WO2021161646A1 - 欠陥検出装置、欠陥検出方法、欠陥修正装置 - Google Patents

欠陥検出装置、欠陥検出方法、欠陥修正装置 Download PDF

Info

Publication number
WO2021161646A1
WO2021161646A1 PCT/JP2020/046901 JP2020046901W WO2021161646A1 WO 2021161646 A1 WO2021161646 A1 WO 2021161646A1 JP 2020046901 W JP2020046901 W JP 2020046901W WO 2021161646 A1 WO2021161646 A1 WO 2021161646A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
pixel
defect detection
spectral
image
Prior art date
Application number
PCT/JP2020/046901
Other languages
English (en)
French (fr)
Inventor
畑中 誠
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2021161646A1 publication Critical patent/WO2021161646A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to a defect detection device, a defect detection method, and a defect correction device for correcting a detected defect.
  • the defect portion is detected by visual inspection using a microscope image or by collating the image of the defect portion with the reference image without the defect portion by using an image processing technique to grasp the position and feature of the defect portion. Such things are done (see Patent Document 1 below).
  • the information obtained from the defective portion by the two-dimensional image is limited to the color, size, contrast, shape, etc. of the defective portion.
  • the layer structure of the underlying layer of the defective portion cannot be grasped and the defective portion is erroneously detected.
  • the present invention has been proposed to deal with such a problem. That is, in detecting a defect portion of a multilayer film substrate, it is an object to suppress erroneous detection and enable highly accurate detection.
  • the present invention has the following configurations.
  • a spectrum that has a microscope that obtains a magnified image that detects defects on the surface of the multilayer film substrate and an imaging surface on which the enlarged image is imaged, and outputs spectral spectrum information of the enlarged image for each pixel of the imaging surface.
  • the spectrum camera is provided with an information processing unit that processes the spectral spectrum information output from the spectral spectral camera, and the information processing unit includes a machine learning unit that clusters the spectral spectrum information for each pixel and the machine learning.
  • a defect detection unit that detects a defect portion from the processing result of the unit is provided, and the defect detection unit compares a binarized image of the classification area obtained from the result of the clustering process of the machine learning unit with a normal binarized image.
  • a defect detection device which comprises extracting a defect portion excluding a pseudo defect portion.
  • Explanatory drawing which showed the defect detection apparatus Explanatory drawing explaining the information processing part of a defect detection apparatus. Explanatory drawing explaining the clustering process of a machine learning part. Explanatory drawing which showed the processing flow of a defect detection part.
  • Explanatory drawing showing a binarized image ((a) is a binarized image including a defect portion and a pseudo defect, (b) is a normal binarized image, and (c) is a binarized image in which the pseudo defect is removed. ).
  • Explanatory drawing which shows the filter processing of a defect detection part ((a) normal binarized image data, (b) binarized image data of a classification area, (c) filtered binarized image data).
  • Explanatory drawing which shows the filter processing of a defect detection part ((a) normal binarized image data, (b) binarized image data of a classification area, (c) filtered binarized image data).
  • Explanatory drawing explaining defect search Explanatory drawing explaining defect detection based on the result of defect search.
  • the defect detection device 1 detects a defect portion of the multilayer film substrate W which is a work installed on the stage S, and includes a microscope 10, a spectrum spectroscopic camera 20, and an information processing unit 30. I have.
  • the microscope 10 is an optical microscope that irradiates the surface Wa of the multilayer film substrate W with white epi-illumination to obtain a magnified image of a detection area for detecting a defect portion on the surface Wa, and is an optical microscope such as an objective lens 11 or a tube lens 17.
  • a white light source 12 for irradiating the surface Wa with white epi-illumination light and its optical system (mirror 13 and half mirror 14).
  • the microscope 10 includes, if necessary, a monitor camera 15 for obtaining a monitor image of a magnified image of the surface Wa, an optical system (half mirror 16) for that purpose, and the like.
  • the spectrum spectroscopic camera 20 arranges a slit 23 and a grating element (diffraction grating) 21 on the optical axis 10P of the optical system of the microscope 10, wavelength-separates the light reflected by the surface Wa, and separates the light.
  • Light is imaged on the imaging surface 22a of the two-dimensional camera 22 via the relay lens system 24, and the spectral spectrum information of the enlarged image of the surface Wa is acquired for each pixel of the imaging surface 22a by the line spectroscopy method. ..
