively.
  • Table 11 shows the conic coefficient k and aspheric coefficients, and
  • Table 12 shows 2 ⁇ , Fno, f, f1, f2, f3, f4, f5, TTL, IH.
  • Embodiment 4 as shown in Table 13, satisfies relational expressions (1) to (6).
  • FIG. 8 shows the spherical aberration, curvature of field, and distortion of the imaging lens LA of Example 4.
  • Table 13 shows the values corresponding to the parameters specified by the relational expressions (1) to (6) and TTL/f of Examples 1 to 4.
  • Example 2 Example 3
  • Example 4 To nd1 1.750 1.749 1.834 1.788 Relation (1) d1/f 0.198 0.196 0.198 0.201 Relation (2) (nd1/R1)/f 0.204 0.202 0.207 0.205 Relation (3) (nd1/R2)/f 0.039 0.038 0.054 0.051 Relation (4) f1/f 0.569 0.569 0.573 0.586 Relation (5) f2/f -1.036 -1.045 -1.020 -1.020 Relation (6) TTL/f 1.230 1.222 1.237 1.237 To
  • LA camera lens
  • L1 the first lens
  • L4 the fourth lens
  • L5 the fifth lens
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the curvature radius of the object side surface of the glass plate GF1;
  • R12 the radius of curvature of the image side surface of the glass plate GF1;
  • R13 the radius of curvature of the object side surface of the glass plate GF2;
  • R14 the radius of curvature of the image side surface of the glass plate GF2;
  • d the center thickness of the lens or the distance between the lenses
  • d2 the on-axis distance from the image side surface of the first lens L2 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the glass plate GF;
  • d11 the center thickness of the glass plate GF1;
  • d12 the on-axis distance from the image side of the glass plate GF1 to the object side of the glass plate GF;
  • d14 the on-axis distance from the image side surface of the glass plate GF2 to the image surface
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the glass plate GF1;
  • nd7 the refractive index of the d-line of the glass plate GF2;
  • ⁇ 1 Abbe number of the first lens L1;
  • ⁇ 2 Abbe number of the second lens L2
  • ⁇ 3 Abbe number of the third lens L3
  • ⁇ 1 Abbe number of the fourth lens L4;
  • ⁇ 2 Abbe number of the fifth lens L5;
  • ⁇ 6 Abbe number of glass plate GF1;
  • ⁇ 7 Abbe number of glass plate GF2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种在近红外光下具有良好的光学特性、小型且具有明亮的F值的由5片透镜构成的摄像镜头。摄像镜头从物侧起依次配置有具有正屈折力的第一透镜(L1)、具有负屈折力的第二透镜(L2)、具有正屈折力的第三透镜(L3)、具有负屈折力的第四透镜(L4)以及具有负屈折力的第五透镜(L5),并且满足给定的关系式。

