WO2021161376A1 - Circuit forming device and circuit forming method - Google Patents

Circuit forming device and circuit forming method Download PDF

Info

Publication number
WO2021161376A1
WO2021161376A1 PCT/JP2020/005108 JP2020005108W WO2021161376A1 WO 2021161376 A1 WO2021161376 A1 WO 2021161376A1 JP 2020005108 W JP2020005108 W JP 2020005108W WO 2021161376 A1 WO2021161376 A1 WO 2021161376A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
ultraviolet irradiation
curable resin
irradiation
irradiation device
Prior art date
Application number
PCT/JP2020/005108
Other languages
French (fr)
Japanese (ja)
Inventor
佑 竹内
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2020/005108 priority Critical patent/WO2021161376A1/en
Priority to JP2021577726A priority patent/JP7250964B2/en
Publication of WO2021161376A1 publication Critical patent/WO2021161376A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the present invention relates to a circuit forming apparatus for forming a circuit by curing the ultraviolet curable resin by irradiating the ultraviolet curable resin with ultraviolet rays, and a circuit forming method.
  • the present specification describes a discharge device for discharging an ultraviolet curable resin, a first ultraviolet irradiation device for irradiating the ultraviolet curable resin discharged by the discharge device with ultraviolet rays, and a discharge device for discharging the ultraviolet curable resin. It is provided with a second ultraviolet irradiation device that irradiates the ultraviolet curable resin with ultraviolet rays, and the ultraviolet intensity per unit area of the first ultraviolet irradiation device is different from the ultraviolet intensity per unit area of the second ultraviolet irradiation device.
  • the circuit forming apparatus is disclosed.
  • the irradiation intensity per unit area is a predetermined intensity for the discharge step of discharging the ultraviolet curable resin and the ultraviolet curable resin discharged in the discharge step.
  • the irradiation intensity per unit area of the first ultraviolet irradiation device is stronger than the predetermined intensity.
  • a circuit forming method including a second ultraviolet irradiation step of irradiating ultraviolet rays with both a second ultraviolet irradiation device having high intensity, and the first ultraviolet irradiation step and the second ultraviolet irradiation step being selectively executed.
  • the ultraviolet curable resin it is possible to irradiate the ultraviolet curable resin with ultraviolet rays by using any of the two ultraviolet irradiation devices having different ultraviolet intensities, so that the ultraviolet curable resin can be suitably cured. Become.
  • FIG. 1 shows the circuit forming device 10.
  • the circuit forming device 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 24, and a control device (see FIG. 3) 26.
  • the transfer device 20, the first modeling unit 22, and the second modeling unit 24 are arranged on the base 28 of the circuit forming device 10.
  • the base 28 has a generally rectangular shape, and in the following description, the longitudinal direction of the base 28 is orthogonal to the X-axis direction, and the lateral direction of the base 28 is orthogonal to both the Y-axis direction, the X-axis direction, and the Y-axis direction. The direction will be described as the Z-axis direction.
  • the transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32.
  • the X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36.
  • the X-axis slide rail 34 is arranged on the base 28 so as to extend in the X-axis direction.
  • the X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34.
  • the X-axis slide mechanism 30 has an electromagnetic motor (see FIG. 3) 38, and the X-axis slider 36 moves to an arbitrary position in the X-axis direction by driving the electromagnetic motor 38.
  • the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52.
  • the Y-axis slide rail 50 is arranged on the base 28 so as to extend in the Y-axis direction, and is movable in the X-axis direction. Then, one end of the Y-axis slide rail 50 is connected to the X-axis slider 36.
  • the stage 52 is slidably held in the Y-axis slide rail 50 in the Y-axis direction.
  • the Y-axis slide mechanism 32 has an electromagnetic motor (see FIG. 3) 56, and the stage 52 moves to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. As a result, the stage 52 moves to an arbitrary position on the base 28 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
  • the stage 52 includes a base 60, a holding device 62, an elevating device (see FIG. 3) 64, and a cooling device 66.
  • the base 60 is formed in a flat plate shape, and a substrate is placed on the upper surface thereof.
  • the holding devices 62 are provided on both sides of the base 60 in the X-axis direction. Then, both edges of the substrate mounted on the base 60 in the X-axis direction are sandwiched by the holding device 62, so that the substrate is fixedly held.
  • the elevating device 64 is arranged below the base 60 and raises and lowers the base 60.
  • the cooling device 66 is arranged inside the base 60, and cools the base 60 to an arbitrary temperature.
  • the first modeling unit 22 is a unit for modeling wiring on a substrate (see FIG. 4) 70 mounted on a base 60 of a stage 52, and has a first printing unit 72 and a drying unit 74. ing.
  • the first printing unit 72 has an inkjet head (see FIG. 3) 76, and linearly ejects metal ink onto the substrate 70 mounted on the base 60.
  • Metal ink is a metal ink in which fine particles of metal are dispersed in a solvent.
  • the inkjet head 76 ejects a conductive material from a plurality of nozzles by, for example, a piezo method using a piezoelectric element.
  • the drying unit 74 has an infrared irradiation device (see FIG. 3) 78.
  • the infrared irradiation device 78 is a device that irradiates the metal ink ejected on the substrate 70 with infrared rays, and the metal ink is dried by the irradiation of infrared rays. At this time, the solvent is vaporized by the drying of the metal ink, and the metal fine particles come into contact with each other or aggregate to form a metal wiring. Alternatively, the metal ink is fired by irradiation with infrared rays to form metal wiring.
  • the solvent is vaporized and the protective film of the metal fine particles, that is, the dispersant is decomposed by applying energy, and the metal fine particles are brought into contact with each other or fused to be conductive. This is a phenomenon in which the rate increases.
  • the second modeling unit 24 is a unit for modeling a resin layer on a substrate 70 mounted on a base 60 of a stage 52, and has a second printing unit 84 and a curing unit 86. ..
  • the second printing unit 84 has an inkjet head (see FIG. 3) 88, and discharges the ultraviolet curable resin onto the substrate 70 mounted on the base 60.
  • the inkjet head 88 may be, for example, a piezo method using a piezoelectric element, or a thermal method in which a resin is heated to generate bubbles and discharged from a nozzle.
  • the cured portion 86 includes a flattening device (see FIG. 3) 90, a first ultraviolet irradiation device (see FIG. 3) 92, and a second ultraviolet irradiation device (see FIG. 3) 94.
  • the flattening device 90 flattens the upper surface of the ultraviolet curable resin ejected onto the substrate 70 by the inkjet head 88.
  • the surplus resin is applied by a roller or a roller while leveling the surface of the ultraviolet curable resin. By scraping with a blade, the thickness of the UV curable resin is made uniform.
  • the first ultraviolet irradiation device 92 includes an LED as a light source, and irradiates the ultraviolet curable resin discharged on the substrate 70 with ultraviolet rays.
  • the ultraviolet intensity (ultraviolet illuminance) per unit area of the first ultraviolet irradiation device 92 is set to 100 to 2000 mW / cm 2 .
  • the second ultraviolet irradiation device 94 includes a mercury lamp as a light source, and irradiates the ultraviolet curable resin discharged on the substrate 70 with ultraviolet rays.
  • the ultraviolet intensity (ultraviolet illuminance) per unit area of the second ultraviolet irradiation device 94 is 2000 to 5000 mW / cm 2 .
  • the inkjet head 88, the flattening device 90, the first ultraviolet irradiation device 92, and the second ultraviolet irradiation device 94 are arranged side by side in the X direction. There is. That is, when the stage 52 is transported in the X direction by the operation of the transport device 20, the lower part of the inkjet head 88, the lower part of the flattening device 90, the lower part of the first ultraviolet irradiation device 92, and the second ultraviolet irradiation device 94. It is transported in the downward order.
  • the control device 26 includes a controller 120 and a plurality of drive circuits 122.
  • the plurality of drive circuits 122 include the electromagnetic motors 38 and 56, a holding device 62, an elevating device 64, a cooling device 66, an inkjet head 76, an infrared irradiation device 78, an inkjet head 88, a flattening device 90, and a first ultraviolet irradiation device 92. , Is connected to the second ultraviolet irradiation device 94.
  • the controller 120 includes a CPU, ROM, RAM, etc., and is mainly a computer, and is connected to a plurality of drive circuits 122. As a result, the operation of the transfer device 20, the first modeling unit 22, and the second modeling unit 24 is controlled by the controller 120.
  • a circuit pattern is formed on the substrate 70 by the above-described configuration. That is, an insulating layer is formed on the substrate 70 by the ultraviolet curable resin, and metal wiring is formed on the insulating layer by the metal ink. Specifically, the substrate 70 is set on the base 60 of the stage 52, and the stage 52 is moved below the second modeling unit 24. Then, in the second modeling unit 24, as shown in FIG. 4, the resin laminate 130 is formed on the substrate 70.
  • the resin laminate 130 is formed by repeating the ejection of the ultraviolet curable resin from the inkjet head 88 and the irradiation of the ejected ultraviolet curable resin with ultraviolet rays by the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94. Will be done.
  • the inkjet head 88 ejects the ultraviolet curable resin into a thin film on the upper surface of the substrate 70. Subsequently, when the ultraviolet curable resin is discharged in the form of a thin film, the ultraviolet curable resin is flattened by the flattening device 90 so that the film thickness of the ultraviolet curable resin becomes uniform in the cured portion 86. Then, both the irradiation devices of the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94 irradiate the thin-film ultraviolet curable resin with ultraviolet rays. As a result, a thin resin layer 132 is formed on the substrate 70.
  • the ultraviolet curable resin contains ultraviolet rays of an integrated irradiation amount per unit area (hereinafter, referred to as “necessary irradiation amount for curing”) required for curing the liquid ultraviolet curable resin into a solid resin. It is irradiated by the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94.
  • the irradiation amount required for curing is, for example, the irradiation amount recommended by the manufacturer of the ultraviolet curable resin, and is the irradiation amount of ultraviolet rays required for the ultraviolet curable resin to be apparently cured.
  • the ultraviolet curable resin is irradiated with ultraviolet rays of 100 to 2000 mJ / cm 2 as the required irradiation amount for curing by two irradiation devices, a first ultraviolet irradiation device 92 and a second ultraviolet irradiation device 94. NS.
  • the thin-film UV-curable resin is cured into a solid state, and the thin-film resin layer 132 is formed.
  • the ultraviolet irradiation time is shortened and the tact time is shortened.
  • the required irradiation amount for curing is the integrated irradiation amount per unit area by irradiation with UVA (320 to 390 nm). Further, various irradiation amounts described below are also integrated irradiation amounts per unit area by irradiation with UVA (320 to 390 nm).
  • the inkjet head 88 discharges the ultraviolet curable resin into a thin film on the resin layer 132 formed by irradiation with ultraviolet rays.
  • the thin-film ultraviolet curable resin is flattened by the flattening device 90, and the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94 irradiate the ultraviolet curable resin discharged in the thin film with ultraviolet rays.
  • the thin film resin layer 132 is laminated on the thin film resin layer 132. In this way, the ejection of the ultraviolet-curable resin onto the thin-film resin layer 132 and the irradiation of ultraviolet rays are repeated, and the plurality of resin layers 132 are laminated to form the resin laminate 130.
  • fine irregularities 134 are formed on the surface of the resin laminate 130 due to, for example, the difference in the amount of the ultraviolet curable resin ejected from the nozzle of the inkjet head 88, the size of the droplets of the ultraviolet curable resin, and the like. Will be done.
  • the height of the unevenness 134 may be, for example, ⁇ 10 ⁇ m, which is extremely small compared to the size of the roller of the flattening device 90. Therefore, even if the surface of the resin layer 132 is flattened by the roller, it is fine. It is difficult to eliminate the unevenness 134.
  • the thickness of the formed metal wiring varies.
  • the conductivity of the metal wiring may decrease because the metal wiring is not completely fired (the metal fine particles do not come into contact with or fuse with each other) in the thick portion. Therefore, in order to make the surface of the resin layer on which the metal wiring is formed a smooth surface, a smooth resin layer (hereinafter, referred to as “smooth resin layer”) is formed on the resin laminate 130.
  • the surface on which the unevenness 134 of about ⁇ 10 ⁇ m is formed is described as a flattened flat surface, and the surface having the unevenness of the surface of ⁇ 1 ⁇ m or less (it can be assumed that the original unevenness 134 has disappeared).
  • Surface may be described as a smoothed smooth surface.
  • the inkjet head 88 ejects the ultraviolet curable resin 136 into a thin film on the surface of the resin laminate 130.
  • the ultraviolet curable resin 136 discharged to the surface of the resin laminate 130 spreads over the surface of the resin laminate 130 and spreads so as to fill the unevenness 134.
