WO2021166920A1 - 圧縮機 - Google Patents

圧縮機 Download PDF

Info

Publication number
WO2021166920A1
WO2021166920A1 PCT/JP2021/005782 JP2021005782W WO2021166920A1 WO 2021166920 A1 WO2021166920 A1 WO 2021166920A1 JP 2021005782 W JP2021005782 W JP 2021005782W WO 2021166920 A1 WO2021166920 A1 WO 2021166920A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
axial direction
rotating shaft
coil
Prior art date
Application number
PCT/JP2021/005782
Other languages
English (en)
French (fr)
Inventor
平野 正樹
山際 昭雄
尚宏 木戸
寛 日比野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP21757931.7A priority Critical patent/EP4108933A4/en
Priority to US17/904,241 priority patent/US20230246492A1/en
Priority to CN202180012108.0A priority patent/CN115038877A/zh
Publication of WO2021166920A1 publication Critical patent/WO2021166920A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/145Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having an annular armature coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1672Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators

Definitions

  • This disclosure relates to compressors.
  • a compressor having a bearing is known (see, for example, Patent Document 1).
  • the coil end (coil end) in the axial direction of the rotor protrudes axially from the stator core. Therefore, the rotating shaft must be further projected in the axial direction from the coil end so that the bearing can support the rotating shaft, and it is difficult to shorten the rotating shaft.
  • the present disclosure provides a compressor capable of shortening the rotation axis.
  • the compressor of the present disclosure is A motor in which a stator is placed around the rotor shaft, The rotating shaft fixed to the rotor and Bearings that support the rotating shaft and An impeller connected to the rotating shaft and compressing the fluid, A casing for accommodating the motor is provided.
  • the stator is A coil that orbits around the rotor axis in an annular shape, It has an outer peripheral surface of the rotor and a stator core having magnetic poles facing each other in the radial direction of the rotor via a gap.
  • the rotation axis can be shortened.
  • the compressor of the present disclosure is
  • the bearing is a radial bearing and
  • the rotating shaft has a shaft portion supported by the radial bearing and has a shaft portion.
  • the shaft diameter of the shaft portion is larger than the outer diameter of the rotor.
  • the rotating shaft can be shortened.
  • the compressor of the present disclosure is The shaft diameter of the shaft portion is larger than the inner diameter of the stator.
  • the shaft diameter of the shaft portion is larger than the inner diameter of the stator, so that the rotating shaft can be further shortened.
  • the compressor of the present disclosure is
  • the radial bearing is a gas bearing.
  • the radial bearing is a gas bearing, the shaft diameter of the shaft portion can be easily increased.
  • the compressor of the present disclosure is
  • the stator core has a plate having a thickness in the axial direction of the rotor. At least a part of the plate portion in which the coil is projected onto the plate in the axial direction comes into contact with the casing.
  • the compressor of the present disclosure since at least a part of the plate portion comes into contact with the casing, the heat dissipation effect of releasing the heat of the coil and the stator core to the casing is improved.
  • the compressor of the present disclosure is
  • the stator includes a plurality of stator units having the same structure and aligned in the axial direction of the rotor around the axis of the rotor.
  • the plurality of stator units each have a pair of the stator cores facing each other with the coil in the axial direction.
  • the magnetic poles of the pair of stator cores are displaced from each other in the circumferential direction of the rotor when viewed from the axial direction.
  • the compressor of the present disclosure since the plurality of stator units have the same structure as each other, it is possible to reduce the cost by reducing the size of the mold for manufacturing the stator core.
  • the compressor of the present disclosure is A non-magnetic material is provided between adjacent stator units among the plurality of stator units.
  • the compressor of the present disclosure is The number of the plurality of stator units is 2.
  • the rotation axis can be shortened as compared with the form in which the number is 3 or more.
  • the compressor of the present disclosure is
  • the rotor is an SPM (Surface Permanent Magnet) type rotor in which at least one permanent magnet is arranged on the outer peripheral surface of the rotor.
  • SPM Surface Permanent Magnet
  • the rotor is an SPM type rotor
  • a protective sleeve is provided on the outer peripheral side of the permanent magnet as compared with an IPM (Interior Permanent Magnet) type rotor in which at least one permanent magnet is embedded in the rotor.
  • IPM Interior Permanent Magnet
  • the centrifugal strength can be increased by arranging the holding ring.
  • the compressor of the present disclosure is The number of poles of each of the plurality of stator units is 2.
  • the drive frequency can be reduced as compared with the form in which the number of poles is 4 or more, which is suitable for high speed.
  • FIG. 1 is a vertical sectional view showing a configuration example of a turbo compressor according to the first embodiment.
  • FIG. 2 is a perspective view showing a configuration example of the motor.
  • FIG. 3 is an exploded perspective view showing a configuration example of the motor.
  • FIG. 4 is a diagram showing a form in which a non-magnetic material layer is provided between adjacent stator units.
  • FIG. 5 is a vertical cross-sectional view showing a configuration example of the turbo compressor according to the second embodiment.
  • FIG. 6 is a diagram for explaining the presence / absence of the coil end.
  • FIG. 7 is a vertical cross-sectional view showing a configuration example of one stator unit.
  • FIG. 1 is a vertical sectional view showing a configuration example of a turbo compressor according to the first embodiment.
  • the turbo compressor 12 is an example of a compressor.
  • the turbo compressor 12 is a device provided in a refrigerant circuit of an air conditioner (not shown), and the refrigerant is compressed by the impeller 21.
  • the turbo compressor 12 includes a casing 20, a rotating shaft 31, an impeller 21, a first radial bearing 71, a second radial bearing 72, a first thrust bearing 74a, a second thrust bearing 74b, and a motor 40.
  • the "axial direction” is the direction of the rotation axis
  • the direction of the axis of the rotation axis 31 is the direction of the axis of the rotation axis 31. It is the direction perpendicular to each other.
  • the "outer peripheral side” is a side farther from the axis of the rotating shaft 31
  • the “inner peripheral side” is a side closer to the axis of the rotating shaft 31.
  • the casing 20 is formed in a cylindrical shape with both ends closed, and is arranged so that the cylindrical axis is oriented horizontally.
  • the space inside the casing 20 is partitioned by the wall portion 20a.
  • the space on the right side (first axial direction side) of the wall portion 20a forms the impeller chamber S1 for accommodating the impeller 21.
  • the space on the left side of the wall portion 20a (on the side in the second axial direction opposite to the side in the first axial direction) forms the motor chamber S2 for accommodating the motor 40.
  • the motor 40, the first radial bearing 71, the second radial bearing 72, the first thrust bearing 74a, and the second thrust bearing 74b are housed in the motor chamber S2.
  • the stator 44, the first radial bearing 71, the second radial bearing 72, the first thrust bearing 74a, and the second thrust bearing 74b of the motor 40 are fixed to the inner peripheral wall of the motor chamber S2.
  • the rotating shaft 31 is a shaft provided for rotationally driving the impeller 21, which is an example of a load.
  • the rotating shaft 31 extends axially in the casing 20 to connect the impeller 21 and the rotor 41 of the motor 40.
  • the rotating shaft 31 is fixed to the rotor 41 so that its axis is coaxial with the axis of the rotor 41 of the motor 40.
  • the impeller 21 is fixed to one end of the rotating shaft 31, and the motor 40 is arranged in the middle of the rotating shaft 31.
  • a disk-shaped portion (hereinafter, also referred to as a disk portion 31e) is provided at the other end of the rotating shaft 31 (that is, the end on the side opposite to the one end to which the impeller 21 is fixed).
  • the disk portion 31e is made of a magnetic material (for example, iron) when the first thrust bearing 74a and the second thrust bearing 74b are magnetic bearings.
  • the impeller 21 is formed by a plurality of blades so as to have a substantially conical shape, and is housed in the impeller chamber S1 in a state of being fixed to one end of the rotating shaft 31.
  • a suction pipe P1 and a discharge pipe P2 are connected to the impeller chamber S1.
  • the suction pipe P1 is provided to guide the refrigerant (an example of a fluid) from the outside to the impeller chamber S1.
  • the discharge pipe P2 is provided to return the high-pressure refrigerant (an example of a fluid) compressed in the impeller chamber S1 to the outside. That is, in this example, the compression mechanism is formed by the impeller 21 and the impeller chamber S1.
  • the first radial bearing 71 is provided near one end of the rotating shaft 31 (the left end in FIG. 1), receives a radial load from the rotating shaft 31, and rotatably supports the rotating shaft 31.
  • the second radial bearing 72 is provided near the other end of the rotating shaft 31, receives a radial load from the rotating shaft 31, and rotatably supports the rotating shaft 31.
  • the first radial bearing 71 is located on one axial side (opposite the impeller 21 side) with respect to the motor 40, and the second radial bearing 72 is located on the other axial side (impeller 21) with respect to the motor 40. Located on the side).
  • the first radial bearing 71 rotatably supports the shaft portion 31a of the rotating shaft 31, and the second radial bearing 72 rotatably supports the shaft portion 31b of the rotating shaft 31.
  • the shaft portion 31a has a shaft diameter ⁇ A
  • the shaft portion 31b has a shaft diameter ⁇ B.
  • the shaft diameter ⁇ A is smaller than the outer diameter ⁇ C of the rotor 41 of the motor 40 and smaller than the inner diameter ⁇ D of the stator 44 of the motor 40.
  • the shaft diameter ⁇ B is also thinner than the outer diameter ⁇ C and thinner than the inner diameter ⁇ D.
  • the shaft diameter ⁇ A may be the same as the outer diameter ⁇ C
  • the shaft diameter ⁇ B may be the same as the outer diameter ⁇ C.
  • the first radial bearing 71 and the second radial bearing 72 are non-contact type bearings (for example, gas bearings that float with gas such as foil bearings, magnetic bearings that float with magnetism, etc.) so as to be able to cope with high-speed rotation of the rotating shaft 31. ), But a contact type bearing (for example, a rolling bearing) may be used.
  • the first thrust bearing 74a and the second thrust bearing 74b receive an axial load and support the disk portion 31e of the rotating shaft 31 from both sides in the axial direction.
  • the first thrust bearing 74a is located on one side in the axial direction with respect to the disk portion 31e (the side opposite to the impeller 21 side), and the second thrust bearing 74b is located on the other side in the axial direction with respect to the disk portion 31e. It is located on the side (impeller 21 side).