Description

摄像镜头 技术领域
本发明是涉及摄像镜头的发明,尤其是涉及在利用驾驶员监控系统或室内监控系统来监控人时,在近红外光下具有良好的光学特性、小型且具有明亮的F值(以下,记为Fno)的由5片透镜构成的摄像镜头。
背景技术
近年来,在自动驾驶所需的驾驶员监控系统中,开发了一种对驾驶员进行拍摄,从图像检测驾驶员的头部的运动、眼睑的张开状况、视线的朝向、行为(吸烟/打电话)等并进行警告的系统。此外,在室内监控系统中,也开发出了检测后座的乘员姿势、婴儿床的有无、儿童不小心地取下安全带等并进行警告的系统。在这些监控系统中,需要一种如下的摄像镜头,即:在红外线下具有良好的光学特性以便对驾驶员/乘员进行监控,小型以便减少照相机的存在感,并且具有明亮的Fno使得即使在夜间也能够清楚地进行监控的摄像镜头。
专利文献1的实施例所公开的摄像镜头提供了一种摄像镜头,该摄像镜头从物侧起依次由具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有正屈折力的第四透镜构成,并且在近红外光下具有良好的光学特性,但是在该摄像镜头中,TTL(光学长度)/f(摄像镜头整体的焦距)≥1.49,在小型化方面不充分。
现有技术文献
专利文献
专利文献1:日本特开2018-13579号公报
发明内容
发明所要解决的问题
本发明的目的在于,提供一种在近红外光下具有良好的光学特性、小 型且具有明亮的Fno的由5片透镜构成的摄像镜头。
用于解决问题的手段
为了达到上述目的,发明人在从物侧起依次由具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜、具有负屈折力的第五透镜构成的摄像镜头中,对第一透镜的d线的折射率的范围、第一透镜的中心厚度与摄像镜头整体的焦距之间的关系、第一透镜的d线的折射率与第一透镜的物侧面的曲率半径与摄像镜头整体的焦距之间的关系、第一透镜的d线的折射率与第一透镜的像侧面的曲率半径与摄像镜头整体的焦距之间的关系进行了深入研究,结果发现,可获得改善了现有技术的课题的摄像镜头,由此完成了本发明。
技术方案1记载的摄像镜头的特征在于,从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜以及具有负屈折力的第五透镜,并且满足以下的关系式(1)~(4):
1.75≤nd1≤1.84  (1)
0.195≤d1/f≤0.210  (2)
0.200≤(nd1/R1)/f≤0.210  (3)
0.035≤(nd1/R2)/f≤0.060  (4)
其中,
nd1为第一透镜的d线的折射率,
d1为第一透镜的中心厚度,
f为摄像镜头整体的焦距,
R1为第一透镜的物侧面的曲率半径,
R2为第一透镜的像侧面的曲率半径。
技术方案2记载的摄像镜头满足以下的关系式(5)~(6):
0.50≤f1/f≤0.60  (5)
-1.10≤f2/f≤-1.00  (6)
其中,
f为摄像镜头整体的焦距,
f1为第一透镜的焦距,
f2为第二透镜的焦距。
根据本发明,能够提供一种适于驾驶员监控或室内监控的、在近红外光下具有良好的光学特性、小型且具有明亮的Fno的由5片透镜构成的摄像镜头。
附图说明
图1是表示本发明的实施例1的摄像镜头LA的概略结构的图。
图2是表示本发明的实施例1的摄像镜头LA的球面像差、场曲、畸变的图。
图3是表示本发明的实施例2的摄像镜头LA的概略结构的图。
图4是表示本发明的实施例2的摄像透镜LA的球面像差、场曲、畸变的图。
图5是表示本发明的实施例3的摄像镜头LA的概略结构的图。
图6是表示本发明的实施例3的摄像透镜LA的球面像差、场曲、畸变的图。
图7是表示本发明的实施例4的摄像镜头LA的概略结构的图。
图8是表示本发明的实施例4的摄像镜头LA的球面像差、场曲、畸变的图。
具体实施方式
对本发明所涉及的摄像镜头的实施方式进行说明。该摄像镜头LA具备从物侧朝向像侧依次配置有第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5的5片结构的透镜系统。在第五透镜L5与像面之间配置有玻璃平板GF。作为该玻璃平板GF,设想了盖板玻璃以及各种滤光片等。在本发明中,玻璃平板GF可以配置在不同的位置,也可以是省略的结构。
第一透镜L1是具有正屈折力的透镜,第二透镜L2是具有负屈折力的透镜,第三透镜L3是具有正屈折力的透镜,第四透镜L4是具有负屈折力的透镜,第五透镜L5是具有负屈折力的透镜。关于这5片透镜的透镜表面,为了良好地校正各像差,优选将所有面设为非球面。
该摄像镜头LA满足以下的关系式(1)~(4):
1.75≤nd1≤1.84  (1)
0.195≤d1/f≤0.210  (2)
0.200≤(nd1/R1)/f≤0.210  (3)
0.035≤(nd1/R2)/f≤0.060  (4)
其中,
nd1为第一透镜L1的d线的折射率,
d1为第一透镜L1的中心厚度,
f为摄像镜头整体的焦距,
R1为第一透镜L1的物侧面的曲率半径,
R2为第一透镜L1的像侧面的曲率半径。
关系式(1)规定第一透镜L1的d线的折射率nd1。在处于关系式(1)的下限以下时,由于折射率变弱,因此在小型化方面不优选。另一方面,在处于上限以上时,正屈折力变得过强,有时难以校正球面像差、彗差,因此不优选。
关系式(2)是规定第一透镜L1的中心厚度d1与摄像镜头LA的焦距f之间的关系的式子,在处于关系式(2)的下限以下时,难以校正球面像差、彗差,在使Fno变亮这一点上不优选。另一方面,在处于上限以上时,在小型化方面不优选。
通过满足关系式(3)、(4),能够得到在近红外光下具有良好的光学特性、小型且具有明亮的Fno的由5片透镜构成的摄像镜头。
关系式(3)规定第一透镜L1的物侧面的曲率半径R1的正屈折力分配,关系式(4)规定第一透镜L1的像侧面的曲率半径R2的负屈折力分配。在处于关系式(3)、(4)的范围外时,R1和R2的正、负屈折力分配未得到优化,因此小型化并且使Fno变亮变得困难,故而不优选。
该摄像镜头LA满足以下的关系式(5)~(6):
