WO2021155681A1 - 边带抑制方法、装置、计算机设备和存储介质 - Google Patents

边带抑制方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2021155681A1
WO2021155681A1 PCT/CN2020/124655 CN2020124655W WO2021155681A1 WO 2021155681 A1 WO2021155681 A1 WO 2021155681A1 CN 2020124655 W CN2020124655 W CN 2020124655W WO 2021155681 A1 WO2021155681 A1 WO 2021155681A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
parameter
baseband signal
sideband suppression
Prior art date
Application number
PCT/CN2020/124655
Other languages
English (en)
French (fr)
Inventor
张贞兴
张胜誉
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to JP2021554983A priority Critical patent/JP7258406B2/ja
Priority to KR1020217028699A priority patent/KR102514252B1/ko
Priority to EP20918068.6A priority patent/EP3920426A4/en
Publication of WO2021155681A1 publication Critical patent/WO2021155681A1/zh
Priority to US17/460,006 priority patent/US12126407B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/76Pilot transmitters or receivers for control of transmission or for equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • H03D1/22Homodyne or synchrodyne circuits
    • H03D1/24Homodyne or synchrodyne circuits for demodulation of signals wherein one sideband or the carrier has been wholly or partially suppressed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0082Quadrature arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0491Circuits with frequency synthesizers, frequency converters or modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/003Correction of carrier offset at baseband only

