WO2021153539A1 - 脱硝触媒構造体 - Google Patents

脱硝触媒構造体 Download PDF

Info

Publication number
WO2021153539A1
WO2021153539A1 PCT/JP2021/002561 JP2021002561W WO2021153539A1 WO 2021153539 A1 WO2021153539 A1 WO 2021153539A1 JP 2021002561 W JP2021002561 W JP 2021002561W WO 2021153539 A1 WO2021153539 A1 WO 2021153539A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
shaped
catalyst element
shaped catalyst
edge
Prior art date
Application number
PCT/JP2021/002561
Other languages
English (en)
French (fr)
Inventor
琢麻 倉井
智之 林
良憲 永井
心平 戸高
将平 赤木
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to ATA9016/2021A priority Critical patent/AT524990A2/de
Priority to US17/795,616 priority patent/US20230073667A1/en
Priority to CN202180011372.2A priority patent/CN115023289B/zh
Priority to KR1020227025440A priority patent/KR20220112298A/ko
Publication of WO2021153539A1 publication Critical patent/WO2021153539A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates

Definitions

  • the present invention relates to a denitration catalyst unit. More specifically, the present invention relates to a denitration catalyst unit that can realize a high denitration rate with a low pressure loss and contribute to a reduction in initial running cost.
  • Nitrogen oxides in the gas discharged from the furnaces of boilers and waste incinerators in thermal power plants and various factories are decomposed in the presence of a denitration catalyst to purify the exhaust gas.
  • Various denitration catalyst structures or denitration catalyst units have been proposed in order to decompose nitrogen oxides in exhaust gas with high efficiency.
  • Patent Document 1 has a plurality of plate-shaped catalyst elements in which a catalytic component having catalytic activity is supported on the surface, and a ridge portion and a flat portion made of band-shaped protrusions are alternately repeated at intervals.
  • the catalyst structure is characterized in that the ridges of each catalyst element are arranged in a direction that partially blocks the gas flow continuously or stepwise in the gas flow direction.
  • the body is disclosed.
  • a plate-shaped catalyst element having a ridge portion and a flat portion made of band-shaped protrusions having a catalyst component supported on the surface alternately and repeatedly in parallel is arranged so that the ridge portion blocks the gas flow.
  • the ridges are alternately adjacent to each other on the front and back of the plate-shaped catalyst element, and each has two or more equal number of strips, and the ridges are formed.
  • the catalyst structure characterized by this is disclosed.
  • Patent Document 3 has, as Example 14, six lines having a size of 150 mm ⁇ 250 mm and a height of 2 mm at an angle (about 30 °) with respect to the long side at an interval of 30 mm on the short side. Forty-six catalyst substrates were laminated on the catalyst frame to prepare a catalyst carrier unit of 150 mm ⁇ 150 mm ⁇ 250 mm, and this unit was immersed in a catalyst slurry, dried, and fired to prepare a unit-shaped catalyst. It discloses that.
  • the edge portion of the plate-shaped catalyst element on the gas inflow side is bent.
  • the width d of the flow path may be narrowed or uneven, resulting in an increase in pressure loss and a decrease in the denitration rate.
  • An object of the present invention is to provide a denitration catalyst unit that can realize a high denitration rate with a low pressure loss and contribute to a reduction in initial running costs such as fan power.
  • a plate-shaped catalyst element having an edge on the gas inflow side, an edge on the gas outflow side, and an edge on both sides is provided as an edge on the gas inflow side and an edge on both sides. It is a denitration catalyst unit that is made by stacking multiple sheets of each.
  • Each plate-shaped catalyst element has a plurality of flat plate-shaped flat portions and plate-shaped uneven portions having protrusions on the upper surface and the lower surface, respectively, and each protrusion has a plate shape.
  • the catalyst elements are arranged diagonally and parallel to each other at an angle ⁇ of 50 ° or more and 85 ° or less with respect to the extending direction of the edge on the gas inflow side of the catalyst element.
  • the ridges of the ridges on the upper surface of one plate-shaped catalyst element and the ridges of the ridges on the lower surface of the other adjacent plate-shaped catalyst element are arranged so as to intersect and touch each other. At least one of the intersecting points is in a range x of more than 0 mm and less than 25 mm inward from the edge of the plate-shaped catalyst element on the gas inflow side. Denitration catalyst unit.
  • each plate-shaped catalyst element contains a plate-shaped base material and a catalyst component supported on the plate-shaped base material.
  • a plate-shaped catalyst element having an edge on the gas inflow side, an edge on the gas outflow side, and an edge on both sides.
  • the plate-shaped catalyst element has a plurality of flat plate-shaped flat portions and plate-shaped uneven portions having parallel protrusions on the upper surface and the lower surface, respectively, and each convex strip has a plate-like shape.
