WO2021164359A1 - 一种显示面板和电子设备 - Google Patents

一种显示面板和电子设备 Download PDF

Info

Publication number
WO2021164359A1
WO2021164359A1 PCT/CN2020/131136 CN2020131136W WO2021164359A1 WO 2021164359 A1 WO2021164359 A1 WO 2021164359A1 CN 2020131136 W CN2020131136 W CN 2020131136W WO 2021164359 A1 WO2021164359 A1 WO 2021164359A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
area
touch electrode
line segment
jump
Prior art date
Application number
PCT/CN2020/131136
Other languages
English (en)
French (fr)
Inventor
郭大维
张君勇
迟世鹏
欧阳祥睿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/801,194 priority Critical patent/US11907468B2/en
Priority to EP20920049.2A priority patent/EP4099139A4/en
Publication of WO2021164359A1 publication Critical patent/WO2021164359A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • This application relates to the field of display technology, and more specifically to a display panel and an electronic device.
  • display devices such as liquid crystal displays and organic light-emitting displays continue to emerge, becoming mainstream products in the display industry nowadays, and are in the midst of rapid development and change.
  • consumers' requirements for displays are also Daily belt enhancements, such as ultra-high resolution display, touch display, and full-screen display, have become a hot and important topic in the display field.
  • solutions for implementing the touch function include self-capacitive touch and mutual-capacitive touch.
  • the total number of channel traces in the self-capacitive touch solution is about 7 times that of the mutual-capacitive touch solution. Therefore, the traditional self-capacitive touch solution will significantly increase the frame width of the display panel, and cannot adapt to the current narrow frame design concept. Therefore, a display panel and an electronic device using a self-capacitive touch solution are provided, and the channel wiring is designed to reduce the space occupied by the channel wiring in the non-display area.
  • the narrowing of the frame is a technical problem to be solved urgently.
  • the present application provides a display panel and an electronic device to solve the technical problem of narrowing the frame.
  • an embodiment of the present application provides a display panel including: a display area and a non-display area surrounding the display area;
  • the display area includes a touch electrode array composed of multiple touch electrodes and multiple touch signal lines, one touch electrode is electrically connected to at least one touch signal line;
  • the non-display area includes at least two fan-out wiring areas, at least two A fan-out wiring area is arranged along the first boundary between the non-display area and the display area, and each fan-out wiring area includes a plurality of touch leads, and the touch leads are electrically connected to the touch signal lines in a one-to-one correspondence ;
  • Each fan-out wiring area includes a fan-shaped area and a straight area, the fan-shaped area is located between the first boundary and the straight area;
  • each touch lead includes a first sub-lead and a second sub-lead connected to each other, the first sub-lead The lead is located in the fan-shaped area, and the second sub-lead is located in the straight area; among them,
  • the distance between two adjacent second sub-leads located in different straight areas is the first distance, and the distance between two adjacent second sub-leads located in the same straight area is the second distance. The distance is greater than the second distance.
  • the touch electrode array includes a plurality of touch electrode rows and a plurality of touch electrode columns, wherein each touch electrode row includes a plurality of touch electrodes, and each touch electrode column includes a plurality of touch electrodes;
  • the center axis of the display area is perpendicular to the first boundary; at least part of the multiple touch signal lines are jump touch signal lines, the shape of the jump touch signal line is a broken line, and the jump touch signal line includes a start point and an end point , The start point is electrically connected to a touch electrode, and the end point intersects the first boundary;
  • the distance between the start point and the central axis is the third distance, and the distance between the end point and the central axis is the fourth distance, and the third distance is greater than the fourth distance.
  • the plurality of touch electrode columns includes two edge touch electrode columns located at the edge of the touch electrode array; the touch signal line electrically connected to at least part of the touch electrodes in the at least one edge touch electrode column is a jump Touch signal line.
  • the corner of the display area close to the fan-out wiring area is an arc-shaped corner.
  • the plurality of touch electrode columns further includes non-edge touch electrode columns, and the non-edge touch electrode columns are located between the two edge touch electrode columns; and at least part of the non-edge touch electrode columns touches
  • the touch signal line electrically connected to the electrode is a jump touch signal line.
  • the touch electrode electrically connected to the start point and the touch electrode adjacent to the end point are located in different touch electrode columns.
  • the jump touch signal line includes at least a first line segment, and the first line segment is not parallel to the central axis.
  • the first line segment is parallel to the first boundary, and the third distance is positively correlated with the distance of the first line segment from the first boundary.
  • the touch electrode array includes a first touch electrode row, a second touch electrode row, a third touch electrode row to an Nth touch electrode row arranged in sequence, and N is a positive integer, where the 1
  • the touch electrode row is parallel to the central axis, and the distance from the central axis is greater than the distance between any one of the second to Nth touch electrode rows and the central axis;
  • the touch signal lines electrically connected to the control electrodes are all jump touch signal lines, and the touch signal lines electrically connected to the plurality of touch electrodes in the n+1th touch electrode column are all jump touch signal lines, and The end point of the jump touch signal line is adjacent to the n+2th touch electrode column, where n is an odd number, and n ⁇ N.
  • first touch electrode row and the second touch electrode row of the plurality of touch electrode rows are adjacent to each other, and the first touch electrode row is adjacent to the first boundary, and the first touch electrode row is adjacent to the nth touch electrode row.
  • the first line segment in the jump touch signal line electrically connected to the plurality of touch electrodes of the control electrode column overlaps with the second touch electrode row;
  • the first line segment in the jump touch signal line to which the electrodes are respectively electrically connected overlaps the first touch electrode row.
  • the jump touch signal line further includes a second line segment and a third line segment parallel to the central axis.
  • the two ends of the first line segment are respectively connected to one end of the second line segment and one end of the third line segment.
  • the other end is the start point, and the other end of the third line segment is the end point; or,
  • the jump touch signal line also includes a fourth line segment parallel to the central axis, one end of the first line segment is the starting point, the other end of the first line segment is electrically connected to one end of the fourth line segment, and the other end of the fourth line segment is the end point .
  • the display panel further includes a substrate layer and a metal wiring layer located on the substrate layer, and the metal wiring layer includes a first metal wiring layer and a second metal wiring layer;
  • At least part of the multiple touch signal lines includes a resistance-reducing line segment.
  • the resistance-reducing line segment includes a first sub-line segment and a second sub-line segment connected in parallel.
  • the first sub-line segment and the second sub-line segment are located on the first metal wiring layer and the Two metal wiring layer.
  • the display panel further includes a thin film transistor array layer, a display layer, an encapsulation layer, and a touch electrode layer arranged in sequence on the substrate layer.
  • the touch electrode array is located on the touch electrode layer, and the metal wiring The layer is located on the side of the touch electrode layer away from the encapsulation layer.
  • a shielded signal line adjacent to the touch lead is provided outside each fan-out wiring area.
  • the non-display area further includes a bending area, the bending axis of the bending area is parallel to the first boundary, and the second sub-lead penetrates the bending area in a direction perpendicular to the first boundary.
  • an embodiment of the present application further provides an electronic device, including the display panel provided by any embodiment of the present application.
  • the embodiment of the present application divides the touch leads into at least two fan-out wiring areas for wiring, which can reduce the number of touch leads arranged in each fan-shaped area.
  • the touch leads are densely arranged in each fan-out wiring area to ensure that any two adjacent touch leads are insulated from each other, and meet the minimum process spacing to ensure that the middle of all touch leads in a fan-out wiring area
  • the width occupied by the fan-shaped area can be reduced, which is conducive to narrowing the frame.
  • Figure 1 is a schematic diagram of a display panel in the related art
  • FIG. 2 is a schematic diagram of an optional implementation manner of a display panel provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram 1 of the principle of an embodiment of the application.
  • FIG. 4 is a schematic diagram 2 of the principle of an embodiment of this application.
  • FIG. 5 is a schematic diagram of another alternative implementation manner of the display panel provided by an embodiment of the application.
  • Fig. 6 is an enlarged schematic diagram of the position of area 77 in Fig. 2;
  • FIG. 7 is a schematic cross-sectional view at the position of the tangent line 333 in FIG. 6;
  • FIG. 8 is another schematic cross-sectional view at the position of the tangent line 333 in FIG. 6;
  • FIG. 9 is a schematic partial top view of another alternative implementation of a display panel provided by an embodiment of the application.
  • FIG. 10 is a partial schematic diagram of another optional implementation manner of a display panel provided by an embodiment of the application.
  • FIG. 11 is a simplified schematic diagram when the bending area in FIG. 10 is in a bent state
  • FIG. 12 is a partial schematic diagram of another optional implementation manner of a display panel provided by an embodiment of this application.
  • FIG. 13 is a partial schematic diagram of another optional implementation manner of a display panel provided by an embodiment of this application.
  • FIG. 14 is a simplified schematic diagram of another optional implementation manner of a display panel provided by an embodiment of the application.
  • 15 is a partial schematic diagram of another optional implementation manner of a display panel provided by an embodiment of this application.
  • FIG. 16 is a partial schematic diagram of another optional implementation manner of a display panel provided by an embodiment of the application.
  • FIG. 17 is a partial schematic diagram of another optional implementation manner of a display panel provided by an embodiment of the application.
  • FIG. 18 is a partial schematic diagram of a display panel provided by an embodiment of the application.
  • FIG. 19 is a schematic cross-sectional view of an alternative embodiment at the position of the tangent line 444 in FIG. 18;
  • FIG. 20 is a schematic cross-sectional view of an alternative embodiment at the position of the tangent line 555 in FIG. 18;
  • FIG. 21 is a schematic diagram of an electronic device provided by an embodiment of the application.
  • FIG. 1 is a partial schematic diagram of a display panel in the related art.
  • the display area 1 of the display panel includes multiple touch signal lines 11 and multiple touch electrodes 13. Zone 2.
  • the touch signal lines 11 are respectively connected to the touch leads 12 in the non-display area 2.
  • All the touch leads 12 in the non-display area 2 constitute a fan-out wiring area.
  • the fan-out wiring area includes a fan-shaped area 31 and a straight-line area 32. After the touch leads 12 are drawn from the edge of the display area 1, they converge in the straight area 32 into a bunch of lines extending in the direction e.
  • the touch lead 12 includes a first sub-lead 121 located in the fan-shaped area 31 and a second sub-lead 122 located in the straight area 32.
  • the touch leads 12 are densely arranged.
  • the fan-shaped area 31 needs to occupy a certain width d in the width direction e of the non-display area.
  • the larger width d limits the narrowing of the frame of the display panel.
  • FIG. 2 is a schematic diagram of an optional implementation manner of a display panel provided by an embodiment of the application.
  • the display panel includes: a display area 1 and a non-display area 2 surrounding the display area 1.
  • the display area 1 includes a touch electrode array composed of a plurality of touch electrodes 13 and a plurality of touch signal lines 11.
  • One touch electrode 13 is electrically connected to at least one touch signal line 11;
  • the non-display area 2 includes at least two fan-out wiring areas, and the at least two fan-out wiring areas are along the first line between the non-display area 2 and the display area 1.
  • Border 10 is arranged.
  • Each fan-out routing area may be close to the first boundary 10, or may be at a certain distance from the first boundary 10, which can be specifically designed according to requirements.
  • Each fan-out wiring area includes multiple touch leads 12.
  • the fan-out wiring area is only an area occupied by densely arranged multiple touch leads.
  • the touch leads 12 are electrically connected to the touch signal lines 11 in a one-to-one correspondence.
  • the number of touch leads 12 in each fan-out wiring area may be the same or different.
  • only the non-display area includes two fan-out wiring areas for illustration.
  • the non-display area 2 in all the embodiments of the present invention may not surround the display area 1.
  • the non-display area 2 is only on one side of the display area 1, or only on opposite sides of the display area 1.
  • the non-display area on either side of the display area 1 may include at least two fan-out wiring areas in the embodiment of the present invention.
  • Each fan-out routing area includes a fan-shaped area 31 and a straight-line area 32.
  • the fan-shaped area 31 is located between the first boundary 10 and the straight-line area 32; the width of the fan-shaped area 31 in the direction e is d1.
  • Each touch lead 12 includes a first sub-lead 121 and a second sub-lead 122 connected to each other. The first sub-lead 121 is located in the fan-shaped area 31 and the second sub-lead 122 is located in the straight area 32.
  • the sector area 31 defined in the present application is an area occupied by a plurality of densely arranged first sub-leads 121, and a linear area is an area occupied by a plurality of densely arranged second sub-leads 122 along the same direction.
  • the two ends of the first sub-lead 121 are respectively connected to the touch signal line 11 and the second sub-lead 122, and the second sub-lead 122 is connected to the pin (not shown in the figure) of the driving chip, so as to achieve In the touch detection stage, the touch signal line 11 transmits a signal between the touch lead 12 and the driving chip.
  • Each touch electrode in the touch electrode array forms a capacitance with the ground.
  • the capacitance of the finger will be superimposed on the capacitance formed by the touch electrode, so that the capacitance of the touch electrode to the ground changes.
  • the position of the touch electrode with the change in capacitance is used to determine the touch position of the finger, so as to realize the touch function.
  • the distance between two adjacent second sub-leads 122 located in different straight areas 32 is the first distance H1, and the distance between two adjacent second sub-leads 122 located in the same straight area 32 is the first distance H1.
  • the second distance H2 the first distance H1 is greater than the second distance H2. It can also be seen from the schematic diagram in FIG. 2 that the first distance H1 is significantly greater than the second distance H2.
  • the touch lead 12 electrically connected to the touch signal line 11 is led out from the first boundary 10, it is divided into at least two fan-out wiring areas in the non-display area 2 for wiring.
  • the multiple touch leads outside the wiring area gradually converge and converge into a bunch of wires.
  • the touch leads are usually made by etching process.
  • the separation distance between two adjacent touch leads is greater than or equal to the smallest process spacing. If the spacing distance is less than the minimum process spacing, there may be poor etching during the etching process, resulting in a short circuit between two adjacent touch leads.
  • the minimum process pitch is related to the material used in the touch wire, the thickness of the touch wire, the photoresist and the etching solution used in the process of etching the touch wire, and so on.
  • FIG. 3 is a schematic diagram 1 of the principle of an embodiment of this application. As shown in FIG. 3, only the touch signal lines 11 in the display area and the touch leads in the non-display area are simplified.
  • the touch leads include a first sub-lead 121 located in the fan-shaped area 31 and a linear area (not labeled).
  • the second sub-lead 122 in the wiring manner of the touch lead shown in FIG. 3, the shape of a part of the first sub-lead in the sector area 31 is a broken line.
  • the number of touch leads is very large, and in order to explain the principle, only 16 touch leads are included for illustration.
  • Figure 3 (a) is a schematic diagram of a related art where 16 touch leads are densely arranged in a fan-out wiring area, and the width of the fan-shaped area 31 in the direction e is D1;
  • Figure 3 (b) In order to adopt the scheme of the present application, the 16 touch leads are arranged in two fan-out wiring areas and are densely arranged, respectively, the width of the fan-shaped area 31 in the direction e is D2.
  • the distance between the adjacent second sub-leads 122 in the solution (b) of the present application is the same as that of the adjacent second sub-lead in the related technology (a).
  • the spacing between the leads 122 is the same, and the multiple first sub-leads 121 in the same sector 31 in the solution (b) of the present application are densely arranged. It is assumed that the arrangement of the touch leads in the related technology (a) is that the touch leads are insulated from each other and meet the minimum process spacing, and the sector 31 that can be manufactured by the manufacturing process occupies the smallest space.
  • the arrangement of the 8 touch leads in each fan-out wiring area in the solution (b) of the present application can be the same as the 8 touch leads in the middle of the fan-out wiring area in the related technology (a) (the dotted line framed in the figure) 55) is arranged in the same manner, it can be seen that the width D2 occupied by the sector 31 in the direction e in the solution (b) of the present application is smaller than the width D1 occupied by the sector 31 in the direction e in the related art (a).
