WO2021166024A1 - エピタキシャルウエハ、半導体装置およびエピタキシャルウエハの製造方法 - Google Patents

エピタキシャルウエハ、半導体装置およびエピタキシャルウエハの製造方法 Download PDF

Info

Publication number
WO2021166024A1
WO2021166024A1 PCT/JP2020/005999 JP2020005999W WO2021166024A1 WO 2021166024 A1 WO2021166024 A1 WO 2021166024A1 JP 2020005999 W JP2020005999 W JP 2020005999W WO 2021166024 A1 WO2021166024 A1 WO 2021166024A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
channel layer
channel
back barrier
epitaxial wafer
Prior art date
Application number
PCT/JP2020/005999
Other languages
English (en)
French (fr)
Inventor
淳史 惠良
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020538875A priority Critical patent/JP6765589B1/ja
Priority to PCT/JP2020/005999 priority patent/WO2021166024A1/ja
Priority to CN202080096401.5A priority patent/CN115088058A/zh
Priority to DE112020006762.9T priority patent/DE112020006762T5/de
Priority to US17/758,180 priority patent/US20230054861A1/en
Publication of WO2021166024A1 publication Critical patent/WO2021166024A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present disclosure relates to an epitaxial wafer and a method for manufacturing the same, and the present disclosure relates to a semiconductor device including an epitaxial wafer.
  • Is Al x Ga y In z N ( x + y + z 1, y> 0, Aluminum Gallium Indium Nitride) semiconductor device having an epitaxial wafer containing crystalline.
  • the epitaxial wafer, Al x Ga y In z N (x + y + z 1, y> 0) and the channel layer composed of a crystal represented by the composition formula, on the channel layer Al x Ga y In z N
  • It includes an electron supply layer composed of crystals represented by the composition formula (x + y + z 1, x> 0). Due to the heterojunction of these layers, a high concentration of two-dimensional electron gas (2DEG, 2-Dimension Electrical Gas) is generated at the interface between these layers.
  • 2DEG 2-Dimension Electrical Gas
  • the present disclosure has been made to solve the above-mentioned problems, and provides an epitaxial wafer, a semiconductor device including the epitaxial wafer, and a method for manufacturing the epitaxial wafer, which can suppress the occurrence of current collapse.
  • the purpose is.
  • the channel layer is composed of an upper layer of the channel layer on the electron supply layer side and a lower layer of the channel layer on the back barrier layer side.
  • the lower layer of the channel layer has a higher concentration of C than the upper layer of the channel layer, and the lower layer of the channel layer contains Si. It is characterized by that.
  • the semiconductor device includes the above-mentioned epitaxial wafer, source electrodes and drain electrodes arranged at intervals on the electron supply layer of the epitaxial wafer, and between the source electrode and drain electrode on the electron supply layer. It is provided with a gate electrode arranged in.
  • the temperature inside the furnace when forming the channel layer lower layer on the back barrier layer side of the channel layer is made lower than the temperature when forming the channel layer upper layer on the electron supply layer side of the channel layer.
  • the channel layer forming step is characterized in that Si is doped into the channel layer lower layer when the channel layer lower layer is formed.
  • the epitaxial wafer and semiconductor device since Si is contained in the lower layer of the channel layer, electrons are supplied from Si to C, and C is compensated by Si. Therefore, the current collapse can be suppressed. Further, in the method for manufacturing an epitaxial wafer according to the present disclosure, since Si is doped in the lower layer of the channel layer when the lower layer of the channel layer is formed, electrons are supplied from Si to C in the lower layer of the channel layer, and C is compensated by Si. NS. Therefore, an epitaxial wafer capable of suppressing current collapse can be manufactured.
  • Embodiment 1 The configuration of the epitaxial wafer 10 (hereinafter, simply referred to as the wafer 10) according to the first embodiment of the present disclosure will be described with reference to FIG.
  • the wafer 10 includes a substrate 12 and a semiconductor layer arranged on the substrate 12.
  • the semiconductor layer includes a nucleation layer 13, a buffer layer 14, a back barrier layer 15, a channel layer 16, and an electron supply layer 17 in this order from the substrate 12 side.
  • the wafer 10 is a group III-V nitride semiconductor epitaxial wafer in which the semiconductor layer contains a group III element and a group V element.
  • this wafer 10 is used for GaN-HEMT (Gallium Nitride-High Electron Mobility Transistor), which is a high electron mobility transistor.
  • a nucleation layer 13 containing a crystal represented by the AlN composition formula is arranged on the substrate 12.
  • the layer thickness of the nucleation layer 13 from the interface with the substrate 12 to the interface with the buffer layer 14 is 50 nm.
  • a buffer layer 14 containing a crystal represented by a GaN composition formula is arranged on the nucleation layer 13.
  • the buffer layer 14 is a layer for reducing dislocations (crystal defects) in the region where 2DEG is generated (the interface between the channel layer 16 and the electron supply layer 17).
  • the layer thickness of the buffer layer 14 from the interface with the nucleation layer 13 to the interface with the back barrier layer 15 is 1 ⁇ m, but if the thickness is sufficient to exert the effect of reducing dislocations. good.
  • a back barrier layer 15 is arranged on the buffer layer 14.
  • the back barrier layer 15 is for generating a back barrier effect that raises the energy of the conduction band of the buffer layer 14 and lifts the band.
  • the composition of In in the back barrier layer 15 is preferably in the range of 3% to 15%, and in the first embodiment, it is 5%.
  • the layer thickness of the back barrier layer 15 is preferably in the range of 1 nm to 2 nm, and in the first embodiment, the layer thickness is 1 nm.
  • the back barrier layer 15 has InGaN crystals at a lower temperature in the furnace as compared with the buffer layer 14, the channel layer upper layer 16b located on the electron supply layer 17 side of the channel layer 16, and the electron supply layer 17. Is epitaxially grown. This is because In is less likely to be desorbed from the back barrier layer 15 by growing at a low temperature. Further, under this growth condition, C (carbon) in the furnace is taken into the back barrier layer 15 and is difficult to be detached thereafter, so that the back barrier layer 15 contains C. Specifically, in Embodiment 1, the back barrier layer 15 contains 3 ⁇ 10 16 atoms / cm 3 or more carbon. C in the furnace is supplied from TMG (Tri-Methyl Gallium, Ga (CH 3 ) 3), which is a raw material for Ga.
  • TMG Tri-Methyl Gallium, Ga (CH 3 ) 3
  • a channel layer 16 is arranged on the back barrier layer 15.
  • the channel layer 16 is a layer on which carriers run, and is composed of crystals represented by a GaN composition formula. GaN crystals are used because high quality crystals can be grown.
  • the channel layer 16 is composed of a channel layer lower layer 16a on the back barrier layer 15 side and a channel layer upper layer 16b on the electron supply layer 17 side.
  • the conditions for epitaxial growth of the channel layer lower layer 16a and the channel layer upper layer 16b are different.
  • the channel layer lower layer 16a is for covering the back barrier layer 15 so that In or N bonded to In contained in the back barrier layer 15 does not desorb. Desorption of In or N from the back barrier layer 15 is not preferable because the surface becomes rough and the crystal quality deteriorates.
  • the channel layer lower layer 16a Since In or N is also desorbed when the channel layer lower layer 16a is grown, the channel layer lower layer 16a is grown at a lower temperature than when the channel layer upper layer 16b is grown. Therefore, the lower layer 16a of the channel layer incorporates a large amount of C, and the concentration of C is higher than that of the upper layer 16b of the channel layer.
  • the concentration of C in the lower layer 16a of the channel layer is 7 ⁇ 10 16 atoms / cm 3 or more. Although the concentration of C varies depending on the growth conditions, the concentration of C is at least 5 ⁇ 10 16 atoms / cm 3 or more.
  • the channel layer lower layer 16a is located in the vicinity of the channel layer upper layer 16b, which is a region where the carrier 2DEG is generated, C contained in the channel layer lower layer 16a causes 2DEG electrons to be placed at its acceptor level. The trap is caused, the electron concentration of the 2DEG is lowered, and the output of the transistor provided with the wafer 10 is temporarily lowered, which causes deterioration of the transient response. Such a phenomenon is called current collapse, and hinders the increase in the output of the transistor. Further, the transistor in which the current collapse occurs has a property that the output fluctuates depending on the power input in the past, that is, a memory effect. This becomes a problem especially when a transistor is used in a wireless communication application.
  • the channel layer lower layer 16a of the first embodiment is doped with Si during growth and contains Si. Since Si is an n-type dopant and supplies electrons to the trap level formed by C, it is possible to suppress the trapping of 2DEG electrons by C and suppress the current collapse.
  • the concentration of Si contained in the channel layer lower layer 16a is higher than the concentration of C in the channel layer lower layer 16a.
  • the concentration of Si is 8 ⁇ 10 16 atoms / cm 3 or more.
  • the channel layer lower layer 16a needs to surely cover the back barrier layer 15 so that In or N does not separate from the back barrier layer 15, and cannot be made too thin.
  • the concentration of electrons traveling in the lower layer 16a of the channel layer cannot be ignored with respect to the electron concentration of 2DEG, the output of the transistor decreases.
  • the channel layer upper layer 16b contains undoped GaN crystals
  • the channel layer lower layer 16a contains a large amount of Si and C
  • the channel layer lower layer 16a contains more carriers. This is because the mobility is low and the average mobility is lowered. Therefore, it is necessary not to make the lower layer 16a of the channel layer too thick.
  • the layer thickness from the interface between the back barrier layer 15 and the channel layer upper layer 16b in the channel layer lower layer 16a is preferably in the range of 1 nm to 20 nm, and in the first embodiment, the channel layer lower layer 16a The layer thickness of is 5 nm.
  • the upper layer 16b of the channel layer is for the carrier to travel, and contains an undoped GaN crystal so that the electron mobility does not decrease. Further, when C is incorporated, the mobility of electrons is lowered and current collapse is likely to occur. Therefore, the upper layer 16b of the channel layer is grown at a higher temperature than the lower layer 16a of the channel layer. 2DEG is generated near the interface between the channel layer upper layer 16b and the electron supply layer 17, and the channel layer upper layer 16b is thickened to some extent in order to allow most of the 2DEG to be present in the highly mobile channel layer upper layer 16b. There must be.
  • the layer thickness of the upper layer 16b of the channel layer from the interface with the lower layer of the channel layer to the interface with the electron supply layer 17 is preferably 5 nm or more.
  • the layer thickness of the channel layer upper layer 16b is 50 nm.
  • the layer thickness of the channel layer 16 composed of the channel layer lower layer 16a and the channel layer upper layer 16b is preferably 100 nm or less.
  • the back barrier layer 15 becomes close to the gate electrode 23, and even if a slight leakage current flows near the pinch-off, the back barrier is immediately turned off when the voltage related to the gate electrode is turned off.
  • the layer 15 is also depleted and the leakage current is suppressed. Therefore, the influence of the leakage current becomes small, and it does not pose a problem in practical use.
  • the layer thickness of the channel layer 16 is 55 nm.
  • the reason why the layer thickness of the channel layer 16 can be reduced to 100 nm or less is that the channel layer lower layer 16a contains Si, and the current collapse is suppressed even when the channel layer lower layer 16a is close to the region where 2DEG is generated. Because it can be done.
  • the layer thickness of the channel layer 16 is 100 nm or less, the layer thickness of the channel layer lower layer 16a is 1 nm to 20 nm, and the layer thickness of the channel layer upper layer 16b is 5 mm to 80 nm.
  • the electron supply layer 17 is for generating a high-concentration 2DEG at the interface with the channel layer upper layer 16b, and contains an AlGaN crystal having a larger bandgap than the GaN crystal contained in the channel layer 16. doing.
  • the AlGaN crystal generates 2DEG near the interface between the electron supply layer 17 and the channel layer 16 due to the polarization effect.
  • the composition ratio of Al and Ga in the AlGaN crystal contained in the electron supply layer 17 and the layer thickness of the electron supply layer 17 may be appropriately selected according to the concentration of 2DEG to be generated.
  • the wafer 10 is configured as described above.
  • the wafer 10 contains C and Si.
  • These concentrations in the channel layer 16 will be described with reference to FIG.
  • FIG. 2 is a graph showing the concentrations of C and Si on the vertical axis and the depth from the surface on the horizontal axis, and the left side (origin side) of the dotted line on the horizontal axis shows the depth at which the upper layer 16b of the channel layer is arranged.
  • the right side shows the depth at which the lower layer 16a of the channel layer is arranged.
  • the concentration of C is indicated by a solid line
  • the concentration of Si is indicated by a alternate long and short dash line.
  • the channel layer upper layer 16b is grown at a higher temperature than the channel layer lower layer 16a, it is easy to desorb even if C is taken in during growth, and as shown in FIG. 2, the concentration of C is lower than that of the channel layer lower layer 16a. There is. On the contrary, since the lower layer 16a of the channel layer is grown at a low temperature, the concentration of C is higher than that of the upper layer 16b of the channel layer. Further, the lower layer 16a of the channel layer is doped with Si, and as shown in FIG. 2, the concentration of Si is higher than the concentration of C.
  • the concentration of Si is located at the position corresponding to the depth of the upper layer 16b of the channel layer in FIG. Although (dotted chain line) is not displayed, the concentration of Si in the upper layer 16b of the channel layer is lower than the concentration of Si in the lower layer 16a of the channel layer.
  • the semiconductor device 20 is a semiconductor element used for GaN-HEMT (high electron mobility transistor) or the like.
  • the semiconductor device 20 includes a wafer 10, a source electrode 21, a drain electrode 22, and a gate electrode 23.
  • the source electrode 21 and the drain electrode 22 are arranged at intervals on the upper surface of the wafer 10, that is, the surface of the electron supply layer 17 opposite to the substrate 12 side.
