WO2021164062A1 - 一种系统余振消除方法、设备及存储介质 - Google Patents

一种系统余振消除方法、设备及存储介质 Download PDF

Info

Publication number
WO2021164062A1
WO2021164062A1 PCT/CN2020/078173 CN2020078173W WO2021164062A1 WO 2021164062 A1 WO2021164062 A1 WO 2021164062A1 CN 2020078173 W CN2020078173 W CN 2020078173W WO 2021164062 A1 WO2021164062 A1 WO 2021164062A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
time
signal
original
voltage
Prior art date
Application number
PCT/CN2020/078173
Other languages
English (en)
French (fr)
Inventor
郑亚军
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021164062A1 publication Critical patent/WO2021164062A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/014Force feedback applied to GUI
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the present invention relates to the field of electrical signal processing, in particular to a method, equipment and storage medium for eliminating system after-vibration.
  • haptic effects are widely used in application fields such as tactile feedback, game effects, vibration reminders, etc., which continue to promote the innovation and development of vibration motors, and the types of vibration motors are also changing with each passing day.
  • the diversity of vibration effects is also improved differently. Due to the differences in motors or vibration systems, the same excitation signal often results in large effect differences in motors or systems of the same type and different individuals, and the most influential tactile experience is often The last after vibration (tailing) stage of vibration.
  • the after-vibration with larger difference brings a great difference in tactile experience, and the after-vibration with smaller difference brings a smaller difference in tactile experience.
  • the existing after-vibration elimination method is to set the after-vibration shielding time, shield the electrical signal of the after-vibration during the after-vibration generation period, and eliminate the influence of the after-vibration on the signal; but to completely eliminate the after-vibration, the after-vibration shield must be increased.
  • setting a longer after-vibration shielding time also increases the blind zone of the system and affects the overall operation of the system.
  • one of the objectives of the present invention is to provide a method for eliminating system after-vibration, which can quickly and accurately eliminate the electrical signal of the system after-vibration, and avoid the system blind zone.
  • the second objective of the present invention is to provide a terminal device that realizes automatic elimination of system aftervibration.
  • the third object of the present invention is to provide a storage medium that can fully automatically eliminate system aftervibration.
  • a method for eliminating system residual vibration including the following steps:
  • Step S1 retrieve the preset electrical signal and the original vibration signal, and respectively place the preset voltage and the original voltage corresponding to the preset electrical signal and the original vibration signal on the system time axis, so that the preset voltage causes the vibration of the vibration The time does not coincide with the vibration time of the original voltage;
  • Step S2 Record the signal end time of the preset electrical signal and the original vibration signal, and output a system identification signal;
  • Step S3 Collect the preset electrical signal and the vibration response information of the original vibration signal before the end of vibration, and calculate the after vibration elimination based on the preset electrical signal, the signal end time of the original vibration signal and the vibration response information Voltage;
  • Step S4 retrieve the original voltage and the after-vibration elimination voltage, and relocate them on the system time axis to output an electrical signal for eliminating the after-vibration.
  • step S1 the time when the preset voltage is placed on the system time axis is time t1, and the time when the original voltage is placed on the system time axis is time t3; between the time t1 and time t3 To meet the conditions:
  • tp is the duration of the original voltage trigger to the end of the vibration; a is the empirical constant value.
