WO2021161754A1 - モータ制御システムの異常検出装置 - Google Patents

モータ制御システムの異常検出装置 Download PDF

Info

Publication number
WO2021161754A1
WO2021161754A1 PCT/JP2021/002049 JP2021002049W WO2021161754A1 WO 2021161754 A1 WO2021161754 A1 WO 2021161754A1 JP 2021002049 W JP2021002049 W JP 2021002049W WO 2021161754 A1 WO2021161754 A1 WO 2021161754A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
current
motor
control system
motor control
Prior art date
Application number
PCT/JP2021/002049
Other languages
English (en)
French (fr)
Inventor
治雄 鈴木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021161754A1 publication Critical patent/WO2021161754A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a device for detecting an abnormality in a motor control system.
  • the threshold value is adaptively set so that the threshold value becomes large when the rate of change per unit time of the current command value indicating the instantaneous current to be supplied to the AC motor is high.
  • the present disclosure has been made to solve the above problems, and its main purpose is to provide an abnormality detection device capable of suppressing erroneous detection of an abnormality in a motor control system.
  • the first means for solving the above problems is An abnormality detection device that is applied to a motor control system that controls an AC motor and has a current sensor that detects the current flowing through the AC motor, and detects an abnormality in the motor control system.
  • the first acquisition unit that acquires the assumed value of the current expected to flow in the AC motor
  • a second acquisition unit that acquires the detected value of the current detected by the current sensor, and
  • the absolute value of the assumed value acquired by the first acquisition unit is larger than the first threshold value, and the assumed value acquired by the first acquisition unit and the detected value acquired by the second acquisition unit.
  • a determination unit that determines that the motor control system is abnormal, provided that the absolute value of the difference between the two and the second threshold value is larger than the second threshold value. To be equipped.
  • the motor control system includes a current sensor that detects the current flowing through the AC motor and controls the AC motor.
  • the abnormality detection device detects an abnormality in the motor control system.
  • the first acquisition unit acquires an assumed value of the current expected to flow in the AC motor.
  • the assumed value of the current includes an estimated value of the current estimated to flow in the AC motor based on the voltage applied to the AC motor and the like, and a command value of the current indicating the current to be passed through the AC motor.
  • the second acquisition unit acquires the detected value of the current detected by the current sensor.
  • the absolute value of the assumed value of the acquired current is larger than the first threshold value
  • the absolute value of the difference between the assumed value of the acquired current and the detected value of the acquired current is the first. 2 It is determined that the motor control system is abnormal on condition that it is larger than the threshold value. Since the current flowing through the AC motor increases and decreases periodically, the range in which the absolute value of the assumed current value is larger than the first threshold value is the first range including the maximum value (positive value) of the current and the minimum value of the current. Limited to the second range containing values (negative values). In the first range and the second range, the change width of the current tends to be smaller than in the other ranges.
  • the absolute value of the acquired current assumed value is larger than the first threshold value, even if the detected value (or actual value) is out of phase with the current assumed value, the current assumed value and the detected value are detected.
  • the absolute value of the difference from the value is unlikely to increase.
  • the determination unit determines that the motor control system is abnormal if the absolute value of the assumed value of the acquired current is larger than the first threshold value. That is, the determination unit does not determine that the motor control system is abnormal when the absolute value of the assumed value of the acquired current is not larger than the first threshold value. Therefore, it can be determined that the absolute value of the difference between the assumed current value and the detected current value is larger than the second threshold value in a situation where the influence of the phase shift of the detected value on the assumed current value is small. It is possible to suppress erroneous detection of an abnormality in the motor control system.
  • the amount of change in the acquired current estimated value over a predetermined time is smaller than the third threshold value, even if the detected value (or actual value) is out of phase with the assumed current value, it is the same as the assumed current value.
  • the absolute value of the difference from the detected value is unlikely to increase.
  • the determination unit is acquired by the first acquisition unit instead of the absolute value of the assumed value acquired by the first acquisition unit being larger than the first threshold value.
  • the motor control system is determined to be abnormal on condition that the amount of change of the assumed value in a predetermined time is smaller than the third threshold value. That is, the determination unit does not determine that the motor control system is abnormal when the amount of change in the assumed value of the acquired current in a predetermined time is not smaller than the third threshold value. Therefore, it can be determined that the absolute value of the difference between the assumed current value and the detected current value is larger than the second threshold value in a situation where the influence of the phase shift of the detected value on the assumed current value is small. It is possible to suppress erroneous detection of an abnormality in the motor control system.
  • the third means is An abnormality detection device that is applied to a motor control system that controls an AC motor and has a current sensor that detects the current flowing through the AC motor, and detects an abnormality in the motor control system.
  • the first acquisition unit that acquires the assumed value of the current expected to flow in the AC motor
  • a second acquisition unit that acquires the detected value of the current detected by the current sensor, and The amount of change of the assumed value acquired by the first acquisition unit in a predetermined time is smaller than the third threshold value, and the assumed value acquired by the first acquisition unit and the second acquisition unit acquire the assumed value.
  • a determination unit that determines that the motor control system is abnormal, provided that the absolute value of the difference from the detected value is larger than the second threshold value. To be equipped.
  • the first acquisition unit acquires the assumed value at a predetermined cycle, and the amount of change of the assumed value in a predetermined time is the current value of the assumed value and the previous time.
  • a configuration such as the absolute value of the difference from the value can be adopted. According to such a configuration, the absolute value of the differential value of the assumed value can be used as the amount of change of the assumed value in a predetermined time, and the influence of the phase shift of the detected value on the assumed value of the current is small. It can be determined accurately.
  • the AC motor includes two winding groups whose electrical angles are deviated from each other, and the motor control system controls the AC motor by passing an electric current through each of the two winding groups.
  • the determination unit determines whether or not the two winding groups are abnormal, and the motor control system determines that one of the winding groups is abnormal when the determination unit determines that one of the winding groups is abnormal.
  • the current flowing through the one winding group determined to be abnormal is stopped, and the current is passed through the other winding group to control the AC motor.
  • the AC motor includes two winding groups whose electrical angles are deviated from each other.
  • the motor control system controls an AC motor by passing an electric current through each of the two winding groups.
  • the determination unit determines whether or not the two winding groups are abnormal. Therefore, even when the AC motor as a whole is abnormal, it is possible to determine whether or not each winding group is abnormal. Then, when the determination unit determines that one winding group is abnormal, the motor control system stops the current flowing through one winding group determined to be abnormal, and the other winding group. Control the AC motor by passing an electric current through it. Therefore, while suppressing erroneous detection of abnormalities in the motor control system, if an abnormality occurs in one winding group, current is passed only through the other winding group to continue control of the AC motor. can do.
  • the assumed value flows to the AC motor based on the voltage command value indicating the voltage to be applied to the AC motor and the rotation speed of the AC motor.
  • a configuration such as an estimated value of current can be adopted.
  • FIG. 1 is an electric circuit diagram of the motor control system of the first embodiment.
  • FIG. 2 is a flowchart showing the procedure for detecting an abnormality according to the first embodiment.
  • FIG. 3 is a time chart showing the estimated value, the detected value, and the difference between them when the frequency of the voltage command value is low in the U phase.
  • FIG. 4 is a time chart showing the estimated value, the detected value, and the difference between them when the frequency of the voltage command value is high in the U phase.
  • FIG. 5 is a flowchart showing the procedure for detecting an abnormality according to the second embodiment.
  • FIG. 6 is an electric circuit diagram of the motor control system of the third embodiment.
  • the vehicle includes a battery 20 as a DC power source, a load 22, and a motor control system 10.
  • the battery 20 is, for example, a lithium storage battery or the like.
  • the motor control system 10 includes a three-phase AC motor 30 that is AC-driven.
  • the AC motor 30 includes a rotor (not shown).
  • the rotating shaft of the rotor transmits power to the drive wheels of the vehicle.
  • the AC motor 30 includes a stator 33.
  • the stator 33 includes a stator winding.
  • the stator windings include U, V, W phase windings 34U, 34V, 34W arranged 120 ° apart from each other in electrical angle.
  • the motor control system 10 includes a three-phase inverter 40 and a capacitor 21.