  • the source electrode 21 and the drain electrode 22 are composed of Ti (Titanium) in the lower layer on the electron supply layer 17 side and Al in the upper layer on the opposite side to the electron supply layer 17, and the thickness of the lower layer is about 20 nm and the thickness of the upper layer.
  • the source electrode 21 and the drain electrode 22 are in ohmic contact with the electron supply layer 17. Further, a gate electrode 23 in contact with the electron supply layer 17 is arranged between the source electrode 21 and the drain electrode 22.
  • the gate electrode 23 is composed of Ni (Nickel) on the lower layer on the electron supply layer 17 side and Au on the upper layer on the opposite side to the electron supply layer 17, and the thickness of the lower layer is about 30 nm and the thickness of the upper layer is about 400 nm. be.
  • wiring is further connected to the source electrode 21, the drain electrode 22, and the gate electrode 23.
  • Ar (Argon) or the like is injected into the side surface of the wafer 10, that is, the surface of the wafer 10 parallel to the direction in which the substrate 12 to the electron supply layer 17 are arranged, and an inert region is formed.
  • each layer of the wafer 10 is formed by an organometallic vapor phase epitaxial (MOCVD) method.
  • MOCVD organometallic vapor phase epitaxial
  • a mixed gas of TMGa gas and ammonia gas is introduced into the furnace, GaN crystals are grown by 1 ⁇ m on the nucleation layer 13, and an undoped buffer layer 14 is formed on the nucleation layer 13 (step S103). ..
  • the temperature in the furnace is 1100 ° C.
  • the pressure is 200 mbar
  • the V / III ratio of the mixed gas (V / III ratio: the supply molar flow rate of the group V raw material supplied to the furnace is supplied to the furnace.
  • the value divided by the supply molar flow rate) is set to 500.
  • Hydrogen gas is used as the carrier gas.
  • Step S104 a mixed gas of TMI (Tri-Methyl Indium, In (CH 3 ) 3 ) gas, TMGa gas, and ammonia gas was introduced into the furnace, and InGaN crystals were grown on the buffer layer 14 by 1 nm to grow the buffer layer.
  • the back barrier layer 15 is formed on the 14 (step S104).
  • the temperature in the furnace is set to 800 ° C.
  • the pressure is set to 400 mbar
  • the V / III ratio is set to 50,000. Nitrogen gas is used as the carrier gas.
  • the back barrier layer 15 is grown under growth conditions of low temperature, high pressure, and high V / III ratio as compared with the nucleation layer 13, the channel layer upper layer 16b described later, and the electron supply layer 17, which is the back barrier layer. This is because In is taken into the 15 and is difficult to be detached.
  • Step S105 a mixed gas of TMGa gas, monosilane gas and ammonia gas is introduced into the furnace, Si-doped GaN crystals are grown on the back barrier layer 15 by 5 nm, and a channel layer lower layer 16a is formed on the back barrier layer 15.
  • the temperature in the furnace is 800 ° C.
  • the pressure is 200 mbar
  • the V / III ratio is 500.
  • Hydrogen gas is used as the carrier gas.
  • In or N may be desorbed from the surface of the back barrier layer 15 and cause surface roughness. Therefore, the channel layer lower layer is the nucleation layer 13 or the channel layer described later.
  • the growth is performed under lower temperature growth conditions.
  • the temperature cannot be raised until the InGaN crystal is protected with a material that does not contain In, such as GaN.
  • a large amount of C contained in the TMGa gas is taken into the lower layer of the channel layer and is difficult to be desorbed when the GaN crystal is grown. This C acts as an acceptor and traps 2DEG electrons, which causes deterioration of the transient response.
  • Si is doped in the channel layer lower layer 16a.
  • the trap level of C can be filled with electrons, so that the concentration of Si in the lower layer 16a of the channel layer is C.
  • the amount of monosilane gas in the mixed gas is adjusted so as to be higher than the concentration of.
  • step S106 Next, a mixed gas of TMGa gas and ammonia gas is introduced into the furnace, undoped GaN crystals are grown by 50 nm on the channel layer lower layer 16a, and the channel layer upper layer 16b is formed on the channel layer lower layer 16a (step S106). ).
  • the temperature in the furnace is 1100 ° C.
  • the pressure is 200 mbar
  • the V / III ratio is 500.
  • Hydrogen gas is used as the carrier gas.
  • the channel layer upper layer 16b the surface of the back barrier layer 15 is covered with the channel layer lower layer 16a. Therefore, the problem of In or N desorption is unlikely to occur even under growth conditions higher than the temperature at which the lower layer 16a of the channel layer is formed.
  • the growth condition it is preferable to set the growth condition to a high temperature from the viewpoint of improving the mobility of carriers because C is less likely to be contained in the upper layer 16b of the channel layer. Therefore, in the channel layer upper layer forming step, the temperature inside the furnace is higher than that in the channel layer lower layer forming step.
  • the channel layer lower layer forming step and the channel layer upper layer forming step are collectively referred to simply as a channel layer forming step.
  • the relationship between the growth time of this channel layer forming step and the temperature inside the furnace and the timing at which Si is doped will be described with reference to FIG.
  • the vertical axis indicates the temperature inside the furnace
  • the horizontal axis indicates the growth time
  • the origin of the horizontal axis indicates the time when the lower layer 16a of the channel layer starts to grow.
  • the time between the dotted line on the left side and the origin corresponds to the time when the channel layer lower layer formation step is performed
  • the time on the right side of the dotted line on the right side corresponds to the time when the channel layer upper layer formation step is performed.
  • the temperature inside the furnace when the lower layer 16a of the channel layer is formed and the temperature inside the furnace when the upper layer 16b of the channel layer is formed are different.
  • the temperature in the furnace when the lower layer 16a of the channel layer is formed is lower than the temperature in the furnace when the upper layer 16b of the channel layer is formed.
  • monosilane which is a raw material of Si, is supplied, but it is not supplied after the channel layer lower layer forming step is completed. Further, as shown in FIG.
  • a period for suspending growth (between the dotted line on the left side and the dotted line on the right side) is provided between the channel layer lower layer forming step and the channel layer upper layer forming step, and the furnace is provided during this period.
  • the channel layer 16 (referred to as an intermediate layer) may be grown during this period as well.
  • C is contained in the intermediate layer that grows in a state where the temperature inside the furnace has not sufficiently risen, and the concentration of C gradually decreases as the temperature rises. Therefore, C can be compensated by Si by continuing the supply of monosilane, which is a raw material of Si, which was supplied in the channel layer lower layer forming step, and gradually reducing the supply amount of monosilane.
  • step S106 the electron supply layer forming step, which is the next step of the channel layer upper layer forming step (step S106), will be described.
  • a mixed gas of TMA gas, TMG gas and ammonia gas is introduced into the furnace, AlGaN crystals are grown by 20 nm on the channel layer upper layer 16b, and an electron supply layer 17 is formed on the channel layer upper layer 16b (step S107).
  • the temperature in the furnace is 1100 ° C.
  • the pressure is 50 mbar
  • the V / III ratio is 1000.
  • Hydrogen gas is used as the carrier gas.
  • the wafer 10 is manufactured.
  • a method of manufacturing the semiconductor device 20 from the wafer 10 manufactured as described above will be described.
  • a resist mask for forming the source electrode 21 and the drain electrode 22 is formed on the electron supply layer 17 of the wafer 10. Specifically, the resist is applied onto the electron supply layer 17, and an opening is formed in the portion of the resist where the electrode is formed.
  • Ti was deposited at 20 nm and Al at 200 nm on the resist including the inside of the opening so that Ti was the lower layer and Al was the upper layer by the vapor deposition method, and the resist mask and the Ti and Al deposited on it were deposited by the lift-off method. Remove. Then, the wafer 10 is heat-treated at 600 ° C.
  • a resist mask for forming the gate electrode 23 is formed on the electron supply layer 17 of the wafer 10. Specifically, the resist is applied onto the electron supply layer 17 and processed by photolithography to form an opening for forming the gate electrode 23 between the source electrode 21 and the drain electrode 22 of the resist. Next, Ni was deposited at 30 nm and Au at 400 nm on the resist including the inside of the opening so that Ni was the lower layer and Au was the upper layer by the vapor deposition method, and the resist mask and the Ni and Au deposited on it were deposited by the lift-off method. Remove. In this way, the gate electrode 23 is formed between the source electrode 21 and the drain electrode 22. The connection of the wiring to each electrode and the formation of the inert region are also performed by a known method.
  • the method for manufacturing the wafer 10, the semiconductor device 20, and the wafer 10 according to the first embodiment of the present disclosure is configured as described above, and has the following effects.
  • Si which is an n-type dopant
  • Si supplies electrons to the trap level of C so that the electrons of 2DEG are less likely to be trapped. Therefore, the wafer 10 and the semiconductor device 20 can prevent the electrons of the 2DEG from being trapped in C and the carrier density from decreasing. That is, it is possible to suppress the occurrence of current collapse. Further, since the current collapse can be suppressed, the wafer 10 and the semiconductor device 20 can suppress the deterioration of the transient response characteristics, and the semiconductor device 20 can be used at a high output (near the saturation output).
  • Si functions as a donor that supplies one electron.
  • the contained C functions as an acceptor that receives one electron. Therefore, if the concentration of Si contained in the lower layer 16a of the channel layer is lower than C, electrons cannot be supplied to all C.
  • the concentration of Si contained in the channel layer lower layer 16a is higher than the concentration of C contained in the channel layer lower layer 16a. Therefore, it is possible to prepare electrons to be supplied to all Cs, and it is possible to more reliably suppress the generation of current collapse.
  • the back barrier layer is made so that the layer thickness of the channel layer is 100 nm or less while suppressing the generation of current leakage by doping the channel layer lower layer 16a with Si.
  • the generation of leakage current is suppressed by bringing the 15 and the gate electrode 23 close to each other. Therefore, it is possible to suppress both the generation of leakage current and the generation of current collapse.
  • the upper layer 16b of the channel layer is a layer on which the carrier 2DEG runs. If the upper layer 16b of the channel layer has a large amount of impurities, the mobility of carriers decreases. Therefore, it is preferable that the concentration of impurities in the upper layer 16b of the channel layer is low.
  • the channel layer upper layer 16b is grown at a higher temperature than the channel layer lower layer 16a, so that the C concentration of the channel layer upper layer 16b is the C concentration of the channel layer lower layer C. Is lower than the concentration of. Therefore, the mobility of the carrier can be improved.
  • the method for manufacturing the wafer 10 according to the first embodiment of the present disclosure can manufacture the wafer 10 having the above-mentioned effects.
  • the wafer 10 includes a substrate 12, a nucleation layer 13, a buffer layer 14, a back barrier layer 15, a channel layer 16, and an electron supply layer 17 in this order from the bottom.
  • a substrate 12 a nucleation layer 13
  • a buffer layer 14 a back barrier layer 15
  • a channel layer 16 a channel layer 16
  • an electron supply layer 17 in this order from the bottom.
  • another layer may be added between these layers.
  • the nucleation layer 13 is arranged and grown on the substrate 12, and the buffer layer 14 is arranged and grown on the nucleation layer 13, but another layer is added.
  • the nucleation layer 13 is omitted and the buffer layer is simply arranged and grown on the substrate 12.
  • the nucleation layer 13 may be grown after arranging a material such as SiN on the substrate 12. Further, a layer containing a high-resistance GaN crystal doped with Fe (Ferrum) or C may be provided between the buffer layer 14 and the nucleation layer 13.
  • the layer thickness of the buffer layer 14 and the layer containing the high-resistance GaN crystal may be appropriately adjusted.
  • Fe is doped
  • ferrocene can be used as a raw material thereof.
  • a cap layer containing GaN crystals may be provided between the electron supply layer 17 and each electrode.
  • the substrate 12 is made of SiC, but instead of SiC, it may be made of Si (Silicon), sapphire, GaAs (Gallium Arsenide), and ZnO (Zinc Oxide).
  • the thickness of the nucleation layer 13 is 50 nm, but any thickness may be sufficient as long as the crystals in the upper layer of the nucleation layer 13 can be grown with high quality.
  • nitrogen gas was used as the carrier gas when growing the back barrier layer 15
  • hydrogen gas was used as the carrier gas when growing the other layers, but another carrier gas was used. May be good.
  • the concentration of Si contained in the channel layer lower layer 16a is higher than the concentration of C contained in the channel layer lower layer 16a is described, but even if the concentration of Si is lower than the concentration of C, Si Can compensate a part of C, so that the occurrence of current collapse can be suppressed.
  • the source electrode 21 and the drain electrode 22 are made of Ti and Al, and the gate electrode 23 is made of Ni and Au.
  • the electrode structure and layer thickness may be appropriately selected.
  • Embodiment 2 Next, a second embodiment of the present disclosure will be described. The same parts as those of the configuration and the manufacturing method described in the first embodiment will be omitted, and the parts different from the first embodiment will be described below.
  • the method for manufacturing the wafer 10, the semiconductor device 20, and the wafer 10 of the second embodiment can be carried out in combination with the modified example of the first embodiment.
  • the pressure in the furnace when growing the GaN crystals in the lower layer 16a of the channel layer was set to 200 mbar as in the upper layer 16b of the channel layer.
  • the pressure in the furnace when growing the GaN crystal in the lower layer 16a of the channel layer is lower than the pressure in the furnace when growing the GaN crystal in the upper layer 16b of the channel layer. ..
  • the wafer 10 and the semiconductor device 20 of the second embodiment include a channel layer lower layer 16a containing GaN crystals grown at a low pressure.