0.50≤f1/f≤0.60  (5)
-1.10≤f2/f≤-1.00  (6)
其中,
f为摄像镜头整体的焦距,
f1为第一透镜的焦距,
f2为第二透镜的焦距。
关系式(5)是规定第一透镜L1的焦距f1与摄像镜头整体的焦距f之间的关系的式子。通过将第一透镜的焦距规定在关系式(5)的范围内,能够实现小型化,并且能够良好地校正球面像差、彗差。
在处于关系式(5)的上限以下时,第一透镜的屈折力不会变得过弱,容易实现小型化。另一方面,在处于下限以上时,第一透镜的屈折力不会变得过强,对小型化有利,并且容易校正球面像差、彗差。
关系式(6)是规定第二透镜L2的焦距f2与摄像镜头整体的焦距f之间的关系的式子。在处于关系式(6)的下限以上时,第二透镜的屈折力不会不足,容易充分地校正色差。另一方面,在处于上限以下时,第二透镜的屈折力不会变得过强,容易校正球面像差、彗差,并且制造时的误差灵敏度也不会变得严格。
通过构成摄像镜头LA的5片透镜分别满足上述的结构和关系式,从而能够得到在近红外光下具有良好的光学特性、TTL/f≤1.25小型、并且具有明亮的Fno的摄像镜头。
以下,使用实施例对本发明的摄像镜头LA进行说明。各实施例中所记载的符号如下所示。另外,距离、半径及中心厚度的单位为mm。
f:摄像镜头LA整体的焦距;
f1:第一透镜L1的焦距;
f2:第二透镜L2的焦距;
f3:第三透镜L3的焦距;
f4:第四透镜L4的焦距;
f5:第五透镜L5的焦距;
Fno:F值;
2ω:全视场角;
STOP:开口光圈
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:玻璃平板GF1的物侧面的曲率半径;
R12:玻璃平板GF1的像侧面的曲率半径;
R13:玻璃平板GF2的物侧面的曲率半径;
R14:玻璃平板GF2的像侧面的曲率半径;
d:透镜的中心厚度或透镜间距离
d0:开口光圈STOP到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的中心厚度
d2:第一透镜L2的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的中心厚度
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的中心厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的中心厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的中心厚度;
d10:第五透镜L5的像侧面到玻璃平板GF的物侧面的轴上距离;
d11:玻璃平板GF1的中心厚度;
d12:玻璃平板GF1的像侧面到玻璃平板GF的物侧面的轴上距离;
d13:玻璃平板GF2的中心厚度;
d14:玻璃平板GF2的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:玻璃平板GF1的d线的折射率;
nd7:玻璃平板GF2的d线的折射率;
ν:阿贝数;
ν1:第一透镜L1的阿贝数;
ν2:第二透镜L2的阿贝数;
ν3:第三透镜L3的阿贝数;
ν1:第四透镜L4的阿贝数;
ν2:第五透镜L5的阿贝数;
ν6:玻璃平板GF1的阿贝数;
ν7:玻璃平板GF2的阿贝数;
TTL:光学长度(第一透镜L1的物侧面到像面的轴上距离);
LB:第五透镜L5的像侧面到像面的轴上距离(包括玻璃平板GF的厚度在内)。
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16   (7)
为方便起见,各个透镜面的非球面使用上述公式(7)中所示的非球面。但是,本发明并不特别限定于该公式(7)的非球面多项式形式。
(实施例1)
图1为表示实施例1的摄像镜头LA的配置的结构图。表1示出了构成实施例1的摄像镜头LA的第一透镜L1~第五透镜L5各自的物侧面及像侧面的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数v,表2示出了圆锥系数k、非球面系数,表3示出了2ω、Fno、f、f1、f2、f3、f4、f5、TTL、IH。
【表1】
Figure PCTCN2020131800-appb-000001
                                             参照波长=940nm
【表2】
Figure PCTCN2020131800-appb-000002
【表3】
2ω(°) 62.70
Fno 1.80
f(mm) 4.903
f1(mm) 2.790
f2(mm) -5.080
f3(mm) 4.716
f4(mm) -95.672
f5(mm) -17.469
TTL(mm) 6.030
LB(mm) 0.963
IH(mm) 3.093
后出现的表11示出了各实施例1~4的各值以及与由关系式(1)~(6)所规定的参数相对应的值。
实施例1 如表11所示,满足关系式(1)~(6)。
图2表示实施例1的摄像镜头LA的球面像差、场曲、畸变。另外,图的场曲S是相对于弧矢方向的场曲,T是相对于子午方向的场曲,在实施例2~4中也同样。实施例1的摄像镜头LA如表3所示可知,Fno=1.80明亮,TTL/f=1.23小型,并如图2所示可知,在近红外光下具有良好的光 学特性。
(实施例2)
图3为表示实施例2的摄像镜头LA的配置的结构图。表4示出了构成实施例2的摄像镜头LA的第一透镜L1~第五透镜L5各自的物侧面及像侧面的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν,表5示出了圆锥系数k、非球面系数,表6示出了2ω、Fno、f、f1、f2、f3、f4、f5、TTL、IH。
【表4】
Figure PCTCN2020131800-appb-000003
                                          参照波长=940nm