  • the inverter 40 includes a series connector of U, V, W phase upper arm switches SUP, SVp, SWp and U, V, W phase lower arm switches SUn, SVn, SWn.
  • U, V, W phase windings 34U, 34V, 34W at the connection points between the U, V, W phase upper arm switches SUP, SVp, SWp and the U, V, W phase lower arm switches SUn, SVn, SWn.
  • the first end of is connected.
  • the second ends of the U, V, W phase windings 34U, 34V, 34W are connected at a neutral point.
  • the U, V, W phase windings 34U, 34V, 34W are star-shaped.
  • IGBTs are used as the arm switches SUP to SWn.
  • U, V, W phase upper arm diodes DUp, DVp, DWp are connected in antiparallel to the U, V, W phase upper arm switches SUP, SVp, SWp.
  • U, V, W phase lower arm diodes DUn, DVn, DWn are connected in antiparallel to the U, V, W phase lower arm switches SUn, SVn, SWn.
  • the positive electrode terminal of the battery 20 is connected to the collector, which is the high potential side terminal of the U, V, W phase upper arm switches SUP, SVp, SWp, via the high potential side electric path Lp.
  • the negative electrode terminal of the battery 20 is connected to the emitter which is the low potential side terminal of the U, V, W phase lower arm switches SUn, SVn, SWn via the low potential side electric path Ln.
  • the high potential side terminal of the capacitor 21 is connected to the positive electrode terminal side of the battery 20 from the connection point of each of the upper arm switches SUP, SVp, and SWp in the high potential side electric path Lp with the collector.
  • the low-potential side terminal of the capacitor 21 is connected to the negative electrode terminal side of the battery 20 from the connection point of each of the lower arm switches SUn, SVn, and SWn in the low-potential side electric path Ln with the emitter.
  • the motor control system 10 includes a voltage detection unit 50, a phase current detection unit 51, and an angle detection unit 53.
  • the voltage detection unit 50 detects the terminal voltage of the capacitor 21 as the power supply voltage VDC (battery voltage).
  • the phase current detection unit 51 detects the current flowing through the U, V, W phase windings 34U, 34V, 34W.
  • the phase current detection unit 51 includes a U-phase current sensor, a V-phase current sensor, and a W-phase current sensor that detect currents flowing through the U, V, and W-phase windings 34U, 34V, and 34W, respectively.
  • the angle detection unit 53 outputs an angle signal, which is a signal corresponding to the rotation angle of the rotor of the AC motor 30.
  • the output signals of the detection units 50, 51, and 53 are input to the control device 60 provided in the vehicle.
  • the control device 60 is configured as a microcomputer provided with a CPU, ROM, RAM, a storage device, an input / output interface, and the like.
  • the control device 60 realizes the functions of the first acquisition unit 61, the second acquisition unit 62, and the determination unit 66.
  • the first acquisition unit 61, the second acquisition unit 62, and the determination unit 66 constitute an abnormality detection device for the motor control system 10.
  • the control device 60 acquires the angle signal of the angle detection unit 53, and calculates (acquires) the electric angle ⁇ e of the AC motor 30 and the rotation speed Nm of the rotor based on the acquired angle signal.
  • the control device 60 generates a drive signal for each switch constituting the inverter 40.
  • the control device 60 generates a drive signal for turning on / off the switches SUP to SWn constituting the inverter 40 based on the angle signal. Specifically, the control device 60 turns on / off each arm switch SUP to SWn in order to convert the DC power output from the battery 20 into AC power and supply it to the U, V, W phase windings 34U, 34V, 34W.
  • a drive signal is generated, and the generated drive signal is supplied to the gates of the arm switches SUP to SWn.
  • the second acquisition unit 62 calculates (acquires) the detected values Iru, Irv, and Irw of the currents flowing in the U, V, and W phase windings 34U, 34V, and 34W, respectively, based on the detection signal of the phase current detection unit 51. ..
  • the first acquisition unit 61 includes U, V, W phase voltage command values Vu *, Vv *, Vw *, and U, V, W phase voltage command values indicating the voltage to be applied to the U, V, W phase windings 34U, 34V, 34W of the AC motor 30.
  • the voltage command value is calculated by a higher-level control device or the like based on the amount of depression (operation amount) of the accelerator pedal (operation member) of the vehicle, and is output to the control device 60.
  • the U, V, and W phase voltage command values Vu *, Vv *, and Vw * are sinusoidal waveforms that are 120 ° out of phase with each other in terms of electrical angle.
  • the absolute values of the current estimated values Ieu, Iev, and Iew acquired by the first acquisition unit 61 are larger than the first threshold value K1, and the estimated values Ieu, acquired by the first acquisition unit 61.
  • the motor control system 10 is abnormal, provided that the absolute value of the difference between Iev and Iew and the current detection values Iru, Irv, and Irw acquired by the second acquisition unit 62 is larger than the second threshold value.
  • the absolute value of the estimated value Ieu of the U-phase current is larger than the first threshold value K1
  • the absolute value of the difference between the estimated value Ieu and the detected value Iru of the U-phase current is larger than the second threshold value.
  • the configuration relating to the U-phase winding 34U includes the U-phase winding 34U, the U-phase current sensor, switches SUp and Sun of the inverter 40, and the like.
  • FIG. 2 is a flowchart showing a procedure for detecting an abnormality in the motor control system 10. This series of processing is executed by the control device 60 at a predetermined cycle ⁇ t. This series of processing is executed for each of the U, V, and W phases, but here, the case of executing for the U phase will be described as an example.
  • the U-phase voltage command value Vu * is acquired from the upper control device (S10).
  • the rotation speed Nm of the rotor of the AC motor 30 is calculated based on the angle signal detected by the angle detection unit 53 (S11).
  • the detection value Iru of the current flowing through the U-phase winding 34U is acquired (S12).
  • the estimated value Ieu of the current estimated to flow in the U-phase winding 34U is calculated (S13).
  • the first threshold value K1 is a threshold value for determining that the change width of the current flowing in the U phase is smaller than a predetermined width.
  • the range in which the absolute value of the estimated current value Ieu is larger than the first threshold value K1 is the first range including the maximum value (positive value) of the current and the second range including the minimum value (negative value) of the current. Limited to. In the first range and the second range, the change width of the current is smaller than in the other ranges, and the change width of the current is smaller than the predetermined width.
  • the abnormality counter Ce is incremented (increased by 1) (S18).
  • the second threshold value K2 is a threshold value (> 0) for determining that the absolute value ⁇ Iu of the difference is a value that cannot be taken when the configuration relating to the U phase is normal.
  • the initial value of the abnormality counter Ce is 0.
  • the abnormality counter Ce is cleared (returned to the initial value of 0) (S19).
  • the predetermined counter Cr is a value for determining that the absolute value ⁇ Iu of the difference is larger than the second threshold value K2 a plurality of times, and is set to, for example, 2 to 4.
  • the determination that the motor control system 10 is abnormal is confirmed (S21).
  • this series of processing is temporarily terminated (END). After that, the process of S10 is executed again.
  • the process of S12 corresponds to the process of the second acquisition unit 62
  • the process of S13 corresponds to the process of the first acquisition unit 61
  • the processes of S14 to S21 correspond to the process of the determination unit 66.
  • FIG. 3 is a time chart showing the estimated current value Ieu, the detected value Iru, and their difference (Ieu-Iru) when the frequency of the voltage command value Vu * is low in the U phase under normal conditions.
  • the amplitude of the voltage command value Vu * and the amplitude of the current detected value Iru are displayed together. There is.
  • the difference (Ieu-Iru) between the estimated value Ieu and the detected value Iru in the comparative example is smaller than the second threshold value K2 and larger than -K2. That is, the absolute value ⁇ Iu of the difference (Ieu-Iru) between the estimated value Ieu and the detected value Iru in the comparative example is smaller than the second threshold value K2. Therefore, in the abnormality detection of FIG. 2, it is not determined that the motor control system 10 is abnormal.
  • the difference (Ieu-Iru) between the estimated value Ieu and the detected value Iru in the present embodiment is smaller than the second threshold value K2 and larger than -K2.
  • the absolute value of the difference (Ieu-Iru) between the estimated value Ieu and the detected value Iru in the processing of S16 of FIG. ⁇ Iu is set to 0.
  • the absolute value ⁇ Iu of the difference (Ieu-Iru) is smaller than the second threshold value K2. Therefore, in the abnormality detection of FIG. 2, it is not determined that the motor control system 10 is abnormal.
  • FIG. 4 is a time chart showing the estimated current value Ieu, the detected value Iru, and their difference (Ieu-Iru) when the frequency of the voltage command value Vu * is high in the U phase under normal conditions.
  • the amplitude of the voltage command value Vu * and the amplitude of the current detected value Iru are displayed together. There is.
  • phase shift between the estimated current value Ieu and the detected value Iru is large.
  • the magnitude of this phase shift changes according to the setting of the parameter that adjusts the phase when calculating the estimated current value Ieu based on the U-phase voltage command value Vu * and the rotation speed Nm of the rotor of the AC motor 30. do.
  • the phase of the estimated value Ieu is delayed with respect to the detected value Iru of the current, but the phase of the estimated value Ieu may be advanced with respect to the detected value Iru of the current.
  • the phase delay of the current detection value Iru may be larger than the voltage command value Vu *.
  • the difference (Ieu-Iru) between the estimated value Ieu and the detected value Iru in the comparative example is partially larger than the second threshold value K2 and partially larger than -K2. Is also getting smaller. That is, the absolute value ⁇ Iu of the difference (Ieu-Iru) between the estimated value Ieu and the detected value Iru in the comparative example is partially larger than the second threshold value K2. Therefore, in the abnormality detection of FIG. 2, it is erroneously determined that the motor control system 10 is abnormal.