  • the first thrust bearing 74a and the second thrust bearing 74b are each formed in an annular shape, and face each other with the disk portion 31e interposed therebetween.
  • the first thrust bearing 74a and the second thrust bearing 74b are non-contact type bearings (for example, gas bearings that float with gas such as foil bearings, magnetic bearings that float with magnetism, etc.) so as to be able to cope with high-speed rotation of the rotating shaft 31. ), But a contact type bearing (for example, a rolling bearing) may be used.
  • first thrust bearing 74a and the second thrust bearing 74b are gas bearings
  • the space between the disk portion 31e and the first thrust bearing 74a and the disk portion 31e Dynamic pressure is generated between the second thrust bearing 74b and the second thrust bearing 74b.
  • the first thrust bearing 74a and the second thrust bearing 74b utilize this dynamic pressure to non-contactly support the disk portion 31e.
  • the disk portion 31e When the first thrust bearing 74a and the second thrust bearing 74b are magnetic bearings, the disk portion 31e includes a first thrust electromagnet provided on the first thrust bearing 74a and a second thrust electromagnet provided on the second thrust bearing 74b. It is supported non-contact by the combined electromagnetic force of.
  • the motor 40 is a permanent magnet synchronous motor that has a rotor 41 and a stator 44 and rotationally drives the rotating shaft 31.
  • the motor 40 is an inner rotor type motor in which the stator 44 is arranged around the axis of the rotor 41.
  • the rotor 41 is fixed to the rotating shaft 31, and the stator 44 is fixed to the inner peripheral wall of the casing 20.
  • the stator 44 is arranged outside the rotor 41 in the radial direction.
  • the rotor 41 and the stator 44 are arranged on an axis coaxial with the rotating shaft 31, and face each other in the radial direction of the rotating shaft 31.
  • FIG. 2 is a perspective view showing an example of a configuration of a motor.
  • FIG. 3 is an exploded perspective view of the motor shown in FIG.
  • the motor 40 shown in FIGS. 2 and 3 is a claw pole type motor.
  • the rotor 41 has a rotor core 42 and at least one permanent magnet 43 arranged on the outer peripheral portion of the rotor core 42.
  • the rotor core 42 is formed in a cylindrical shape by a magnetic material (for example, laminated steel plate, cast iron, or dust core).
  • a shaft hole for inserting the rotating shaft 31 is formed in the central portion of the rotor core 42.
  • the rotor core 42 has substantially the same length as the stator 44 in the axial direction of the rotor 41.
  • the rotor core 42 is composed of one member in the axial direction. Further, the rotor core 42 may be composed of a plurality of members (for example, a number corresponding to the number of stator units described later) stacked in the axial direction.
  • the plurality of permanent magnets 43 are arranged at equal intervals in the circumferential direction on the outer peripheral surface of the rotor core 42. Further, the plurality of permanent magnets 43 are formed so as to exist between substantially one end and substantially the other end of the rotor core 42 in the axial direction.
  • the permanent magnet 43 is, for example, a neodymium sintered magnet or a ferrite magnet.
  • Each of the plurality of permanent magnets 43 has different magnetic poles magnetized at both ends in the radial direction. Further, the two permanent magnets 43 adjacent to each other in the circumferential direction among the plurality of permanent magnets 43 have different magnetic poles magnetized on the outer side in the radial direction facing the stator 44. Therefore, inside the stator 44 in the radial direction, there are a permanent magnet 43 in which the N pole is magnetized on the outside in the radial direction and a permanent magnet 43 in which the S pole is magnetized on the outside in the radial direction. They are placed next to each other.
  • Each of the plurality of permanent magnets 43 may be composed of one magnet member in the axial direction, or may be divided in the axial direction (for example, a number corresponding to the number of members of the rotor core 42 to be stacked). It may be composed of the magnet member of. In this case, the same magnetic poles are magnetized on the outer sides of the plurality of magnet members constituting the permanent magnet 43 divided in the axial direction in the radial direction facing the stator 44.
  • the plurality of permanent magnets 43 arranged in the circumferential direction are composed of one member in the circumferential direction, for example, an annular ring magnet or a plastic magnet in which different magnetic poles are alternately magnetized in the circumferential direction. It may be replaced with a permanent magnet.
  • the permanent magnet composed of one member in the circumferential direction may be composed of one member in the axial direction as well, and may be composed of one member as a whole.
  • the permanent magnet composed of one member in the circumferential direction may be divided into a plurality of members in the axial direction as in the case of the plurality of permanent magnets 43.
  • the rotor core 42 may be omitted.
  • the rotor 41 is an SPM type rotor in which the permanent magnet 43 is arranged on the outer peripheral surface (outer peripheral surface) of the rotor core 42.
  • the permanent magnet 43 is exposed on the outer peripheral surface of the rotor core 42.
  • a protective sleeve or a holding ring for holding the permanent magnet 43 on the rotor core 42 may be arranged on the outer peripheral side of the permanent magnet 43.
  • the protective sleeve or holding ring is made of a non-magnetic material (for example, CFRP (carbon fiber reinforced plastic), GFRP (glass fiber reinforced plastic), SUS (stainless steel), titanium, inconel, etc.).
  • the number of poles (the number of magnetic poles) of the stator units 51 and 52 included in the stator 44 is 2.
  • at least one permanent magnet 43 is formed on the outer circumference of the rotor core 42 so that the angular region of about 180 ° in the circumferential direction is the north pole and the angular region of about 180 ° in the circumferential direction is the south pole. It is placed in the department.
  • the stator 44 includes a plurality of stator units having the same structure as each other arranged in the axial direction of the rotor 41 around the axis of the rotor 41.
  • the stator 44 is a two-phase stator structure including two stator units 51 and 52.
  • the stator unit 51 has a pair of stator cores 45 and 46 facing in the axial direction and a coil 49 sandwiched between the pair of stator cores 45 and 46 in the axial direction.
  • the stator unit 52 has a pair of stator cores 47 and 48 facing in the axial direction and a coil 50 sandwiched between the pair of stator cores 47 and 48 in the axial direction.
  • the pair of stator cores 45 and 46 are provided so as to surround the coil 49.
  • the pair of stator cores 47 and 48 are provided so as to surround the coil 50.
  • the stator cores 45, 46, 47, 48 are formed of, for example, a dust core. By being formed of a dust core, iron loss at high frequencies can be reduced.
  • the stator core 45 has an annular plate 58 facing in the axial direction and a claw magnetic pole 54 protruding from the inner peripheral surface of the plate 58.
  • the stator core 46 has an annular plate 59 facing in the axial direction and a claw magnetic pole 55 protruding from the inner peripheral surface of the plate 59.
  • the plate 58 has a plate inner surface 58a and a plate outer surface 58b that face opposite to each other in the axial direction.
  • the plate 59 has a plate inner surface 59a and a plate outer surface 59b that face opposite to each other in the axial direction.
  • the coil 49 is sandwiched between the plate inner surface 58a and the plate inner surface 59a in a state of being in contact with the plate inner surface 58a and the plate inner surface 59a.
  • the plate 58 has an annular outer peripheral portion 58c that is thicker in the axial direction than the portion in which the coil 49 contacts in the axial direction on the outer side in the radial direction of the portion where the coil 49 contacts in the axial direction.
  • the plate 59 has an annular outer peripheral portion 59c that is thicker in the axial direction than the portion in which the coil 49 contacts in the axial direction, on the outer side in the radial direction of the portion where the coil 49 contacts in the axial direction.
  • the stator core 47 has an annular plate 60 facing in the axial direction and a claw magnetic pole 56 protruding from the inner peripheral surface of the plate 58.
  • the stator core 48 has an annular plate 61 facing in the axial direction and a claw pole 57 protruding from the inner peripheral surface of the plate 61.
  • the plate 60 has a plate inner surface 60a and a plate outer surface 60b that face each other in the axial direction.
  • the plate 61 has a plate inner surface 61a and a plate outer surface 61b that face each other in the axial direction.
  • the coil 50 is fixed between the plate inner surface 60a and the plate inner surface 61a in a state where the coil 50 is in contact with and sandwiched between the plate inner surface 60a and the plate inner surface 61a.
  • the plate 60 has an annular outer peripheral portion 60c that is thicker in the axial direction than the portion in which the coil 50 contacts in the axial direction on the outer side in the radial direction of the portion where the coil 50 contacts in the axial direction.
  • the plate 61 has an annular outer peripheral portion 61c that is thicker in the axial direction than the portion in which the coil 50 contacts in the axial direction, on the outer side in the radial direction of the portion where the coil 50 contacts in the axial direction.
  • the plate 58 is a back yoke portion having an annular shape in the axial direction and having a predetermined thickness in the axial direction of the rotor 41.
  • the claw magnetic pole 54 is arranged on the inner peripheral surface of the plate 58 over an angle range of less than 180 ° in the circumferential direction, and protrudes inward in the radial direction from the inner peripheral surface of the plate 58.
  • the claw pole 54 faces the outer peripheral surface of the rotor 41 in the radial direction of the rotor 41 via a gap.
  • the claw magnetic pole 54 includes a claw magnetic pole portion 54a.
  • the claw magnetic pole portion 54a (an example of the first claw magnetic pole portion) has a predetermined width and projects inward in the radial direction so as to extend from the inner peripheral surface of the plate 58 by a predetermined length.
  • the claw magnetic pole 54 further includes a claw magnetic pole portion 54b.
  • a claw magnetic pole portion 54b As a result, it is possible to secure a relatively wide facing area between the magnetic pole surface of the claw magnetic pole 54 magnetized by the armature current of the coil 49 and the rotor 41. Therefore, the torque of the motor 40 can be relatively increased and the output of the motor 40 can be improved.
  • the claw magnetic pole portion 54b projects from the inner tip in the radial direction of the claw magnetic pole portion 54a in a curved shape extending in the axial direction by a predetermined length toward the stator core 46.
  • the claw magnetic pole portion 54b projects with a constant bending width (more specifically, the arc length) regardless of the distance from the claw magnetic pole portion 54a.
  • the claw magnetic pole portion 54b may protrude in a tapered shape in which the bending width (more specifically, the arc length) becomes narrower as the distance from the claw magnetic pole portion 54a in the axial direction increases.
  • stator cores 45, 46, 47 have the same shape as the stator core 48
