WO2021169117A1 - 一种抗消化淀粉的制备方法 - Google Patents

一种抗消化淀粉的制备方法 Download PDF

Info

Publication number
WO2021169117A1
WO2021169117A1 PCT/CN2020/099099 CN2020099099W WO2021169117A1 WO 2021169117 A1 WO2021169117 A1 WO 2021169117A1 CN 2020099099 W CN2020099099 W CN 2020099099W WO 2021169117 A1 WO2021169117 A1 WO 2021169117A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
temperature
ultrasonic
resistant starch
treatment
Prior art date
Application number
PCT/CN2020/099099
Other languages
English (en)
French (fr)
Inventor
田耀旗
李丽平
常然然
詹锦玲
卢浩
麻荣荣
金征宇
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2021169117A1 publication Critical patent/WO2021169117A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention relates to a preparation method of digestion resistant starch, which belongs to the technical field of starch modification.
  • starch can be divided into fast digestion starch (RDS), slow digestion starch (SDS) and resistant starch (RS).
  • RDS fast digestion starch
  • SDS slow digestion starch
  • RS resistant starch
  • Anti-digestive starch includes two parts, SDS and RS. It has physiological functions such as maintaining blood sugar steady state and controlling body weight.
  • the slow digestion starch obtained by physical modification method is not stable; chemical modification
  • the method introduces chemical reagents in the process of obtaining slow digestion starch, which has certain hidden dangers of food safety; the process of enzymatic modification is complicated, requires high equipment, is expensive, and the market input rate is low, which is difficult for industrial production; currently the most researched It is compound modification, which is to prepare digestion resistant starch by compounding starch and complexing agent (emulsifier, fatty acid, etc.).
  • the hydrothermal method is usually used in the preparation process to gelatinize the starch.
  • This method leads to a low solid content of the starch milk system (5%-10%), and the starch utilization rate It is difficult to improve, and drying with 90%-95% moisture in the system requires a lot of energy consumption.
  • the viscosity of the gelatinized starch system will increase significantly, which is not conducive to the complexing reaction of the complexing agent.
  • the hydrothermal method is usually used in the preparation process to gelatinize the starch.
  • This method results in a low solid content of the starch milk system (5%-10%), and the starch utilization rate is difficult. Increase, and the drying of 90%-95% moisture in the system requires a lot of energy consumption.
  • the viscosity of the gelatinized starch system will increase significantly, which is not conducive to the complexing reaction of the complexing agent.
  • the present invention provides a method for preparing anti-digestive starch.
  • the present invention adopts low-frequency ultrasonic emulsification technology and uses water as the reaction medium to achieve complexation of starch and lipids (monoglycerides and fatty acids), and the prepared product contains anti-digestive starch. Digests high content of starch.
  • high temperature dry heat amorphization technology is used to replace traditional thermal gelatinization, which can not only achieve the purpose of starch declustering, but also increase the solid content of the late starch milk system to 35%-40%;
  • the phacoemulsification technology realizes that the complexation reaction is carried out in the water system, avoids the use of acid and alkali and other reagents, and at the same time can increase the complexation rate of starch-lipid complex;
  • high-pressure homogenization technology is adopted to further increase the content of anti-digestive starch. More than 70%.
  • the present invention provides a method for preparing digestion resistant starch, and the steps of the preparation method are as follows:
  • High temperature dry heat amorphization of starch ordinary corn starch is subjected to high temperature dry heat amorphization treatment, the treatment time is 10-15min, and the treatment temperature is 135-140°C;
  • step (2) Low-frequency phacoemulsification: Add water to the starch obtained in step (1) pretreatment to prepare a starch milk with a concentration of 35%-40% (w/w, starch base occupies the total mass), and then add 0.1%- 0.2% (w/w, accounting for the mass ratio of starch milk) of monoglycerides and 3%-5% (w/w, accounting for the mass ratio of starch milk) fatty acids, stir and mix well, and perform ultrasonic emulsification through ultrasonic equipment.
  • the ultrasonic temperature is 50-60°C
  • the ultrasonic power is 200-300W
  • the ultrasonic frequency is 20-25kHz
  • the processing time is 20-30min;
  • step (2) High-pressure homogeneous complexation:
  • the starch milk system obtained in step (2) is homogenized by a homogenizer to obtain a starch complex, the homogenizing pressure is 20-25MPa, and the homogenizing temperature is 40-45°C. Quality times 1-2 times;
  • the high-temperature dry heat amorphization treatment in step (1) is to first spread ordinary corn starch in a steel pan to a thickness of 2-3mm, and then pass the high-temperature dry heat treatment in a blast drying box ,
  • the treatment time is 10-15min, and the treatment temperature is set to 140°C.
  • the use of high-temperature dry-heat amorphization treatment in step (1) is to ensure that the high-temperature amorphization technology will de-cluster and gelatinize the starch, and the starch gelatinization degree will reach more than 90%; The degree of gelatinization was determined by the amylase method.
  • the fatty acid used in step (2) is any one of stearic acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • the added amount of monoglyceride in step (2) accounts for 0.2% of the mass of starch milk, and the added amount of fatty acid accounts for 5% of the mass of starch milk.
  • the specific method of stirring and mixing in step (2) is: fully mixing by a magnetic stirrer, stirring speed of 500 rpm, and stirring time of 15 minutes.
  • the ultrasonic temperature of the high-frequency phacoemulsification in step (2) is 50° C.
  • the ultrasonic power is 250 W
  • the ultrasonic frequency is 25 kHz
  • the processing time is 30 min.
  • the high-pressure homogenization conditions in step (3) homogenization pressure 25MPa, homogenization temperature 40° C., homogenization times 1-2 times.
  • step (4) in step (4), the inlet temperature of the spray dryer is set to 130°C, and the outlet temperature is set to 105°C.
  • the complexation rate of the starch-lipid complex obtained in step (4) is determined by the iodine colorimetric method; the content of digestion resistant starch (resistant starch and slow digestion starch) is determined by Englyst Method determination.
  • the invention provides the digestion resistant starch prepared by the above preparation method.
  • the present invention provides the application of the above method for preparing anti-digestive starch in the field of preparing medical auxiliary materials and low-glycemic index food ingredients.
  • corn starch is used as a raw material, and after high temperature dry heat amorphization treatment, the starch can be fully gelatinized and de-clustered, and the solid content of the late starch milk can be increased to 35%-40%.
  • the present invention uses homogenization technology to treat starch-lipid complex system.
  • the destruction of the hydrogen bond and crystal structure of starch will cause the exposure of active hydroxyl radicals and increase the reactive sites, thereby improving starch emulsification and complexation. Rate to more than 60%.
  • the anti-digestive starch prepared by the present invention has excellent physiological functions such as improving intestinal health, preventing diabetes, weight control, etc., is suitable for type II diabetic patients to control blood sugar consumption, and is used in the field of drug sustained release and functional food ingredients Has a wide range of applications.