  • the way of obtaining the vibration response information is: calculating acceleration data through a white box model or a black box model, and acquiring vibration response information according to the acceleration data.
  • the signal end time of the preset electrical signal is time t2
  • the signal end time of the original vibration signal is time t4.
  • the vibration response information includes the amplitude K1 and the time T1 of the first peak after the time t2 of the preset electrical signal, and the amplitude K2 and the first peak after the time t4 of the original vibration signal. Time T2.
  • the method for calculating the after-vibration elimination voltage in the step S3 is:
  • the preset electrical signal is a sine wave with a single or multiple cycles.
  • a terminal device includes a processor, a memory, and a computer program that is stored on the memory and can run on the processor.
  • the processor implements the aforementioned method for eliminating system aftervibration when the processor executes the computer program.
  • the present invention has the following beneficial effects:
  • the invention calculates the after-vibration elimination voltage by collecting the original vibration signal and the vibration response information of the preset electrical signal before the end of the vibration.
  • the after-vibration elimination voltage can eliminate the system after-vibration caused by the original vibration signal and avoid the blind zone
  • the present invention breaks away from the motor simulation model and parameter errors, uses the signal processing system algorithm to optimize the electrical signal, so that the after-vibration processing process is more efficient.
  • Figure 1 is a schematic diagram of the overall flow of the present invention
  • Fig. 2 is a schematic flow chart of the identification signal V2 of the output system of the present invention.
  • Fig. 3 is a schematic diagram of the process of outputting the after-vibration cancellation electric signal Vs according to the present invention
  • Fig. 5 is an acceleration signal diagram of the preset electrical signal P1 and the original vibration signal V1 of the present invention
  • Fig. 6 is a signal diagram of the output signal Vs for eliminating residual vibration according to the present invention.
  • the present invention provides a system after vibration elimination method, which is applied in a terminal system.
  • the after vibration caused by the signal is eliminated through the electrical signal processing algorithm, which can quickly and accurately eliminate the system after vibration
  • the electrical signal can avoid blind spots in the system and improve the stability of system operation.
  • the method for eliminating the after vibration of the system is applied to the terminal system. First, import or select the signal that needs to eliminate the after vibration in the system as the original vibration signal V1, and control the system to start running, and the system will operate according to its own system time axis , And carry out information processing on the signal that needs to eliminate the after-vibration through the following steps:
  • Step S1 First, call the preset electrical signal P1 in the system, where the preset electrical signal P1 can be a random signal.
  • the preset electrical signal P1 can be a simple single or multiple period sine wave;
  • the preset voltage corresponding to the preset electrical signal P1 and the original voltage corresponding to the original vibration signal V1 are respectively placed on two different moments of the system time axis, as shown in FIG. 4, the preset voltage is placed in the system
  • the time on the time axis is time t1
  • the time when the original voltage is placed on the system time axis is time t3
  • the conditions between time t1 and time t3 are met:
  • tp is the duration of the original voltage trigger to the end of the vibration
  • a is the empirical constant value. Meeting the above conditions at t1 and t3 can ensure that the original voltage cannot be installed before the vibration caused by the preset voltage ends, and it is ensured that the vibration time of the vibration caused by the preset voltage does not coincide with the vibration time of the original voltage.