  • the catalyst elements are arranged diagonally and parallel to each other at an angle ⁇ of 50 ° or more and 85 ° or less with respect to the extending direction of the edge on the gas inflow side of the catalyst element.
  • a plurality of plate-shaped catalyst elements are aligned with the edges on the gas inflow side and the edges on both sides, and the other one adjacent to the ridgeline of the ridge on the upper surface of one plate-shaped catalyst element.
  • the ridges of the ridges on the lower surface of the plate-shaped catalyst element are arranged so as to intersect and contact each other, and when stacked, at least one of the intersecting points is on the gas inflow side of the plate-shaped catalyst element. It is in a range x of more than 0 mm and less than 25 mm inward from the existing edge. Plate-shaped catalyst element.
  • a high denitration rate can be realized with a low pressure loss, which can contribute to a reduction in initial running cost.
  • the present invention is suitable for removing nitrogen oxides (NOx) contained in the exhaust gas of a gas-fired plant.
  • the denitration catalyst unit of the present invention comprises a plurality of plate-shaped catalyst elements.
  • each plate-shaped catalyst element contains a plate-shaped base material and a catalyst component supported on the surface thereof.
  • the plate-shaped catalyst element can be obtained, for example, by impregnating, coating, or supporting a plate-shaped base material such as a metal lath, an inorganic fiber woven fabric, or a non-woven fabric with a catalyst component, and then performing a press working or the like.
  • the catalyst component is not particularly limited as long as it has a denitration catalytic effect.
  • those containing titanium oxides, molybdenum and / or tungsten oxides, and vanadium oxides titanium-based catalysts
  • aluminosilicates such as zeolites carrying metals such as Cu and Fe.
  • zeolite-based catalyst those mainly contained (zeolite-based catalyst; those formed by mixing a titanium-based catalyst and a zeolite-based catalyst can be mentioned. Of these, a titanium-based catalyst is preferable.
  • titanium-based catalysts examples include TiVW catalysts, TiVW Mo catalysts, TiVW Mo catalysts and the like.
  • the ratio of the V element to the Ti element is preferably 2% by weight or less, more preferably 1% by weight or less, as a weight percentage of V 2 O 5 / TiO 2.
  • the ratio of Mo element and / or W element to Ti element is preferably 10% by weight or less as a weight percentage of Molybdenum oxide and tungsten oxide (MoO 3 + WO 3 ) / TiO 2. It is preferably 5% by weight or less.
  • titanium oxide powder or titanium oxide precursor can be used as a raw material for titanium oxide.
  • the titanium oxide precursor include titanium oxide slurry, titanium oxide sol; titanium sulfate, titanium tetrachloride, titanate, titanium alkoxide and the like.
  • those forming anatase-type titanium oxide are preferably used.
  • vanadium compounds such as vanadium pentoxide, ammonium metavanadate, and vanadyl sulfate can be used.
  • tungsten As a raw material for the oxide of tungsten, ammonium paratungstate, ammonium metatungstate, tungsten trioxide, tungsten chloride and the like can be used. As a raw material for the oxide of molybdenum, ammonium molybdate, molybdenum trioxide, or the like can be used.
  • the catalyst component used in the present invention includes P oxide, S oxide, Al oxide (for example, alumina), Si oxide (for example, glass fiber), and Zr oxide as cocatalysts or additives.
  • Oxides eg, zirconia
  • gypsum eg, dihydrate gypsum, etc.
  • zeolites e.g., zeolites and the like may be included. These are in the form of powders, sol, slurries, fibers and the like and can be used during catalyst preparation.
  • the denitration catalyst unit of the present invention preferably has a plurality of plate-shaped catalyst elements housed in the frame body 5, as shown in FIG.
  • Each plate-shaped catalyst element has a plate shape having an edge on the gas inflow side, an edge on the gas outflow side, and an edge on both sides.
  • the individual plate-like catalyst elements are preferably square or rectangular in overall shape. Then, in the denitration catalyst unit of the present invention, the plate-shaped catalyst elements are stacked with the edges on the gas inflow side and the edges on both sides aligned.
  • Each plate-shaped catalyst element has a plurality of flat portions 1 and a plurality of uneven portions 2 alternately.
  • the flat portion 1 has a flat plate shape.
  • the uneven portion 2 has a plate shape having ridges 3 and 3'on the upper surface and the lower surface in parallel, respectively.
  • the ridges 3 and 3' may be curved, but it is preferable that the ridges 3 and 3'are substantially straight as shown in FIG. 1 and the like.
  • the height h of the ridges 3, 3'and the width w of the ridges 3, 3' can be appropriately set.
  • the width of the uneven portion 2 is 2w.
  • the width w 2 of the ridge cross section at the edge on the gas inflow side or the gas outflow side is w / (sin (90 ° ⁇ )).
  • each uneven portion has a Z-shaped or S-shaped cross section due to the ridges on the upper surface and the ridges on the lower surface.