  • S represents the quality of resistant starch
  • 0.9 is the stoichiometric constant of starch in glucose
  • the high-temperature dry-heat amorphization equipment used in the following experiments is the GZX-9146MBE blast drying oven of Shanghai Boxun Company; the ultrasonic equipment is the JY88-II ultrasonic cell crusher of Ningbo Xinzhi Biological Company; the high-pressure homogenizer is Canada ATS company AH-2100 high pressure homogenizer.
  • Amorphization of starch at high temperature and dry heat spread 500g of corn starch in a steel pan to a thickness of 2-3mm, and pass through a blast drying box for high temperature dry heat treatment.
  • the treatment time is 10 minutes and the treatment temperature is set to 140°C;
  • step (2) Low-frequency ultrasonic emulsification: add water to the starch obtained in step (1) pretreatment to prepare 35% (w/w, dry starch basis) starch milk, and add 0.2% (w/w, accounting for starch
  • the mass ratio of milk) is monoglyceride and 5% (w/w, the mass ratio of starch milk) stearic acid, which is stirred by a magnetic stirrer at 500 rpm/min for 15 minutes, and ultrasonic emulsification is carried out by ultrasonic equipment.
  • the ultrasonic temperature is set Set at 50°C, ultrasonic power is 250W, ultrasonic frequency is 25kHz, each action time is 5s, interval is 5s, and the total treatment time is 30min;
  • step (2) High-pressure homogenization and compounding: the starch milk-lipid system obtained in step (2) is homogenized once with a high-pressure homogenizer, the homogenization pressure is 25MPa, and the homogenization temperature is 40°C;
  • step (3) the product processed in step (3) is spray-dried to obtain a dry powder of resistant starch, the inlet temperature of the spray dryer is set to 130°C, and the outlet temperature is set to 105°C.
  • the complex rate of the digestion resistant starch prepared in this example was determined by the iodine colorimetry method to reach 67.4%, and the content of the digestion resistant starch (resistant starch and slow digestion starch) measured by the Englyst method reached 75.7%.
  • step (2) of Example 1 The 5% stearic acid in step (2) of Example 1 was changed to 5% linoleic acid, and other operating conditions remained unchanged.
  • the complex rate of the digestion resistant starch prepared in this example was determined by the iodine colorimetry method to reach 63.3%, and the content of the digestion resistant starch (resistant starch and slow digestion starch) measured by the Englyst method reached 73.5%.
  • the complexation rate of the digestion resistant starch prepared in this example was determined by the iodine colorimetric method and increased to 67.9%, and the content of the digestion resistant starch (resistant starch and slow digestion starch) measured by the Englyst method was increased to 76.2%.
  • the temperature of the high-temperature dry heat amorphization treatment in step (1) of Example 1 was changed from 140°C to 135°C, and other operating conditions remained unchanged.
  • the complex rate of the digestion resistant starch prepared in this example was reduced to 60.7% by the iodine colorimetric method, and the content of digestion resistant starch (resistant starch and slow digestion starch) was reduced to 70.4% by the Englyst method.
  • step (2) of Example 1 was changed from 35% to starch milk concentration of 40% (w/w, starch dry basis occupies the total mass), and other operating conditions remained unchanged.
  • the complex rate of the digestion resistant starch prepared in this example was reduced to 61.6% by the iodine colorimetric method, and the content of digestion resistant starch (resistant starch and slow digestion starch) was reduced to 71.3% by the Englyst method.
  • the complex rate of the digestion resistant starch prepared in this example was reduced to 61.2% by the iodine colorimetric method, and the content of digestion resistant starch (resistant starch and slow digestion starch) was reduced to 71.7% by the Englyst method.
  • step (2) of Example 1 was changed from 30 minutes to 20 minutes, and other operating conditions remained unchanged.
  • the complex rate of the digestion resistant starch prepared in this example was reduced to 63.1% by the iodine colorimetric method, and the content of digestion resistant starch (resistant starch and slow digestion starch) was reduced to 72.9% by the Englyst method.
  • the high-pressure homogenization pressure of 25 MPa in the step (3) of Example 1 was changed to 20 MPa, and the other operating conditions were unchanged.
  • the complex rate of the digestion resistant starch prepared in this example was reduced to 60.5% by the iodine colorimetric method, and the content of the digestion resistant starch (resistant starch and slow digestion starch) was reduced to 71.5% by the Englyst method.
  • step (3) of Example 1 The number of high-pressure homogenization in step (3) of Example 1 was changed from 1 time to 2 times, and other operating conditions remained unchanged.
  • the complexation rate of the digestion resistant starch prepared in this example was determined by the iodine colorimetric method and increased to 70.7%, and the content of the digestion resistant starch (resistant starch and slow digestion starch) measured by the Englyst method was increased to 76.4%.
  • Example 1 Change the step of Example 1 (1) the high temperature dry heat amorphization operation is gelatinization of starch milk in 100°C water bath for 30 minutes, and the concentration of the prepared starch milk is 10% (w/w, starch dry basis accounts for the total mass), and other steps ( 2) to (4) are the same as steps (2) to (4) in Example 1.
  • the complex rate of the digestion resistant starch prepared by this comparative example was reduced to 42.6% by the iodine colorimetry method, and the content of digestion resistant starch (resistant starch and slow digestion starch) measured by the Englyst method was reduced to 47.3%, and the starch utilization rate was reduced to 47.3%.
  • the solid content was reduced from 35% to 10%.
  • starch gelatinization leads to a significant increase in the viscosity of the reaction system, hinders the complexation of lipid molecules, and results in a significant decrease in the complexation rate and the content of anti-digestible starch.
  • step (2) of Example 1 The low-frequency phacoemulsification in step (2) of Example 1 is changed to the traditional alcohol-alkali method, and the other operating steps are the same as in Example 1.
  • Step (1) is the same as step (1) in Example 1
  • Step (2) Alcohol-alkali method: To the pretreated 35% starch milk in step (1), monoglycerides accounting for 0.2% of the mass of starch milk and stearic acid accounting for 5% of the mass of starch milk are added to the pretreated 35% starch milk.
  • Steps (3) to (4) are the same as in Example 1;
  • the complex rate of the digestion resistant starch prepared in this comparative example was reduced to 45.8% by the iodine colorimetric method; the content of digestion resistant starch (resistant starch and slow digestion starch) was reduced to 48.2% by the Englyst method.
  • Example 1 On the basis of Example 1, the step (3) high pressure homogenization and compounding step is omitted, and the other operation steps are the same as in Example 1.
  • the measured complexation rate of the digestion resistant starch prepared by the comparative example by the iodine colorimetric method is reduced to 53.1%; the content of the digestion resistant starch (resistant starch and slow digestion starch) measured by the Englyst method is reduced to 57.7%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