  • the pressure is lowered when growing the GaN crystal, the amount of C taken up increases, so that the concentration of C in the lower layer 16a of the channel layer is higher than that in the first embodiment.
  • the concentration of C is 1.1 ⁇ 10 17 atoms / cm 3 or more.
  • Si is also doped more than in the first embodiment so as to correspond to the concentration of C, and the concentration of Si is also higher than that in the embodiment. Specifically, it is 1.2 ⁇ 10 17 atoms / cm 3 or more.
  • GaN crystals are grown at a temperature in the furnace of 800 ° C., a pressure of 50 mbar, and a V / III ratio of 500. That is, in the channel layer lower layer forming step, the pressure in the furnace when forming the channel layer lower layer 16a is made lower than the pressure in the furnace when forming the channel layer upper layer 16b. The pressure in the furnace when forming the upper layer 16b of the channel layer is 200 mbar.
  • FIG. 6 how to change the temperature and pressure in the furnace when the channel layer 16 is grown will be described. In the graph of FIG.
  • the vertical axis shows the temperature and pressure in the furnace
  • the horizontal axis shows the growth time
  • the origin of the horizontal axis shows the time when the growth of the lower channel layer 16a is started.
  • the time between the dotted line on the left side and the origin corresponds to the time when the channel layer lower layer formation step is performed
  • the time on the right side of the dotted line on the right side corresponds to the time when the channel layer upper layer formation step is performed. ..
  • the temperature and pressure in the furnace when the lower layer 16a of the channel layer is formed and the temperature and pressure in the furnace when the upper layer 16b of the channel layer is formed are different.
  • the temperature and pressure for forming the channel layer lower layer 16a are lower than the temperature and pressure for forming the channel layer upper layer 16b. Further, as shown in FIG. 6, a period for suspending growth (between the dotted line on the left side and the dotted line on the right side) is provided between the channel layer lower layer forming step and the channel layer upper layer forming step, and the furnace is provided during this period. Although the temperature and pressure inside are increased, the channel layer 16 (referred to as an intermediate layer) may be grown during this period as in the first embodiment. In this case, C can be compensated by Si by continuing the supply of monosilane, which is a raw material of Si, which was supplied in the channel layer lower layer forming step, and gradually reducing the supply amount of monosilane. ..
  • the method for manufacturing the wafer 10, the semiconductor device 20, and the wafer 10 according to the second embodiment of the present disclosure is configured as described above, and has the following effects.
  • a GaN crystal is grown at a low temperature, there is a problem that a large amount of C is taken in, and a problem that the surface migration length of Ga is shortened and the flatness of the channel layer lower layer 16a is deteriorated.
  • the flatness of the lower layer 16a of the channel layer deteriorates, the flatness of the upper layer 16b of the channel layer cannot be sufficiently restored because the layer thickness is only about several tens of nm.
  • GaN crystals are grown at a lower voltage than the channel layer upper layer forming step in the channel layer lower layer forming step.
  • the pressure is lowered when growing the GaN crystal, the amount of C taken up increases, but Si is doped in the lower layer 16a of the channel layer, so that the generation of current collapse can be suppressed.
  • the surface migration length of Ga can be lengthened, and the deterioration of flatness can be suppressed.
  • both the generation of current collapse and the deterioration of flatness can be suppressed. Further, since the wafer 10 and the semiconductor device 20 of the second embodiment of the present disclosure are manufactured as described above, the occurrence of current collapse is suppressed, the flatness is high, and the mobility of 2DEG is lowered. , It is possible to prevent the output of the semiconductor device 20 from decreasing.
  • Embodiment 3 Next, a third embodiment of the present disclosure will be described. The same parts as those of the configuration and the manufacturing method described in the first embodiment will be omitted, and the parts different from the first embodiment will be described below.
  • the method for manufacturing the wafer 10, the semiconductor device 20, and the wafer 10 of the third embodiment can be carried out in combination with the modified example of the first embodiment or the second embodiment.
  • the V / III ratio in the furnace when growing the GaN crystal of the channel layer lower layer 16a was set to 500 as in the channel layer upper layer 16b.
  • the V / III ratio in the furnace when growing the GaN crystal in the channel layer lower layer 16a is the V in the furnace when growing the GaN crystal in the channel layer upper layer 16b. Lower than the / III ratio.
  • the wafer 10 and the semiconductor device 20 of the third embodiment include a channel layer lower layer 16a containing GaN crystals grown at a low V / III ratio.
  • V / III ratio When the V / III ratio is lowered when growing a GaN crystal, the amount of C taken up increases, so that the concentration of C in the lower layer 16a of the channel layer is higher than that in the first embodiment.
  • the concentration of C is 1.1 ⁇ 10 17 atoms / cm 3 or more.
  • Si is also doped more than in the first embodiment so as to correspond to the concentration of C, and the concentration of Si is also higher than that in the first embodiment. Specifically, it is 1.2 ⁇ 10 17 atoms / cm 3 or more.
  • GaN is grown at a temperature in the furnace of 800 ° C., a pressure of 200 mbar, and a V / III ratio of 200. That is, in the channel layer lower layer forming step, the V / III ratio in the furnace when forming the channel layer lower layer 16a is made lower than the V / III ratio in the furnace when forming the channel layer upper layer 16b.
  • the V / III ratio in the furnace when forming the channel layer upper layer 16b is 500.
  • FIG. 7 how to change the temperature in the furnace and the V / III ratio when the channel layer 16 is grown will be described. In the graph of FIG.
  • the vertical axis shows the temperature in the furnace and the V / III ratio
  • the horizontal axis shows the growth time
  • the origin of the horizontal axis shows the time when the lower layer 16a of the channel layer starts to grow.
  • the time between the dotted line on the left side and the origin corresponds to the time when the channel layer lower layer formation step is performed
  • the time on the right side of the dotted line on the right side corresponds to the time when the channel layer upper layer formation step is performed. ..
  • the temperature and V / III ratio when forming the channel layer lower layer 16a is lower than the temperature and V / III ratio when forming the channel layer upper layer 16b. Further, as shown in FIG. 7, a period for suspending growth (between the dotted line on the left side and the dotted line on the right side) is provided between the channel layer lower layer forming step and the channel layer upper layer forming step, and the furnace is provided during this period. The temperature inside is raised. Further, since the GaN crystals are not grown during this period, no raw material is supplied. Therefore, the V / III ratio cannot be defined and is not shown.
  • the channel layer 16 (referred to as an intermediate layer) may be grown during the period in which the growth is interrupted.
  • the V / III ratio should be gradually increased, and the supply of monosilane, which is a raw material for Si, which was supplied in the channel layer lower layer formation step, should be continued, and the supply amount of monosilane should be gradually reduced. Therefore, C can be compensated with Si.
  • the method for manufacturing the wafer 10, the semiconductor device 20, and the wafer 10 according to the third embodiment of the present disclosure is configured as described above, and has the following effects.
  • the GaN crystal is grown at a low temperature, the amount of C taken up increases, the surface migration length of Ga becomes short, the flatness deteriorates, and the mobility of 2DEG decreases. There is a problem.
  • GaN crystals are grown in the channel layer lower layer forming step at a V / III ratio lower than that in the channel layer upper layer forming step.
  • the V / III ratio When the V / III ratio is lowered when growing a GaN crystal, the amount of C taken up increases, but Si is doped in the lower layer 16a of the channel layer, and the generation of current collapse can be suppressed. Further, by lowering the V / III ratio, the surface migration length of Ga can be lengthened, and deterioration of flatness can be suppressed. Therefore, in the third embodiment, both the generation of current collapse and the deterioration of flatness (decrease in mobility) can be suppressed. Further, since the wafer 10 and the semiconductor device 20 of the third embodiment of the present disclosure are manufactured as described above, the occurrence of current collapse is suppressed, the flatness is high, and the mobility of 2DEG is lowered. , It is possible to prevent the output of the semiconductor device 20 from decreasing.
  • the channel layer lower layer forming step is carried out at a high pressure as in the first embodiment, but may be carried out at a low pressure as in the second embodiment.
  • Embodiment 4 Next, a fourth embodiment of the present disclosure will be described. The same parts as those of the configuration and the manufacturing method described in the first embodiment will be omitted, and the parts different from the first embodiment will be described below.
  • the method for manufacturing the wafer 10, the semiconductor device 20, and the wafer 10 of the fourth embodiment can be carried out in combination with the modified example of the first embodiment, the second embodiment, or the third embodiment.
  • Si is doped not only in the channel layer lower layer 16a but also in the back barrier layer 15.
  • the wafer 10 and the semiconductor device 20 of the third embodiment include a back barrier layer 15 containing Si.
  • the back barrier layer 15 also contains C because it is formed at a low temperature like the lower layer 16a of the channel layer and C is taken into the layer and is difficult to be detached.
  • the concentration of Si contained in the back barrier layer 15 is higher than the concentration of C in the back barrier layer 15. Specifically, the concentration of C is 5 ⁇ 10 16 atoms / cm 3 or more, and the concentration of Si is 6 ⁇ 10 16 atoms / cm 3 or more.
  • the method for producing the wafer 10 of the third embodiment is different from that of the first embodiment, in that in the back barrier layer forming step, TMI (Tri-Methyl Indium, In (CH 3 ) 3 ) gas, TMGa gas, and TMI (Tri-Methyl Indium, In (CH 3) 3) gas, and A mixed gas obtained by adding monosilane to ammonia gas is introduced, InGaN crystals constituting the back barrier layer 15 are grown by 1 nm on the buffer layer 14, and a Si-doped back barrier layer 15 is formed on the buffer layer 14. .
  • TMI Tri-Methyl Indium, In (CH 3 ) 3
  • TMGa gas Tri-Methyl Indium, In (CH 3) 3
  • a mixed gas obtained by adding monosilane to ammonia gas is introduced, InGaN crystals constituting the back barrier layer 15 are grown by 1 nm on the buffer layer 14, and a Si-doped back barrier layer 15 is formed on the buffer layer 14. .
  • the vertical axis represents the concentration and the horizontal axis represents the depth from the surface.
  • the depth from the origin to the left dotted line corresponds to the channel layer upper layer 16b
  • the depth from the left dotted line to the right dotted line corresponds to the channel layer lower layer 16a
  • the depth to the right of the right dotted line corresponds to the back barrier layer 15. That's right.
  • the concentration of C is shown by the solid line
  • the concentration of Si is shown by the alternate long and short dash line.
  • the channel layer lower layer 16a and the back barrier layer 15 in which GaN and InGaN crystals are grown at a low temperature incorporate a large amount of C, and the concentration of C is higher than that of the channel layer upper layer 16b. ing.
  • the concentration of C is lower than that of the channel layer lower layer 16a.
  • the concentration of Si is higher than the concentration of C in each of the channel layer lower layer 16a and the back barrier layer 15.
  • the concentrations of C and Si in the lower layer 16a of the channel layer are higher than the concentrations of C and Si in the back barrier layer 15, but the concentrations of C and Si in the back barrier layer 15 are higher. You may.
  • the method for manufacturing the wafer 10, the semiconductor device 20, and the wafer 10 according to the fourth embodiment of the present disclosure is configured as described above, and has the following effects. Since the back barrier layer 15 is formed at a low temperature, the concentration of C is high. Therefore, there is a possibility that C traps 2DEG electrons and current collapse occurs. In addition, when current collapse occurs, the transient response characteristics deteriorate. In the wafer 10 and the semiconductor device 20 of the fourth embodiment of the present disclosure, since the back barrier layer 15 also contains Si, Si compensates for C, and the current collapse caused by C in the back barrier layer 15 is generated. It is possible to suppress the deterioration of the generation and transient response characteristics. Further, it is possible to suppress the generation of current collapse and the deterioration of the transient response characteristics more reliably than in the case of the first embodiment in which the lower layer 16a of the channel layer is doped with Si.
  • the growth conditions of the back barrier layer 15 are low temperature, high pressure, and high V / III ratio, so that the flatness is deteriorated.
  • the flatness In has a surfactant effect and the surface migration length of Ga is increased. Since it can be lengthened, the flatness is not significantly deteriorated, but by forming the back barrier layer 15 at a low pressure and a low V / III ratio in combination with the second embodiment or the third embodiment, the back barrier layer 15 is formed. The flatness can be further improved.
  • the concentration of Si contained in the back barrier layer 15 is higher than the concentration of C contained in the back barrier layer 15 is described, but even if the concentration of Si is lower than the concentration of C. Since Si can compensate a part of C, the occurrence of current collapse can be suppressed.
  • the epitaxial wafer, semiconductor device, and method for manufacturing an epitaxial wafer of the present disclosure can be used as a high electron mobility transistor or when manufacturing a high electron mobility transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本開示に係るエピタキシャルウエハは、基板と、AlGaInN(x+y+z=1、y>0)の組成式で表される結晶を含有し、基板上に設けられたバッファ層と、AlGaInN(x+y+z=1、y>0、z>0)の組成式で表される結晶を含有し、バッファ層上に設けられたバックバリア層と、AlGaInN(x+y+z=1、y>0)の組成式で表される結晶を含有し、バックバリア層上に設けられたチャネル層と、 AlGaInN(x+y+z=1、x>0)の組成式で表される結晶を含有し、チャネル層上に設けられた電子供給層と、を備えたものである。チャネル層は、電子供給層側のチャネル層上層とバックバリア層側のチャネル層下層により構成されており、チャネル層下層は、チャネル層上層よりCの濃度が高く、チャネル層下層は、Siを含むことを特徴とする。