Definitions

  • This application relates to the technical field of signal processing, in particular to sideband suppression methods, devices, computer equipment and storage media.
  • a carrier wave is usually used to transmit the signal.
  • the carrier is the physical basis and carrier tool for transmitting signals.
  • the frequency of the signal to be sent is low-frequency, and if it is transmitted according to the frequency of the signal itself, it is not conducive to the reception of the signal. Therefore, the signal to be sent can be loaded on the signal of the carrier, and the signal loaded with the carrier can be sent.
  • the evolution of the quantum state of superconducting qubits is usually achieved through microwave signals.
  • the shape of the microwave signal is usually modulated to a certain extent.
  • the signal can be modulated by a modulator, and the baseband signal and carrier signal can be used to generate the final qubit control signal.
  • a sideband suppression method, device, computer equipment, and storage medium are provided.
  • a sideband suppression method executed by a computer device, the method comprising: acquiring a target baseband signal; acquiring target signal related parameters corresponding to the target baseband signal, the target signal related parameters including the signal corresponding to the target baseband signal At least one of the characteristic parameter or the signal characteristic parameter of the carrier signal corresponding to the target baseband signal; obtain the corresponding target sideband suppression parameter according to the target signal related parameter; The signal is subjected to signal correction processing to obtain a target modified baseband signal, and the target sideband suppression parameter is used to suppress the power of the first suppression sideband corresponding to the target baseband signal; input the target modified baseband signal to the modulator Signal modulation is performed in the process to obtain the target modulation signal corresponding to the target baseband signal.
  • a sideband suppression device comprising: a target baseband signal acquisition module for acquiring a target baseband signal; a target signal related parameter acquisition module for acquiring a target signal related parameter corresponding to the target baseband signal, the target The signal-related parameters include at least one of the signal characteristic parameters corresponding to the target baseband signal or the signal characteristic parameters of the carrier signal corresponding to the target baseband signal; the target sideband suppression parameter acquisition module is used to obtain the target sideband suppression parameter according to the target signal-related parameters Obtain the corresponding target sideband suppression parameter; a correction processing module for performing signal correction processing on the target baseband signal based on the target sideband suppression parameter to obtain a target modified baseband signal, and the target sideband suppression parameter is used to correct The power of the first suppression sideband corresponding to the target baseband signal is suppressed; a modulation module is used to input the target modified baseband signal into a modulator for signal modulation to obtain a target modulation signal corresponding to the target baseband signal.
  • a computer device includes a memory and a processor.
  • the memory stores computer readable instructions.
  • the processor executes the steps of the sideband suppression method.
  • One or more non-volatile storage media storing computer-readable instructions, when the computer-readable instructions are executed by one or more processors, cause the processors to execute the steps of the sideband suppression method described above.
  • FIG. 1 is an application environment diagram of the sideband suppression method provided in some embodiments.
  • Figure 2 is a flowchart of a sideband suppression method in some embodiments
  • FIG. 3 is a flowchart of obtaining corresponding target sideband suppression parameters according to target signal related parameters in some embodiments
  • Figure 5 is a flowchart of sideband calibration in some embodiments.
  • FIG. 6 is a diagram of device connection relationship during sideband calibration in some embodiments.
  • Figure 7 is a schematic diagram of the implementation of signal sideband suppression in some embodiments.
  • FIG. 8 is a diagram of the working principle of a quadrature modulator including errors in some embodiments.
  • FIG. 9A is a comparison effect diagram of other solutions in some embodiments and the solutions of the embodiments of the present application.
  • FIG. 9B is a comparison effect diagram of other solutions in some embodiments and the solutions in the embodiments of the present application.
  • Figure 10 is a structural block diagram of a sideband suppression device in an embodiment.
  • Figure 11 is a block diagram of the internal structure of a computer device in some embodiments.
  • first, second, etc. used in this application can be used herein to describe various elements, but unless otherwise specified, these elements are not limited by these terms. These terms are only used to distinguish the first element from another element.
  • the first suppression sideband can be referred to as the second suppression sideband, and similarly, the second suppression sideband can be referred to as the first suppression sideband.
  • FIG. 1 is an application environment diagram of the sideband suppression method provided in some embodiments.
  • a quantum computer can correspond to FPGA (Field Programmable Gate Array) 110, A DAC (Digital to analog converter) 121, a second DAC 122, a first LPF (Low Pass Filter, low pass filter) 131, a second LPF 132, and IQ (In-phase and quadrature phase), in-phase and positive ⁇ ) Modulator 140.
  • the IQ modulator is a four-port (including I end, Q end, LO end and RF end) microwave device, which can perform quadrature modulation on microwave signals. I terminal and Q terminal input the baseband signal of medium and low frequency respectively.
  • the input of the LO (Local Oscillator) terminal is the carrier signal.
  • the RF (Radio Frequency) terminal outputs the modulated signal.
  • the computer can input the desired output target baseband signal into the FPGA, and correct the target baseband signal through the IQ correction module in the FPGA. After the real part I(t) and imaginary part Q(t) of the corrected signal go through the DAC and LPF , Get the two-way target correction baseband signal.
  • the target modified baseband signal corresponding to the real part is input to the I terminal of the IQ modulator, the target modified baseband signal corresponding to the imaginary part is input to the Q terminal of the IQ modulator, and the LO terminal of the modulator is connected to the carrier for signal modulation to obtain the modulated signal.
  • the signals s(t) and s(t) can be used to control the superconducting qubit.
  • t in s(t), I(t), and Q(t) represents a time variable t, for example, s(t) represents a modulated signal at time t.
  • the FPGA may include an IQ correction module to correct the baseband signal.
  • the IQ correction module may be a module that implements an IQ compensation algorithm on hardware, and the signal correction algorithm provided in the embodiment of the present application may also be referred to as an IQ compensation algorithm.
  • the method provided in the embodiment of the present application may be to modify the target baseband signal before using the IQ modulator to modulate the signal.
  • the signal-related parameters may include, for example, the frequency of the carrier, the frequency and amplitude of the baseband signal, and so on.
  • IQ baseband amplitude imbalance ⁇ 1 due to the actual IQ modulator device itself that is not ideal, there will often be IQ baseband amplitude imbalance ⁇ 1 , IQ baseband phase imbalance ⁇ , quadrature carrier amplitude Errors caused by one or more of the unbalanced ⁇ 2 or the quadrature carrier phase unbalanced ⁇ lead to the existence of useless sidebands. These errors are generally not easy to measure directly.
  • the inventor of the present application found through actual measurement that the IQ baseband amplitude imbalance ⁇ and the baseband phase imbalance ⁇ are not fixed, and usually change with the signal-related parameters corresponding to the baseband signal.
  • the IQ baseband amplitude is not constant.
  • the balance ⁇ and the baseband phase imbalance ⁇ are usually related to the frequency f of the baseband signal and the baseband signal amplitude A at the frequency of the baseband signal, and the carrier phase imbalance ⁇ is usually related to the carrier frequency f c .
  • the inventor found that the corresponding target sideband suppression parameters can be obtained according to the signal-related parameters of the target baseband signal, such as the frequency f, amplitude A, or carrier frequency f c of the baseband signal.
  • the sideband suppression parameter processes the target baseband signal in advance to obtain the target modified baseband signal.
  • the difference ⁇ S between the target modified baseband signal and the target baseband signal can offset the error caused by the imperfection of the IQ modulator device as much as possible, thereby suppressing the modulation as much as possible
  • the signal corresponding to the unnecessary sideband in the modulated signal can be obtained according to the signal-related parameters of the target baseband signal, such as the frequency f, amplitude A, or carrier frequency f c of the baseband signal.
  • the sideband suppression parameter processes the target baseband signal in advance to obtain the target modified baseband signal.
  • the difference ⁇ S between the target modified baseband signal and the target baseband signal can offset the error caused by the imperfection of the IQ modulator device as much as possible
  • a sideband suppression method is proposed, and this embodiment mainly uses the method in the foregoing quantum computer as an example for illustration. Specifically, it can include the following steps:
  • Step S202 Obtain a target baseband signal.
  • the target baseband signal is a baseband signal that needs to be modulated, and the baseband signal may be an unmodulated original electrical signal sent by the signal source.
  • the computer sends the digital signal corresponding to the baseband signal to the digital-to-analog converter, and the digital-to-analog converter (121 and 122 in Figure 1) generates a continuous analog signal from the digital signal. This part of the signal can be used as a baseband signal.
  • Step S204 Obtain target signal related parameters corresponding to the target baseband signal, where the target signal related parameters include at least one of a signal characteristic parameter corresponding to the target baseband signal or a signal characteristic parameter of a carrier signal corresponding to the target baseband signal.
  • the signal-related parameters are parameters related to the target baseband signal.
  • the signal characteristic parameter is a parameter related to the characteristic of the baseband signal itself, and the signal characteristic parameter may include at least one of the frequency of the signal, the amplitude of the signal, or the time length of the signal. For example, the frequency and signal amplitude corresponding to the target baseband signal, and the frequency corresponding to the carrier wave can be obtained as relevant parameters of the target signal.
  • the carrier signal refers to the waveform used for modulation to transmit the signal, and it can be a sinusoidal signal.
  • Modulation refers to the process of loading the baseband signal to be transmitted on the carrier signal, that is, the process of moving the baseband signal to the carrier to move the spectrum.
  • the purpose of modulation can be to transform the signal to be transmitted into a signal suitable for channel transmission, such as a high-frequency signal.
  • the purpose of modulation may also be a high-frequency control signal generated by a baseband signal of medium and low frequency, but this high-frequency signal is not used for transmission purposes, for example, as a signal for controlling superconducting qubits.
  • the baseband signal is a low-frequency signal
  • the carrier is a high-frequency signal.
  • the target baseband signal obtained by the computer may be a target baseband signal in the time domain. Therefore, the target baseband signal in the time domain can be transformed into the frequency domain to obtain the target baseband signal in the frequency domain and the target baseband signal in the frequency domain. The frequency and amplitude.
  • Step S206 Obtain corresponding target sideband suppression parameters according to the relevant parameters of the target signal.
  • the sideband suppression parameter is a parameter used to perform sideband suppression
  • the sideband suppression parameter can be obtained by parameter adjustment in the direction of reducing the power of the signal corresponding to the sideband that needs to be suppressed, for example, the sideband suppression parameter
  • the power of the corresponding sideband that needs to be suppressed is less than the preset power threshold. Therefore, using the sideband suppression parameters to process the signal can reduce the power of the signal corresponding to the sideband that needs to be suppressed.
  • a set of correspondences between signal-related parameters and sideband suppression parameters can be preset, such as a correspondence table of signal-related parameters and sideband suppression parameters. Therefore, after obtaining the target signal related parameters, the computer can obtain the sideband suppression parameters corresponding to the target signal related parameters according to the pre-stored correspondence table of the signal related parameters and the sideband suppression parameters.
  • the target sideband suppression parameter corresponding to the target signal related parameter may be a direct correspondence relationship or an indirect correspondence relationship.
  • the direct correspondence relationship means that there is a sideband suppression parameter corresponding to the target signal related parameter in the correspondence relationship set. For example, if the target signal related parameter is a, then there is the target signal related parameter a and its corresponding edge in the correspondence relationship set. With suppression parameters.
  • the indirect correspondence relationship means that there is no sideband suppression parameter directly corresponding to the target signal related parameter in the correspondence relationship set. Since the signal-related parameters corresponding to the baseband signal in different scenarios are different, if the sideband suppression parameter corresponding to each signal-related parameter is determined in advance, the workload is heavy.
  • the target sideband suppression parameter corresponding to the target signal related parameter can be obtained by interpolation according to the corresponding relationship in the corresponding relationship set. For another example, it is necessary to transform the target signal related parameters to obtain the transformed transformed signal related parameters, and then obtain the sideband suppression parameters corresponding to the transformed signal related parameters, and obtain the target signal related parameters according to the sideband suppression parameters corresponding to the transformed signal related parameters The corresponding target sideband suppression parameter. For example, suppose that the target sideband suppression parameter includes the frequency f of the target baseband signal, and the frequency of the target compensation signal needs to be converted to -f. Then it is necessary to obtain the transformed frequency, that is, the target suppression parameter with a frequency of -f, and then process the initial compensation signal. After the target compensation signal is obtained, the baseband signal is compensated.
  • the target sideband suppression parameter may be a real number or a complex number. Since the signal can generally be represented by a complex number, the target sideband suppression parameter can be a complex number.
  • Step S208 Perform signal correction processing on the target baseband signal based on the target sideband suppression parameter to obtain the target modified baseband signal.
  • the target sideband suppression parameter is used to suppress the power of the first suppression sideband corresponding to the target baseband signal.
  • the first suppressed sideband refers to the sideband that needs to be suppressed in the modulation signal corresponding to the target baseband signal, that is, the useless sideband.
  • the output modulated signal includes a frequency component of f c -f and a frequency component of f c +f. That is, there are sidebands that are symmetric about the carrier due to the non-ideality of the device.
  • the frequency of f c +f is a useless sideband due to the non-ideality of the actual device.
  • the modulated signal usually needs to be near the frequency corresponding to the difference between the two energy levels of
  • the value is around 6GHz, so it is usually hoped that the frequency of the carrier is usually within a few hundred MHz centered on the frequency of the qubit. Therefore, the useless sideband f c +f not only takes up transmission resources, but also causes signal distortion. , It will cause extra excitation to the superconducting qubit and affect the accuracy of the quantum gate operation.
  • the signal obtained by performing signal correction processing on the target baseband signal is the target corrected baseband signal.
  • the correction processing may include at least one of adding a compensation signal to the target baseband signal or multiplying the target baseband signal by a target sideband suppression parameter.
  • the compensation signal can be obtained by processing the target sideband suppression parameter.
  • the initial compensation signal corresponding to the target baseband signal can be obtained; the target compensation signal is obtained according to the target sideband suppression parameter and the initial compensation signal; the target baseband signal is corrected based on the target compensation signal to obtain the target modified baseband signal.
  • the initial compensation signal may be determined according to the target baseband signal.
  • the initial compensation signal may be a complex conjugate signal corresponding to the target baseband signal.
  • the complex conjugate signal of a signal refers to a signal with the same real part and opposite imaginary part.
  • obtaining the target compensation signal according to the target sideband suppression parameter and the initial compensation signal includes: multiplying the target sideband suppression parameter by the initial compensation signal to obtain the target compensation signal, and the initial compensation signal is the complex corresponding to the target baseband signal. Conjugate signal, the frequency of the initial compensation signal is opposite to the frequency of the target baseband signal; correcting the target baseband signal based on the target compensation signal to obtain the target modified baseband signal includes: adding the target compensation signal and the target baseband signal to obtain the target modified baseband Signal.
  • the initial compensation signal is a complex conjugate signal corresponding to the target baseband signal. Therefore, the computer can perform a reverse processing on the target baseband signal, so that the target modified baseband signal obtained by the correction cancels the useless sidebands caused by the non-ideality of the modulation device, that is, the useless sidebands are suppressed.
  • the general principle of sideband suppression is as follows: The inventor of the present application found that when a modulator is used to modulate a signal, the error caused by the modulation is not fixed, but is related to the target signal-related parameters corresponding to the baseband signal.
  • the signal compensation coefficients ie sideband suppression parameters
  • the initial compensation signal flexibly according to the target baseband signal
  • the initial compensation signal flexibly according to the target baseband signal
  • the compensation signal is added to the target baseband signal to obtain the target modified baseband signal.
  • the target compensation signal when the target compensation signal is added to the target baseband signal to obtain the target modified baseband signal, if the target baseband signal is a time-domain signal and the target compensation signal is a frequency-domain signal, the time-domain signal can be The target baseband signal is converted into a target baseband signal in the frequency domain, and then added.
  • correcting the target baseband signal based on the target compensation signal to obtain the target corrected baseband signal includes: correcting the target baseband signal in the time domain Perform frequency domain transformation to obtain the target baseband signal in the frequency domain; modify the target baseband signal in the frequency domain based on the initial compensation signal to obtain the corrected baseband signal in the frequency domain; perform time domain transformation on the corrected baseband signal in the frequency domain to obtain the time domain The target to correct the baseband signal.