  • the width occupied by the fan-shaped area can be significantly reduced, thereby facilitating the narrowing of the frame.
  • FIG. 4 is a schematic diagram 2 of the principle of an embodiment of this application. As shown in FIG. 4, only the touch signal lines 11 in the display area and the touch leads in the non-display area are simplified.
  • the touch leads include a first sub-lead 121 located in the fan-shaped area 31 and a linear area (not labeled).
  • the second sub-lead 122 Different from the wiring method of the touch leads in FIG. 3, the shapes of the first sub-leads 121 in the sector 31 in FIG. 4 are all oblique lines.
  • 4(c) is a schematic diagram of a related art where 16 touch leads are densely arranged in a fan-out wiring area, and the width of the fan-shaped area 31 in the direction e is D3; FIG. 4(g) In order to adopt the scheme of the present application, the 16 touch leads are arranged in two fan-out wiring areas and are densely arranged, respectively, the width of the fan-shaped area 31 in the direction e is D4.
  • the distance between two adjacent touch signal lines 11 is H5, and the distance between two adjacent second sub-leads 122 in the straight line area is H6, where, H5>H6.
  • Figure 4(c) also shows a central first sub-lead 121-1 located in the center of the fan-shaped area. The smaller the angle and the farther away from the center of the first sub-lead 121-1 direction, the larger the distance between two adjacent first sub-leads 121. It should be noted that, as shown in the figure, the distance between two adjacent first sub-leads 121 gradually changes along the direction e, that is to say, there is a maximum distance and a minimum distance between two adjacent first sub-leads 121 .
  • each The fan-out wiring area includes 8 touch leads for indication.
  • the arrangement of the 8 touch leads in each fan-out wiring area is the same as the 8 touch leads in the middle of the fan-out wiring area in the related technology (c) (the dotted line in the figure)
  • the frame 66) is arranged in the same manner. It can be seen that the dashed line in the solution (g) of the present application cannot reduce the width occupied by the fan-shaped area in the direction e.
  • the minimum distance between the two dashed first sub-leads on the outermost side of the sector is greater than the minimum process pitch, and the outermost dashed first sub-lead is connected to the The angle between the horizontal directions is ⁇ 3, ⁇ 3> ⁇ 2.
  • the minimum process spacing of the present application (g) is the same as the minimum process spacing of the related technology (c). Therefore, the angle between the outermost first sub-lead of the fan-shaped area and the horizontal direction in the solution (g) of the present application is ⁇ 4, and ⁇ 4 and ⁇ 2 are set to be approximately equal.
  • the minimum spacing between the first sub-leads is approximately the minimum process spacing, so that the adjacent first sub-leads are insulated from each other, and the total space occupied by all the first sub-leads is the smallest.
  • solution (g) of the present application The width of the sector area in the direction e is D4, D4 ⁇ D3.
  • the width occupied by the fan-shaped area can be significantly reduced, thereby facilitating the narrowing of the frame.
  • the touch leads are divided into at least two fan-out wiring areas for wiring, which can reduce the number of touch leads arranged in each fan-out wiring area, and the touch leads are densely arranged in each fan-out wiring area.
  • the width occupied by the fan-shaped area can be reduced. Conducive to narrowing the frame.
  • FIG. 5 is a schematic diagram of another alternative implementation manner of the display panel provided by the embodiment of the application.
  • the non-display area 2 includes four fan-out wiring areas arranged along the first border 10, where the fan-out wiring area is an area occupied by a plurality of densely arranged touch leads, and the width of the fan-shaped area 31 in the direction e For d2.
  • the fan-out wiring area is an area occupied by a plurality of densely arranged touch leads, and the width of the fan-shaped area 31 in the direction e For d2.
  • the total number of touch leads is fixed, the more fan-out wiring areas included in the non-display area 2, the fewer the number of touch leads provided in each fan-out wiring area. The fewer the number of touch leads arranged in the sector area.
  • the number of fan-out wiring areas in the non-display area can be designed according to specific manufacturing processes and design requirements to ensure that the frame can be narrowed without increasing the complexity of the manufacturing process.
  • FIG. 6 is an enlarged schematic view of the area 77 in FIG. 2 and FIG. 7 is a schematic cross-sectional view at the tangent line 333 in FIG. 6 Fig. 8 is another schematic cross-sectional view at the position of the tangent line 333 in Fig. 6.
  • the touch signal line 11 and the touch electrode 13 are connected through a via 88.
  • FIG. 7 shows that the display panel provided by the embodiment of the present application is a liquid crystal display panel.
  • the display panel includes a substrate layer 101, a thin film transistor array layer 102, a liquid crystal layer 103 and a color film substrate 104, wherein the substrate layer 101 is used for To support the thin film transistor array layer 102, the substrate layer 101 may be a glass substrate.
  • the thin film transistor array layer 102 includes a plurality of thin film transistors for forming a pixel circuit for controlling the light emission of pixels of the display panel.
  • the liquid crystal layer 103 is filled with liquid crystal molecules, and the color filter substrate 104 includes a color resist layer and a black matrix, both of which are not shown in the figure.
  • the display panel also includes a touch electrode layer 107 on the side of the thin film transistor array layer 102 away from the substrate layer 101 and a metal wiring layer.
  • the touch electrode 13 is located on the touch electrode layer 107
  • the touch signal line 11 is located on the metal wiring layer.
  • the metal wiring layer includes a first metal wiring layer 1081 and a second metal wiring layer 1082. The relative positions of the first metal wiring layer 1081 and the second metal wiring layer 1082 in the figure are only shown schematically. .
  • An insulating layer (not labeled) is provided between adjacent metal layers. Among them, some of the line segments in the touch signal line are resistance-reducing line segments.
  • the resistance-reducing line segment includes a first sub-line segment 1111 and a second sub-line segment 1112 connected in parallel.
  • the first sub-line segment 1111 and the second sub-line segment 1112 are respectively located in the first metal trace.
  • the figure shows a resistance-reducing line segment.
  • the first sub-line segment 1111 and the second sub-line segment 1112 are connected by via holes at least at two locations.
  • the first sub-line segment 1111 is connected to the touch electrode through the via hole 88 on the insulating layer. 13 Electrical connection.
  • the resistance-reducing line segment formed by the parallel connection of the first sub-line segment and the second sub-line segment can reduce resistance, that is, can reduce the resistance on the touch signal line, thereby reducing the voltage drop on the touch signal line, and thereby reducing the power consumption of the display panel.
  • the touch electrodes can be reused as common electrodes in the panel.
  • the manufacturing material of the touch electrode may include indium tin oxide.
  • the display panel is a liquid crystal display panel, and only one metal wiring layer is provided on the touch electrode layer, and all touch signal lines are located in the same metal wiring layer.
  • the metal layer is used to make the touch signal line, which can reduce the film thickness of the display panel, which is not shown here.
  • FIG. 8 shows that the display panel provided by the embodiment of the present application is an organic light-emitting display panel.
  • the display panel includes a substrate layer 201, and a thin film transistor array layer 202, a display layer 205, The encapsulation layer 206 and the touch electrode layer 107, the touch electrode 13 is located on the touch electrode layer 107, and the metal wiring layer is located on the side of the touch electrode layer 107 away from the encapsulation layer 206.
  • the substrate layer 201 may be a rigid substrate or a flexible substrate;
  • the thin film transistor array layer 202 includes a plurality of thin film transistors for forming a pixel circuit for controlling the light emission of pixels of the display panel;
  • the display layer 205 includes a plurality of light emitting devices 2051
  • the light emitting device 2051 includes an anode 4, a light emitting layer 5, and a cathode 6 stacked in sequence;
  • the encapsulation layer 206 is used to encapsulate the display layer 205 to isolate water and oxygen and ensure the service life of the light emitting device 2051.
  • the encapsulation layer 206 includes two inorganic encapsulation layers and an organic encapsulation layer located between the inorganic encapsulation layers.
  • the metal wiring layer includes a first metal wiring layer 1081 and a second metal wiring layer 1082.
  • the relative positions of the first metal wiring layer 1081 and the second metal wiring layer 1082 in the figure are only illustrative. Express.
  • An insulating layer (not labeled) is provided between adjacent metal layers.
  • at least some of the line segments in the touch signal line are resistance-reducing line segments, and the resistance-reducing line segment includes a first sub-line segment 1111 and a second sub-line segment 1112 connected in parallel.
  • the first sub-line segment 1111 and the second sub-line segment 1112 are respectively located in the first metal The wiring layer 1081 and the second metal wiring layer 1082.
  • the figure shows a resistance-reducing line segment 111.
  • the first sub-line segment 1111 and the second sub-line segment 1112 are connected at least at two locations by vias, and the first sub-line segment 1111 is connected to the touch electrode through the via hole on the insulating layer. 13 Electrical connection.
  • the resistance-reducing line segment formed by the parallel connection of the first sub-line segment and the second sub-line segment can reduce resistance, that is, can reduce the resistance on the touch signal line, thereby reducing the voltage drop on the touch signal line, and thereby reducing the power consumption of the display panel.
  • the display panel is an organic light-emitting display panel, and only one metal wiring layer is provided on the touch electrode layer, and all touch signal lines are located in the same metal wiring layer.
  • a metal layer is used to make the touch signal line, which can reduce the film thickness of the display panel, which is not shown here.
  • the material for the touch electrode layer in this application includes one or more of metallic molybdenum, metallic aluminum, and metallic titanium
  • the material for the metallic wiring layer includes one or more of metallic molybdenum, metallic aluminum, and metallic titanium.
  • the touch electrode layer is made of a single layer of metal molybdenum, or a three-layer metal of titanium, aluminum, and titanium, or a three-layer metal of molybdenum, aluminum, and molybdenum.
  • the metal wiring layer is made of a single layer of metal molybdenum, or a three-layer metal of titanium, aluminum, and titanium, or a three-layer metal of molybdenum, aluminum, and molybdenum.
  • FIG. 9 is a partial top view schematic diagram of another alternative implementation of the display panel provided by the embodiment of this application. As shown in FIG. 9, only part of the touch electrode 13 in the touch electrode array is shown.
  • the touch electrode 13 includes a plurality of openings 133 that penetrate the touch electrode 13 in the thickness direction of the touch electrode 13. Among them, the shape of the opening in the figure is only shown schematically.
  • the touch electrode is located on the display layer (see the diagram in FIG. 8 above), and the light emitted by the light-emitting device needs to penetrate the film layer where the touch electrode is located to be able to emit the display panel.
  • the implementation of this application For example, by arranging multiple openings on the touch electrode to form a grid-like touch electrode, part of the light emitted by the light-emitting device can be emitted from the opening to the display panel, which reduces the light loss when the light penetrates the film layer.
  • the touch electrode is made of the material, the touch electrode will not block the light output of the light emitting device, which can ensure the light output efficiency of the light emitting device and avoid affecting the brightness of the display panel.
  • each fan-out wiring area is the same.
  • both of them can ensure that each fan-out wiring area is The width of the fan-shaped area in the direction e is basically the same, thereby saving the space occupied by the fan-shaped area, which is beneficial to realize the narrowing of the frame.
  • each fan-out wiring area has a central axis, so as to realize a reasonable arrangement of touch leads and ensure that the width of each fan-shaped area in the direction e is basically the same.
  • FIG. 10 is a partial schematic diagram of another alternative implementation of the display panel provided by an embodiment of the application
  • FIG. 11 is a simplified schematic diagram of the bending area in FIG. 10 when the bending area is in a bent state.
  • the non-display area 2 further includes a bending area 7.
  • the bending axis 71 of the bending area 7 is parallel to the first boundary 10, and the second sub-lead 122 is in a direction perpendicular to the first boundary 10.
  • the bending axis 71 is a virtual axis and not a physical structure in the display panel, and the bending area 7 can be bent along the bending axis 71.
  • a binding area 8 is also provided on the side of the bending area 7 away from the display area 1.
  • the binding area 8 is used to bind the flexible circuit board, and the driving chip can be fixed on the flexible circuit board to realize the driving chip and the display panel. Connection.
  • the bending area 7 can be bent.
  • the flexible circuit board 81 bound with the driving chip 82 can be placed on the side of the display panel away from the display surface after being bent with the bending area.
  • the driving chip is located on the back of the display panel instead of the front, thereby further narrowing the frame of the display panel.
  • FIG. 12 is a partial schematic diagram of another alternative implementation of the display panel provided by the embodiment of the application.
  • FIG. 13 is a partial schematic diagram of another optional implementation manner of a display panel provided by an embodiment of the application.
  • the non-display area 2 includes four fan-out wiring areas as an example.
  • One fan-out wiring area is an area occupied by densely arranged multiple touch leads.
  • a shielded signal line 14 adjacent to the touch lead is provided on the outside of the fan-out wiring area.
  • the two shielded signal lines 14 between two adjacent fan-out wiring areas shown in FIG. 12 are respectively adjacent to two touch leads located in different fan-out wiring areas.
  • FIG. 12 is a partial schematic diagram of another alternative implementation of the display panel provided by the embodiment of the application.
  • FIG. 13 is a partial schematic diagram of another optional implementation manner of a display panel provided by an embodiment of the application.
  • the non-display area 2 includes four fan-out wiring areas as an example.
  • One fan-out wiring area is an area occupied by densely
  • the shielded signal line 14 arranged outside the fan-out wiring area is not connected to other shielded signal lines.
  • the setting method of the shielded signal line can be set according to the specific process requirements. In panel applications, the shielded signal line 14 is connected to a DC voltage signal or the shielded signal line 14 is grounded, or the shielded signal line 14 can also be connected to the same voltage signal as the touch electrode.
  • the shielded signal line 14 can play a role of signal shielding and effectively isolate the signal crosstalk of the display panel.
  • the shielded signal line 14 can be electrically connected to a driver chip (such as the driver chip introduced in the embodiment of FIG.
  • the shielded signal line 14 can be provided with a voltage signal through the driver chip, or the shielded signal line 14 can be connected to the main board through a flexible circuit board.
  • the main board directly provides a signal to the shielded signal line 14.
  • FIG. 14 is a simplified schematic diagram of another alternative implementation of the display panel provided by the embodiment of the application.
  • the touch electrode array includes a plurality of touch electrode rows 131 and a plurality of touch electrode columns 132; each touch electrode row 131 includes a plurality of touch electrodes 13, and each touch electrode The column 132 includes a plurality of touch electrodes 13, and the central axis 9 of the display area 1 is perpendicular to the first boundary 10.
  • the jump touch signal line includes a start point 91 and an end point 92.
  • the start point 91 is electrically connected to a touch electrode 13, and the end point 92 intersects the first boundary 10; the distance between the start point 91 and the central axis 9 of the display area 1 is the third distance H3 , The distance between the end point 92 and the central axis 9 is the fourth distance H4, and the third distance H3 is greater than the fourth distance H4.
  • the position where the jump touch signal line 112 extends out of the display area is shifted toward the direction close to the central axis 9. That is, the starting point of the jump touch signal line defined in this application is the point where the jump touch signal line is electrically connected to the touch electrode; the end point of the jump touch signal line is the jump touch signal line direction When the direction of the non-display area provided with the touch lead is extended, the touch signal line jumps to the end point of the display area.
  • the extension direction of the touch signal line is basically parallel to the central axis 9.
  • the touch signal line After the touch signal line is electrically connected to the touch electrode, it directly extends to the display area 1 and the non-display area 2 in a direction parallel to the central axis 9 (The area 99 enclosed by the dotted line in FIG.
  • the touch signal line 14 is basically evenly distributed in the display area at the end point of the display area 1
  • the corresponding connection positions of the touch leads and the touch signal lines are also evenly dispersed on the first boundary 10, and then the multiple touch leads gradually converge into a bundle of traces .
  • the arrangement of the touch signal line in the related art affects the utilization of the lower frame space.
  • at least some of the multiple touch signal lines are jump touch signal lines. As shown in FIG. 14, the jump touch signal line occurs at the end of the display area toward the direction close to the central axis 9.
  • the fan-out wiring area formed by the jump touch signal line also moves closer to the direction of the central axis 9, so that the total width of all fan-out wiring areas in the direction parallel to the first boundary 10 can be reduced. Further save the space of the non-display area.
  • FIG. 15 is a partial schematic diagram of another alternative implementation of the display panel provided by the embodiment of the application.