Description

エピタキシャルウエハ、半導体装置およびエピタキシャルウエハの製造方法
 本開示は、エピタキシャルウエハおよびその製造方法に関する、また、本開示は、エピタキシャルウエハを備えた半導体装置に関する。
 AlGaInN(x+y+z=1、y>0、Aluminum Gallium Indium Nitride)結晶を含有するエピタキシャルウエハを備えた半導体装置がある。このエピタキシャルウエハは、AlGaInN(x+y+z=1、y>0)の組成式で表される結晶からなるチャネル層と、チャネル層上にAlGaInN(x+y+z=1、x>0)の組成式で表される結晶からなる電子供給層を備えている。これらの層がヘテロ接合されていることにより、これらの層の間の界面に高濃度の二次元電子ガス(2DEG、2-Dimension Electronic Gas)が発生する。この2DEGをキャリアとして用いることで、半導体装置は高出力動作が可能である。
 一方で、上記のような半導体装置は、2DEGの高い電子密度に起因して、チャネル層の下に設けられたバッファ層を介して漏れ電流が流れることがあり、高周波特性が低下することがある。この漏れ電流は、高い電流利得遮断周波数を得るために短ゲート化した際にさらに顕著となる。
 これに対して、下記の特許文献1では、チャネル層とバッファ層の間にAlGaInN(x+y+z=1、y>0、z>0)の組成式で表される結晶からなるバックバリア層を設け、バッファ層の伝導帯のエネルギーを上昇させることにより、バッファ層を介して漏れ電流が流れることを抑制している。
特開2019-21704号公報
 しかし、上記の特許文献1のエピタキシャルウエハは、AlGaInN(x+y+z=1、y>0、z>0)の組成式で表される結晶からなるバックバリア層からのIn(Indium)の脱離やそれに伴う表面荒れを抑制するためにチャネル層のうちバックバリア層側に位置するチャネル層下層を低温で成長させている。そのため、チャネル層下層には不純物としてC(Carbon)が多く含まれている。Cはアクセプタ型のトラップとなるため、2DEGの電子がCにトラップされてしまい、電流コラプスが生じるという問題があった。
 本開示は、上記のような課題を解決するためになされたものであり、電流コラプスが生じることを抑制することができるエピタキシャルウエハ、エピタキシャルウエハを備えた半導体装置およびエピタキシャルウエハの製造方法を提供することを目的とする。
 本開示に係るエピタキシャルウエハは、基板と、AlGaInN(x+y+z=1、y>0)の組成式で表される結晶を含有し、基板上に設けられたバッファ層と、AlGaInN(x+y+z=1、y>0、z>0)の組成式で表される結晶を含有し、バッファ層上に設けられたバックバリア層と、AlGaInN(x+y+z=1、y>0)の組成式で表される結晶を含有し、バックバリア層上に設けられたチャネル層と、AlGaInN(x+y+z=1、x>0)の組成式で表される結晶を含有し、チャネル層上に設けられた電子供給層と、を備えたものである。チャネル層は、電子供給層側のチャネル層上層とバックバリア層側のチャネル層下層により構成されており、チャネル層下層は、チャネル層上層よりCの濃度が高く、チャネル層下層は、Siを含むことを特徴とする。
 また、本開示に係る半導体装置は、上記のエピタキシャルウエハと、エピタキシャルウエハの電子供給層上に間隔を空けて配置されたソース電極およびドレイン電極と、電子供給層上におけるソース電極とドレイン電極の間に配置されたゲート電極と、を備えたものである。
 また、本開示に係るエピタキシャルウエハの製造方法は、基板を炉内に配置する配置ステップと、基板上に、AlGaInN(x+y+z=1、y>0)の組成式で表される結晶を含有するバッファ層を形成するバッファ層形成ステップと、バッファ層上に、AlGaInN(x+y+z=1、y>0、z>0)の組成式で表される結晶を含有するバックバリア層を形成するバックバリア層形成ステップと、バックバリア層上に、AlGaInN(x+y+z=1、y>0)の組成式で表される結晶を含有するチャネル層を成長させるチャネル層形成ステップと、チャネル層上に、AlGaInN(x+y+z=1、x>0)の組成式で表される結晶を含有する電子供給層を成長させる電子供給層形成ステップと、を備えたものである。チャネル層形成ステップでは、チャネル層のうちバックバリア層側のチャネル層下層を形成する際の炉内の温度を、チャネル層のうち電子供給層側のチャネル層上層を形成する際の温度より低くし、チャネル層形成ステップでは、チャネル層下層を形成する際にチャネル層下層にSiをドープすることを特徴とする。
 本開示に係るエピタキシャルウエハおよび半導体装置は、チャネル層下層にSiが含まれているので、SiからCに電子が供給され、CがSiによって補償される。よって、電流コラプスを抑制することができる。
 また、本開示に係るエピタキシャルウエハの製造方法は、チャネル層下層を形成する際にチャネル層下層にSiをドープするので、チャネル層下層においてSiからCに電子が供給され、CがSiによって補償される。よって、電流コラプスを抑制できるエピタキシャルウエハを製造することができる。
本開示の実施の形態1に係るエピタキシャルウエハの概念断面図である。 本開示の実施の形態1に係るエピタキシャルウエハのC濃度およびSi濃度と表面からの深さの関係を示すグラフである。 本開示の実施の形態1に係る半導体装置の概念断面図である。 本開示の実施の形態1に係るエピタキシャルウエハの製造方法を示すフローチャートである。 本開示の実施の形態1に係るエピタキシャルウエハの製造方法のチャネル層形成ステップにおける炉内温度と成長時間との関係を示すグラフである。 本開示の実施の形態2に係るエピタキシャルウエハの製造方法のチャネル層形成ステップにおける炉内温度および炉内圧力と成長時間との関係を示すグラフである。 本開示の実施の形態3に係るエピタキシャルウエハの製造方法のチャネル層形成ステップにおける炉内温度およびV/III比と成長時間との関係を示すグラフである。 本開示の実施の形態3に係るエピタキシャルウエハのC濃度およびSi濃度と表面からの深さの関係を示すグラフである。
 以下、本開示の実施の形態について、図を用いて説明する。図中の同一の符号は、同一または相当する部分を表す。
実施の形態1.
 本開示の実施の形態1に係るエピタキシャルウエハ10(以下、単にウエハ10という)の構成について、図1を用いて説明する。
 ウエハ10は、基板12と基板12上に配置された半導体層を備えている。半導体層は、基板12側から順番に、核形成層13、バッファ層14、バックバリア層15、チャネル層16、および電子供給層17を備えている。ウエハ10は、半導体層がIII族の元素とV族の元素を含有するIII-V族窒化物半導体エピタキシャルウエハである。より具体的には、半導体層の少なくとも一部がAlGaInN(x+y+z=1、y>0)の組成式で表される窒化ガリウムの結晶を含有するものである。また、このウエハ10は、高電子移動度トランジスタであるGaN-HEMT(Gallium Nitride-High Electron Mobility Transistor)に用いられるものである。
 ウエハ10を構成する基板12は、基板12上にAlGaInN(x+y+z=1)の組成式で表される結晶を成長させるためのものであり、SiC(Silicon Carbide)により構成されている。
 基板12上には、AlNの組成式で表される結晶を含有する核形成層13が配置されている。核形成層13は、基板12上にAlGaInN(x+y+z=1、y>0)の組成式で表現される結晶を形成するための層である。
 核形成層13における基板12との間の界面からバッファ層14との間の界面までの層厚が50nmである。
 核形成層13上には、GaNの組成式で表現される結晶を含有するバッファ層14が配置されている。バッファ層14は、2DEGが発生する領域(チャネル層16と電子供給層17の間の界面)での転位(結晶欠陥)を低減するための層である。
 バッファ層14における核形成層13との間の界面からバックバリア層15との間の界面までの層厚は、1μmであるが、転位を低減する効果を発揮するために十分な厚みであればよい。
 バッファ層14上には、バックバリア層15が配置されている。バックバリア層15は、バッファ層14の伝導帯のエネルギーを上昇させバンドを持ち上げるバックバリア効果を発生させるためのものである。このバックバリア効果を発生させるために、バックバリア層15は、バッファ層14に含まれるGaNの結晶よりバンドギャップが小さいGaInN(y+z=1、y>0、z>0)(以下、単にInGaNという)の組成式で表される結晶を含有している。このように、バッファ層14上にバンドギャップの小さいバックバリア層15を配置すると、分極効果によってバッファ層14の伝導帯のエネルギーがバックバリア層15との界面に向かって上昇することが知られている。
 上記のバックバリア効果は、バックバリア層15中のInの組成が低すぎると、バッファ層14とのバンドギャップの差が小さくなり、十分に発生しない。また、Inの組成が高すぎると結晶中の歪みが大きくなりすぎて結晶品質が悪化する。すなわち、2DEGが発生する領域での転位が多くなり、2DEGの電子の移動度が低下するなどの悪影響が生じる。そのため、バックバリア層15に含まれるInGaNの結晶中のInの組成は3%から15%の範囲とすることが好ましく、実施の形態1では、5%である。
 また、上記のバックバリア効果は、バックバリア層15におけるバッファ層14との間の界面からチャネル層16との間の界面までの層厚が薄すぎると十分に発生しない。反対に、バックバリア層15の層厚が厚すぎると結晶品質が悪化する。このように層厚についてもバックバリア効果と結晶品質のトレードオフの関係がある。そのため、バックバリア層15の層厚は1nmから2nmの範囲とすることが好ましく、実施の形態1では、層厚は1nmである。
 後述のように、バックバリア層15は、バッファ層14、チャネル層16の電子供給層17側に位置するチャネル層上層16b、電子供給層17と比較して、炉内を低温にしてInGaNの結晶をエピタキシャル成長させたものである。低温で成長させることによりバックバリア層15からInが脱離しにくくなるためである。また、この成長条件では、炉内のC(炭素)がバックバリア層15に取り込まれ、その後、脱離しにくいため、バックバリア層15にはCが含まれている。具体的に、実施の形態1では、バックバリア層15には、3×1016atoms/cmまたはそれ以上の炭素が含まれている。
 なお、炉内のCは、Gaの原料であるTMGa(Tri-Methyl Gallium、Ga(CH)から供給されるものである。
 バックバリア層15上には、チャネル層16が配置されている。チャネル層16は、キャリアが走行する層であり、GaNの組成式で表現される結晶で構成する。GaNの結晶を用いるのは、高品質な結晶を成長させることができるためである。
 ここで、チャネル層16は、バックバリア層15側のチャネル層下層16aと、電子供給層17側のチャネル層上層16bにより構成されている。チャネル層下層16aとチャネル層上層16bはエピタキシャル成長させる条件が異なる。
 チャネル層下層16aは、バックバリア層15に含まれるInまたはInと結合しているNが脱離しないように、バックバリア層15を覆うためのものである。バックバリア層15からInまたはNが脱離すると表面が荒れ、結晶品質が低下するため好ましくない。InまたはNはチャネル層下層16aを成長させている際にも脱離するため、チャネル層下層16aは、チャネル層上層16bを成長させる場合に比べ低温で成長させている。そのため、チャネル層下層16aはCを多く取り込んでおり、チャネル層上層16bよりCの濃度が高い。具体的には、実施の形態1では、チャネル層下層16aのCの濃度は、7×1016atoms/cmまたはそれ以上である。なお、成長条件によってCの濃度は変化するが、Cの濃度は、少なくとも5×1016atoms/cmまたはそれ以上である。