  • a thin line indicates a convex ridge line
  • a thick line indicates a concave valley line.
  • the plate thickness t in the flat portion and the uneven portion is not particularly limited, but is preferably 0.1 to 0.5 mm.
  • the ridges are arranged diagonally and parallel to each other at an angle ⁇ with respect to the extending direction of the edge on the gas inflow side of the plate-shaped catalyst element.
  • the lower limit of the angle ⁇ is 50 °, preferably 55 °, more preferably 65 °, still more preferably 70 °, and the upper limit is 85 °, preferably 83 °, more preferably 80 °.
  • the parallel ridges on the same surface are preferably evenly spaced. The distance p between the ridges of the parallel ridges on the same surface can be set as appropriate.
  • the width p 0 is p-2 w or w 1 sin (90 ° ⁇ ).
  • the pressure loss tends to decrease as the angle ⁇ increases, and the denitration rate tends to increase as the width p 0 decreases.
  • the ridgeline of the ridge 3 on the upper surface of one plate-shaped catalyst element intersects with the ridgeline of the ridge 3'on the lower surface of the other adjacent plate-shaped catalyst element. They are arranged so that they touch each other.
  • the inferior angle ⁇ 1 formed by the two ridges at the intersection is preferably 10 ° or more and 80 ° or less, more preferably 20 ° or more and 70 ° or less, and further preferably 20 ° or more and 65 ° or less.
  • the average distance between the upper surface of the flat portion of the plate-shaped catalyst element and the lower surface of the flat portion of the adjacent plate-shaped catalyst element is the above-mentioned ridge 3.
  • the lower limit is regulated by the height of, 3'.
  • the plate-shaped catalyst element B shown in FIG. 2 is the one in which the front and back of the plate-shaped catalyst element A shown in FIG. 1 are interchanged and turned inside out.
  • the cross section of the uneven portion at the edge on the front surface (gas inflow) side of the plate-shaped catalyst element A forms a Z-shaped waveform, and becomes on the front surface (gas inflow) side of the plate-shaped catalyst element B.
  • the cross section of the uneven portion at the existing edge forms an inverted Z-shaped waveform. As shown in FIGS.
  • the plate-shaped catalyst element C shown in FIG. 6 is a plate-shaped catalyst element A shown in FIG. 1 with the left and right sides interchanged and turned inside out.
  • the cross section of the uneven portion on the front surface (gas inflow) side of the plate-shaped catalyst element A and the cross section of the uneven portion on the front surface (gas inflow) side of the plate-shaped catalyst element B are Along with this, it forms a Z-shaped waveform.
  • the plate-shaped point 6 where the ridgeline of the ridge on the upper surface of the plate-shaped catalyst element A and the ridgeline of the ridge on the lower surface of the plate-shaped catalyst element C intersect and meet.
  • the point 6'where the ridgeline of the ridge on the lower surface of the catalyst element A and the ridgeline of the ridge on the upper surface of the plate-shaped catalyst element C intersect and contact is alternately shifted back and forth at a position approximately the same distance from the edges on both sides. Is placed.
  • the ridgeline of the ridge is convex in order to make at least one intersecting point exist in the range x.
  • the difference between W 3 and W 4 is preferably 2x / (tan ⁇ ) -1.5 W 2.
  • the plate-shaped catalyst element is located on the upper surface of the flat portion of the plate-shaped catalyst element at the edge on the gas inflow side even when the plate-shaped catalyst element is bent. It is possible to prevent the distance d between the flat portion of the adjacent plate-shaped catalyst element and the lower surface of the flat portion from becoming non-uniform (FIG. 11). As a result, the denitration catalyst unit of the present invention can realize a high denitration rate with a low pressure loss, and thus can contribute to a reduction in initial running costs such as fan power.
  • the denitration catalyst unit is assembled so that the angle ⁇ is 75 ° and p 0 is 30 mm, and the positions of the points 6, 6'that overlap and intersect the plate-shaped catalyst elements are 30 mm from the edge on the gas inflow side. rice field. A simulated combustion exhaust gas was passed through this, and the pressure loss and the denitration rate were measured.
  • Example An angle ⁇ is 75 °, p 0 is 30 mm, and the positions of points 6, 6'where the plate-shaped catalyst elements A are overlapped and intersect as shown in FIGS. 3 to 6 are 10 mm from the edge on the gas inflow side.
  • the denitration catalyst unit was assembled so as to be. A simulated combustion exhaust gas was passed through this, and the pressure loss and the denitration rate were measured.
  • the pressure loss of the denitration catalyst unit of the example was about 30% lower than the pressure loss of the denitration catalyst unit of the comparative example.
  • the denitration rate of the denitration catalyst unit of the example was higher than the denitration rate of the denitration catalyst unit of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