  • the information processing unit 30 processes the spectral spectrum information output from the spectral spectroscopic camera 20, and as shown in FIG. 2, the machine learning unit 31 and the machine learning unit that perform clustering processing of the spectral spectrum information for each pixel. It is provided with a defect detection unit 32 that detects a defect portion from the processing result of 31. The detection result of the defect detection unit 32 is output to the control unit of the laser correction device (defect correction device) described later.
  • the spectral spectrum information output from the spectral spectroscopic camera 20 outputs one spectral spectral distribution for each pixel P (Xn, Yn) of the imaging surface 22a of the two-dimensional camera 22. ..
  • the pixel P (Xn, Yn) here has the position information of the XY plane coordinates, and the position of the pixel P (Xn, Yn) corresponds to a specific position in the enlarged image serving as the detection area. doing.
  • the spectral spectrum information for each pixel output by the spectral spectroscopic camera 20 is different from the simple two-dimensional image information of the surface Wa, and has a layered structure at a position on the surface Wa corresponding to the pixels P (Xn, Yn) of the imaging surface 22a. Contains predictable information. This is peculiar to the layer structure because the light reflected by the surface Wa of the multilayer film substrate W exhibits various spectral characteristics due to the difference in the surface layer of the multilayer film and interferes with the light reflected at the interface of each layer of the multilayer film. It is due to showing the spectral distribution of.
  • the machine learning unit 31 clusters the spectral spectrum information for each pixel output by the spectral spectral camera 20.
  • clustering for example, a plurality of clusters having similar spectral spectrum distribution patterns are set according to the number of layer structures existing in the detection area of the multilayer film substrate W to be detected. In the example shown in FIG. 3, four clusters 1 to 4 are set according to the patterns A to D of the spectral spectrum distribution.
  • the machine learning unit 31 collects pixels having similar patterns of spectral spectrum information (spectral spectrum distribution) for each cluster, and generates a histogram in which the number of pixels clustered in each cluster is a frequency, as shown in FIG. ..
  • the defect detection unit 32 detects the defect unit by performing the processes S1 to S7 shown in FIG. 4 on the pixels in the clustered detection area as described above.
  • the clustered pixels are automatically classified into areas for each cluster (hereinafter, classification area).
  • classification area areas for each cluster.
  • binarization processing is performed for each classification area.
  • the pixels assigned to the classification area that is, the cluster, are set to "1" (with data), and the other pixels are set to "0" (without data).
  • the classification area is an area in which the surface material and the layer structure are similar, and different types of defects can be detected by the binarized image for each classification area.
  • the binarized image for each classification area is compared with the corresponding normal binarized image (binarized image without defects), but at that time, the binarized image in the classification area is normal.
  • the binarized image is not simply compared pixel by pixel, but the multiple set pixels in the normal binarized image are compared with one pixel in the corresponding classification area, and there is no data in the multiple set pixels.
  • the data of the corresponding classification area 1 pixel is left as it is, and when the data exists in the plurality of set pixels, the data of the corresponding classification area 1 pixel is replaced with zero.
  • FIG. 5A shows a binarized image of one classification area including a defect portion and a pseudo defect.
  • a corresponding normal binarized image as shown in FIG. 5 (b) is used, which is compared with the binarized image shown in FIG. 5 (a) and shown in FIG. 5 (c).
  • Such a binarized image of only the defective part is obtained.
  • the filtering process at that time will be specifically described with reference to FIGS. 6 and 7.
  • the above-mentioned plurality of set pixels are m ⁇ n pixels (m and n are arbitrary natural numbers of 2 or more, and 3 ⁇ 3 pixels in the illustrated example).
  • m and n are arbitrary natural numbers of 2 or more, and 3 ⁇ 3 pixels in the illustrated example.
  • an arbitrary m ⁇ n pixel is extracted, and the presence or absence of data in the plurality of set pixels is confirmed.
  • there is at least one "1" in the plurality of set pixels among the binarized "0" and "1” it is determined that there is data.
  • one pixel corresponding to the m ⁇ n pixel extracted in the normal binarized image is extracted, and the presence or absence of data of that pixel is determined.
  • the corresponding one pixel is the central pixel of m ⁇ n pixels in the illustrated example.
  • FIG. 6 (a) there is no data in the m ⁇ n pixels extracted in the normal binarized image, and as shown in FIG. 6 (b), there are binary values in one classification area.