  • the multiple touch electrode columns include two edge touch electrode columns 1321 located at the edges of the touch electrode columns. Only one edge touch electrode column 1321 is shown in the figure. Among them, the edge touch electrode columns 1321 is parallel to the central axis 9 of the display area 1; touch signal lines electrically connected to at least part of the touch electrodes in at least one edge touch electrode column 1321 are jump touch signal lines 112. The figure shows only part of the touch electrodes 13 in the edge touch electrode column 1321. For a jump touch signal line 112, the distance between the start point 91 and the central axis 9 of the display area 1 is greater than the end point 92.
  • the jump touch signal line 112 extends out of the display area 1 and shifts toward the direction close to the central axis 9. These jump touch signal lines do not need to be led out from the position of the area 20 in the figure and the touch leads of the non-display area Connected, as shown in the figure, the corresponding touch leads 12 also move closer to the central axis 9 (also can be understood with reference to the description of the embodiment in Figure 14 above), then the non-display area at the position of the region 20 in the figure can be reduced.
  • the number of touch leads, or the touch signal lines electrically connected to the touch electrodes in the edge touch electrodes are all jump touch signal lines. There is no need to set touch leads in the non-display area 20, which can save time and display.
  • the corner 22 of the area is adjacent to the space of the non-display area.
  • the corner 22 on the side of the display area 1 close to the fan-out wiring area 3 is an arc-shaped corner.
  • the space of the non-display area adjacent to the corner 22 of the display area can be saved, and the shape of the non-display area adjacent to the corner can be adapted to the shape of the corner.
  • the non-display shape adjacent to the corner 22 can be designed into an arc shape according to the shape of the corner 22, so that the frame area adjacent to the arc corner of the display area can be narrowed.
  • FIG. 16 is a partial schematic diagram of another alternative implementation of the display panel provided by the embodiment of the application.
  • the multiple touch electrode columns include non-edge touch electrode columns 1322.
  • the non-edge touch electrode columns 1322 are located between two edge touch electrode columns 1321.
  • the partial schematic diagram in the figure shows only one The edge touch electrode column 1321, and the non-edge touch electrode column 1322 between the edge touch electrode column 1321 and the central axis of the display screen (not shown); and at least part of the non-edge touch electrode column 1322 touches The touch signal line electrically connected to the electrode is the jump touch signal line 112.
  • the figure shows that the edge touch electrode column 1321 and the non-edge touch electrode column 1322 both correspond to the jump touch signal line 112.
  • the shape of the jump touch signal line 112 is a broken line, and the distance between the start point of the jump touch signal line and the central axis is greater than the distance between the end point and the central axis, as shown in Figure 16, when the jump touch signal line 112 is designed with a broken line
  • the two jump touch signal lines in the display area 1 may cross due to the different routing directions, as shown by the dotted line in the figure. There is a crossover between jump touch signal lines in the area 666 of.
  • a bridge line design can be used, and one of them can be set A jump touch signal line is disconnected at the crossing position, and then the disconnected jump touch signal line is connected through a bridge line in another metal layer.
  • the two jump touch signal lines that cross each other are made of different metal layers, even if the wiring directions are different, the two jump touch signal lines cross, but the two jump touch signal lines are at the crossing position.
  • the signal line is still insulated.
  • the embodiment of the present application can design the film position and arrangement of the jump touch signal line to realize that the jump touch signal line at each position is shifted toward the direction close to the central axis at the end of the display area.
  • the fan-out wiring area formed by the corresponding touch leads also moves closer to the direction of the central axis, which can reduce the total width occupied by all the fan-out wiring areas in the direction parallel to the first boundary, and save the space of the non-display area.
  • the touch electrode electrically connected to the start point of the jump touch signal line is adjacent to its end point (for example, closest to the end point, or overlapped with the end point in the direction perpendicular to the panel but not electrically connected)
  • the touch electrodes are located in different rows of touch electrodes. Specifically, referring to the illustration in FIG. 14 above, there is an interval between the touch electrode 13 electrically connected to the start point of the jump touch signal line 112 and the touch electrode 13 adjacent to the end point of the jump touch signal line 112
  • the offset of the end point of the jump touch signal line toward the central axis 9 is at least the width of one touch electrode column.
  • the number of touch electrode columns between the touch electrodes 13 electrically connected to the start point of the jump touch signal line 112 and the touch electrodes 13 adjacent to the end point of the jump touch signal line 112 Can be selected according to specific design requirements.
  • the shape of the jump touch signal line is a broken line
  • the jump touch signal line includes at least a first line segment, where the first line segment is not parallel to the central axis of the display area, that is, the first line The segment is perpendicular to the central axis, or the extension of the first line segment forms a certain angle with the central axis.
  • FIG. 17 is a partial schematic diagram of another optional implementation manner of the display panel provided by the embodiment of the application. Only part of the jump touch signal line is shown.
  • the shape of the jump touch signal line is a broken line.
  • the jump touch signal line includes the first line segment 41. In the figure, only the first line segment 41 and the central axis 9 are roughly Schematic vertically.
  • the extension direction of the touch signal line in the display area is basically parallel to the central axis of the display area
  • the embodiment of the present application provides that the jump touch signal line includes a first line segment, and the first line segment can change the jump touch
  • the routing direction of the signal line in the display area so that the end point of the jump touch signal line moves closer to the central axis, and the longer the length of the first line segment 41, the end point of the jump touch signal line is displayed toward the display
  • the greater the offset in the direction of the central axis of the zone the touch lead connected to the jump touch signal line moves in the direction of the extension line of the central axis 9, so that the fan-out wiring zone formed by the touch lead also moves to the center
  • the direction of the axis is closer, which can reduce the total width occupied by all fan-out wiring areas in the direction parallel to the first boundary.
  • the jump touch signal line 112 includes a first type jump touch signal line and a second type jump touch signal line, where the first type jump touch signal line includes a first line Segment 41, a second line segment 42 and a third line segment 43 parallel to the central axis 9 of the display area, the two ends of the first line segment 41 are respectively connected to one end of the second line segment 42 and one end of the third line segment 43, the second line segment 42
  • the other end of the jump touch signal line is the starting point 91
  • the other end of the third line segment 43 is the end point 92, where the end point 92 is the end point of the jump touch signal line in the display area 1;
  • the first type of jump touch After the signal line is led out from the position electrically connected to the touch electrode 13, it is first routed in a direction parallel to the central axis 9, and then the route direction turns to extend towards the direction close to the central axis 9, and then the route direction turns again along the center axis 9 The parallel direction of the axis 9 extends to the
  • the second type of jump touch signal line includes a first line segment 41 and a fourth line segment 44 parallel to the central axis 9 of the display area.
  • One end of the first line segment 41 is the start point 91 of the jump touch signal line.
  • the other end of the line segment 41 is electrically connected to one end of the fourth line segment 44, and the other end of the fourth line segment 44 is the end point 92.
  • the routing method of the first type jump touch signal line or the second type jump touch signal line By adopting the routing method of the first type jump touch signal line or the second type jump touch signal line, the position of the touch signal line at the end of the display area is shifted toward the direction close to the central axis, so as to be in contact with the touch signal line.
  • the leads connected to the control signal line are also offset in the direction of the extension line of the central axis, and the fan-out wiring area composed of multiple touch leads will also move closer to the extension line of the central axis, thereby reducing all fan-out wiring areas.
  • the total width occupied in the direction parallel to the first boundary saves space in the non-display area. In the actual panel, you can reasonably apply the first type of jump touch signal line or the second type of jump touch signal line routing method according to the specific needs, and the layout design of the touch signal line in the display area .
  • the number of touch signal lines in the actual panel is very large.
  • some of the touch signal lines may cross.
  • the cross means that the two touch signal lines extend to the same position in the display area due to different extension directions.
  • the touch signal lines at the cross positions can be located on different metal layers, or the design of bridge lines can be used to avoid short circuits.
  • FIG. 16 The description in, I won’t repeat it here.
  • the first line segment of the jump touch signal line is parallel to the first boundary, and the third distance between the start point of the jump touch signal line and the central axis and the first line segment are away from the first boundary
  • the distance is positively correlated. That is, the farther the touch electrode column is from the central axis, the farther the first line segment in the jump touch signal line electrically connected to the touch electrode in the touch electrode column is from the first boundary.
  • the display panel shown in FIG. 17 is used for description. With reference to the jump touch signal line 112-1 and the jump touch signal line 112-2 shown in the figure, the starting point 91 of the jump touch signal line 112-1 is away from the central axis.
  • the distance 9 is greater than the distance between the starting point 91 of the jump touch signal line 112-2 and the central axis 9.
  • the distance between the first line segment 41 in the jump touch signal line 112-1 and the first boundary 10 is h1
  • the distance between the first line segment 41 in the jump touch signal line 112-2 and the first boundary 10 is h2, h1>h2.
  • This embodiment can simplify the wiring of the touch signal lines in the jump wiring area, and reduce the number of crossings between the jump touch signal lines.
  • the jump routing area is the area where the first line segment is located and the area where part of the touch line segment between the end point and the first line segment is located.
  • the touch electrode array includes a first touch electrode row, a second touch electrode row, a third touch electrode row to an Nth touch electrode row arranged in sequence, and N is a positive integer, where, The first touch electrode row is parallel to the central axis, and the distance between the Nth touch electrode row and the central axis is smaller than the distance between the first touch electrode row and the central axis;
  • the touch signal lines electrically connected to the multiple touch electrodes of the nth touch electrode row are all jump touch signal lines, and the touch signals electrically connected to the multiple touch electrodes of the n+1th touch electrode row.
  • the control signal lines are all jump touch signal lines, and the end of the jump touch signal line is adjacent to the n+2th touch electrode column, n is an odd number, and n ⁇ N. Take Figure 18 as an example for description below.
  • FIG. 18 is a partial schematic diagram of a display panel provided by an embodiment of the application.
  • the touch electrode array includes a first touch electrode row 132-1, a second touch electrode row 132-2, a third touch electrode row 132-3, a fourth touch electrode row 132-4, and a fifth touch electrode row 132-1 arranged in sequence.
  • Touch electrode column 132-5 wherein, the end points of the jump touch signal lines that are electrically connected to the touch electrodes in the first touch electrode column 132-1 and the second touch electrode column 132-2 are aligned with the third touch electrode column 132-3.
  • the end point of the jump touch signal line is the point where the jump touch signal line intersects the first boundary 10, which is not shown in the figure, and is connected to the third touch electrode column 132-3 and the fourth touch electrode column
  • the end points of the jump touch signal lines electrically connected to the touch electrodes in 132-4 are all adjacent to the fifth touch electrode column 132-5, and so on.
  • the jump touch signal line is designed with regular jump traces, and the end points of the jump touch signal lines connected to the touch electrodes in the odd-numbered touch electrode column and the even-numbered ones
  • the end points of the jump touch signal lines connected by the touch electrodes in the touch electrode column are all adjacent to the same touch electrode column.
  • the regular design can relatively simplify the overall wiring of the jump touch signal lines, and can reduce The number of overlaps between the jump touch signal lines in the jump wiring area is beneficial to simplify the manufacturing process.
  • the multiple touch electrode rows include a first touch electrode row 131-1 and a second touch electrode row 131-2 that are adjacent to each other, and the first touch electrode row 131 -1 is adjacent to the first boundary 10, among which is a number of the first touch electrode column 132-1 and the third touch electrode column 132-3 (that is, the nth touch electrode column, n is an odd number)
  • the first line segment 41 in the jump touch signal line 112 electrically connected to the touch electrodes 13 overlaps the second touch electrode row 131-2;
  • the plurality of touch electrodes 13 of the control electrode column 132-4 that is, the n+1th touch electrode column
  • the electrode rows 131-1 overlap. That is, the touch signal line electrically connected to the touch electrode in the nth touch electrode row starts to turn toward the direction close to the central axis of the display area at the position corresponding to the second touch electrode row, and runs in the same direction as the n+1th touch electrode row.
  • the touch signal lines that are electrically connected to the touch electrodes in the touch electrode column begin to turn to the direction close to the central axis of the display area at the position corresponding to the first touch electrode row, and only occupy the first touch electrode in the display area
  • the area where the row and the second touch electrode row are located is used as the jump routing area of the jump touch signal line, and the jump routing area occupies a small area. Among them, the jump routing area is the area where the first line segment is located. , And the area where part of the touch line segment is located between the end point and the first line segment.
  • the touch signal lines outside the jump wiring area can be designed as resistance-reducing line segments, which can greatly reduce the resistance of each touch signal line, thereby reducing power loss.
  • the jump touch signal line 112-3 is led out by the touch electrode 13 electrically connected to it, the line needs to be pulled up first, and then it starts to turn.
  • the jump touch signal lines electrically connected to the touch electrodes in the control electrode row 131-1 have a short upward pulling distance, which can simplify the setting of jump touch signal lines and reduce the cross between jump touch signal lines. This helps simplify the process.
  • FIG. 19 is a schematic cross-sectional view of an alternative embodiment at the position of the tangent line 444 in FIG. 18.
  • the display panel includes a first metal wiring layer 1081 and a second metal wiring layer 1082 on the side of the touch electrode layer 107 away from the encapsulation layer 206.
  • the relative positions of the first metal wiring layer 1081 and the second metal wiring layer 1082 can be exchanged.
  • the jump touch signal line outside the jump wiring area adopts resistance-reducing line segments Design
  • the three jump touch signal lines in the touch signal line group 51 are located on the second metal wiring layer 1082 after the jump transition
  • the three jump touch signal lines in the touch signal line group 52 The traces after the transition are all located on the first metal trace layer 1081.
  • the three touch signal lines in the touch signal line group 51 are respectively electrically connected to the touch electrodes in the same touch electrode column
  • the three touch signal lines in the touch signal line group 52 are also respectively connected to the same touch electrode.
  • the touch electrodes in the column are electrically connected.
  • the jump touch signal lines that are electrically connected to the touch electrodes in different touch electrode columns in the jump wiring area are located on different metal wiring layers, thereby realizing reasonable wiring and avoiding jump touch signals. Crossing of wires causes a short circuit.
  • FIG. 20 is a schematic cross-sectional view of an alternative embodiment at the position of the tangent line 555 in FIG. 18.
  • each touch lead 12 includes a first metal wiring layer 1081.
  • a parallel lead 124 and a second parallel lead 125 located on the second metal wiring layer 1082, and the first parallel lead 124 and the second parallel lead 125 are connected in parallel, thereby reducing the resistance on the touch lead 12 and reducing the touch signal
  • the voltage drop during transmission on the touch leads further reduces power loss.
  • all touch leads located in the non-display area are located on the same metal layer.
  • FIG. 21 is a schematic diagram of an electronic device provided in an embodiment of this application.
  • the electronic device includes a display panel 100 provided in any embodiment of the present application.
  • the specific structure of the display panel 100 has been described in detail in the above-mentioned embodiments, and will not be repeated here.
  • the electronic device shown in FIG. 21 is only a schematic illustration, and the electronic device may be any electronic device with a display function, such as a mobile phone, a tablet computer, a notebook computer, an electronic paper book, or a television.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请实施例提供一种显示面板和电子设备。显示面板包括显示区和非显示区;显示区包括多个触控电极组成的触控电极阵列和多条触控信号线,非显示区包括至少两个扇出走线区,至少两个扇出走线区沿非显示区和显示区之间的第一边界排列,并且每个扇出走线区内均包括有多条触控引线;扇出走线区均包括扇形区和直线区,扇形区位于第一边界和直线区之间;每条触控引线均包括位于扇形区的第一子引线和位于直线区的第二子引线;位于不同的直线区且相邻的两个第二子引线之间的间距为第一距离,位于同一个直线区且相邻的两个第二子引线之间的间距为第二距离,第一距离大于第二距离。本申请能够减小触控引线构成的扇形区占据的边框宽度,实现边框的窄化。