  • the empirical constant value a is 2, which ensures that the vibrations caused by the two voltages do not overlap, reduces the amount of system calculations, and speeds up the system operation speed.
  • Step S2 Record the signal end time of the preset electrical signal P1 and the original vibration signal V1, wherein the signal end time of the preset electrical signal P1 is time t2, and the signal end time of the original vibration signal V1 is time t4 .
  • the preset electrical signal P1 ends at time t2, and then vibrates after time t2; in the same way, when the system runs to time t3, the original voltage is triggered, and the original vibration The signal V1 ends at time t4, and then vibrates after time t4, and finally the system outputs a system identification signal V2.
  • the system judges in real time whether the voltages of the preset electrical signal and the original vibration signal after the trigger are reset to zero. If it is zero, it means that the signal vibration is over; Before the end of the vibration, the vibration response information is collected.
  • Step S3 Collect the preset electrical signal and the vibration response information of the original vibration signal before the end of vibration, and calculate the after-vibration elimination voltage based on the preset electrical signal, the end time of the original vibration signal and the vibration response information .
  • the method for obtaining the vibration response information is to collect acceleration data through actual equipment, or to calculate the acceleration data by establishing a white box model or a black box model, and obtain the vibration response information according to the acceleration data.
  • the amplitude of the acceleration data symbolizes the amplitude relationship between the preset electrical signal P1 and the original vibration signal V1, and corresponds to the preset electrical signal P1 and the original vibration signal V1.
  • the vibration response information includes the amplitude K1 and the time T1 of the first peak after the time t2 of the preset electrical signal, and the amplitude K2 and the time T2 of the first peak after the time t4 of the original vibration signal.
  • the purpose of collecting the amplitude K1 of the first peak value after time t2 and the parameters at time T1 of the preset electrical signal is to ensure that the vibration waveform used for cancellation is the after-vibration waveform, not the main vibration waveform; similarly, collect the time t4
  • the purpose of the amplitude K2 of the first peak after that and the parameters at time T2 are also to ensure that the eliminated vibration is after vibration, which is consistent with the wave shape after t2, but the amplitude is different.
  • the method for calculating the after-vibration elimination voltage is:
  • Step S4 retrieve the original voltage and after-vibration elimination voltage Vr, and place the original voltage at time t3 on the system time axis, and place the after-vibration elimination voltage Vr at time t1+ ⁇ T on the system time axis, as shown in Figure 6. It shows that the after-vibration elimination voltage is scaled and shifted to the vibration area of the original vibration signal, and the system can output the electrical signal Vs after eliminating the after-vibration, so as to eliminate the after-vibration of the original vibration signal.
  • this embodiment is free from model errors and parameter errors in simulation calculations. It is also suitable for white box models (models that can write equations of motion) and black box models (models that cannot write equations of motion). , Has greater universality and accuracy; and the calculation process does not require human involvement, which is a very efficient design method.
  • An electronic device includes a memory, a processor, and a program stored in the memory.
  • the program is configured to be executed by the processor, and the processor implements the steps of the method for eliminating system aftervibration when the program is executed by the processor.
  • the present invention also provides a storage medium that stores a computer program that, when executed by a processor, implements the steps of the aforementioned method for eliminating system aftervibration.
  • the present invention can be used in many general-purpose or special-purpose computing system environments or configurations.