  • FIG. 6 (c) the 1 pixel after the filtering process is regarded as having data as it is ("1"). ..
  • the binarized image of the normal part there is no data in the extracted m ⁇ n pixels, and there is no data in the corresponding 1 pixel in the binarized image of the detection area (in the case of “0”). Is set to no data (“0”) as it is for one pixel after the filtering process.
  • FIG. 7 (a) there is data in the m ⁇ n pixels extracted in the normal binarized image
  • FIG. 7 (b) there is data in one classification area.
  • the 1 pixel after the filtering process is replaced with zero.
  • a defect search is performed on the binarized image for each classified area that has been filtered.
  • the search area Se is determined according to the defect portion of the assumed size, and in each classification area, as shown in FIG. 8, the search area Se is moved one frame at a time vertically and horizontally. , Region No. Area No. 1 to The number of data (the number of "1") is counted in each search area of n search areas.
  • the defect portion is detected from the result of the defect search described above.
  • a threshold value is set for the number of data counts for the result of the defect search in each classification area, and the search area Se for which the number of data counts equal to or greater than the threshold value is obtained is specified.
  • the search area where the data count exceeds the threshold value is recognized as the area where the defective portion exists.
  • the search area specified in the S5 step is left, data in other areas is removed, and a binarized image only in the specified area is obtained. Then, the area adjacent to the specified area is connected to create a defective part extraction area.
  • the contour of the defective portion is detected based on the binarized image in the specified region, and the center of gravity of the defective portion is detected by the contour of the detected defective portion.
  • the defect detection process is completed.
  • this detection information is transmitted to the control unit 50 of the laser correction device (defect correction device) 2 as shown in FIG. 10, and the laser correction processing of the defect portion is performed. conduct.
  • the laser correction device 2 irradiates the defect portion detected by the defect detection unit 32 in the defect detection device 1 described above with a laser beam to perform correction processing, and the laser is coaxial with the optical axis of the microscope 10. It includes a laser irradiation unit 3 that irradiates light L.
  • the laser irradiation unit 3 includes, for example, a laser light source 40, a laser scanner 42, and the like, and the laser light L emitted from the laser light source 40 passes through the mirror 41 and the galvano mirrors 42A and 42B of the laser scanner 42. It is incident on the optical system of the microscope 10 and is irradiated on the surface Wa of the unit region from which the magnified image obtained by the laser 10 is obtained.
  • a switching mirror 18 is provided to enter / retract the optical axis of the microscope 10.
  • the spectrum spectroscopic camera 20 reflects from the surface Wa.
  • the defect detection device 1 is operated by incident light, and the switching mirror 18 is retracted from the optical axis of the microscope 10 to enable the laser correction device 2 that irradiates the surface Wa with the laser beam L.
  • the defect detection unit 32 can determine the presence or absence of the defect portion, the outline and the position of the center of gravity of the defect portion when there is a defect portion, the layer structure of the defect portion, and the like.
  • Information such as the type (type of classification area) is transmitted to the control unit 50.
  • the control unit 50 determines whether or not to perform laser correction based on the above-mentioned information transmitted from the defect detection unit 32, and when performing laser correction, laser irradiation is performed based on the contour of the defect unit. Set the range, and set the processing recipe based on the layer structure and type information of the defective part corresponding to the classification area.
  • the magnified image of the microscope 10 is also formed on the monitor camera 15, and the laser correction can be performed while observing the image captured by the monitor camera 15 on the display device 52. ing.
  • the two-dimensional image acquired by the monitor camera 15 is image-processed by the image processing unit 51 and transmitted to the control unit 50 and the information processing unit 30, and the two-dimensional image also controls the laser irradiation unit 3. Can be done.
  • the defective portion of the multilayer film substrate W can be mechanically recognized in more detail, and the laser correction processing can be set based on the recognized information. .. This enables high-quality correction processing that is not affected by the skill of the operator, and also enables highly efficient and high-quality correction processing by automating the process from defect recognition to processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nonlinear Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Liquid Crystal (AREA)