  • the description of the stator cores 45, 46, 47 will be simplified by referring to the above description of the stator core 48.
  • the plates 59, 60, 61 have the same shape as the plate 58
  • the claw poles 55, 56, 57 have the same shape as the claw pole 54.
  • the claw poles 54, 55, 56, and 57 face each other in the radial direction of the rotor 41 via a gap with the outer peripheral surface of the rotor 41, respectively.
  • the claw magnetic pole 55 includes the claw magnetic pole portions 55a and 55b
  • the claw magnetic pole 56 includes the claw magnetic pole portions 56a and 56b
  • the claw magnetic pole 57 includes the claw magnetic pole portions 57a and 57b.
  • the claw magnetic pole portions 54b, 55b, 56b, 57b may be omitted.
  • the coils 49 and 50 are conducting wires that circulate in an annular shape around the axis of the rotor 41. Both ends of the coil 49 are electrically connected to the external terminals of the motor 40.
  • the external terminals of the motor 40 are electrically connected to a drive device (for example, an inverter or the like) that drives the motor 40 with electric power supplied from a power source. The same applies to the coil 50.
  • the coil 49 is arranged between the pair of stator cores 45 and 46 in the axial direction.
  • the coil 49 has an outer peripheral portion of the coil located inside the outer circumferences 58c and 59c of the pair of stator cores 45 and 46 in the radial direction and an inner circumference of the coil located outside the outer peripheral portions of the claw poles 54 and 55 in the radial direction. It is wound so as to have a portion.
  • the coil 50 is arranged between the pair of stator cores 47, 48 in the axial direction.
  • the coil 50 includes a coil outer peripheral portion located inside the outer peripheral portions 60c and 61c of the pair of stator cores 47 and 48 in the radial direction, and a coil inner circumference located radially outward from the outer peripheral portions of the claw poles 56 and 57. It is wound so as to have a portion.
  • the pair of stator cores 45 and 46 are combined so that the claw magnetic pole 54 of one stator core 45 and the claw magnetic pole 55 of the other stator core 46 are arranged adjacent to each other in the circumferential direction. Further, when an armature current flows through the annular coil 49, the claw magnetic pole 54 of one of the pair of stator cores 45 and 46 and the claw magnetic pole 55 of the other stator core 46 are magnetized and are different from each other. Has. As a result, in the pair of stator cores 45 and 46, the one claw magnetic pole 54 protruding from one stator core 45 has a magnetic pole that is adjacent in the circumferential direction and is different from the one claw magnetic pole 55 protruding from the other stator core 46. Therefore, the combination of the N-pole claw pole 54 and the S-pole claw pole 55 and the combination of the N-pole claw pole 55 and the S-pole claw pole 54 are alternately generated by the armature current flowing through the coil 49. ..
  • stator units 51 and 52 are laminated in the axial direction.
  • the stator 44 includes stator units 51 and 52 for a plurality of phases (two phases in FIGS. 2 and 3). Specifically, the stator 44 includes a stator unit 51 corresponding to the U phase and a stator unit 52 corresponding to the V phase. The two stator units 51 and 52 having different phases are arranged so that their positions in the circumferential direction differ by 90 ° in terms of electrical angle.
  • the number of phases of the motor 40 is not limited to two, and may be three or more.
  • FIG. 4 is a diagram showing a form in which a non-magnetic material layer is provided between adjacent stator units.
  • the stator 44 includes two-phase stator units 51 and 52 having the same structure as each other.
  • the two-phase motor 40 may have a non-magnetic material layer 62 between the stator units 51 and 52 adjacent to each other in the axial direction.
  • the non-magnetic layer 62 can suppress magnetic flux leakage between two adjacent stator units 51 and 52 in different phases.
  • the stator 44 includes three-phase stator units 51, 52, and 53 having the same structure as each other.
  • the three-phase motor 40 has a non-magnetic material layer 62 between the stator units 51 and 52 adjacent to each other in the axial direction, and a non-magnetic material layer 63 between the stator units 52 and 53 adjacent to each other in the axial direction.
  • the non-magnetic layer 62 can suppress magnetic flux leakage between two adjacent stator units 51 and 52 in different phases.
  • the non-magnetic layer 63 can suppress magnetic flux leakage between two adjacent stator units 52 and 53 in different phases.
  • the non-magnetic material layer 62 is a UV interphase member provided between the U-phase stator unit 51 and the V-phase stator unit 52, which are adjacent in the axial direction.
  • the non-magnetic material layer 62 has, for example, a substantially cylindrical shape (substantially disk shape) having a predetermined thickness, and an insertion hole through which the rotation shaft 31 is inserted is formed in the central portion. The same may be applied to the non-magnetic material layer 63.
  • the non-magnetic material layer 63 is a VW interphase member provided between the V-phase stator unit 52 and the W-phase stator unit 53, which are adjacent to each other in the axial direction.
  • FIG. 5 is a vertical cross-sectional view showing a configuration example of the turbo compressor according to the second embodiment.
  • the description of the configuration similar to the above-described embodiment will be omitted or simplified by referring to the above-mentioned description.
  • the shaft diameter ⁇ A of the shaft portion 31a of the rotating shaft 31 is different from that of the turbo compressor 12 of the first embodiment.
  • the shaft diameter ⁇ A is thicker than the outer diameter ⁇ C of the rotor 41 of the motor 40 and larger than the inner diameter ⁇ D of the stator 44 of the motor 40.
  • the shaft diameter ⁇ A may be thicker than the outer diameter ⁇ C and may be the same as the inner diameter ⁇ D or smaller than the inner diameter ⁇ D.
  • FIG. 6 is a diagram for explaining the presence / absence of the coil end.
  • the ends of the coils 149 and 150 (coil ends 149a, 149b, 150a, 150b) in the axial direction of the rotor 41 protrude in the axial direction from the stator core 145.
  • the coils 149 and 150 orbit around the teeth 145a and 145b (the central axis in the radial direction) of the stator core 145 in an annular shape. Therefore, the rotating shaft 31 must be further projected in the axial direction from each coil end so that the bearing can support the rotating shaft 31, and it is difficult to shorten the rotating shaft 31.
  • the coils 49 and 50 orbit around the axis of the rotor 41 in an annular shape, they do not protrude in the axial direction from the stator cores 45, 46, 47 and 48 (coil endless). Therefore, a space for arranging the first radial bearing 71 and the second radial bearing 72 that support the rotating shaft 31 can be secured on both sides of the motor 40 in the axial direction, so that the first radial bearing 71 and the second radial bearing 72 can be used in the motor 40. Can be brought closer to the side of the axis.
  • the shaft portion supported by the first radial bearing 71 and the second radial bearing 72 can be brought closer to the motor 40, and the rotating shaft 31 can be shortened.
  • the resonance of the rotating shaft 31 can be suppressed, and the speed of the rotating shaft 31 can be increased.
  • the shaft diameter ⁇ A of the shaft portion 31a may be larger than the outer diameter ⁇ C of the rotor 41.
  • the shaft diameter ⁇ A can be increased.
  • the surface area of the shaft portion 31a supported by the first radial bearing 71 increases. If the weight of the support supported by the bearing does not change, the rotating shaft 31 can be shortened by increasing the surface area of the shaft portion 31a.
  • the shaft diameter ⁇ A of the shaft portion 31a may be larger than the inner diameter ⁇ D of the stator 44. As a result, the surface area of the shaft portion 31a is further increased, so that the rotating shaft 31 can be further shortened.
  • first radial bearing 71 and the second radial bearing 72 may be gas bearings. Since the gas bearing has a simpler structure than the magnetic bearing, the shaft diameter of the rotating shaft 31 can be easily increased. Therefore, it is advantageous for shortening the rotation shaft 31.
  • FIG. 7 is a vertical cross-sectional view showing a configuration example of the stator unit 51. At least a part of the plate portion 58bb in which the coil 49 is projected onto the plate 58 in the axial direction comes into contact with the casing 20 at the plate outer surface 58b as shown in FIGS. Specifically, at least a part of the plate portion 58bb comes into contact with the inside of the casing 20 at the plate outer surface 58b located on one stator end surface 44a of the stator 44.
  • the heat dissipation effect of releasing the heat of the coil 49 and the stator cores 45 and 46 to the casing 20 is improved as compared with the form in which only the stator outer peripheral surface 44c of the stator 44 contacts the casing 20.
  • the outer stator core 48 in the axial direction has a plate 61 facing the rotor 41 in the axial direction. At least a part of the plate portion in which the coil 50 is projected onto the plate 61 in the axial direction comes into contact with the casing 20 at the plate outer surface 61b as shown in FIGS. 1 and 5. Specifically, at least a part of the plate portion comes into contact with the inside of the casing 20 at the plate outer surface 61b located on the other stator end surface 44b of the stator 44.
  • the heat dissipation effect of releasing the heat of the coil 50 and the stator cores 47 and 48 to the casing 20 is improved as compared with the form in which only the stator outer peripheral surface 44c of the stator 44 contacts the casing 20.
  • the stator 44 includes a plurality of stator units having the same structure as each other, and the plurality of stator units have a stator core 45 having magnetic poles facing the outer peripheral surface of the rotor 41 in the radial direction through a gap. It has 46, 47, 48.
  • the positions of the claw poles 54, 55, 56, 57 of the plurality of stator units in the circumferential direction of the rotor 41 are deviated from each other when viewed from the axial direction.
  • the motor 40 includes a non-magnetic material layer 62 between adjacent stator units among a plurality of stator units. Since the non-magnetic material layer 62 is provided between the adjacent stator units, it is possible to suppress an increase in magnetic flux leakage between the adjacent stator units due to the shortening of the rotating shaft 31. The same effect can be obtained for the non-magnetic material layer 63.
  • the number of the plurality of stator units may be 2.
  • the rotation shaft 31 can be shortened as compared with the form in which the number is 3 or more.
  • the rotor 41 may be an SPM type rotor in which at least one permanent magnet 43 is arranged on the outer peripheral surface of the rotor 41.
  • the centrifugal strength is increased by arranging the protective sleeve or the holding ring on the outer peripheral side of the permanent magnets as compared with the IPM type rotor in which at least one permanent magnet is embedded in the rotor. can do.
  • the number of poles (specifically, the number of claw magnetic poles) of each of the plurality of stator units may be 2.
  • the number of poles of each of the stator units 51 and 52 is 2.
  • the drive frequency of the motor can be reduced as compared with the form in which the number of poles is 4 or more, which is suitable for high speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