ガス流入側に在る縁とガス流出側に在る縁と両脇にそれぞれ在る縁とを有する板状触媒エレメントを、ガス流入側に在る縁と両脇に在る縁とをそれぞれ揃えて、複数枚積み重ねて成る脱硝触媒ユニットであって、個々の板状触媒エレメントは、平らな板状を成した平坦部と上面および下面にそれぞれ凸条を有する板状を成した凹凸部とを交互にそれぞれ複数有し、且つ各凸条は板状触媒エレメントのガス流入側に在る縁の延在方向に対して50°以上85°以下の角度で斜めに且つ相互に平行に配置されており、ある一枚の板状触媒エレメントの上面にある凸条の稜線と隣接する他の一枚の板状触媒エレメントの下面にある凸条の稜線とが交差して接するように配置されており、該交差する点のうちの少なくとも一つが、板状触媒エレメントのガス流入側に在る縁から内側に向かって0mm超過且つ25mm未満の範囲に在る、脱硝触媒ユニット。

Description

脱硝触媒構造体
 本発明は、脱硝触媒ユニットに関する。より詳細に、本発明は、低い圧力損失で、高い脱硝率を実現でき、初期ランニングコストの低減に寄与できる、脱硝触媒ユニットに関する。
 火力発電所、各種工場に在るボイラの火炉やごみ焼却炉の火炉から排出されるガス中の窒素酸化物を脱硝触媒の存在下で分解させて排ガスを浄化することが行われている。排ガス中の窒素酸化物を高効率で分解するために種々の脱硝触媒構造体若しくは脱硝触媒ユニットが提案されている。
 例えば、特許文献1は、表面に触媒活性を有する触媒成分を担持し、帯状突起からなる突条部と平坦部とを間隔を隔てて交互に繰り返して構成される板状の触媒エレメントを複数枚積層してなる触媒構造体において、ガス流れをガス流れ方向に連続的あるいは段階的に部分的に堰き止めるような方向に各々の触媒エレメントの突条部を配設したことを特徴とする触媒構造体を開示している。
 特許文献2は、表面に触媒成分が担持された、帯状突起からなる突条部と平坦部を交互に平行に繰り返して有する板状触媒エレメントを、上記突条部がガス流れを遮るように配置して複数枚積層した触媒構造体であって、前記突条部が板状触媒エレメントの表裏に交互に隣接して存在し、かつそれぞれ二以上の同数の帯状突起を有し、突条部がガス流れ方向に対して0<θ≦90°(ただしθはガス流れ方向に対する突条部の傾斜角度)となるように配置された板状触媒エレメントをその表裏を交互に反転させて順に積層したことを特徴とする触媒構造体を開示している。
 特許文献3は、実施例14として、150mm×250mmの大きさで、高さ2mmの波形の線条が長辺に対して斜め(約30°)に短辺における間隔30mmにて6本有する、触媒基材を、触媒枠に、46枚積層して、150mm×150mm×250mmの触媒担体ユニットを作成し、このユニットを触媒スラリに浸漬し、乾燥させ、焼成して、ユニット状触媒を調製したことを開示している。
WO96/014920A1 特開2000-117120号公報 特開2002-361092号公報
 先行技術における触媒構造体は、図12に示すように、運転中の熱によって、板状触媒エレメントがへたばってきたときに、板状触媒エレメントのガス流入側に在る縁部分が撓んで、流路の幅dが、狭められたり、不揃いになったりして、圧力損失の増大、脱硝率の低下を招くことがあった。
 本発明の課題は、低い圧力損失で、高い脱硝率を実現でき、ファン動力などの初期ランニングコストの低減に寄与できる、脱硝触媒ユニットを提供することである。
 上記課題を解決するために検討した結果、以下の形態を包含する本発明を完成するに至った。
〔1〕 ガス流入側に在る縁とガス流出側に在る縁と両脇にそれぞれ在る縁とを有する板状触媒エレメントを、ガス流入側に在る縁と両脇に在る縁とをそれぞれ揃えて、複数枚積み重ねて成る脱硝触媒ユニットであって、
 個々の板状触媒エレメントは、平らな板状を成した平坦部と上面および下面にそれぞれ凸条を有する板状を成した凹凸部とを交互にそれぞれ複数有し、且つ各凸条は板状触媒エレメントのガス流入側に在る縁の延在方向に対して50°以上85°以下の角度θで斜めに且つ相互に平行に配置されており、
 一の板状触媒エレメントの上面にある凸条の稜線と隣接する他の一の板状触媒エレメントの下面にある凸条の稜線とが交差して接するように配置されており、
 該交差する点のうちの少なくとも一つが、板状触媒エレメントのガス流入側に在る縁から内側に向かって0mm超過且つ25mm未満の範囲xに在る、
脱硝触媒ユニット。
〔2〕 個々の板状触媒エレメントは、板状基材とそれに担持された触媒成分とを含有してなるものである、〔1〕に記載の脱硝触媒ユニット。
〔3〕 ガス流入側に在る縁とガス流出側に在る縁と両脇にそれぞれ在る縁とを有する板状触媒エレメントであって、
 板状触媒エレメントは、平らな板状を成した平坦部と上面および下面にそれぞれ凸条を平行に有する板状を成した凹凸部とを交互にそれぞれ複数有し、且つ各凸条は板状触媒エレメントのガス流入側に在る縁の延在方向に対して50°以上85°以下の角度θで斜めに且つ相互に平行に配置されており、
 複数枚の板状触媒エレメントを、ガス流入側に在る縁と両脇に在る縁とをそれぞれ揃えて、且つ一の板状触媒エレメントの上面にある凸条の稜線と隣接する他の一の板状触媒エレメントの下面にある凸条の稜線とが交差して接するように配置されて、積み重ねたときに、該交差する点のうちの少なくとも一つが、板状触媒エレメントのガス流入側に在る縁から内側に向かって0mm超過且つ25mm未満の範囲xに在る、
板状触媒エレメント。
〔4〕 板状基材とそれに担持された触媒成分とを含有してなる、〔3〕に記載の板状触媒エレメント。
 本発明によると、低い圧力損失で、高い脱硝率を実現でき、初期ランニングコストの低減に寄与できる。本発明は、ガス焚きプラントの排ガスに含まれる窒素酸化物(NOx)を除去するために、好適である。