一种抗消化淀粉的制备方法,属于淀粉改性技术领域。以普通玉米淀粉为原料,资源丰富,廉价易得;采用高温干热非晶化、低频超声乳化、高压均质结合喷雾干燥的手段,制备得到络合率高达60%、含量高达70%的抗消化淀粉产品;该产品可以作为药物缓释辅料和低血糖指数食品配料使用,具有优良的生理功能如改善肠道健康、预防糖尿病、控制体重等广泛应用。此外,运用上述技术避免化学试剂的使用,具有显著节能环保优势。

Description

一种抗消化淀粉的制备方法 技术领域
本发明涉及一种抗消化淀粉的制备方法,属于淀粉改性技术领域。
背景技术
根据英国生理学家Englyst所制定的淀粉消化率体外测定方法,淀粉可以分为快消化淀粉(RDS)、慢消化淀粉(SDS)以及抗性淀粉(RS)。抗消化淀粉包括SDS和RS两部分,它具有维持血糖稳态、控制体重等生理功能。
目前,大多数的抗消化淀粉是通过物理改性、化学改性、酶法改性和复合改性等方法制备得到的,但是物理改性法得到的慢消化淀粉稳定性不高;化学改性法在得到慢消化淀粉过程中引入了化学试剂,存在一定的食用安全隐患;酶法改性的工艺复杂,对设备要求较高,价格昂贵,市场投入率低,难于工业化生产;目前研究最多的是复合改性,是通过淀粉与络合剂(乳化剂、脂肪酸等)复合制备抗消化淀粉。
在目前利用复合改性法制备抗消化淀粉的研究中,在制备过程中通常采用水热法糊化淀粉,此方法导致淀粉乳体系固形物含量较低(5%-10%),淀粉使用率难以提高,而且体系中90%-95%水分干燥需大量能耗。同时,糊化淀粉体系黏度会显著增加,不利于络合剂的络合反应。此外,传统的络合方法中,淀粉与脂肪酸在络合乳化的过程中需要使用大量的化学试剂酸碱和乙醇等,产生的废水废气对环保提出严重挑战。
发明内容
[技术问题]
目前利用复合改性法制备抗消化淀粉的技术中,在制备过程中通常采用水热法糊化淀粉,此方法导致淀粉乳体系固形物含量较低(5%-10%),淀粉使用率难以提高,而且体系中90%-95%水分干燥需大量能耗。同时,糊化淀粉体系黏度会显著增加,不利于络合剂的络合反应。此外,传统的络合方法中,淀粉与脂肪酸在络合乳化的过程中需要使用大量的化学试剂酸碱和乙醇等,产生的废水废气对环保提出严重挑战。
[技术方案]
针对上述问题,本发明提供了一种抗消化淀粉的制备方法,本发明采用低频超声乳化技术以水为反应介质实现淀粉与脂质(单甘酯和脂肪酸)络合,制备出的产品中抗消化淀粉高含量。在本发明的制备方法中,首先采用高温干热非晶化技术替代传统热糊化,不仅能够达到淀粉解簇目的,而且提高后期淀粉乳体系固形物含量至35%-40%;再通过低频超声乳化技术实现络合反应在水体系中进行,避免酸碱等试剂的使用,同时可提高淀粉-脂质络合物的络 合率;最后采用高压均质技术,进一步提高抗消化淀粉含量至70%以上。
本发明提供了一种制备抗消化淀粉的方法,所述制备方法的步骤如下:
(1)淀粉高温干热非晶化:将普通玉米淀粉经过高温干热非晶化处理,处理时间为10-15min,处理温度为135-140℃;
(2)低频超声乳化:向步骤(1)预处理得到的淀粉中加水,配制成浓度为35%-40%(w/w,淀粉基占总质量)淀粉乳,再向其中加入0.1%-0.2%(w/w,占淀粉乳的质量比)的单甘酯和3%-5%(w/w,占淀粉乳的质量比)的脂肪酸,搅拌混匀后通过超声设备进行超声乳化,超声温度为50-60℃,超声功率为200-300W,超声频率为20-25kHz,处理时间为20-30min;
(3)高压均质络合:将步骤(2)所得的淀粉乳体系通过均质机进行均质得到淀粉络合物,均质压力为20-25MPa,均质温度为40~45℃,均质次数1-2次;
(4)喷雾干燥:将步骤(3)得到的淀粉复合物进行喷雾干燥,得到抗消化淀粉。
在本发明的一种实施方式中,步骤(1)中所述高温干热非晶化处理是将普通玉米淀粉首先在钢盘中铺成2-3mm厚度,再经过鼓风干燥箱高温干热处理,处理时间为10~15min,设定处理温度140℃。
在本发明的一种实施方式中,步骤(1)中所述采用高温干热非晶化处理,是保证高温非晶化技术将淀粉解簇糊化,淀粉糊化度达到90%以上;采用淀粉酶法测定糊化度。
在本发明的一种实施方式中,步骤(2)中所用的脂肪酸为硬脂酸、油酸、亚油酸、亚麻酸、花生四烯酸中的任意一种。
在本发明的一种实施方式中,步骤(2)中所述单甘酯添加量占淀粉乳质量的0.2%,脂肪酸的加入量占淀粉乳质量的5%。
在本发明的一种实施方式中,步骤(2)中所述搅拌混匀的具体方式为:通过磁力搅拌器使其充分混匀,搅拌转速500rpm,搅拌时间15min。
在本发明的一种实施方式中,步骤(2)中所述高频超声乳化的超声温度为50℃,超声的功率是250W,超声频率25kHz,处理时间为30min。