 ここで、チャネル層下層16aはキャリアとなる2DEGが発生する領域であるチャネル層上層16bの近傍に位置しているため、チャネル層下層16aに含まれるCが、そのアクセプタ準位に2DEGの電子をトラップしてしまい、2DEGの電子濃度が低下し、ウエハ10を備えたトランジスタの出力が一時的に低下してしまうという、過渡応答の悪化を生じさせる。このような現象は電流コラプスと呼ばれ、トランジスタの高出力化の妨げとなる。さらに、電流コラプスが生じるトランジスタは、過去に入力された電力に依存して出力が変動する性質、すなわち、メモリ効果を持っている。これは特に無線通信用途でトランジスタを用いる場合に問題となる。例えば、携帯電話基地局での通信などでは歪み補償技術を用いて通信品質を保つことが行われているが、トランジスタが電流コラプスによるメモリ効果を持っている場合、信号の歪みを十分に補償することができなくなり、通信品質の悪化や所定の帯域外への電力放出が生じてしまう。また、この影響を少なくするために出力を制限しなければならず、そうした場合には効率が悪化してしまう。このような問題を生じさせる電流コラプスの発生を抑制するために、実施の形態1のチャネル層下層16aは、成長時にSiがドープされており、Siを含んでいる。Siはn型のドーパントであり、Cが作るトラップ準位に電子を供給するため、Cによる2DEGの電子のトラップを抑制することができ、電流コラプスを抑制することができる。電流コラプスを十分に抑制するために、実施の形態1では、チャネル層下層16aに含まれるSiの濃度は、チャネル層下層16aのCの濃度より高い。具体的には、実施の形態1では、Siの濃度は、8×1016atoms/cmまたはそれ以上である。
 チャネル層下層16aは、InまたはNがバックバリア層15から脱離しないように、バックバリア層15を確実に覆う必要があり、薄くしすぎることはできない。一方で、チャネル層下層16a内を走行する電子の濃度が2DEGの電子濃度に対して無視できなくなると、トランジスタの出力が低下する。後述するように、チャネル層上層16bはアンドープのGaNの結晶を含有しているのに対して、チャネル層下層16aはSiとCとが多く含まれており、チャネル層下層16aのほうがキャリアの移動度が低く、移動度の平均値を引き下げてしまうためである。そのため、チャネル層下層16aを厚くしすぎないことが必要である。以上から、チャネル層下層16aにおけるバックバリア層15との間の界面からチャネル層上層16bとの間の界面までの層厚は1nmから20nmの範囲が好ましく、実施の形態1では、チャネル層下層16aの層厚は5nmである。
 チャネル層上層16bは、キャリアが走行するためのものであり、電子の移動度が低下しないように、アンドープのGaNの結晶を含有している。また、Cを取り込んでいると電子の移動度が低下したり電流コラプスが生じやすいため、チャネル層上層16bは、チャネル層下層16aより高温で成長させたものである。
 チャネル層上層16bと電子供給層17の間の界面付近には2DEGが発生するが、この2DEGのほとんどを移動度の高いチャネル層上層16bに存在させるために、ある程度、チャネル層上層16bを厚くしなければならない。具体的には、チャネル層上層16bにおけるチャネル層下層との間の界面から電子供給層17との間の界面までの層厚は5nm以上であることが好ましい。実施の形態1では、チャネル層上層16bの層厚は、50nmである。
 また、チャネル層下層16aとチャネル層上層16bで構成されるチャネル層16の層厚が厚すぎると、バックバリア層15が、チャネル層16の上方に設けられるゲート電極23(後述。図3参照)から離れすぎてしまい、ゲート電極23によるコントロールができず、伝導帯が低くなっているバックバリア層15を走行する電子が漏れ電流として顕著な悪影響を及ぼしてしまう。そのため、チャネル層16におけるバックバリア層との間の界面から電子供給層17との間の界面までの層厚は、100nm以下とすることが好ましい。層厚を100nm以下とすることで、バックバリア層15がゲート電極23と近くなり、ピンチオフ近傍でわずかに漏れ電流が流れたとしても、ゲート電極に係る電圧をOFFの状態としたらすぐにバックバリア層15も空乏化し、漏れ電流は抑制される。そのため、漏れ電流の影響は小さくなり、実用上問題とならなくなる。実施の形態1では、チャネル層16の層厚は55nmである。
 ここで、チャネル層16の層厚を100nm以下することが可能なのは、チャネル層下層16aにSiが含まれており、チャネル層下層16aが、2DEGが発生する領域に近くなっても電流コラプスを抑制できるからである。反対に、チャネル層下層16aにSiをドープしていない場合、チャネル層16の層厚を100nm以下とすると2DEGの電子がCにトラップされやすくなるため、電流コラプスが発生しやすくなり、層厚を薄くすることは難しい。
 以上をまとめると、チャネル層16の層厚は100nm以下、チャネル層下層16aの層厚は1nmから20nm、チャネル層上層16bの層厚は5mmから80nmであることが好ましい。
 チャネル層16のチャネル層上層16b上には、AlGaN(x+y=1、x>0、y>0)(以下、AlGaNという)の組成式で表される結晶を含有している電子供給層17が配置されている。電子供給層17は、チャネル層上層16bとの間の界面に高濃度の2DEGを発生させるためのものであり、チャネル層16が含有しているGaNの結晶よりバンドギャップが大きいAlGaNの結晶を含有している。AlGaNの結晶は、分極効果によって、電子供給層17とチャネル層16の間の界面付近に2DEGを発生させる。
 電子供給層17が含有しているAlGaNの結晶におけるAlとGaの組成比と電子供給層17の層厚は、発生させたい2DEGの濃度に応じて適宜選択すればよい。ここで、Alの含有量と電子供給層17の層厚は、いずれも大きいほど2DEGの濃度が増大するが、これらが大きいと歪みによる転位も発生しやすくなり、トレードオフの関係がある。実施の形態1では、組成はx=0.25、y=0.75であり、電子供給層17の層厚は20nmである。
 ウエハ10は以上のように構成されている。ここで、上述したとおり、ウエハ10にはCおよびSiが含まれている。チャネル層16内でのこれらの濃度について、図2を用いて説明する。図2は、縦軸がCとSiの濃度、横軸が表面からの深さを示すグラフであり、横軸の点線より左側(原点側)はチャネル層上層16bが配置された深さを示しており、右側はチャネル層下層16aが配置された深さを示している。また、Cの濃度は実線で示しており、Siの濃度は一点鎖線で示している。
 チャネル層上層16bは、チャネル層下層16aより高温で成長させているため、成長時にCが取り込まれても脱離しやすく、図2に示されるとおり、Cの濃度がチャネル層下層16aより低くなっている。反対に、チャネル層下層16aは低温で成長させているため、Cの濃度がチャネル層上層16bより高くなっている。
 また、チャネル層下層16aにはSiがドープされており、図2に示されているように、Siの濃度はCの濃度より高い。チャネル層上層16bにはSiがドープされておらず、チャネル層下層16aから拡散したSiがわずかに含まれるだけなので、図2のチャネル層上層16bの深さに対応する位置には、Siの濃度(一点鎖線)を表示していないが、チャネル層上層16bのSiの濃度は、チャネル層下層16aのSiの濃度より低い。
 次に、上述のウエハ10を備えた半導体装置20の構成について、図3を用いて説明する。半導体装置20は、具体的には、GaN-HEMT(高電子移動度トランジスタ)などに用いられる半導体素子である。
 半導体装置20は、ウエハ10、ソース電極21、ドレイン電極22、ゲート電極23を備えている。
 ウエハ10の上面、すなわち、電子供給層17の基板12側とは反対側の面には、間隔を空けてソース電極21およびドレイン電極22が配置されている。ソース電極21およびドレイン電極22は、電子供給層17側の下層がTi(Titanium)、電子供給層17とは反対側の上層がAlで構成されており、下層の厚みは20nm程度、上層の厚みは200nm程度である。ソース電極21およびドレイン電極22は電子供給層17とオーミック接触している。
 また、ソース電極21とドレイン電極22の間には、電子供給層17と接触するゲート電極23が配置されている。ゲート電極23は、電子供給層17側の下層がNi(Nickel)、電子供給層17とは反対側の上層がAuで構成されており、下層の厚みは30nm程度、上層の厚みは400nm程度である。
 なお、図3では省略しているが、半導体装置20は、さらに、ソース電極21、ドレイン電極22、ゲート電極23に配線が接続されている。また、ウエハ10の側面、すなわち、基板12から電子供給層17までが並ぶ方向と平行なウエハ10の面には、Ar(Argon)などが注入され、不活性な領域が形成されている。
 次に、上述のウエハ10の製造方法について図4のフローチャートに沿って説明する。なお、ウエハ10の各層は、有機金属気相エピタキシャル(MOCVD、Metal Organic Chemical Vapor Deosition)法によって形成される。
(配置ステップ)
 まず、ウエハ10をエピタキシャル成長させるための炉内に基板12を配置する(ステップS101)。
(核形成層形成ステップ)
 次に、炉内にTMA(Tri-Methyl Aluminum、Al(CH)ガスおよびアンモニアガスの混合ガスを導入し、基板12上にAlNの結晶を50nm成長させ、基板12上に核形成層13を形成する(ステップS102)。
(バッファ層形成ステップ)
 次に、炉内にTMGaガスとアンモニアガスの混合ガスを導入し、核形成層13上にGaNの結晶を1μm成長させ、核形成層13上にアンドープのバッファ層14を形成する(ステップS103)。この際、炉内の温度を1100℃、圧力を200mbar、混合ガスのV/III比(V/III比:炉内に供給するV族原料の供給モル流量を炉内に供給するIII族原料の供給モル流量で除算した値)を500とする。またキャリアガスとして水素ガスを用いる。
(バックバリア層形成ステップ)
 次に、炉内にTMI(Tri-Methyl Indium、In(CH)ガス、TMGaガス、およびアンモニアガスの混合ガスを導入し、バッファ層14上にInGaNの結晶を1nm成長させ、バッファ層14上にバックバリア層15を形成する(ステップS104)。この際、炉内の温度を800℃、圧力を400mbar、V/III比を50000とする。またキャリアガスとして窒素ガスを用いる。
 バックバリア層15は、核形成層13や後述のチャネル層上層16b、電子供給層17に比べ、低温、高圧、高V/III比の成長条件で成長させているが、これは、バックバリア層15内にInを取り込み、脱離させにくくするためである。
(チャネル層下層形成ステップ)
 次に、炉内にTMGaガス、モノシランガスおよびアンモニアガスの混合ガスを導入し、バックバリア層15上にSiドープのGaNの結晶を5nm成長させ、バックバリア層15上にチャネル層下層16aを形成する(ステップS105)。この際、炉内の温度を800℃、圧力を200mbar、V/III比を500とする。またキャリアガスとして水素ガスを用いる。
 チャネル層下層形成ステップで炉内温度を高温にすると、バックバリア層15表面からInまたはNが脱離し、表面荒れを起こすことがあるため、チャネル層下層は、核形成層13や後述のチャネル層上層16b、電子供給層17に比べ、低温の成長条件で成長させている。一般に、InGaNの結晶を成長させた後は、GaNなどInが含まれていない材料でInGaNの結晶を保護するまで温度を高くすることはできない。しかし、成長条件を低温にすると、GaNの結晶を成長させる際に、TMGaガスに含まれるCがチャネル層下層に多く取り込まれ脱離しにくくなる。このCはアクセプタとなり2DEGの電子をトラップしてしまうため過渡応答悪化の原因となるが、実施の形態1のチャネル層下層形成ステップでは、チャネル層下層16aにSiをドープしている。ドープするSiの濃度を、チャネル層下層16aに含まれるCの濃度より高くすることで、SiがCのトラップ準位を電子で埋めることができるため、チャネル層下層16a内でSiの濃度がCの濃度より高くなるように、混合ガス中のモノシランガスの量を調整する。
(チャネル層上層形成ステップ)
 次に、炉内にTMGaガスおよびアンモニアガスの混合ガスを導入し、チャネル層下層16a上にアンドープのGaNの結晶を50nm成長させ、チャネル層下層16a上にチャネル層上層16bを形成する(ステップS106)。この際、炉内の温度を1100℃、圧力を200mbar、V/III比を500とする。またキャリアガスとして水素ガスを用いる。
 チャネル層上層16bを形成する際には、バックバリア層15の表面はチャネル層下層16aに覆われている。そのため、チャネル層下層16aを形成する際の温度より高温の成長条件にしてもInまたはNの脱離の問題は生じにくい。また、成長条件を高温としたほうが、チャネル層上層16bにCが含まれにくくなるため、キャリアの移動度を向上させるという観点で好ましい。そのため、チャネル層上層形成ステップでは、チャネル層下層形成ステップより炉内温度を高くしている。