Abstract

本发明公开了一种系统余振消除方法、设备及存储介质,其中消除方法包括:S1:调取预设电信号和原始振动信号,并分别将预设电信号和原始振动信号对应的预设电压和原始电压安置在系统时间轴上;S2:记录预设电信号和原始振动信号的信号结束时刻,并输出系统辨识信号;S3:采集预设电信号和原始振动信号在振动结束前的振动响应信息,根据预设电信号、原始振动信号的信号结束时刻和振动响应信息计算余振消除电压;S4:调取原始电压和余振消除电压,并将其重新安置在系统时间轴上以输出消除余振电信号。本发明可快速精确的消除系统余振的电信号,避免产生系统盲区。

Description

一种系统余振消除方法、设备及存储介质 技术领域
本发明涉及电信号处理领域,尤其涉及一种系统余振消除方法、设备及存储介质。
背景技术
目前,触觉效果在触觉反馈、游戏效果、振动提醒等应用领域的广泛运用,不断推动着振动马达的创新发展,振动马达的类型也是日新月异。振动效果的多样性也是不同提升,由于马达或振动系统的差异性,经常导致同一激励信号,在同类型不同个体的马达或系统中,出现较大的效果差异,而最影响触觉体验的往往是振动的最后余振(拖尾)阶段。差异较大的余振,带来较大差异的触觉体验,差异较小的余振,带来较小差异的触觉体验。
技术问题
而现有的余振消除方法为设置余振屏蔽时间,在余振产生时段内屏蔽余振电信号,消除余振对信号的影响;但是若要完全消除余振,则必须加大余振屏蔽时间,但是设置更长的余振屏蔽时间同样也加大了系统的盲区,影响系统的整体运行。
技术解决方案
为了克服现有技术的不足,本发明的目的之一在于提供一种系统余振消除方法,快速精确的消除系统余振的电信号,避免产生系统盲区。
本发明的目的之二在于提供一种实现全自动消除系统余振的终端设备。
本发明的目的之三在于提供一种实现全自动消除系统余振的存储介质。
本发明的目的之一采用如下技术方案实现:
一种系统余振消除方法,包括如下步骤:
步骤S1:调取预设电信号和原始振动信号,并分别将预设电信号和原始振动信号对应的预设电压和原始电压安置在系统时间轴上,使所述预设电压引起振动的振动时间与所述原始电压的振动时间不重合;
步骤S2:记录所述预设电信号和原始振动信号的信号结束时刻,并输出系统辨识信号;
步骤S3:采集所述预设电信号和所述原始振动信号在振动结束前的振动响应信息,根据所述预设电信号、所述原始振动信号的信号结束时刻和振动响应信息计算余振消除电压;
步骤S4:调取原始电压和余振消除电压,并将其重新安置在系统时间轴上以输出消除余振电信号。
进一步地,所述步骤S1中所述预设电压安置在系统时间轴上的时刻为t1时刻,所述原始电压安置在系统时间轴上的时刻为t3时刻;所述t1时刻和t3时刻之间满足条件:
t3-t1≥(tp+a)
其中tp为原始电压触发到振动结束的持续时间长度;a为经验常数值。
进一步地,所述振动响应信息的获取方式为:通过白盒模型或黑盒模型计算加速度数据,根据加速度数据获取振动响应信息。
进一步地,所述预设电信号的信号结束时刻为t2时刻,所述原始振动信号的信号结束时刻为t4时刻。
进一步地,所述振动响应信息包括所述预设电信号t2时刻以后的第一个峰值的幅值K1及时刻T1,和所述原始振动信号t4时刻之后的第一个峰值的幅值K2及时刻T2。
进一步地,所述步骤S3中计算所述余振消除电压的方法为:
步骤S31:计算电压缩放比例:r=K2/K1;
步骤S32:计算余振消除电压:Vr = -r*预设电压值。
进一步地,所述步骤S4中原始电压安置在系统时间轴上的t3时刻,所述余振消除电压安置在系统时间轴上的t1+ΔT时刻,其中ΔT = T2-T1。
进一步地,所述预设电信号为单个或多个周期的正弦波。
本发明的目的之二采用如下技术方案实现:
一种终端设备,其包括处理器、存储器及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现前述的系统余振消除方法。
本发明的目的之三采用如下技术方案实现:
一种存储介质,其上存储有计算机程序,所述计算机程序被执行时实现前述的系统余振消除方法。
有益效果
相比现有技术,本发明的有益效果在于:
本发明通过采集原始振动信号和预设电信号在振动结束前的振动响应信息,从而计算出余振消除电压,该余振消除电压可实现消除原始振动信号引起的系统余振,避免系统出现盲区;本发明脱离马达仿真模型及参数误差,利用信号处理系统算法优化电信号,使得余振处理过程更加高效。
附图说明