  • the ultraviolet curable resin 136 discharged onto the surface of the resin laminate 130 is irradiated with ultraviolet rays, and the liquid ultraviolet curable resin 136 is used to agglomerate the droplets of the ultraviolet curable resin 136 to exert a leveling effect.
  • the irradiation amount is smaller than the irradiation amount required for curing, and the integrated irradiation amount per unit area required for curing the liquid ultraviolet curable resin into the gel-like resin (hereinafter referred to as "irradiation amount required for gelation").
  • the ultraviolet rays (described above) are applied to the ultraviolet curable resin 136.
  • the required irradiation amount for gelation is, for example, 10 to 100 mJ / cm 2, which is a relatively small amount. Therefore, the first ultraviolet irradiation is performed without using the second ultraviolet irradiation device 94 having high ultraviolet intensity.
  • the ultraviolet curable resin 136 Only the device 92 irradiates the ultraviolet curable resin 136 with ultraviolet rays in an irradiation amount required for gelation. As a result, the ultraviolet curable resin 136 is cured in the form of a gel, so that the droplets of the ultraviolet curable resin 136 are aggregated with each other, and a leveling effect is exhibited.
  • the leveling effect is a phenomenon in which the surface area of the liquid becomes as small as possible due to surface tension. Therefore, although it depends on the viscosity of the liquid, the thin film of the ultraviolet curable resin 136 discharged onto the surface of the resin laminate 130 changes to a flat (more uniform) film thickness with the passage of time.
  • the viscosity of the ultraviolet curable resin 136 increases due to the irradiation of ultraviolet rays, and at that time, the surface tension of the ultraviolet curable resin 136 decreases due to the leveling effect, and the surface of the ultraviolet curable resin 136 has a reduced amount of unevenness. Or, it becomes a surface without unevenness, that is, a smooth surface 138.
  • the ultraviolet curable resin 136 is discharged onto the resin laminate 130, and the ultraviolet curable resin 136 is gelled, so that the surface of the ultraviolet curable resin 136 becomes a smooth surface 138.
  • the metal wiring can be appropriately formed.
  • the gel-like ultraviolet-curable resin 136 can be cured into a solid state.
  • the resin component may be gasified or eluted from the cured ultraviolet-curable resin.
  • the metal wiring is formed on the resin by the metal ink, the elution of the resin component into the metal ink, the gas of the resin component, etc. hinder the drying, firing, etc. of the metal ink, and it is appropriate. There is a risk that metal wiring cannot be formed.
  • the gel-like ultraviolet curable resin 136 has an irradiation amount larger than the required curing amount, and the ultraviolet curable resin is completely cured without elution of resin components from the cured resin, generation of gas, or the like.
  • the ultraviolet curable resin 136 is irradiated with ultraviolet rays of an integrated irradiation amount per unit area (hereinafter, referred to as “complete curing required irradiation amount”) required for this purpose.
  • the irradiation amount required for complete curing is an irradiation amount derived by an experiment. That is, for an ultraviolet curable resin experimentally cured by irradiation with ultraviolet rays, the presence or absence of elution of resin components, generation of gas, etc.
  • the irradiation amount required for complete curing is measured using a composition analyzer. At this time, by gradually increasing the irradiation amount of ultraviolet rays from the irradiation amount required for curing, the irradiation amount of ultraviolet rays in a range in which elution of resin components, gasification, etc. do not occur, that is, the irradiation amount required for complete curing is derived.
  • the required irradiation amount for complete curing is, for example, 3000 to 10000 mJ / cm 2, which is a very large amount of irradiation. Therefore, the gel-like ultraviolet curable resin 136 is irradiated with the required irradiation amount of ultraviolet rays by the two irradiation devices, the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94. In order to completely cure the ultraviolet curable resin, it is necessary to irradiate the ultraviolet curable resin with ultraviolet rays having a wide range of wavelengths as well as the amount of ultraviolet irradiation.
  • the gel-like ultraviolet curable resin 136 is irradiated with ultraviolet rays by the two irradiation devices, the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94.
  • the mercury lamp irradiates ultraviolet rays having a wide range of wavelengths, it is preferable to completely cure the ultraviolet curable resin by using the second ultraviolet irradiation device 94 having the mercury lamp as a light source.
  • the resin is laminated.
  • the ultraviolet curable resin 136 discharged onto the surface of the body 130 is completely cured to form a smooth resin layer 140.
  • the surface of the completely cured ultraviolet curable resin 136, that is, the smooth resin layer 140 is a smooth surface 138. Therefore, the stage 52 moves below the first modeling unit 22 in order to form the metal wiring on the smooth surface 138. Then, in the first printing unit 72, as shown in FIG.
  • the inkjet head 76 linearly ejects the metal ink 150 onto the upper surface of the smooth resin layer 140 according to the circuit pattern.
  • the infrared irradiation device 78 irradiates the metal ink 150 with infrared rays. As a result, the metal ink 150 is dried or fired, and the metal wiring 152 is formed on the smooth surface 138 of the smooth resin layer 140.
  • the ultraviolet irradiation of the required curing amount is generated by the two irradiation devices of the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94. Is irradiated. Further, when the ultraviolet curable resin 136 discharged onto the resin laminate 130 is cured in the form of a gel, only the first ultraviolet irradiation device 92 irradiates the ultraviolet rays in the amount required for gelation.
  • UV-curable resin 136 cured into a gel is completely cured to form the smooth resin layer 140, two irradiation devices, a first ultraviolet irradiation device 92 and a second ultraviolet irradiation device 94, are formed.
  • ultraviolet rays of the required irradiation amount for complete curing are irradiated. That is, in the circuit forming device 10, the irradiation of ultraviolet rays by only the first ultraviolet irradiation device 92 and the irradiation of two units of the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94 according to the integrated irradiation amount of ultraviolet rays. Irradiation with ultraviolet rays is selectively performed. As a result, it is possible to shorten the irradiation time of ultraviolet rays and to appropriately irradiate a relatively small amount of ultraviolet rays.
  • the ultraviolet irradiation device having an LED as a light source is not arranged, and only the ultraviolet irradiation device having a mercury lamp as a light source is arranged. Since the mercury lamp has a relatively high ultraviolet intensity, it is possible to irradiate a large amount of ultraviolet rays with an integrated ultraviolet irradiation amount, but it is difficult to irradiate a small amount of ultraviolet rays with an integrated ultraviolet irradiation amount. In particular, the mercury lamp can change the ultraviolet intensity from the maximum ultraviolet intensity to an arbitrary intensity of about half of the maximum ultraviolet intensity, and the ultraviolet rays of the second ultraviolet irradiation device 94.
  • the ultraviolet intensity can be changed in the range of 3000 mW / cm 2 to 1500 mW / cm 2.
  • the ultraviolet intensity of the second ultraviolet irradiation device 94 is lowered to 1500 mW / cm 2, it is difficult for the second ultraviolet irradiation device 94 to irradiate the required irradiation amount of gelation (10 to 100 mJ / cm 2). be.
  • a mercury lamp with the lowest ultraviolet intensity is adopted, it is possible to irradiate the ultraviolet rays of the irradiation amount required for gelation.
  • the conventional circuit forming apparatus in which only the ultraviolet irradiation apparatus having a mercury lamp as a light source is arranged has various problems.
  • an LED is very advantageous in terms of cost, arrangement space, life, and the like. Specifically, for example, the price of a mercury lamp is several million yen, while the price of an LED is several hundred thousand yen. Further, while many mercury lamps are relatively large, many LEDs are relatively small. Also, the life of the LED is longer than the life of the mercury lamp. Furthermore, the LED is capable of changing the UV intensity from the maximum UV intensity to any UV intensity of 1/10 or less of the maximum UV intensity.
  • the maximum ultraviolet intensity of the first ultraviolet irradiation device 92 is a 1000 mW / cm 2, in the range of 1000 mW / cm 2 of 100 mW / cm 2 or less, it is possible to change the ultraviolet intensity, It is possible to appropriately irradiate ultraviolet rays with a required irradiation amount of gelation (10 to 100 mJ / cm 2). Further, since the LED does not emit infrared light, it is possible to suppress a temperature rise due to irradiation with ultraviolet rays. As described above, irradiating the ultraviolet curable resin with ultraviolet rays using LEDs has many advantages.
  • the ultraviolet curable resin in order to completely cure the ultraviolet curable resin, as described above, it is necessary to irradiate the ultraviolet curable resin with ultraviolet rays having a wide range of wavelengths as well as the amount of ultraviolet irradiation. It is not possible to irradiate ultraviolet rays of the same wavelength. Therefore, the ultraviolet curable resin cannot be completely cured by irradiating only the LED with ultraviolet rays.
  • the inkjet head 88, the flattening apparatus 90, the first ultraviolet irradiation apparatus 92, and the second ultraviolet irradiation apparatus 94 are X in this order. They are arranged side by side in the direction. That is, the first ultraviolet irradiation device 92 is arranged at a position closer to the inkjet head 88 than the second ultraviolet irradiation device 94. Then, when the ultraviolet curable resin 136 discharged onto the resin laminate 130 is cured into a gel, the ultraviolet curable resin discharged by the inkjet head 88 is irradiated with ultraviolet rays only by the first ultraviolet irradiation device 92. .. Therefore, the moving distance of the stage 52 when the ultraviolet curable resin 136 is cured into a gel is reduced, and the tact time can be shortened.
  • the controller 120 has a discharge unit 200, a flattening unit 202, a first ultraviolet irradiation unit 204, a second ultraviolet irradiation unit 206, and a third ultraviolet irradiation unit 208.
  • the discharge unit 200 is a functional unit for discharging the ultraviolet curable resin by the inkjet head 88.
  • the flattening unit 202 is a functional unit for flattening the ultraviolet curable resin discharged by the inkjet head 88 by the flattening device 90.
  • the first ultraviolet irradiation unit 204 is a functional unit for irradiating the required amount of ultraviolet rays for gelation only by the first ultraviolet irradiation device 92.
  • the second ultraviolet irradiation unit 206 is a functional unit for irradiating the ultraviolet irradiation amount required for curing by both the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94.
  • the third ultraviolet irradiation unit 208 is a functional unit for irradiating the ultraviolet irradiation amount required for complete curing by both the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94.
  • the circuit forming apparatus 10 is an example of the circuit forming apparatus.
  • the inkjet head 88 is an example of a ejection device.
  • the first ultraviolet irradiation device 92 is an example of the first ultraviolet irradiation device.
  • the second ultraviolet irradiation device 94 is an example of the second ultraviolet irradiation device.
  • the process executed by the discharge unit 200 is an example of the discharge process.
  • the step executed by the flattening unit 202 is an example of the flattening step.
  • the step executed by the first ultraviolet irradiation unit 204 is an example of the first ultraviolet irradiation step.
  • the step executed by the second ultraviolet irradiation unit 206 is an example of the second ultraviolet irradiation step.
  • the step executed by the third ultraviolet irradiation unit 208 is an example of the third ultraviolet irradiation step.
  • the present invention is not limited to the above-mentioned examples, and can be carried out in various modes with various changes and improvements based on the knowledge of those skilled in the art.
  • two irradiation devices having two types of light sources a first ultraviolet irradiation device 92 having an LED as a light source and a second ultraviolet irradiation device 94 having a mercury lamp as a light source, are adopted.
  • two irradiation devices having the same type of light source may be adopted.
  • a first ultraviolet irradiation device having an LED as a light source and a second ultraviolet irradiation device having an LED as a light source may be adopted, and a first ultraviolet irradiation device having a mercury lamp as a light source and a mercury lamp
  • a second ultraviolet irradiation device having the above as a light source may be adopted.
  • the ultraviolet intensities of the two ultraviolet irradiation devices must be different.
  • the LED and the mercury lamp are adopted as the light source of the ultraviolet irradiation device, but a light source of a type different from the LED and the mercury lamp may be adopted.
  • the circuit forming apparatus 10 including two ultraviolet irradiation devices of the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94 is adopted, but three or more ultraviolet irradiation devices are used.
  • a circuit forming apparatus provided may be adopted.
  • Circuit forming device 88 Inkjet head (ejection device) 92: First ultraviolet irradiation device 94: Second ultraviolet irradiation device 200: Discharge part (discharge process) 202: Flattening part (flattening process) 204: First ultraviolet ray Irradiation part (first ultraviolet irradiation step) 206: Second ultraviolet irradiation part (second ultraviolet irradiation step) 208: Third ultraviolet irradiation part (third ultraviolet irradiation step)