在本发明的一种实施方式中,步骤(3)中所述高压均质条件:均质压力25MPa,均质温度为40℃,均质次数1-2次。
在本发明的一种实施方式中,步骤(4)中喷雾干燥机的进口温度设定为130℃,出口温度设定为105℃。
在本发明的一种实施方式中,步骤(4)中得到的淀粉-脂质复合物的络合率是通过碘比色法测定;抗消化淀粉(抗性淀粉和慢消化淀粉)含量通过Englyst方法测定。
本发明提供了上述制备方法制备得到的抗消化淀粉。
本发明提供了上述制备抗消化淀粉的方法在制备医药辅料、低血糖生成指数食品配料领域的应用。
[有益效果]:
(1)本发明以玉米淀粉为原料,经过高温干热非晶化处理后,淀粉能够充分糊化解簇,并能够提高后期淀粉乳的固形物含量至35%-40%。
(2)通过对淀粉进行高温干热非晶化处理后,可与乳化剂在低频超声过程中充分络合,得到的抗消化淀粉含量显著提高至70%以上。
(3)本发明采用均质技术处理淀粉-脂质络合物体系,淀粉的氢键和晶体结构的破坏会导致具有活性的羟自由基暴露,反应活性位点增加,从而提高淀粉乳化络合率至60%以上。
(4)本发明制备得到的该抗消化淀粉具有优良的生理功能如改善肠道健康、预防糖尿病、控制体重等,适用于II型糖尿病患者控制血糖食用,在药物缓释和功能性食品配料领域有广泛应用。
具体实施方式
下面结合实施方式对本发明进一步说明,应理解的是,这些实施例仅用于例证的目的,并不限制本发明的保护范围。
1、淀粉络合率的测定
将400mg抗消化淀粉加入到含4.6mL蒸馏水的离心管中,该混合物在沸水浴中加热搅拌20min,然后冷却至室温加入25mL蒸馏水。将试管涡旋2min,然后取500μL样品与15mL蒸馏水及2mL的碘液进行混合。未添加脂肪酸的玉米淀粉作为空白对照。在556nm处测定样品的最大吸光度。络合指数按照下列公式计算:
CI=100×(Ac-As)/Ac,Ac代表空白对照的吸光度,As代表抗消化淀粉的吸光度
2、抗消化淀粉含量的测定
取200mg样品加入4mL水,通过磁力搅拌混合均匀,然后沸水浴10min,再加入4mL NaAc溶液含20颗玻璃珠,然后37℃水浴30min,之后加入2mL混酶继续37℃水浴,每0,20,120min取0.1mL至0.9mL的90%乙醇中,离心10000rpm,5min,每管取3个上清6μL于平板中加入200μL试剂,放入酶标仪,震荡10s,恒温37℃,10min后测定A520。计算0、20和120min时分别消化生成的葡萄糖含量G0、G20和G120,抗消化淀粉含量即为慢消化淀粉(SDS)和抗性淀粉(RS)含量之和。
%RDS=(G20-G0)*0.9*100/S;%SDS=(G120-G20)*0.9*100/S;%RS=(1-%RDS-%SDS)
S代表抗性淀粉的质量;0.9是葡萄糖中淀粉的化学计量常数
3、以下实验所使用的高温干热非晶化设备为上海博迅公司GZX-9146MBE型鼓风干燥 箱;超声设备为宁波新芝生物公司JY88-II超声波细胞破碎仪;高压均质机为加拿大ATS公司AH-2100型高压均质机。
实施例1
(1)淀粉高温干热非晶化:将500g玉米淀粉在钢盘中铺成2-3mm厚度,经过鼓风干燥箱进行高温干热处理,处理时间为10min,设定处理温度为140℃;
(2)低频超声乳化:向步骤(1)预处理得到的淀粉中加水,配制成35%(w/w,淀粉干基占总质量)淀粉乳,并加入0.2%(w/w,占淀粉乳的质量比)的单甘酯和5%(w/w,占淀粉乳的质量比)硬脂酸,通过磁力搅拌器以500rpm/min转速搅拌15min,通过超声设备进行超声乳化,超声温度设定为50℃,超声功率是250W,超声频率25kHz,每次作用时间为5s、间隔5s,总处理时间为30min;
(3)高压均质复合:将步骤(2)所得的淀粉乳-脂质体系,采用高压均质机均质1次,均质压力是25MPa,均质温度为40℃;
(4)喷雾干燥:将步骤(3)处理的产物,通过喷雾干燥得到抗消化淀粉干粉,喷雾干燥机的进口温度设定为130℃,出口温度设定为105℃。
通过碘比色法测定本实施例制备的抗消化淀粉的络合率达到67.4%,用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量达75.7%。
实施例2
改变实施例1步骤(2)中5%硬脂酸为5%亚油酸,其它操作条件不变。
通过碘比色法测定本实施例制备的抗消化淀粉的络合率达到63.3%,用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量达73.5%。
实施例3
改变实施例1步骤(1)高温干热非晶化处理时间10min为15min,其它操作条件不变。
通过碘比色法测定本实施例制备的抗消化淀粉的络合率提高至67.9%,用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量提高至76.2%。