  • the difference (Ieu-Iru) between the estimated value Ieu and the detected value Iru in the present embodiment is smaller than the second threshold value K2 and larger than -K2.
  • the absolute value of the difference (Ieu-Iru) between the estimated value Ieu and the detected value Iru in the processing of S16 of FIG. ⁇ Iu is set to 0. That is, in a situation where the influence of the phase shift of the detected value Iru on the estimated current value Ieu is large, the absolute value ⁇ Iu of the difference (Ieu-Iru) is set to 0. Therefore, the absolute value ⁇ Iu of the difference (Ieu-Iru) is smaller than the second threshold value K2. Therefore, in the abnormality detection of FIG. 2, the motor control system 10 is not erroneously determined to be abnormal.
  • the determination unit 66 determines that the motor control system 10 is abnormal if the absolute value of the acquired current estimated value Ieu is larger than the first threshold value K1. That is, the determination unit 66 does not determine that the motor control system 10 is abnormal when the absolute value of the acquired current estimated value Ieu is not larger than the first threshold value K1 (S14: NO). Therefore, in a situation where the influence of the phase shift of the detected value Iru on the estimated current value Ieu is small, the absolute value ⁇ Iu of the difference between the estimated current value Ieu and the detected current value Iru is larger than the second threshold value K2. It can be determined, and it is possible to suppress erroneous detection of an abnormality in the motor control system 10.
  • the absolute value of the differential value a of the estimated current value Ieu (assumed value) is calculated. Specifically, the value obtained by subtracting the previous value from the current value of the estimated value Ieu is defined as the differential value a of the estimated current value Ieu. Then, the absolute value of the differential value a (the amount of change in the estimated value Ieu over a predetermined time) is calculated.
  • the third threshold value K3 is a threshold value for determining that the rate of change of the current flowing in the U phase is lower than the predetermined rate.
  • the range in which the absolute value of the differential value a becomes smaller than the third threshold value K3 is limited to the first range including the maximum value (positive value) of the current and the second range including the minimum value (negative value) of the current. Be done. In the first range and the second range, the rate of change of the current is lower than that of the other ranges, and the rate of change of the current is lower than the predetermined speed.
  • This embodiment has the following advantages.
  • the determination unit 66 determines that the motor control system 10 is abnormal, provided that the amount of change in the estimated value Ieu acquired by the first acquisition unit 61 in a predetermined time is smaller than the third threshold value K3. That is, the determination unit 66 does not determine that the motor control system 10 is abnormal when the amount of change of the acquired current estimated value Ieu in a predetermined time is not smaller than the third threshold value K3 (S14b: NO). .. Therefore, in a situation where the influence of the phase shift of the detected value Iru on the estimated current value Ieu is small, the absolute value ⁇ Iu of the difference between the estimated current value Ieu and the detected current value Iru is larger than the second threshold value K2. It can be determined, and it is possible to suppress erroneous detection of an abnormality in the motor control system 10.
  • the first acquisition unit 61 acquires the estimated value Ieu in a predetermined period ⁇ t, and the amount of change in the estimated value Ieu in a predetermined time is the absolute value of the difference between the current value and the previous value of the estimated value Ieu.
  • the absolute value of the differential value a of the estimated value Ieu can be used as the amount of change of the estimated value Ieu in a predetermined time, and the influence of the phase shift of the detected value Iru on the estimated value Ieu of the current is small. It is possible to accurately determine that it is a situation.
  • the absolute value of the difference between the value of the estimated value Ieu at the time t2 and the value at the time t1 before the time t2 can be adopted. Further, as the amount of change of the estimated value Ieu at a predetermined time, the difference between the value of the estimated value Ieu at time t2 and the value at time t1 before time t2 is divided by the time from time t1 to time t2. It is also possible to adopt the absolute value of the value.
  • the third embodiment will be described with reference to the drawings, focusing on the differences from the first embodiment.
  • the AC motor 30 includes two stator winding groups (winding groups). Therefore, the motor control system 10 includes a first inverter 40A and a second inverter 40B.
  • the same reference numerals are given to the same configurations as those shown in FIG. 1 above. Further, in FIG. 6, the illustration of the control device 60 and the like is omitted.
  • the stator 33 of the AC motor 30 includes a first stator winding group and a second stator winding group.
  • the first stator winding group (first system) includes first U, V, W phase windings 34UA, 34VA, 34WA that are offset by 120 ° from each other in terms of electrical angle.
  • the second stator winding group (second system) includes second U, V, W phase windings 34UB, 34VB, 34WB that are offset by 120 ° from each other in terms of electrical angle.
  • the spatial phase difference ⁇ which is the angle formed by the first stator winding group and the second stator winding group, is, for example, 30 ° in terms of electrical angle.
  • the first inverter 40A includes a series connection body of the first U, V, W phase upper arm switches SUp1, SVp1, SWp1 and the first U, V, W phase lower arm switches Sun1, SVn1, SWn1.
  • the first U, V, W phase upper arm switches DUp1, DVp1, DWp1 are connected in antiparallel to the first U, V, W phase upper arm switches SUp1, SVp1, SWp1.
  • the first U, V, W phase lower arm diodes DUn1, DVn1, DWn1 are connected in antiparallel to the first U, V, W phase lower arm switches SUn1, SVn1, SWn1.
  • the second inverter 40B includes a series connection body of the second U, V, W phase upper arm switches SUp2, SVp2, SWp2 and the second U, V, W phase lower arm switches Sun2, SVn2, SWn2.
  • the second U, V, and W phase upper arm switches SUp2, SVp2, and SWp2 are connected in antiparallel to the second U, V, and W phase upper arm diodes DUp2, DVp2, and DWp2.
  • the second U, V, W phase lower arm diodes DUn2, DVn2, DWn2 are connected in antiparallel to the second U, V, W phase lower arm switches SUn2, SVn2, SWn2.
  • the positive electrode terminal of the battery 20 is connected to the collectors of the upper arm switches SUp1 to SWp2 via the high potential side electric path Lp.
  • the negative electrode terminal of the battery 20 is connected to the emitters of the lower arm switches SUn1 to SWn2 via the low potential side electric path Ln.
  • the high potential side terminal of the capacitor 21 is connected to the positive electrode terminal side of the battery 20 from the connection point of each of the upper arm switches SUp1 to SWp2 in the high potential side electric path Lp with the collector.
  • the low-potential side terminal of the capacitor 21 is connected to the negative electrode terminal side of the battery 20 from the connection point of each of the lower arm switches Sun1 to SWn2 in the low-potential side electric path Ln.
  • the motor control system 10 controls the AC motor 30 by passing a current through each of the two stator winding groups.
  • the determination unit 66 determines whether or not the two stator winding groups are abnormal. Specifically, the abnormality detection of FIG. 2 or FIG. 5 is executed for the first stator winding group and the second stator winding group, respectively. Then, when the determination unit 66 determines that one of the stator winding groups is abnormal, the control device 60 stops the current flowing through one of the stator winding groups determined to be abnormal, and the other A current is passed through the stator winding group to control the AC motor 30.
  • the determination unit 66 determines whether or not the two stator winding groups are abnormal. Therefore, even when the AC motor 30 as a whole is abnormal, it is possible to determine whether or not each stator winding group is abnormal. Then, when the determination unit 66 determines that one of the stator winding groups is abnormal, the control device 60 stops the current flowing through one of the stator winding groups determined to be abnormal, and the other A current is passed through the stator winding group to control the AC motor 30. Therefore, while suppressing erroneous detection of an abnormality in the motor control system 10, when an abnormality occurs in one stator winding group, a current is passed only through the other stator winding group, so that the AC motor 30 Control can be continued.
  • the switch used in the inverters 40, 40A, 40B may be, for example, an N-channel MOSFET.
  • the AC motor 30 is not limited to a star-shaped connection, and may be, for example, a ⁇ connection.
  • the AC motor 30 is not limited to a three-phase AC motor, but may be a four-phase or more AC motor.
  • the command value Icu (assumed value) of the current can be adopted instead of the estimated current value Ieu.
  • the first acquisition unit 61 acquires command values Icu, Icv, and Icw indicating currents to be passed through the U, V, and W phase windings 34U, 34V, and 34W of the AC motor 30, respectively.
  • the absolute value of the command values Icu, Icv, and Icw of the current acquired by the first acquisition unit 61 is larger than the first threshold value K1, and the command value acquired by the first acquisition unit 61.
  • the motor control system 10 is provided with the condition that the absolute value of the difference between Icu, Icv, Icw and the current detection values Iru, Irv, Irw acquired by the second acquisition unit 62 is larger than the second threshold value. It can also be determined to be abnormal. Even with such a configuration, it is possible to exert the action and effect according to each of the above-described embodiments.
  • the amount of change of the command values Icu, Icv, Icw (assumed value) of the current acquired by the first acquisition unit 61 in a predetermined time is smaller than the third threshold value K3, and the first acquisition
  • the absolute value of the difference between the command values Icu, Icv, Icw acquired by the unit 61 and the detected current values Iru, Irv, Irw acquired by the second acquisition unit 62 is larger than the second threshold value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