ロータ(41)の軸周りにステータ(44)が配置されるモータ(40)と、前記ロータに固定される回転軸(31)と、前記回転軸を支持する軸受(71、72)と、前記回転軸に連結され、流体を圧縮するインペラ(21)と、前記モータを収容するケーシング(20)とを備え、前記ステータは、前記ロータの軸周りに環状に周回するコイル(49、50)と、前記ロータの外周面と空隙を介して前記ロータの径方向に対向する磁極を有するステータコア(45、46、47、48)とを有する、圧縮機を構成することにより、回転軸を短くできる。

Description

圧縮機
 本開示は、圧縮機に関する。
 軸受により支持される回転軸と、回転軸に連結されたインペラと、回転軸に固定されたロータと、ロータの外側に配置されたステータとを備え、ステータは、円筒形状のステータコアに巻回されたコイルを有する、圧縮機が知られている(例えば、特許文献1参照)。
特開2016-192877号公報
 従来の圧縮機では、ロータの軸方向におけるコイルの端(コイルエンド)がステータコアから軸方向に突出している。そのため、軸受が回転軸を支持できるように、回転軸をコイルエンドから更に軸方向に突出させなければならず、回転軸を短くすることが難しい。
 本開示は、回転軸を短くできる、圧縮機を提供する。
 本開示の圧縮機は、
 ロータの軸周りにステータが配置されるモータと、
 前記ロータに固定される回転軸と、
 前記回転軸を支持する軸受と、
 前記回転軸に連結され、流体を圧縮するインペラと、
 前記モータを収容するケーシングとを備え、
 前記ステータは、
 前記ロータの軸周りに環状に周回するコイルと、
 前記ロータの外周面と空隙を介して前記ロータの径方向に対向する磁極を有するステータコアとを有する。
 本開示の圧縮機によれば、回転軸を短くできる。
 本開示の圧縮機は、
 前記軸受は、ラジアル軸受であり、
 前記回転軸は、前記ラジアル軸受に支持された軸部分を有し、
 前記軸部分の軸径は、前記ロータの外径よりも太い。
 本開示の圧縮機によれば、前記軸部分の軸径が前記ロータの外径よりも太いので、回転軸を短くできる。
 本開示の圧縮機は、
 前記軸部分の軸径は、前記ステータの内径よりも太い。
 本開示の圧縮機によれば、前記軸部分の軸径は、前記ステータの内径よりも太いので、回転軸を更に短くできる。
 本開示の圧縮機は、
 前記ラジアル軸受は、気体軸受である。
 本開示の圧縮機によれば、前記ラジアル軸受は、気体軸受であるので、前記軸部分の軸径を容易に太くできる。
 本開示の圧縮機は、
 前記ステータコアは、前記ロータの軸方向に厚みを有するプレートを有し、
 前記コイルを前記プレートに前記軸方向に投射したプレート部分の少なくとも一部は、前記ケーシングに接触する。
 本開示の圧縮機によれば、前記プレート部分の少なくとも一部は、前記ケーシングに接触するので、前記コイルと前記ステータコアの熱を前記ケーシングに逃がす放熱効果が向上する。
 本開示の圧縮機は、
 前記ステータは、前記ロータの軸周りに前記ロータの軸方向に並ぶ、互いに同一構造の複数のステータユニットを含み、
 前記複数のステータユニットは、前記軸方向に前記コイルを挟んで対向する一対の前記ステータコアをそれぞれ有し、
 一対の前記ステータコアのそれぞれの前記磁極は、前記ロータの周方向の位置が、前記軸方向から見て互いにずれている。
 本開示の圧縮機によれば、前記複数のステータユニットは互いに同一構造なので、ステータコアを製造するための金型を共通化による小型化でコストダウンできる。
 本開示の圧縮機は、
 前記複数のステータユニットのうち隣り合うステータユニットの間に非磁性体を備える。
 本開示の圧縮機によれば、隣り合うステータユニットの間に非磁性体を備えるので、隣り合うステータユニットの間の磁束漏れが増加することを抑制できる。
 本開示の圧縮機は、
 前記複数のステータユニットの個数は、2である。
 本開示の圧縮機によれば、前記複数のステータユニットの個数は、2であるので、当該個数が3以上の形態に比べて、回転軸を短くできる。
 本開示の圧縮機は、
 前記ロータは、前記ロータの外周面に少なくとも一つの永久磁石が配置されるSPM(Surface Permanent Magnet)型ロータである。
 本開示の圧縮機によれば、前記ロータは、SPM型ロータであるので、ロータに少なくとも一つの永久磁石が埋め込まれるIPM(Interior Permanent Magnet)型ロータに比べて、永久磁石の外周側に保護スリーブ又は保持リングを配置することで遠心耐力を大きくすることができる。
 本開示の圧縮機は、
 前記複数のステータユニットのそれぞれの極数は、2である。
 本開示の圧縮機によれば、前記複数のステータユニットのそれぞれの極数は、2であるので、当該極数が4以上の形態に比べて、駆動周波数を小さくでき、高速化に適する。
図1は、第1実施形態におけるターボ圧縮機の一構成例を示す縦断面図である。 図2は、モータの一構成例を示す斜視図である。 図3は、モータの一構成例を示す分解斜視図である。 図4は、隣り合うステータユニット間に非磁性体層を備える形態を示す図である。 図5は、第2実施形態におけるターボ圧縮機の一構成例を示す縦断面図である。 図6は、コイルエンドの有無を説明するための図である。 図7は、一のステータユニットの一構成例を示す縦断面図である。
 以下、実施形態を説明する。
 [第1実施形態]
 図1は、第1実施形態におけるターボ圧縮機の一構成例を示す縦断面図である。ターボ圧縮機12は、圧縮機の一例である。ターボ圧縮機12は、不図示の空気調和機の冷媒回路に設けられる機器であり、インペラ21によって冷媒を圧縮する。この例では、ターボ圧縮機12は、ケーシング20、回転軸31、インペラ21、第1ラジアル軸受71、第2ラジアル軸受72、第1スラスト軸受74a、第2スラスト軸受74b及びモータ40を備える。
 なお、以下の説明において、「軸方向」とは、回転軸方向のことであって、回転軸31の軸心の方向のことであり、「径方向」とは、回転軸31の軸方向と直交する方向のことである。また、「外周側」とは、回転軸31の軸心からより遠い側のことであり、「内周側」とは、回転軸31の軸心により近い側のことである。
 ケーシング20は、両端が閉塞された円筒状に形成され、円筒軸線が水平向きとなるように配置されている。ケーシング20内の空間は、壁部20aによって区画されている。壁部20aよりも右側(第1軸方向側)の空間は、インペラ21を収容するインペラ室S1を形成している。壁部20aよりも左側(第1軸方向側とは反対側の第2軸方向側)の空間は、モータ40を収容する電動機室S2を形成している。電動機室S2には、モータ40、第1ラジアル軸受71、第2ラジアル軸受72、第1スラスト軸受74a及び第2スラスト軸受74bが収容されている。モータ40のステータ44、第1ラジアル軸受71、第2ラジアル軸受72、第1スラスト軸受74a及び第2スラスト軸受74bは、電動機室S2の内周壁に固定されている。
 回転軸31は、負荷の一例であるインペラ21を回転駆動するために設けられたシャフトである。この例では、回転軸31は、ケーシング20内を軸方向に延びてインペラ21とモータ40のロータ41とを連結している。回転軸31は、その軸心がモータ40のロータ41の軸心と同軸となるようにロータ41に固定されている。具体的には、回転軸31の一端部にインペラ21が固定され、回転軸31の中間部にモータ40が配置されている。また、回転軸31の他端部(すなわち、インペラ21が固定された一端部とは反対側の端部)には、円盤状の部分(以下、円盤部31eとも言う)が設けられている。なお、円盤部31eは、第1スラスト軸受74a及び第2スラスト軸受74bが磁気軸受の場合、磁性材料(例えば、鉄)で形成されている。