Abstract

Provided is a circuit forming method comprising: a discharge step in which a UV curable resin is discharged; a first UV irradiation step in which the UV curable resin discharged in the discharge step is irradiated with ultraviolet rays from a first UV irradiation device for which an irradiation intensity per unit surface area is a prescribed intensity; and a second UV irradiation step in which the UV curable resin discharged in the discharge step is irradiated with ultraviolet rays from both the first UV irradiation device and a second UV irradiation device for which the irradiation intensity per unit surface area is an intensity that is stronger than the prescribed intensity. The first UV irradiation step and the second UV irradiation step are selectively executed.

Description

回路形成装置、および回路形成方法Circuit forming device and circuit forming method
 本発明は、紫外線硬化樹脂に紫外線を照射することで、紫外線硬化樹脂を硬化させて回路を形成する回路形成装置、および回路形成方法に関する。 The present invention relates to a circuit forming apparatus for forming a circuit by curing the ultraviolet curable resin by irradiating the ultraviolet curable resin with ultraviolet rays, and a circuit forming method.
 下記特許文献に記載されているように、紫外線硬化樹脂に紫外線を照射することで、紫外線硬化樹脂を硬化させて造形物を形成する技術が開発されている。 As described in the patent document below, a technique has been developed in which an ultraviolet curable resin is irradiated with ultraviolet rays to cure the ultraviolet curable resin to form a modeled object.
特開2019-031046号公報Japanese Unexamined Patent Publication No. 2019-031046
 本明細書では、紫外線硬化樹脂を好適に硬化させることを課題とする。 In the present specification, it is an object to suitably cure the ultraviolet curable resin.
 上記課題を解決するために、本明細書は、紫外線硬化樹脂を吐出する吐出装置と、前記吐出装置により吐出された紫外線硬化樹脂に紫外線を照射する第1紫外線照射装置と、前記吐出装置により吐出された紫外線硬化樹脂に紫外線を照射する第2紫外線照射装置とを備え、前記第1紫外線照射装置の単位面積当たりの紫外線強度と、前記第2紫外線照射装置の単位面積当たりの紫外線強度とが異なる回路形成装置を開示する。 In order to solve the above problems, the present specification describes a discharge device for discharging an ultraviolet curable resin, a first ultraviolet irradiation device for irradiating the ultraviolet curable resin discharged by the discharge device with ultraviolet rays, and a discharge device for discharging the ultraviolet curable resin. It is provided with a second ultraviolet irradiation device that irradiates the ultraviolet curable resin with ultraviolet rays, and the ultraviolet intensity per unit area of the first ultraviolet irradiation device is different from the ultraviolet intensity per unit area of the second ultraviolet irradiation device. The circuit forming apparatus is disclosed.
 また、上記課題を解決するために、本明細書は、紫外線硬化性樹脂を吐出する吐出工程と、前記吐出工程において吐出された紫外線硬化樹脂に、単位面積当たりの照射強度が所定の強度である第1紫外線照射装置により紫外線を照射する第1紫外線照射工程と、前記吐出工程において吐出された紫外線硬化樹脂に、前記第1紫外線照射装置と、単位面積当たりの照射強度が前記所定の強度より強い強度である第2紫外線照射装置との両方により紫外線を照射する第2紫外線照射工程とを含み、前記第1紫外線照射工程と前記第2紫外線照射工程とが選択的に実行される回路形成方法を開示する。 Further, in order to solve the above problems, in the present specification, the irradiation intensity per unit area is a predetermined intensity for the discharge step of discharging the ultraviolet curable resin and the ultraviolet curable resin discharged in the discharge step. In the first ultraviolet irradiation step of irradiating ultraviolet rays with the first ultraviolet irradiation device, and the ultraviolet curable resin discharged in the ejection step, the irradiation intensity per unit area of the first ultraviolet irradiation device is stronger than the predetermined intensity. A circuit forming method including a second ultraviolet irradiation step of irradiating ultraviolet rays with both a second ultraviolet irradiation device having high intensity, and the first ultraviolet irradiation step and the second ultraviolet irradiation step being selectively executed. Disclose.
 本開示によれば、異なる紫外線強度の2台の紫外線照射装置のうちの任意の装置を用いて紫外線硬化樹脂に紫外線を照射することができるため、紫外線硬化樹脂を好適に硬化させることが可能となる。 According to the present disclosure, it is possible to irradiate the ultraviolet curable resin with ultraviolet rays by using any of the two ultraviolet irradiation devices having different ultraviolet intensities, so that the ultraviolet curable resin can be suitably cured. Become.
回路形成装置を示す図である。It is a figure which shows the circuit forming apparatus. 第2造形ユニットを示す図である。It is a figure which shows the 2nd modeling unit. 回路形成装置の制御装置を示すブロック図である。It is a block diagram which shows the control device of a circuit forming apparatus. 樹脂積層体が形成された回路を示す断面図である。It is sectional drawing which shows the circuit which formed the resin laminate. 樹脂積層体の上に平滑樹脂層が形成された回路を示す断面図である。It is sectional drawing which shows the circuit which formed the smooth resin layer on the resin laminate. 平滑樹脂層の上に金属配線が形成された回路を示す断面図である。It is sectional drawing which shows the circuit which formed the metal wiring on the smooth resin layer.
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings as a mode for carrying out the present invention.
 図1に回路形成装置10を示す。回路形成装置10は、搬送装置20と、第1造形ユニット22と、第2造形ユニット24と、制御装置(図3参照)26とを備える。それら搬送装置20と第1造形ユニット22と第2造形ユニット24とは、回路形成装置10のベース28の上に配置されている。ベース28は、概して長方形状をなしており、以下の説明では、ベース28の長手方向をX軸方向、ベース28の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。 FIG. 1 shows the circuit forming device 10. The circuit forming device 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 24, and a control device (see FIG. 3) 26. The transfer device 20, the first modeling unit 22, and the second modeling unit 24 are arranged on the base 28 of the circuit forming device 10. The base 28 has a generally rectangular shape, and in the following description, the longitudinal direction of the base 28 is orthogonal to the X-axis direction, and the lateral direction of the base 28 is orthogonal to both the Y-axis direction, the X-axis direction, and the Y-axis direction. The direction will be described as the Z-axis direction.
 搬送装置20は、X軸スライド機構30と、Y軸スライド機構32とを備えている。そのX軸スライド機構30は、X軸スライドレール34とX軸スライダ36とを有している。X軸スライドレール34は、X軸方向に延びるように、ベース28の上に配設されている。X軸スライダ36は、X軸スライドレール34によって、X軸方向にスライド可能に保持されている。さらに、X軸スライド機構30は、電磁モータ(図3参照)38を有しており、電磁モータ38の駆動により、X軸スライダ36がX軸方向の任意の位置に移動する。また、Y軸スライド機構32は、Y軸スライドレール50とステージ52とを有している。Y軸スライドレール50は、Y軸方向に延びるように、ベース28の上に配設されており、X軸方向に移動可能とされている。そして、Y軸スライドレール50の一端部が、X軸スライダ36に連結されている。そのY軸スライドレール50には、ステージ52が、Y軸方向にスライド可能に保持されている。さらに、Y軸スライド機構32は、電磁モータ(図3参照)56を有しており、電磁モータ56の駆動により、ステージ52がY軸方向の任意の位置に移動する。これにより、ステージ52は、X軸スライド機構30及びY軸スライド機構32の駆動により、ベース28上の任意の位置に移動する。 The transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32. The X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36. The X-axis slide rail 34 is arranged on the base 28 so as to extend in the X-axis direction. The X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34. Further, the X-axis slide mechanism 30 has an electromagnetic motor (see FIG. 3) 38, and the X-axis slider 36 moves to an arbitrary position in the X-axis direction by driving the electromagnetic motor 38. Further, the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52. The Y-axis slide rail 50 is arranged on the base 28 so as to extend in the Y-axis direction, and is movable in the X-axis direction. Then, one end of the Y-axis slide rail 50 is connected to the X-axis slider 36. The stage 52 is slidably held in the Y-axis slide rail 50 in the Y-axis direction. Further, the Y-axis slide mechanism 32 has an electromagnetic motor (see FIG. 3) 56, and the stage 52 moves to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. As a result, the stage 52 moves to an arbitrary position on the base 28 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
 ステージ52は、基台60と、保持装置62と、昇降装置(図3参照)64と、冷却装置66とを有している。基台60は、平板状に形成され、上面に基板が載置される。保持装置62は、基台60のX軸方向の両側部に設けられている。そして、基台60に載置された基板のX軸方向の両縁部が、保持装置62によって挟まれることで、基板が固定的に保持される。また、昇降装置64は、基台60の下方に配設されており、基台60を昇降させる。さらに、冷却装置66は、基台60の内部に配設されており、基台60を任意の温度に冷却する。 The stage 52 includes a base 60, a holding device 62, an elevating device (see FIG. 3) 64, and a cooling device 66. The base 60 is formed in a flat plate shape, and a substrate is placed on the upper surface thereof. The holding devices 62 are provided on both sides of the base 60 in the X-axis direction. Then, both edges of the substrate mounted on the base 60 in the X-axis direction are sandwiched by the holding device 62, so that the substrate is fixedly held. Further, the elevating device 64 is arranged below the base 60 and raises and lowers the base 60. Further, the cooling device 66 is arranged inside the base 60, and cools the base 60 to an arbitrary temperature.
 第1造形ユニット22は、ステージ52の基台60に載置された基板(図4参照)70の上に配線を造形するユニットであり、第1印刷部72と、乾燥部74とを有している。第1印刷部72は、インクジェットヘッド(図3参照)76を有しており、基台60に載置された基板70の上に、金属インクを線状に吐出する。金属インクは、金属の微粒子が溶剤中に分散されたものである。なお、インクジェットヘッド76は、例えば、圧電素子を用いたピエゾ方式によって複数のノズルから導電性材料を吐出する。 The first modeling unit 22 is a unit for modeling wiring on a substrate (see FIG. 4) 70 mounted on a base 60 of a stage 52, and has a first printing unit 72 and a drying unit 74. ing. The first printing unit 72 has an inkjet head (see FIG. 3) 76, and linearly ejects metal ink onto the substrate 70 mounted on the base 60. Metal ink is a metal ink in which fine particles of metal are dispersed in a solvent. The inkjet head 76 ejects a conductive material from a plurality of nozzles by, for example, a piezo method using a piezoelectric element.
 乾燥部74は、赤外線照射装置(図3参照)78を有している。赤外線照射装置78は、基板70の上に吐出された金属インクに赤外線を照射する装置であり、赤外線の照射により金属インクが乾燥する。この際、金属インクの乾燥により、溶剤が気化し、金属微粒子が互いに接触または凝集することで、金属製の配線が形成される。若しくは、赤外線の照射により金属インクが焼成し、金属製の配線が形成される。なお、金属インクの焼成とは、エネルギーを付与することによって、溶媒の気化や金属微粒子の保護膜、つまり、分散剤の分解等が行われ、金属微粒子が接触または融着をすることで、導電率が高くなる現象である。 The drying unit 74 has an infrared irradiation device (see FIG. 3) 78. The infrared irradiation device 78 is a device that irradiates the metal ink ejected on the substrate 70 with infrared rays, and the metal ink is dried by the irradiation of infrared rays. At this time, the solvent is vaporized by the drying of the metal ink, and the metal fine particles come into contact with each other or aggregate to form a metal wiring. Alternatively, the metal ink is fired by irradiation with infrared rays to form metal wiring. In the firing of metal ink, the solvent is vaporized and the protective film of the metal fine particles, that is, the dispersant is decomposed by applying energy, and the metal fine particles are brought into contact with each other or fused to be conductive. This is a phenomenon in which the rate increases.
 また、第2造形ユニット24は、ステージ52の基台60に載置された基板70の上に樹脂層を造形するユニットであり、第2印刷部84と、硬化部86とを有している。第2印刷部84は、インクジェットヘッド(図3参照)88を有しており、基台60に載置された基板70の上に紫外線硬化樹脂を吐出する。なお、インクジェットヘッド88は、例えば、圧電素子を用いたピエゾ方式でもよく、樹脂を加熱して気泡を発生させノズルから吐出するサーマル方式でもよい。 Further, the second modeling unit 24 is a unit for modeling a resin layer on a substrate 70 mounted on a base 60 of a stage 52, and has a second printing unit 84 and a curing unit 86. .. The second printing unit 84 has an inkjet head (see FIG. 3) 88, and discharges the ultraviolet curable resin onto the substrate 70 mounted on the base 60. The inkjet head 88 may be, for example, a piezo method using a piezoelectric element, or a thermal method in which a resin is heated to generate bubbles and discharged from a nozzle.