【表5】
Figure PCTCN2020131800-appb-000004
【表6】
2ω(°) 62.76
Fno 1.81
f(mm) 4.929
f1(mm) 2.804
f2(mm) -5.148
f3(mm) 4.776
f4(mm) -84.764
f5(mm) -17.693
TTL(mm) 6.023
LB(mm) 0.960
IH(mm) 3.093
实施例2 如表11所示,满足关系式(1)~(6)。
图4表示实施例2的摄像镜头LA的球面像差、场曲、畸变。实施例2的摄像镜头LA如表6所示可知,Fno=1.81明亮,TTL/f=1.222小型,并如图4所示可知,具有良好的光学特性。
(实施例3)
图5为表示实施例3的摄像镜头LA的配置的结构图。表7示出了构成实施例3的摄像镜头LA的第一透镜L1~第五透镜L5各自的物侧面及像侧面的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν,表8示出了圆锥系数k、非球面系数,表9示出了2ω、Fno、f、f1、f2、f3、f4、f5、TTL、IH。
【表7】
Figure PCTCN2020131800-appb-000005
                              参照波长=940nm
【表8】
Figure PCTCN2020131800-appb-000006
【表9】
2ω(°) 63.21
Fno 1.80
f(mm) 4.873
f1(mm) 2.790
f2(mm) -4.970
f3(mm) 4.693
f4(mm) -91.654
f5(mm) -18.876
TTL(mm) 6.026
LB(mm) 0.958
IH(mm) 3.093
实施例3 如表11所示,满足关系式(1)~(6)。
图6表示实施例3的摄像镜头LA的球面像差、场曲、畸变。实施例3的摄像镜头LA如表9所示可知,Fno=1.80明亮,TTL/f=1.237小型,并如图6所示可知,具有良好的光学特性。
(实施例4)
图7为表示实施例4的摄像镜头LA的配置的结构图。表10示出了构成实施例4的摄像镜头LA的第一透镜L1~第五透镜L5各自的物侧面及像侧面的曲率半径R、透镜中心厚度或透镜间距离d、折射率nd、阿贝数ν,表11示出了圆锥系数k、非球面系数,表12示出了2ω、Fno、f、f1、f2、f3、f4、f5、TTL、IH。
【表10】
Figure PCTCN2020131800-appb-000007
                                       参照波长=940nm
【表11】
Figure PCTCN2020131800-appb-000008
【表12】
2ω(°) 64.36
Fno 1.87
f(mm) 4.869
f1(mm) 2.856
f2(mm) -4.967
f3(mm) 4.637
f4(mm) -101.885
f5(mm) -18.478
TTL(mm) 6.024
LB(mm) 0.973
IH(mm) 3.093
实施例4 如表13所示,满足关系式(1)~(6)。
图8表示实施例4的摄像镜头LA的球面像差、场曲、畸变。实施例4的摄像镜头LA如表12所示可知,Fno=1.87明亮,TTL/f=1.237小型,并如图8所示可知,具有良好的光学特性。
表13示出了实施例1~4的与关系式(1)~(6)所规定的参数相对应的值以及TTL/f。
【表13】
  实施例1 实施例2 实施例3 实施例4  
nd1 1.750 1.749 1.834 1.788 关系式(1)
d1/f 0.198 0.196 0.198 0.201 关系式(2)
(nd1/R1)/f 0.204 0.202 0.207 0.205 关系式(3)
(nd1/R2)/f 0.039 0.038 0.054 0.051 关系式(4)
f1/f 0.569 0.569 0.573 0.586 关系式(5)
f2/f -1.036 -1.045 -1.020 -1.020 关系式(6)
TTL/f 1.230 1.222 1.237 1.237  
符号说明
LA:摄像镜头;
STOP:开口光圈;
L1:第一透镜;
L2:第二透镜;
L3:第三透镜;
L4:第四透镜;
L5:第五透镜;
GF1:玻璃平板1;
GF2:玻璃平板2;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:玻璃平板GF1的物侧面的曲率半径;
R12:玻璃平板GF1的像侧面的曲率半径;
R13:玻璃平板GF2的物侧面的曲率半径;
R14:玻璃平板GF2的像侧面的曲率半径;
d:透镜的中心厚度或透镜间距离
d1:第一透镜L1的中心厚度
d2:第一透镜L2的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的中心厚度
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的中心厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的中心厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的中心厚度;
d10:第五透镜L5的像侧面到玻璃平板GF的物侧面的轴上距离;
d11:玻璃平板GF1的中心厚度;
d12:玻璃平板GF1的像侧面到玻璃平板GF的物侧面的轴上距离;
d13:玻璃平板GF2的中心厚度;
d14:玻璃平板GF2的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:玻璃平板GF1的d线的折射率;
nd7:玻璃平板GF2的d线的折射率;
ν:阿贝数;
ν1:第一透镜L1的阿贝数;
ν2:第二透镜L2的阿贝数;
ν3:第三透镜L3的阿贝数;
ν1:第四透镜L4的阿贝数;
ν2:第五透镜L5的阿贝数;
ν6:玻璃平板GF1的阿贝数;
ν7:玻璃平板GF2的阿贝数。