 インペラ21は、複数の羽根によって外形が略円錐形状となるように形成され、回転軸31の一端部に固定された状態で、インペラ室S1に収容されている。インペラ室S1には、吸入管P1および吐出管P2が接続されている。吸入管P1は、冷媒(流体の一例)を外部からインペラ室S1に導くために設けられている。吐出管P2は、インペラ室S1内で圧縮された高圧の冷媒(流体の一例)を外部へ戻すために設けられている。すなわち、この例では、インペラ21とインペラ室S1とによって圧縮機構が形成されている。
 第1ラジアル軸受71は、回転軸31の一端部(図1における左端部)の近傍に設けられ、回転軸31から径方向の荷重を受け、回転軸31を回転可能に支持する。第2ラジアル軸受72は、回転軸31の他端部の近傍に設けられ、回転軸31から径方向の荷重を受け、回転軸31を回転可能に支持する。第1ラジアル軸受71は、モータ40に対して一方の軸方向側(インペラ21側とは反対側)に位置し、第2ラジアル軸受72は、モータ40に対して他方の軸方向側(インペラ21側)に位置する。
 第1ラジアル軸受71は、回転軸31の軸部分31aを回転可能に支持し、第2ラジアル軸受72は、回転軸31の軸部分31bを回転可能に支持する。軸部分31aは、軸径φAを有し、軸部分31bは、軸径φBを有する。第1実施形態では、軸径φAは、モータ40のロータ41の外径φCよりも細く、モータ40のステータ44の内径φDよりも細い。軸径φBも、外径φCよりも細く、内径φDよりも細い。なお、軸径φAは、外径φCと同じでもよく、軸径φBは、外径φCと同じでもよい。
 第1ラジアル軸受71及び第2ラジアル軸受72は、回転軸31の高速回転化に対応できるように、非接触型の軸受(例えば、フォイル軸受などの気体で浮かせる気体軸受、磁気で浮かせる磁気軸受など)であるが、接触型の軸受(例えば、転がり軸受など)でもよい。
 第1スラスト軸受74a及び第2スラスト軸受74bは、軸方向の荷重を受け、回転軸31の円盤部31eを軸方向の両側から支持する。第1スラスト軸受74aは、円盤部31eに対して軸方向の一方の側(インペラ21側とは反対側)に位置し、第2スラスト軸受74bは、円盤部31eに対して軸方向の他方の側(インペラ21側)に位置する。第1スラスト軸受74a及び第2スラスト軸受74bは、それぞれが円環状に形成され、円盤部31eを挟んで互いに対向する。
 第1スラスト軸受74a及び第2スラスト軸受74bは、回転軸31の高速回転化に対応できるように、非接触型の軸受(例えば、フォイル軸受などの気体で浮かせる気体軸受、磁気で浮かせる磁気軸受など)であるが、接触型の軸受(例えば、転がり軸受など)でもよい。
 第1スラスト軸受74a及び第2スラスト軸受74bが気体軸受の場合、回転軸31の回転に伴って円盤部31eが回転すると、円盤部31eと第1スラスト軸受74aとの間、及び、円盤部31eと第2スラスト軸受74bとの間に、動圧が発生する。第1スラスト軸受74a及び第2スラスト軸受74bは、この動圧を利用して、円盤部31eを非接触に支持する。円盤部31eが非接触に支持された状態では、円盤部31eと第1スラスト軸受74aとの間、及び、円盤部31eと第2スラスト軸受74bとの間には、隙間がある。
 第1スラスト軸受74a及び第2スラスト軸受74bが磁気軸受の場合、円盤部31eは、第1スラスト軸受74aに設けられた第1スラスト電磁石と第2スラスト軸受74bに設けられた第2スラスト電磁石とによる合成電磁力により、非接触に支持される。
 モータ40は、ロータ41とステータ44とを有し、回転軸31を回転駆動する永久磁石同期モータである。モータ40は、ロータ41の軸周りにステータ44が配置されるインナーロータ型のモータである。ロータ41は、回転軸31に固定され、ステータ44は、ケーシング20の内周壁に固定されている。ステータ44は、ロータ41の径方向の外側に配置されている。ロータ41とステータ44とは、回転軸31と同軸の軸線上に配置されており、回転軸31の径方向に対向している。
 図2は、モータの一構成例を示す斜視図である。図3は、図2に示すモータの分解斜視図である。図2,3に示すモータ40は、クローポール型のモータである。
 ロータ41は、ロータコア42と、ロータコア42の外周部に配置される少なくとも一つの永久磁石43とを有する。
 ロータコア42は、磁性材料(例えば、積層鋼板、鋳鉄、又は圧粉磁心など)により円筒状に形成されている。ロータコア42の中央部には、回転軸31を挿通するためのシャフト孔が形成されている。ロータコア42は、ロータ41の軸方向において、ステータ44と略同等の長さを有する。ロータコア42は、軸方向において、一の部材で構成される。また、ロータコア42は、軸方向に積層される複数(例えば、後述するステータユニットの数に対応する数)の部材で構成されてもよい。
 複数の永久磁石43は、ロータコア42の外周面において、周方向に等間隔で並べられる。また、複数の永久磁石43は、それぞれ、ロータコア42の軸方向の略一端から略他端までの間に存在するように形成されている。永久磁石43は、例えば、ネオジム焼結磁石やフェライト磁石である。
 複数の永久磁石43は、それぞれ、径方向の両端に異なる磁極が着磁されている。また、複数の永久磁石43のうちの周方向で隣接する二つの永久磁石43は、ステータ44に面する径方向の外側に互いに異なる磁極が着磁されている。そのため、ステータ44の径方向の内側には、周方向で、径方向の外側にN極が着磁された永久磁石43と、径方向の外側にS極が着磁された永久磁石43とが隣り合って配置される。
 複数の永久磁石43は、それぞれ、軸方向において、一の磁石部材で構成されていてもよいし、軸方向に分割される複数(例えば、積層されるロータコア42の部材の数に対応する数)の磁石部材で構成されていてもよい。この場合、軸方向に分割される永久磁石43を構成する複数の磁石部材は、ステータ44に面する径方向の外側に全て同じ磁極が着磁される。
 なお、周方向に配置される複数の永久磁石43は、例えば、周方向で異なる磁極が交互に着磁される円環状のリング磁石やプラスチック磁石等、周方向において、一の部材で構成される永久磁石に置換されてもよい。この場合、周方向において、一の部材で構成される永久磁石は、軸方向においても、一の部材で構成され、全体として、一の部材で構成されてもよい。また、周方向において、一の部材で構成される永久磁石は、複数の永久磁石43の場合と同様、軸方向において、複数の部材に分割されていてもよい。また、周方向において、一の部材で構成されるプラスチック磁石が採用される場合、ロータコア42は、省略されてもよい。
 例えば、ロータ41は、永久磁石43がロータコア42の外周部の表面(外周面)に配置されるSPM型ロータである。この場合、永久磁石43は、ロータコア42の外周面に露出する。また、ロータ41の回転に伴う遠心力による永久磁石43の飛散防止のため、永久磁石43の外周側に永久磁石43をロータコア42に保持する保護スリーブ又は保持リングが配置されてもよい。保護スリーブ又は保持リングは、非磁性材料(例えば、CFRP(炭素繊維強化プラスチック)、GFRP(ガラス繊維強化プラスチック)、SUS(ステンレス鋼)、チタン、インコネル等)によって形成されている。
 図2,3に示す形態では、ステータ44に含まれるステータユニット51,52のそれぞれの極数(磁極の数)は、2である。ロータコア42の外周面のうち、周方向において約180°の角度領域がN極に、周方向において約180°の角度領域がS極になるように、少なくとも一つの永久磁石43がロータコア42の外周部に配置される。
 ステータ44は、ロータ41の軸周りにロータ41の軸方向に並ぶ、互いに同一構造の複数のステータユニットを含む。この例では、ステータ44は、2つのステータユニット51,52を含む2相のステータ構造である。
 ステータユニット51は、軸方向に対向する一対のステータコア45,46と、一対のステータコア45,46に軸方向に挟まれるコイル49とを有する。ステータユニット52は、軸方向に対向する一対のステータコア47,48と、一対のステータコア47,48に軸方向に挟まれるコイル50とを有する。