 硬化部86は、平坦化装置(図3参照)90と第1紫外線照射装置(図3参照)92と第2紫外線照射装置(図3参照)94とを有している。平坦化装置90は、インクジェットヘッド88によって基板70の上に吐出された紫外線硬化樹脂の上面を平坦化するものであり、例えば、紫外線硬化樹脂の表面を均しながら余剰分の樹脂を、ローラもしくはブレードによって掻き取ることで、紫外線硬化樹脂の厚みを均一させる。 The cured portion 86 includes a flattening device (see FIG. 3) 90, a first ultraviolet irradiation device (see FIG. 3) 92, and a second ultraviolet irradiation device (see FIG. 3) 94. The flattening device 90 flattens the upper surface of the ultraviolet curable resin ejected onto the substrate 70 by the inkjet head 88. For example, the surplus resin is applied by a roller or a roller while leveling the surface of the ultraviolet curable resin. By scraping with a blade, the thickness of the UV curable resin is made uniform.
 また、第1紫外線照射装置92は、光源としてLEDを備えており、基板70の上に吐出された紫外線硬化樹脂に紫外線を照射する。なお、第1紫外線照射装置92の単位面積当たりの紫外線強度(紫外線照度)は、100~2000mW/cmとされている。また、第2紫外線照射装置94は、光源として水銀ランプを備えており、基板70の上に吐出された紫外線硬化樹脂に紫外線を照射する。なお、第2紫外線照射装置94の単位面積当たりの紫外線強度(紫外線照度)は、2000~5000mW/cmとされている。 Further, the first ultraviolet irradiation device 92 includes an LED as a light source, and irradiates the ultraviolet curable resin discharged on the substrate 70 with ultraviolet rays. The ultraviolet intensity (ultraviolet illuminance) per unit area of the first ultraviolet irradiation device 92 is set to 100 to 2000 mW / cm 2 . Further, the second ultraviolet irradiation device 94 includes a mercury lamp as a light source, and irradiates the ultraviolet curable resin discharged on the substrate 70 with ultraviolet rays. The ultraviolet intensity (ultraviolet illuminance) per unit area of the second ultraviolet irradiation device 94 is 2000 to 5000 mW / cm 2 .
 なお、第2造形ユニット24では、図2に示すように、インクジェットヘッド88,平坦化装置90,第1紫外線照射装置92,第2紫外線照射装置94の順に、X方向に並んで配設されている。つまり、ステージ52が搬送装置20の作動により、X方向に搬送された場合に、インクジェットヘッド88の下方,平坦化装置90の下方,第1紫外線照射装置92の下方,第2紫外線照射装置94の下方の順に搬送される。 In the second modeling unit 24, as shown in FIG. 2, the inkjet head 88, the flattening device 90, the first ultraviolet irradiation device 92, and the second ultraviolet irradiation device 94 are arranged side by side in the X direction. There is. That is, when the stage 52 is transported in the X direction by the operation of the transport device 20, the lower part of the inkjet head 88, the lower part of the flattening device 90, the lower part of the first ultraviolet irradiation device 92, and the second ultraviolet irradiation device 94. It is transported in the downward order.
 また、制御装置26は、図3に示すように、コントローラ120と、複数の駆動回路122とを備えている。複数の駆動回路122は、上記電磁モータ38,56、保持装置62、昇降装置64、冷却装置66、インクジェットヘッド76、赤外線照射装置78、インクジェットヘッド88、平坦化装置90、第1紫外線照射装置92、第2紫外線照射装置94に接続されている。コントローラ120は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路122に接続されている。これにより、搬送装置20、第1造形ユニット22、第2造形ユニット24の作動が、コントローラ120によって制御される。 Further, as shown in FIG. 3, the control device 26 includes a controller 120 and a plurality of drive circuits 122. The plurality of drive circuits 122 include the electromagnetic motors 38 and 56, a holding device 62, an elevating device 64, a cooling device 66, an inkjet head 76, an infrared irradiation device 78, an inkjet head 88, a flattening device 90, and a first ultraviolet irradiation device 92. , Is connected to the second ultraviolet irradiation device 94. The controller 120 includes a CPU, ROM, RAM, etc., and is mainly a computer, and is connected to a plurality of drive circuits 122. As a result, the operation of the transfer device 20, the first modeling unit 22, and the second modeling unit 24 is controlled by the controller 120.
 回路形成装置10では、上述した構成によって、基板70の上に回路パターンが形成される。つまり、基板70の上に紫外線硬化樹脂により絶縁層が形成され、その絶縁層の上に金属インクにより金属配線が形成される。具体的には、ステージ52の基台60に基板70がセットされ、そのステージ52が、第2造形ユニット24の下方に移動される。そして、第2造形ユニット24において、図4に示すように、基板70の上に樹脂積層体130が形成される。樹脂積層体130は、インクジェットヘッド88からの紫外線硬化樹脂の吐出と、吐出された紫外線硬化樹脂への第1紫外線照射装置92及び第2紫外線照射装置94による紫外線の照射とが繰り返されることにより形成される。 In the circuit forming apparatus 10, a circuit pattern is formed on the substrate 70 by the above-described configuration. That is, an insulating layer is formed on the substrate 70 by the ultraviolet curable resin, and metal wiring is formed on the insulating layer by the metal ink. Specifically, the substrate 70 is set on the base 60 of the stage 52, and the stage 52 is moved below the second modeling unit 24. Then, in the second modeling unit 24, as shown in FIG. 4, the resin laminate 130 is formed on the substrate 70. The resin laminate 130 is formed by repeating the ejection of the ultraviolet curable resin from the inkjet head 88 and the irradiation of the ejected ultraviolet curable resin with ultraviolet rays by the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94. Will be done.
 詳しくは、第2造形ユニット24の第2印刷部84において、インクジェットヘッド88が、基板70の上面に紫外線硬化樹脂を薄膜状に吐出する。続いて、紫外線硬化樹脂が薄膜状に吐出されると、硬化部86において、紫外線硬化樹脂の膜厚が均一となるように、紫外線硬化樹脂が平坦化装置90によって平坦化される。そして、第1紫外線照射装置92と第2紫外線照射装置94との両方の照射装置が、その薄膜状の紫外線硬化樹脂に紫外線を照射する。これにより、基板70の上に薄膜状の樹脂層132が形成される。 Specifically, in the second printing unit 84 of the second modeling unit 24, the inkjet head 88 ejects the ultraviolet curable resin into a thin film on the upper surface of the substrate 70. Subsequently, when the ultraviolet curable resin is discharged in the form of a thin film, the ultraviolet curable resin is flattened by the flattening device 90 so that the film thickness of the ultraviolet curable resin becomes uniform in the cured portion 86. Then, both the irradiation devices of the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94 irradiate the thin-film ultraviolet curable resin with ultraviolet rays. As a result, a thin resin layer 132 is formed on the substrate 70.
 この際、紫外線硬化樹脂には、液状の紫外線硬化樹脂を固体状の樹脂に硬化させるために必要な単位面積当たりの積算照射量(以下、「硬化必要照射量」と記載する)の紫外線が、第1紫外線照射装置92と第2紫外線照射装置94とによって照射される。ここで、硬化必要照射量とは、例えば、紫外線硬化樹脂のメーカーが推奨している照射量であり、外見的に紫外線硬化樹脂が硬化するために必要な紫外線の照射量である。具体的には、例えば、硬化必要照射量として、100~2000mJ/cmの紫外線が、第1紫外線照射装置92と第2紫外線照射装置94との2台の照射装置によって紫外線硬化樹脂に照射される。これにより、薄膜状の紫外線硬化樹脂が固体状に硬化し、薄膜状の樹脂層132が形成される。このように、第1紫外線照射装置92と第2紫外線照射装置94との2台の照射装置によって紫外線硬化樹脂に紫外線が照射されることで、紫外線の照射時間が短縮され、タクトタイムが短縮される。なお、硬化必要照射量は、UVA(320~390nm)の照射による単位面積当たりの積算照射量である。また、以下に説明する各種照射量も、UVA(320~390nm)の照射による単位面積当たりの積算照射量である。 At this time, the ultraviolet curable resin contains ultraviolet rays of an integrated irradiation amount per unit area (hereinafter, referred to as “necessary irradiation amount for curing”) required for curing the liquid ultraviolet curable resin into a solid resin. It is irradiated by the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94. Here, the irradiation amount required for curing is, for example, the irradiation amount recommended by the manufacturer of the ultraviolet curable resin, and is the irradiation amount of ultraviolet rays required for the ultraviolet curable resin to be apparently cured. Specifically, for example, the ultraviolet curable resin is irradiated with ultraviolet rays of 100 to 2000 mJ / cm 2 as the required irradiation amount for curing by two irradiation devices, a first ultraviolet irradiation device 92 and a second ultraviolet irradiation device 94. NS. As a result, the thin-film UV-curable resin is cured into a solid state, and the thin-film resin layer 132 is formed. In this way, by irradiating the ultraviolet curable resin with ultraviolet rays by the two irradiation devices of the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94, the ultraviolet irradiation time is shortened and the tact time is shortened. NS. The required irradiation amount for curing is the integrated irradiation amount per unit area by irradiation with UVA (320 to 390 nm). Further, various irradiation amounts described below are also integrated irradiation amounts per unit area by irradiation with UVA (320 to 390 nm).
 続いて、インクジェットヘッド88は、紫外線の照射により形成された樹脂層132の上に紫外線硬化樹脂を薄膜状に吐出する。そして、平坦化装置90によって薄膜状の紫外線硬化樹脂が平坦化され、第1紫外線照射装置92と第2紫外線照射装置94とが、その薄膜状に吐出された紫外線硬化樹脂に紫外線を照射することで、薄膜状の樹脂層132の上に薄膜状の樹脂層132が積層される。このように、薄膜状の樹脂層132の上への紫外線硬化樹脂の吐出と、紫外線の照射とが繰り返され、複数の樹脂層132が積層されることで、樹脂積層体130が形成される。 Subsequently, the inkjet head 88 discharges the ultraviolet curable resin into a thin film on the resin layer 132 formed by irradiation with ultraviolet rays. Then, the thin-film ultraviolet curable resin is flattened by the flattening device 90, and the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94 irradiate the ultraviolet curable resin discharged in the thin film with ultraviolet rays. Then, the thin film resin layer 132 is laminated on the thin film resin layer 132. In this way, the ejection of the ultraviolet-curable resin onto the thin-film resin layer 132 and the irradiation of ultraviolet rays are repeated, and the plurality of resin layers 132 are laminated to form the resin laminate 130.
 ただし、樹脂積層体130の表面には、例えば、インクジェットヘッド88のノズルから吐出される紫外線硬化樹脂の量の差,紫外線硬化樹脂の液滴の大きさ等に起因して微細な凹凸134が形成される。この凹凸134の高さは、例えば、±10μmとなる可能性があり、平坦化装置90のローラの大きさに比べて極めて小さいため、樹脂層132の表面をローラで平坦化したとしても、微細な凹凸134を無くすことは困難である。そして、凹凸134が残存した樹脂積層体130の表面に、金属インクにより金属配線を形成した場合に、形成される金属配線の厚みにばらつきが発生する虞がある。あるいは、厚みの大きい部分で金属配線が完全に焼成されない(金属微粒子が接触又は融着しない)ことで、金属配線の導電率が低下する虞がある。そこで、金属配線が形成される樹脂層の表面を平滑な面とするべく、樹脂積層体130の上に平滑な樹脂層(以下、「平滑樹脂層」と記載する)が形成される。なお、以下の説明において、±10μm程度の凹凸134が形成された面を平坦化された平坦面と記載し、表面の凹凸が±1μm以下となった面(元々の凹凸134がなくなったと擬制できる面)を平滑化された平滑面と記載する場合がある。 However, fine irregularities 134 are formed on the surface of the resin laminate 130 due to, for example, the difference in the amount of the ultraviolet curable resin ejected from the nozzle of the inkjet head 88, the size of the droplets of the ultraviolet curable resin, and the like. Will be done. The height of the unevenness 134 may be, for example, ± 10 μm, which is extremely small compared to the size of the roller of the flattening device 90. Therefore, even if the surface of the resin layer 132 is flattened by the roller, it is fine. It is difficult to eliminate the unevenness 134. Then, when the metal wiring is formed by the metal ink on the surface of the resin laminate 130 in which the unevenness 134 remains, there is a possibility that the thickness of the formed metal wiring varies. Alternatively, the conductivity of the metal wiring may decrease because the metal wiring is not completely fired (the metal fine particles do not come into contact with or fuse with each other) in the thick portion. Therefore, in order to make the surface of the resin layer on which the metal wiring is formed a smooth surface, a smooth resin layer (hereinafter, referred to as “smooth resin layer”) is formed on the resin laminate 130. In the following description, the surface on which the unevenness 134 of about ± 10 μm is formed is described as a flattened flat surface, and the surface having the unevenness of the surface of ± 1 μm or less (it can be assumed that the original unevenness 134 has disappeared). Surface) may be described as a smoothed smooth surface.