異常検出装置は、交流モータ(30)に流れる電流を検出する電流センサ(51)を備えて交流モータを制御するモータ制御システム(10)に適用される。異常検出装置は、交流モータに流れると想定される電流の想定値を取得する第1取得部(61)と、電流センサにより検出された電流の検出値を取得する第2取得部(62)と、第1取得部により取得された想定値の絶対値が第1閾値よりも大きいこと、且つ第1取得部により取得された想定値と第2取得部により取得された検出値との差の絶対値が第2閾値よりも大きいことを条件として、モータ制御システムが異常であると判定する判定部(66)と、を備える。

Description

モータ制御システムの異常検出装置 関連出願の相互参照
 本出願は、2020年2月10日に出願された日本出願番号2020-020929号に基づくもので、ここにその記載内容を援用する。
 本開示は、モータ制御システムの異常を検出する装置に関する。
 従来、電流センサにて検出されたモータ電流値と、交流モータに印加すべき電圧を示す電圧指令値に基づき推定したモータ電流値との差が、閾値を越えて相違しているとされた場合に、電流センサに異常が生じている旨判定する装置がある(特許文献1参照)。特許文献1に記載の装置では、交流モータに供給すべき瞬時電流を示す電流指令値の単位時間当たり変化率が高いときに閾値が大きくなるように、閾値を適応的に設定している。
特開平9-172791号公報
 ところで、特許文献1に記載の装置では、電流指令値の変化率が高いときに上記閾値を大きくして、電流指令値に対するモータ電流の追従遅れを、電流センサの異常と誤検出することを抑制している。しかし、電流指令値の変化率の上昇に対して閾値の増加量が不足すれば、電流指令値に対するモータ電流の追従遅れを、電流センサの異常と誤検出するおそれがある。一方、電流指令値の変化率の上昇に対して閾値を大きくし過ぎれば、電流センサの異常を見過ごすおそれがあるため、電流指令値の変化率の上昇に対して閾値を大きくするにも限度がある。
 本開示は、上記課題を解決するためになされたものであり、その主たる目的は、モータ制御システムの異常を誤検出することを抑制することのできる異常検出装置を提供することにある。
 上記課題を解決するための第1の手段は、
 交流モータに流れる電流を検出する電流センサを備えて前記交流モータを制御するモータ制御システムに適用され、前記モータ制御システムの異常を検出する異常検出装置であって、
 前記交流モータに流れると想定される電流の想定値を取得する第1取得部と、
 前記電流センサにより検出された前記電流の検出値を取得する第2取得部と、
 前記第1取得部により取得された前記想定値の絶対値が第1閾値よりも大きいこと、且つ前記第1取得部により取得された前記想定値と前記第2取得部により取得された前記検出値との差の絶対値が第2閾値よりも大きいことを条件として、前記モータ制御システムが異常であると判定する判定部と、
を備える。
 上記構成によれば、モータ制御システムは、交流モータに流れる電流を検出する電流センサを備え、交流モータを制御する。異常検出装置は、モータ制御システムの異常を検出する。第1取得部は、交流モータに流れると想定される電流の想定値を取得する。電流の想定値は、交流モータに印加される電圧等に基づき交流モータに流れると推定される電流の推定値と、交流モータに流すべき電流を示す電流の指令値とを含む。第2取得部は、電流センサにより検出された電流の検出値を取得する。
 ここで、判定部は、取得された電流の想定値の絶対値が第1閾値よりも大きいこと、且つ取得された電流の想定値と取得された電流の検出値との差の絶対値が第2閾値よりも大きいことを条件として、モータ制御システムが異常であると判定する。交流モータに流れる電流は周期的に増減するため、電流の想定値の絶対値が第1閾値よりも大きくなる範囲は、電流の最大値(正の値)を含む第1範囲や、電流の最小値(負の値)を含む第2範囲に限られる。第1範囲及び第2範囲では、それ以外の範囲と比べて電流の変化幅が小さくなり易い。このため、取得された電流の想定値の絶対値が第1閾値よりも大きい場合は、電流の想定値に対する検出値(あるいは実際値)の位相ずれが生じたとしても、電流の想定値と検出値との差の絶対値が大きくなりにくい。
 この点、判定部は、取得された電流の想定値の絶対値が第1閾値よりも大きいことを、モータ制御システムが異常であると判定する条件としている。すなわち、判定部は、取得された電流の想定値の絶対値が第1閾値よりも大きくない場合は、モータ制御システムが異常であると判定しない。このため、電流の想定値に対する検出値の位相ずれの影響が小さい状況で、電流の想定値と電流の検出値との差の絶対値が第2閾値よりも大きいことを判定することができ、モータ制御システムの異常を誤検出することを抑制することができる。
 取得された電流の想定値の所定時間での変化量が第3閾値よりも小さい場合は、電流の想定値に対する検出値(あるいは実際値)の位相ずれが生じたとしても、電流の想定値と検出値との差の絶対値が大きくなりにくい。
 この点、第2の手段では、前記判定部は、前記第1取得部により取得された前記想定値の絶対値が第1閾値よりも大きいことに代えて、前記第1取得部により取得された前記想定値の所定時間での変化量が第3閾値よりも小さいことを条件として、前記モータ制御システムが異常であると判定する。すなわち、判定部は、取得された電流の想定値の所定時間での変化量が第3閾値よりも小さくない場合は、モータ制御システムが異常であると判定しない。このため、電流の想定値に対する検出値の位相ずれの影響が小さい状況で、電流の想定値と電流の検出値との差の絶対値が第2閾値よりも大きいことを判定することができ、モータ制御システムの異常を誤検出することを抑制することができる。
 第3の手段は、
 交流モータに流れる電流を検出する電流センサを備えて前記交流モータを制御するモータ制御システムに適用され、前記モータ制御システムの異常を検出する異常検出装置であって、
 前記交流モータに流れると想定される電流の想定値を取得する第1取得部と、
 前記電流センサにより検出された前記電流の検出値を取得する第2取得部と、
 前記第1取得部により取得された前記想定値の所定時間での変化量が第3閾値よりも小さいこと、且つ前記第1取得部により取得された前記想定値と前記第2取得部により取得された前記検出値との差の絶対値が第2閾値よりも大きいことを条件として、前記モータ制御システムが異常であると判定する判定部と、
を備える。
 上記構成によれば、第2の手段と同様の構成により、同様の作用効果を奏することができる。
 具体的には、第4の手段のように、前記第1取得部は、所定周期で前記想定値を取得し、前記想定値の所定時間での変化量は、前記想定値の今回値と前回値との差の絶対値である、といった構成を採用することができる。こうした構成によれば、想定値の所定時間での変化量として、想定値の微分値の絶対値を用いることができ、電流の想定値に対する検出値の位相ずれの影響が小さい状況であることを正確に判定することができる。
 第5の手段では、前記交流モータは、互いに電気角がずれた2つの巻線群を備え、前記モータ制御システムは、前記2つの巻線群にそれぞれ電流を流して前記交流モータを制御し、前記判定部は、前記2つの巻線群がそれぞれ異常であるか否か判定し、前記モータ制御システムは、前記判定部により一方の前記巻線群が異常であると判定された場合に、前記異常であると判定された前記一方の前記巻線群に流す電流を停止させ、他方の前記巻線群に電流を流して前記交流モータを制御する。
 上記構成によれば、交流モータは、互いに電気角がずれた2つの巻線群を備えている。モータ制御システムは、2つの巻線群にそれぞれ電流を流して交流モータを制御する。ここで、判定部は、2つの巻線群がそれぞれ異常であるか否か判定する。このため、交流モータ全体として異常である場合も、それぞれの巻線群が異常であるか否か判定することができる。そして、モータ制御システムは、判定部により一方の巻線群が異常であると判定された場合に、異常であると判定された一方の巻線群に流す電流を停止させ、他方の巻線群に電流を流して交流モータを制御する。したがって、モータ制御システムの異常を誤検出することを抑制しつつ、一方の巻線群に異常が生じた場合には、他方の巻線群にのみ電流を流すことにより、交流モータの制御を継続することができる。
 具体的には、第6の手段のように、前記想定値は、前記交流モータに印加すべき電圧を示す電圧指令値及び前記交流モータの回転速度に基づいて、前記交流モータに流れると推定した電流の推定値である、といった構成を採用することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態のモータ制御システムの電気回路図であり、 図2は、第1実施形態の異常検出の手順を示すフローチャートであり、 図3は、U相において電圧指令値の周波数が低い場合の電流の推定値、検出値、及びそれらの差を示すタイムチャートであり、 図4は、U相において電圧指令値の周波数が高い場合の電流の推定値、検出値、及びそれらの差を示すタイムチャートであり、 図5は、第2実施形態の異常検出の手順を示すフローチャートであり、 図6は、第3実施形態のモータ制御システムの電気回路図である。
 (第1実施形態)
 以下、車両に搭載したモータ制御システムに具現化した第1実施形態について、図面を参照しつつ説明する。
 図1に示すように、車両は、直流電源としてのバッテリ20と、負荷22とモータ制御システム10とを備えている。バッテリ20は、例えばリチウム蓄電池等である。モータ制御システム10は、交流駆動される三相の交流モータ30を備えている。
 交流モータ30は、図示しないロータを備えている。ロータの回転軸は、車両の駆動輪に動力を伝達する。交流モータ30は、ステータ33を備えている。ステータ33は、ステータ巻線を備えている。ステータ巻線は、電気角で互いに120°ずれた状態で配置されたU,V,W相巻線34U,34V,34Wを含む。
 モータ制御システム10は、3相のインバータ40と、コンデンサ21とを備えている。インバータ40は、U,V,W相上アームスイッチSUp,SVp,SWpと、U,V,W相下アームスイッチSUn,SVn,SWnとの直列接続体を備えている。U,V,W相上アームスイッチSUp,SVp,SWpと、U,V,W相下アームスイッチSUn,SVn,SWnとの接続点には、U,V,W相巻線34U,34V,34Wの第1端が接続されている。U,V,W相巻線34U,34V,34Wの第2端は、中性点で接続されている。すなわち本実施形態において、U,V,W相巻線34U,34V,34Wは、星形結線されている。本実施形態では、各アームスイッチSUp~SWnとして、IGBTが用いられている。U,V,W相上アームスイッチSUp,SVp,SWpには、U,V,W相上アームダイオードDUp,DVp,DWpが逆並列接続されている。U,V,W相下アームスイッチSUn,SVn,SWnには、U,V,W相下アームダイオードDUn,DVn,DWnが逆並列接続されている。