 一対のステータコア45,46は、コイル49の周囲を取り囲むように設けられる。一対のステータコア47,48は、コイル50の周囲を取り囲むように設けられる。ステータコア45,46,47,48は、例えば、圧粉磁心で形成される。圧粉磁心で形成されることで、高周波での鉄損を低減できる。
 ステータコア45は、軸方向に面する環状のプレート58と、プレート58の内周面から突出する爪磁極54とを有する。ステータコア46は、軸方向に面する環状のプレート59と、プレート59の内周面から突出する爪磁極55とを有する。プレート58は、軸方向で互いに反対向きに面する、プレート内面58a及びプレート外面58bを有する。プレート59は、軸方向で互いに反対向きに面する、プレート内面59a及びプレート外面59bを有する。コイル49は、プレート内面58aとプレート内面59aとに接触した状態で、プレート内面58aとプレート内面59aとの間に挟まれる。
 プレート58は、コイル49が軸方向に接触する部分の径方向の外側に、コイル49が軸方向に接触する部分よりも軸方向に厚い環状の外周部58cを有する。プレート59は、コイル49が軸方向に接触する部分の径方向の外側に、コイル49が軸方向に接触する部分よりも軸方向に厚い環状の外周部59cを有する。外周部58cと外周部59cとが互いに接触することで、プレート内面58aとプレート内面59aとは、軸方向に互いに接触する。
 ステータコア47は、軸方向に面する環状のプレート60と、プレート58の内周面から突出する爪磁極56とを有する。ステータコア48は、軸方向に面する環状のプレート61と、プレート61の内周面から突出する爪磁極57とを有する。プレート60は、軸方向で互いに反対向きに面する、プレート内面60a及びプレート外面60bを有する。プレート61は、軸方向で互いに反対向きに面する、プレート内面61a及びプレート外面61bを有する。コイル50は、プレート内面60aとプレート内面61aとに接触して挟まれた状態で、プレート内面60aとプレート内面61aとの間に固定される。
 プレート60は、コイル50が軸方向に接触する部分の径方向の外側に、コイル50が軸方向に接触する部分よりも軸方向に厚い環状の外周部60cを有する。プレート61は、コイル50が軸方向に接触する部分の径方向の外側に、コイル50が軸方向に接触する部分よりも軸方向に厚い環状の外周部61cを有する。外周部60cと外周部61cとが互いに接触することで、プレート内面60aとプレート内面61aとは、軸方向に互いに接触する。
 プレート58は、軸方向視で円環形状を有すると共に、ロータ41の軸方向に所定の厚みを有するバックヨーク部である。
 爪磁極54は、プレート58の内周面において、周方向に180°未満の角度範囲にわたって配置され、プレート58の内周面から径方向の内側に向かって突出する。爪磁極54は、ロータ41の外周面と空隙を介してロータ41の径方向に対向する。爪磁極54は、爪磁極部54aを含む。
 爪磁極部54a(第1爪磁極部の一例)は、所定の幅を有し、プレート58の内周面から所定の長さだけ延び出す形で径方向の内側に向かって突出する。
 また、爪磁極54は、更に、爪磁極部54bを含む。これにより、コイル49の電機子電流により磁化される爪磁極54の磁極面とロータ41との対向面積を相対的に広く確保することができる。そのため、モータ40のトルクを相対的に増加させ、モータ40の出力を向上させることができる。
 爪磁極部54b(第2爪磁極部の一例)は、爪磁極部54aの径方向の内側先端から、ステータコア46に向かって軸方向に所定の長さだけ湾曲状に延び出す形で突出する。例えば、図2,3に示すように、爪磁極部54bは、爪磁極部54aからの距離に依らず、一定の湾曲幅(より具体的には、円弧長)で突出する。あるいは、爪磁極部54bは、爪磁極部54aから軸方向で離れるにつれて湾曲幅(より具体的には、円弧長)が狭くなるテーパ形状で突出してもよい。
 ステータコア45,46,47は、ステータコア48と同じ形状を有するので、ステータコア45,46,47の説明は、ステータコア48の上述の説明を援用することで、簡略する。簡略して説明すると、プレート59,60,61は、プレート58と同じ形状を有し、爪磁極55,56,57は、爪磁極54と同じ形状を有する。爪磁極54,55,56,57は、それぞれ、ロータ41の外周面と空隙を介してロータ41の径方向に対向する。爪磁極55は、爪磁極部55a,55bを含み、爪磁極56は、爪磁極部56a,56bを含み、爪磁極57は、爪磁極部57a,57bを含む。なお、爪磁極部54b,55b,56b,57bは、省略されてもよい。
 コイル49,50は、ロータ41の軸周りに円環状に周回する導線である。コイル49の両端は、モータ40の外部端子に電気的に繋がっている。モータ40の外部端子は、電源から供給される電力でモータ40を駆動する駆動装置(例えば、インバータ等)と電気的に接続される。コイル50についても同様である。
 コイル49は、軸方向において、一対のステータコア45,46の間に配置される。コイル49は、一対のステータコア45,46の外周部58c,59cよりも径方向で内側に位置するコイル外周部と、爪磁極54,55の外周部よりも径方向で外側に位置するコイル内周部とを有するように、巻き回されている。同様に、コイル50は、軸方向において、一対のステータコア47,48の間に配置される。コイル50は、一対のステータコア47,48の外周部60c,61cよりも径方向で内側に位置するコイル外周部と、爪磁極56,57の外周部よりも径方向で外側に位置するコイル内周部とを有するように、巻き回されている。
 図3に示すように、一対のステータコア45,46は、一方のステータコア45の爪磁極54と他方のステータコア46の爪磁極55とが周方向で隣り合って配置されるように組み合わせられる。また、円環状のコイル49に電機子電流が流れると、一対のステータコア45,46のうちの一方のステータコア45の爪磁極54と他方のステータコア46の爪磁極55とは、磁化され、互いに異なる磁極を有する。これにより、一対のステータコア45,46において、一方のステータコア45から突出する一の爪磁極54は、周方向で隣接し、他方のステータコア46から突出する一の爪磁極55と異なる磁極を有する。そのため、コイル49に流れる電機子電流により、N極の爪磁極54及びS極の爪磁極55の組み合わせと、N極の爪磁極55及びS極の爪磁極54の組み合わせとが、交互に発生する。
 図2,3に示すように、複数のステータユニット51,52は、軸方向に積層される。
 ステータ44には、複数相(図2,3では、二相)分のステータユニット51,52が含まれる。具体的には、ステータ44には、U相に対応するステータユニット51と、V相に対応するステータユニット52とが含まれる。異なる相の二つのステータユニット51,52同士は、周方向の位置が電気角で90°異なるように配置される。
 なお、モータ40の相数は、二相に限らず、三相以上であってもよい。
 図4は、隣り合うステータユニット間に非磁性体層を備える形態を示す図である。二相のモータ40の場合、ステータ44は、互いに同一構造の二相分のステータユニット51,52を含む。二相のモータ40は、軸方向に隣り合うステータユニット51,52の間に非磁性体層62を有してもよい。非磁性体層62により、異なる相の2つの隣り合うステータユニット51,52の間での磁束漏れを抑制できる。
 三相のモータ40の場合、ステータ44は、互いに同一構造の三相分のステータユニット51,52,53を含む。三相のモータ40は、軸方向に隣り合うステータユニット51,52の間に非磁性体層62を有し、軸方向に隣り合うステータユニット52,53の間に非磁性体層63を有する。非磁性体層62により、異なる相の2つの隣り合うステータユニット51,52の間での磁束漏れを抑制できる。非磁性体層63により、異なる相の2つの隣り合うステータユニット52,53の間での磁束漏れを抑制できる。