  • frequency domain transformation refers to transforming a time domain signal into a frequency domain signal.
  • Time domain transformation refers to transforming frequency domain signals into time domain signals.
  • the Fourier transform can be performed on the target baseband signal in the time domain to obtain the target baseband signal in the frequency domain, and the frequency corresponding to the target baseband signal in the frequency domain can be obtained.
  • the initial compensation signal is a signal in the frequency domain. Therefore, the initial compensation signal in the frequency domain can be used to correct the target baseband signal in the frequency domain to obtain a corrected baseband signal in the frequency domain. Then, the corrected baseband signal in the frequency domain is subjected to inverse Fourier transform to obtain the target corrected baseband signal in the time domain.
  • the computer can use the Fourier transform Obtain the target baseband signal in the frequency domain, which is expressed by formula (1).
  • the initial compensation signal can be a complex conjugate signal corresponding to the target baseband signal. Therefore, the target sideband suppression parameter is multiplied by the initial compensation signal, and the target compensation signal can be expressed by formula (2).
  • the target compensation signal and the target baseband signal are added to obtain the corrected baseband signal in the frequency domain, which can be expressed by formula (3).
  • the time domain transform is performed on the frequency domain modified baseband signal, and the target modified baseband signal in the time domain can be expressed by formula (4). Represents the target baseband signal in the frequency domain with frequency f, that is, the frequency spectrum function.
  • i represents an imaginary number
  • exp represents the base is a natural constant e
  • Z B represents the target compensation signal
  • -f represents the opposite frequency of the frequency f of the target baseband signal
  • f c represents the frequency of the carrier.
  • c represents the sideband suppression parameter.
  • the "*" sign indicates complex conjugate.
  • the amplitude. Represents the modified baseband signal in the frequency domain
  • z(t) represents the target modified baseband signal in the time domain. It can be understood that the target signal related parameters may also include other parameters, for example, may include signal length.
  • step S210 the target modified baseband signal is input into the modulator for signal modulation, and a target modulation signal corresponding to the target baseband signal is obtained.
  • the computer after the computer obtains the target modified baseband signal, it can use the real part of the target modified baseband signal as the input of the modulator I, the imaginary part of the target modified baseband signal as the input of the modulator Q, and the carrier signal as the modulator LO input.
  • the carrier to modulate to obtain the modulated signal as the target modulated signal, output from the RF end of the modulator.
  • the target modified baseband signal is z(t)
  • the real part can be As the input of the I channel
  • the imaginary part As the input of the Q channel.
  • the modulated signal suppresses the signal on the sideband, so the output modulated signal will contain only the desired output frequency components or less useless frequency components. Therefore, for any baseband signal, signal correction processing can be performed based on its signal-related parameters to achieve the effect of suppressing the sideband of any signal.
  • the target sideband suppression parameter can be obtained based on the target signal related parameters corresponding to the target baseband signal, and the target baseband signal is corrected based on the target sideband suppression parameter.
  • Input into the modulator for signal modulation and obtain the target modulation signal corresponding to the target baseband signal.
  • the baseband signal is corrected based on the target sideband suppression parameters to suppress the power of the suppressed sideband corresponding to the target baseband signal. Therefore, the corrected baseband signal is input into the modulator for signal processing.
  • the sideband signal is suppressed, so the signal transmission efficiency and signal fidelity are improved.
  • obtaining corresponding target sideband suppression parameters according to target signal related parameters includes:
  • Step S302 Obtain a parameter correspondence relationship set.
  • the parameter correspondence relationship set includes one or more parameter correspondence relationships, and the parameter correspondence relationship includes a correspondence relationship between a signal-related parameter and a sideband suppression parameter.
  • the parameter correspondence relationship set may include one or more parameter correspondence relationships, and the specific number may be set according to needs, for example, may include sideband suppression parameters corresponding to commonly used signal-related parameters, which are specifically determined according to actual needs. Since the sideband suppression parameters corresponding to different baseband signals may be different, and the baseband signals and carrier signals used in different scenarios may be different, the corresponding relationship between the signal-related parameters and the sideband suppression parameters can be determined in advance. For example, the sideband suppression parameters corresponding to the carrier frequency, baseband frequency, and baseband amplitude can be stored in advance. When signal correction is needed, the corresponding sideband suppression parameters can be obtained according to the parameter correspondence relationship.
  • Step S304 Obtain the signal-related parameters corresponding to the target signal-related parameters in the parameter correspondence set as reference signal-related parameters.
  • the signal-related parameter corresponding to the target signal-related parameter may be a directly corresponding signal-related parameter, or may be an indirectly corresponding signal-related parameter.
  • the indirectly corresponding signal-related parameters may be to transform the target signal-related parameters to obtain the transformed transformed signal-related parameters, and then obtain the signal-related parameters corresponding to the transformed signal-related parameters as reference signal-related parameters.
  • the target sideband suppression parameter includes the frequency f of the target baseband signal, then transform f to the -f frequency, and then obtain the signal related parameters directly or indirectly corresponding to the -f frequency as the reference signal related parameters.
  • the frequency of the initial compensation signal is opposite to the frequency f of the target baseband signal, when it is -f.
  • the target sideband suppression parameter that is, the compensation coefficient, is used to process the initial compensation signal. Since the target sideband suppression parameter is used to process the initial compensation signal, the edges corresponding to the signal-related parameters corresponding to the initial compensation signal should be obtained. With suppression parameters, the signal-related parameters of the corresponding initial compensation signal can be obtained according to the target signal-related parameters, and the reference signal related parameters can be obtained according to the signal-related parameters of the initial compensation signal.
  • the frequency opposite to the target baseband signal can be obtained, and the amplitude corresponding to the initial compensation signal at the opposite frequency -f can be obtained.
  • the frequency -f opposite to the frequency of the target baseband signal, the amplitude corresponding to the initial compensation signal, and the frequency of the carrier signal are used as reference signal related parameters.
  • the frequency of the target baseband signal is f
  • the signal-related parameters in the parameter correspondence set include -f frequency
  • -f frequency can be obtained as the reference signal-related parameter. If the signal-related parameters in the parameter correspondence set do not include the -f frequency, the frequencies that can be close to the -f frequency can be obtained as the reference signal-related parameters.
  • Step S306 According to the sideband suppression parameter corresponding to the reference signal related parameter in the parameter correspondence relationship set, the target sideband suppression parameter corresponding to the target signal related parameter is obtained.
  • the computer may use the sideband suppression parameter corresponding to the reference signal related parameter as the target sideband suppression parameter corresponding to the target signal related parameter. It is also possible to perform interpolation calculation according to the sideband suppression parameter corresponding to the reference signal related parameter in the parameter correspondence relationship set to obtain the target sideband suppression parameter corresponding to the target signal related parameter.
  • the sideband suppression parameter corresponding to the -f frequency can be obtained as the target sideband suppression parameter corresponding to the target signal-related parameter.
  • the frequency adjacent to -f can be obtained as a reference frequency, and the sideband suppression parameter of the reference frequency is obtained for interpolation calculation to obtain the target sideband corresponding to the target signal-related parameter Suppress parameters.
  • different signal-related parameters can be calculated in advance, such as the sideband compensation parameters corresponding to different carrier frequencies, different sideband frequencies, and different signal amplitudes, to obtain a multi-dimensional sideband compensation parameter c. Table.
  • the actual coefficient can be obtained by looking up the table. After the actual coefficients are obtained, the signal can be corrected by formula (3), and the time domain conversion can be performed by formula (4) to obtain a high-precision target corrected baseband signal.
  • the sideband suppression parameter corresponding to each signal-related parameter may be obtained through experiments.
  • the steps of how to obtain the sideband suppression parameters corresponding to the reference signal-related parameters are explained.
  • the sideband suppression parameter corresponding to each signal-related parameter in the parameter correspondence relationship set may be obtained according to the same algorithm.
  • the steps of obtaining the sideband suppression parameters corresponding to the reference signal related parameters include:
  • Step S402 Obtain a reference baseband signal corresponding to the relevant parameter of the reference signal.
  • the reference baseband signal corresponding to the reference signal related parameter refers to: the signal related parameter of the reference baseband signal may be the reference signal related parameter or the signal related parameter of the complex conjugate signal corresponding to the reference baseband signal.
  • the reference baseband signal corresponding to the signal amplitude A and frequency f can be obtained, and the frequency of the carrier signal corresponding to the reference baseband signal is f c .
  • Step S404 Obtain the current sideband suppression parameter, and perform signal correction processing on the reference baseband signal based on the current sideband suppression parameter to obtain the corrected reference baseband signal.
  • the current sideband suppression parameter refers to the sideband suppression parameter currently used for correction.
  • the initial current sideband suppression parameter can be any value, for example, it can be zero.
  • Signal correction processing is performed on the reference baseband signal based on the current sideband suppression parameter, and the step of obtaining the corrected reference baseband signal can refer to signal correction processing on the target baseband signal based on the target sideband suppression parameter to obtain the target corrected baseband signal.
  • the corrected reference baseband signal can be expressed by the formula (5), where Z C (t) represents the corrected The reference baseband signal of A exp(2 ⁇ ift) is the reference baseband signal before correction, and exp indicates that the base is the natural constant e is. c d Current sideband suppression parameter, A exp(-2 ⁇ ift) is the initial compensation signal corresponding to the reference baseband signal.
  • Step S406 Input the corrected reference baseband signal into the modulator for modulation to obtain a reference modulation signal.
  • the corrected reference baseband signal may be input to the modulator for modulation, and the modulated signal is used as the reference modulation signal.
  • Step S408 Adjust the current sideband suppression parameter according to the power of the reference modulation signal on the corresponding second suppression sideband to obtain the sideband suppression parameter corresponding to the reference signal related parameter.
  • the second suppressed sideband is a sideband that needs to be suppressed in the reference modulation signal.
  • the reference baseband signal is f and the carrier frequency is f c .
  • the second sideband to be suppressed can be f c +f.
  • the power of the reference modulation signal on the corresponding second suppression sideband can be calculated, and the current sideband suppression parameters are adjusted in the direction of reducing the power of the reference modulation signal on the corresponding second suppression sideband.
  • the current sideband suppression parameters are adjusted in the direction of reducing the power of the reference modulation signal on the corresponding second suppression sideband.
  • step S404 to step S408 may be executed multiple times.
  • the update stop condition When the update stop condition is not met, it may proceed to step S404 based on the updated current sideband suppression parameter, and continue to update the current sideband suppression parameter based on step S404 to step S408.
  • the last updated current sideband suppression parameter is used as the sideband suppression parameter corresponding to the reference signal related parameter.
  • the update stop condition includes that the change between the current sideband suppression parameter before the update and the current sideband suppression parameter after the update is less than the preset change threshold, and the power on the second suppression sideband is less than the preset power threshold or the current sideband suppression parameter.
  • At least one of the update times is greater than the preset times.
  • the preset change threshold, the preset number of times, and the preset power threshold can be set as needed. For example, the preset change threshold can be 0.01, and the preset number of times can be 100 times.
  • the target signal related parameters include: the baseband frequency corresponding to the target baseband signal, the baseband amplitude corresponding to the target baseband signal, and the carrier frequency of the carrier signal corresponding to the target baseband signal, and the corresponding target sideband is obtained according to the target signal related parameters
  • the suppression parameters include: obtaining the carrier frequency; obtaining the parameter correspondence relationship set corresponding to the carrier frequency.
  • the parameter correspondence relationship includes the baseband frequency corresponding to the baseband signal and the corresponding relationship between the baseband amplitude corresponding to the baseband signal and the sideband suppression parameter; according to the corresponding target baseband signal
  • the baseband frequency and the baseband amplitude corresponding to the target baseband signal obtain the corresponding target sideband suppression parameter from the parameter correspondence set.
  • the baseband frequency corresponding to the baseband signal refers to the frequency of the baseband signal.
  • the control signal used to control the superconducting qubit can be continuous, and the carrier frequency can also be fixed.
  • the carrier frequency of the control signal may be used for modulation, and one of the target baseband signals may be a baseband signal with a preset time length in the control signal. Therefore, the parameter correspondence set corresponding to the carrier frequency corresponding to the control signal of the control superconducting qubit can be obtained.
  • the baseband frequency corresponding to the baseband signal and the corresponding relationship between the baseband amplitude corresponding to the baseband signal and the sideband suppression parameter can be searched from the parameter corresponding relationship set, so as to improve the speed of obtaining the target sideband suppression parameter.
  • the target modified baseband signal obtained by the modification may include a real part and an imaginary part. Therefore, the real part corresponding to the target modified baseband signal can be input to the in-phase terminal (I terminal) of the modulator, and the imaginary part corresponding to the target modified baseband signal can be input to the quadrature terminal (Q terminal) of the modulator, using the carrier frequency
  • the carrier signal is modulated to obtain the target modulation signal corresponding to the target baseband signal. In this way, the target modulation signal can be used to control the superconducting qubit to achieve the purpose of controlling the quantum computer.
  • FIG. 5 is a flow chart of sideband calibration.
  • Figure 6 is a diagram of the device connection relationship when performing sideband calibration
  • Figure 7 is a schematic diagram of a specific embodiment of signal sideband suppression.
  • Sideband calibration refers to the actual IQ modulator device to obtain what is needed to achieve sideband suppression
  • the process of sideband suppression parameters can be pre-calibrated sidebands.
  • Sideband suppression refers to the suppression of the image sideband power.
  • the image sideband refers to another sideband that is symmetrical about the carrier due to the non-ideality of the device in single sideband modulation.
  • sideband calibration includes the following steps:
  • Step S502 Obtain a given signal-related parameter, and obtain a reference baseband signal according to the given signal-related parameter.
  • the reference baseband signal can be obtained as A exp(2 ⁇ ift).
  • Step S504 Obtain the current sideband suppression parameter, and perform signal correction processing on the reference baseband signal based on the current sideband suppression parameter to obtain the corrected reference baseband signal.
  • the initial current sideband suppression parameter that is, the compensation coefficient c
  • the compensation coefficient c may be zero.
  • Subsequent c can be updated.
  • Step S506 Input the corrected reference baseband signal into the modulator for modulation, and obtain a modulated training baseband signal.
  • the corrected reference baseband signal Z C (t) is obtained, it is input into the modulator, where the real part Input to I port, imaginary part Enter the Q port.
  • Step S508 Obtain the signal power at the second suppression sideband.
  • Step S510 It is judged whether the signal power at the second suppression sideband is less than a preset power threshold.
  • step 514 If yes, go to step 514, if not, go to step 512.
  • step S512 the current sideband suppression parameter is adjusted in the direction of decreasing the power of the reference modulation signal on the corresponding second suppression sideband, and the updated current sideband suppression parameter is obtained.
  • Step S514 Record the relationship between the signal-related parameters and the sideband suppression parameters.
  • f c + f is a useless sideband
  • a spectrum analyzer can be used to measure the signal output from the RF end, and the signal power P(c, f c , f, A) at the frequency f c + f can be measured.
  • Use gradient-free minimization algorithms such as the Nelder-Mead algorithm or Powell algorithm, to optimize the power P(c,f c ,f,A) in the process of c. That is, the sideband suppression parameter c is changed toward the direction where the power becomes smaller. Finally, the sideband suppression parameter c corresponding to the given signal-related parameter is obtained.
  • the given signal-related parameters can be changed. For example, changing the baseband signal amplitude A, frequency f, and carrier frequency f c , repeat the process of S502-S512 to obtain the compensation coefficient c at different carrier frequencies f c , different baseband frequencies f, and different baseband signal amplitudes A Lower the value c(f c ,f,A), and record the corresponding relationship between the signal-related parameters and the sideband suppression parameters, such as f c ,f,A,c.