 具体的には、第2造形ユニット24の第2印刷部84において、図5に示すように、樹脂積層体130の表面に、インクジェットヘッド88が紫外線硬化樹脂136を薄膜状に吐出する。この際、樹脂積層体130の表面に吐出された紫外線硬化樹脂136は、樹脂積層体130の表面に塗れ広がり、凹凸134を埋めるように広がる。そして、樹脂積層体130の表面に吐出された紫外線硬化樹脂136に紫外線が照射されるが、その紫外線硬化樹脂136の液滴同士を凝集させてレベリング効果を発現させるべく、液状の紫外線硬化樹脂136を固体状に硬化させずに、ゲル状に硬化させるように紫外線が照射される。このため、硬化必要照射量より少ない照射量であって、液状の紫外線硬化樹脂をゲル状の樹脂に硬化させるために必要な単位面積当たりの積算照射量(以下、「ゲル化必要照射量」と記載する)の紫外線が紫外線硬化樹脂136に照射される。なお、ゲル化必要照射量は、例えば、10~100mJ/cmであり、比較的少ない量の照射量であるため、紫外線強度の高い第2紫外線照射装置94は用いずに、第1紫外線照射装置92のみによって、ゲル化必要照射量の紫外線が紫外線硬化樹脂136に照射される。これにより、紫外線硬化樹脂136がゲル状に硬化することで、紫外線硬化樹脂136の液滴同士が凝集し、レベリング効果が発現する。ここで、レベリング効果とは、表面張力により液体の表面積がなるべく小さくなる現象である。このため、液体の粘度にも左右されるが、時間の経過にともなって、樹脂積層体130の表面に吐出された紫外線硬化樹脂136の薄膜が平坦な(より均一な)膜厚に変化する。そして、紫外線の照射により、紫外線硬化樹脂136の粘度が上昇し、その際に、レベリング効果により、紫外線硬化樹脂136の表面張力が低下し、紫外線硬化樹脂136の表面が、凹凸量が減った面、或いは凹凸が無くなった面、つまり、平滑面138となる。 Specifically, in the second printing unit 84 of the second modeling unit 24, as shown in FIG. 5, the inkjet head 88 ejects the ultraviolet curable resin 136 into a thin film on the surface of the resin laminate 130. At this time, the ultraviolet curable resin 136 discharged to the surface of the resin laminate 130 spreads over the surface of the resin laminate 130 and spreads so as to fill the unevenness 134. Then, the ultraviolet curable resin 136 discharged onto the surface of the resin laminate 130 is irradiated with ultraviolet rays, and the liquid ultraviolet curable resin 136 is used to agglomerate the droplets of the ultraviolet curable resin 136 to exert a leveling effect. Is irradiated with ultraviolet rays so as to cure in a gel state without curing in a solid state. Therefore, the irradiation amount is smaller than the irradiation amount required for curing, and the integrated irradiation amount per unit area required for curing the liquid ultraviolet curable resin into the gel-like resin (hereinafter referred to as "irradiation amount required for gelation"). The ultraviolet rays (described above) are applied to the ultraviolet curable resin 136. The required irradiation amount for gelation is, for example, 10 to 100 mJ / cm 2, which is a relatively small amount. Therefore, the first ultraviolet irradiation is performed without using the second ultraviolet irradiation device 94 having high ultraviolet intensity. Only the device 92 irradiates the ultraviolet curable resin 136 with ultraviolet rays in an irradiation amount required for gelation. As a result, the ultraviolet curable resin 136 is cured in the form of a gel, so that the droplets of the ultraviolet curable resin 136 are aggregated with each other, and a leveling effect is exhibited. Here, the leveling effect is a phenomenon in which the surface area of the liquid becomes as small as possible due to surface tension. Therefore, although it depends on the viscosity of the liquid, the thin film of the ultraviolet curable resin 136 discharged onto the surface of the resin laminate 130 changes to a flat (more uniform) film thickness with the passage of time. Then, the viscosity of the ultraviolet curable resin 136 increases due to the irradiation of ultraviolet rays, and at that time, the surface tension of the ultraviolet curable resin 136 decreases due to the leveling effect, and the surface of the ultraviolet curable resin 136 has a reduced amount of unevenness. Or, it becomes a surface without unevenness, that is, a smooth surface 138.
 このように、樹脂積層体130の上に紫外線硬化樹脂136が吐出され、その紫外線硬化樹脂136がゲル化されることで、紫外線硬化樹脂136の表面が平滑面138とされる。これにより、平滑面138であれば、金属配線を適切に形成することができる。ただし、ゲル状の紫外線硬化樹脂136の上に金属配線を形成することはできないため、そのゲル状の紫外線硬化樹脂136に、更に、紫外線を照射することで、紫外線硬化樹脂136を硬化させる必要がある。この際、樹脂積層体130と同様に、硬化必要照射量の紫外線を、ゲル状の紫外線硬化樹脂136に照射すれば、ゲル状の紫外線硬化樹脂136を固体状に硬化させることはできる。ただし、紫外線硬化樹脂は外見的に硬化しても、硬化した紫外線硬化樹脂から、樹脂成分がガス化したり、溶出したりする場合がある。このような場合に、樹脂の上に金属インクにより金属配線が形成されると、金属インクへの樹脂成分の溶出,樹脂成分のガス等により、金属インクの乾燥,焼成等が阻害され、適切に金属配線を形成することができない虞がある。 In this way, the ultraviolet curable resin 136 is discharged onto the resin laminate 130, and the ultraviolet curable resin 136 is gelled, so that the surface of the ultraviolet curable resin 136 becomes a smooth surface 138. As a result, if the smooth surface is 138, the metal wiring can be appropriately formed. However, since the metal wiring cannot be formed on the gel-like ultraviolet-curable resin 136, it is necessary to further cure the gel-like ultraviolet-curable resin 136 by further irradiating the gel-like ultraviolet-curable resin 136 with ultraviolet rays. be. At this time, similarly to the resin laminate 130, if the gel-like ultraviolet-curable resin 136 is irradiated with ultraviolet rays in an irradiation amount required for curing, the gel-like ultraviolet-curable resin 136 can be cured into a solid state. However, even if the ultraviolet-curable resin is apparently cured, the resin component may be gasified or eluted from the cured ultraviolet-curable resin. In such a case, if the metal wiring is formed on the resin by the metal ink, the elution of the resin component into the metal ink, the gas of the resin component, etc. hinder the drying, firing, etc. of the metal ink, and it is appropriate. There is a risk that metal wiring cannot be formed.
 そこで、ゲル状の紫外線硬化樹脂136には、硬化必要照射量より多い照射量であって、硬化した樹脂からの樹脂成分の溶出,ガスなどを発生させることなく、紫外線硬化樹脂を完全に硬化させるために必要な単位面積当たりの積算照射量(以下、「完全硬化必要照射量」と記載する)の紫外線が紫外線硬化樹脂136に照射される。なお、完全硬化必要照射量は、実験により導き出された照射量である。つまり、実験的に紫外線の照射により硬化した紫外線硬化樹脂に対して、組成分析装置を用いて、樹脂成分の溶出,ガス等の発生の有無を測定する。この際、紫外線の照射量を硬化必要照射量から段階的に増加させることで、樹脂成分の溶出,ガス化等の発生しない範囲の紫外線の照射量、つまり、完全硬化必要照射量が導き出される。 Therefore, the gel-like ultraviolet curable resin 136 has an irradiation amount larger than the required curing amount, and the ultraviolet curable resin is completely cured without elution of resin components from the cured resin, generation of gas, or the like. The ultraviolet curable resin 136 is irradiated with ultraviolet rays of an integrated irradiation amount per unit area (hereinafter, referred to as “complete curing required irradiation amount”) required for this purpose. The irradiation amount required for complete curing is an irradiation amount derived by an experiment. That is, for an ultraviolet curable resin experimentally cured by irradiation with ultraviolet rays, the presence or absence of elution of resin components, generation of gas, etc. is measured using a composition analyzer. At this time, by gradually increasing the irradiation amount of ultraviolet rays from the irradiation amount required for curing, the irradiation amount of ultraviolet rays in a range in which elution of resin components, gasification, etc. do not occur, that is, the irradiation amount required for complete curing is derived.
 なお、完全硬化必要照射量は、例えば、3000~10000mJ/cmであり、非常に多い量の照射量である。このため、第1紫外線照射装置92と第2紫外線照射装置94との2台の照射装置により、完全硬化必要照射量の紫外線が、ゲル状の紫外線硬化樹脂136に照射される。なお、紫外線硬化樹脂を完全に硬化させるためには、紫外線の照射量だけでなく、広い範囲の波長の紫外線を紫外線硬化樹脂に照射する必要がある。このようなことからも、第1紫外線照射装置92と第2紫外線照射装置94との2台の照射装置により、紫外線がゲル状の紫外線硬化樹脂136に照射される。特に、水銀ランプは広い範囲の波長の紫外線を照射することから、水銀ランプを光源として有する第2紫外線照射装置94を用いて、紫外線硬化樹脂を完全硬化させることは好ましい。 The required irradiation amount for complete curing is, for example, 3000 to 10000 mJ / cm 2, which is a very large amount of irradiation. Therefore, the gel-like ultraviolet curable resin 136 is irradiated with the required irradiation amount of ultraviolet rays by the two irradiation devices, the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94. In order to completely cure the ultraviolet curable resin, it is necessary to irradiate the ultraviolet curable resin with ultraviolet rays having a wide range of wavelengths as well as the amount of ultraviolet irradiation. For this reason, the gel-like ultraviolet curable resin 136 is irradiated with ultraviolet rays by the two irradiation devices, the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94. In particular, since the mercury lamp irradiates ultraviolet rays having a wide range of wavelengths, it is preferable to completely cure the ultraviolet curable resin by using the second ultraviolet irradiation device 94 having the mercury lamp as a light source.
 このように、第1紫外線照射装置92と第2紫外線照射装置94との2台の照射装置により、完全硬化必要照射量の紫外線が、ゲル状の紫外線硬化樹脂136に照射されると、樹脂積層体130の表面に吐出された紫外線硬化樹脂136は完全に硬化し、平滑樹脂層140とされる。そして、完全に硬化した紫外線硬化樹脂136、つまり、平滑樹脂層140の表面は、平滑面138とされている。そこで、その平滑面138の上に金属配線を形成するべく、ステージ52が第1造形ユニット22の下方に移動する。そして、第1印刷部72において、図6に示すように、インクジェットヘッド76が、平滑樹脂層140の上面に金属インク150を、回路パターンに応じて線状に吐出する。次に、第1造形ユニット22の乾燥部74において、赤外線照射装置78が、金属インク150に赤外線を照射する。これにより、金属インク150が乾燥若しくは焼成し、平滑樹脂層140の平滑面138に金属配線152が形成される。 In this way, when the gel-like ultraviolet curable resin 136 is irradiated with the ultraviolet rays required for complete curing by the two irradiation devices of the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94, the resin is laminated. The ultraviolet curable resin 136 discharged onto the surface of the body 130 is completely cured to form a smooth resin layer 140. The surface of the completely cured ultraviolet curable resin 136, that is, the smooth resin layer 140 is a smooth surface 138. Therefore, the stage 52 moves below the first modeling unit 22 in order to form the metal wiring on the smooth surface 138. Then, in the first printing unit 72, as shown in FIG. 6, the inkjet head 76 linearly ejects the metal ink 150 onto the upper surface of the smooth resin layer 140 according to the circuit pattern. Next, in the drying portion 74 of the first modeling unit 22, the infrared irradiation device 78 irradiates the metal ink 150 with infrared rays. As a result, the metal ink 150 is dried or fired, and the metal wiring 152 is formed on the smooth surface 138 of the smooth resin layer 140.
 このように、回路形成装置10では、樹脂積層体130が形成される際には、第1紫外線照射装置92と第2紫外線照射装置94との2台の照射装置により、硬化必要照射量の紫外線が照射される。また、樹脂積層体130の上に吐出された紫外線硬化樹脂136がゲル状に硬化される際には、第1紫外線照射装置92のみにより、ゲル化必要照射量の紫外線が照射される。さらに、ゲル状に硬化した紫外線硬化樹脂136を完全に硬化させて、平滑樹脂層140が形成される際には、第1紫外線照射装置92と第2紫外線照射装置94との2台の照射装置により、完全硬化必要照射量の紫外線が照射される。つまり、回路形成装置10では、紫外線の積算照射量に応じて、第1紫外線照射装置92のみによる紫外線の照射と、第1紫外線照射装置92と第2紫外線照射装置94との2台の照射装置による紫外線の照射とが選択的に実行されている。これにより、紫外線の照射時間の短縮,比較的少量の紫外線の照射などを適切に行うことが可能となる。 As described above, in the circuit forming apparatus 10, when the resin laminate 130 is formed, the ultraviolet irradiation of the required curing amount is generated by the two irradiation devices of the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94. Is irradiated. Further, when the ultraviolet curable resin 136 discharged onto the resin laminate 130 is cured in the form of a gel, only the first ultraviolet irradiation device 92 irradiates the ultraviolet rays in the amount required for gelation. Further, when the UV-curable resin 136 cured into a gel is completely cured to form the smooth resin layer 140, two irradiation devices, a first ultraviolet irradiation device 92 and a second ultraviolet irradiation device 94, are formed. As a result, ultraviolet rays of the required irradiation amount for complete curing are irradiated. That is, in the circuit forming device 10, the irradiation of ultraviolet rays by only the first ultraviolet irradiation device 92 and the irradiation of two units of the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94 according to the integrated irradiation amount of ultraviolet rays. Irradiation with ultraviolet rays is selectively performed. As a result, it is possible to shorten the irradiation time of ultraviolet rays and to appropriately irradiate a relatively small amount of ultraviolet rays.