实施例4
改变实施例1步骤(1)高温干热非晶化处理温度140℃为135℃,其它操作条件不变。
通过碘比色法测定本实施例制备的抗消化淀粉的络合率降低至60.7%,用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量降低至70.4%。
实施例5
改变实施例1步骤(2)淀粉乳浓度35%为淀粉乳浓度40%(w/w,淀粉干基占总质量),其它操作条件不变。
通过碘比色法测定本实施例制备的抗消化淀粉的络合率降低至61.6%,用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量降低至71.3%。
实施例6
改变实施例1步骤(2)超声功率250W为200W,其它操作条件不变。
通过碘比色法测定本实施例制备的抗消化淀粉的络合率降低至61.2%,用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量降低至71.7%。
实施例7
改变实施例1步骤(2)超声时间30min为超声时间20min,其它操作条件不变。
通过碘比色法测定本实施例制备的抗消化淀粉的络合率降低至63.1%,用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量降低至72.9%。
实施例8
改变实施例1步骤(3)高压均质压力25MPa为高压均质压力20MPa,其它操作条件不变。
通过碘比色法测定本实施例制备的抗消化淀粉的络合率降低至60.5%,用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量降低至71.5%。
实施例9
改变实施例1步骤(3)高压均质次数1次为2次,其它操作条件不变。
通过碘比色法测定本实施例制备的抗消化淀粉的络合率提高至70.7%,用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量提高至76.4%。
对比例1
改变实施例1步骤(1)高温干热非晶化操作为淀粉乳100℃水浴糊化30min,所配制淀粉乳的浓度为10%(w/w,淀粉干基占总质量),其它步骤(2)~(4)与实施例1中的步骤(2)~(4)相同。
通过碘比色法测定本对比例制备的抗消化淀粉的络合率降低至42.6%,用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量降低至47.3%,同时淀粉利用率固形物含量与实施例1相比由35%降低至10%。此过程中淀粉糊化导致反应体系黏度显著提高,阻碍脂质分子络合,导致络合率和抗消化淀粉含量显著降低。
对比例2
改变实施例1步骤(2)低频超声乳化为传统酒精碱法,其他操作步骤与实施例1相同。
步骤(1)和实施例1步骤(1)相同
步骤(2)酒精碱法:向步骤(1)预处理的35%淀粉乳中加入占淀粉乳质量0.2%的单甘 酯和占淀粉乳质量5%的硬脂酸,采用酒精碱法制备络合物样品,其中淀粉乳:40%乙醇(体积分数):1.5mol/L KOH=9:0.6:0.4,上述体系充分反应2h,倒掉上清液,用95%乙醇重复洗涤沉淀3次,蒸馏水洗涤3次,于40℃中干燥,粉碎研磨得到抗消化淀粉。
步骤(3)~(4)实施例1相同;
通过碘比色法测定本对比例制备的抗消化淀粉的络合率降低至45.8%;用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量降低至48.2%。
对比例3
在实施例1的基础上省去步骤(3)高压均质复合步骤,其他操作步骤与实施例1相同。
通过碘比色法本对比例制备的抗消化淀粉的测定络合率降低至53.1%;用Englyst法测得抗消化淀粉(抗性淀粉和慢消化淀粉)含量降低至57.7%。
表1实施例与对比例结果分析
Figure PCTCN2020099099-appb-000001
注:每一列不同的小写字母代表数值之间存在显著性差异(p<0.05)
由表1可见,本发明中采用高温干热非晶化技术、低频超声乳化、高压均质等手段,制备得到络合率达到60%、有效组分含量达70%抗消化淀粉;本发明中改变上述技术或方法参数,或省去部分发明步骤均会显著影响淀粉-脂质络合率和抗消化淀粉含量;同时,本发明的 原料为普通玉米淀粉,资源丰富,廉价易得;本发明运用上述技术可以避免化学试剂的使用,具有环保节能等优势。此外,本发明产品可以作为药物缓释辅料和低血糖指数食品配料,具有优良的生理功能如改善肠道健康、预防糖尿病、控制体重等广泛应用。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