 U,V,W相上アームスイッチSUp,SVp,SWpの高電位側端子であるコレクタには、高電位側電気経路Lpを介してバッテリ20の正極端子が接続されている。U,V,W相下アームスイッチSUn,SVn,SWnの低電位側端子であるエミッタには、低電位側電気経路Lnを介してバッテリ20の負極端子が接続されている。高電位側電気経路Lpのうち各上アームスイッチSUp,SVp,SWpのコレクタとの接続点よりもバッテリ20の正極端子側には、コンデンサ21の高電位側端子が接続されている。低電位側電気経路Lnのうち各下アームスイッチSUn,SVn,SWnのエミッタとの接続点よりもバッテリ20の負極端子側には、コンデンサ21の低電位側端子が接続されている。
 モータ制御システム10は、電圧検出部50、相電流検出部51、及び角度検出部53を備えている。電圧検出部50は、コンデンサ21の端子電圧を電源電圧VDC(バッテリ電圧)として検出する。相電流検出部51は、U,V,W相巻線34U,34V,34Wに流れる電流を検出する。相電流検出部51は、U,V,W相巻線34U,34V,34Wにそれぞれ流れる電流を検出するU相電流センサ,V相電流センサ,W相電流センサにより構成されている。角度検出部53は、交流モータ30のロータの回転角に応じた信号である角度信号を出力する。各検出部50,51,53の出力信号は、車両が備える制御装置60に入力される。
 制御装置60は、CPU、ROM、RAM、記憶装置、及び入出力インターフェース等を備えるマイクロコンピュータとして構成されている。制御装置60は、第1取得部61、第2取得部62、及び判定部66の機能を実現する。なお、第1取得部61、第2取得部62、及び判定部66により、モータ制御システム10の異常検出装置が構成されている。
 制御装置60は、角度検出部53の角度信号を取得し、取得した角度信号に基づいて、交流モータ30の電気角θeと、ロータの回転速度Nmとを算出(取得)する。制御装置60は、インバータ40を構成する各スイッチの駆動信号を生成する。制御装置60は、角度信号に基づいて、インバータ40を構成する各スイッチSUp~SWnをオンオフする駆動信号を生成する。詳しくは、制御装置60は、バッテリ20から出力された直流電力を交流電力に変換してU,V,W相巻線34U,34V,34Wに供給すべく、各アームスイッチSUp~SWnをオンオフする駆動信号を生成し、生成した駆動信号を各アームスイッチSUp~SWnのゲートに供給する。
 第2取得部62は、相電流検出部51の検出信号に基づいて、U,V,W相巻線34U,34V,34Wにそれぞれ流れる電流の検出値Iru,Irv,Irwを算出(取得)する。第1取得部61は、交流モータ30のU,V,W相巻線34U,34V,34Wに印加すべき電圧を示すU,V,W相電圧指令値Vu*,Vv*,Vw*、及び交流モータ30のロータの回転速度Nmに基づいて、U,V,W相巻線34U,34V,34Wにそれぞれ流れると推定(想定)される電流の推定値Ieu,Iev,Iew(想定値)を算出(取得)する。電圧指令値は、上位の制御装置等により、車両のアクセルペダル(操作部材)の踏み込み量(操作量)等に基づいて算出され、制御装置60へ出力される。本実施形態では、U,V,W相電圧指令値Vu*,Vv*,Vw*は、電気角で位相が120°ずれた正弦波状の波形である。電流の推定値Ieu,Iev,Iewを算出する方法は、例えば上記特許文献1に記載された方法を採用することができ、ここでは詳細な説明を割愛する。
 判定部66は、第1取得部61により取得された電流の推定値Ieu,Iev,Iewの絶対値が第1閾値K1よりも大きいこと、且つ第1取得部61により取得された推定値Ieu,Iev,Iewと、第2取得部62により取得された電流の検出値Iru,Irv,Irwとのそれぞれの差の絶対値が第2閾値よりも大きいことを条件として、モータ制御システム10が異常であると判定する。例えば、U相の電流の推定値Ieuの絶対値が第1閾値K1よりも大きいこと、且つ推定値IeuとU相の電流の検出値Iruとの差の絶対値が第2閾値よりも大きいことを条件として、U相巻線34Uに関する構成が異常であると判定する。U相巻線34Uに関する構成としては、U相巻線34U、上記U相電流センサ、上記インバータ40のスイッチSUp,SUn等を含む。
 図2は、モータ制御システム10の異常検出の手順を示すフローチャートである。この一連の処理は、制御装置60によって所定周期Δtで実行される。この一連の処理は、U,V,W相に対してそれぞれ実行されるが、ここではU相に対して実行する場合を例にして説明する。
 まず、上位の制御装置からU相電圧指令値Vu*を取得する(S10)。角度検出部53により検出された角度信号に基づいて、交流モータ30のロータの回転速度Nmを算出する(S11)。相電流検出部51の検出信号に基づいて、U相巻線34Uに流れる電流の検出値Iruを取得する(S12)。U相電圧指令値Vu*及びロータの回転速度Nmに基づいて、U相巻線34Uに流れると推定される電流の推定値Ieuを算出する(S13)。
 続いて、電流の推定値Ieuの絶対値が第1閾値K1よりも大きいか否か判定する(S14)。第1閾値K1は、U相に流れる電流の変化幅が、所定幅よりも小さくなることを判定する閾値である。電流の推定値Ieuの絶対値が第1閾値K1よりも大きくなる範囲は、電流の最大値(正の値)を含む第1範囲や、電流の最小値(負の値)を含む第2範囲に限られる。第1範囲及び第2範囲では、それ以外の範囲と比べて電流の変化幅が小さくなり、電流の変化幅は所定幅よりも小さくなる。この判定において、電流の推定値Ieuの絶対値が第1閾値K1よりも大きいと判定した場合(S14:YES)、U相の電流の推定値Ieuと検出値Iruとの差の絶対値ΔIuを算出する(S15)。一方、この判定において、電流の推定値Ieuの絶対値が第1閾値K1よりも大きくないと判定した場合(S14:NO)、U相の電流の推定値Ieuと検出値Iruとの差の絶対値ΔIuを0にする(S16)。
 続いて、差の絶対値ΔIuが第2閾値K2よりも大きいか否か判定する(S17)。この判定において、差の絶対値ΔIuが第2閾値K2よりも大きいと判定した場合(S17:YES)、異常カウンタCeをインクリメントする(1増加させる)(S18)。第2閾値K2は、差の絶対値ΔIuが、U相に関する構成の正常時には取り得ない値であることを判定する閾値(>0)である。異常カウンタCeの初期値は0である。一方、差の絶対値ΔIuが第2閾値K2よりも大きくないと判定した場合(S17:NO)、異常カウンタCeをクリアする(初期値の0に戻す)(S19)。
 続いて、異常カウンタCeが所定カウンタCrよりも大きいか否か判定する(S20)。所定カウンタCrは、差の絶対値ΔIuが第2閾値K2よりも大きいことが複数回確認されたことを判定する値であり、例えば2~4に設定されている。この判定において、異常カウンタCeが所定カウンタCrよりも大きいと判定した場合(S20:YES)、モータ制御システム10が異常であるという判定を確定する(S21)。一方、この判定において、異常カウンタCeが所定カウンタCrよりも大きくないと判定した場合(S20:NO)、この一連の処理を一旦終了する(END)。その後、S10の処理から再度実行する。
 なお、S12の処理が第2取得部62としての処理に相当し、S13の処理が第1取得部61としての処理に相当し、S14~S21の処理が判定部66としての処理に相当する。
 図3は、正常時にU相において電圧指令値Vu*の周波数が低い場合の電流の推定値Ieu、検出値Iru、及びそれらの差(Ieu-Iru)を示すタイムチャートである。なお、電圧指令値Vu*と電流の推定値Ieu及び検出値Iruとの位相ずれを分かり易くするために、電圧指令値Vu*の振幅と電流の検出値Iruの振幅とを揃えて表示している。
 図3(a)に示すように、電圧指令値Vu*の周波数が低い場合は、電圧指令値Vu*、推定値Ieu、及び検出値Iruの位相ずれは小さくなっている。
 図3(b)に示すように、比較例における推定値Ieuと検出値Iruとの差(Ieu-Iru)は、上記第2閾値K2よりも小さく且つ-K2よりも大きくなっている。すなわち、比較例における推定値Ieuと検出値Iruとの差(Ieu-Iru)の絶対値ΔIuは、第2閾値K2よりも小さくなっている。したがって、図2の異常検出において、モータ制御システム10が異常であると判定されない。
 図3(c)に示すように、本実施形態における推定値Ieuと検出値Iruとの差(Ieu-Iru)は、上記第2閾値K2よりも小さく且つ-K2よりも大きくなっている。ここで、電流の推定値Ieuの絶対値が上記第1閾値K1よりも大きくない範囲では、図2のS16の処理において、推定値Ieuと検出値Iruとの差(Ieu-Iru)の絶対値ΔIuが0にされている。そして、差(Ieu-Iru)の絶対値ΔIuは、第2閾値K2よりも小さくなっている。したがって、図2の異常検出において、モータ制御システム10が異常であると判定されない。
 図4は、正常時にU相において電圧指令値Vu*の周波数が高い場合の電流の推定値Ieu、検出値Iru、及びそれらの差(Ieu-Iru)を示すタイムチャートである。なお、電圧指令値Vu*と電流の推定値Ieu及び検出値Iruとの位相ずれを分かり易くするために、電圧指令値Vu*の振幅と電流の検出値Iruの振幅とを揃えて表示している。
 図4(a)に示すように、電圧指令値Vu*の周波数が高い場合は、電流の推定値Ieuと検出値Iruとの位相ずれが大きくなっている。U相電圧指令値Vu*及び交流モータ30のロータの回転速度Nmに基づいて、電流の推定値Ieuを算出する際に位相を調節するパラメータの設定に応じて、この位相ずれの大きさは変化する。図4の例では、電流の検出値Iruに対して推定値Ieuの位相が遅れているが、電流の検出値Iruに対して推定値Ieuの位相が進むこともあり得る。また、電圧指令値Vu*に対して電流の検出値Iruの位相遅れが大きくなることもあり得る。
 図4(b)に示すように、比較例における推定値Ieuと検出値Iruとの差(Ieu-Iru)は、部分的に第2閾値K2よりも大きくなっており、部分的に-K2よりも小さくなっている。すなわち、比較例における推定値Ieuと検出値Iruとの差(Ieu-Iru)の絶対値ΔIuは、部分的に第2閾値K2よりも大きくなっている。したがって、図2の異常検出において、モータ制御システム10が異常であると誤判定される。