  • a multi-dimensional table of the sideband suppression parameter c can be obtained.
  • the actual sideband suppression coefficient can be obtained by looking up the table.
  • the real part of the corrected reference baseband signal passes through DAC A, and after the imaginary part passes through DACB, it is connected to the I and Q ends of the IQ modulator after passing through a low-pass filter; in the LO of the IQ modulator The end is connected to a sine wave with a frequency of f c , and its power meets the normal working requirements of the IQ modulator.
  • the RF end is connected to a spectrum analyzer, and the output RF signal is measured to obtain the power at f c +f .
  • a multi-dimensional table for finding the sideband suppression parameter c can be obtained, and the table includes the corresponding relationship between the signal-related parameter and the sideband suppression parameter.
  • the actual sideband suppression coefficient can be obtained by looking up the table.
  • the corresponding baseband frequency f is the set G f
  • the corresponding baseband amplitude A is the set G A
  • the compensation coefficient c[f m ,A n ] is a two-dimensional array
  • f m represents the frequency of the m-th calibrated baseband signal
  • N represents the baseband amplitude of the n-th calibrated baseband signal.
  • FFT fast Fourier transform
  • the sideband suppression parameter namely the compensation coefficient c
  • the corresponding frequency is f[n]
  • the corresponding frequency is -f[n].
  • the target can be corrected to the real part of the baseband signal (I.e. Re[z']) is sent to the DAC connected to the I channel of the IQ modulator, and the imaginary part of the signal (Ie Im[z']) is sent to the DAC connected to the Q channel of the IQ modulator, and the target modulation signal is obtained through the modulator.
  • the baseband signal I.e. Re[z']
  • the imaginary part of the signal Ie Im[z']
  • the solution provided by the embodiment of the application can adopt a solution that is corrected in the frequency domain, and can be corrected at multiple frequencies and multiple amplitudes. By correcting the signal, a high-quality control signal can be obtained. Therefore, this application
  • the solution of the embodiment can be applied to superconducting quantum computers and measurement and control components of superconducting quantum computers, including arbitrary waveform generators and digital-to-analog conversion modules. It can also correct arbitrary signals with large bandwidths, reduce waveform distortion, and meet the requirements of superconducting quantum computers. Calculated measurement and control accuracy requirements.
  • the IQ modulator can modulate low-frequency signals to the radio frequency band, and is widely used in the regulation and reading of superconducting qubits in the field of superconducting quantum computing.
  • microwave signals usually need to be near the energy level difference between
  • the carrier frequency used It is usually located in the range of a few hundred megahertz centered on the frequency of the qubit.
  • the working principle of the ideal IQ modulator can be described by formula (6):
  • s(t) represents the modulated signal output by the RF port of the IQ modulator
  • I(t), Q(t) are the intermediate frequency signals input from the I and Q ports of the IQ modulator
  • the frequency of the carrier signal of the LO part is f c
  • describes the conversion loss of the IQ modulator.
  • the final output radio frequency signal s(t) will not only contain the expected frequency component of f c -f, but also the frequency component of f c + f, which reduces the quality of the signal. , And affect the fidelity of the superconducting qubit gate operation. Therefore, a certain method needs to be adopted to correct the signal.
  • the signal generated by the IQ modulator is usually not a sine wave, but a Gaussian wave packet.
  • the center frequency of the Gaussian wave packet is about 6 GHz, and the frequency spread is close to 100 MHz.
  • the output signal s(t) is:
  • the compensation coefficient c includes three sources of error of the IQ modulator. Therefore, it can be seen from the above analysis that by changing the input signal z 0 (t) at the IQ end to z(t), a signal without image sideband frequency components can be obtained.
  • the actual IQ modulator device due to the device itself, its IQ baseband amplitude imbalance ⁇ and baseband phase imbalance ⁇ are usually the same as the baseband frequency f and the current baseband frequency
  • the lower baseband signal amplitude A is related
  • the carrier phase imbalance ⁇ is usually related to the carrier frequency f c .
  • the solution provided by the embodiment of the present application can modify the waveform of the IQ modulator under the condition of large bandwidth and varying baseband power to achieve the effect of suppressing the image sideband and improve the fidelity of the signal.
  • the fidelity of the operation of superconducting qubits can be improved.
  • the following uses the modulator IQ-0307 of Marki Company as a basis for a simulation test, and compares the effects of the solution in the embodiment of the present application with the solution without correction of the baseband signal and other correction solutions in the following three cases.
  • other correction schemes refer to the scheme of directly measuring the amplitude imbalance and phase imbalance of the IQ modulator, and obtaining the corresponding error parameters ⁇ and ⁇ + ⁇ , so as to correct the signal.
  • the typical value of IQ amplitude error is 0.3dB, corresponding to ⁇ [-0.04,0.04]
  • the typical value of IQ phase error is 3°
  • the corresponding radian is 0.05, namely ⁇ , ⁇ [-0.05,0.05] .
  • the carrier frequency is fixed at 5GHz
  • Test 1 When the baseband signal is a sine wave, the length of the sine wave is 1024ns, and the frequency is 125MHz. Without correction, the sideband image rejection is about 25dB, which is closer to the 23dB given by the actual device. After the modification of the solution proposed in this application, the sideband image suppression has reached about 60dB, which is an increase of about 35dB.
  • the baseband signal is selected as a Gaussian waveform, and the full width at half maximum of the Gaussian waveform is selected as the typical value of 10ns in superconducting quantum computing.
  • the total time selected is 1024ns, and the baseband frequency is selected as 125MHz.
  • Figure 9A shows the comparison between other correction schemes and the special case of this correction scheme when the baseband signal is a Gaussian waveform (considering that the errors ⁇ , ⁇ , and ⁇ are only related to frequency, not power).
  • line 1 represents the signal spectrum after being mixed by an ideal IQ mixer
  • line 2 represents the spectrum data of the signal after being mixed by a non-ideal IQ modulator without correction
  • line 3 represents other correction schemes In which, the signal spectrum after passing through the non-ideal IQ mixer
  • line 4 represents the signal spectrum after being mixed by the non-ideal IQ mixer under the modification of the embodiment of the present application.
  • Figure 9A it can be seen from Figure 9A that for wide-bandwidth Gaussian signals, the correction effect of other correction schemes can only be corrected in a small frequency range near the fixed frequency, here is 125MHz. The overall correction is not ideal and does not improve significantly.
  • Sideband image suppression using the modified result of the solution of the embodiment of the present application, the sideband image suppression is improved by about 30dB, reaching about 60dB close to the case of a sine wave.
  • Figure 9B shows that when the error of the IQ modulator (baseband amplitude imbalance, baseband phase imbalance, carrier phase imbalance) changes with the baseband power, other correction schemes are compared with the embodiments of this application.
  • line 1 represents the signal spectrum after being mixed by an ideal IQ mixer
  • line 2 represents the signal spectrum after being mixed by a non-ideal IQ modulator without correction
  • line 3 represents the signal spectrum under other correction schemes
  • Line 4 represents the frequency spectrum of the signal after being mixed by the non-ideal IQ modulator when considering that the IQ modulator error is related to the baseband power and baseband frequency in the implementation of this application
  • Line 5 represents that in the implementation of this application only Consider the corrected result when the error of the IQ modulator is correlated with the baseband frequency.
  • the baseband waveform selected here is still a Gaussian waveform, and the parameters of the parameter test 2 of the Gaussian waveform are the same. It can be seen from FIG. 9B that when the error of the IQ modulator changes with the baseband power and frequency, other correction schemes only have a certain suppression effect on the image signal in a small range near the center frequency. And only considering the variation of the error with the baseband frequency (line 5), although the image signal can be suppressed in a wide range, but the ability to suppress the signal near the center frequency is not strong enough. This is because near the center frequency, the signal power is strong, so the error ( ⁇ , ⁇ , ⁇ ) is different from the case of low signal power, and for the part far away from the center frequency, the signal power itself is relatively weak.
  • the implementation of the present application can suppress image sidebands, that is, signals of useless sidebands, after correcting baseband signals with large bandwidths and different powers, where frequency represents frequency and amplitude represents amplitude.
  • a sideband suppression device is provided.
  • the sideband suppression device can be integrated in the above-mentioned FPGA, and can specifically include a target baseband signal acquisition module 1002, and a target signal related parameter acquisition module 1004, a target sideband suppression parameter acquisition module 1006, a correction processing module 1008, and a modulation module 1010.
  • the target baseband signal acquisition module 1002 is used to acquire the target baseband signal.
  • the target signal related parameter acquisition module 1004 is configured to acquire target signal related parameters corresponding to the target baseband signal, the target signal related parameters including at least one of signal characteristic parameters corresponding to the target baseband signal or signal characteristic parameters of the carrier signal corresponding to the target baseband signal .
  • the target sideband suppression parameter acquisition module 1006 is configured to obtain the corresponding target sideband suppression parameter according to the relevant parameters of the target signal.
  • the correction processing module 1008 is used to perform signal correction processing on the target baseband signal based on the target sideband suppression parameter to obtain the target correction baseband signal.
  • the target sideband suppression parameter is used to suppress the power of the first suppression sideband corresponding to the target baseband signal .
  • the modulation module 1010 is used to input the target modified baseband signal into the modulator for signal modulation to obtain the target modulation signal corresponding to the target baseband signal.
  • the correction processing module 1008 includes: an initial compensation signal acquisition unit for acquiring the initial compensation signal corresponding to the target baseband signal; a target compensation signal acquisition unit for acquiring the target based on the target sideband suppression parameters and the initial compensation signal Compensation signal; a correction unit for correcting the target baseband signal based on the target compensation signal to obtain the target corrected baseband signal.
  • the target compensation signal obtaining unit is used to: multiply the target sideband suppression parameter by the initial compensation signal to obtain the target compensation signal.
  • the initial compensation signal is the complex conjugate signal corresponding to the target baseband signal.
  • the correction unit is used to: perform frequency domain transformation on the target baseband signal in the time domain to obtain the target baseband signal in the frequency domain; and correct the target baseband signal in the frequency domain based on the initial compensation signal to obtain the frequency domain correction Baseband signal; time-domain transform is performed on the modified baseband signal in the frequency domain to obtain the target modified baseband signal in the time domain.
  • the target sideband suppression parameter acquisition module 1006 includes: a parameter correspondence relationship set acquiring unit, configured to acquire a parameter correspondence relationship set, the parameter correspondence relationship set includes one or more parameter correspondence relationships, and the parameter correspondence relationship includes a signal Correspondence between related parameters and sideband suppression parameters; reference signal related parameter obtaining unit for obtaining signal related parameters corresponding to target signal related parameters in the parameter correspondence set as reference signal related parameters; target sideband suppression parameter obtaining unit , Used to obtain the target sideband suppression parameter corresponding to the target signal related parameter according to the sideband suppression parameter corresponding to the reference signal related parameter in the parameter correspondence relationship set.
  • the target sideband suppression parameter acquisition unit is configured to perform interpolation calculation according to the sideband suppression parameter corresponding to the reference signal related parameter in the parameter correspondence set to obtain the target sideband suppression parameter corresponding to the target signal related parameter.
  • the sideband suppression parameter obtaining module of the sideband suppression parameter corresponding to the reference signal related parameter is used to: obtain the reference baseband signal corresponding to the reference signal related parameter; obtain the current sideband suppression parameter, Perform signal correction processing on the reference baseband signal based on the current sideband suppression parameters to obtain the corrected reference baseband signal; input the corrected reference baseband signal into the modulator for modulation to obtain the reference modulation signal; according to the reference modulation signal in the corresponding
  • the power on the second suppression sideband adjusts the current sideband suppression parameter to obtain the sideband suppression parameter corresponding to the relevant parameter of the reference signal.
  • the sideband suppression parameter obtaining module is used to: adjust the current sideband suppression parameter in the direction of decreasing the power of the reference modulation signal on the corresponding second suppression sideband to obtain the updated current sideband With suppression parameters; enter the step of obtaining the current sideband suppression parameters, and perform signal correction processing on the reference baseband signal based on the current sideband suppression parameters to obtain the corrected reference baseband signal.
  • the updated current sideband will be updated
  • the suppression parameter is used as the sideband suppression parameter corresponding to the reference signal related parameter;
  • the update stop condition includes the current sideband suppression parameter before the update and the current sideband suppression parameter after the update is less than the preset change threshold, and the second suppression sideband At least one of the power is less than the preset power threshold or the update times of the current sideband suppression parameter is greater than the preset times.
  • the target signal related parameters include the baseband frequency corresponding to the target baseband signal, the baseband amplitude corresponding to the target baseband signal, and the carrier frequency of the carrier signal corresponding to the target baseband signal
  • the target sideband suppression parameter acquisition module 1006 is used to acquire: Carrier frequency; Obtain the parameter correspondence set corresponding to the carrier frequency.
  • the parameter correspondence relationship includes the baseband frequency corresponding to the baseband signal and the corresponding relationship between the baseband amplitude corresponding to the baseband signal and the sideband suppression parameter; according to the baseband frequency and target baseband corresponding to the target baseband signal
  • the baseband amplitude corresponding to the signal obtains the corresponding target sideband suppression parameter from the parameter correspondence set.
  • the modulation module 1010 is configured to: input the real part corresponding to the target modified baseband signal to the in-phase terminal of the modulator, and input the imaginary part corresponding to the target modified baseband signal to the quadrature terminal of the modulator, using The carrier signal of the carrier frequency is signal modulated to obtain the target modulation signal corresponding to the target baseband signal, so as to adjust the superconducting qubit according to the target modulation signal.
  • Fig. 11 shows an internal structure diagram of a computer device in some embodiments.
  • the computer device may specifically be the FPGA in FIG. 1.
  • the computer device includes a processor, a memory, and a network interface connected through a system bus.
  • the memory includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium of the computer device stores an operating system, and may also store computer-readable instructions.
  • the processor can realize the sideband suppression method.
  • the internal memory may also store computer-readable instructions, and when the computer-readable instructions are executed by the processor, the processor can execute the sideband suppression method.
  • FIG. 11 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • the sideband suppression apparatus provided in the present application may be implemented in a form of computer-readable instructions, and the computer-readable instructions may run on a computer device as shown in FIG. 11.
  • the memory of the computer equipment can store various program modules that make up the sideband suppression device, for example, the target baseband signal acquisition module 1002, the target signal related parameter acquisition module 1004, the target sideband suppression parameter acquisition module 1006, and the modification shown in FIG. Processing module 1008 and modulation module 1010.
  • the computer-readable instructions formed by each program module cause the processor to execute the steps in the sideband suppression method of each embodiment of the present application described in this specification.
  • the computer device shown in FIG. 11 may obtain the target baseband signal through the target baseband signal acquisition module 1002 in the sideband suppression apparatus shown in FIG. 10.
  • the target signal related parameter acquisition module 1004 acquires target signal related parameters corresponding to the target baseband signal.
  • the target signal related parameters include at least one of a signal characteristic parameter corresponding to the target baseband signal or a signal characteristic parameter of a carrier signal corresponding to the target baseband signal.
  • the target sideband suppression parameter acquisition module 1006 obtains the corresponding target sideband suppression parameter according to the relevant parameters of the target signal.
  • the correction processing module 1008 performs signal correction processing on the target baseband signal based on the target sideband suppression parameter to obtain the target correction baseband signal.
  • the target sideband suppression parameter is used to suppress the power of the first suppression sideband corresponding to the target baseband signal.
  • the modulation module 1010 is used to input the target modified baseband signal into the modulator for signal modulation to obtain the target modulation signal corresponding to the target baseband signal.
  • a computer device including a memory and a processor.
  • the memory stores computer readable instructions.
  • the processor executes the steps of the sideband suppression method.
  • the steps of the sideband suppression method may be the steps in the sideband suppression method of each of the foregoing embodiments.
  • a computer-readable storage medium which stores computer-readable instructions.
  • the processor executes the steps of the sideband suppression method.
  • the steps of the sideband suppression method may be the steps in the sideband suppression method of each of the foregoing embodiments.
  • a computer program product or computer program includes computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes the steps in the foregoing method embodiments.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transmitters (AREA)