  1. 一种制备抗消化淀粉的方法,其特征在于,所述制备方法的步骤如下:
    (1)淀粉高温干热非晶化:将普通玉米淀粉经过高温干热非晶化处理,处理时间为10-15min,处理温度为135-140℃;
    (2)低频超声乳化:向步骤(1)预处理得到的淀粉中加水,配制成35wt%-40wt%淀粉乳,再向其中加入占淀粉乳质量0.1%-0.2%的单甘酯和占淀粉乳质量3%-5%的脂肪酸,搅拌混匀后通过超声设备进行超声乳化,超声温度为50-60℃,超声功率为200-300W,超声频率为20-25kHz,处理时间为20-30min;
    (3)高压均质络合:将步骤(2)所得的淀粉乳体系通过均质机进行均质得到淀粉络合物,均质压力为20-25MPa,均质温度为40~45℃,均质次数1-2次;
    (4)喷雾干燥:将步骤(3)得到的淀粉复合物进行喷雾干燥,得到抗消化淀粉。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中所述高温干热非晶化处理是将普通玉米淀粉首先在钢盘中铺成2-3mm厚度,再经过高温干热非晶化处理,处理时间为10-15min,处理温度为140℃。
  3. 根据权利要求1所述的方法,其特征在于,步骤(2)中所述的脂肪酸为硬脂酸、油酸、亚油酸、亚麻酸、花生四烯酸中的任意一种。
  4. 根据权利要求1所述的方法,其特征在于,步骤(2)中所述单甘酯添加量占淀粉乳质量的0.2%,脂肪酸的加入量占淀粉乳质量的5%。
  5. 根据权利要求1所述的方法,其特征在于,步骤(2)中所述高频超声乳化的超声温度为50℃,超声的功率是250W,超声频率25kHz,超声处理时间为30min。
  6. 根据权利要求1所述的方法,其特征在于,步骤(3)中所述高压均质条件为:均质压力25MPa,均质温度为40℃,均质次数2次。
  7. 根据权利要求1所述的方法,其特征在于,步骤(4)中喷雾干燥机的进口温度设定为130℃,出口温度设定为105℃。
  8. 根据权利要求1~7任一项所述方法制备得到的抗消化淀粉。
  9. 权利要求1~7任一项所述的方法在制备一种医药辅料中的应用。
  10. 权利要求1~7任一项所述的方法在制备一种低血糖生成指数食品配料中的应用。
PCT/CN2020/099099 2020-02-26 2020-06-30 一种抗消化淀粉的制备方法 WO2021169117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010119096.9A CN111264867B (zh) 2020-02-26 2020-02-26 一种抗消化淀粉的制备方法
CN202010119096.9 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021169117A1 true WO2021169117A1 (zh) 2021-09-02