 ここで、チャネル層下層形成ステップとチャネル層上層形成ステップを総称して、単にチャネル層形成ステップと呼ぶ。このチャネル層形成ステップの成長時間と炉内温度の関係およびSiがドープされるタイミングについて、図5を用いて説明する。
 図5のグラフは、縦軸が炉内温度、横軸が成長時間を示しており、横軸の原点はチャネル層下層16aの成長を開始した時点を示している。また、左側の点線と原点との間はチャネル層下層形成ステップが行われている時間と対応しており、右側の点線より右側はチャネル層上層形成ステップが行われている時間と対応している。
 図5に示されているとおり、チャネル層下層16aを形成している際の炉内温度とチャネル層上層16bを形成している際の炉内の温度は異なっており、先の説明のとおり、チャネル層下層16aを形成する際の炉内の温度は、チャネル層上層16bを形成する際の炉内の温度より低い。また、チャネル層下層形成ステップではSiの原料であるモノシランを供給しているが、チャネル層下層形成ステップが終了した後は供給していない。
 また、図5に示されているように、チャネル層下層形成ステップとチャネル層上層形成ステップの間には成長を中断させる期間(左側の点線と右側の点線の間)を設けて、この間に炉内の温度を上昇させているが、この期間中もチャネル層16(中間層と呼ぶ)を成長させてもよい。この場合、炉内温度が十分に上がりきっていない状態で成長する中間層にはCが含まれており、温度が上がるにしたがって徐々にCの濃度が減少していく。そのため、チャネル層下層形成ステップで供給していたSiの原料であるモノシランの供給を継続し、モノシランの供給量を徐々に減少させていくようすることで、CをSiで補償することができる。
 図4に戻って、チャネル層上層形成ステップ(ステップS106)の次のステップである電子供給層形成ステップについて説明する。
(電子供給層形成ステップ)
 炉内にTMAガス、TMGガスおよびアンモニアガスの混合ガスを導入し、チャネル層上層16b上にAlGaNの結晶を20nm成長させ、チャネル層上層16b上に電子供給層17を形成する(ステップS107)。この際、炉内の温度を1100℃、圧力を50mbar、V/III比を1000とする。またキャリアガスとして水素ガスを用いる。
 以上のようにして、ウエハ10は製造される。
 次に、上記のようにして製造されたウエハ10から半導体装置20を製造する方法を説明する。
 まず、ウエハ10の電子供給層17上にソース電極21およびドレイン電極22を形成するためのレジストマスクを形成する。具体的には、レジストを電子供給層17上に塗布し、レジストのうち電極を形成する部分に開口を形成する。次に、蒸着法によりTiが下層、Alが上層になるように、開口内を含むレジスト上にTiを20nm、Alを200nm堆積させ、リフトオフ法によりレジストマスクおよびその上に堆積したTiとAlを除去する。その後、ウエハ10を例えば窒素雰囲気中で、600℃で熱処理し、TiおよびAlと電子供給層17とをオーミック接触させる。このようにして、ソース電極21およびドレイン電極22が形成される。
 また、ウエハ10の電子供給層17上にゲート電極23を形成するためのレジストマスクを形成する。具体的には、レジストを電子供給層17上に塗布して、フォトリソグラフィーにより加工して、レジストのうちソース電極21とドレイン電極22の間にゲート電極23を形成するための開口を形成する。次に、蒸着法によりNiが下層、Auが上層になるように、開口内を含むレジスト上にNiを30nm、Auを400nm堆積させ、リフトオフ法によりレジストマスクおよびその上に堆積したNiとAuを除去する。このようにして、ソース電極21とドレイン電極22の間にゲート電極23が形成される。
 なお、各電極への配線の接続、不活性領域の形成についても、公知の方法で行う。
 本開示の実施の形態1に係るウエハ10、半導体装置20およびウエハ10の製造方法は、以上のように構成されており、次のような効果を奏する。
 本開示の実施の形態1に係るウエハ10および半導体装置20は、Cが高濃度で存在し、2DEGが存在する領域に近いチャネル層下層16aに、n型のドーパントであるSiをドープしている。Siは、2DEGの電子がトラップされにくいように、Cのトラップ準位に電子を供給する。そのため、ウエハ10および半導体装置20は、2DEGの電子がCにトラップされてキャリア密度が低下することを抑制することができる。すなわち、電流コラプスが発生することを抑制することができる。また、電流コラプスを抑制できるため、ウエハ10および半導体装置20は、過渡応答特性の悪化を抑制でき、半導体装置20を高出力(飽和出力付近)で用いることが可能となる。
 Siは、一つの電子を供給するドナーとして機能する。また含まれるCは、一つの電子を受け取るアクセプタとして機能する。そのため、チャネル層下層16aに含まれるSiの濃度がCより低いと、すべてのCに電子を供給することができない。
 本開示の実施の形態1に係るウエハ10および半導体装置20は、チャネル層下層16aに含まれるSiの濃度がチャネル層下層16aに含まれるCの濃度より高い。そのため、すべてのCに供給する電子を準備することが可能であり、電流コラプスの発生をより確実に抑制することができる。
 本開示の実施の形態1に係るウエハ10および半導体装置20は、チャネル層下層16aにSiをドープすることで電流コラプスの発生を抑制しつつ、チャネル層の層厚を100nm以下にしてバックバリア層15とゲート電極23とを近くすることにより漏れ電流の発生を抑制している。よって、漏れ電流の発生と電流コラプスの発生をともに抑制することが可能である。
 チャネル層上層16bはキャリアである2DEGが走行する層である。チャネル層上層16bに不純物が多いとキャリアの移動度が低下するため、チャネル層上層16bの不純物の濃度は低いことが好ましい。
 本開示の実施の形態1に係るウエハ10および半導体装置20は、チャネル層上層16bをチャネル層下層16aより高温で成長させているため、チャネル層上層16bのCの濃度は、チャネル層下層のCの濃度より低い。よって、キャリアの移動度を向上させることができる。
 また、本開示の実施の形態1に係るウエハ10の製造方法は、上述のような効果を奏するウエハ10を製造することができる。
 ここで、本開示の実施の形態1に係るウエハ10、半導体装置20およびウエハ10の製造方法の変形例の説明および補足説明を行う。
 本開示の実施の形態1では、ウエハ10は、下方から順番に、基板12、核形成層13、バッファ層14、バックバリア層15、チャネル層16、および電子供給層17を備えているものとしたが、上述の効果、GaN-HEMTとしての機能を発揮できるのであれば、これらの層の間に別の層を追加してもよい。実施の形態1の説明では、例えば、基板12上に核形成層13を配置、成長させる、核形成層13上にバッファ層14を配置、成長させると表現しているが、別の層が追加される場合は、基板12上に別の層を介して核形成層13を配置、成長させる、核形成層13上に別の層を介してバッファ層14を配置、成長させると読み替えることができる。また、中間に位置する層を省略して表現することもできる。例えば、核形成層13を省略して、単に、基板12上にバッファ層を配置、成長させるとも表現できる。
 別の層を追加した例として、基板12上にSiNなどの材料を配置した後に核形成層13を成長させてもよい。また、バッファ層14と核形成層13の間にFe(Ferrum)やCをドープした高抵抗のGaNの結晶を含有する層を設けてもよい。この場合、バッファ層14と高抵抗のGaNの結晶を含有する層の層厚は適宜調整すればよい。なお、Feをドープする場合、その原料としてフェロセンを使用することができる。また、電子供給層17と各電極との間にGaNの結晶を含有するキャップ層を設けてもよい。
 実施の形態1では、基板12はSiCにより構成されていたが、SiCの代わりに、Si(Silicon)、サファイア、GaAs(Garium Arsenide)、ZnO(Zinc Oxide)によって構成してもよい。
 実施の形態1では、核形成層13はAlNの結晶を含有していたが、核形成層13の上方にAlGaInN(x+y+z=1、y>0)の組成式で表される結晶を形成することができるものであれば、AlN以外であってもよい。例えば、AlGaInN(x+y+z=1)の組成式で表されるものを含有していてもよい。また、核形成層13を組成の異なる多層で構成してもよい。この場合の各層の組成は、AlGaInN(x+y+z=1)の組成式で表されるものとすることができる。また、核形成層13の層厚は50nmとしたが、核形成層13の上部の層の結晶を高品質で成長させることができる層厚であればよい。
 実施の形態1では、バッファ層14はGaNの結晶を含有していたが、2DEGが発生する領域での転位を低減することができれば、GaN以外であってもよい。例えば、AlGaInN(x+y+z=1、y>0)の組成式で表されるものを含有していてもよい。
 実施の形態1では、バックバリア層15はInGaNの結晶を含有していたが、バックバリア効果を発生させることができれば、InGaN以外であってもよい。例えば、AlGaInN(x+y+z=1、y>0、z>0)の組成式で表現されるものを含有していてもよい。
 実施の形態1では、チャネル層16はGaNの結晶を含有していたが、2DEGを発生できれば、GaN以外であってもよい。例えば、AlGaInN(x+y+z=1、y>0)の組成式で表されるものを含有していてもよい。
 実施の形態1では、電子供給層17はAlGaNの結晶を含有していたが、チャネル層16に2DEGを発生させることができればAlGaN以外であってもよい。例えば、AlGaInN(x+y+z=1、x>0)の組成式で表現されるものを含有していてもよい。より具体的には、AlInN(x+z=1、x>0、z>0)、AlGaInN(x+y+z=1、x>0、y>0、z>0)などを用いることができる。
 実施の形態1では、バックバリア層15を成長させる際のキャリアガスとして窒素ガスを使用し、その他の層を成長させる際のキャリアガスとして水素ガスを使用したが、ほかのキャリアガスを使用してもよい。
 実施の形態1では、チャネル層下層16aに含まれるSiの濃度がチャネル層下層16aに含まれるCの濃度より高い例を説明しているが、Siの濃度がCの濃度より低くても、SiがCの一部を補償できるため、電流コラプスの発生を抑制することができる。
 実施の形態1では、ソース電極21とドレイン電極22をTiとAlで構成し、ゲート電極23をNiとAuで構成したが、これらの材料に限らず、公知の材料を用いることができる。また、電極の構造、層厚についても適宜選択すればよい。
実施の形態2.
 次に、本開示の実施の形態2について説明する。実施の形態1で説明した構成および製造方法と同様の部分については説明を省略し、実施の形態1と異なる部分について、以下に説明する。なお、実施の形態2のウエハ10、半導体装置20およびウエハ10の製造方法は、実施の形態1の変形例と組み合わせて実施することができる。
 実施の形態1では、チャネル層下層16aのGaNの結晶を成長させる際の炉内の圧力を、チャネル層上層16b同様、200mbarとしていた。これに対して、実施の形態2では、チャネル層下層16aのGaNの結晶を成長させる際の炉内の圧力を、チャネル層上層16bのGaNの結晶を成長させる際の炉内の圧力より低くする。
 実施の形態2のウエハ10および半導体装置20は、低圧で成長させたGaNの結晶を含有するチャネル層下層16aを備えている。GaNの結晶を成長させる際に低圧にすると、Cの取り込み量が多くなるため、チャネル層下層16aは、実施の形態1よりもCの濃度が高い。具体的には、Cの濃度は、1.1×1017atoms/cmまたはそれ以上である。このCの濃度に対応するようにSiも、実施の形態1より多くドープされており、Siの濃度も実施の形態より高い。具体的には、1.2×1017atoms/cmまたはそれ以上である。
 実施の形態2のウエハ10の製造方法におけるチャネル層下層形成ステップでは、炉内の温度を800℃、圧力を50mbar、V/III比を500として、GaNの結晶を成長させる。すなわち、チャネル層下層形成ステップでは、チャネル層下層16aを形成する際の炉内の圧力を、チャネル層上層16bを形成する際の炉内の圧力より低くする。なお、チャネル層上層16bを形成する際の炉内の圧力は200mbarである。