Claims (2)

  1. 一种摄像镜头,其特征在于,从物侧起依次配置有具有正屈折力的第一透镜、具有负屈折力的第二透镜、具有正屈折力的第三透镜、具有负屈折力的第四透镜以及具有负屈折力的第五透镜,并且满足以下的关系式(1)~(4):
    1.75≤nd1≤1.84  (1)
    0.195≤d1/f≤0.210  (2)
    0.200≤(nd1/R1)/f≤0.210  (3)
    0.035≤(nd1/R2)/f≤0.060  (4)
    其中,
    nd1为第一透镜的d线的折射率,
    d1为第一透镜的中心厚度,
    f为摄像镜头整体的焦距,
    R1为第一透镜的物侧面的曲率半径,
    R2为第一透镜的像侧面的曲率半径。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足以下的关系式(5)~(6):
    0.50≤f1/f≤0.60  (5)
    -1.10≤f2/f≤-1.00  (6)
    其中,
    f为摄像镜头整体的焦距,
    f1为第一透镜的焦距,
    f2为第二透镜的焦距。
PCT/CN2020/131800 2020-02-25 2020-11-26 摄像镜头 WO2021169446A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020029440A JP6686240B1 (ja) 2020-02-25 2020-02-25 撮像レンズ
JP2020-029440 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021169446A1 true WO2021169446A1 (zh) 2021-09-02