图1为本发明整体流程示意图;
图2为本发明输出系统辨识信号V2的流程示意图;
图3为本发明输出消除余振电信号Vs的流程示意图;
图4为本发明预设电信号P1和原始振动信号V1的信号图;
图5为本发明预设电信号P1和原始振动信号V1的加速度信号图;
图6为本发明输出消除余振电信号Vs的信号图。
本发明的实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
实施例一
请参阅图1~图3,本发明提供一种系统余振消除方法,应用在终端系统中,通过电信号处理算法对信号所引起的余振进行消除,可快速且精确的达到消除系统余振的电信号,避免系统出现盲区,提高系统运行稳定性。
所述系统余振的消除方法应用在终端系统中,首先在系统中导入或选取需要消除余振的信号作为原始振动信号V1,并控制系统开始运行,系统会根据其自身的系统时间轴进行运行,并通过如下步骤对需要消除余振的信号进行信息处理:
步骤S1:首先,在系统中调取预设电信号P1,其中预设电信号P1可为随机信号,为了便于直观观察,预设电信号P1可选用简单的单个或多个周期的正弦波;
其后,将预设电信号P1对应的预设电压和原始振动信号V1对应的原始电压分别安置在系统时间轴的两个不同时刻上,如图4所示,所述预设电压安置在系统时间轴上的时刻为t1时刻,所述原始电压安置在系统时间轴上的时刻为t3时刻,且所述t1时刻和t3时刻之间满足条件:
t3-t1≥(tp+a)
其中tp为原始电压触发到振动结束的持续时间长度;a为经验常数值。t1和t3时刻满足上述条件可保证预设电压引起的振动结束前,不可安置原始电压, 确保所述预设电压引起振动的振动时间与所述原始电压的振动时间不重合。而在本实施例中,经验常数值a为2,确保两电压所引起的振动不重合外,还降低了系统运算量,加快系统运行速率。
步骤S2:记录所述预设电信号P1和原始振动信号V1的信号结束时刻,其中所述预设电信号P1的信号结束时刻为t2时刻,所述原始振动信号V1的信号结束时刻为t4时刻。
系统运行经过t1时刻的预设电压触发后,所述预设电信号P1在t2时刻结束,其后在t2时刻之后产生振动;同理,运行至t3时刻时,原始电压触发,所述原始振动信号V1在t4时刻结束,其后在t4时刻之后产生振动,最后系统输出系统辨识信号V2。此外系统实时判断触发后的所述预设电信号和所述原始振动信号的电压是否重新归零,若为零,则代表信号振动结束;并在所述预设电信号和所述原始振动信号的振动结束前进行振动响应信息的采集。
步骤S3:采集所述预设电信号和所述原始振动信号在振动结束前的振动响应信息,根据所述预设电信号、所述原始振动信号的结束时刻和振动响应信息计算余振消除电压。
所述振动响应信息的获取方式为可通过实际设备进行加速度数据采集,也可通过建立白盒模型或黑盒模型计算加速度数据,根据加速度数据获取振动响应信息。其中,如图5所示,加速度数据的幅值象征着预设电信号P1与原始振动信号V1之间的幅值关系,与预设电信号P1、原始振动信号V1相对应。
所述振动响应信息包括所述预设电信号t2时刻以后的第一个峰值的幅值K1及时刻T1,和所述原始振动信号t4时刻之后的第一个峰值的幅值K2及时刻T2。采集所述预设电信号t2时刻之后的第一个峰值的幅值K1及时刻T1参数的目的在于保证用于抵消的振动波形是余振波形,而不是主要振动波形;同理,采集t4时刻之后的第一个峰值的幅值K2及时刻T2参数的目的同样在于确保消除的振动是余振,与t2时刻以后的波形状一致,只是幅值不同。
其中,计算所述余振消除电压的方法为:
步骤S31:计算电压缩放比例:r=K2/K1;其中数值r表征了原始振动信号V1产生的余振与预设电信号P1响应之间的大小关系;
步骤S32:计算电压移位时长:ΔT = T2-T1;
步骤S33:计算余振消除电压:Vr = -r*预设电压值,而余振消除电压Vr可用于消除原始振动信号V1引起的系统余振。
步骤S4:调取原始电压和余振消除电压Vr,将原始电压安置在系统时间轴上的t3时刻,所述余振消除电压Vr安置在系统时间轴上的t1+ΔT时刻,如图6所示,余振消除电压经过缩放移位至原始振动信号的振动区域,系统即可输出消除余振后的电信号Vs,实现消除原始振动信号的余振。
本实施例根据马达的实际响应特征,脱离仿真计算中的模型误差,及参数误差,同时适用于白盒模型(可写出运动方程的模型)与黑盒模型(不可写出运动方程的模型),具有较大的普适性与准确性;且计算流程无需人为参与,是一种十分高效的设计方法。