Description

一种显示面板和电子设备 技术领域
本申请涉及显示技术领域,更具体的涉及一种显示面板和电子设备。
背景技术
随着显示技术的不断发展,液晶显示器以及有机发光显示器等显示器件不断涌现,成为时下显示行业的主流产品,并处于日新月异的发展变革之间中,与此同时,消费者对显示器的要求也在日带提升,如超高分辨率显示、触控显示以及全面屏显示等,成为显示领域研究的热点和重要课题。
目前,实现触控功能的方案包括自容触控和互容触控两种。一般情况下,自容触控方案中通道走线的总数目为互容触控方案中的7倍左右。所以传统的自容触控方案会明显增加显示面板的边框宽度,无法适应目前的窄边框设计理念。因此,提供一种应用自容触控方案的显示面板和电子设备,对通道走线进行设计以减小通道走线在非显示区占据的空间,窄化边框是目前亟待解决的技术问题。
发明内容
有鉴于此,本申请提供一种显示面板和电子设备,解决了窄化边框的技术问题。
第一方面,本申请实施例提供一种显示面板,包括:显示区和包围显示区的非显示区;
显示区包括多个触控电极组成的触控电极阵列和多条触控信号线,一个触控电极与至少一条触控信号线电连接;非显示区包括至 少两个扇出走线区,至少两个扇出走线区沿非显示区和显示区之间的第一边界排列,并且每个扇出走线区内均包括有多条触控引线,触控引线与触控信号线一一对应电连接;每个扇出走线区均包括扇形区和直线区,扇形区位于第一边界和直线区之间;每条触控引线均包括相互连接的第一子引线和第二子引线,第一子引线位于扇形区,第二子引线位于直线区;其中,
位于不同的直线区且相邻的两个第二子引线之间的间距为第一距离,位于同一个直线区且相邻的两个第二子引线之间的间距为第二距离,第一距离大于第二距离。
进一步的,触控电极阵列包括多个触控电极行和多个触控电极列,其中,每个触控电极行包括多个触控电极,每个触控电极列包括多个触控电极;显示区的中心轴与第一边界垂直;多条触控信号线中的至少部分为跳转触控信号线,跳转触控信号线的形状为折线,跳转触控信号线包括起点和终点,起点与一个触控电极电连接,终点与第一边界相交;其中,
起点距中心轴的距离为第三距离,终点距中心轴的距离为第四距离,第三距离大于第四距离。
进一步的,多个触控电极列包括两个位于触控电极阵列的边缘的边缘触控电极列;与至少一个边缘触控电极列中至少部分触控电极电连接的触控信号线为跳转触控信号线。
在一些可选的实施方式中,显示区的靠近扇出走线区一侧的拐角为弧形拐角。
在一些实施方式中,多个触控电极列还包括非边缘触控电极列,非边缘触控电极列位于两个边缘触控电极列之间;与非边缘触控电极列中至少部分触控电极电连接的触控信号线为跳转触控信号线。
在一些实施方式中,与起点电连接的触控电极和与终点相邻的触控电极位于不同的触控电极列。
在一些实施方式中,跳转触控信号线至少包括第一线段,第一线段与中心轴不平行。
在一些实施方式中,第一线段与第一边界平行,第三距离与第一线段距第一边界的距离呈正相关。
在一些实施方式中,触控电极阵列包括依次排列的第1触控电极列、第2触控电极列、第3触控电极列至第N触控电极列,N为正整数,其中,第1触控电极列与中心轴平行,并且与中心轴的距离大于第2至第N触控电极列中任一触控电极列与中心轴的距离;与第n触控电极列的多个触控电极电连接的触控信号线均为跳转触控信号线,与第n+1触控电极列的多个触控电极电连接的触控信号线均为跳转触控信号线,且跳转触控信号线的终点与第n+2触控电极列相邻,n为奇数,且n<N。
进一步的,多个触控电极行中的第一个触控电极行和第二个触控电极行相邻,且第一个触控电极行与第一边界相邻,其中,与第n触控电极列的多个触控电极分别电连接的跳转触控信号线中的第一线段与第二个触控电极行交叠;与第n+1触控电极列的多个触控电极分别电连接的跳转触控信号线中的第一线段与第一个触控电极行交叠。
可选的,跳转触控信号线还包括与中心轴平行的第二线段和第三线段,第一线段的两端分别连接第二线段的一端和第三线段的一端,第二线段的另一端为起点,第三线段的另一端为终点;或者,
跳转触控信号线还包括与中心轴平行的第四线段,第一线段的一端为起点,第一线段的另一端与第四线段的一端电连接,第四线段的另一端为终点。
在一些可选的实施方式中,显示面板还包括衬底层和位于衬底层之上的金属走线层,金属走线层包括第一金属走线层和第二金属走线层;
多条触控信号线中至少部分包括降阻线段,降阻线段包括并联连接的第一子线段和第二子线段,第一子线段和第二子线段分别位于第一金属走线层和第二金属走线层。
在一些可选的实施方式中,显示面板还包括在衬底层之上依次 排列的薄膜晶体管阵列层、显示层、封装层和触控电极层,触控电极阵列位于触控电极层,金属走线层位于触控电极层远离封装层的一侧。
在一些可选的实施方式中,在每个扇出走线区外侧设置有与触控引线相邻的屏蔽信号线。
在一些可选的实施方式中,非显示区还包括弯折区,弯折区的弯折轴与第一边界平行,第二子引线在垂直于第一边界的方向上贯穿弯折区。
基于同一发明构思,本申请实施例还提供一种电子设备,包括本申请任意实施例提供的显示面板。
本申请提供的显示面板和电子设备,具有如下有益效果:本申请实施例将触控引线划分在至少两个扇出走线区内走线,能够减少每个扇形区内排列的触控引线的数目,在每个扇出走线区内触控引线均密集排布,保证任意相邻的两条触控引线都相互绝缘,且满足最小工艺间距保证一个扇出走线区内所有的触控引线中间的总空间最小时,能够减小扇形区占据的宽度,有利于实现边框的窄化。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为相关技术中显示面板的示意图;
图2为本申请实施例提供的显示面板一种可选实施方式示意图;
图3为本申请实施例的原理示意图一;
图4为本申请实施例的原理示意图二;
图5为本申请实施例提供的显示面板另一种可选实施方式示意图;
图6为图2中区域77位置处的放大示意图;
图7为图6中切线333位置处一种截面示意图;
图8为图6中切线333位置处另一种截面示意图;
图9为本申请实施例提供的显示面板的另一种可选实施方式局部俯视示意图;
图10为本申请实施例提供的显示面板的另一种可选实施方式局部示意图;
图11为图10中弯折区为弯折状态时的简化示意图;
图12为本申请实施例提供的显示面板的另一种可选实施方式局部示意图;
图13为本申请实施例提供的显示面板的另一种可选实施方式局部示意图;
图14为本申请实施例提供的显示面板的另一种可选实施方式简化示意图;
图15为本申请实施例提供的显示面板的另一种可选实施方式局部示意图;
图16为本申请实施例提供的显示面板的另一种可选实施方式局部示意图;
图17为本申请实施例提供的显示面板的另一种可选实施方式局部示意图;
图18为本申请实施例提供的显示面板的局部示意图;
图19为图18中切线444位置处一种可选实施方式截面示意图;
图20为图18中切线555位置处一种可选实施方式截面示意图;
图21为本申请实施例提供的电子设备示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在 没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
图1为相关技术中显示面板的局部示意图。如图1所示,显示面板的显示区1包括多条触控信号线11和多个触控电极13,图中仅示意出了显示区1的一部分、以及围绕该部分显示区1的非显示区2。触控信号线11分别连接到非显示区2的触控引线12,在非显示区2所有的触控引线12构成一个扇出走线区,扇出走线区包括扇形区31和直线区32,所有的触控引线12由显示区1的边缘引出后,在直线区32收敛汇成一束沿方向e延伸的线。触控引线12包括位于扇形区31的第一子引线121和位于直线区32的第二子引线122。在扇出走线区内触控引线12密集排布,为了保证触控引线12之间相互绝缘,且最终汇聚成一束线,扇形区31在非显示区宽度方向e上需要占据一定的宽度d,宽度d较大限制了显示面板边框的窄化。基于此,本申请实施例提供了一种显示面板和电子设备,通过对非显示区内触控引线的排布方式进行设计,以减小触控引线在非显示区内占据的边框宽度。
图2为本申请实施例提供的显示面板一种可选实施方式示意图。
如图2所示的,显示面板包括:显示区1和包围显示区1的非显示区2;显示区1包括多个触控电极13组成的触控电极阵列和多条触控信号线11,一个触控电极13与至少一条触控信号线11电连接;非显示区2包括至少两个扇出走线区,至少两个扇出走线区沿非显示区2和显示区1之间的第一边界10排列。每个扇出走线区可以紧贴第一边界10,也可以与第一边界10有一定距离,具体可以根据需要设计。每个扇出走线区内均包括有多条触控引线12。需要说明的是,对于一个扇出走线区来说,扇出走线区仅为密集排布的 多条触控引线所占据的区域。触控引线12与触控信号线11一一对应电连接。各个扇出走线区内的触控引线12的数目可以相同也可以不同。图2中仅以非显示区包括两个扇出走线区进行示意。需要说明的是,本发明所有实施例中的非显示区2也可以不包围显示区1。例如,非显示区2仅在显示区1的一侧,或者仅在显示区1的相对的两侧。显示区1的任意一侧的非显示区中包括本发明实施例中的至少两个扇出走线区即可。
每个扇出走线区均包括扇形区31和直线区32,扇形区31位于第一边界10和直线区32之间;在方向e上扇形区31的宽度为d1。每条触控引线12均包括相互连接的第一子引线121和第二子引线122,第一子引线121位于扇形区31,第二子引线122位于直线区32。也即本申请中定义的扇形区31为被密集排布的多条第一子引线121占据的区域,直线区为沿着同一方向被密集排布的多条第二子引线122占据的区域。
本申请实施例中,第一子引线121的两端分别连接触控信号线11和第二子引线122,第二子引线122连接到驱动芯片的引脚(图中未示出),从而实现在触控检测阶段,触控信号线11通过触控引线12与驱动芯片之间传递信号。触控电极阵列中的各个触控电极分别与地构成电容,当手指触摸显示面板时,手指的电容会叠加到触控电极构成的电容上,使得触控电极对地电容量产生变化,根据检测到电容变化的触控电极的位置来确定手指的触摸位置,从而实现触控功能。
位于不同的直线区32且相邻的两个第二子引线122之间的间距为第一距离H1,位于同一个直线区32且相邻的两个第二子引线122之间的间距为第二距离H2,第一距离H1大于第二距离H2。由图2中示意也可以看出,第一距离H1明显大于第二距离H2。在本申请实施例中,与触控信号线11电连接的触控引线12由第一边界10引出后,在非显示区2内分成至少两个扇出走线区进行走线,在每个扇出走线区内多条触控引线逐渐收敛汇聚成一束线。
在面板制作过程中,触控引线通常采用刻蚀工艺制作,为了保证采用同层金属制作的触控引线之间相互绝缘,相邻的两条触控引线之间的间隔距离大于等于最小的工艺间距。如果间隔距离小于最小的工艺间距的话,可能在刻蚀工艺制程中存在刻蚀不良,导致相邻的两条触控引线之间短路的现象。其中,最小的工艺间距,与触控引线所采用的材料、触控引线的厚度、刻蚀触控引线工艺中所采用的光刻胶、刻蚀液等有关。通常情况下,为了保证所有的触控引线占据的总空间最小以节省非显示区的空间,设置多条触控引线密集排布,保证相邻的触控引线之间相互绝缘,也满足最小的工艺间距。
图3为本申请实施例的原理示意图一。如图3所示,仅简化示意出显示区的触控信号线11和非显示区的触控引线,触控引线包括位于扇形区31的第一子引线121和位于直线区(未标示)的第二子引线122,图3示意的触控引线的布线方式中,扇形区31内部分第一子引线的形状为折线。在实际产品中触控引线数量非常多,为了进行原理说明仅以包括16条触控引线进行示意。其中,图3中(a)为相关技术中设置16条触控引线在一个扇出走线区内密集排布的示意图,扇形区31在方向e上占据的宽度为D1;图3中(b)为采用本申请方案后将16条触控引线设置在两个扇出走线区内分别密集排布的示意图,扇形区31在方向e上占据的宽度为D2。
在相关技术和本申请方案中,触控引线由第一边界10引出后均逐渐向中间收敛形成一束线。在图(a)和(b)采用相同制作工艺的情况下,刻蚀触控引线工艺中相邻两条触控引线之间的最小工艺间距相同。由于本申请方案(b)将16条触控引线设置在两个扇出走线区内排布,则每个扇出走线区内的触控引线的个数均小于16条,图中仅以每个扇出走线区内均包括8条触控引线进行示意。在本申请方案(b)与相关技术(a)采用相同的制作工艺时,本申请方案(b)中相邻第二子引线122之间的间距和相关技术(a)中相邻第二子引线122之间的间距相同,并且,本申请方案(b)中同一个扇 形区31内的多条第一子引线121密集排布。假设,相关技术(a)中的触控引线排布方式为触控引线之间相互绝缘,且满足最小工艺间距的情况下,制作工艺能够做到的扇形区31占据空间最小的情况。则本申请方案(b)中每一个扇出走线区内的8条触控引线的排布方式可以与相关技术(a)中扇出走线区中间的8条触控引线(图中虚线框出的55)的排布方式相同,可见本申请方案(b)中扇形区31在方向e上占据的宽度为D2小于相关技术(a)中扇形区31在方向e上占据的宽度为D1。本申请通过将非显示区内的触控引线划分在两个扇出走线区内进行走线后,能够明显减小扇形区占据的宽度,从而有利于实现边框的窄化。