本発明に用いる板状触媒エレメントAを示す3面(前面、上面、右側面)図である。 本発明に用いる板状触媒エレメントBを示す3面(前面、上面、右側面)図である。 本発明の脱硝触媒ユニットの一例を示す前面図である。 本発明の脱硝触媒ユニットの一例を示す斜視図である。 板状触媒エレメントAの上面にある凸条の稜線と板状触媒エレメントBの下面にある凸条の稜線とが交差する点の配置を示す(上面透視)図である。 板状触媒エレメントAの下面にある凸条の稜線と板状触媒エレメントBの上面にある凸条の稜線とが交差する点の配置を示す(上面透視)図である。 本発明に用いる板状触媒エレメントCを示す3面(前面、上面、右側面)図である。 本発明の脱硝触媒ユニットの一例を示す前面図である。 板状触媒エレメントAの上面にある凸条の稜線と板状触媒エレメントCの下面にある凸条の稜線とが交差する点の配置を示す(上面透視)図である。 板状触媒エレメントAの下面にある凸条の稜線と板状触媒エレメントCの上面にある凸条の稜線とが交差する点の配置を示す(上面透視)図である。 本発明の脱硝触媒ユニットにおけるガス流入側に在る縁の状態の一例を示す図である。 従来技術の脱硝触媒ユニットにおけるガス流入側に在る縁の状態の一例を示す図である。
 本発明の実施形態を図面に基づいて具体的に説明する。なお、以下の実施形態によって本発明の範囲は制限されない。
 本発明の脱硝触媒ユニットは、複数の板状触媒エレメントからなる。
 個々の板状触媒エレメントは、板状基材とその表面に担持された触媒成分とを含有してなるものであることが好ましい。板状触媒エレメントは、例えば、メタルラス、無機繊維織布または不織布などの板状基材に、触媒成分を含浸、塗布などして担持し、次いで、プレス加工などを施すことによって得ることができる。
 触媒成分は、脱硝触媒効果のあるものであれば、特に制限されない。例えば、チタンの酸化物、モリブデンおよび/またはタングステンの酸化物、ならびにバナジウムの酸化物を含有して成るもの(チタン系触媒); CuやFeなどの金属が担持されたゼオライトなどのアルミノケイ酸塩を主に含有して成るもの(ゼオライト系触媒; チタン系触媒とゼオライト系触媒とを混合して成るものを挙げることができる。これらのうちチタン系触媒が好ましい。
 チタン系触媒の例としては、Ti-V-W触媒、Ti-V-Mo触媒、Ti-V-W-Mo触媒等を挙げることができる。
 Ti元素に対するV元素の割合は、V25/TiO2の重量百分率として、好ましくは2重量%以下、より好ましくは1重量%以下である。Ti元素に対するMo元素および/またはW元素の割合は、モリブデンの酸化物とタングステンの酸化物とを併用する場合(MoO3+WO3)/TiO2の重量百分率として、好ましくは10重量%以下、より好ましくは5重量%以下である。
 チタン系触媒の調製において、チタンの酸化物の原料として、酸化チタン粉末または酸化チタン前駆物質を用いることができる。酸化チタン前駆物質としては、酸化チタンスラリ、酸化チタンゾル;硫酸チタン、四塩化チタン、チタン酸塩、チタンアルコキシドなどを挙げることができる。本発明においては、チタンの酸化物の原料として、アナターゼ型酸化チタンを形成するものが好ましく用いられる。
 バナジウムの酸化物の原料として、五酸化バナジウム、メタバナジン酸アンモニウム、硫酸バナジル等のバナジウム化合物を用いることができる。
 タングステンの酸化物の原料として、パラタングステン酸アンモニウム、メタタングステン酸アンモニウム、三酸化タングステン、塩化タングステン等を用いることができる。
 モリブデンの酸化物の原料として、モリブデン酸アンモニウム、三酸化モリブデンなどを用いることができる。
 本発明に用いられる触媒成分には、助触媒または添加物として、Pの酸化物、Sの酸化物、Alの酸化物(例えば、アルミナ)、Siの酸化物(例えば、ガラス繊維)、Zrの酸化物(例えば、ジルコニア)、石膏(例えば、二水石膏など)、ゼオライトなどが含まれていてもよい。これらは、粉末、ゾル、スラリ、繊維などの形態で、触媒調製時に用いることができる。
 本発明の脱硝触媒ユニットは、図4に示すような、複数の板状触媒エレメントが、枠体5の中に収納されているものが好ましい。
 個々の板状触媒エレメントは、ガス流入側に在る縁とガス流出側に在る縁と両脇にそれぞれ在る縁とを有する板状を成している。個々の板状触媒エレメントは、全体的な形状が、正方形または直方形であることが好ましい。そして、本発明の脱硝触媒ユニットにおいては、板状触媒エレメントが、ガス流入側に在る縁および両脇に在る縁をそれぞれ揃えて、積み重ねられている。
 個々の板状触媒エレメントは、平坦部1と凹凸部2とを交互にそれぞれ複数有する。平坦部1は、平らな板状を成している。凹凸部2は、上面および下面にそれぞれ凸条3,3’を平行に有する板状を成している。凸条3,3’は、曲っていてもよいが、図1等に示すように実質的に真直ぐな方が好ましい。凸条3,3’の高さh、および凸条3,3’の幅wは、適宜設定することができる。凹凸部2の幅は2wである。なお、ガス流入側またはガス流出側に在る縁における凸条断面の幅w2はw/(sin(90°-θ))である。個々の凸条3’,3の真裏は、該凸条の形に対応した形の凹条4,4’を成していることが好ましい。個々の凹凸部は、上面に在る凸条と下面に在る凸条とによって断面がZ字状またはS字状になっていることが好ましい。なお、図中の凹凸部2は、細い線が凸条の稜線を示し、太い線が凹条の谷線を示す。さらに、幅wに対する高さhの比h/wが大きくなるほど脱硝率が向上する傾向があり、この比が小さくなるほど圧力損失が低下する傾向がある。また、平坦部および凹凸部における板厚tは、特に限定されないが、好ましくは0.1~0.5mmである。