实施例二
一种电子设备,包括存储器、处理器以及存储在存储器中的程序,所述程序被配置成由处理器执行,处理器执行所述程序时实现上述系统余振消除方法的步骤。
本实施例中的设备与前述实施例中的方法是基于同一发明构思下的两个方面,在前面已经对方法实施过程作了详细的描述,所以本领域技术人员可根据前述描述清楚地了解本实施中的系统的结构及实施过程,为了说明书的简洁,在此就不再赘述。
另外,本发明还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现前述系统余振消除方法的步骤。
本发明可用于众多通用或专用的计算系统环境或配置中。例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、机顶盒、可编程的消费电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种系统余振消除方法,其特征在于,包括如下步骤:
    步骤S1:调取预设电信号和原始振动信号,并分别将所述预设电信号和所述原始振动信号对应的预设电压和原始电压安置在系统时间轴上,使所述预设电压引起振动的振动时间与所述原始电压的振动时间不重合;
    步骤S2:记录所述预设电信号和所述原始振动信号的信号结束时刻,并输出系统辨识信号;
    步骤S3:采集所述预设电信号和所述原始振动信号在振动结束前的振动响应信息,根据所述预设电信号、所述原始振动信号的信号结束时刻和所述振动响应信息计算余振消除电压;
    步骤S4:调取所述原始电压和所述余振消除电压,并将其重新安置在系统时间轴上以输出消除余振电信号。
  2. 根据权利要求1所述的系统余振消除方法,其特征在于,所述步骤S1中所述预设电压安置在系统时间轴上的时刻为t1时刻,所述原始电压安置在系统时间轴上的时刻为t3时刻;所述t1时刻和t3时刻之间满足条件:
    t3-t1≥(tp+a)
    其中tp为原始电压触发到振动结束的持续时间长度;a为经验常数值。
  3. 根据权利要求1所述的系统余振消除方法,其特征在于,所述振动响应信息的获取方式为:通过白盒模型或黑盒模型计算加速度数据,根据加速度数据获取振动响应信息。
  4. 根据权利要求1所述的系统余振消除方法,其特征在于,所述预设电信号的信号结束时刻为t2时刻,所述原始振动信号的信号结束时刻为t4时刻。
  5. 根据权利要求4所述的系统余振消除方法,其特征在于,所述振动响应信息包括所述预设电信号t2时刻以后的第一个峰值的幅值K1及时刻T1,和所述原始振动信号t4时刻之后的第一个峰值的幅值K2及时刻T2。
  6. 根据权利要求5所述的系统余振消除方法,其特征在于,所述步骤S3包括:
    步骤S31:计算电压缩放比例:r=K2/K1;
    步骤S32:计算余振消除电压:Vr = -r*预设电压值。
  7. 根据权利要求1所述的系统余振消除方法,其特征在于,所述步骤S4中原始电压安置在系统时间轴上的t3时刻,所述余振消除电压安置在系统时间轴上的t1+ΔT时刻,其中ΔT = T2-T1。
  8. 根据权利要求1所述的系统余振消除方法,其特征在于,所述预设电信号为单个或多个周期的正弦波。
  9. 一种终端设备,其特征在于,其包括处理器、存储器及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现权利要求1~8任一所述的系统余振消除方法。
  10. 一种存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被执行时实现权利要求1~8任一所述的系统余振消除方法。
PCT/CN2020/078173 2020-02-19 2020-03-06 一种系统余振消除方法、设备及存储介质 WO2021164062A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010101950.9 2020-02-19
CN202010101950.9A CN111552375B (zh) 2020-02-19 2020-02-19 一种系统余振消除方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021164062A1 true WO2021164062A1 (zh) 2021-08-26