 図4(c)に示すように、本実施形態における推定値Ieuと検出値Iruとの差(Ieu-Iru)は、上記第2閾値K2よりも小さく且つ-K2よりも大きくなっている。ここで、電流の推定値Ieuの絶対値が上記第1閾値K1よりも大きくない範囲では、図2のS16の処理において、推定値Ieuと検出値Iruとの差(Ieu-Iru)の絶対値ΔIuが0にされている。すなわち、電流の推定値Ieuに対する検出値Iruの位相ずれの影響が大きい状況では、差(Ieu-Iru)の絶対値ΔIuが0にされている。このため、差(Ieu-Iru)の絶対値ΔIuは、第2閾値K2よりも小さくなっている。したがって、図2の異常検出において、モータ制御システム10は異常であると誤判定されない。
 以上詳述した本実施形態は、以下の利点を有する。
 ・判定部66は、取得された電流の推定値Ieuの絶対値が第1閾値K1よりも大きいことを、モータ制御システム10が異常であると判定する条件としている。すなわち、判定部66は、取得された電流の推定値Ieuの絶対値が第1閾値K1よりも大きくない場合(S14:NO)は、モータ制御システム10が異常であると判定しない。このため、電流の推定値Ieuに対する検出値Iruの位相ずれの影響が小さい状況で、電流の推定値Ieuと電流の検出値Iruとの差の絶対値ΔIuが第2閾値K2よりも大きいことを判定することができ、モータ制御システム10の異常を誤検出することを抑制することができる。
 ・差の絶対値ΔIuが第2閾値K2よりも大きいことが複数回確認されたことを条件として、モータ制御システム10が異常であるとの判定を確定している。このため、ノイズ等により差の絶対値ΔIuが第2閾値K2よりも大きいと1回誤判定されたとしても、モータ制御システム10の異常を誤検出することを抑制することができる。
 (第2実施形態)
 以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図2のS14の処理を、図5に示すS14a及びS14bの処理に変更している。その他の点は、第1実施形態と同一である。
 S14aの処理では、電流の推定値Ieu(想定値)の微分値aの絶対値を算出する。具体的には、推定値Ieuの今回値から前回値を引いた値を、電流の推定値Ieuの微分値aとする。そして、微分値aの絶対値(推定値Ieuの所定時間での変化量)を算出する。
 続いて、微分値aの絶対値が第3閾値K3よりも小さいか否か判定する(S14b)。第3閾値K3は、U相に流れる電流の変化速度が、所定速度よりも低くなることを判定する閾値である。微分値aの絶対値が第3閾値K3よりも小さくなる範囲は、電流の最大値(正の値)を含む第1範囲や、電流の最小値(負の値)を含む第2範囲に限られる。第1範囲及び第2範囲では、それ以外の範囲と比べて電流の変化速度が低くなり、電流の変化速度は所定速度よりも低くなる。この判定において、微分値aの絶対値が第3閾値K3よりも小さいと判定した場合(S14b:YES)、U相の電流の推定値Ieuと検出値Iruとの差の絶対値ΔIuを算出する(S15)。一方、この判定において、微分値aの絶対値が第3閾値K3よりも小さくないと判定した場合(S14b:NO)、U相の電流の推定値Ieuと検出値Iruとの差の絶対値ΔIuを0にする(S16)。
 本実施形態は、以下の利点を有する。
 ・判定部66は、第1取得部61により取得された推定値Ieuの所定時間での変化量が第3閾値K3よりも小さいことを条件として、モータ制御システム10が異常であると判定する。すなわち、判定部66は、取得された電流の推定値Ieuの所定時間での変化量が第3閾値K3よりも小さくない場合(S14b:NO)は、モータ制御システム10が異常であると判定しない。このため、電流の推定値Ieuに対する検出値Iruの位相ずれの影響が小さい状況で、電流の推定値Ieuと電流の検出値Iruとの差の絶対値ΔIuが第2閾値K2よりも大きいことを判定することができ、モータ制御システム10の異常を誤検出することを抑制することができる。
 ・第1取得部61は、所定周期Δtで推定値Ieuを取得し、推定値Ieuの所定時間での変化量は、推定値Ieuの今回値と前回値との差の絶対値である。こうした構成によれば、推定値Ieuの所定時間での変化量として、推定値Ieuの微分値aの絶対値を用いることができ、電流の推定値Ieuに対する検出値Iruの位相ずれの影響が小さい状況であることを正確に判定することができる。
 なお、推定値Ieuの所定時間での変化量として、推定値Ieuの時刻t2での値と時刻t2よりも前の時刻t1での値との差の絶対値を採用することもできる。また、推定値Ieuの所定時間での変化量として、推定値Ieuの時刻t2での値と時刻t2よりも前の時刻t1での値との差を、時刻t1から時刻t2までの時間で割った値の絶対値を採用することもできる。
 (第3実施形態)
 以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図6に示すように、交流モータ30が2つのステータ巻線群(巻線群)を備えている。このため、モータ制御システム10は、第1インバータ40A及び第2インバータ40Bを備えている。なお、図6において、先の図1に示した構成と同一の構成については、同一の符号を付している。また、図6では、制御装置60等の図示を省略している。
 交流モータ30のステータ33は、第1ステータ巻線群及び第2ステータ巻線群を備えている。第1ステータ巻線群(第1系)は、電気角で互いに120°ずれた第1U,V,W相巻線34UA,34VA,34WAを備えている。第2ステータ巻線群(第2系)は、電気角で互いに120°ずれた第2U,V,W相巻線34UB,34VB,34WBを備えている。第1ステータ巻線群と第2ステータ巻線群とのなす角度である空間位相差Δθは、例えば電気角で30°とされている。
 第1インバータ40Aは、第1U,V,W相上アームスイッチSUp1,SVp1,SWp1と、第1U,V,W相下アームスイッチSUn1,SVn1,SWn1との直列接続体を備えている。なお、第1U,V,W相上アームスイッチSUp1,SVp1,SWp1には、第1U,V,W相上アームダイオードDUp1,DVp1,DWp1が逆並列接続されている。第1U,V,W相下アームスイッチSUn1,SVn1,SWn1には、第1U,V,W相下アームダイオードDUn1,DVn1,DWn1が逆並列接続されている。
 第2インバータ40Bは、第2U,V,W相上アームスイッチSUp2,SVp2,SWp2と、第2U,V,W相下アームスイッチSUn2,SVn2,SWn2との直列接続体を備えている。なお、第2U,V,W相上アームスイッチSUp2,SVp2,SWp2には、第2U,V,W相上アームダイオードDUp2,DVp2,DWp2が逆並列接続されている。第2U,V,W相下アームスイッチSUn2,SVn2,SWn2には、第2U,V,W相下アームダイオードDUn2,DVn2,DWn2が逆並列接続されている。
 各上アームスイッチSUp1~SWp2のコレクタには、高電位側電気経路Lpを介してバッテリ20の正極端子が接続されている。各下アームスイッチSUn1~SWn2のエミッタには、低電位側電気経路Lnを介してバッテリ20の負極端子が接続されている。高電位側電気経路Lpのうち各上アームスイッチSUp1~SWp2のコレクタとの接続点よりもバッテリ20の正極端子側には、コンデンサ21の高電位側端子が接続されている。低電位側電気経路Lnのうち各下アームスイッチSUn1~SWn2のエミッタとの接続点よりもバッテリ20の負極端子側には、コンデンサ21の低電位側端子が接続されている。
 本実施形態では、モータ制御システム10は、2つのステータ巻線群にそれぞれ電流を流して交流モータ30を制御する。判定部66は、2つのステータ巻線群がそれぞれ異常であるか否か判定する。詳しくは、図2又は図5の異常検出を、第1ステータ巻線群及び第2ステータ巻線群に対してそれぞれ実行する。そして、制御装置60は、判定部66により一方のステータ巻線群が異常であると判定された場合に、異常であると判定された一方のステータ巻線群に流す電流を停止させ、他方のステータ巻線群に電流を流して交流モータ30を制御する。
 上記構成によれば、判定部66は、2つのステータ巻線群がそれぞれ異常であるか否か判定する。このため、交流モータ30全体として異常である場合も、それぞれのステータ巻線群が異常であるか否か判定することができる。そして、制御装置60は、判定部66により一方のステータ巻線群が異常であると判定された場合に、異常であると判定された一方のステータ巻線群に流す電流を停止させ、他方のステータ巻線群に電流を流して交流モータ30を制御する。したがって、モータ制御システム10の異常を誤検出することを抑制しつつ、一方のステータ巻線群に異常が生じた場合には、他方のステータ巻線群にのみ電流を流すことにより、交流モータ30の制御を継続することができる。
 (その他の実施形態)
 上記の各実施形態を、以下のように変更して実施することもできる。なお、上記の各実施形態と同一の部分については、同一の符号を付すことにより説明を省略する。
 ・図2のS18~S20の処理を省略し、S17の処理において差の絶対値ΔIuが第2閾値K2よりも大きいと1回判定されたことを条件として、モータ制御システム10が異常であるという判定を確定することもできる。
 ・インバータ40,40A,40Bで用いられるスイッチとしては、例えばNチャネルMOSFETであってもよい。
 ・交流モータ30としては、星形結線されるものに限らず、例えば、Δ結線されるものであってもよい。
 ・交流モータ30は、3相の交流モータに限らず、4相以上の交流モータであってもよい。
 ・交流モータ30に流れると想定される電流の想定値として、例えばU相であれば電流の推定値Ieuに代えて、電流の指令値Icu(想定値)を採用することもできる。この場合、第1取得部61は、交流モータ30のU,V,W相巻線34U,34V,34Wにそれぞれ流すべき電流を示す指令値Icu,Icv,Icwを取得する。そして、判定部66は、第1取得部61により取得された電流の指令値Icu,Icv,Icwの絶対値が第1閾値K1よりも大きいこと、且つ第1取得部61により取得された指令値Icu,Icv,Icwと、第2取得部62により取得された電流の検出値Iru,Irv,Irwとのそれぞれの差の絶対値が第2閾値よりも大きいことを条件として、モータ制御システム10が異常であると判定することもできる。こうした構成によっても、上記の各実施形態に準じた作用効果を奏することができる。
 また、判定部66は、第1取得部61により取得された電流の指令値Icu,Icv,Icw(想定値)の所定時間での変化量が第3閾値K3よりも小さいこと、且つ第1取得部61により取得された指令値Icu,Icv,Icwと、第2取得部62により取得された電流の検出値Iru,Irv,Irwとのそれぞれの差の絶対値が第2閾値よりも大きいことを条件として、モータ制御システム10が異常であると判定することもできる。こうした構成によっても、上記の各実施形態に準じた作用効果を奏することができる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (6)