 一方で、従来の回路形成装置では、LEDを光源として有する紫外線照射装置は配設されておらず、水銀ランプを光源として有する紫外線照射装置のみが配設されていた。水銀ランプは、紫外線強度が比較的高いため、多くの量の紫外線積算照射量の紫外線を照射することは可能であるが、少ない量の紫外線積算照射量の紫外線を照射することは困難である。特に、水銀ランプは、紫外線強度を、最大の紫外線強度から、最大の紫外線強度の半分程度の紫外線強度までの任意の強度に変更することが可能とされており、第2紫外線照射装置94の紫外線強度が例えば、3000mW/cmであれば、3000mW/cmから1500mW/cm程度の範囲で、紫外線強度を変更することが可能である。しかしながら、第2紫外線照射装置94の紫外線強度を1500mW/cmまで下げても、第2紫外線照射装置94によりゲル化必要照射量(10~100mJ/cm)の紫外線を照射することは困難である。一方で、最大の紫外線強度の低い水銀ランプを採用すれば、ゲル化必要照射量の紫外線を照射することが可能となるが、このような場合には、硬化必要照射光量,完全硬化必要照射量の紫外線を照射する際に、照射時間が長くなる。このように、水銀ランプを光源として有する紫外線照射装置のみが配設される従来の回路形成装置では、種々の問題がある。 On the other hand, in the conventional circuit forming apparatus, the ultraviolet irradiation device having an LED as a light source is not arranged, and only the ultraviolet irradiation device having a mercury lamp as a light source is arranged. Since the mercury lamp has a relatively high ultraviolet intensity, it is possible to irradiate a large amount of ultraviolet rays with an integrated ultraviolet irradiation amount, but it is difficult to irradiate a small amount of ultraviolet rays with an integrated ultraviolet irradiation amount. In particular, the mercury lamp can change the ultraviolet intensity from the maximum ultraviolet intensity to an arbitrary intensity of about half of the maximum ultraviolet intensity, and the ultraviolet rays of the second ultraviolet irradiation device 94. If the intensity is, for example, 3000 mW / cm 2 , the ultraviolet intensity can be changed in the range of 3000 mW / cm 2 to 1500 mW / cm 2. However, even if the ultraviolet intensity of the second ultraviolet irradiation device 94 is lowered to 1500 mW / cm 2, it is difficult for the second ultraviolet irradiation device 94 to irradiate the required irradiation amount of gelation (10 to 100 mJ / cm 2). be. On the other hand, if a mercury lamp with the lowest ultraviolet intensity is adopted, it is possible to irradiate the ultraviolet rays of the irradiation amount required for gelation. In such a case, the irradiation amount of irradiation required for curing and the irradiation amount required for complete curing When irradiating with ultraviolet rays, the irradiation time becomes long. As described above, the conventional circuit forming apparatus in which only the ultraviolet irradiation apparatus having a mercury lamp as a light source is arranged has various problems.
 そこで、LEDを光源として有する紫外線照射装置のみを、回路形成装置に配設することが考えられる。LEDは、水銀ランプと比較すると、コスト,配設スペース,寿命等の面から非常に有利である。具体的には、例えば、水銀ランプの価格が数百万円するのに対して、LEDの価格は数十万円である。また、水銀ランプは比較的大型のものが多いのに対して、LEDは比較的小型のものが多い。また、LEDの寿命は、水銀ランプの寿命より長い。さらに言えば、LEDは、紫外線強度を、最大の紫外線強度から、最大の紫外線強度の1/10以下の紫外線強度までの任意の強度に変更することが可能とされている。このため、例えば、第1紫外線照射装置92の最大の紫外線強度が1000mW/cmであれば、1000mW/cmから100mW/cm以下の範囲で、紫外線強度を変更することが可能であり、適切にゲル化必要照射量(10~100mJ/cm)の紫外線を照射することができる。また、LEDは、赤外光を放射しないため、紫外線の照射による温度上昇を抑制することができる。このように、LEDを用いて紫外線硬化樹脂に紫外線を照射することには、多くの利点がある。しかしながら、紫外線硬化樹脂を完全に硬化させるためには、上述したように、紫外線の照射量だけでなく、広い範囲の波長の紫外線を紫外線硬化樹脂に照射する必要があるが、LEDは、広い範囲の波長の紫外線を照射することはできない。このため、LEDのみの紫外線の照射により紫外線硬化樹脂を完全に硬化させることはできない。 Therefore, it is conceivable to dispose only the ultraviolet irradiation device having the LED as a light source in the circuit forming device. Compared with a mercury lamp, an LED is very advantageous in terms of cost, arrangement space, life, and the like. Specifically, for example, the price of a mercury lamp is several million yen, while the price of an LED is several hundred thousand yen. Further, while many mercury lamps are relatively large, many LEDs are relatively small. Also, the life of the LED is longer than the life of the mercury lamp. Furthermore, the LED is capable of changing the UV intensity from the maximum UV intensity to any UV intensity of 1/10 or less of the maximum UV intensity. Thus, for example, if the maximum ultraviolet intensity of the first ultraviolet irradiation device 92 is a 1000 mW / cm 2, in the range of 1000 mW / cm 2 of 100 mW / cm 2 or less, it is possible to change the ultraviolet intensity, It is possible to appropriately irradiate ultraviolet rays with a required irradiation amount of gelation (10 to 100 mJ / cm 2). Further, since the LED does not emit infrared light, it is possible to suppress a temperature rise due to irradiation with ultraviolet rays. As described above, irradiating the ultraviolet curable resin with ultraviolet rays using LEDs has many advantages. However, in order to completely cure the ultraviolet curable resin, as described above, it is necessary to irradiate the ultraviolet curable resin with ultraviolet rays having a wide range of wavelengths as well as the amount of ultraviolet irradiation. It is not possible to irradiate ultraviolet rays of the same wavelength. Therefore, the ultraviolet curable resin cannot be completely cured by irradiating only the LED with ultraviolet rays.
 このように、LEDと水銀ランプとの各々を単独で用いた場合には、それぞれの光源特有の利点もあるが、不利な点も多くある。そこで、回路形成装置10では、紫外線の積算照射量に応じて、LEDのみによる紫外線の照射と、LEDと水銀ランプとの両方による紫外線の照射とが選択的に実行されている。これにより、LEDと水銀ランプとの各々の光源特有の利点を活かしつつ、不利な点を解消することが可能となっている。 In this way, when each of the LED and the mercury lamp is used independently, there are advantages peculiar to each light source, but there are also many disadvantages. Therefore, in the circuit forming apparatus 10, irradiation of ultraviolet rays only by the LED and irradiation of ultraviolet rays by both the LED and the mercury lamp are selectively executed according to the integrated irradiation amount of the ultraviolet rays. This makes it possible to eliminate the disadvantages while taking advantage of the advantages peculiar to each light source of the LED and the mercury lamp.
 さらに言えば、回路形成装置10では、図2に示すように、第2造形ユニット24において、インクジェットヘッド88,平坦化装置90,第1紫外線照射装置92,第2紫外線照射装置94の順に、X方向に並んで配設されている。つまり、第1紫外線照射装置92は、第2紫外線照射装置94よりインクジェットヘッド88に近い位置に配設されている。そして、樹脂積層体130の上に吐出された紫外線硬化樹脂136をゲル状に硬化させる際には、インクジェットヘッド88により吐出された紫外線硬化樹脂に第1紫外線照射装置92のみにより紫外線が照射される。このため、紫外線硬化樹脂136をゲル状に硬化させる際のステージ52の移動距離が少なくなり、タクトタイムの短縮を図ることが可能となる。 Further, in the circuit forming apparatus 10, as shown in FIG. 2, in the second modeling unit 24, the inkjet head 88, the flattening apparatus 90, the first ultraviolet irradiation apparatus 92, and the second ultraviolet irradiation apparatus 94 are X in this order. They are arranged side by side in the direction. That is, the first ultraviolet irradiation device 92 is arranged at a position closer to the inkjet head 88 than the second ultraviolet irradiation device 94. Then, when the ultraviolet curable resin 136 discharged onto the resin laminate 130 is cured into a gel, the ultraviolet curable resin discharged by the inkjet head 88 is irradiated with ultraviolet rays only by the first ultraviolet irradiation device 92. .. Therefore, the moving distance of the stage 52 when the ultraviolet curable resin 136 is cured into a gel is reduced, and the tact time can be shortened.
 なお、図3に示すように、コントローラ120は、吐出部200,平坦化部202,第1紫外線照射部204,第2紫外線照射部206,第3紫外線照射部208を有している。吐出部200は、インクジェットヘッド88により紫外線硬化樹脂を吐出するための機能部である。平坦化部202は、インクジェットヘッド88により吐出された紫外線硬化樹脂を平坦化装置90により平坦化させるための機能部である。第1紫外線照射部204は、ゲル化必要照射量の紫外線を、第1紫外線照射装置92のみにより照射するための機能部である。第2紫外線照射部206は、硬化必要照射量の紫外線を、第1紫外線照射装置92と第2紫外線照射装置94との両方により照射するための機能部である。第3紫外線照射部208は、完全硬化必要照射量の紫外線を、第1紫外線照射装置92と第2紫外線照射装置94との両方により照射するための機能部である。 As shown in FIG. 3, the controller 120 has a discharge unit 200, a flattening unit 202, a first ultraviolet irradiation unit 204, a second ultraviolet irradiation unit 206, and a third ultraviolet irradiation unit 208. The discharge unit 200 is a functional unit for discharging the ultraviolet curable resin by the inkjet head 88. The flattening unit 202 is a functional unit for flattening the ultraviolet curable resin discharged by the inkjet head 88 by the flattening device 90. The first ultraviolet irradiation unit 204 is a functional unit for irradiating the required amount of ultraviolet rays for gelation only by the first ultraviolet irradiation device 92. The second ultraviolet irradiation unit 206 is a functional unit for irradiating the ultraviolet irradiation amount required for curing by both the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94. The third ultraviolet irradiation unit 208 is a functional unit for irradiating the ultraviolet irradiation amount required for complete curing by both the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94.
 ちなみに、上記実施例において、回路形成装置10は、回路形成装置の一例である。インクジェットヘッド88は、吐出装置の一例である。第1紫外線照射装置92は、第1紫外線照射装置の一例である。第2紫外線照射装置94は、第2紫外線照射装置の一例である。また、吐出部200により実行される工程が、吐出工程の一例である。平坦化部202により実行される工程が、平坦化工程の一例である。第1紫外線照射部204により実行される工程が、第1紫外線照射工程の一例である。第2紫外線照射部206により実行される工程が、第2紫外線照射工程の一例である。第3紫外線照射部208により実行される工程が、第3紫外線照射工程の一例である。 By the way, in the above embodiment, the circuit forming apparatus 10 is an example of the circuit forming apparatus. The inkjet head 88 is an example of a ejection device. The first ultraviolet irradiation device 92 is an example of the first ultraviolet irradiation device. The second ultraviolet irradiation device 94 is an example of the second ultraviolet irradiation device. Further, the process executed by the discharge unit 200 is an example of the discharge process. The step executed by the flattening unit 202 is an example of the flattening step. The step executed by the first ultraviolet irradiation unit 204 is an example of the first ultraviolet irradiation step. The step executed by the second ultraviolet irradiation unit 206 is an example of the second ultraviolet irradiation step. The step executed by the third ultraviolet irradiation unit 208 is an example of the third ultraviolet irradiation step.
 また、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。例えば、上記実施例では、LEDを光源として有する第1紫外線照射装置92と、水銀ランプを光源として有する第2紫外線照射装置94との2種類の光源を有する2台の照射装置が採用されているが、同じ種類の光源を有する2台の照射装置が採用されてもよい。つまり、LEDを光源として有する第1の紫外線照射装置と、LEDを光源として有する第2の紫外線照射装置とが採用されてもよく、水銀ランプを光源として有する第1の紫外線照射装置と、水銀ランプを光源として有する第2の紫外線照射装置とが採用されてもよい。ただし、同じ種類の光源を有する2台の照射装置が採用される場合には、2台の紫外線照射装置の紫外線強度は、異なっていなければならない。 Further, the present invention is not limited to the above-mentioned examples, and can be carried out in various modes with various changes and improvements based on the knowledge of those skilled in the art. For example, in the above embodiment, two irradiation devices having two types of light sources, a first ultraviolet irradiation device 92 having an LED as a light source and a second ultraviolet irradiation device 94 having a mercury lamp as a light source, are adopted. However, two irradiation devices having the same type of light source may be adopted. That is, a first ultraviolet irradiation device having an LED as a light source and a second ultraviolet irradiation device having an LED as a light source may be adopted, and a first ultraviolet irradiation device having a mercury lamp as a light source and a mercury lamp A second ultraviolet irradiation device having the above as a light source may be adopted. However, when two irradiation devices having the same type of light source are adopted, the ultraviolet intensities of the two ultraviolet irradiation devices must be different.
 また、上記実施例では、紫外線照射装置の光源として、LED及び水銀ランプが採用されているが、LED及び水銀ランプと異なる種類の光源が採用されてもよい。 Further, in the above embodiment, the LED and the mercury lamp are adopted as the light source of the ultraviolet irradiation device, but a light source of a type different from the LED and the mercury lamp may be adopted.
 また、上記実施例では、第1紫外線照射装置92と第2紫外線照射装置94との2台の紫外線照射装置を備えた回路形成装置10が採用されているが、3台以上の紫外線照射装置を備える回路形成装置が採用されてもよい。 Further, in the above embodiment, the circuit forming apparatus 10 including two ultraviolet irradiation devices of the first ultraviolet irradiation device 92 and the second ultraviolet irradiation device 94 is adopted, but three or more ultraviolet irradiation devices are used. A circuit forming apparatus provided may be adopted.
 10:回路形成装置  88:インクジェットヘッド(吐出装置)  92:第1紫外線照射装置  94:第2紫外線照射装置  200:吐出部(吐出工程)  202:平坦化部(平坦化工程)  204:第1紫外線照射部(第1紫外線照射工程)  206:第2紫外線照射部(第2紫外線照射工程)  208:第3紫外線照射部(第3紫外線照射工程) 10: Circuit forming device 88: Inkjet head (ejection device) 92: First ultraviolet irradiation device 94: Second ultraviolet irradiation device 200: Discharge part (discharge process) 202: Flattening part (flattening process) 204: First ultraviolet ray Irradiation part (first ultraviolet irradiation step) 206: Second ultraviolet irradiation part (second ultraviolet irradiation step) 208: Third ultraviolet irradiation part (third ultraviolet irradiation step)