Abstract

多層膜基板の欠陥部検出において、誤検出を抑止して、精度の高い検出を行えるようにする。欠陥検出装置は、多層膜基板の表面において欠陥部を検出する拡大像を得る顕微鏡と、拡大像が結像される撮像面を有し、撮像面の画素毎に拡大像の分光スペクトル情報を出力するスペクトル分光カメラと、スペクトル分光カメラから出力された分光スペクトル情報を処理する情報処理部とを備え、情報処理部は、画素毎の分光スペクトル情報をクラスタリング処理する機械学習部と、機械学習部の処理結果から欠陥部を検出する欠陥検出部を備え、欠陥検出部は、機械学習部のクラスタリング処理の結果から得られる分類エリアの2値化画像を正常な2値化画像と比較し、疑似的な欠陥部を除いた欠陥部を抽出する。

Description

欠陥検出装置、欠陥検出方法、欠陥修正装置
 本発明は、欠陥検出装置、欠陥検出方法、検出された欠陥を修正する欠陥修正装置に関するものである。
 FPD(Flat Panel Display)などの製造工程では、検査工程で欠陥画素が検出された場合に、TFT(Thin Film Transistor)などの多層膜基板を対象に、欠陥画素の欠陥部に対してレーザ光を照射する修正加工を行っている。
 この際の欠陥部の検出は、顕微鏡画像による目視検査か、或いは、画像処理技術を用いて、欠陥部の画像と欠陥部の無い参照画像とを照合し、欠陥部の位置や特徴を把握することなどが行われている(下記特許文献1参照)。
特開2008-188638号公報
 前述した画像処理技術を用いて欠陥部の検出を行う従来技術によると、2次元画像によって欠陥部から得られる情報は、欠陥部の色、大きさ、コントラスト、形状などに限られてしまうため、欠陥部の下地層の層構造などを把握することができず、欠陥部を誤検出してしまう問題があった。
 本発明は、このような問題に対処するために提案されたものである。すなわち、多層膜基板の欠陥部検出において、誤検出を抑止して、精度の高い検出を行えるようにすること、などを課題としている。
 このような課題を解決するために、本発明は、以下の構成を具備するものである。
 多層膜基板の表面において欠陥部を検出する拡大像を得る顕微鏡と、前記拡大像が結像される撮像面を有し、当該撮像面の画素毎に前記拡大像の分光スペクトル情報を出力するスペクトル分光カメラと、前記スペクトル分光カメラから出力された分光スペクトル情報を処理する情報処理部とを備え、前記情報処理部は、前記画素毎の分光スペクトル情報をクラスタリング処理する機械学習部と、該機械学習部の処理結果から欠陥部を検出する欠陥検出部を備え、前記欠陥検出部は、前記機械学習部のクラスタリング処理の結果から得られる分類エリアの2値化画像を正常な2値化画像と比較し、疑似的な欠陥部を除いた欠陥部を抽出することを特徴とする欠陥検出装置。
欠陥検出装置を示した説明図。 欠陥検出装置の情報処理部を説明する説明図。 機械学習部のクラスタリング処理を説明する説明図。 欠陥検出部の処理フローを示した説明図。 2値化画像を示した説明図((a)が欠陥部と疑似欠陥を含む2値化画像、(b)が正常な2値化画像、(c)が疑似欠陥を除去した2値化画像)。 欠陥検出部のフィルタ処理を示す説明図((a)正常な2値化画像データ、(b)分類エリアの2値化画像データ、(c)フィルタ処理された2値化画像データ)。 欠陥検出部のフィルタ処理を示す説明図((a)正常な2値化画像データ、(b)分類エリアの2値化画像データ、(c)フィルタ処理された2値化画像データ)。 欠陥サーチを説明する説明図。 欠陥サーチの結果に基づく欠陥検出を説明する説明図。 レーザ修正装置(欠陥修正装置)を説明する説明図。
 以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。
 図1に示すように、欠陥検出装置1は、ステージS上に設置されたワークである多層膜基板Wの欠陥部を検出するものであり、顕微鏡10、スペクトル分光カメラ20、情報処理部30を備えている。
 顕微鏡10は、多層膜基板Wの表面Waに白色落射光を照射して、表面Waにおいて欠陥部を検出する検出エリアの拡大像を得る光学顕微鏡であり、対物レンズ11やチューブレンズ17などの光学系を備えると共に、白色落射光を表面Waに照射するための白色光源12とその光学系(ミラー13及びハーフミラー14)を備えている。また、顕微鏡10は、必要に応じて、表面Waの拡大像のモニタ画像を得るためのモニタカメラ15とそのための光学系(ハーフミラー16)などを備えている。
 スペクトル分光カメラ20は、顕微鏡10の光学系の光軸10P上に、スリット23とグレーティング素子(回折格子)21を配置して、表面Waにて反射される光を波長分離し、この分離された光を、リレーレンズ系24を介して2次元カメラ22の撮像面22aに結像し、ライン分光方式によって、表面Waの拡大像の分光スペクトル情報を撮像面22aの画素毎に取得するものである。