  1.  交流モータ(30)に流れる電流を検出する電流センサ(51)を備えて前記交流モータを制御するモータ制御システム(10)に適用され、前記モータ制御システムの異常を検出する異常検出装置であって、
     前記交流モータに流れると想定される電流の想定値を取得する第1取得部(61)と、
     前記電流センサにより検出された前記電流の検出値を取得する第2取得部(62)と、
     前記第1取得部により取得された前記想定値の絶対値が第1閾値よりも大きいこと、且つ前記第1取得部により取得された前記想定値と前記第2取得部により取得された前記検出値との差の絶対値が第2閾値よりも大きいことを条件として、前記モータ制御システムが異常であると判定する判定部(66)と、
    を備える、モータ制御システムの異常検出装置。
  2.  前記判定部は、前記第1取得部により取得された前記想定値の絶対値が第1閾値よりも大きいことに代えて、前記第1取得部により取得された前記想定値の所定時間での変化量が第3閾値よりも小さいことを条件として、前記モータ制御システムが異常であると判定する、請求項1に記載のモータ制御システムの異常検出装置。
  3.  交流モータ(30)に流れる電流を検出する電流センサ(51)を備えて前記交流モータを制御するモータ制御システム(10)に適用され、前記モータ制御システムの異常を検出する異常検出装置であって、
     前記交流モータに流れると想定される電流の想定値を取得する第1取得部(61)と、
     前記電流センサにより検出された前記電流の検出値を取得する第2取得部(62)と、
     前記第1取得部により取得された前記想定値の所定時間での変化量が第3閾値よりも小さいこと、且つ前記第1取得部により取得された前記想定値と前記第2取得部により取得された前記検出値との差の絶対値が第2閾値よりも大きいことを条件として、前記モータ制御システムが異常であると判定する判定部(66)と、
    を備える、モータ制御システムの異常検出装置。
  4.  前記第1取得部は、所定周期で前記想定値を取得し、
     前記想定値の所定時間での変化量は、前記想定値の今回値と前回値との差の絶対値である、請求項2又は3に記載のモータ制御システムの異常検出装置。
  5.  前記交流モータは、互いに電気角がずれた2つの巻線群(34UA,34VA,34WA,34UB,34VB,34WB)を備え、
     前記モータ制御システムは、前記2つの巻線群にそれぞれ電流を流して前記交流モータを制御し、
     前記判定部は、前記2つの巻線群がそれぞれ異常であるか否か判定し、
     前記モータ制御システムは、前記判定部により一方の前記巻線群が異常であると判定された場合に、前記異常であると判定された前記一方の前記巻線群に流す電流を停止させ、他方の前記巻線群に電流を流して前記交流モータを制御する、請求項1~4のいずれか1項に記載のモータ制御システムの異常検出装置。
  6.  前記想定値は、前記交流モータに印加すべき電圧を示す電圧指令値及び前記交流モータの回転速度に基づいて、前記交流モータに流れると推定した電流の推定値である、請求項1~5のいずれか1項に記載のモータ制御システムの異常検出装置。
PCT/JP2021/002049 2020-02-10 2021-01-21 モータ制御システムの異常検出装置 WO2021161754A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-020929 2020-02-10
JP2020020929A JP2021129337A (ja) 2020-02-10 2020-02-10 モータ制御システムの異常検出装置