 各凸条は板状触媒エレメントのガス流入側に在る縁の延在方向に対して、角度θで、斜めに且つ相互に平行に配置されている。角度θは、下限が、50°、好ましくは55°、より好ましくは65°、よりさらに好ましくは70°であり、上限が85°、好ましくは83°、より好ましくは80°である。角度θが小さいと脱硝率の増大効果が高い傾向がある。角度θが大きいと圧力損失の低減効果が高い傾向がある。同じ面にある平行に配置された凸条は等間隔に配置されていることが好ましい。同じ面にある平行に配置された凸条の稜線間の距離pは、適宜設定できる。なお、幅p0は、p-2wまたはw1sin(90°-θ)である。本発明の板状触媒エレメントは、角度θが大きくなるほど圧力損失が低くなる傾向があり、幅p0が小さくなるほど脱硝率が高くなる傾向がある。
 本発明の脱硝触媒ユニットにおいては、一の板状触媒エレメントの上面にある凸条3の稜線と隣接する他の一の板状触媒エレメントの下面にある凸条3’の稜線とが交差して接するように配置されている。該交差する点における二つの稜線が成す劣角θ1は、好ましくは10°以上80°以下、より好ましくは20°以上70°以下、さらに好ましくは20°以上65°以下である。凸条の稜線が交差して接するように配置することで、板状触媒エレメントの平坦部の上面と隣接する板状触媒エレメントの平坦部の下面との間の平均距離は、前述した凸条3,3’の高さによって、下限が規制される。
 本発明の脱硝触媒ユニットは、前記交差する点6,6’のうちの少なくとも一つが、板状触媒エレメントのガス流入側に在る縁から内側(ガス流出側)に向かって、0mm超過且つ25mm未満、好ましくは4mm以上且つ20mm以下、より好ましくは7mm以上16mm以下の範囲xに、在る。
 交差する点6,6’が、この範囲xに位置する態様の例を以下に示す。
 図2に示す板状触媒エレメントBは、図1に示す板状触媒エレメントAの前後を入れ替えて裏返しにしたものである。このように裏返すと、板状触媒エレメントAの前面(ガス流入)側に在る縁における凹凸部の断面はZ字状の波形を成し、板状触媒エレメントBの前面(ガス流入)側に在る縁における凹凸部の断面は逆Z字状の波形を成す。図3、図5および図6に示すように、板状触媒エレメントAの上面の凸条の稜線と板状触媒エレメントBの下面の凸条の稜線とが交差して接する点6(図5)と、板状触媒エレメントAの下面の凸条の稜線と板状触媒エレメントBの上面の凸条の稜線とが交差して接する点6’(図6)がガス流入側に在る縁からほぼ同じ距離の位置において左右に交互にシフトして配置される。板状触媒エレメントAと板状触媒エレメントBのように一の板状エレメントを前後反転裏返して使用する場合、少なくとも一つの交差する点を範囲xに存在させるために、W3とW4との差が2x/(tanθ)であることが好ましい。
 図6に示す板状触媒エレメントCは、図1に示す板状触媒エレメントAの左右を入れ替えて裏返しにしたものである。このように裏返すと、板状触媒エレメントAの前面(ガス流入)側に在る縁における凹凸部の断面および板状触媒エレメントBの前面(ガス流入)側に在る縁における凹凸部の断面は伴にZ字状の波形を成す。図8、図9および図10に示すように、板状触媒エレメントAの上面の凸条の稜線と板状触媒エレメントCの下面の凸条の稜線とが交差して接する点6と、板状触媒エレメントAの下面の凸条の稜線と板状触媒エレメントCの上面の凸条の稜線とが交差して接する点6’が両脇の縁からほぼ同じ距離の位置において前後に交互にシフトして配置される。板状触媒エレメントAと板状触媒エレメントCのように一の板状エレメントを左右反転裏返して使用する場合、少なくとも一つの交差する点を範囲xに存在させるために、凸条の稜線が凸条の幅の中点に沿って在る場合、W3とW4との差が2x/(tanθ)-1.5W2であることが好ましい。
 交差する点6,6’が、範囲xに位置することによって、板状触媒エレメントがへたばって撓んだときでもガス流入側に在る縁における、板状触媒エレメントの平坦部の上面と隣接する板状触媒エレメントの平坦部の下面との間の距離dが不均一となることを防止できる(図11)。それによって、本発明の脱硝触媒ユニットは、低い圧力損失で、高い脱硝率を実現できるので、ファン動力などの初期ランニングコストの低減に寄与できる。
 以下に実施例を示して、本発明の脱硝触媒ユニットの効果を具体的に示す。
比較例
 角度θが75°、p0が30mmの、板状触媒エレメントを重ね合わせて交差する点6,6’の位置がガス流入側に在る縁から30mmになるように脱硝触媒ユニットを組み立てた。これに模擬燃焼排ガスを流して、圧力損失及び脱硝率を測定した。
実施例
 角度θが75°、p0が30mmの、板状触媒エレメントAを図3~6に示すように重ね合わせて交差する点6,6’の位置がガス流入側に在る縁から10mmになるように脱硝触媒ユニットを組み立てた。これに模擬燃焼排ガスを流して、圧力損失及び脱硝率を測定した。
 実施例の脱硝触媒ユニットの圧力損失は、比較例の脱硝触媒ユニットの圧力損失に比べて、約30%低かった。実施例の脱硝触媒ユニットの脱硝率は、比較例の脱硝触媒ユニットの脱硝率よりも高かった。
 1:平坦部
 2:凹凸部
 3:上面の凸条
 4:上面の凹条
 3’:下面の凸条
 4’:下面の凹条
 5:枠体
 A:板状触媒エレメント
 B:板状触媒エレメント
 6:板状触媒エレメントAの上面の稜線と板状触媒エレメントBの下面の稜線とが交差する点
 6’:板状触媒エレメントAの下面の稜線と板状触媒エレメントBの上面の稜線とが交差する点
 G:流入ガス
 G’:流出ガス