 情報処理部30は、スペクトル分光カメラ20から出力された分光スペクトル情報を処理するものであり、図2に示すように、画素毎の分光スペクトル情報をクラスタリング処理する機械学習部31と、機械学習部31の処理結果から欠陥部を検出する欠陥検出部32とを備えている。欠陥検出部32の検出結果は、後述するレーザ修正装置(欠陥修正装置)の制御部に出力される。
 スペクトル分光カメラ20から出力される分光スペクトルの情報は、図3に示すように、2次元カメラ22の撮像面22aの一つの画素P(Xn,Yn)毎に、一つの分光スペクトル分布を出力する。ここでの画素P(Xn,Yn)は、X-Y平面座標の位置情報を有しており、この画素P(Xn,Yn)の位置が、検出エリアとなる拡大像内の特定位置に対応している。
 スペクトル分光カメラ20が出力する画素毎の分光スペクトル情報は、表面Waの単なる2次元画像情報とは異なり、撮像面22aの画素P(Xn,Yn)に対応する表面Wa上の位置の層構造が予測できる情報を含んでいる。これは、多層膜基板Wの表面Waにて反射する光が、多層膜の表層の違いで様々な分光特性を示すと共に多層膜の各層界面で反射する光と干渉するなどして、層構造特有のスペクトル分布を示すことに起因する。
 機械学習部31は、スペクトル分光カメラ20が出力する画素毎の分光スペクトル情報をクラスタリングする。クラスタリングに際しては、例えば、検出対象となる多層膜基板Wの検出エリアに存在する層構造の数などに応じて、分光スペクトル分布のパターンが類似する複数のクラスタを設定する。図3に示した例では、分光スペクトル分布のパターンA~Dに応じて4つのクラスタ1~4が設定されている。
 機械学習部31は、類似パターンの分光スペクトル情報(分光スペクトル分布)を有する画素をクラスタ毎に集めて、図3に示すように、各クラスタにクラスタリングされる画素数を度数とするヒストグラムを生成する。
 欠陥検出部32は、前述したようにクラスタリングされた検出エリアの画素に対して、図4に示すS1~S7工程の処理を行って、欠陥部を検出する。
 先ず、S1工程では、クラスタリングされた画素をクラスタ毎のエリア(以下、分類エリア)に自動分類する。これによって、検出エリアは、クラスタ毎の分類エリアに分けられる。
 S2工程では、分類エリア毎に2値化処理を行う。2値化処理は、一つの分類エリアに対しては、その分類エリア、則ちそのクラスタに振り分けられた画素を「1」(データ有り)、それ以外の画素を「0」(データ無し)にした黒白画像を得る。分類エリアは、表面の材料や層構造が類似したエリアであり、分類エリア毎の2値化画像によって、異なる種類の欠陥検出を行うことができる。
 S3工程では、フィルタ処理によって疑似欠陥の除去を行う。ここでは、分類エリア毎の2値化画像を、それに対応する正常な2値化画像(欠陥部の無い2値化画像)と比較するが、その際に分類エリアの2値化画像と正常な2値化画像を単純に画素毎に比較するのでは無く、正常な2値化画像における複数集合画素とそれに対応する分類エリアの1画素とを比較し、複数集合画素内にデータが存在しない場合には、対応する分類エリア1画素のデータをそのまま残し、複数集合画素内にデータが存在する場合には、対応する分類エリア1画素のデータをゼロに置き換える。
 図5(a)は、欠陥部と疑似欠陥を含む一つの分類エリアの2値化画像を示している。ここでは、図5(b)に示すような、対応する正常な2値化画像を用いて、これを図5(a)に示した2値化画像と比較し、図5(c)に示すような、欠陥部のみの2値化画像を得る。
 その際のフィルタ処理を図6及び図7にて具体的に説明する。ここでは、前述した複数集合画素をm×n画素(m,nは2以上の任意の自然数、図示の例では3×3画素)としている。先ず、図6(a)に示す正常な2値化画像において、任意のm×n画素を抽出し、その複数集合画素内のデータの有無を確認する。ここでは、2値化された「0」と「1」のうち、「1」が複数集合画素内に一つでもあれば、データ有りと判断する。
 そして、図6(b)に示す一つの分類エリアにおける2値化画像において、正常な2値化画像において抽出されたm×n画素に対応する1画素を抽出し、その画素のデータの有無を確認する。この際の対応する1画素は、図示の例では、m×n画素の中心画素としている。
 ここで、図6(a)に示すように、正常な2値化画像において抽出されたm×n画素内にデータが無く、図6(b)に示すように、一つの分類エリアの2値化画像において対応する1画素にデータが有る場合(「1」の場合)には、図6(c)に示すように、フィルタ処理の後の1画素をそのままデータ有り(「1」)とする。当然ながら、正常箇所の2値化画像において、抽出されたm×n画素内にデータが無く、検出エリアの2値化画像において対応する1画素にもデータが無い場合(「0」の場合)には、フィルタ処理の後の1画素をそのままデータ無し(「0」)とする。