图4为本申请实施例的原理示意图二。如图4所示,仅简化示意出显示区的触控信号线11和非显示区的触控引线,触控引线包括位于扇形区31的第一子引线121和位于直线区(未标示)的第二子引线122。与图3中触控引线的布线方式不同,图4中扇形区31内第一子引线121的形状均为斜线。其中,图4中(c)为相关技术中设置16条触控引线在一个扇出走线区内密集排布的示意图,扇形区31在方向e上占据的宽度为D3;图4中(g)为采用本申请方案后将16条触控引线设置在两个扇出走线区内分别密集排布的示意图,扇形区31在方向e上占据的宽度为D4。
如图4中相关技术(c)示意的,相邻两条触控信号线11之间的间距为H5,在直线区内相邻两条第二子引线122之间的间距为H6,其中,H5>H6。图4(c)还示意出了位于扇形区中心的一条中心第一子引线121-1,距离中心第一子引线121-1越远的第一子引线121与图中水平方向之间的夹角越小,而且越远离中心第一子引线121-1方向,相邻两条第一子引线121之间的间距越大。需要说明的是,如图中示意的,相邻两条第一子引线121之间的间距沿方向e逐渐变化,也就是说相邻两条第一子引线121之间存在最大间距和最小间距。所以对于最靠近扇出走线区外侧的两条第一子引线121-2和121-3来说,θ1>θ2,并且为了保证相邻的第一子引线之间相互 绝缘,且所有的第一子引线占据的总空间最小,则第一子引线121-2和第一子引线121-3之间的最小间距为最小工艺间距。
当采用本申请方案将16条触控引线设置在两个扇出走线区内排布,则每个扇出走线区内的触控引线的个数均小于16条,图4中仅以每个扇出走线区内均包括8条触控引线进行示意。假定依然与图3原理说明中相同,将每一个扇出走线区内的8条触控引线的排布方式与相关技术(c)中扇出走线区中间的8条触控引线(图中虚线框出的66)的排布方式相同,可见本申请方案(g)中虚线的示意,并不能减小扇形区在方向e上占据的宽度。这是因为,在用虚线示意的第一子引线的排布方式下,扇形区最外侧的两条虚线第一子引线之间的最小间距大于最小工艺间距,最外侧的虚线第一子引线与水平方向之间的夹角为θ3,θ3>θ2。采用本申请方案设计,且与相关技术采用相同的制作工艺时,本申请方案(g)的最小工艺间距与相关技术(c)的最小工艺间距相同。所以,本申请方案(g)的扇形区的最外侧的第一子引线与水平方向之间的夹角为θ4,设置θ4与θ2大致相等,此时能够保证扇形区的最外侧相邻的两条第一子引线之间的最小间距大约为最小工艺间距,从而相邻的第一子引线之间相互绝缘,且所有的第一子引线占据的总空间最小,此时本申请方案(g)的扇形区在方向e上占据的宽度为D4,D4<D3。本申请通过将非显示区内的触控引线划分在两个扇出走线区内进行走线后,能够明显减小扇形区占据的宽度,从而有利于实现边框的窄化。
本申请实施例将触控引线划分在至少两个扇出走线区内走线,能够减少每个扇形区内排列的触控引线的数目,在每个扇出走线区内触控引线均密集排布,保证任意相邻的两条触控引线都相互绝缘,且满足最小工艺间距保证一个扇出走线区内所有的触控引线中间的总空间最小时,能够减小扇形区占据的宽度,有利于实现边框的窄化。
需要说明的是,在图3和图4的原理说明中,给出了两种扇形 区的第一子引线的排布方式,一种排布方式为扇形区内多条第一子引线中至少部分为折线,另一种排布方式为扇形区内多条第一子引线均为斜线。对于上述两种排布方式,本申请均能够适用,在具体的实施例中仅以其中一种排布方式进行示意。
在一种实施例中,如图5所示,图5为本申请实施例提供的显示面板另一种可选实施方式示意图。非显示区2包括在沿第一边界10排列的四个扇出走线区,其中,扇出走线区为多条密集排布的触控引线占据的区域,扇形区31在方向e上占据的宽度为d2。在触控引线总数目一定的情况下,非显示区2内包括的扇出走线区个数越多,则每个扇出走线区内设置的触控引线的数目越少,相应的在每个扇形区内排列的触控引线的数目也越少,根据上述图3和图4的原理说明可以知道,每个扇形区内排列的触控引线的数目也越少,则越有利于减小扇形区在方向e上占据的宽度。在实际产品中可以根据具体的制作工艺以及设计需求,对非显示区内扇出走线区的个数进行设计,以保证能够实现边框的窄化,同时不增加制作工艺的复杂度。
本申请实施例提供的显示面板适用于液晶显示面板,也适用于有机发光显示面板,图6为图2中区域77位置处的放大示意图,图7为图6中切线333位置处一种截面示意图,图8为图6中切线333位置处另一种截面示意图。
如图6中示意出了触控信号线11与触控电极13通过过孔88连接。
图7示意本申请实施例提供的显示面板为液晶显示面板,如图7所示,显示面板包括衬底层101、薄膜晶体管阵列层102、液晶层103和彩膜基板104,其中,衬底层101用于支撑薄膜晶体管阵列层102,衬底层101可以为玻璃衬底。薄膜晶体管阵列层102包括多个薄膜晶体管,用于形成控制显示面板像素发光的像素电路。液晶层103中填充有液晶分子,彩膜基板104包括色阻层和黑矩阵,图中均未示出。显示面板还包括位于薄膜晶体管阵列层102远离衬底层 101一侧的触控电极层107和金属走线层,触控电极13位于触控电极层107,触控信号线11位于金属走线层。图中示意,金属走线层包括第一金属走线层1081和第二金属走线层1082,图中第一金属走线层1081和第二金属走线层1082的相对位置仅作示意性表示。在相邻的金属层之间均设置有绝缘层(未标示)。其中,触控信号线中部分线段为降阻线段,降阻线段包括并联连接的第一子线段1111和第二子线段1112,第一子线段1111和第二子线段1112分别位于第一金属走线层1081和第二金属走线层1082。图中示意出了一条降阻线段,第一子线段1111和第二子线段1112至少在两个位置处通过过孔相连接,第一子线段1111通过绝缘层上的过孔88与触控电极13电连接。第一子线段和第二子线段并联连接构成的降阻线段能够降低电阻,也即能够降低触控信号线上的电阻,从而降低触控信号线上的压降,进而降低显示面板功耗。可选的,触控电极可以复用为面板中的公共电极使用。触控电极的制作材料可以包括铟锡氧化物。
在另一种实施例中,显示面板为液晶显示面板,在触控电极层之上仅设置有一层金属层走线层,所有的触控信号线均位于同一个金属走线层中,采用一个金属层来制作触控信号线,可以降低显示面板的膜层厚度,在此不再附图示意。
图8示意本申请实施例提供的显示面板为有机发光显示面板,如图8所示,显示面板包括衬底层201、以及在衬底层201之上依次排列的薄膜晶体管阵列层202、显示层205、封装层206和触控电极层107,触控电极13位于触控电极层107,金属走线层位于触控电极层107远离封装层206的一侧。其中,衬底层201可以为刚性衬底,也可以为柔性衬底;薄膜晶体管阵列层202包括多个薄膜晶体管,用于形成控制显示面板像素发光的像素电路;显示层205包括多个发光器件2051,发光器件2051包括依次堆叠的阳极4、发光层5和阴极6;封装层206用于对显示层205进行封装,以隔绝水氧,保证发光器件2051的使用寿命。可选的,封装层206包括两个 无机封装层和位于无机封装层之间的有机封装层。如图示意的,金属走线层包括第一金属走线层1081和第二金属走线层1082,图中第一金属走线层1081和第二金属走线层1082的相对位置仅作示意性表示。在相邻的金属层之间均设置有绝缘层(未标示)。其中,触控信号线中至少部分线段为降阻线段,降阻线段包括并联连接的第一子线段1111和第二子线段1112,第一子线段1111和第二子线段1112分别位于第一金属走线层1081和第二金属走线层1082。图中示意出了一条降阻线段111,第一子线段1111和第二子线段1112至少在两个位置处通过过孔相连接,第一子线段1111通过绝缘层上的过孔与触控电极13电连接。第一子线段和第二子线段并联连接构成的降阻线段能够降低电阻,也即能够降低触控信号线上的电阻,从而降低触控信号线上的压降,进而降低显示面板功耗。
在另一种实施例中,显示面板为有机发光显示面板,在触控电极层之上仅设置有一层金属层走线层,所有的触控信号线均位于同一个金属走线层中,采用一个金属层来制作触控信号线,可以降低显示面板的膜层厚度,在此不再附图示意。
本申请中触控电极层的制作材料包括金属钼、金属铝、金属钛中的一种或多种,金属走线层的制作材料包括金属钼、金属铝、金属钛中的一种或多种。可选的,触控电极层采用单层金属钼制作,或者采用钛铝钛三层金属,或者采用钼铝钼三层金属。金属走线层采用单层金属钼制作,或者采用钛铝钛三层金属,或者采用钼铝钼三层金属。
进一步的,在一种实施例中,图9为本申请实施例提供的显示面板的另一种可选实施方式局部俯视示意图。如图9所示,仅示意出了触控电极阵列中的部分触控电极13,触控电极13包括多个开口133,开口133在触控电极13厚度方向上贯穿触控电极13。其中,图中开口的形状仅作示意性表示。在有机发光显示面板中,触控电极位于显示层之上(可参见上述图8中的示意),发光器件发出的光线需要穿透触控电极所在的膜层才能够射出显示面板,本申请实施 例通过在触控电极上设置多个开口,从而形成网格状的触控电极,发光器件发出部分光线能够由开口射出显示面板,减少了光线穿透膜层时的光损失,从而在采用金属材料制作触控电极时,触控电极不会对发光器件的出光造成遮挡,能够保证发光器件的出光效率,避免对显示面板的亮度产生影响。
可选的,各个扇出走线区中的触控引线的数目相同,在根据上述图3和图4原理说明中示意的两种排布方式进行布线时,均能够保证各个扇出走线区内的扇形区在方向e上的宽度基本相同,从而节省扇形区占据的空间,有利于实现边框的窄化。
可选的,各个扇出走线区均具有中心轴,从而实现触控引线的合理排布,保证各个扇形区在方向e上占据的宽度基本相同。
在一种实施例中,图10为本申请实施例提供的显示面板的另一种可选实施方式局部示意图,图11为图10中弯折区为弯折状态时的简化示意图。如图10所示,非显示区2还包括弯折区7,弯折区7的弯折轴71与所述第一边界10平行,第二子引线122在垂直于第一边界10的方向上贯穿弯折区7,弯折轴71为虚拟轴并非显示面板中的实体结构,弯折区7能够沿弯折轴71进行弯折。在弯折区7的远离显示区1的一侧还设置有绑定区8,绑定区8用于绑定柔性电路板,驱动芯片可以固定在柔性电路板上,从而实现驱动芯片与显示面板的连接。弯折区7能够实现弯折,如图11中示意的,绑定有驱动芯片82的柔性电路板81随弯折区弯折后,能够置于显示面板的背离显示面的一侧。在弯折区为弯折状态时,驱动芯片位于显示面板的背面而不是正面,从而进一步的窄化显示面板的边框。
在一种实施例中,图12为本申请实施例提供的显示面板的另一种可选实施方式局部示意图。图13为本申请实施例提供的显示面板的另一种可选实施方式局部示意图。如图12和图13所示的,均以非显示区2包括四个扇出走线区为例,其中,一个扇出走线区为密集排布的多条触控引线占据的区域,在每个扇出走线区外侧设置有与触控引线相邻的屏蔽信号线14。图12中示意的相邻的两个扇出 走线区之间的分别与两条位于不同扇出走线区的触控引线相邻的两条屏蔽信号线14相互连接。图13中示意出在扇出走线区外侧设置的屏蔽信号线14不与其他屏蔽信号线连接。对于屏蔽信号线的设置方式可以根据具体的工艺需要进行设定。在面板应用中,屏蔽信号线14上通入直流电压信号或者将屏蔽信号线14接地,或者屏蔽信号线14上也可以通入与触控电极相同的电压信号。屏蔽信号线14能够起到信号屏蔽的作用,有效隔绝显示面板的信号串扰。其中,屏蔽信号线14可以与驱动芯片(比如上述图10实施例中介绍到的驱动芯片)电连接,通过驱动芯片给屏蔽信号线14提供电压信号,或者屏蔽信号线14通过柔性电路板与主板电连接,由主板直接给屏蔽信号线14提供信号。
进一步的,图14为本申请实施例提供的显示面板的另一种可选实施方式简化示意图。如图14所示,在触控电极阵列包括多个触控电极行131和多个触控电极列132;每个触控电极行131包括多个触控电极13,每个所述触控电极列132包括多个触控电极13,显示区1的中心轴9与第一边界10垂直。
多条触控信号线中的至少部分为跳转触控信号线112,跳转信号线的形状为折线。为了清楚示意跳转触控信号线112的设置方式,图中仅示意出部分触控信号线为跳转触控信号线112。跳转触控信号线包括起点91和终点92,起点91与一个触控电极13电连接,终点92与第一边界10相交;起点91距显示区1的中心轴9的距离为第三距离H3,终点92距中心轴9的距离为第四距离H4,第三距离H3大于第四距离H4。如图中示意的,跳转触控信号线112延伸出显示区的位置向靠近中心轴9的方向偏移。也即,在本申请中定义的跳转触控信号线的起点为跳转触控信号线与触控电极电连接的位置点;跳转触控信号线的终点为跳转触控信号线向设置有触控引线的非显示区的方向延伸时,跳转触控信号线在显示区的终点。
在相关技术中,触控信号线的延伸方向基本与中心轴9平行,触控信号线与触控电极电连接后直接在与中心轴9平行的方向上延 伸到显示区1与非显示区2的第一边界10(如图14中虚线框出的区域99,为相关技术中触控信号线在显示区的终点的位置),则触控信号线在显示区1的终点基本均匀分布在显示区1与非显示区2的第一边界10上,相应的触控引线与触控信号线连接位置也均分分散在第一边界10上,然后多条触控引线再逐渐收敛成一束走线,相关技术中的触控信号线的设置方式影响下边框空间的利用。而在本申请实施例中多条触控信号线中至少部分为跳转触控信号线,如图14中示意的,跳转触控信号线在显示区的终点向靠近中心轴9的方向发生偏移,则跳转触控信号线构成的扇出走线区也向中心轴9的方向靠拢,从而能够减小所有的扇出走线区在与第一边界10平行的方向上占据的总宽度,进一步节省了非显示区的空间。