 非磁性体層62は、軸方向で隣接する、U相のステータユニット51とV相のステータユニット52との間に設けられるUV相間部材である。非磁性体層62は、例えば、所定の厚みを有する略円柱形状(略円板形状)を有し、中心部分に回転軸31が挿通される挿通孔が形成される。非磁性体層63についても同様であってよい。非磁性体層63は、軸方向で隣接する、V相のステータユニット52とW相のステータユニット53との間に設けられるVW相間部材である。
 [第2実施形態]
 図5は、第2実施形態におけるターボ圧縮機の一構成例を示す縦断面図である。上述の実施形態と同様の構成についての説明は、上述の説明を援用することで、省略又は簡略する。第2実施形態におけるターボ圧縮機13では、回転軸31の軸部分31aの軸径φAが、第1実施形態におけるターボ圧縮機12と異なる。
 第2実施形態では、軸径φAは、モータ40のロータ41の外径φCよりも太く、且つ、モータ40のステータ44の内径φDよりも太い。軸径φAは、外径φCよりも太く、且つ、内径φDと同じ又は内径φDよりも細くてもよい。
 [各実施形態の作用及び効果]
 図6は、コイルエンドの有無を説明するための図である。従来のモータ140では、ロータ41の軸方向におけるコイル149,150の端(コイルエンド149a,149b,150a,150b)がステータコア145から軸方向に突出している。コイル149,150は、ステータコア145のティース145a,145b(径方向の中心軸)の周りを環状に周回するからである。そのため、軸受が回転軸31を支持できるように、回転軸31を各コイルエンドから更に軸方向に突出させなければならず、回転軸31を短くすることが難しい。
 一方、各実施形態におけるモータ40では、コイル49,50は、ロータ41の軸周りに環状に周回するので、ステータコア45,46,47,48から軸方向に突出しない(コイルエンドレス化)。そのため、回転軸31を支持する第1ラジアル軸受71及び第2ラジアル軸受72を配置するスペースをモータ40の軸方向の両側に確保できるので、第1ラジアル軸受71及び第2ラジアル軸受72をモータ40の軸方向の脇に近づけることができる。その結果、第1ラジアル軸受71及び第2ラジアル軸受72により支持される軸部分をモータ40に近づけることができ、回転軸31を短くできる。回転軸31の短縮化によって、回転軸31の共振を抑制でき、回転軸31の高速化が可能となる。
 また、図5に示すように、軸部分31aの軸径φAは、ロータ41の外径φCよりも太くてもよい。コイルエンドレス化によって、第1ラジアル軸受71を配置するスペースを確保できるので、軸径φAを太くできる。軸径φAが太くなることによって、第1ラジアル軸受71によって支持される軸部分31aの表面積が拡大する。軸受で支持される支持体の重量が変わらなければ、軸部分31aの表面積の拡大によって、回転軸31を短くできる。
 また、図5に示すように、軸部分31aの軸径φAは、ステータ44の内径φDよりも太くてもよい。これにより、軸部分31aの表面積が更に拡大するので、回転軸31を更に短くできる。
 また、第1ラジアル軸受71及び第2ラジアル軸受72は、気体軸受でもよい。気体軸受は、磁気軸受に比較してシンプルな構造なので、回転軸31の軸径を容易に太くできる。よって、回転軸31の短縮化に有利である。
 また、図3に示すように、ステータユニット51内の一対のステータコア45,46のうち軸方向の外側のステータコア45は、ロータ41の軸方向に面するプレート58を有する。図7は、ステータユニット51の一構成例を示す縦断面図である。コイル49をプレート58に軸方向に投射したプレート部分58bbの少なくとも一部は、図1,5に示すように、プレート外面58bでケーシング20に接触する。具体的には、プレート部分58bbの少なくとも一部は、ステータ44の一方のステータ端面44aに位置するプレート外面58bでケーシング20の内部に接触する。これにより、ステータ44のステータ外周面44cのみがケーシング20に接触する形態に比べて、コイル49とステータコア45,46の熱をケーシング20に逃がす放熱効果が向上する。
 同様に、図3に示すように、ステータユニット52内の一対のステータコア47,48のうち軸方向の外側のステータコア48は、ロータ41の軸方向に面するプレート61を有する。コイル50をプレート61に軸方向に投射したプレート部分の少なくとも一部は、図1,5に示すように、プレート外面61bでケーシング20に接触する。具体的には、当該プレート部分の少なくとも一部は、ステータ44の他方のステータ端面44bに位置するプレート外面61bでケーシング20の内部に接触する。これにより、ステータ44のステータ外周面44cのみがケーシング20に接触する形態に比べて、コイル50とステータコア47,48の熱をケーシング20に逃がす放熱効果が向上する。
 各実施形態において、ステータ44は、互いに同一構造の複数のステータユニットを含み、複数のステータユニットは、ロータ41の外周面と空隙を介してロータ41の径方向に対向する磁極を有するステータコア45,46,47,48を有する。複数のステータユニットのそれぞれの爪磁極54,55,56,57は、ロータ41の周方向の位置が、軸方向から見て互いにずれている。複数のステータユニットを互いに同一構造にすることで、ステータコア45,46,47,48を製造するための金型を共通化による小型化でコストダウンできる。
 各実施形態において、図4に示すように、モータ40は、複数のステータユニットのうち隣り合うステータユニットの間に非磁性体層62を備える。隣り合うステータユニットの間に非磁性体層62を備えるので、隣り合うステータユニットの間の磁束漏れが回転軸31の短縮により増加することを抑制できる。非磁性体層63についても同様の効果が得られる。
 各実施形態において、複数のステータユニットの個数は、2でもよい。これにより、個数が3以上の形態に比べて、回転軸31を短くできる。
 各実施形態において、ロータ41は、ロータ41の外周面に少なくとも一つの永久磁石43が配置されるSPM型ロータでもよい。ロータ41の形式をSPM型ロータとすることにより、ロータに少なくとも一つの永久磁石が埋め込まれるIPM型ロータに比べて、永久磁石の外周側に保護スリーブ又は保持リングを配置することで遠心耐力を大きくすることができる。
 各実施形態において、複数のステータユニットのそれぞれの極数(具体的には、爪磁極の数)は、2でもよい。図3において、ステータユニット51,52は、それぞれ、2つの爪磁極を有するので、ステータユニット51,52のそれぞれの極数は、2である。極数を2にすることによって、極数が4以上の形態に比べて、モータの駆動周波数を小さくでき、高速化に適する。
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が可能である。
 本国際出願は、2020年2月17日に出願した日本国特許出願第2020-024633号に基づく優先権を主張するものであり、日本国特許出願第2020-024633号の全内容を本国際出願に援用する。
12,13 ターボ圧縮機
20 ケーシング
20a 壁部
21 インペラ
31 回転軸
31a,31b 軸部分
31e 円盤部
40 モータ
41 ロータ
42 ロータコア
43 永久磁石
44 ステータ
44a,44b ステータ端面
44c ステータ外周面
45~48 ステータコア
49,50 コイル
51~53 ステータユニット
54~57 爪磁極
54a~57a,54b~57b 爪磁極部
58~61 プレート
58a~61a プレート内面
58b~61b プレート外面
58bb プレート部分
58c~61c 外周部
62,63 非磁性体層
71 第1ラジアル軸受
72 第2ラジアル軸受
74a 第1スラスト軸受
74b 第2スラスト軸受
140 モータ
145 ステータコア
145a,145b ティース
149,150 コイル
149a,149b,150a,150b コイルエンド
P1 吸入管
P2 吐出管
S1 インペラ室
S2 電動機室