Family

ID=70991346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099099 WO2021169117A1 (zh) 2020-02-26 2020-06-30 一种抗消化淀粉的制备方法

Country Status (2)

Country Link
CN (1) CN111264867B (zh)
WO (1) WO2021169117A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621988A (zh) * 2022-03-30 2022-06-14 江南大学 一种慢消化性且低水解率的发酵玉米淀粉及其制备方法
CN115812976A (zh) * 2023-01-05 2023-03-21 中国农业大学 一种具有抗消化功能的豌豆淀粉-没食子酸复合物及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111264867B (zh) * 2020-02-26 2022-09-27 江南大学 一种抗消化淀粉的制备方法
CN111838534B (zh) * 2020-07-09 2022-09-27 江南大学 一种藜麦质低gi配料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891831A (zh) * 2010-07-16 2010-11-24 江南大学 一种稳定型慢消化淀粉的制备方法
CN102653563A (zh) * 2012-05-17 2012-09-05 江南大学 一种功能v-型黄糊精-乳化剂络合物的制备方法
CN104961837A (zh) * 2015-06-30 2015-10-07 华南理工大学 一种淀粉脂肪酸复合物的制备方法
KR20170016664A (ko) * 2015-08-04 2017-02-14 고려대학교 산학협력단 지방산-전분 나노복합체의 제조방법 및 이에 의해 제조된 지방산-전분 나노복합체
CN107686524A (zh) * 2017-10-19 2018-02-13 齐鲁工业大学 V6‑型结晶结构马铃薯淀粉‑脂肪酸复合物的制备方法
CN110292166A (zh) * 2019-05-23 2019-10-01 江苏大学 一种基于扫频超声波技术制备抗消化淀粉的方法
CN110452422A (zh) * 2019-08-26 2019-11-15 中南林业科技大学 一种提高缓慢消化淀粉含量的锥栗淀粉-脂肪酸复合方法
CN111264867A (zh) * 2020-02-26 2020-06-12 江南大学 一种抗消化淀粉的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103621870B (zh) * 2013-11-20 2015-04-22 华南理工大学 一种含有慢消化和抗性淀粉食品原料的加工方法
CN104757369A (zh) * 2015-04-13 2015-07-08 青岛农业大学 具有v型结晶结构的玉米淀粉-脂肪酸复合物的制备方法
CN105694115B (zh) * 2016-04-09 2018-07-13 福建农林大学 一种低血糖指数莲子淀粉-脂质复合物的加工方法
CN108192150B (zh) * 2017-12-15 2020-12-04 南昌大学 一种增强冷水溶解性且抗消化大米淀粉的生产方法
CN110250414B (zh) * 2019-07-30 2022-09-27 江南大学 一种低血糖指数米粉的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891831A (zh) * 2010-07-16 2010-11-24 江南大学 一种稳定型慢消化淀粉的制备方法
CN102653563A (zh) * 2012-05-17 2012-09-05 江南大学 一种功能v-型黄糊精-乳化剂络合物的制备方法
CN104961837A (zh) * 2015-06-30 2015-10-07 华南理工大学 一种淀粉脂肪酸复合物的制备方法
KR20170016664A (ko) * 2015-08-04 2017-02-14 고려대학교 산학협력단 지방산-전분 나노복합체의 제조방법 및 이에 의해 제조된 지방산-전분 나노복합체
CN107686524A (zh) * 2017-10-19 2018-02-13 齐鲁工业大学 V6‑型结晶结构马铃薯淀粉‑脂肪酸复合物的制备方法
CN110292166A (zh) * 2019-05-23 2019-10-01 江苏大学 一种基于扫频超声波技术制备抗消化淀粉的方法
CN110452422A (zh) * 2019-08-26 2019-11-15 中南林业科技大学 一种提高缓慢消化淀粉含量的锥栗淀粉-脂肪酸复合方法
CN111264867A (zh) * 2020-02-26 2020-06-12 江南大学 一种抗消化淀粉的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG SHUANG, MA YING;LIU TIANYI: "Corn starch-stearic acid complexes prepared by high pressure homogenization technology", HA'ERBIN GONGYE DAXUE XUEBAO - JOURNAL OF HARBIN INSTITUTE OFTECHNOLOGY, GAI-KAN BIANJIBU, HA'ERBIN, CN, vol. 47, no. 4, 1 April 2015 (2015-04-01), CN, pages 52 - 57, XP055840307, ISSN: 0367-6234, DOI: 10.11918/j.issn.0367-6234.2015.04.009 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621988A (zh) * 2022-03-30 2022-06-14 江南大学 一种慢消化性且低水解率的发酵玉米淀粉及其制备方法
CN114621988B (zh) * 2022-03-30 2023-10-27 江南大学 一种慢消化性且低水解率的发酵玉米淀粉及其制备方法
CN115812976A (zh) * 2023-01-05 2023-03-21 中国农业大学 一种具有抗消化功能的豌豆淀粉-没食子酸复合物及其制备方法