在一种实施例中,图15为本申请实施例提供的显示面板的另一种可选实施方式局部示意图。如图15所示,多个触控电极列包括两个位于触控电极列边缘的边缘触控电极列1321,图中仅示意出了一个边缘触控电极列1321,其中,边缘触控电极列1321与显示区1的中心轴9平行;与至少一个边缘触控电极列1321中至少部分触控电极电连接的触控信号线为跳转触控信号线112。如图中仅示意出边缘触控电极列1321中的部分触控电极13,对于一条跳转触控信号线112来说,其起点91距显示区1的中心轴9的距离大于其终点92距中心轴9的距离。跳转触控信号线112延伸出显示区1的位置向靠近中心轴9的方向偏移,这些跳转触控信号线不需要再从图中区域20位置处引出与非显示区的触控引线相连,如图中示意的相应的触控引线12也向中心轴9方向靠拢(也可参照上述图14实施例说明进行理解),则能够减小图中区域20位置处非显示区内设置的触控引线数目,或者边缘触控电极中触控电极电连接的触控信号线均为跳转触控信号线,在该非显示区域20内不需要设置触控引线,从而能够节省出与显示区的拐角22相邻的非显示区的空间。
进一步的,继续参考图15所示,显示区1的靠近扇出走线区3一侧的拐角22为弧形拐角。采用本申请实施例中的跳转触控信号线 的设计,能够节省出与显示区的拐角22相邻的非显示区的空间,与拐角相邻的非显示区形状的可以适应拐角的形状进行设计,则与拐角22相邻的非显示形状可以根据拐角22的形状设计成弧形形状,能够实现与显示区的弧形拐角相邻的边框区的窄化。
在一种实施例中,图16为本申请实施例提供的显示面板的另一种可选实施方式局部示意图。如图16所示,多个触控电极列包括非边缘触控电极列1322,非边缘触控电极列1322位于两个边缘触控电极列1321之间,图中局部示意图,仅示意出了一个边缘触控电极列1321,以及位于边缘触控电极列1321和显示屏的中心轴(未示出)之间的非边缘触控电极列1322;与非边缘触控电极列1322中至少部分触控电极电连接的触控信号线为跳转触控信号线112。图中示意边缘触控电极列1321和非边缘触控电极列1322均对应有跳转触控信号线112。跳转触控信号线112形状为折线,跳转触控信号线的起点距中心轴的距离大于终点距中心轴的距离,如图16中示意的,跳转触控信号线112采用折线设计时,为了保证跳转触控信号线112的中心向中心轴的方向偏移,则在显示区1内两条跳转触控信号线由于走线方向不同可能会存在交叉,如图中虚线框出的区域666内存在跳转触控信号线之间交叉的情况。当相互交叉的两条跳转触控信号线采用同一个金属层来制作时,为了实现交叉位置处两条跳转触控信号线之间相互绝缘,可以采用跨桥线的设计,设置其中一个条跳转触控信号线在交叉位置处断开,然后通过另一个金属层中的跨桥线连接断开的跳转触控信号线线。当相互交叉的两条跳转触控信号线采用不同的金属层来制作时,即使走线方向不同导致这两条跳转触控信号线交叉,但是在交叉位置处这两条跳转触控信号线仍然是绝缘的。本申请实施例能够通过对跳转触控信号线的膜层位置和排布方式进行设计,实现各个位置处的跳转触控信号线在显示区的终点向靠近中心轴的方向发生偏移,从而相应的触控引线构成的扇出走线区也向中心轴的方向靠拢,能够减小所有的扇出走线区在第一边界平行的方向上占据的总宽度,节省了非显示区的空间。
进一步的,与跳转触控信号线的起点电连接的触控电极和与其终点相邻(例如,离该终点最近,或者与该终点在垂直于面板方向上交叠但没有电性连接)的触控电极位于不同的触控电极列。具体的,可参考上述图14中的示意,与跳转触控信号线112的起点电连接的触控电极13和与跳转触控信号线112终点相邻的触控电极13之间间隔有一个触控电极列132,则跳转触控信号线的终点向中心轴9方向偏移的偏移量至少为一个触控电极列的宽度。在实际产品中,与跳转触控信号线112的起点电连接的触控电极13和与跳转触控信号线112终点相邻的触控电极13之间间隔的触控电极列的个数,可以根据具体的设计需求进行选择。
本申请实施例中,跳转触控信号线的形状为折线,跳转触控信号线至少包括第一线段,其中,第一线段与显示区的中心轴不平行,也即第一线段与中心轴垂直,或者第一线段的延长线与中心轴形成一定夹角。如图17中的示意,图17为本申请实施例提供的显示面板的另一种可选实施方式局部示意图。仅示意出部分跳转触控信号线,跳转触控信号线的形状为折线,跳转触控信号线均包括第一线段41,图中仅以第一线段41与中心轴9大致垂直进行示意。相关技术中位于显示区的触控信号线的延伸方向基本显示区的中心轴平行,而本申请实施例设置跳转触控信号线包括第一线段,第一线段能够改变跳转触控信号线在显示区内的走线方向,从而使得跳转触控信号线的终点向靠近中心轴的方向移动,并且第一线段41的长度越长,跳转触控信号线的终点向显示区中心轴方向的偏移量越大,则与该条跳转触控信号线连接的触控引线向中心轴9延长线的方向移动,从而由触控引线构成的扇出走线区也向中心轴的方向靠拢,能够减小所有的扇出走线区在第一边界平行的方向上占据的总宽度。
继续参考图17所示,跳转触控信号线112包括第一类跳转触控信号线和第二类跳转触控信号线,其中,第一类跳转触控信号线包括第一线段41、与显示区的中心轴9平行的第二线段42和第三线段43,第一线段41的两端分别连接第二线段42的一端和第三线段 43的一端,第二线段42的另一端为跳转触控信号线的起点91,第三线段43的另一端为终点92,其中,终点92为跳转触控信号线在显示区1的终点;第一类跳转触控信号线由与触控电极13电连接的位置引出后,首先在与中心轴9平行的方向走线,然后走线方向转折向靠近中心轴9的方向延伸,然后走线方向再次转折沿与中心轴9平行的方向走线延伸到显示区1和非显示区2的第一边界10。
第二类跳转触控信号线包括第一线段41、与显示区的中心轴9平行的第四线段44,第一线段41的一端为跳转触控信号线的起点91,第一线段41的另一端与第四线段44的一端电连接,第四线段44的另一端为终点92。第二类跳转触控信号线由与触控电极13电连接的位置引出后,首先向靠近中心轴9方向走线,然后走线方向发生转折,在与中心轴9平行的方向走线延伸到显示区1和非显示区2的第一边界10。
通过采用第一类跳转触控信号线或者第二类跳转触控信号线的走线方式实现触控信号线在显示区的终点的位置向靠近中心轴的方向偏移,从而与该触控信号线连接的引线也向中心轴的延长线的方向偏移,则由多条触控引线构成的扇出走线区也向中心轴的延长线靠拢,从而能够减小所有的扇出走线区在与第一边界平行的方向占据的总宽度,节省了非显示区的空间。在实际面板中可以根据具体的需求,合理的应用第一类跳转触控信号线或者第二类跳转触控信号线的走线方式,对显示区内的触控信号线进行排布设计。
实际面板中触控信号线的数量非常多,以显示区中的触控电极阵列为18*40的阵列为例,则触控电极阵列中包括18个触控电极行和40个触控电极列,相应的与一个触控电极列对应的触控信号线的数目为40条,总共的触控信号线数目为40*18=720。在对触控信号线采用跳转走线设计时,部分的触控信号线之间可能存在交叉的情况,交叉是指两条触控信号线由于延伸方向不同均延伸到显示区的同一个位置后存在的交叉,为了避免触控信号线之间交叉短路,可以设置交叉位置处的触控信号线位于不同的金属层,或者采用跨桥 线的设计避免短路,具体可参考上述图16实施例中的说明,在此不再赘述。
在一些可选的实施方式中,跳转触控信号线的第一线段与第一边界平行,跳转触控信号线的起点距中心轴的第三距离与第一线段距第一边界的距离呈正相关。也即触控电极列距中心轴的距离越远,则与该触控电极列中的触控电极电连接的跳转触控信号线中的第一线段距第一边界的距离越远。以图17示意的显示面板进行说明,参考图中示意的跳转触控信号线112-1和跳转触控信号线112-2,跳转触控信号线112-1的起点91距中心轴9的距离大于跳转触控信号线112-2的起点91距中心轴9的距离。跳转触控信号线112-1中第一线段41距第一边界10的距离为h1,跳转触控信号线112-2中第一线段41距第一边界10的距离为h2,h1>h2。该实施方式能够简化在跳转走线区域内的触控信号线的布线方式,减小跳转触控信号线之间的交叉次数。其中,跳转走线区域即为第一线段所在区域、以及终点与第一线段之间的部分触控线段所在的区域。
在一种实施例中,触控电极阵列包括依次排列的第1触控电极列、第2触控电极列、第3触控电极列至第N触控电极列,N为正整数,其中,第1触控电极列与中心轴平行,并且第N触控电极列与中心轴的距离小于第1触控电极列与中心轴的距离;
与第n个触控电极列的多个触控电极电连接的触控信号线均为跳转触控信号线,与第n+1个触控电极列的多个触控电极电连接的触控信号线均为跳转触控信号线,且跳转触控信号线的终点与第n+2个触控电极列相邻,n为奇数,且n<N。以下以图18为例予以说明。
图18为本申请实施例提供的显示面板的局部示意图。触控电极阵列包括依次排列的第1触控电极列132-1、第2触控电极列132-2、第3触控电极列132-3、第4触控电极列132-4和第5触控电极列132-5。其中,与第1触控电极列132-1和第2触控电极列132-2中的触控电极电连接的跳转触控信号线的终点均与第3触控电极列 132-3相邻,其中跳转触控信号线的终点为跳转触控信号线与第一边界10相交的点,图中未示出,与第3触控电极列132-3和第4触控电极列132-4中的触控电极电连接的跳转触控信号线的终点均与第5触控电极列132-5相邻,以此类推。该实施方式中,对跳转触控信号线进行规律性的跳转走线设计,与第奇数个触控电极列中的触控电极连接的跳转触控信号线的终点和与第偶数个触控电极列中的触控电极连接的跳转触控信号线的终点均与同一个触控电极列相邻,规律性设计能够相对简化跳转触控信号线整体的布线方式,并且能够减少在跳转走线区域内跳转触控信号线之间的交叠次数,有利于简化制作工艺。
继续参考图18中示意的,多个触控电极行中包括相邻的第一个触控电极行131-1和第二个触控电极行131-2,且第一个触控电极行131-1与第一边界10相邻,其中,与第1触控电极列132-1和第3触控电极列132-3(也即与第n触控电极列,n为奇数)的多个触控电极13分别电连接的跳转触控信号线112中的第一线段41与第二个触控电极行131-2交叠;与第2触控电极列132-2和第4触控电极列132-4(也即与第n+1触控电极列)的多个触控电极13分别电连接的跳转触控信号线112中的第一线段41与第一个触控电极行131-1交叠。也即,与第n触控电极列中触控电极电连接的触控信号线在第二个触控电极行对应的位置开始转折向靠近显示区中心轴的方向走线,与第n+1触控电极列中触控电极电连接的触控信号线在第一个触控电极行对应的位置开始转折向靠近显示区中心轴的方向走线,仅占用显示区内第一个触控电极行和第二个触控电极行所在的区域作为跳转触控信号线的跳转走线区域,跳转走线区域占用面积小,其中,跳转走线区域即为第一线段所在区域、以及终点与第一线段之间的部分触控线段所在的区域。
另外,在跳转走线区域之外的触控信号线均可以设计成降阻线段,能够较大程度的降低各条触控信号线上电阻,进而降低功耗损失。同时如图18中示意的,跳转触控信号线112-3由与其电连接的 触控电极13引出后需要先向上拉线,然后再开始转折,本申请实施例中的方式,与第一触控电极行131-1中的触控电极电连接的跳转触控信号线向上拉线距离短,能够简化跳转触控信号线的拉线设置方式,减少跳转触控信号线之间的交叉,从而有利于简化工艺制程。
图19为图18中切线444位置处一种可选实施方式截面示意图。如图19所示,以显示面板为有机发光显示面板为例,显示面板包括位于触控电极层107远离封装层206一侧的第一金属走线层1081和第二金属走线层1082,在另一种实施例中,第一金属走线层1081和第二金属走线层1082的相对位置可以互换。图中示意,在跳转走线区域(第一个触控电极行131-1和第二个触控电极行131-2对应的位置)之外的跳转触控信号线采用降阻线段的设计,触控信号线组51中的三条跳转触控信号线在跳转转折后的走线均位于第二金属走线层1082,触控信号线组52中的三条跳转触控信号线在跳转转折后的走线均位于第一金属走线层1081。触控信号线组51中的三条触控信号线分别与同一个触控电极列中的触控电极电连接,触控信号线组52中的三条触控信号线也分别与同一个触控电极列中的触控电极电连接。该实施方式设计跳转走线区的分别与不同触控电极列中触控电极电连接的跳转触控信号线位于不同的金属走线层,从而实现合理的布线,避免跳转触控信号线交交叉导致短路。
在一种实施方式中,图20为图18中切线555位置处一种可选实施方式截面示意图,如图20所示,每条触控引线12均包括位于第一金属走线层1081的第一并联引线124和位于第二金属走线层1082的第二并联引线125,并且第一并联引线124和第二并联引线125并联连接,从而能够降低触控引线12上的电阻,降低触控信号在触控引线上传输时的压降,进一步降低功耗损失。
在另一种实施例中,位于非显示区的所有触控引线位于同一个金属层。
基于同一发明构思,本申请实施例还提供一种电子设备,图21为本申请实施例提供的电子设备示意图,如图21所示,电子设备包 括本申请任意实施例提供的显示面板100。其中,显示面板100的具体结构已经在上述实施例中进行了详细说明,此处不再赘述。当然,图21所示的电子设备仅仅为示意说明,该电子设备可以是例如手机、平板计算机、笔记本电脑、电纸书或电视机等任何具有显示功能的电子设备。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (16)