 ここで、図6を用いて、チャネル層16を成長させる際に、炉内の温度、圧力をどのように変化させるか説明する。図6のグラフは、縦軸が炉内温度および圧力を示しており、横軸が成長時間を示しており、横軸の原点はチャネル層下層16aの成長を開始した時点を示している。また、左側の点線と原点との間はチャネル層下層形成ステップが行われている時間と対応しており、右側の点線より右側はチャネル層上層形成ステップが行われている時間と対応している。
 図6に示されているとおり、チャネル層下層16aを形成している際の炉内の温度および圧力とチャネル層上層16bを形成している際の炉内の温度および圧力は異なっており、先の説明のとおり、チャネル層下層16aを形成する際の温度および圧力は、チャネル層上層16bを形成する際の温度および圧力より低い。
 また、図6に示されているように、チャネル層下層形成ステップとチャネル層上層形成ステップの間には成長を中断させる期間(左側の点線と右側の点線の間)を設けて、この間に炉内の温度および圧力を上昇させているが、実施の形態1同様、この期間中もチャネル層16(中間層と呼ぶ)を成長させてもよい。この場合、チャネル層下層形成ステップで供給していたSiの原料であるモノシランの供給を継続し、モノシランの供給量を徐々に減少させていくようすることで、CをSiで補償することができる。
 本開示の実施の形態2に係るウエハ10、半導体装置20およびウエハ10の製造方法は、以上のように構成されており、次のような効果を奏する。
 一般に、低温でGaNの結晶を成長させると、Cを多く取り込んでしまうという問題とともに、Gaの表面マイグレーション長が短くなり、チャネル層下層16aの平坦性が悪化するという問題がある。チャネル層下層16aで平坦性が悪化すると、チャネル層上層16bは数十nm程度の層厚しかないのため平坦性を十分に回復させることができない。その結果、チャネル層上層16bと電子供給層17の間の界面の平坦性が悪化し、2DEGの移動度が低下してしまう。
 本開示の実施の形態2のウエハ10の製造方法は、チャネル層下層形成ステップで、GaNの結晶をチャネル層上層形成ステップより低圧で成長させている。GaNの結晶を成長させる際に低圧にすると、Cの取り込み量が多くなるが、チャネル層下層16aにSiをドープしており、電流コラプスの発生を抑制できる。また、チャネル層下層形成ステップで圧力を低くすることで、Gaの表面マイグレーション長を長くすることができ、平坦性悪化を抑制することができる。よって、実施の形態2では、電流コラプス発生と平坦性の悪化(移動度の低下)とをともに抑制することができる。
 また、本開示の実施の形態2のウエハ10および半導体装置20は、上記のように製造されているため、電流コラプスの発生を抑制するとともに、平坦性が高く、2DEGの移動度が低下して、半導体装置20の出力が低下してしまうことを抑制することができる。
実施の形態3.
 次に、本開示の実施の形態3について説明する。実施の形態1で説明した構成および製造方法と同様の部分については説明を省略し、実施の形態1と異なる部分について、以下に説明する。なお、実施の形態3のウエハ10、半導体装置20およびウエハ10の製造方法は、実施の形態1の変形例または実施の形態2と組み合わせて実施することができる。
 実施の形態1では、チャネル層下層16aのGaNの結晶を成長させる際の炉内のV/III比を、チャネル層上層16b同様、500としていた。これに対して、実施の形態3では、チャネル層下層16aのGaNの結晶を成長させる際の炉内のV/III比を、チャネル層上層16bのGaNの結晶を成長させる際の炉内のV/III比より低くする。
 実施の形態3のウエハ10および半導体装置20は、低いV/III比で成長させたGaNの結晶を含有するチャネル層下層16aを備えている。GaNの結晶を成長させる際にV/III比を低くすると、Cの取り込み量が多くなるため、チャネル層下層16aは、実施の形態1よりもCの濃度が高い。具体的には、Cの濃度は、1.1×1017atoms/cmまたはそれ以上である。このCの濃度に対応するようにSiも、実施の形態1より多くドープされており、Siの濃度も実施の形態1より高い。具体的には、1.2×1017atoms/cmまたはそれ以上である。
 実施の形態3のウエハ10の製造方法におけるチャネル層下層形成ステップでは、炉内の温度を800℃、圧力を200mbar、V/III比を200として、GaNを成長させる。すなわち、チャネル層下層形成ステップでは、チャネル層下層16aを形成する際の炉内のV/III比を、チャネル層上層16bを形成する際の炉内のV/III比より低くする。なお、チャネル層上層16bを形成する際の炉内のV/III比は500である。
 ここで、図7を用いて、チャネル層16を成長させる際に、炉内の温度、V/III比をどのように変化させるか説明する。図7のグラフは、縦軸が炉内の温度およびV/III比を示しており、横軸が成長時間を示しており、横軸の原点はチャネル層下層16aの成長を開始した時点を示している。また、左側の点線と原点との間はチャネル層下層形成ステップが行われている時間と対応しており、右側の点線より右側はチャネル層上層形成ステップが行われている時間と対応している。
 図7に示されているとおり、チャネル層下層16aを形成している際の炉内の温度およびV/III比とチャネル層上層16bを形成している際の炉内の温度およびV/III比は異なっており、先の説明のとおり、チャネル層下層16aを形成する際の温度およびV/III比は、チャネル層上層16bを形成する際の温度およびV/III比より低い。
 また、図7に示されているように、チャネル層下層形成ステップとチャネル層上層形成ステップの間には成長を中断させる期間(左側の点線と右側の点線の間)を設けて、この間に炉内の温度を上昇させている。また、この期間ではGaNの結晶を成長させないため原料を供給していない。そのため、V/III比は定義できないため示していない。実施の形態3においても、実施の形態1同様、この成長を中断させる期間中もチャネル層16(中間層と呼ぶ)を成長させてもよい。この場合、V/III比を徐々に増加させるとともに、チャネル層下層形成ステップで供給していたSiの原料であるモノシランの供給を継続し、モノシランの供給量を徐々に減少させていくようすることで、CをSiで補償することができる。
 本開示の実施の形態3に係るウエハ10、半導体装置20およびウエハ10の製造方法は、以上のように構成されており、次のような効果を奏する。
 実施の形態2で記載したとおり、低温でGaNの結晶を成長させると、Cの取り込み量が多くなるとともに、Gaの表面マイグレーション長が短くなり、平坦性が悪化し、2DEGの移動度が低下するという問題がある。
 本開示の実施の形態3のウエハ10の製造方法は、チャネル層下層形成ステップで、GaNの結晶をチャネル層上層形成ステップより低いV/III比で成長させている。GaNの結晶を成長させる際にV/III比を低くすると、Cの取り込み量が多くなるが、チャネル層下層16aにSiをドープしており、電流コラプスの発生を抑制できる。また、V/III比を低くすることで、Gaの表面マイグレーション長を長くすることができ、平坦性悪化を抑制することができる。よって、実施の形態3では、電流コラプス発生と平坦性の悪化(移動度の低下)とをともに抑制することができる。
 また、本開示の実施の形態3のウエハ10および半導体装置20は、上記のように製造されているため、電流コラプスの発生を抑制するとともに、平坦性が高く、2DEGの移動度が低下して、半導体装置20の出力が低下してしまうことを抑制することができる。
 上述のように、実施の形態3の製造方法では、チャネル層下層形成ステップを実施の形態1の圧力同様、高圧で実施していたが、実施の形態2同様、低圧で実施してもよい。
実施の形態4.
 次に、本開示の実施の形態4について説明する。実施の形態1で説明した構成および製造方法と同様の部分については説明を省略し、実施の形態1と異なる部分について、以下に説明する。なお、実施の形態4のウエハ10、半導体装置20およびウエハ10の製造方法は、実施の形態1の変形例、実施の形態2または実施の形態3と組み合わせて実施することができる。
 実施の形態4では、チャネル層下層16aだけでなく、バックバリア層15にもSiをドープする。
 実施の形態3のウエハ10および半導体装置20は、Siを含むバックバリア層15を備えている。バックバリア層15もチャネル層下層16a同様、低温で形成され、層内にCが取り込まれ脱離しにくいため、Cを含んでいる。そして、バックバリア層15に含まれるSiの濃度は、バックバリア層15のCの濃度より高い。具体的には、Cの濃度は、5×1016atoms/cmまたはそれ以上であり、Siの濃度は、6×1016atoms/cmまたはそれ以上である。
 実施の形態3のウエハ10の製造方法は、実施の形態1とは異なり、バックバリア層形成ステップにおいて、炉内にTMI(Tri-Methyl Indium、In(CH)ガス、TMGaガス、およびアンモニアガスにモノシランを加えた混合ガスを導入し、バッファ層14上にバックバリア層15を構成するInGaNの結晶を1nm成長させ、バッファ層14上にSiがドープされたバックバリア層15を形成する。
 ここで、図8を用いて、バックバリア層15およびチャネル層16のCの濃度およびSiの濃度について説明する。図8のグラフは、縦軸が濃度を示しており、横軸が表面からの深さを示している。原点から左側の点線までがチャネル層上層16bに対応する深さ、左側の点線から右側の点線までがチャネル層下層16aに対応する深さ、右側の点線より右側がバックバリア層15に対応する深さである。Cの濃度は実線で示しており、Siの濃度は一点鎖線で示している。
 図8に示されているとおり、低温でGaN、InGaNの結晶を成長させているチャネル層下層16aおよびバックバリア層15は、Cを多く取り込んでおり、Cの濃度がチャネル層上層16bより高くなっている。また、バックバリア層15は、チャネル層下層16aより高圧、高V/III比で形成されているため、Cの濃度がチャネル層下層16aより低くなっている。Siの濃度は、チャネル層下層16aとバックバリア層15のそれぞれのCの濃度より高い。なお、図8では、チャネル層下層16aのCおよびSiの濃度がバックバリア層15のCおよびSiの濃度よりもそれぞれ高くなっているが、バックバリア層15のCおよびSiの濃度が高くなっていてもよい。
 本開示の実施の形態4に係るウエハ10、半導体装置20およびウエハ10の製造方法は、以上のように構成されており、次のような効果を奏する。
 バックバリア層15は、低温で形成されているため、Cの濃度が高くなっている。そのため、2DEGの電子をCがトラップしてしまい、電流コラプスが発生する可能性がある。また、電流コラプスが発生すると、過渡応答特性が悪化する。
 本開示の実施の形態4のウエハ10および半導体装置20は、バックバリア層15にもSiが含まれているため、SiがCを補償して、バックバリア層15のCに起因する電流コラプスの発生、過渡応答特性の悪化を抑制することができる。また、チャネル層下層16aにSiをドープした実施の形態1の場合より確実に電流コラプスの発生、過渡応答特性の悪化を抑制することができる。
 ここで、バックバリア層15の成長条件は、低温、高圧、高V/III比であるため、平坦性を悪化させる条件となっているが、Inがサーファクタント効果を持ち、Gaの表面マイグレーション長を長くすることができるため、顕著に平坦性が悪化することはないが、実施の形態2または実施の形態3と組み合わせて、低圧、低V/III比でバックバリア層15を形成することで、平坦性をより一層改善することができる。
 なお、実施の形態4では、バックバリア層15に含まれるSiの濃度がバックバリア層15に含まれるCの濃度より高い例を説明しているが、Siの濃度がCの濃度より低くても、SiがCの一部を補償できるため、電流コラプスの発生を抑制することができる。
 本開示のエピタキシャルウエハ、半導体装置およびエピタキシャルウエハの製造方法は、高電子移動度トランジスタとして、または高電子移動度トランジスタを製造する際に利用することができる。
10 エピタキシャルウエハ(ウエハ)、12 基板、13 核形成層、14 バッファ層、15 バックバリア層、16a チャネル層下層、16b チャネル層上層、17 電子供給層、20 半導体装置、21 ソース電極、22 ドレイン電極、23 ゲート電極