Claims (6)

  1.  紫外線硬化樹脂を吐出する吐出装置と、
     前記吐出装置により吐出された紫外線硬化樹脂に紫外線を照射する第1紫外線照射装置と、
     前記吐出装置により吐出された紫外線硬化樹脂に紫外線を照射する第2紫外線照射装置と
     を備え、
     前記第1紫外線照射装置の単位面積当たりの紫外線強度と、前記第2紫外線照射装置の単位面積当たりの紫外線強度とが異なる回路形成装置。
    A discharge device that discharges UV curable resin and
    A first ultraviolet irradiation device that irradiates the ultraviolet curable resin discharged by the discharge device with ultraviolet rays,
    A second ultraviolet irradiation device for irradiating the ultraviolet curable resin discharged by the discharge device with ultraviolet rays is provided.
    A circuit forming apparatus in which the ultraviolet intensity per unit area of the first ultraviolet irradiation device and the ultraviolet intensity per unit area of the second ultraviolet irradiation device are different.
  2.  前記第1紫外線照射装置は、LEDを光源として有する装置であり、
     前記第2紫外線照射装置は、水銀ランプを光源として有する装置である請求項1に記載の回路形成装置。
    The first ultraviolet irradiation device is a device having an LED as a light source.
    The circuit forming device according to claim 1, wherein the second ultraviolet irradiation device is a device having a mercury lamp as a light source.
  3.  紫外線硬化性樹脂を吐出する吐出工程と、
     前記吐出工程において吐出された紫外線硬化樹脂に、単位面積当たりの照射強度が所定の強度である第1紫外線照射装置により紫外線を照射する第1紫外線照射工程と、
     前記吐出工程において吐出された紫外線硬化樹脂に、前記第1紫外線照射装置と、単位面積当たりの照射強度が前記所定の強度より強い強度である第2紫外線照射装置との両方により紫外線を照射する第2紫外線照射工程と
     を含み、
     前記第1紫外線照射工程と前記第2紫外線照射工程とが選択的に実行される回路形成方法。
    Discharge process that discharges UV curable resin and
    A first ultraviolet irradiation step of irradiating the ultraviolet curable resin discharged in the ejection step with ultraviolet rays by a first ultraviolet irradiation device having an irradiation intensity per unit area having a predetermined intensity.
    The ultraviolet curable resin ejected in the ejection step is irradiated with ultraviolet rays by both the first ultraviolet irradiation device and the second ultraviolet irradiation device whose irradiation intensity per unit area is stronger than the predetermined intensity. 2 Including UV irradiation step
    A circuit forming method in which the first ultraviolet irradiation step and the second ultraviolet irradiation step are selectively executed.
  4.  前記回路形成方法は、
     前記吐出工程において吐出された紫外線硬化樹脂を平坦化させる平坦化工程を含み、
     前記第2紫外線照射工程は、
     前記平坦化工程において平坦化された紫外線硬化樹脂に、前記第1紫外線照射装置と前記第2紫外線照射装置との両方により紫外線を照射する工程であり、
     前記第1紫外線照射工程は、
     前記平坦化工程において紫外線硬化樹脂を平坦化させることなく、前記吐出工程において吐出された紫外線硬化樹脂に、前記第1紫外線照射装置により紫外線を照射する工程である請求項3に記載の回路形成方法。
    The circuit forming method is
    Including a flattening step of flattening the ultraviolet curable resin discharged in the discharge step.
    The second ultraviolet irradiation step is
    It is a step of irradiating the ultraviolet curable resin flattened in the flattening step with ultraviolet rays by both the first ultraviolet irradiation device and the second ultraviolet irradiation device.
    The first ultraviolet irradiation step is
    The circuit forming method according to claim 3, which is a step of irradiating the ultraviolet curable resin discharged in the discharge step with ultraviolet rays by the first ultraviolet irradiation device without flattening the ultraviolet curable resin in the flattening step. ..
  5.  前記回路形成方法は、
     前記第1紫外線照射工程において紫外線が照射された紫外線硬化樹脂に、さらに、前記第1紫外線照射装置と前記第2紫外線照射装置との両方により紫外線を照射する第3紫外線照射工程を含む請求項3または請求項4に記載の回路形成方法。
    The circuit forming method is
    3. Claim 3 including a third ultraviolet irradiation step of irradiating the ultraviolet curable resin irradiated with ultraviolet rays in the first ultraviolet irradiation step with ultraviolet rays by both the first ultraviolet irradiation device and the second ultraviolet irradiation device. Alternatively, the circuit forming method according to claim 4.
  6.  前記第3紫外線照射工程において前記第1紫外線照射装置と前記第2紫外線照射装置との両方により照射される単位面積当たりの紫外線照射量が、前記第2紫外線照射工程において前記第1紫外線照射装置と前記第2紫外線照射装置との両方により照射される単位面積当たりの紫外線照射量より多い請求項5に記載の回路形成方法。 In the third ultraviolet irradiation step, the amount of ultraviolet irradiation per unit area irradiated by both the first ultraviolet irradiation device and the second ultraviolet irradiation device is the same as that of the first ultraviolet irradiation device in the second ultraviolet irradiation step. The circuit forming method according to claim 5, wherein the amount of ultraviolet irradiation per unit area irradiated by both the second ultraviolet irradiation device and the ultraviolet irradiation device is larger than the amount of ultraviolet irradiation.
PCT/JP2020/005108 2020-02-10 2020-02-10 Circuit forming device and circuit forming method WO2021161376A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/005108 WO2021161376A1 (en) 2020-02-10 2020-02-10 Circuit forming device and circuit forming method
JP2021577726A JP7250964B2 (en) 2020-02-10 2020-02-10 CIRCUIT-FORMING APPARATUS AND CIRCUIT-FORMING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005108 WO2021161376A1 (en) 2020-02-10 2020-02-10 Circuit forming device and circuit forming method