  1. 一种显示面板,其特征在于,包括:显示区和包围所述显示区的非显示区;
    所述显示区包括多个触控电极组成的触控电极阵列和多条触控信号线,一个所述触控电极与至少一条所述触控信号线电连接;
    所述非显示区包括至少两个扇出走线区,所述至少两个扇出走线区沿所述非显示区和所述显示区之间的第一边界排列,并且每个所述扇出走线区内均包括有多条触控引线,所述触控引线与所述触控信号线一一对应电连接;
    每个所述扇出走线区均包括扇形区和直线区,所述扇形区位于所述第一边界和所述直线区之间;
    每条所述触控引线均包括相互连接的第一子引线和第二子引线,所述第一子引线位于所述扇形区,所述第二子引线位于所述直线区;其中,
    位于不同的所述直线区且相邻的两个所述第二子引线之间的间距为第一距离,位于同一个所述直线区且相邻的两个所述第二子引线之间的间距为第二距离,所述第一距离大于所述第二距离。
  2. 根据权利要求1所述的显示面板,其特征在于,
    所述触控电极阵列包括多个触控电极行和多个触控电极列,其中,每个所述触控电极行包括多个触控电极,每个所述触控电极列包括多个触控电极;
    所述显示区的中心轴与所述第一边界垂直;
    多条所述触控信号线中的至少部分为跳转触控信号线,所述跳转触控信号线的形状为折线,所述跳转触控信号线包括起点和终点,所述起点与一个所述触控电极电连接,所述终点与所述第一边界相交;其中,
    所述起点距所述中心轴的距离为第三距离,所述终点距所述中心轴的距离为第四距离,所述第三距离大于所述第四距离。
  3. 根据权利要求2所述的显示面板,其特征在于,
    所述多个触控电极列包括两个位于所述触控电极阵列的边缘的边缘触控电极阵列;
    与至少一个所述边缘触控电极列中至少部分触控电极电连接的触控信号线为所述跳转触控信号线。
  4. 根据权利要求3所述的显示面板,其特征在于,
    所述显示区的靠近所述扇出走线区一侧的拐角为弧形拐角。
  5. 根据权利要求3所述的显示面板,其特征在于,
    所述多个触控电极列还包括非边缘触控电极列,所述非边缘触控电极列位于所述两个边缘触控电极列之间;
    与所述非边缘触控电极列中至少部分触控电极电连接的触控信号线为所述跳转触控信号线。
  6. 根据权利要求2所述的显示面板,其特征在于,
    与所述起点电连接的所述触控电极和与所述终点相邻的所述触控电极位于不同的所述触控电极列。
  7. 根据权利要求2所述的显示面板,其特征在于,
    所述跳转触控信号线至少包括第一线段,所述第一线段与所述中心轴不平行。
  8. 根据权利要求7所述的显示面板,其特征在于,
    所述第一线段与所述第一边界平行,所述第三距离与所述第一线段距所述第一边界的距离呈正相关。
  9. 根据权利要求7或8所述的显示面板,其特征在于,
    所述触控电极阵列包括依次排列的第1触控电极列、第2触控电极列、第3触控电极列至第N触控电极列,N为正整数,其中,
    所述第1触控电极列与所述中心轴平行,并且与所述中心轴的距离大于所述第2至第N触控电极列中任一触控电极列与所述中心轴的距离;
    与第n触控电极列的多个所述触控电极电连接的触控信号线均为所述跳转触控信号线,与第n+1触控电极列的多个所述触控电极电连接的触控信号线均为所述跳转触控信号线,且所述跳转触控信 号线的所述终点与第n+2触控电极列相邻,n为奇数,且n<N。
  10. 根据权利要求9所述的显示面板,其特征在于,
    所述多个触控电极行中的第一个触控电极行和第二个触控电极行相邻,且所述第一个触控电极行与所述第一边界相邻,其中,
    与第n触控电极列的多个所述触控电极分别电连接的所述跳转触控信号线中的所述第一线段与所述第二个触控电极行交叠;
    与第n+1触控电极列的多个所述触控电极分别电连接的所述跳转触控信号线中的所述第一线段与所述第一个触控电极行交叠。
  11. 根据权利要求7所述的显示面板,其特征在于,
    所述跳转触控信号线还包括与所述中心轴平行的第二线段和第三线段,所述第一线段的两端分别连接所述第二线段的一端和所述第三线段的一端,所述第二线段的另一端为所述起点,所述第三线段的另一端为所述终点;或者,
    所述跳转触控信号线还包括与所述中心轴平行的第四线段,所述第一线段的一端为所述起点,所述第一线段的另一端与所述第四线段的一端电连接,所述第四线段的另一端为所述终点。
  12. 根据权利要求1至11任一项所述的显示面板,其特征在于,
    所述显示面板还包括衬底层和位于所述衬底层之上的金属走线层,所述金属走线层包括第一金属走线层和第二金属走线层;
    所述多条触控信号线中至少部分包括降阻线段,所述降阻线段包括并联连接的第一子线段和第二子线段,所述第一子线段和所述第二子线段分别位于所述第一金属走线层和所述第二金属走线层。
  13. 根据权利要求12所述的显示面板,其特征在于,
    所述显示面板还包括在所述衬底层之上依次排列的薄膜晶体管阵列层、显示层、封装层和触控电极层,所述触控电极阵列位于所述触控电极层,所述金属走线层位于所述触控电极层远离所述封装层的一侧。
  14. 根据权利要求1至13任一项所述的显示面板,其特征在于,
    在每个所述扇出走线区外侧设置有与所述触控引线相邻的屏蔽 信号线。
  15. 根据权利要求1所述的显示面板,其特征在于,
    所述非显示区还包括弯折区,所述弯折区的弯折轴与所述第一边界平行,所述第二子引线在垂直于所述第一边界的方向上贯穿所述弯折区。
  16. 一种电子设备,其特征在于,包括权利要求1至15任一项所述的显示面板。
PCT/CN2020/131136 2020-02-21 2020-11-24 一种显示面板和电子设备 WO2021164359A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/801,194 US11907468B2 (en) 2020-02-21 2020-11-24 Display panel and electronic device
EP20920049.2A EP4099139A4 (en) 2020-02-21 2020-11-24 DISPLAY SCREEN AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010108792.XA CN113296624B (zh) 2020-02-21 2020-02-21 一种显示面板和电子设备
CN202010108792.X 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021164359A1 true WO2021164359A1 (zh) 2021-08-26