Claims (4)

  1.  ガス流入側に在る縁とガス流出側に在る縁と両脇にそれぞれ在る縁とを有する板状触媒エレメントを、ガス流入側に在る縁と両脇に在る縁とをそれぞれ揃えて、複数枚積み重ねて成る脱硝触媒ユニットであって、
     個々の板状触媒エレメントは、平らな板状を成した平坦部と上面および下面にそれぞれ凸条を有する板状を成した凹凸部とを交互にそれぞれ複数有し、且つ各凸条は板状触媒エレメントのガス流入側に在る縁の延在方向に対して50°以上85°以下の角度で斜めに且つ相互に平行に配置されており、
     一の板状触媒エレメントの上面にある凸条の稜線と隣接する他の一の板状触媒エレメントの下面にある凸条の稜線とが交差して接するように配置されており、
     該交差する点のうちの少なくとも一つが、板状触媒エレメントのガス流入側に在る縁から内側に向かって0mm超過且つ25mm未満の範囲に在る、
    脱硝触媒ユニット。
  2.  個々の板状触媒エレメントは、板状基材とそれに担持された触媒成分とを含有してなるものである、請求項1に記載の脱硝触媒ユニット。
  3.  ガス流入側に在る縁とガス流出側に在る縁と両脇にそれぞれ在る縁とを有する板状触媒エレメントであって、
     板状触媒エレメントは、平らな板状を成した平坦部と上面および下面にそれぞれ凸条を有する板状を成した凹凸部とを交互にそれぞれ複数有し、且つ各凸条は板状触媒エレメントのガス流入側に在る縁の延在方向に対して50°以上85°以下の角度で斜めに且つ相互に平行に配置されており、
     複数枚の板状触媒エレメントを、ガス流入側に在る縁と両脇に在る縁とをそれぞれ揃えて、且つ一の板状触媒エレメントの上面にある凸条の稜線と隣接する他の一の板状触媒エレメントの下面にある凸条の稜線とが交差して接するように配置されて、積み重ねたときに、該交差する点のうちの少なくとも一つが、板状触媒エレメントのガス流入側に在る縁から内側に向かって0mm超過且つ25mm未満の範囲に在る、
    板状触媒エレメント。
  4.  板状基材とそれに担持された触媒成分とを含有してなる、請求項3に記載の板状触媒エレメント。
PCT/JP2021/002561 2020-01-28 2021-01-26 脱硝触媒構造体 WO2021153539A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ATA9016/2021A AT524990A2 (de) 2020-01-28 2021-01-26 Denitrierungskatalysatorstruktur
US17/795,616 US20230073667A1 (en) 2020-01-28 2021-01-26 Denitration catalyst structure
CN202180011372.2A CN115023289B (zh) 2020-01-28 2021-01-26 脱硝催化剂构造体
KR1020227025440A KR20220112298A (ko) 2020-01-28 2021-01-26 탈질 촉매 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020011464A JP7244444B2 (ja) 2020-01-28 2020-01-28 脱硝触媒構造体
JP2020-011464 2020-01-28

Publications (1)

Publication Number Publication Date
WO2021153539A1 true WO2021153539A1 (ja) 2021-08-05