Abstract

本申请涉及一种边带抑制方法、装置、计算机设备和存储介质,所述方法包括:获取目标基带信号;获取所述目标基带信号对应的目标信号相关参数,所述目标信号相关参数包括所述目标基带信号对应的信号特性参数或者所述目标基带信号对应的载波信号的信号特性参数的至少一种;根据所述目标信号相关参数获取对应的目标边带抑制参数;基于所述目标边带抑制参数对所述目标基带信号进行信号修正处理,得到目标修正基带信号,所述目标边带抑制参数用于对所述目标基带信号对应的第一抑制边带的功率进行抑制;将所述目标修正基带信号输入到调制器中进行信号调制,得到所述目标基带信号对应的目标调制信号。

Description

边带抑制方法、装置、计算机设备和存储介质
本申请要求于2020年02月03日提交中国专利局,申请号为202010078701.2,申请名称为“边带抑制方法、装置、计算机设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信号处理技术领域,特别是涉及边带抑制方法、装置、计算机设备和存储介质。
背景技术
为了更好传输信号,通常会使用载波对信号进行传输。载波是传送信号的物理基础和承载工具。例如,一般情况下,需要发送的信号的频率是低频的,如果按照信号本身的频率来传输,不利于信号的接收。因此可以将要发送的信号加载到载波的信号上,发送加载载波后的信号。
另一方面,超导量子比特的量子态的演化通常通过微波信号来实现。为了获得更高的量子门操作保真度,通常会对微波信号的形状进行一定的调制。目前可以通过调制器对信号进行调制,利用基带信号和载波信号,生成最终量子比特的调控信号。
然而,由于器件本身的非理想性,在基带信号被调制后,通常会形成关于载波对称的无用边带。该无用边带占用通信传输资源,且导致信号的波形失真,保真度降低。
发明内容
根据本申请提供的各种实施例,提供一种边带抑制方法、装置、计算机设备和存储介质。
一种边带抑制方法,由计算机设备执行,所述方法包括:获取目标基带信 号;获取所述目标基带信号对应的目标信号相关参数,所述目标信号相关参数包括所述目标基带信号对应的信号特性参数或者所述目标基带信号对应的载波信号的信号特性参数的至少一种;根据所述目标信号相关参数获取对应的目标边带抑制参数;基于所述目标边带抑制参数对所述目标基带信号进行信号修正处理,得到目标修正基带信号,所述目标边带抑制参数用于对所述目标基带信号对应的第一抑制边带的功率进行抑制;将所述目标修正基带信号输入到调制器中进行信号调制,得到所述目标基带信号对应的目标调制信号。
一种边带抑制装置,所述装置包括:目标基带信号获取模块,用于获取目标基带信号;目标信号相关参数获取模块,用于获取所述目标基带信号对应的目标信号相关参数,所述目标信号相关参数包括所述目标基带信号对应的信号特性参数或者所述目标基带信号对应的载波信号的信号特性参数的至少一种;目标边带抑制参数获取模块,用于根据所述目标信号相关参数获取对应的目标边带抑制参数;修正处理模块,用于基于所述目标边带抑制参数对所述目标基带信号进行信号修正处理,得到目标修正基带信号,所述目标边带抑制参数用于对所述目标基带信号对应的第一抑制边带的功率进行抑制;调制模块,用于将所述目标修正基带信号输入到调制器中进行信号调制,得到所述目标基带信号对应的目标调制信号。
一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行上述边带抑制方法的步骤。
一个或多个存储有计算机可读指令的非易失性存储介质,所述计算机可读指令被一个或多个处理器执行时,,使得所述处理器执行上述边带抑制方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一些实施例中提供的边带抑制方法的应用环境图;
图2为一些实施例中边带抑制方法的流程图;
图3为一些实施例中根据目标信号相关参数获取对应的目标边带抑制参数的流程图;
图4为一些实施例中参数对应关系集合中,参考信号相关参数对应的边带抑制参数的得到步骤的流程图;
图5为一些实施例中边带校准的流程图;
图6为一些实施例中边带校准时的设备连接关系图;
图7为一些实施例中对信号边带抑制的实现示意图;
图8为一些实施例中包含误差的正交调制器的工作原理图;
图9A为一些实施例中其他方案与本申请实施例方案的对比效果图;
图9B为一些实施例中其他方案与本申请实施例方案的对比效果图;
图10为一个实施例中边带抑制装置的结构框图;及
图11为一些实施例中计算机设备的内部结构框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但除非特别说明,这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一抑制边带本称为第二抑制边带,且类似地,可将第二抑制边带称为第一抑制边带。
图1为一些实施例中提供的边带抑制方法的应用环境图,如图1所示,在 该应用环境中,量子计算机可以对应FPGA(Field Programmable Gate Array,现场可编程门阵列)110、第一DAC(Digital to analog converter,数模转换器)121、第二DAC122、第一LPF(Low Pass Filter,低通滤波器)131、第二LPF132以及IQ(In-phase and quadrature phase,同相以及正交)调制器140。IQ调制器是一种四端口(包括I端、Q端、LO端以及RF端)的微波器件,可以对微波信号进行正交调制。I端和Q端分别输入中低频的基带信号。LO(Local Oscillator,本机振荡器)端输入的是载波信号。RF(Radio Frequency,射频)端输出调制后的信号。计算机可以将期望输出的目标基带信号输入至FPGA中,经过FPGA中的IQ修正模块对目标基带信号进行修正,修正的信号的实部I(t)和虚部Q(t)经过DAC以及LPF后,得到两路目标修正基带信号。其中实部对应的目标修正基带信号输入到IQ调制器的I端,虚部对应的目标修正基带信号输入到IQ调制器的Q端,调制器的LO端接入载波进行信号调制,得到调制后的信号s(t),s(t)可以是用于调控超导量子比特的信号。其中,s(t)、I(t)和Q(t)中的t表示时间变量t,例如s(t)表示t时刻的调制信号。FPGA中可以包括IQ修正模块,用于对基带信号进行修正。IQ修正模块可以是在硬件上实现IQ补偿算法的模块,本申请实施例提供的信号修正算法也可以称为IQ补偿算法。
本申请实施例提供的方法,可以是在利用IQ调制器对信号调制之前,对目标基带信号进行修正。信号相关参数例如可以包括载波的频率、基带信号的频率以及幅值等。例如,对于一般的任意信号z 0(t),由于实际的IQ调制器器件本身的原因即不理想性,经常会存在IQ基带幅度不平衡ρ 1、IQ基带相位不平衡κ、正交载波幅度不平衡ρ 2或者正交载波相位不平衡λ中的一种或多种导致的误差,导致存在无用的边带。而这些误差一般是不容易直接测量得到的。而本申请的发明人经过实际测量发现,IQ基带幅度不平衡性ρ,基带相位不平衡性κ并不是固定不变的,通常会随着基带信号对应的信号相关参数变化,例如IQ基带幅度不平衡性ρ以及基带相位不平衡性κ通常与基带信号的频率f以及基带信号的频率下的基带信号幅值A有关,而载波相位不平衡性λ则通常与载波频率f c有关,因此本申请发明人经过计算(原理在后文描述),发现可以根据目标基带信号的信号相关参数,例如综合基带信号的频率f、幅度A或者载波频率f c 得到对应的目标边带抑制参数,基于该目标边带抑制参数预先对目标基带信号进行处理,得到目标修正基带信号。其中,经过目标边带抑制参数的信号修正,目标修正基带信号与目标基带信号之间的差异△S尽可能能够抵消由于IQ调制器器件的不理想性导致的误差,从而尽可能的抑制调制得到的调制信号中无用边带对应的信号。
如图2所示,在一些实施例中,提出了一种边带抑制方法,本实施例主要以该方法应用于上述量子计算机中来举例说明。具体可以包括以下步骤:
步骤S202,获取目标基带信号。
具体地,目标基带信号是需要被调制的基带信号,基带信号可以是信号源发出的没有经过调制的原始电信号。计算机将基带信号对应的数字信号发送至数模转换器,数模转换器(图1中121以及122)将数字信号生成连续的模拟信号。这部分信号可以作为基带信号。
步骤S204,获取目标基带信号对应的目标信号相关参数,目标信号相关参数包括目标基带信号对应的信号特性参数或者目标基带信号对应的载波信号的信号特性参数的至少一种。
具体地,信号相关参数是与目标基带信号相关的参数。信号特性参数是与基带信号本身的特性相关的参数,信号特性参数可以包括信号的频率、信号的幅度或者信号的时间长度的至少一种。例如可以获取目标基带信号对应的频率以及信号幅度,以及载波对应的频率,作为目标信号相关参数。
载波信号是指用于调制以传输信号的波形,可以是正弦信号。调制是指待传输的基带信号加载到载波信号上的过程,即将基带信号搬移到载波上去,以进行频谱搬移的过程。调制的目的可以是把要传输的信号变换成适合信道传输的信号,例如高频信号。调制的目的也可以是利用中低频的基带信号生成的高频的控制信号,但此高频信号不作为传输目的,例如作为控制超导量子比特的信号。一般而言基带信号是低频信号,载波是高频信号。
在一些实施例中,计算机获取的目标基带信号可以是时域的目标基带信号,因此可以对时域的目标基带信号进行频域变换,得到频域的目标基带信号,获取频域的目标基带信号的频率和幅值。
步骤S206,根据目标信号相关参数获取对应的目标边带抑制参数。
具体地,边带抑制参数是用于进行边带抑制的参数,边带抑制参数可以是朝着使需要抑制的边带对应的信号的功率下降的方向进行参数调整得到的,例如边带抑制参数对应的需要抑制的边带的功率小于预设功率阈值。因此采用边带抑制参数对信号进行处理,可以减小需要抑制的边带对应的信号的功率。可以预先设置信号相关参数与边带抑制参数的对应关系集合,例如信号相关参数与边带抑制参数的对应表。因此得到目标信号相关参数后,计算机可以根据预先存储的信号相关参数与边带抑制参数的对应表,获取目标信号相关参数对应的边带抑制参数。
目标信号相关参数对应的目标边带抑制参数可以是直接对应的关系或者间接对应关系。直接对应关系是指对应关系集合中,存在与目标信号相关参数对应的边带抑制参数,例如,假设目标信号相关参数为a,则对应关系集合中,存在目标信号相关参数a以及其对应的边带抑制参数。间接对应关系是指对应关系集合中,不存在与目标信号相关参数直接对应的边带抑制参数。由于不同场景下基带信号对应的信号相关参数是不同的,如果预先确定每个信号相关参数对应的边带抑制参数,则工作量大。因此可以根据对应关系集合中的对应关系插值得到目标信号相关参数对应的目标边带抑制参数。又例如,需要对目标信号相关参数进行变换,得到变换后的变换信号相关参数,再获取变换信号相关参数对应的边带抑制参数,根据变换信号相关参数对应的边带抑制参数得到目标信号相关参数对应的目标边带抑制参数。例如,假设目标边带抑制参数包括目标基带信号的频率f,而目标补偿信号的频率则需要变换至-f。那么首先需要获取变换后的频率,即频率为-f的目标抑制参数,然后再对初始补偿信号进行处理。得到目标补偿信号后,再对基带信号进行补偿。
在一些实施例中,目标边带抑制参数可以是实数也可以是复数。由于信号一般而言可以是通过复数表示的,因此目标边带抑制参数可以是复数。
步骤S208,基于目标边带抑制参数对目标基带信号进行信号修正处理,得到目标修正基带信号,目标边带抑制参数用于对目标基带信号对应的第一抑制边带的功率进行抑制。
具体地,调制后的信号,如果未经处理,将在中心载频的上下两侧各产生一个频带,将上下两侧的频带称作边带。第一抑制边带是指目标基带信号对应的调制信号中,需要抑制的边带,即无用的边带。例如,利用频率为f c的载波对频率为f的基带信号进行调制时,输出的调制信号包括f c-f的频率分量以及f c+f的频率分量。即存在由于器件非理想性而产生的关于载波对称的边带。由于在理想情况下,我们只期望得到频率为f c-f的频率,因此频率为f c+f的频率为由于实际器件非理想性造成的无用的边带。例如,在超导量子比特的应用中,调制以后的信号通常需要在超导量子比特的|0>以及|1>两个能级的能级差所对应的频率附近,而所对应其频率的典型值在6GHz附近,因此通常希望使载波的频率通常位于以量子比特的频率为中心的几百兆赫兹范围内,因此无用的边带f c+f不仅占用了传输资源,同时造成了信号的失真,会对超导量子比特造成额外的激发,影响到了量子门操作的精度。
对目标基带信号进行信号修正处理得到的信号为目标修正基带信号。修正处理可以包括在目标基带信号加上补偿信号或者利用目标边带抑制参数与目标基带信号相乘的至少一个。补偿信号可以是利用目标边带抑制参数处理得到的。
在一些实施例中,可以获取目标基带信号对应的初始补偿信号;根据目标边带抑制参数以及初始补偿信号得到目标补偿信号;基于目标补偿信号对目标基带信号进行修正,得到目标修正基带信号。
具体地,初始补偿信号可以是根据目标基带信号确定的。例如初始补偿信号可以是目标基带信号对应的复共轭信号。一个信号的复共轭信号是指实部相同,虚部相反的信号。得到目标边带抑制参数后,可以利用目标边带抑制参数对初始补偿信号进行处理,得到目标补偿信号。然后基于目标补偿信号对目标基带信号进行修正,得到目标修正基带信号。
在一些实施例中,根据目标边带抑制参数以及初始补偿信号得到目标补偿信号包括:将目标边带抑制参数与初始补偿信号相乘,得到目标补偿信号,初始补偿信号为目标基带信号对应的复共轭信号,初始补偿信号的频率与目标基带信号的频率相反;基于目标补偿信号对目标基带信号进行修正,得到目标修正基带信号包括:将目标补偿信号与目标基带信号相加,得到目标修正基带信 号。
具体地,由于初始补偿信号的频率与目标基带信号的频率相反,初始补偿信号为目标基带信号对应的复共轭信号。因此计算机能够对目标基带信号进行一个反向的处理,使得修正得到的目标修正基带信号抵消了由于调制器件的非理想性造成的无用的边带,即对无用边带进行了抑制。边带抑制的大概原理如下:本申请的发明人发现,当利用一个调制器对信号进行调制时,调制导致的误差并不是固定的,而是与基带信号对应的目标信号相关参数有关。因此,需要灵活根据目标基带信号的信号相关参数来确定信号补偿系数(即边带抑制参数)以及灵活的根据目标基带信号确定初始补偿信号,以灵活的根据目标基带信号得到目标补偿信号,将目标补偿信号与目标基带信号相加,得到目标修正基带信号。这样,既可以达到对无用边带进行抑制的目的,在基带信号不断变化的情况下,也可以及时根据当前的基带信号的信号相关参数,修正基带信号。
在一些实施例中,可以理解,将目标补偿信号与目标基带信号相加,得到目标修正基带信号时,如果目标基带信号是时域信号,目标补偿信号是频域信号,则可以将时域的目标基带信号转换为频域的目标基带信号,再进行相加。
在一些实施例中,当计算机获取的目标基带信号是时域的基带信号,即模拟信号时,基于目标补偿信号对目标基带信号进行修正,得到目标修正基带信号包括:对时域的目标基带信号进行频域变换,得到频域的目标基带信号;基于初始补偿信号对频域的目标基带信号进行修正,得到频域的修正基带信号;对频域的修正基带信号进行时域变换,得到时域的目标修正基带信号。
具体地,频域变换是指将时域信号变换为频域信号。时域变换是指将频域信号变换为时域信号。可以对时域的目标基带信号进行傅里叶变换,得到频域的目标基带信号,得到频域的目标基带信号对应的频率。初始补偿信号为频域的信号,因此可以利用频域的初始补偿信号对频域的目标基带信号进行修正,得到频域的修正基带信号。再将频域的修正基带信号进行反傅里叶变换,得到时域的目标修正基带信号。
例如,对于任意的目标基带信号z 0(t),计算机可以利用傅里叶变换
Figure PCTCN2020124655-appb-000001
得到 频域的目标基带信号,用公式(1)表示。初始补偿信号可以为目标基带信号对应的复共轭信号,因此将目标边带抑制参数与初始补偿信号相乘,得到目标补偿信号可以用公式(2)表示。将目标补偿信号与目标基带信号相加,得到频域的修正基带信号可以用公式(3)表示。对频域的修正基带信号进行时域变换,得到时域的目标修正基带信号可以用公式(4)表示。
Figure PCTCN2020124655-appb-000002
表示频率为f的频域的目标基带信号,即频谱函数。i表示虚数,exp表示底数为自然常数e,Z B表示目标补偿信号,-f表示目标基带信号的频率f的相反频率。f c表示载波的频率。c表示边带抑制参数。
Figure PCTCN2020124655-appb-000003
表示
Figure PCTCN2020124655-appb-000004
“*”号表示复共轭。
Figure PCTCN2020124655-appb-000005
表示
Figure PCTCN2020124655-appb-000006
的幅值。
Figure PCTCN2020124655-appb-000007
表示频域的修正基带信号,z(t)表示时域的目标修正基带信号。可以理解,目标信号相关参数还可以包括其他参数,例如可以包括信号长度。
Figure PCTCN2020124655-appb-000008
Figure PCTCN2020124655-appb-000009
Figure PCTCN2020124655-appb-000010
Figure PCTCN2020124655-appb-000011
步骤S210,将目标修正基带信号输入到调制器中进行信号调制,得到目标基带信号对应的目标调制信号。
具体地,计算机得到目标修正基带信号后,可以将目标修正基带信号的实部作为调制器I端的输入,目标修正基带信号的虚部作为调制器Q端的输入,将载波信号作为调制器LO端输入,以利用载波进行调制,得到调制后的信号,作为目标调制信号,由调制器的RF端输出。
例如,假设表示目标修正基带信号为z(t),则可以将其实部
Figure PCTCN2020124655-appb-000012
作为I通道的输入,虚部
Figure PCTCN2020124655-appb-000013
作为Q通道的输入。即
Figure PCTCN2020124655-appb-000014
由于可以预先对基带信号进行修正处理,因此调制后的信号,抑制边带上的信号被抑制了,因此输出的调制信号中将只包含所期望输出的频率分量或者无用的频率分量的信号少。因此对于任意的基带信号,可以基于其信号相关参数进 行信号修正处理,达到对任意信号的边带进行抑制的效果。
上述边带抑制方法,在需要传输目标基带信号时,可以基于目标基带信号对应的目标信号相关参数获取得到目标边带抑制参数,基于目标边带抑制参数对目标基带信号进行信号修正处理后,再输入到调制器中进行信号调制,得到目标基带信号对应的目标调制信号。由于在进行基带信号调制之前,基于目标边带抑制参数对基带信号进行了修正处理,以对目标基带信号对应的抑制边带的功率进行抑制,因此在将修正基带信号输入到调制器中进行信号调制时,抑制边带的信号被抑制,故提高了信号传输效率以及信号保真度。
在一些实施例中,如图3所示,根据目标信号相关参数获取对应的目标边带抑制参数包括:
步骤S302,获取参数对应关系集合,参数对应关系集合中包括一个或者多个参数对应关系,参数对应关系包括信号相关参数与边带抑制参数的对应关系。
具体地,参数对应关系集合中可以包括一个或者多个参数对应关系,具体的数目可以根据需要设置,例如可以包括常用的信号相关参数对应的边带抑制参数,具体根据实际需要确定。由于不同的基带信号对应的边带抑制参数可能不同,而在不同的场景中所使用的基带信号以及载波信号可能是不同的,因此可以预先确定信号相关参数与边带抑制参数的对应关系。例如,可以预先存储载波频率、基带频率频率以及基带幅值对应的边带抑制参数,当需要进行信号修正时,可以根据参数对应关系得到对应的边带抑制参数。
步骤S304,获取参数对应关系集合中,目标信号相关参数对应的信号相关参数,作为参考信号相关参数。
具体地,目标信号相关参数对应的信号相关参数可以是直接对应的信号相关参数,也可以是间接对应的信号相关参数。例如,间接对应的信号相关参数可以是对目标信号相关参数进行变换,得到变换后的变换信号相关参数,再获取变换信号相关参数对应的信号相关参数,作为参考信号相关参数。例如,假设目标边带抑制参数包括目标基带信号的频率f,则将f变换为-f频率,再获取-f频率直接或者间接对应的信号相关参数,作为参考信号相关参数。
在一些实施例中,当初始补偿信号为目标基带信号对应的复共轭信号时, 初始补偿信号的频率与目标基带信号的频率f相反,为-f时。目标边带抑制参数即补偿系数用于对初始补偿信号进行处理,由于目标边带抑制参数是用于对初始补偿信号进行处理的,因此获取的应该是初始补偿信号对应的信号相关参数对应的边带抑制参数,故可以根据目标信号相关参数获取对应的初始补偿信号的信号相关参数,根据初始补偿信号的信号相关参数得到参考信号相关参数。例如,可以获取目标基带信号对应的频率相反的频率,获取相反的频率-f下,初始补偿信号对应的幅值。将与目标基带信号的频率相反的频率-f、初始补偿信号对应的幅值以及载波信号的频率作为参考信号相关参数。