 これに対して、図7(a)に示すように、正常な2値化画像において抽出されたm×n画素内にデータが有り、図7(b)に示すように、一つの分類エリアの2値化画像において対応する1画素にデータが有る場合(「1」の場合)には、図7(c)に示すように、フィルタ処理の後の1画素は、ゼロに置き換える。このような処理を分類エリアにおける全ての画素に対して個別に行うことで、分類エリアの2値化画像に表れる疑似欠陥を除去し、図5(c)に示すような欠陥部のみの2値化画像を得ることができる。
 次のS4工程では、フィルタ処理がなされた分類エリア毎の2値化画像に対して、欠陥サーチを行う。ここでの欠陥サーチは、想定される大きさの欠陥部に合わせてサーチ領域Seを定め、各分類エリアで、図8に示すように、サーチ領域Seを縦・横に一コマずつ移動させながら、領域No.1から領域No.nのサーチ領域の各サーチ領域内でデータ数(「1」の数)をカウントする。
 S5工程では、前述した欠陥サーチの結果から欠陥部を検出する。ここでは、図9に示すように、各分類エリアの欠陥サーチの結果に対して、データのカウント数に閾値を設け、閾値以上のデータカウント数が得られたサーチ領域Seを特定する。各分類リアで、データカウント数が閾値を超えたサーチ領域は、欠陥部が存在する領域であると認識される。
 次のS6工程では、S5工程で特定されたサーチ領域を残して、他の領域のデータを除去し、特定された領域内のみの2値化画像を得る。そして、特定した領域に隣接する領域を連結して、欠陥部抽出領域を作成する。
 その後は、S7工程にて、特定された領域内の2値化画像に基づいて、欠陥部の輪郭検出が行われ、更に検出された欠陥部の輪郭によって、欠陥部の重心検出が行われて、欠陥検出工程を終了する。このようにして、分類エリア毎の欠陥部を検出すると、この検出情報を、図10に示すようなレーザ修正装置(欠陥修正装置)2の制御部50に送信し、欠陥部のレーザ修正加工を行う。
 レーザ修正装置2は、前述した欠陥検出装置1における欠陥検出部32が検出した欠陥部に対して、レーザ光を照射して修正加工を行うものであり、顕微鏡10の光軸と同軸上にレーザ光Lを照射するレーザ照射部3を備えている。
 レーザ照射部3は、例えば、レーザ光源40、レーザスキャナ42などを備えており、レーザ光源40から出射されたレーザ光Lは、ミラー41とレーザスキャナ42のガルバノミラー42A,42Bを経由して、顕微鏡10の光学系内に入射され、顕微鏡10による拡大像が得られている単位領域の表面Wa上に照射される。
 図示の例では、顕微鏡10の光軸に進入・退避する切り替えミラー18が設けられており、切り替えミラー18を顕微鏡10の光軸上に進入させることで、スペクトル分光カメラ20に表面Waからの反射光を入射させて、欠陥検出装置1を動作させ、切り替えミラー18を顕微鏡10の光軸から退避させることで、レーザ光Lを表面Waに照射するレーザ修正装置2を動作可能にしている。
 このようなレーザ修正装置2は、欠陥検出装置1を動作させることで、欠陥検出部32が、欠陥部の有無、欠陥部が有る場合の欠陥部の輪郭と重心位置、欠陥部の層構造や種別(分類エリアの種類)などの情報を制御部50に送信する。制御部50は、欠陥検出部32から送信された前述の情報を基にして、レーザ修正を行うか否かの判断を行い、レーザ修正を行う場合には、欠陥部の輪郭に基づいてレーザ照射範囲の設定を行い、分類エリアに対応した欠陥部の層構造や種別情報に基づいて加工レシピの設定を行う。
 また、図示の例では、顕微鏡10の拡大像は、モニタカメラ15にも結像されており、モニタカメラ15が撮像した画像を表示装置52で観察しながら、レーザ修正を行うことできるようになっている。この際、モニタカメラ15が取得した2次元画像は、画像処理部51で画像処理されて制御部50や情報処理部30に送信されており、この2次元画像によっても、レーザ照射部3の制御を行うことができるようになっている。
 以上説明した本発明の実施形態によると、多層膜基板Wの欠陥部を、機械的により詳細に認識することができ、この認識した情報を基にして、レーザ修正加工の設定を行うことができる。これにより、オペレータのスキルに影響されない高品質の修正加工が可能になり、また、欠陥部の認識から加工までを自動化して、高能率且つ高品質な修正加工を行うことができる。
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。
1:欠陥検出装置,2:レーザ修正装置,
3:レーザ照射部,
10:顕微鏡,10P:光軸,11:対物レンズ,12:白色光源,
13:ミラー,14:ハーフミラー,15:モニタカメラ,
16:ハーフミラー,17:チューブレンズ,18:切り替えミラー,
20:スペクトル分光カメラ,21:グレーティング素子,
22:2次元カメラ,22a:撮像面,23:スリット,24:リレーレンズ,
30:情報処理部,31:機械学習部,32:欠陥検出部,
40:レーザ光源,41:ミラー,42:レーザスキャナ,
42A,42B:ガルバノミラー,50:制御部,51:画像処理部,
Se:サーチ領域,S:ステージ,W:多層膜基板,Wa:表面,
L:レーザ光