Claims (10)

  1.  ロータの軸周りにステータが配置されるモータと、
     前記ロータに固定される回転軸と、
     前記回転軸を支持する軸受と、
     前記回転軸に連結され、流体を圧縮するインペラと、
     前記モータを収容するケーシングとを備え、
     前記ステータは、
     前記ロータの軸周りに環状に周回するコイルと、
     前記ロータの外周面と空隙を介して前記ロータの径方向に対向する磁極を有するステータコアとを有する、圧縮機。
  2.  前記軸受は、ラジアル軸受であり、
     前記回転軸は、前記ラジアル軸受に支持された軸部分を有し、
     前記軸部分の軸径は、前記ロータの外径よりも太い、請求項1に記載の圧縮機。
  3.  前記軸部分の軸径は、前記ステータの内径よりも太い、請求項2に記載の圧縮機。
  4.  前記ラジアル軸受は、気体軸受である、請求項2又は3に記載の圧縮機。
  5.  前記ステータコアは、前記ロータの軸方向に厚みを有するプレートを有し、
     前記コイルを前記プレートに前記軸方向に投射したプレート部分の少なくとも一部は、前記ケーシングに接触する、請求項1から4のいずれか一項に記載の圧縮機。
  6.  前記ステータは、前記ロータの軸周りに前記ロータの軸方向に並ぶ、互いに同一構造の複数のステータユニットを含み、
     前記複数のステータユニットは、前記軸方向に前記コイルを挟んで対向する一対の前記ステータコアをそれぞれ有し、
     一対の前記ステータコアのそれぞれの前記磁極は、前記ロータの周方向の位置が、前記軸方向から見て互いにずれている、請求項1から5のいずれか一項に記載の圧縮機。
  7.  前記モータは、前記複数のステータユニットのうち隣り合うステータユニットの間に非磁性体を有する、請求項6に記載の圧縮機。
  8.  前記複数のステータユニットの個数は、2である、請求項6又は7に記載の圧縮機。
  9.  前記複数のステータユニットのそれぞれの極数は、2である、請求項6から8のいずれか一項に記載の圧縮機。
  10.  前記ロータは、少なくとも一つの永久磁石が前記ロータの外周面に配置されるSPM型ロータである、請求項1から9のいずれか一項に記載の圧縮機。
PCT/JP2021/005782 2020-02-17 2021-02-16 圧縮機 WO2021166920A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21757931.7A EP4108933A4 (en) 2020-02-17 2021-02-16 COMPRESSOR
US17/904,241 US20230246492A1 (en) 2020-02-17 2021-02-16 Compressor
CN202180012108.0A CN115038877A (zh) 2020-02-17 2021-02-16 压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-024633 2020-02-17
JP2020024633A JP6927343B1 (ja) 2020-02-17 2020-02-17 圧縮機

Publications (1)

Publication Number Publication Date
WO2021166920A1 true WO2021166920A1 (ja) 2021-08-26

Family

ID=77364619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005782 WO2021166920A1 (ja) 2020-02-17 2021-02-16 圧縮機

Country Status (5)

Country Link
US (1) US20230246492A1 (ja)
EP (1) EP4108933A4 (ja)
JP (1) JP6927343B1 (ja)
CN (1) CN115038877A (ja)
WO (1) WO2021166920A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280247A (ja) * 2000-03-31 2001-10-10 Toyota Autom Loom Works Ltd 電動圧縮機
JP2006074884A (ja) * 2004-09-01 2006-03-16 Keihin Corp トルクモータ
JP2007270696A (ja) * 2006-03-31 2007-10-18 Hitachi Ltd 容積形圧縮機
JP2013127205A (ja) * 2011-12-16 2013-06-27 Daikin Industries Ltd 圧縮機構
JP2013256884A (ja) * 2012-06-12 2013-12-26 Kawasaki Heavy Ind Ltd 高速ターボ機械
JP2015527184A (ja) * 2012-07-05 2015-09-17 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap 曝気装置、その使用方法、及び、この曝気装置を備えた浄水設備
JP2016192877A (ja) 2015-03-31 2016-11-10 株式会社豊田自動織機 回転電機および圧縮機
JP2017194042A (ja) * 2016-04-22 2017-10-26 三菱重工サーマルシステムズ株式会社 ターボ圧縮機、これを備えたターボ冷凍装置
JP2020024633A (ja) 2018-08-08 2020-02-13 株式会社デンソー 訓練データ評価装置、訓練データ評価方法、およびプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356506B1 (ko) * 2000-09-27 2002-10-18 엘지전자 주식회사 터보 압축기
FR2832770B1 (fr) * 2001-11-27 2004-01-02 Mallinckrodt Dev France Turbine centrifuge pour dispositifs d'assistance respiratoire
US6946771B2 (en) * 2002-07-10 2005-09-20 Quebec Metal Powders Limited Polyphase claw pole structures for an electrical machine
JP4293207B2 (ja) * 2006-07-21 2009-07-08 株式会社日立製作所 電動ポンプ
DE102013217261A1 (de) * 2013-08-29 2015-03-05 Robert Bosch Gmbh Kompressor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280247A (ja) * 2000-03-31 2001-10-10 Toyota Autom Loom Works Ltd 電動圧縮機
JP2006074884A (ja) * 2004-09-01 2006-03-16 Keihin Corp トルクモータ
JP2007270696A (ja) * 2006-03-31 2007-10-18 Hitachi Ltd 容積形圧縮機
JP2013127205A (ja) * 2011-12-16 2013-06-27 Daikin Industries Ltd 圧縮機構
JP2013256884A (ja) * 2012-06-12 2013-12-26 Kawasaki Heavy Ind Ltd 高速ターボ機械
JP2015527184A (ja) * 2012-07-05 2015-09-17 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap 曝気装置、その使用方法、及び、この曝気装置を備えた浄水設備
JP2016192877A (ja) 2015-03-31 2016-11-10 株式会社豊田自動織機 回転電機および圧縮機
JP2017194042A (ja) * 2016-04-22 2017-10-26 三菱重工サーマルシステムズ株式会社 ターボ圧縮機、これを備えたターボ冷凍装置
JP2020024633A (ja) 2018-08-08 2020-02-13 株式会社デンソー 訓練データ評価装置、訓練データ評価方法、およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4108933A4

Also Published As

Publication number Publication date
US20230246492A1 (en) 2023-08-03
EP4108933A1 (en) 2022-12-28
JP6927343B1 (ja) 2021-08-25
CN115038877A (zh) 2022-09-09
JP2021127759A (ja) 2021-09-02
EP4108933A4 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
US7504753B2 (en) Motor
JP5626415B2 (ja) 回転電気機械
US20070228847A1 (en) High speed electric motor
WO2018029818A1 (ja) 電動機、圧縮機、冷凍空調装置および電動機の製造方法
CN116134707A (zh) 电动机
JP5359112B2 (ja) アキシャルギャップ型回転電機及びそれを用いた圧縮機
WO2021166920A1 (ja) 圧縮機
US20230216376A1 (en) Electric motor
JP2008187863A (ja) アキシャルギャップ型回転電機及び圧縮機
JP2008172918A (ja) アキシャルギャップ型モータおよび圧縮機
JP6094432B2 (ja) 回転子及びこの回転子を使用する電動機
JP2008220128A (ja) アキシャルギャップ型回転電機及び圧縮機
JP2013126267A (ja) 回転電気機械および圧縮機
JP7284334B1 (ja) 鉄心ユニット、および、回転子
FI129999B (en) The connecting element and the electromechanical system containing it
JP7048917B2 (ja) 電動機、圧縮機、送風機、冷凍装置
US20230421036A1 (en) Linear motor
WO2021235376A1 (ja) 回転電機
WO2023053604A1 (ja) ロータおよび回転電機
WO2022219923A1 (ja) 回転子及び電動機
WO2017022044A1 (ja) 動力伝達装置
US20230378831A1 (en) Rotor, motor using the rotor, and electronic device
JP2017189019A (ja) アキシャルギャップ型回転電機
JP3312475B2 (ja) 同期電動機
JP2023144927A (ja) モータ、送風装置、圧縮装置、および冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757931

Country of ref document: EP

Effective date: 20220919