Claims (12)

  1.  基板と、
     AlGaInN(x+y+z=1、y>0)の組成式で表される結晶を含有し、前記基板上に設けられたバッファ層と、
     AlGaInN(x+y+z=1、y>0、z>0)の組成式で表される結晶を含有し、前記バッファ層上に設けられたバックバリア層と、
     AlGaInN(x+y+z=1、y>0)の組成式で表される結晶を含有し、前記バックバリア層上に設けられたチャネル層と、
     AlGaInN(x+y+z=1、x>0)の組成式で表される結晶を含有し、前記チャネル層上に設けられた電子供給層と、
     を備え、
     前記チャネル層は、前記電子供給層側のチャネル層上層と前記バックバリア層側のチャネル層下層により構成されており、
     前記チャネル層下層は、前記チャネル層上層よりCの濃度が高く、
     前記チャネル層下層は、Siを含む
     ことを特徴とするエピタキシャルウエハ。
  2.  前記チャネル層下層のSiの濃度は、前記チャネル層下層のCの濃度より高い
     ことを特徴とする請求項1に記載のエピタキシャルウエハ。
  3.  前記バックバリア層は、Siを含む
     ことを特徴とする請求項1または請求項2に記載のエピタキシャルウエハ。
  4.  前記バックバリア層はCを含んでおり、
     前記バックバリア層のSiの濃度は、前記バックバリア層のCの濃度より高い
     ことを特徴とする請求項3に記載のエピタキシャルウエハ。
  5.  前記チャネル層における前記バックバリア層との間の界面から前記電子供給層との間の界面までの層厚は、100nm以下である
     ことを特徴とする請求項1から請求項4のいずれか一項に記載のエピタキシャルウエハ。
  6.  前記バッファ層は、GaNの組成式で表される結晶を含有し、
     前記バックバリア層は、GaInN(y+z=1、y>0、z>0)の組成式で表される結晶を含有し、
     前記チャネル層は、GaNの組成式で表される結晶を含有している
     
     ことを特徴とする請求項1から請求項5のいずれか一項に記載のエピタキシャルウエハ。
  7.  請求項1から請求項6のいずれか一項に記載のエピタキシャルウエハと、
     前記エピタキシャルウエハの前記電子供給層上に間隔を空けて配置されたソース電極およびドレイン電極と、
     前記電子供給層上における前記ソース電極と前記ドレイン電極の間に配置されたゲート電極と、
     を備えた半導体装置。
  8.  基板を炉内に配置する配置ステップと、
     前記基板上に、AlGaInN(x+y+z=1、y>0)の組成式で表される結晶を含有するバッファ層を形成するバッファ層形成ステップと、
     前記バッファ層上に、AlGaInN(x+y+z=1、y>0、z>0)の組成式で表される結晶を含有するバックバリア層を形成するバックバリア層形成ステップと、
     前記バックバリア層上に、AlGaInN(x+y+z=1、y>0)の組成式で表される結晶を含有するチャネル層を成長させるチャネル層形成ステップと、
     前記チャネル層上に、AlGaInN(x+y+z=1、x>0)の組成式で表される結晶を含有する電子供給層を成長させる電子供給層形成ステップと、
     を備え、
     前記チャネル層形成ステップでは、前記チャネル層のうち前記バックバリア層側のチャネル層下層を形成する際の前記炉内の温度を、前記チャネル層のうち前記電子供給層側のチャネル層上層を形成する際の温度より低くし、
     前記チャネル層形成ステップでは、前記チャネル層下層を形成する際に前記チャネル層下層にSiをドープする
     ことを特徴とするエピタキシャルウエハの製造方法。
  9.  前記チャネル層形成ステップでは、前記チャネル層下層を形成する際の前記炉内の圧力を、前記チャネル層上層を形成する際の前記炉内の圧力より低くする
     ことを特徴とする請求項8に記載のエピタキシャルウエハの製造方法。
  10.  前記チャネル層形成ステップでは、前記チャネル層下層を形成する際に前記炉内に供給するV族原料の供給モル流量を前記炉内に供給するIII族原料の供給モル流量で除算した値であるV/III比は、前記チャネル層上層を形成する際のV/III比よりも低い
     ことを特徴とする請求項8または請求項9に記載のエピタキシャルウエハの製造方法。
  11.  前記バックバリア層形成ステップでは、前記バックバリア層を形成する際に前記バックバリア層にSiをドープする
     ことを特徴とする請求項8から請求項10のいずれか一項に記載のエピタキシャルウエハの製造方法。
  12.  前記バッファ層は、GaNの組成式で表される結晶を含有し、
     前記バックバリア層は、GaInN(y+z=1、y>0、z>0)の組成式で表される結晶を含有し、
     前記チャネル層は、GaNの組成式で表される結晶を含有し、
     前記電子供給層は、AlGaN(x+y=1、x>0、y>0)の組成式で表される結晶を含有している
     ことを特徴とする請求項8から請求項11のいずれか一項に記載のエピタキシャルウエハの製造方法。
PCT/JP2020/005999 2020-02-17 2020-02-17 エピタキシャルウエハ、半導体装置およびエピタキシャルウエハの製造方法 WO2021166024A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020538875A JP6765589B1 (ja) 2020-02-17 2020-02-17 エピタキシャルウエハ、半導体装置およびエピタキシャルウエハの製造方法
PCT/JP2020/005999 WO2021166024A1 (ja) 2020-02-17 2020-02-17 エピタキシャルウエハ、半導体装置およびエピタキシャルウエハの製造方法
CN202080096401.5A CN115088058A (zh) 2020-02-17 2020-02-17 外延晶片、半导体装置以及外延晶片的制造方法
DE112020006762.9T DE112020006762T5 (de) 2020-02-17 2020-02-17 Epitaktischer wafer, halbleitervorrichtung und verfahren zum herstellen eines epitaktischen wafers
US17/758,180 US20230054861A1 (en) 2020-02-17 2020-02-17 Epitaxial wafer, semiconductor device, and method for manufacturing epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005999 WO2021166024A1 (ja) 2020-02-17 2020-02-17 エピタキシャルウエハ、半導体装置およびエピタキシャルウエハの製造方法

Publications (1)

Publication Number Publication Date
WO2021166024A1 true WO2021166024A1 (ja) 2021-08-26

Family

ID=72706607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005999 WO2021166024A1 (ja) 2020-02-17 2020-02-17 エピタキシャルウエハ、半導体装置およびエピタキシャルウエハの製造方法

Country Status (5)

Country Link
US (1) US20230054861A1 (ja)
JP (1) JP6765589B1 (ja)
CN (1) CN115088058A (ja)
DE (1) DE112020006762T5 (ja)
WO (1) WO2021166024A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040766A (ja) * 2008-12-15 2011-02-24 Dowa Electronics Materials Co Ltd 電子デバイス用エピタキシャル基板およびその製造方法
JP2011233612A (ja) * 2010-04-26 2011-11-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2015177152A (ja) * 2014-03-18 2015-10-05 株式会社サイオクス 窒化物半導体積層物および半導体装置
JP2019021704A (ja) * 2017-07-13 2019-02-07 富士通株式会社 化合物半導体装置及びその製造方法
JP2019134153A (ja) * 2018-01-30 2019-08-08 株式会社東芝 窒化物半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030428B2 (en) * 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040766A (ja) * 2008-12-15 2011-02-24 Dowa Electronics Materials Co Ltd 電子デバイス用エピタキシャル基板およびその製造方法
JP2011233612A (ja) * 2010-04-26 2011-11-17 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2015177152A (ja) * 2014-03-18 2015-10-05 株式会社サイオクス 窒化物半導体積層物および半導体装置
JP2019021704A (ja) * 2017-07-13 2019-02-07 富士通株式会社 化合物半導体装置及びその製造方法
JP2019134153A (ja) * 2018-01-30 2019-08-08 株式会社東芝 窒化物半導体装置

Also Published As

Publication number Publication date
JP6765589B1 (ja) 2020-10-07
US20230054861A1 (en) 2023-02-23
DE112020006762T5 (de) 2023-01-12
CN115088058A (zh) 2022-09-20
JPWO2021166024A1 (ja) 2021-08-26

Similar Documents

Publication Publication Date Title
JP3836697B2 (ja) 半導体素子
JP6318474B2 (ja) 半導体装置の製造方法
US9548376B2 (en) Method of manufacturing a semiconductor device including a barrier structure
JP2817995B2 (ja) ▲iii▼―▲v▼族化合物半導体ヘテロ構造基板および▲iii▼―▲v▼族化合物ヘテロ構造半導体装置
JP4577460B2 (ja) 半導体素子およびその製造方法
US9419125B1 (en) Doped barrier layers in epitaxial group III nitrides
JP2005167275A (ja) 半導体素子
US8872231B2 (en) Semiconductor wafer, method of producing semiconductor wafer, and electronic device
JP2007165431A (ja) 電界効果型トランジスタおよびその製造方法
US11444172B2 (en) Method for producing semiconductor device and semiconductor device
JP6392498B2 (ja) 化合物半導体装置及びその製造方法
JP2006261179A (ja) 半導体ウェハー及びその製造方法
US9401402B2 (en) Nitride semiconductor device and nitride semiconductor substrate
JP4468744B2 (ja) 窒化物半導体薄膜の作製方法
JP2017168627A (ja) 高電子移動度トランジスタ及び高電子移動度トランジスタの製造方法
US10505013B2 (en) Process of forming epitaxial substrate having N-polar gallium nitride
JP4429459B2 (ja) 高抵抗GaN結晶層の製造方法
JP5746927B2 (ja) 半導体基板、半導体デバイスおよび半導体基板の製造方法
CN110047924B (zh) 利用GaN基窄阱多量子阱结构的高阻缓冲层及制备方法
JP2014090065A (ja) 窒化物系半導体エピタキシャルウエハ及び窒化物系電界効果型トランジスタ
WO2021166024A1 (ja) エピタキシャルウエハ、半導体装置およびエピタキシャルウエハの製造方法
JP6917798B2 (ja) 窒化物半導体エピタキシャル基板および半導体装置
JP3987360B2 (ja) エピタキシャル基板、電子デバイス用エピタキシャル基板、及び電子デバイス
JP2013062442A (ja) 窒化物半導体電子デバイス、窒化物半導体電子デバイスを作製する方法
WO2019069364A1 (ja) 窒化物系電界効果トランジスタ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020538875

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920499

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20920499

Country of ref document: EP

Kind code of ref document: A1