Claims (7)

  1.  多層膜基板の表面において欠陥部を検出する拡大像を得る顕微鏡と、
     前記拡大像が結像される撮像面を有し、当該撮像面の画素毎に前記拡大像の分光スペクトル情報を出力するスペクトル分光カメラと、
     前記スペクトル分光カメラから出力された分光スペクトル情報を処理する情報処理部とを備え、
     前記情報処理部は、前記画素毎の分光スペクトル情報をクラスタリング処理する機械学習部と、該機械学習部の処理結果から欠陥部を検出する欠陥検出部を備え、
     前記欠陥検出部は、
     前記機械学習部のクラスタリング処理の結果から得られる分類エリアの2値化画像を正常な2値化画像と比較し、疑似的な欠陥部を除いた欠陥部を抽出することを特徴とする欠陥検出装置。
  2.  前記欠陥検出部は、
     正常な2値化画像における複数集合画素とそれに対応する前記分類エリアの1画素とを比較し、
     前記複数集合画素内にデータが存在しない場合には、対応する前記分類エリア1画素のデータを残し、前記複数集合画素内にデータが存在する場合には、対応する前記分類エリア1画素のデータをゼロに置き換えることを特徴とする請求項1記載の欠陥検出装置。
  3.  前記複数集合画素は、m×n画素であり(m,nは2以上の任意の自然数)、対応する前記分類エリアの1画素は、対応するm×n画素の中心画素であることを特徴とする請求項2記載の欠陥検出装置。
  4.  前記欠陥検出部は、
     抽出された欠陥部の輪郭検出と重心検出を行うことを特徴とする請求項1~3のいずれか1項記載の欠陥検出装置。
  5.  請求項1~4のいずれか1項記載の欠陥検出装置によって抽出された欠陥部に対して、レーザ光を照射して修正加工を行う欠陥修正装置。
  6.  多層膜基板の表面において欠陥部を検出する拡大像を得る工程と、
     前記拡大像が結像される撮像面を有するスペクトル分光カメラを用い、前記撮像面の画素毎に前記拡大像の分光スペクトル情報を取得する工程と、
     前記スペクトル分光カメラによって取得した画素毎の分光スペクトル情報をクラスタリング処理する工程と、
     前記クラスタリング処理の結果から得られる分類エリアの2値化画像を得る工程と、
     前記分類エリアの2値化画像を正常な2値化画像と比較し、疑似的な欠陥部を除いた欠陥部を抽出する工程とを有することを特徴とする欠陥検出方法。
  7.  前記欠陥部を抽出する工程では、
     正常な2値化画像における複数集合画素とそれに対応する前記分類エリアの1画素とを比較し、
     前記複数集合画素内にデータが存在しない場合には、対応する前記分類エリア1画素のデータを残し、前記複数集合画素内にデータが存在する場合には、対応する前記分類エリア1画素のデータをゼロに置き換えることを特徴とする請求項6記載の欠陥検出方法。
PCT/JP2020/046901 2020-02-14 2020-12-16 欠陥検出装置、欠陥検出方法、欠陥修正装置 WO2021161646A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020023728A JP2021128097A (ja) 2020-02-14 2020-02-14 欠陥検出装置、欠陥検出方法、欠陥修正装置
JP2020-023728 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021161646A1 true WO2021161646A1 (ja) 2021-08-19

Family

ID=77291528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046901 WO2021161646A1 (ja) 2020-02-14 2020-12-16 欠陥検出装置、欠陥検出方法、欠陥修正装置

Country Status (2)