Publications (1)

Publication Number Publication Date
WO2021161754A1 true WO2021161754A1 (ja) 2021-08-19

Family

ID=77293048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002049 WO2021161754A1 (ja) 2020-02-10 2021-01-21 モータ制御システムの異常検出装置

Country Status (2)

Country Link
JP (1) JP2021129337A (ja)
WO (1) WO2021161754A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172791A (ja) * 1995-12-18 1997-06-30 Toyota Motor Corp 交流モータ制御回路の異常検出装置
JP2014155331A (ja) * 2013-02-08 2014-08-25 Denso Corp 交流電動機の制御装置
JP2019071726A (ja) * 2017-10-10 2019-05-09 株式会社デンソー シフトレンジ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09172791A (ja) * 1995-12-18 1997-06-30 Toyota Motor Corp 交流モータ制御回路の異常検出装置
JP2014155331A (ja) * 2013-02-08 2014-08-25 Denso Corp 交流電動機の制御装置
JP2019071726A (ja) * 2017-10-10 2019-05-09 株式会社デンソー シフトレンジ制御装置

Also Published As

Publication number Publication date
JP2021129337A (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
JP3661572B2 (ja) インバーターの電流センサー診断装置
JP2014072973A (ja) 交流電動機の制御装置
JP6787018B2 (ja) 電流センサ異常診断装置
US9054626B2 (en) Motor control apparatus
JP5375059B2 (ja) センサ異常検出装置及びセンサの異常検出方法
US9065376B2 (en) Method for checking the plausibility of the torque of an electric machine and machine controller for controlling an electric machine and for carrying out the method
JP5945741B2 (ja) 電動パワーステアリング装置
JP2006081327A (ja) インバータの故障検出装置
WO2019008676A1 (ja) インバータ装置、及び、電動パワーステアリング装置
JP6652073B2 (ja) モータ制御装置
JP5584994B2 (ja) インバータの故障診断装置
US11205988B2 (en) Motor control device
JP5476795B2 (ja) 電動車両の制御装置
US10483882B2 (en) Drive device
JP2011019302A (ja) モータ駆動システムの制御装置
JP2011041366A (ja) インバータの故障検出装置
US20210075355A1 (en) Control device for electric motor and cable disconnection detection method
WO2021161754A1 (ja) モータ制御システムの異常検出装置
JP2012029347A (ja) 欠相診断装置及び欠相診断方法
JP7006428B2 (ja) モータ制御装置
WO2021049230A1 (ja) 電力変換装置、および電力変換装置の制御方法
JP5899787B2 (ja) 回転電機制御システム
JP4930546B2 (ja) インバータ異常検出装置
JP2010063239A (ja) 多相回転機の制御装置及び多相回転機の制御システム
US11396236B2 (en) Electric vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753926

Country of ref document: EP

Kind code of ref document: A1