Family

ID=70286741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131800 WO2021169446A1 (zh) 2020-02-25 2020-11-26 摄像镜头

Country Status (4)

Country Link
US (1) US20210263263A1 (zh)
JP (1) JP6686240B1 (zh)
CN (1) CN111929808B (zh)
WO (1) WO2021169446A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6686240B1 (ja) * 2020-02-25 2020-04-22 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ
TWI710794B (zh) 2020-03-30 2020-11-21 大立光電股份有限公司 成像用光學透鏡組、取像裝置及電子裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050476A1 (ja) * 2012-09-25 2014-04-03 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN204116695U (zh) * 2013-11-21 2015-01-21 康达智株式会社 摄像镜头
CN204807789U (zh) * 2012-12-25 2015-11-25 富士胶片株式会社 摄像透镜以及具备摄像透镜的摄像装置
WO2016110883A1 (ja) * 2015-01-09 2016-07-14 株式会社ニコン 撮像レンズおよび撮像装置
CN107065130A (zh) * 2016-09-30 2017-08-18 瑞声科技(新加坡)有限公司 摄像镜头
JP6686240B1 (ja) * 2020-02-25 2020-04-22 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050476A1 (ja) * 2012-09-25 2014-04-03 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN204807789U (zh) * 2012-12-25 2015-11-25 富士胶片株式会社 摄像透镜以及具备摄像透镜的摄像装置
CN204116695U (zh) * 2013-11-21 2015-01-21 康达智株式会社 摄像镜头
WO2016110883A1 (ja) * 2015-01-09 2016-07-14 株式会社ニコン 撮像レンズおよび撮像装置
CN107065130A (zh) * 2016-09-30 2017-08-18 瑞声科技(新加坡)有限公司 摄像镜头
JP6686240B1 (ja) * 2020-02-25 2020-04-22 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像レンズ

Also Published As

Publication number Publication date
JP6686240B1 (ja) 2020-04-22
JP2021135330A (ja) 2021-09-13
CN111929808B (zh) 2022-07-08
CN111929808A (zh) 2020-11-13
US20210263263A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2021189915A1 (zh) 摄像镜头
WO2020125161A1 (zh) 摄像镜头
WO2020125163A1 (zh) 摄像镜头
US10451845B2 (en) Camera optical lens
WO2021189916A1 (zh) 摄像镜头
US9971128B2 (en) Camera lens
WO2021189917A1 (zh) 摄像镜头
WO2021258612A1 (zh) 摄像镜头
US9964738B2 (en) Camera lens
US11262551B2 (en) Camera lens
US9952414B2 (en) Camera lens
US11287608B2 (en) Camera lens
US10268021B2 (en) Camera lens
WO2021147470A1 (zh) 摄像镜头
WO2022032573A1 (zh) 光学系统、摄像模组、电子设备及汽车
WO2021169446A1 (zh) 摄像镜头
WO2022057031A1 (zh) 摄像镜头
WO2020125159A1 (zh) 摄像镜头
WO2022007027A1 (zh) 摄像光学镜头
US10444472B2 (en) Camera optical lens
WO2021217618A1 (zh) 光学系统、摄像模组、电子设备及汽车
US20190154980A1 (en) Camera Optical Lens
WO2022088225A1 (zh) 摄像镜头
US20190121075A1 (en) Camera Optical Lens
US20190129141A1 (en) Camera Optical Lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20921968

Country of ref document: EP

Kind code of ref document: A1