Country Link
JP (1) JP2021128097A (ja)
WO (1) WO2021161646A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144405A (zh) * 2022-09-02 2022-10-04 扬州中科半导体照明有限公司 基于光学检测的Mini LED晶圆外观缺陷检测方法
CN117593303A (zh) * 2024-01-18 2024-02-23 浙江锦德光电材料有限公司 一种量子点光学膜的缺陷检测方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113112B (zh) * 2021-11-29 2023-08-18 哈尔滨工业大学 一种基于三光源显微系统的表面微缺陷定位与识别方法
CN115082482B (zh) * 2022-08-23 2022-11-22 山东优奭趸泵业科技有限公司 一种金属表面缺陷检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130811A (ja) * 2001-10-25 2003-05-08 Dainippon Screen Mfg Co Ltd 波長選択機能を利用した検査対象物の検査
JP2008188638A (ja) * 2007-02-05 2008-08-21 Sony Corp 欠陥修正装置、配線基板の製造方法、ディスプレイ装置の製造方法
JP2011257303A (ja) * 2010-06-10 2011-12-22 Olympus Corp 画像取得装置、欠陥修正装置および画像取得方法
US20160290927A1 (en) * 2013-11-26 2016-10-06 Nanometrics Incorporated Optical metrology system for spectral imaging of a sample
JP2018200257A (ja) * 2017-05-29 2018-12-20 国立大学法人東北大学 時分割分光イメージング分析システム及び時分割分光イメージング分析方法
JP2019047100A (ja) * 2017-08-31 2019-03-22 株式会社日立製作所 計算機、処理の制御パラメータの決定方法、代用試料、計測システム、及び計測方法
JP2019518963A (ja) * 2016-06-27 2019-07-04 サン−ゴバン グラス フランス 基材上に堆積される薄層のスタックに影響を与える欠陥の発生源の位置を特定するための方法及び装置
JP2019174628A (ja) * 2018-03-28 2019-10-10 三井化学株式会社 検査方法、ペリクルの製造方法、および検査装置
JP2019220176A (ja) * 2018-06-15 2019-12-26 大学共同利用機関法人情報・システム研究機構 画像処理装置及び方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130811A (ja) * 2001-10-25 2003-05-08 Dainippon Screen Mfg Co Ltd 波長選択機能を利用した検査対象物の検査
JP2008188638A (ja) * 2007-02-05 2008-08-21 Sony Corp 欠陥修正装置、配線基板の製造方法、ディスプレイ装置の製造方法
JP2011257303A (ja) * 2010-06-10 2011-12-22 Olympus Corp 画像取得装置、欠陥修正装置および画像取得方法
US20160290927A1 (en) * 2013-11-26 2016-10-06 Nanometrics Incorporated Optical metrology system for spectral imaging of a sample
JP2019518963A (ja) * 2016-06-27 2019-07-04 サン−ゴバン グラス フランス 基材上に堆積される薄層のスタックに影響を与える欠陥の発生源の位置を特定するための方法及び装置
JP2018200257A (ja) * 2017-05-29 2018-12-20 国立大学法人東北大学 時分割分光イメージング分析システム及び時分割分光イメージング分析方法
JP2019047100A (ja) * 2017-08-31 2019-03-22 株式会社日立製作所 計算機、処理の制御パラメータの決定方法、代用試料、計測システム、及び計測方法
JP2019174628A (ja) * 2018-03-28 2019-10-10 三井化学株式会社 検査方法、ペリクルの製造方法、および検査装置
JP2019220176A (ja) * 2018-06-15 2019-12-26 大学共同利用機関法人情報・システム研究機構 画像処理装置及び方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144405A (zh) * 2022-09-02 2022-10-04 扬州中科半导体照明有限公司 基于光学检测的Mini LED晶圆外观缺陷检测方法
CN117593303A (zh) * 2024-01-18 2024-02-23 浙江锦德光电材料有限公司 一种量子点光学膜的缺陷检测方法及系统
CN117593303B (zh) * 2024-01-18 2024-04-09 浙江锦德光电材料有限公司 一种量子点光学膜的缺陷检测方法及系统

Also Published As

Publication number Publication date
JP2021128097A (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2021161646A1 (ja) 欠陥検出装置、欠陥検出方法、欠陥修正装置
JP5228490B2 (ja) 画像解析によって欠陥検査を行う欠陥検査装置
WO2021033417A1 (ja) 欠陥部認識装置及び欠陥部認識方法
US20050280807A1 (en) Method and system for inspecting a wafer
WO2011024362A1 (ja) 欠陥検査装置およびその方法
KR102003781B1 (ko) 초분광영상화 기법을 이용한 글라스(Glass) 결함 검출 장치
TWI497032B (zh) 缺陷檢查裝置
JP4864504B2 (ja) シリコンウェーハの結晶欠陥検査方法及び装置
US7355690B2 (en) Double inspection of reticle or wafer
KR102102019B1 (ko) 포토마스크 결함의 변화 모니터링
TWI826632B (zh) 用於半導體缺陷檢測及檢視之方法、系統及非暫時性電腦可讀儲存媒體
JP2006220644A (ja) パターン検査方法及びその装置
JP4644210B2 (ja) パターン欠陥検査方法
TWI778258B (zh) 缺陷偵測之方法、系統及非暫時性電腦可讀媒體
TWI711006B (zh) 用於使用局部調適閾值識別製造組件缺陷之系統、方法及電腦程式產品
CN112396575A (zh) 基于影像的分类系统
CN114096368B (zh) 激光修复方法、激光修复装置
JP2001209798A (ja) 外観検査方法及び検査装置
JP2001194322A (ja) 外観検査装置及び検査方法
CN113966527B (zh) 激光修复方法、激光修复装置
US11935259B2 (en) Microscope image measuring device and microscope image measuring method
JP2005140655A (ja) シミ欠陥の検出方法及びその検出装置
WO2006019446A2 (en) Double inspection of reticle or wafer
JP7365047B2 (ja) 表面分析方法、表面分析装置
WO2023181918A1 (ja) 欠陥検査装置及び欠陥検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918693

Country of ref document: EP

Kind code of ref document: A1