Family

ID=72004067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078173 WO2021164062A1 (zh) 2020-02-19 2020-03-06 一种系统余振消除方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN111552375B (zh)
WO (1) WO2021164062A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553153A (en) * 1993-02-10 1996-09-03 Noise Cancellation Technologies, Inc. Method and system for on-line system identification
CN103854688A (zh) * 2012-12-04 2014-06-11 纬创资通股份有限公司 具有硬盘振动抑制功能的电子装置及硬盘振动抑制方法
CN104298307A (zh) * 2013-07-17 2015-01-21 纬创资通股份有限公司 力反馈机构、电子装置及抑制壳体振动的方法
CN104320110A (zh) * 2014-10-29 2015-01-28 芯荣半导体有限公司 音圈马达的整形信号及驱动的控制方法、驱动芯片电路
CN106602959A (zh) * 2017-02-23 2017-04-26 上海与德信息技术有限公司 一种基于移动终端的马达控制方法及装置
CN110632892A (zh) * 2019-08-23 2019-12-31 深圳科瑞技术股份有限公司 适应运动系统轨迹误差的输入整形残余振动抑制方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101727047B1 (ko) * 2012-12-31 2017-04-14 엘지전자 주식회사 진동 발생 장치 및 방법
JP6119509B2 (ja) * 2013-08-22 2017-04-26 セイコーエプソン株式会社 液体吐出装置
CN105511514B (zh) * 2015-12-31 2019-03-15 歌尔股份有限公司 一种智能终端的触觉振动控制系统和方法
CN107063436A (zh) * 2017-03-23 2017-08-18 西安飞机工业(集团)有限责任公司 一种消除飞机发动机振动传感器灵敏度差异的方法
CN108226908B (zh) * 2017-12-26 2021-10-08 清华大学苏州汽车研究院(吴江) 一种超声波传感器余振和感度测试方法及系统
CN109182728B (zh) * 2018-09-10 2023-08-18 上海海事大学 一种绿色智能振动时效系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553153A (en) * 1993-02-10 1996-09-03 Noise Cancellation Technologies, Inc. Method and system for on-line system identification
CN103854688A (zh) * 2012-12-04 2014-06-11 纬创资通股份有限公司 具有硬盘振动抑制功能的电子装置及硬盘振动抑制方法
CN104298307A (zh) * 2013-07-17 2015-01-21 纬创资通股份有限公司 力反馈机构、电子装置及抑制壳体振动的方法
CN104320110A (zh) * 2014-10-29 2015-01-28 芯荣半导体有限公司 音圈马达的整形信号及驱动的控制方法、驱动芯片电路
CN106602959A (zh) * 2017-02-23 2017-04-26 上海与德信息技术有限公司 一种基于移动终端的马达控制方法及装置
CN110632892A (zh) * 2019-08-23 2019-12-31 深圳科瑞技术股份有限公司 适应运动系统轨迹误差的输入整形残余振动抑制方法及系统

Also Published As

Publication number Publication date
CN111552375B (zh) 2023-08-04
CN111552375A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
EP3040810B1 (en) Audio enhanced simulation of high bandwidth haptic effects
US20140218185A1 (en) Overdrive voltage for an actuator to generate haptic effects
WO2015020663A1 (en) Sculpted waveforms with no or reduced unforced response
CN109664298B (zh) 机器人动力学参数辨识方法、装置、终端设备及存储介质
KR20200081213A (ko) 햅틱 신호 변환 시스템
US20190121433A1 (en) Determining a haptic profile using a built-in accelerometer
CN109948074A (zh) 网站数据对接方法、装置、存储介质、处理器及电子设备
CN108288937B (zh) 线性谐振装置的驱动方法及其驱动电路结构
CN111580644B (zh) 信号处理方法、装置和电子设备
CN115720233A (zh) 一种工业设备控制方法、装置及计算机可读存储介质
CN115730407A (zh) 一种电机振动噪声分析方法、装置、设备及存储介质
WO2021164062A1 (zh) 一种系统余振消除方法、设备及存储介质
CN112486034B (zh) 验证轨迹规划的方法、电子设备及存储介质
WO2022041346A1 (zh) 线性马达的触控装置的振动量确定方法及相关设备
CN115390673A (zh) 振动数据的生成方法、装置、电子设备和存储介质
Nahvi et al. Trajectory based methods for nonlinear MOR: Review and perspectives
US10684689B2 (en) Cross-platform dynamic haptic effect design tool for augmented or virtual reality environments
CN111444618B (zh) 一种基于变量字典的仿真方法及装置
CN116996778A (zh) 一种图像修复方法、装置、存储介质及电子设备
CN104239199A (zh) 虚拟机器人的生成方法、自动化测试方法及相关装置
JP7251413B2 (ja) 疑似異音生成装置および制御プログラム
JP2014186586A (ja) 支援装置
CN114661000A (zh) 基于边缘计算的生产方法、边缘计算设备及系统
CN108646932B (zh) 一种用于电子设备的振动检测方法、装置及电子设备
WO2020057104A1 (zh) 用于应用开发的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919983

Country of ref document: EP

Kind code of ref document: A1