举个实际的例子,假设目标基带信号的频率为f,如果参数对应关系集合的信号相关参数包括-f频率,则可以获取-f频率为参考信号相关参数。如果参数对应关系集合的信号相关参数不包括-f频率,则可以获取可以-f频率邻近的频率,作为参考信号相关参数。
步骤S306,根据参数对应关系集合中,参考信号相关参数对应的边带抑制参数得到目标信号相关参数对应的目标边带抑制参数。
具体地,计算机可以将参考信号相关参数对应的边带抑制参数作为目标信号相关参数对应的目标边带抑制参数。也可以根据参数对应关系集合中,参考信号相关参数对应的边带抑制参数进行插值计算,得到目标信号相关参数对应的目标边带抑制参数。
举个实际的例子,假设参数对应关系集合的信号相关参数包括-f频率,则可以获取-f频率对应的边带抑制参数作为目标信号相关参数对应的目标边带抑制参数。假设参数对应关系集合的信号相关参数不包括-f频率,则可以获取-f邻近的频率,作为参考频率,获取参考频率的边带抑制参数进行插值计算,得到目标信号相关参数对应的目标边带抑制参数。
本申请实施例中,可以预先计算不同的信号相关参数,例如不同载波频率、不同边带频率、不同信号幅值的情况下分别对应的边带补偿参数,得到边带补偿参数c的一张多维的表格。使用时,通过查找表格即可得到实际的系数。在得到实际的系数之后,可以通过公式(3)进行信号修正,利用公式(4)进行时域转换,得到高精度的目标修正基带信号。
在一些实施例中,参数对应关系集合中,各个信号相关参数对应的边带抑制参数可以是通过试验得到的。以下结合图4,以参数对应关系集合中,目标信号相关参数对应的信号相关参数,即参考信号相关参数为例,对如何得到参考信号相关参数对应的边带抑制参数的步骤进行说明,可以理解,参数对应关系集合中的各个信号相关参数对应的边带抑制参数可以是根据相同的算法得到的。如图4所示,参数对应关系集合中,参考信号相关参数对应的边带抑制参数的得到步骤包括:
步骤S402,获取参考信号相关参数对应的参考基带信号。
具体地,参考信号相关参数对应的参考基带信号是指:参考基带信号的信号相关参数可以为参考信号相关参数或者参考基带信号对应的复共轭信号的信号相关参数。例如,假设给定的载波频率f c,基带信号幅值A以及基带频率f,则可以获取信号幅值为A以及频率为f对应的参考基带信号,该参考基带信号对应的载波信号的频率为f c
步骤S404,获取当前边带抑制参数,基于当前边带抑制参数对参考基带信号进行信号修正处理,得到修正后的参考基带信号。
具体地,当前边带抑制参数是指当前用于修正的边带抑制参数。在确定边带抑制参数的过程中,可以经过多次试验,以确定边带抑制参数的最佳值,因此当前边带抑制参数可以是随着试验的进行在变化。初始的当前边带抑制参数可以为任意的值,例如可以为0。基于当前边带抑制参数对参考基带信号进行信号修正处理,得到修正后的参考基带信号的步骤可以参考基于目标边带抑制参数对目标基带信号进行信号修正处理,得到目标修正基带信号。例如,获取当前边带抑制参数,基于当前边带抑制参数对参考基带信号进行信号修正处理,得到修正后的参考基带信号用公式可以表示如公式(5),其中Z C(t)表示修正后的参考基带信号,A exp(2πift)为修正前的参考基带信号,exp表示底数为自然常数e为。c d当前边带抑制参数,A exp(-2πift)为参考基带信号对应的初始补偿信号。
Z C(t)=I(t)+iQ(t)=A exp(2πift)+c d·A exp(-2πift)   (5)
步骤S406,将修正后的参考基带信号输入到调制器中进行调制,得到参考调 制信号。
具体地,得到修正后的参考基带信号后,可以将修正后的参考基带信号输入到调制器中进行调制,将调制后的信号作为参考调制信号。
步骤S408,根据参考调制信号在对应的第二抑制边带上的功率对当前边带抑制参数进行调整,得到参考信号相关参数对应的边带抑制参数。
具体地,第二抑制边带为参考调制信号中,需要抑制的边带。例如,假设参考基带信号为f,载波频率为f c。则需要抑制的第二边带可以为f c+f。可以计算得到参考调制信号在对应的第二抑制边带上的功率,朝着使参考调制信号在对应的第二抑制边带上的功率下降的方向对当前边带抑制参数进行调整,得到更新后的当前边带抑制参数。可以利用无梯度的最小化算法,例如Nelder–Mead(下山单纯形)算法或Powell(鲍威尔优化,又称方向加速)算法,朝着使参考调制信号在对应的第二抑制边带上的功率下降的方向对当前边带抑制参数进行调整,得到更新后的当前边带抑制参数。
在一些实施例中,步骤S404至步骤S408可以是多次执行。当不满足更新停止条件时,可以基于更新后的当前边带抑制参数,进入步骤S404,继续基于步骤S404至步骤S408更新当前边带抑制参数。直至满足更新停止条件后,将最后更新的当前边带抑制参数作为参考信号相关参数对应的边带抑制参数。其中更新停止条件包括更新前的当前边带抑制参数与更新后的当前边带抑制参数的变化小于预设变化阈值、第二抑制边带上的功率小于预设功率阈值或者当前边带抑制参数的更新次数大于预设次数的至少一个。预设变化阈值、预设次数以及预设功率阈值可以根据需要设置,例如预设变化阈值可以为0.01,预设次数可以为100次。
在一些实施例中,目标信号相关参数包括:目标基带信号对应的基带频率、目标基带信号对应的基带幅度以及目标基带信号对应的载波信号的载波频率,根据目标信号相关参数获取对应的目标边带抑制参数包括:获取载波频率;获取载波频率对应的参数对应关系集合,参数对应关系包括基带信号对应的基带频率以及基带信号对应的基带幅度与边带抑制参数的对应关系;根据目标基带信号对应的基带频率、目标基带信号对应的基带幅度从参数对应关系集合中获 取对应的目标边带抑制参数。
具体地,基带信号对应的基带频率是指基带信号的频率。在量子计算机中,用于调控超导量子比特的调控信号可以是连续的,载波频率也可以是固定的。对于调控信号中的每一个目标基带信号,可以利用调控信号的载波频率进行调制,其中一个目标基带信号可以是调控信号中,预设时间长度的基带信号。因此可以获取调控超导量子比特的调控信号对应的载波频率所对应的参数对应关系集合。这样可以从该参数对应关系集合中查找基带信号对应的基带频率以及基带信号对应的基带幅度与边带抑制参数的对应关系,以提高获取目标边带抑制参数的速度。
在一些实施例中,对于修正得到的目标修正基带信号,可以包括实部以及虚部。因此可以将目标修正基带信号对应的实部输入到调制器中的同相端(I端),将目标修正基带信号对应的虚部输入到调制器中的正交端(Q端),利用载波频率的载波信号进行信号调制,得到目标基带信号对应的目标调制信号,这样,可以利用目标调制信号对超导量子比特进行调控,以达到对量子计算机进行控制的目的。
以下以对超导量子比特进行调控为例,结合图5~7对本申请实施例的方案进行说明,其中图5为边带校准的流程图。图6为进行边带校准时的设备连接关系图,图7为对信号边带抑制一个具体实施例的实现示意图,边带校准是指对于实际的IQ调制器器件,获取实现边带抑制所需要的边带抑制参数的过程,可以是预先进行边带校准。边带抑制是指对镜像边带功率的抑制。镜像边带是指单边带调制中由于器件非理想性而产生的关于载波对称的另一个边带。
如图5所示,边带校准包括以下步骤:
步骤S502,获取给定的信号相关参数,根据给定的信号相关参数得到参考基带信号。
具体地,假设给定载波频率为f c,基带信号幅值A以及基带频率f,则可以得到参考基带信号为A exp(2πift)。
步骤S504,获取当前边带抑制参数,基于当前边带抑制参数对参考基带信号进行信号修正处理,得到修正后的参考基带信号。
具体地,初始的当前边带抑制参数即补偿系数c可以为0。后续的c可以进行更新。修正后的参考基带信号Z C(t)的计算公式可以为Z C(t)=I(t)+iQ(t)=A exp(2πift)+c d·A exp(-2πift)。
步骤S506,将修正后的参考基带信号输入到调制器中进行调制,得到调制后的训练基带信号。
具体地,得到修正后的参考基带信号Z C(t)后,输入到调制器中,其中实部
Figure PCTCN2020124655-appb-000015
输入至I端口,虚部
Figure PCTCN2020124655-appb-000016
输入Q端口。
步骤S508,获取第二抑制边带处的信号功率。
步骤S510,判断判断第二抑制边带处的信号功率是否小于预设功率阈值。
如果是,则进入步骤514,如果否,则进入步骤512。
步骤S512,朝着使参考调制信号在对应的第二抑制边带上的功率下降的方向对当前边带抑制参数进行调整,得到更新后的当前边带抑制参数。
步骤S514,记录信号相关参数与边带抑制参数的关系。
具体地,f c+f为无用边带,可以利用频谱仪测量RF端输出的信号,测量频率为f c+f处的信号功率P(c,f c,f,A)。利用无梯度的最小化算法,例如Nelder–Mead算法或Powell算法等,对功率P(c,f c,f,A)进行中的c进行优化。即朝着功率变小的方向改变边带抑制参数c。最终得到给定的信号相关参数对应的边带抑制参数c。可以理解,由于基带信号在不同场景下的频率以及幅度可能是不同的,为了可以根据基带信号的信号相关参数灵活选择对应的边带抑制参数,可以通过改变给定的信号相关参数。例如,改变基带信号幅值A,以及频率f,以及载波频率f c,重复S502-S512的过程,得到补偿系数c在不同载波频率f c、不同基带频率f以及不同基带信号幅值A的情况下的数值c(f c,f,A),并记录信号相关参数与边带抑制参数的对应关系,例如f c,f,A,c。由此可以得到边带抑制参数c的一张多维的表格。使用时,通过查找表格即可得到实际的边带抑制系数。
如图6所示,修正后的参考基带信号的实部经过DAC A,虚部经过DACB后,再经过低通滤波器之后接入IQ调制器的I端和Q端;在IQ调制器的LO端接入频率为f c的正弦波,其功率满足IQ调制器的正常工作要求,同时,将RF端接入 频谱分析仪,对输出的RF信号进行测量,以得到f c+f处的功率。
得到各个信号相关参数对应的边带抑制参数后,可以得到用于查找边带抑制参数c的一张多维的表格,表格中包括信号相关参数与边带抑制参数的对应关系。在信号的传输中,可以通过查找表格可得到实际的边带抑制系数,下面结合图7,对如何进行边带抑制的介绍,包括以下步骤:
1.获取载波频率所对应的参数对应关系集合。
例如,如图7所示,假设当前的载波频率为f c,则取出f c对应的补偿系数c以及对应的基带频率f,基带幅值A,并发送至FPGA进行临时储存。其中对应的基带频率f为集合G f,对应的基带幅值A为集合G A,补偿系数c[f m,A n]为一个二维数组,f m表示第m个校准的基带信号的频率,n表示第n个校准的基带信号的基带幅值。
2.对时域的目标基带信号进行频域变换,得到频域的目标基带信号。
例如,如图7所示,在FPGA接收到输入的基带信号的时域数据z[n]=I[n]+iQ[n]之后,进行快速傅里叶变换(FFT),得到基带信号的频谱
Figure PCTCN2020124655-appb-000017
和对应的频率f[n]。
3.获取目标基带信号对应的目标信号相关参数。
例如,如图7所示,可以根据频谱数据
Figure PCTCN2020124655-appb-000018
计算幅值
Figure PCTCN2020124655-appb-000019
在频率点-f[n],幅值
Figure PCTCN2020124655-appb-000020
处,根据参数对应关系集合获取边带抑制参数即补偿系数c,其中
Figure PCTCN2020124655-appb-000021
对应频率为f[n],
Figure PCTCN2020124655-appb-000022
对应频率为-f[n]。这里具体分成以下三种情况。其中图7的“Y”表示是。“N”表示否。图7中取出补偿系数c对应情况1,根据已有补偿系数数据进行插值对应情况2以及3。
情况1:频率点-f[n]以及幅值
Figure PCTCN2020124655-appb-000023
两个参数均在已存储的参数对应关系集合(校准数据集合)中,则直接从已存储的参数对应关系集合中取出-f[n]和
Figure PCTCN2020124655-appb-000024
对应的补偿系数c.
情况2:频率点-f[n]以及幅值
Figure PCTCN2020124655-appb-000025
中仅有一个在已存储的参数对应关系集合中,则以参数对应关系集合中不存在的参数作为自变量,以补偿系数c作为因变量,根据参数对应关系集合进行插值计算,计算得出在频率点-f[n]以及幅值
Figure PCTCN2020124655-appb-000026
处对应的补偿系数c.
情况3:频率的-f[n]以及幅值
Figure PCTCN2020124655-appb-000027
均不在参数对应关系集合中,则以两个参数作为第一自变量和第二自变量,以补偿系数c作为因变量,根据参数对应关系集合进行插值计算。计算得出在频率点-f[n]以及幅值
Figure PCTCN2020124655-appb-000028
处对应的补偿系数c。
4.基于目标边带抑制参数对目标基带信号进行信号修正处理,得到目标修正基带信号。
具体地,如图7所示,可以根据公式
Figure PCTCN2020124655-appb-000029
计算得到频域的修正基带信号
Figure PCTCN2020124655-appb-000030
Figure PCTCN2020124655-appb-000031
进行反傅里叶变换(IFFT),得到时域的数据Z′[n]。
5.将目标修正基带信号输入到调制器中进行信号调制,得到目标基带信号对应的目标调制信号。
如图7所示,可以将目标修正基带信号的实部
Figure PCTCN2020124655-appb-000032
(即Re[z'])发送至与IQ调制器I通道连接的DAC,将信号的虚部
Figure PCTCN2020124655-appb-000033
(即Im[z'])发送至与IQ调制器Q通道连接的DAC,经过调制器得到目标调制信号。
6、基于目标调制信号对超导量子比特进行控制。
本申请实施例提供的方案可以采用在频域范围内进行修正的方案,可以在多个频率以及多个幅值下进行修正,通过对信号进行修正,可以得到高质量的控制信号,因此本申请实施例的方案可以适用于超导量子计算机以及超导量子计算机的测控部件,包括任意波形发生器和数模转换模块,也能对大带宽的任意信号进行修正,降低波形失真,满足超导量子计算的测控精度需求。以下对关于本申请实施例提供的方法的原理以及效果进行说明。
IQ调制器可以将频率较低的信号调制到射频波段,在超导量子计算领域广泛应用在超导量子比特的调控以及读取上。在超导量子比特的应用中,微波信号通常需要在超导量子比特的|0>,|1>两个能级的能级差附近,所对应其频率的典型值在6GHz附近,使用的载波频率通常位于以量子比特的频率为中心的几百兆赫兹范围内。理想的IQ调制器的工作原理可用公式(6)来描述:
s(t)=β[I(t)cos 2πf ct+Q(t)sin 2πf ct]#(6)
其中,s(t)表示IQ调制器的RF端口输出的调制信号,I(t),Q(t)为IQ调制器的I以及Q端口输入的中频信号,LO部分的载波信号的频率为f c,β描述了IQ调制器的变频损耗。当I(t)+iQ(t)=A(t)e i2πft时,输出信号s(t)=βA(t)cos 2π(f c-f)t,即达到了对信号幅值的调制以及改变载波频率效果。
然而,实际的IQ调制器存在非理想性,其主要存在4种误差:IQ基带幅度不平衡ρ 1、IQ基带相位不平衡κ、正交载波幅度不平衡ρ 2、以及正交载波相位不平衡λ,在考虑到误差之后,调制信号的数学形式可以用式(7)来描述[6],包含误差的正交调制器的工作原理如图8所示。其中式子中1+ρ=(1+ρ 1)(1+ρ 2)表示了最终IQ两个通道的幅度不平衡性。
Figure PCTCN2020124655-appb-000034
从公式(7)中可以看出,最终输出的射频信号s(t)中除了会包含期望的f c-f的频率分量,还会包含f c+f的频率分量,这降低了信号的质量,并且影响了超导量子比特门操作的保真度。因而需要采取一定的方式对信号进行修正。例如,在超导量子计算的应用中,利用IQ调制器产生的信号通常不是一个正弦波,而是一个高斯波包。高斯波包的中心频率大约在6GHz,频率展宽接近100MHz。在这种情况下,由于超导量子计算机的控制信号以及读取信号均通过IQ调制器生成,得到高质量的控制信号对于提高量子门操作的精度至关重要。如果不修正将造成较大的波形失真,影响量子操作的保真度。
因此,在存在误差的情况下,针对任意信号z(t)=A(t)e iφ(t),其实部
Figure PCTCN2020124655-appb-000035
Figure PCTCN2020124655-appb-000036
虚部
Figure PCTCN2020124655-appb-000037
为理想情况下期望被调制的IQ信号。z(t)可以用傅里叶级数进行展开:
Figure PCTCN2020124655-appb-000038
其中A nn,f n为实数,满足
Figure PCTCN2020124655-appb-000039
T为信号z(t)的 总时长。由此,根据公式(7),IQ调制器的RF端输出的信号s(t)可以表示为:
Figure PCTCN2020124655-appb-000040
从公式(8)中可以看出,当误差来源ρ、κ以及λ的数值大小与频率f n或是幅值A n有关,则无法简单地使用同一个校准参数对整个基带信号波形进行修正,因此对于正弦波信号z 0(t)=I 0(t)+iQ 0(t)=A exp[2πift],为了抑制镜像边带信号,即频率为f c+f的信号,我们在IQ的输入端给定:
Figure PCTCN2020124655-appb-000041
其中c为待定的复数,在实际过程中需要通过测量得到。输出信号s(t)则为:
Figure PCTCN2020124655-appb-000042
通过计算s(t)的f c+f分量,并通过调整补偿系数c的实部和虚部,可以使得f c+f的分量为0,因此根据公式(9)可以求得公式(10)
Figure PCTCN2020124655-appb-000043
从公式(10)中可以看出,补偿系数c包含了IQ调制器的三种误差来源。因此由上面的分析看出,通过改变IQ端输入信号z 0(t)为z(t),可以得到了不含镜像边带频率分量的信号。
其次,对于一般的任意信号z 0(t),实际的IQ调制器器件,由于器件本身的原因,其IQ基带幅度不平衡性ρ以及基带相位不平衡性κ通常与基带频率f以及当前基带频率下的基带信号幅值A有关,而载波相位不平衡性λ则通常与载波频率f c有关。于是补偿系数c与载波频率f c、基带频率f以及基带幅值A这三个因素有关,故可以将补充系数c表示为这些变量的函数c=c(f c,f,A).类似于正弦波信号,对于任意信号z 0(t),我们首先利用傅里叶变换
Figure PCTCN2020124655-appb-000044
Figure PCTCN2020124655-appb-000045
将信号z 0(t)转换至频率空间,得到其频谱
Figure PCTCN2020124655-appb-000046
并对其做如下修正:
Figure PCTCN2020124655-appb-000047
其中
Figure PCTCN2020124655-appb-000048
表示
Figure PCTCN2020124655-appb-000049
得到频谱
Figure PCTCN2020124655-appb-000050
后,再将
Figure PCTCN2020124655-appb-000051
利用逆傅里叶变换转换回时域z(t):
Figure PCTCN2020124655-appb-000052
其中实部
Figure PCTCN2020124655-appb-000053
作为I通道输出,虚部
Figure PCTCN2020124655-appb-000054
作为Q通道输出,即
Figure PCTCN2020124655-appb-000055
Figure PCTCN2020124655-appb-000056
根据前文给出的原理可以得到在基带信号的无用边带上,实现了边带抑制的过程。因此,最终输出的信号上实现了对不期望的边带的信号的抑制,这样就达到了对任意信号的边带抑制的效果。
通过对基带信号在频域上进行修正,之后再转换回时域进行输出,可以对不同载波频率、不同边带频率以及不同信号幅值的情况下分别进行校准,得到补偿系数c的一张多维的表格。使用时,通过查找表格即可得到实际的系数。在得到实际的系数之和,再通过公式(11)进行修正,则可得到高精度的时域信号。
本申请实施例提供的方案可以在在大带宽、基带功率变化的情况下,对IQ调制器的波形进行修正来达到压低镜像边带的效果,提高信号的保真度。在超导量子计算中,可以提高对超导量子比特操作的保真度。以下采用Marki公司的调制器IQ-0307作为依据进行仿真试验,对以下三种情况下,本申请实施例方案与未对基带信号进行修正的方案以及其他修正方案的效果进行了比较。其中,其他修正方案是指直接测量IQ调制器的幅值失衡以及相位失衡,得出相应的误差参数ρ以及κ+λ,从而对信号进行修正的方案。IQ-0307中,IQ幅值误差典型值为0.3dB,对应ρ∈[-0.04,0.04],IQ相位误差典型值为3°,对应弧度为0.05,即κ,λ∈[-0.05,0.05]。在下面的仿真中,载波频率固定在5GHz,而IQ混频器的误差模型为公式(3,并选取β=1,ρ,κ,λ的选择则是在频率-0.5GHz-0.5GHz内随机生成,并规定其范围为ρ∈[-0.04,0.04],κ,λ∈[-0.05,0.05]。