Family

ID=77078216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002561 WO2021153539A1 (ja) 2020-01-28 2021-01-26 脱硝触媒構造体

Country Status (7)

Country Link
US (1) US20230073667A1 (ja)
JP (1) JP7244444B2 (ja)
KR (1) KR20220112298A (ja)
CN (1) CN115023289B (ja)
AT (1) AT524990A2 (ja)
TW (1) TWI803818B (ja)
WO (1) WO2021153539A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014920A1 (fr) * 1994-11-15 1996-05-23 Babcock-Hitachi Kabushiki Kaisha Structure de catalyseur et appareil de purification de gaz
JPH10180120A (ja) * 1996-11-08 1998-07-07 Hitachi Zosen Corp ハニカム構造体
JPH10286469A (ja) * 1997-02-12 1998-10-27 Babcock Hitachi Kk 板状触媒構造体及び該触媒構造体を用いる触媒反応装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013775A1 (fr) * 1998-09-09 2000-03-16 Babcock-Hitachi Kabushiki Kaisha Structure catalytique permettant de reguler les emissions d'echappement et dispositif s'y rapportant
JP2000117120A (ja) 1998-10-14 2000-04-25 Babcock Hitachi Kk 触媒構造体
JP2001104801A (ja) * 1999-10-05 2001-04-17 Babcock Hitachi Kk 排ガス浄化用触媒構造体
JP4344102B2 (ja) 2001-06-06 2009-10-14 バブコック日立株式会社 排ガス脱硝用触媒スラリおよびその製造方法
JP2003251199A (ja) * 2002-02-28 2003-09-09 Kazuhiko Kato メタル担体、触媒反応装置及び排ガス浄化装置
JP2006181442A (ja) * 2004-12-27 2006-07-13 Babcock Hitachi Kk 脱硝触媒の再生方法
CN202621183U (zh) * 2012-04-27 2012-12-26 巴布科克日立株式会社 氮氧化物去除用催化剂单元的制造装置
JP6053363B2 (ja) * 2012-07-18 2016-12-27 三菱日立パワーシステムズ株式会社 触媒構造
JP5896883B2 (ja) * 2012-11-13 2016-03-30 三菱日立パワーシステムズ株式会社 排ガス浄化用触媒構造体
JP2014113569A (ja) * 2012-12-11 2014-06-26 Babcock-Hitachi Co Ltd 排ガス浄化用触媒構造体
NO20140934A1 (no) * 2014-07-23 2016-01-25 Yara Int Asa Bikake-monolittstruktur
JP6814667B2 (ja) * 2017-03-14 2021-01-20 日本碍子株式会社 ハニカム構造体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014920A1 (fr) * 1994-11-15 1996-05-23 Babcock-Hitachi Kabushiki Kaisha Structure de catalyseur et appareil de purification de gaz
JPH10180120A (ja) * 1996-11-08 1998-07-07 Hitachi Zosen Corp ハニカム構造体
JPH10286469A (ja) * 1997-02-12 1998-10-27 Babcock Hitachi Kk 板状触媒構造体及び該触媒構造体を用いる触媒反応装置

Also Published As

Publication number Publication date
AT524990A2 (de) 2022-09-15
KR20220112298A (ko) 2022-08-10
TW202133922A (zh) 2021-09-16
JP7244444B2 (ja) 2023-03-22
US20230073667A1 (en) 2023-03-09
JP2021115538A (ja) 2021-08-10
CN115023289A (zh) 2022-09-06
CN115023289B (zh) 2024-03-22
TWI803818B (zh) 2023-06-01

Similar Documents

Publication Publication Date Title
EP1027917B2 (en) Catalyst unit and gas purifying apparatus
US9724683B2 (en) Catalyst structure
AU761031B2 (en) Exhaust emission control catalyst structure and device
JP4309046B2 (ja) 排ガス浄化用触媒エレメント、触媒構造体、その製造方法および排ガス浄化装置ならびにこれを用いた排ガス浄化方法
WO2021153539A1 (ja) 脱硝触媒構造体
WO2022092313A1 (ja) 排ガス浄化用触媒構造体
WO2023171823A1 (ja) 脱硝触媒構造体
JP7260974B2 (ja) 燃焼排ガスの脱硝装置
JP7195094B2 (ja) 排ガス浄化用触媒構造体
JP2010253366A (ja) 触媒構造体
JP5804909B2 (ja) 排ガス浄化用触媒構造体及びその製造法
JP2014113569A (ja) 排ガス浄化用触媒構造体
JP2014050824A (ja) 排ガス浄化用触媒エレメントおよび排ガス浄化用触媒構造体
JP7474854B2 (ja) 脱硝触媒および排ガス浄化方法
JP2000117120A (ja) 触媒構造体
JP6978827B2 (ja) 排ガス浄化用触媒ユニット
JP2020116490A (ja) 排ガス浄化用触媒構造体
JP2001070804A (ja) 排ガス浄化用触媒構造体ならびにこれに用いる網状物および該網状物の取り扱い治具
JPH09239243A (ja) 排煙脱硝装置と方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747931

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20227025440

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747931

Country of ref document: EP

Kind code of ref document: A1