Family

ID=77318551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131136 WO2021164359A1 (zh) 2020-02-21 2020-11-24 一种显示面板和电子设备

Country Status (4)

Country Link
US (1) US11907468B2 (zh)
EP (1) EP4099139A4 (zh)
CN (1) CN113296624B (zh)
WO (1) WO2021164359A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822260A (zh) * 2022-05-09 2022-07-29 武汉华星光电技术有限公司 显示面板及电子设备
WO2023197940A1 (zh) * 2022-04-15 2023-10-19 华为技术有限公司 一种显示触控模组和显示装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113296632B (zh) * 2021-05-20 2023-11-03 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN113835559B (zh) * 2021-09-26 2023-07-25 武汉华星光电半导体显示技术有限公司 显示面板
CN114415861B (zh) * 2022-02-15 2023-11-28 武汉华星光电半导体显示技术有限公司 显示面板
CN114550670A (zh) * 2022-03-02 2022-05-27 广州华星光电半导体显示技术有限公司 显示面板
CN117836745A (zh) * 2022-05-31 2024-04-05 京东方科技集团股份有限公司 触控结构、触控显示面板和电子设备
CN114899213B (zh) * 2022-06-21 2024-07-26 厦门天马显示科技有限公司 显示面板和显示装置
CN117957516A (zh) * 2022-08-29 2024-04-30 京东方科技集团股份有限公司 显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121687A (ja) * 2005-10-28 2007-05-17 Epson Imaging Devices Corp 液晶表示装置
US20080137016A1 (en) * 2006-12-11 2008-06-12 Kim So Woon Fanout line structure and flat display device including fanout line structure
CN106526995A (zh) * 2016-10-31 2017-03-22 厦门天马微电子有限公司 一种阵列基板和显示面板
CN106707646A (zh) * 2017-02-07 2017-05-24 厦门天马微电子有限公司 一种阵列基板和显示面板
CN107300793A (zh) * 2017-06-30 2017-10-27 厦门天马微电子有限公司 显示面板及显示装置
CN108563362A (zh) * 2018-04-27 2018-09-21 武汉华星光电技术有限公司 触控显示面板
CN109212852A (zh) * 2018-10-29 2019-01-15 昆山国显光电有限公司 显示面板及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201113787A (en) * 2009-10-05 2011-04-16 Au Optronics Corp Touch display panel and display device
CN106843616B (zh) 2017-01-03 2020-05-19 京东方科技集团股份有限公司 一种触控基板及其制作方法、触控显示装置
KR102377527B1 (ko) * 2017-09-01 2022-03-24 삼성디스플레이 주식회사 입력감지유닛 및 이를 구비한 표시장치
JP2019086575A (ja) 2017-11-02 2019-06-06 シャープ株式会社 表示装置
CN110858087B (zh) * 2018-08-23 2023-04-28 群创光电股份有限公司 触控式显示装置
KR20200039862A (ko) * 2018-10-05 2020-04-17 삼성디스플레이 주식회사 표시장치
CN110412802A (zh) * 2019-06-27 2019-11-05 厦门天马微电子有限公司 显示面板和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121687A (ja) * 2005-10-28 2007-05-17 Epson Imaging Devices Corp 液晶表示装置
US20080137016A1 (en) * 2006-12-11 2008-06-12 Kim So Woon Fanout line structure and flat display device including fanout line structure
CN106526995A (zh) * 2016-10-31 2017-03-22 厦门天马微电子有限公司 一种阵列基板和显示面板
CN106707646A (zh) * 2017-02-07 2017-05-24 厦门天马微电子有限公司 一种阵列基板和显示面板
CN107300793A (zh) * 2017-06-30 2017-10-27 厦门天马微电子有限公司 显示面板及显示装置
CN108563362A (zh) * 2018-04-27 2018-09-21 武汉华星光电技术有限公司 触控显示面板
CN109212852A (zh) * 2018-10-29 2019-01-15 昆山国显光电有限公司 显示面板及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099139A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197940A1 (zh) * 2022-04-15 2023-10-19 华为技术有限公司 一种显示触控模组和显示装置
CN114822260A (zh) * 2022-05-09 2022-07-29 武汉华星光电技术有限公司 显示面板及电子设备

Also Published As

Publication number Publication date
CN113296624A (zh) 2021-08-24
CN113296624B (zh) 2022-12-27
EP4099139A4 (en) 2023-07-26
US20230097832A1 (en) 2023-03-30
EP4099139A1 (en) 2022-12-07
US11907468B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2021164359A1 (zh) 一种显示面板和电子设备
CN109491121B (zh) 显示面板和显示装置
CN108021267B (zh) 触控显示装置
WO2017028492A1 (zh) 触控基板及其制作方法和驱动方法、触摸显示装置
CN112198990B (zh) 一种触控面板和显示装置
CN109634459B (zh) 有机发光显示面板和显示装置
US10539819B2 (en) Touch panel and manufacturing method therefor, display apparatus
CN109062442B (zh) 有机发光显示面板和显示装置
WO2020156057A1 (zh) 显示器及其显示面板
CN108549170B (zh) 一种显示面板以及电子设备
CN114280861B (zh) 阵列基板及显示装置
CN205375424U (zh) 一种触控显示面板及触控显示装置
US10963114B1 (en) Touch display panel
CN113296640B (zh) 触控显示面板
US20240241410A1 (en) Display module
US11139362B2 (en) Display panel with asymmetrically disposed pads
CN112114701A (zh) 显示面板
WO2023231104A1 (zh) 显示面板及显示终端
WO2021031352A1 (zh) 一种触控结构及显示面板
CN111948859A (zh) 显示基板以及显示装置
CN103926764A (zh) 一种tft阵列基板及显示面板、显示装置
CN114356138B (zh) 一种触控显示面板及显示装置
CN115268708A (zh) 一种触控面板及触控显示装置
WO2022110055A1 (zh) 显示基板、显示面板及显示装置
WO2024060238A2 (zh) 显示面板及显示模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020920049

Country of ref document: EP

Effective date: 20220830

NENP Non-entry into the national phase

Ref country code: DE