试验一:在基带信号为正弦波形,正弦波长度为1024ns,频率为125MHz.的情况下。不经过修正时,边带镜像抑制大约在25dB左右,这与实际器件给出的23dB较为接近。而经过本申请提出的方案修正之后,边带镜像抑制达到了大约60dB,提高了约35dB。
试验二、考虑IQ调制器的误差与基带功率无关的情况下,基带信号选择为高斯波形,高斯波形的半高全宽选择为在超导量子计算中的典型值10ns.同时为了获得更好的频率分辨率,选择的总时间为1024ns,同时,基带的频率选择为125MHz的情况下。图9A给出了基带信号为高斯波形的情况下,其他修正方案与本修正方案的特殊情况下(考虑误差ρ,κ,λ只与频率相关,而与功率无关)的对比。其中,线条1表示经过理想的IQ混频器混频之后的信号频谱;线条2表示在无修正的情况下,经过非理想IQ调制器混频之后的信号的频谱数据;线条3表示其他修正方案中,经过非理想IQ混频器之后的信号频谱;线条4表示在本申请实施例方案修正下,经过非理想IQ混频器混频之后的信号频谱。从图9A中可以看出,对于宽带宽的高斯信号,其他修正方案的修正效果只能在固定频率附近很小频率范围内进行修正,这里是125MHz,对于整体的修正不理想,并没有明显提高边带镜像抑制;而使用本申请实施例方案的修正结果,则将边带镜像抑制提高了约30dB,达到了与正弦波情况下接近的60dB左右。
试验三、图9B给出了当IQ调制器的误差(基带幅值不平衡、基带相位不平衡、载波相位不平衡)会随基带功率变化的情况下,其他修正方案与本申请实施例方案的对比。其中,线条1表示经过理想的IQ混频器混频之后的信号频谱;线条2表示无修正的情况下,经过非理想的IQ调制器混频之后的信号频谱;线条3表示在其他修正方案下的结果;线条4表示在本申请实施方案中考虑IQ调制器误差与基带功率以及基带频率均相关时,信号经过非理想IQ调制器混频之后的频谱;线条5表示在本申请实施方案中仅仅考虑IQ调制器误差与基带频率相关情况下修正的结果。这里选取的基带波形为仍然为高斯波形,高斯波形的参数试验2的参数相同。从图9B中可以看出,当IQ调制器的误差随着基带功率、频率均变化时,其他修正方案仅仅在中心频率附近很小的范围内对镜像信号有一定的抑制效果。而仅仅考虑误差随基带频率变化(线条5),虽然能在较宽的范围内对镜像信号进行抑制,但是对于中心频率附近的信号抑制能力不够强。这是因为中心频率附近,信号功率较强,因此误差(ρ,λ,κ)与信号功率较低的情况下差别较大,而对于离中心频率较远的部分,由于信号功率本身也比较弱,此时误差ρ,λ,κ则差别不大。将基带频率、基带功率两者同时考虑 的方案(线条4),从图9B中可以看出,其镜像抑制的效果比较明显,相比于现有方案提高了近30dB,而相对于仅考虑基带频率的方案,镜像抑制的效果则提高了近15dB。
因此,根据上述试验可以得到,本申请实施方案在对大带宽以及不同功率的基带信号进行修正后,能够抑制镜像边带即无用边带的信号,其中frequency表示频率,amplitude表示振幅。
如图10所示,在一些实施例中,提供了一种边带抑制装置,该边带抑制装置可以集成于上述的FPGA中,具体可以包括目标基带信号获取模块1002、目标信号相关参数获取模块1004、目标边带抑制参数获取模块1006、修正处理模块1008以及调制模块1010。
目标基带信号获取模块1002,用于获取目标基带信号。
目标信号相关参数获取模块1004,用于获取目标基带信号对应的目标信号相关参数,目标信号相关参数包括目标基带信号对应的信号特性参数或者目标基带信号对应的载波信号的信号特性参数的至少一种。
目标边带抑制参数获取模块1006,用于根据目标信号相关参数获取对应的目标边带抑制参数。
修正处理模块1008,用于基于目标边带抑制参数对目标基带信号进行信号修正处理,得到目标修正基带信号,目标边带抑制参数用于对目标基带信号对应的第一抑制边带的功率进行抑制。
调制模块1010,用于将目标修正基带信号输入到调制器中进行信号调制,得到目标基带信号对应的目标调制信号。
在一些实施例中,修正处理模块1008包括:初始补偿信号获取单元,用于获取目标基带信号对应的初始补偿信号;目标补偿信号得到单元,用于根据目标边带抑制参数以及初始补偿信号得到目标补偿信号;修正单元,用于基于目标补偿信号对目标基带信号进行修正,得到目标修正基带信号。
在一些实施例中,目标补偿信号得到单元用于:将目标边带抑制参数与初始补偿信号相乘,得到目标补偿信号,初始补偿信号为目标基带信号对应的复共轭信号,初始补偿信号的频率与目标基带信号的频率相反;修正单元用于: 将目标补偿信号与目标基带信号相加,得到目标修正基带信号。
在一些实施例中,修正单元用于:对时域的目标基带信号进行频域变换,得到频域的目标基带信号;基于初始补偿信号对频域的目标基带信号进行修正,得到频域的修正基带信号;对频域的修正基带信号进行时域变换,得到时域的目标修正基带信号。
在一些实施例中,目标边带抑制参数获取模块1006包括:参数对应关系集合获取单元,用于获取参数对应关系集合,参数对应关系集合中包括一个或者多个参数对应关系,参数对应关系包括信号相关参数与边带抑制参数的对应关系;参考信号相关参数得到单元,用于获取参数对应关系集合中,目标信号相关参数对应的信号相关参数,作为参考信号相关参数;目标边带抑制参数获取单元,用于根据参数对应关系集合中,参考信号相关参数对应的边带抑制参数得到目标信号相关参数对应的目标边带抑制参数。
在一些实施例中,目标边带抑制参数获取单元用于:根据参数对应关系集合中,参考信号相关参数对应的边带抑制参数进行插值计算,得到目标信号相关参数对应的目标边带抑制参数。
在一些实施例中,参数对应关系集合中,参考信号相关参数对应的边带抑制参数的边带抑制参数得到模块用于:获取参考信号相关参数对应的参考基带信号;获取当前边带抑制参数,基于当前边带抑制参数对参考基带信号进行信号修正处理,得到修正后的参考基带信号;将修正后的参考基带信号输入到调制器中进行调制,得到参考调制信号;根据参考调制信号在对应的第二抑制边带上的功率对当前边带抑制参数进行调整,得到参考信号相关参数对应的边带抑制参数。
在一些实施例中,边带抑制参数得到模块用于:朝着使参考调制信号在对应的第二抑制边带上的功率下降的方向对当前边带抑制参数进行调整,得到更新后的当前边带抑制参数;进入获取当前边带抑制参数,基于当前边带抑制参数对参考基带信号进行信号修正处理,得到修正后的参考基带信号的步骤,直至满足更新停止条件,将更新后的当前边带抑制参数作为参考信号相关参数对应的边带抑制参数;更新停止条件包括更新前的当前边带抑制参数与更新后的 当前边带抑制参数的变化小于预设变化阈值、第二抑制边带上的功率小于预设功率阈值或者当前边带抑制参数的更新次数大于预设次数的至少一个。
在一些实施例中,目标信号相关参数包括目标基带信号对应的基带频率、目标基带信号对应的基带幅度以及目标基带信号对应的载波信号的载波频率,目标边带抑制参数获取模块1006用于:获取载波频率;获取载波频率对应的参数对应关系集合,参数对应关系包括基带信号对应的基带频率以及基带信号对应的基带幅度与边带抑制参数的对应关系;根据目标基带信号对应的基带频率、目标基带信号对应的基带幅度从参数对应关系集合中获取对应的目标边带抑制参数。
在一些实施例中,调制模块1010用于:将目标修正基带信号对应的实部输入到调制器中的同相端,将目标修正基带信号对应的虚部输入到调制器中的正交端,利用载波频率的载波信号进行信号调制,得到目标基带信号对应的目标调制信号,以根据目标调制信号对超导量子比特进行调控。
图11示出了一些实施例中计算机设备的内部结构图。该计算机设备具体可以是图1中的FPGA。如图11所示,该计算机设备包括通过系统总线连接的处理器、存储器以及网络接口。其中,存储器包括非易失性存储介质和内存储器。该计算机设备的非易失性存储介质存储有操作系统,还可存储有计算机可读指令,该计算机可读指令被处理器执行时,可使得处理器实现边带抑制方法。该内存储器中也可储存有计算机可读指令,该计算机可读指令被处理器执行时,可使得处理器执行边带抑制方法。
本领域技术人员可以理解,图11中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一些实施例中,本申请提供的边带抑制装置可以实现为一种计算机可读指令的形式,计算机可读指令可在如图11所示的计算机设备上运行。计算机设备的存储器中可存储组成该边带抑制装置的各个程序模块,比如,图10所示的目标基带信号获取模块1002、目标信号相关参数获取模块1004、目标边带抑制 参数获取模块1006、修正处理模块1008以及调制模块1010。各个程序模块构成的计算机可读指令使得处理器执行本说明书中描述的本申请各个实施例的边带抑制方法中的步骤。
例如,图11所示的计算机设备可以通过如图10所示的边带抑制装置中的目标基带信号获取模块1002获取目标基带信号。通过目标信号相关参数获取模块1004于获取目标基带信号对应的目标信号相关参数,目标信号相关参数包括目标基带信号对应的信号特性参数或者目标基带信号对应的载波信号的信号特性参数的至少一种。通过目标边带抑制参数获取模块1006根据目标信号相关参数获取对应的目标边带抑制参数。通过修正处理模块1008基于目标边带抑制参数对目标基带信号进行信号修正处理,得到目标修正基带信号,目标边带抑制参数用于对目标基带信号对应的第一抑制边带的功率进行抑制。调制模块1010,用于将目标修正基带信号输入到调制器中进行信号调制,得到目标基带信号对应的目标调制信号。
在一些实施例中,提供了一种计算机设备,包括存储器和处理器,存储器存储有计算机可读指令,计算机可读指令被处理器执行时,使得处理器执行上述边带抑制方法的步骤。此处边带抑制方法的步骤可以是上述各个实施例的边带抑制方法中的步骤。
在一些实施例中,提供了一种计算机可读存储介质,存储有计算机可读指令,计算机可读指令被处理器执行时,使得处理器执行上述边带抑制方法的步骤。此处边带抑制方法的步骤可以是上述各个实施例的边带抑制方法中的步骤。
在一些实施例中,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各方法实施例中的步骤。
应该理解的是,虽然本申请各实施例的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,各实施例中的至少一部分步骤可以包括多个子步骤或 者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种边带抑制方法,由计算机设备执行,所述方法包括:
    获取目标基带信号;
    获取所述目标基带信号对应的目标信号相关参数,所述目标信号相关参数包括所述目标基带信号对应的信号特性参数或者所述目标基带信号对应的载波信号的信号特性参数的至少一种;
    根据所述目标信号相关参数获取对应的目标边带抑制参数;
    基于所述目标边带抑制参数对所述目标基带信号进行信号修正处理,得到目标修正基带信号,所述目标边带抑制参数用于对所述目标基带信号对应的第一抑制边带的功率进行抑制;及
    将所述目标修正基带信号输入到调制器中进行信号调制,得到所述目标基带信号对应的目标调制信号。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述目标边带抑制参数对所述目标基带信号进行信号修正处理,得到目标修正基带信号包括:
    获取所述目标基带信号对应的初始补偿信号;
    根据所述目标边带抑制参数以及所述初始补偿信号得到目标补偿信号;及
    基于所述目标补偿信号对所述目标基带信号进行修正,得到目标修正基带信号。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述目标边带抑制参数以及所述初始补偿信号得到目标补偿信号包括:
    将所述目标边带抑制参数与所述初始补偿信号相乘,得到目标补偿信号,所述初始补偿信号为所述目标基带信号对应的复共轭信号,所述初始补偿信号的频率与所述目标基带信号的频率相反;
    所述基于所述目标补偿信号对所述目标基带信号进行修正,得到目标修正基带信号包括:及
    将所述目标补偿信号与所述目标基带信号相加,得到目标修正基带信号。
  4. 根据权利要求2所述的方法,其特征在于,所述基于所述目标补偿信号 对所述目标基带信号进行修正,得到目标修正基带信号包括:
    对时域的所述目标基带信号进行频域变换,得到频域的目标基带信号;
    基于所述初始补偿信号对所述频域的目标基带信号进行修正,得到频域的修正基带信号;及
    对所述频域的修正基带信号进行时域变换,得到时域的目标修正基带信号。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述目标信号相关参数获取对应的目标边带抑制参数包括:
    获取参数对应关系集合,所述参数对应关系集合中包括一个或者多个参数对应关系,所述参数对应关系包括信号相关参数与边带抑制参数的对应关系;
    获取所述参数对应关系集合中,所述目标信号相关参数对应的信号相关参数,作为参考信号相关参数;及
    根据所述参数对应关系集合中,所述参考信号相关参数对应的边带抑制参数得到所述目标信号相关参数对应的目标边带抑制参数。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述参数对应关系集合中,所述参考信号相关参数对应的边带抑制参数得到所述目标信号相关参数对应的目标边带抑制参数包括:
    根据所述参数对应关系集合中,所述参考信号相关参数对应的边带抑制参数进行插值计算,得到所述目标信号相关参数对应的目标边带抑制参数。
  7. 根据权利要求5所述的方法,其特征在于,所述参数对应关系集合中,所述参考信号相关参数对应的边带抑制参数的得到步骤包括:
    获取所述参考信号相关参数对应的参考基带信号;
    获取当前边带抑制参数,基于当前边带抑制参数对所述参考基带信号进行信号修正处理,得到修正后的参考基带信号;
    将所述修正后的参考基带信号输入到调制器中进行调制,得到参考调制信号;及
    根据所述参考调制信号在对应的第二抑制边带上的功率对当前边带抑制参数进行调整,得到所述参考信号相关参数对应的边带抑制参数。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述参考调制信号 在对应的第二抑制边带上的功率对当前边带抑制参数进行调整,得到所述参考信号相关参数对应的边带抑制参数包括:
    朝着使所述参考调制信号在对应的第二抑制边带上的功率下降的方向对当前边带抑制参数进行调整,得到更新后的当前边带抑制参数;及
    进入获取当前边带抑制参数,基于当前边带抑制参数对所述参考基带信号进行信号修正处理,得到修正后的参考基带信号的步骤,直至满足更新停止条件,将更新后的当前边带抑制参数作为所述参考信号相关参数对应的边带抑制参数;
    所述更新停止条件包括更新前的当前边带抑制参数与更新后的当前边带抑制参数的变化小于预设变化阈值、所述第二抑制边带上的功率小于预设功率阈值或者当前边带抑制参数的更新次数大于预设次数的至少一个。
  9. 根据权利要求1所述的方法,其特征在于,所述目标信号相关参数包括所述目标基带信号对应的基带频率、所述目标基带信号对应的基带幅度以及所述目标基带信号对应的载波信号的载波频率,所述根据所述目标信号相关参数获取对应的目标边带抑制参数包括:
    获取载波频率;
    获取所述载波频率对应的参数对应关系集合,参数对应关系包括基带信号对应的基带频率以及基带信号对应的基带幅度与边带抑制参数的对应关系;及根据所述目标基带信号对应的基带频率、所述目标基带信号对应的基带幅度从所述参数对应关系集合中获取对应的目标边带抑制参数。
  10. 根据权利要求9所述的方法,其特征在于,所述将所述目标修正基带信号输入到调制器中进行信号调制,得到所述目标基带信号对应的目标调制信号包括:
    将所述目标修正基带信号对应的实部输入到调制器中的同相端,将所述目标修正基带信号对应的虚部输入到调制器中的正交端,利用所述载波频率的载波信号进行信号调制,得到所述目标基带信号对应的目标调制信号,以根据所述目标调制信号对超导量子比特进行调控。
  11. 一种边带抑制装置,所述装置包括:
    目标基带信号获取模块,用于获取目标基带信号;
    目标信号相关参数获取模块,用于获取所述目标基带信号对应的目标信号相关参数,所述目标信号相关参数包括所述目标基带信号对应的信号特性参数或者所述目标基带信号对应的载波信号的信号特性参数的至少一种;
    目标边带抑制参数获取模块,用于根据所述目标信号相关参数获取对应的目标边带抑制参数;
    修正处理模块,用于基于所述目标边带抑制参数对所述目标基带信号进行信号修正处理,得到目标修正基带信号,所述目标边带抑制参数用于对所述目标基带信号对应的第一抑制边带的功率进行抑制;及
    调制模块,用于将所述目标修正基带信号输入到调制器中进行信号调制,得到所述目标基带信号对应的目标调制信号。
  12. 根据权利要求11所述的装置,其特征在于,所述修正处理模块包括:
    初始补偿信号获取单元,用于获取所述目标基带信号对应的初始补偿信号;
    目标补偿信号得到单元,用于根据所述目标边带抑制参数以及所述初始补偿信号得到目标补偿信号;及
    修正单元,用于基于所述目标补偿信号对所述目标基带信号进行修正,得到目标修正基带信号。
  13. 根据权利要求11所述的装置,其特征在于,所述目标边带抑制参数获取模块包括:
    参数对应关系集合获取单元,用于获取参数对应关系集合,所述参数对应关系集合中包括一个或者多个参数对应关系,所述参数对应关系包括信号相关参数与边带抑制参数的对应关系;
    参考信号相关参数得到单元,用于获取所述参数对应关系集合中,所述目标信号相关参数对应的信号相关参数,作为参考信号相关参数;及
    目标边带抑制参数获取单元,用于根据所述参数对应关系集合中,所述参考信号相关参数对应的边带抑制参数得到所述目标信号相关参数对应的目标边带抑制参数。
  14. 一种计算机设备,其特征在于,包括存储器和处理器,所述存储器中 存储有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行权利要求1至10中任一项权利要求所述边带抑制方法的步骤。
  15. 一个或多个存储有计算机可读指令的非易失性存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述处理器执行权利要求1至10中任一项权利要求所述边带抑制方法的步骤。
PCT/CN2020/124655 2020-02-03 2020-10-29 边带抑制方法、装置、计算机设备和存储介质 WO2021155681A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021554983A JP7258406B2 (ja) 2020-02-03 2020-10-29 側波帯抑圧方法、装置、コンピュータ機器及びコンピュータプログラム
KR1020217028699A KR102514252B1 (ko) 2020-02-03 2020-10-29 측파대 억제 방법 및 장치, 컴퓨터 기기, 그리고 저장 매체
EP20918068.6A EP3920426A4 (en) 2020-02-03 2020-10-29 SIDEBAND SUPPRESSION METHOD, DEVICE AND COMPUTER DEVICE AND STORAGE MEDIUM
US17/460,006 US12126407B2 (en) 2020-02-03 2021-08-27 Sideband suppression method and apparatus, computer device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010078701.2A CN112671681B (zh) 2020-02-03 2020-02-03 边带抑制方法、装置、计算机设备和存储介质
CN202010078701.2 2020-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/460,006 Continuation US12126407B2 (en) 2020-02-03 2021-08-27 Sideband suppression method and apparatus, computer device, and storage medium