Publications (1)

Publication Number Publication Date
WO2021161376A1 true WO2021161376A1 (en) 2021-08-19

Family

ID=77291422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005108 WO2021161376A1 (en) 2020-02-10 2020-02-10 Circuit forming device and circuit forming method

Country Status (2)

Country Link
JP (1) JP7250964B2 (en)
WO (1) WO2021161376A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142195A (en) * 2004-11-19 2006-06-08 Zeon Kasei Co Ltd Agent, apparatus and method for removing toxic substance to be oxidized
JP2016078405A (en) * 2014-10-22 2016-05-16 セイコーエプソン株式会社 Method for manufacturing three-dimensional molded article, apparatus for manufacturing three-dimensional molded article, and three-dimensional molded article
WO2016075823A1 (en) * 2014-11-14 2016-05-19 富士機械製造株式会社 Wiring board manufacturing method and wiring board manufacturing apparatus
JP2017516295A (en) * 2014-03-25 2017-06-15 ストラタシス リミテッド Method and system for producing a layer crossing pattern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142195A (en) * 2004-11-19 2006-06-08 Zeon Kasei Co Ltd Agent, apparatus and method for removing toxic substance to be oxidized
JP2017516295A (en) * 2014-03-25 2017-06-15 ストラタシス リミテッド Method and system for producing a layer crossing pattern
JP2016078405A (en) * 2014-10-22 2016-05-16 セイコーエプソン株式会社 Method for manufacturing three-dimensional molded article, apparatus for manufacturing three-dimensional molded article, and three-dimensional molded article
WO2016075823A1 (en) * 2014-11-14 2016-05-19 富士機械製造株式会社 Wiring board manufacturing method and wiring board manufacturing apparatus

Also Published As

Publication number Publication date
JPWO2021161376A1 (en) 2021-08-19
JP7250964B2 (en) 2023-04-03

Similar Documents

Publication Publication Date Title
JP6680878B2 (en) Circuit formation method
JP6926078B2 (en) Circuit formation method and circuit formation device
JP6987975B2 (en) 3D structure forming method and 3D structure forming device
WO2021161376A1 (en) Circuit forming device and circuit forming method
JP6811770B2 (en) Circuit formation method
WO2016189577A1 (en) Wiring forming method
JP6663516B2 (en) Circuit forming method and circuit forming apparatus
JP6816283B2 (en) Wiring forming method and wiring forming device
WO2021214813A1 (en) Circuit forming method and circuit forming device
WO2021019718A1 (en) Cured resin formation method and cured resin formation device
JP6818154B2 (en) Wiring forming method and wiring forming device
JP7428470B2 (en) Circuit formation method
JP6808050B2 (en) Wiring forming method and wiring forming device
WO2019167156A1 (en) Wiring forming apparatus and wiring forming method
JP7055897B2 (en) Circuit formation method
JP7083039B2 (en) Circuit formation method
JP6871435B2 (en) Inkjet printing equipment
WO2022113224A1 (en) Three-dimensional molded-object producing device
JP7411452B2 (en) Circuit formation method
WO2021166139A1 (en) Circuit forming method
JP6599786B2 (en) Circuit pattern forming apparatus and circuit pattern forming method
JP2023166848A (en) Electric circuit forming method and electric circuit forming device
JP2022079926A (en) Molding method and molding apparatus
JP2008123924A (en) Pattern forming apparatus and pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577726

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918828

Country of ref document: EP

Kind code of ref document: A1