Also Published As

Publication number Publication date
CN111264867B (zh) 2022-09-27
CN111264867A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
WO2021169117A1 (zh) 一种抗消化淀粉的制备方法
CN111264840B (zh) 一种慢消化淀粉的制备方法
Li et al. Effect of heat-moisture treatment on the formation and physicochemical properties of resistant starch from mung bean (Phaseolus radiatus) starch
JP6945003B2 (ja) 低血糖指数の遅消化性澱粉組換え即席ご飯の製造方法
CN105694115B (zh) 一种低血糖指数莲子淀粉-脂质复合物的加工方法
CN106174444B (zh) 湿热处理塔拉胶/淀粉复合物制备缓慢消化淀粉的方法
Zhang et al. Ultrasonication effects on physicochemical properties of starch–lipid complex
Wang et al. Improvement in enzymolysis efficiency and changes in conformational attributes of corn gluten meal by dual-frequency slit ultrasonication action
WO2022111066A1 (zh) 一种富含慢消化和抗性淀粉的食品原料及其制备方法与应用
Long et al. Structural characterization and hypolipidemic activity of Gracilaria lemaneiformis polysaccharide and its degradation products
Rong et al. Eggshell powder improves the gel properties and microstructure of pea starch-Mesona chinensis Benth polysaccharide gels
CN104366260A (zh) 一种淀粉基高膳食纤维冲调粉及其制备方法
Ren et al. Effects of modification methods on microstructural and physicochemical characteristics of defatted rice bran dietary fiber
Wu et al. Effect of rice protein on the gelatinization and retrogradation properties of rice starch
Lv et al. Effect of citric acid esterification on the structure and physicochemical properties of tigernut starch
Tang et al. Physicochemical, structure properties and in vitro hypoglycemic activity of soluble dietary fiber from adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) bran treated by steam explosion
Guan et al. Study on structural characteristics, physicochemical properties, and in vitro digestibility of Kudzu‐resistant starch prepared by different methods
Han et al. Exploring the formation mechanism of resistant starch (RS3) prepared from high amylose maize starch by hydrothermal-alkali combined with ultrasonic treatment
CN106519048A (zh) 一种提高淀粉中慢消化淀粉含量的方法
CN109925287A (zh) 一种盐酸赛庚啶片剂及其制备方法
CN105820259A (zh) 一种慢消化淀粉的制备方法
WO2020048270A1 (zh) 一种用蜗牛酶制备壳寡糖的方法及其用途
CN107383220B (zh) 一种超高压辅助苹果酸改性制备高含量抗性淀粉的方法
CN105131310A (zh) 一种非晶颗粒态抗性淀粉的制备方法
Zeng et al. Processing, digestion property and structure characterization of slowly digestible gorgon nut starch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921564

Country of ref document: EP

Kind code of ref document: A1