Publications (1)

Publication Number Publication Date
WO2021155681A1 true WO2021155681A1 (zh) 2021-08-12

Family

ID=75402798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124655 WO2021155681A1 (zh) 2020-02-03 2020-10-29 边带抑制方法、装置、计算机设备和存储介质

Country Status (5)

Country Link
EP (1) EP3920426A4 (zh)
JP (1) JP7258406B2 (zh)
KR (1) KR102514252B1 (zh)
CN (1) CN112671681B (zh)
WO (1) WO2021155681A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045722A1 (zh) * 2022-09-01 2024-03-07 本源量子计算科技(合肥)股份有限公司 联合读取信号的参数获取方法、装置及量子控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396196A (en) * 1993-12-29 1995-03-07 At&T Corp. Quadrature modular with adaptive suppression of carrier leakage
CN101435862A (zh) * 2008-07-29 2009-05-20 北京航空航天大学 上变频器及其信号处理方法
CN101521962A (zh) * 2009-04-03 2009-09-02 湖南大学 单边带高频光毫米波产生及波长再利用系统
CN101540626A (zh) * 2008-03-20 2009-09-23 中兴通讯股份有限公司 收发信机及零中频发射校准方法
CN101557373A (zh) * 2008-04-09 2009-10-14 展讯通信(上海)有限公司 基于子带的信号收发方法及设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162763A (en) * 1991-11-18 1992-11-10 Morris Keith D Single sideband modulator for translating baseband signals to radio frequency in single stage
US6771709B2 (en) * 2001-10-16 2004-08-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry System and method for direct transmitter self-calibration
US7010278B2 (en) * 2002-10-25 2006-03-07 Freescale Semiconductor, Inc. Sideband suppression method and apparatus for quadrature modulator using magnitude measurements
JP4341418B2 (ja) * 2004-01-30 2009-10-07 日本電気株式会社 直交変調器の調整装置及び調整方法並びに通信装置とプログラム
JP2005295376A (ja) * 2004-04-02 2005-10-20 Japan Radio Co Ltd 直交変調器のエラー補償回路
US20060097814A1 (en) * 2004-11-10 2006-05-11 Alcatel Digital sideband suppression for radio frequency (RF) modulators
EP2194665B1 (en) * 2007-09-27 2013-04-24 Osaka Prefecture University Public Corporation CFO and I/Q imbalance estimation and compensation
KR101455894B1 (ko) * 2007-12-18 2014-11-03 스카이워크스 솔루션즈, 인코포레이티드 직접 변환 통신 시스템의 불균형 보상
EP2596645A1 (en) * 2010-07-22 2013-05-29 Koninklijke Philips Electronics N.V. Driving of parametric loudspeakers
US9479203B2 (en) * 2011-04-14 2016-10-25 Mediatek Inc. Transceiver capable of IQ mismatch compensation on the fly and method thereof
EP2738945B1 (en) * 2011-07-26 2016-08-31 Sumitomo Electric Industries, Ltd. Compensation device, signal generator, and wireless communication device
CN103067075B (zh) * 2012-12-20 2016-01-06 南京航空航天大学 光器件测量装置、测量方法
EP2838202A1 (en) * 2013-08-16 2015-02-18 Alcatel Lucent A method for pulse width modulation of a radio frequency signal, and a signal processing unit therefor
CN104219186A (zh) * 2014-09-04 2014-12-17 中国电子科技集团公司第二十九研究所 基于iq基带信号幅度调节的模拟iq调制误差校正方法
CN107547458B (zh) * 2016-06-28 2021-04-20 中兴通讯股份有限公司 Iq调制中镜像抑制参数的设置方法、装置及射频拉远单元
GB2558296B (en) * 2016-12-23 2020-09-02 Edgar Beesley Graham Radio frequency modulator
CN110915174B (zh) 2017-06-26 2021-04-09 华为技术有限公司 校正装置和校正方法
KR20190143035A (ko) * 2018-06-19 2019-12-30 삼성전자주식회사 무선 통신 시스템에서 동위상 성분 및 직교위상 성분의 부정합 보정을 위한 방법 및 장치
US11150536B2 (en) * 2018-07-26 2021-10-19 S2 Corporation Techniques for using nonlinear electromagnetic materials to produce arbitrary electromagnetic signals
CN110535527B (zh) * 2019-09-27 2020-07-31 南京航空航天大学 相干光接收机的频谱响应测量方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396196A (en) * 1993-12-29 1995-03-07 At&T Corp. Quadrature modular with adaptive suppression of carrier leakage
CN101540626A (zh) * 2008-03-20 2009-09-23 中兴通讯股份有限公司 收发信机及零中频发射校准方法
CN101557373A (zh) * 2008-04-09 2009-10-14 展讯通信(上海)有限公司 基于子带的信号收发方法及设备
CN101435862A (zh) * 2008-07-29 2009-05-20 北京航空航天大学 上变频器及其信号处理方法
CN101521962A (zh) * 2009-04-03 2009-09-02 湖南大学 单边带高频光毫米波产生及波长再利用系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3920426A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024045722A1 (zh) * 2022-09-01 2024-03-07 本源量子计算科技(合肥)股份有限公司 联合读取信号的参数获取方法、装置及量子控制系统

Also Published As

Publication number Publication date
JP2022524455A (ja) 2022-05-02
JP7258406B2 (ja) 2023-04-17
KR20210123392A (ko) 2021-10-13
CN112671681A (zh) 2021-04-16
US20210391898A1 (en) 2021-12-16
EP3920426A1 (en) 2021-12-08
KR102514252B1 (ko) 2023-03-24
EP3920426A4 (en) 2022-06-15
CN112671681B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US7010278B2 (en) Sideband suppression method and apparatus for quadrature modulator using magnitude measurements
TWI826357B (zh) Iq失配校準與補償的系統與裝置
TWI536779B (zh) 校正傳送器/接收器的第一、第二訊號路徑之間的不匹配的校正方法與校正裝置
WO2019001595A1 (en) IMAGE DISTORTION CORRECTION IN A WIRELESS TERMINAL
WO2019137253A1 (zh) 接收机iq两路不平衡的补偿方法、装置及设备
CN104935535B (zh) 一种自适应大调制带宽i/q调制误差数字补偿方法及系统
WO2015139474A1 (zh) 一种校准射频收发机的系统、方法和计算机存储介质
US20190190451A1 (en) Methods, circuits, and apparatus for calibrating an in-phase and quadrature imbalance
CN111200485A (zh) 宽带误差校准参数提取方法、装置及计算机可读存储介质
WO2021155681A1 (zh) 边带抑制方法、装置、计算机设备和存储介质
US11082082B2 (en) Signal calibration method, and device generated based on imbalance of I path and Q path, and storage medium
US8681896B1 (en) Transmitter I/Q and carrier leak calibration
JP2011182068A (ja) べき級数型ディジタルプリディストータとその歪補償制御方法
US8811538B1 (en) IQ error correction
US11546006B2 (en) Mitigation of intermodulation distortion
CN115882970A (zh) 一种接收iq不平衡校正方法及系统
WO2020000204A1 (zh) 相位校准方法、相关装置及设备
JP6689558B2 (ja) Iq変調器のiqインバランス決定方法及び機器
CN108111448B (zh) 预失真查找表的生成方法、装置与预失真校准设备
CN104022834B (zh) Iq调制器中dc偏移的测量
WO2018157321A1 (zh) 发射机及数字预失真校准方法
CN101518014A (zh) 发射机的模拟i/q调制器的i/q不均衡和dc偏移校准
JP2016220134A (ja) 無線通信装置および無線通信方法
US12126407B2 (en) Sideband suppression method and apparatus, computer device, and storage medium
JP6300198B2 (ja) キャリアリーク補正装置及びキャリアリーク補正方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20217028699

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021554983

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2020918068

Country of ref document: EP

Effective date: 20210902

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE