WO2021153388A1 - ガラス組成物および複合粉末材料 - Google Patents

ガラス組成物および複合粉末材料 Download PDF

Info

Publication number
WO2021153388A1
WO2021153388A1 PCT/JP2021/001923 JP2021001923W WO2021153388A1 WO 2021153388 A1 WO2021153388 A1 WO 2021153388A1 JP 2021001923 W JP2021001923 W JP 2021001923W WO 2021153388 A1 WO2021153388 A1 WO 2021153388A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite powder
powder material
glass composition
firing
present
Prior art date
Application number
PCT/JP2021/001923
Other languages
English (en)
French (fr)
Inventor
山崎 正弘
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021574675A priority Critical patent/JPWO2021153388A1/ja
Priority to CN202180011014.1A priority patent/CN115103822A/zh
Publication of WO2021153388A1 publication Critical patent/WO2021153388A1/ja
Priority to US17/814,982 priority patent/US20220363590A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/20Glass-ceramics matrix

Definitions

  • the present invention relates to a composite powder material containing a glass composition and a powder composed of the glass composition.
  • LTCC low-temperature co-fired ceramics
  • 5G fifth generation communication standard
  • Patent Document 1 discloses a mixture of borosilicate glass and alumina having a low content of alkali metal oxide.
  • Patent Document 1 by sintering this at 950 ° C. for 2 hours, the characteristics of a dielectric constant of 5.7 or less and a dielectric loss of 0.0014 or less are achieved at high frequencies.
  • the firing temperature at the time of manufacturing the LTCC is a temperature suitable for the firing to proceed sufficiently according to the thermal characteristics such as the glass transition temperature Tg of the glass component contained in the composite powder material, the softening point Ts and the crystallization temperature Tc. It is selected, but usually above 900 ° C. However, when the firing temperature exceeds 900 ° C., silver diffuses into glass ceramics (fired body) to reduce the electrical characteristics of the material, or the peripheral portion of the silver electrode is browned by redox.
  • Diffusion of silver can be suppressed to some extent by lowering the firing temperature and shortening the firing time.
  • a dense fired body cannot be formed, and the electrical characteristics are deteriorated. Therefore, there is a demand for a material that can be fired at a temperature of 900 ° C. or lower, more preferably about 870 ° C., and that can obtain the required electrical characteristics.
  • copper when used for the electrode, diffusion into glass-ceramics is unlikely to occur.
  • copper is oxidized to copper oxide during firing, the electrical resistance increases and the performance deteriorates. Therefore, firing in a reducing atmosphere without oxygen is required. Firing in such a reducing atmosphere requires large-scale manufacturing equipment, and mass production is not easy.
  • Patent Document 1 Although a low dielectric constant and a low dielectric loss are achieved by firing at 950 ° C., a silver electrode cannot be used at this firing temperature, and a large-scale manufacturing facility is prepared and a copper electrode is used. There is a need. Therefore, the mass production cost is high.
  • the present invention has been made in view of the above, and a fired body capable of firing at a low temperature such that a silver electrode can be used, and further achieving a low dielectric constant and a low dielectric loss at a high frequency can be obtained. It is an object of the present invention to provide a glass composition used for a composite powder material to be used. Specifically, the firing of the composite powder material at a low temperature is aimed at firing at 870 ° C. or homogeneous firing in a wide low temperature range of 870 ° C. to 900 ° C.
  • the low dielectric constant is intended to have a dielectric constant of 6.5 or less.
  • the low dielectric loss means that the Q value represented by the reciprocal of the dielectric loss is 500 or more when the measurement frequency is 1 MHz, and 450 or more when the measurement frequency is 14 GHz to 16 GHz.
  • Another object of the present invention is to provide a composite powder material containing the glass composition as a powder and having the above characteristics.
  • the present invention is as follows.
  • Li 2 O and oxide-based mol% representation, SiO 2 60% to 67%, B 2 O 3 20% to 29%, CaO 3% to 9%, and Al 2 O 3 3% to 6%, and the molar ratio (Li 2 O: Na 2 O: K 2 O) of the contents of Li 2 O, Na 2 O, and K 2 O is 1: 0 to 1.9.
  • the fired body (A) is used, and the fired body obtained by firing at 870 ° C. for 60 minutes is the fired body (B).
  • the ratio represented by ⁇ density of fired body (B) / density of fired body (A) ⁇ ⁇ 100 is 98.0% to 102.0%.
  • the composite powder material is fired at 870 ° C. for 60 minutes, the fired body (B) is used, and the fired body obtained by firing at 900 ° C. for 60 minutes is the fired body (C).
  • the ratio represented by ⁇ density of fired body (B) / density of fired body (C) ⁇ ⁇ 100 is 99.0% to 101.0%.
  • the composite powder material containing the glass powder composed of the glass composition according to the present invention can be uniformly fired in a low temperature of 870 ° C. or a wide low temperature range of 870 ° C. to 900 ° C. Further, the fired body obtained by firing the composite powder material can realize a low dielectric constant and a low dielectric loss even at a high frequency.
  • the glass composition of the present embodiment contains 60% to 67% of SiO 2 , 20% to 29% of B 2 O 3 , 3% to 9% of Ca O, and Al 2 O in mol% representation based on oxides. 3 is included in 3% to 6%. Also includes Li 2 O, Li 2 O, Na 2 O, and K 2 O molar ratio of the content of (Li 2 O: Na 2 O : K 2 O) is 1: 0 to 1.9: 0 ⁇ It is a glass composition of 0.9.
  • the content of each component in the glass composition means the content in mol% representation based on the oxide unless otherwise specified.
  • SiO 2 is a component that stabilizes glass and is an essential component. From the viewpoint of stabilizing the glass and reducing the dielectric constant, the content of SiO 2 in the glass composition of the present embodiment is 60% or more, preferably 62% or more, and more preferably 63% or more. On the other hand, in order to ensure the meltability of the glass and enable the production of homogeneous glass at low cost, the content of SiO 2 in the glass composition of the present embodiment is 67% or less, preferably 66.5% or less. , More preferably 66% or less.
  • B 2 O 3 is a component that promotes firing of glass and is an essential component.
  • the content of B 2 O 3 in the glass composition of the present embodiment is 20% or more, preferably 23% or more, more preferably 24% or more. do.
  • the content of B 2 O 3 in the glass composition of the present embodiment is 29% or less, preferably 27% or less, and more preferably 26% or less. Glass that easily separates phases is not suitable for stable mass production.
  • Al 2 O 3 is a component for stabilizing glass and is an essential component.
  • the content of Al 2 O 3 in the glass composition of the present embodiment is set to 3% or more, preferably 3.5% or more, and more preferably 4% or more.
  • the content of Al 2 O 3 in the glass composition of the present embodiment is set to 6% or less, preferably 5.7% or less, more preferably 5.5. % Or less. Glass with a melting temperature that is too high is not suitable for mass production.
  • CaO is a component and an essential component that lowers the melting temperature of glass and promotes firing.
  • the CaO content of the glass composition of the present embodiment is set to 3% or more, preferably 3.5% or more, and more preferably 4% or more. ..
  • the CaO content of the glass composition of the present embodiment is set to 9% or less, preferably 7% or less, and more preferably 6% or less.
  • Li 2 O, Na 2 O and K 2 O are components that promote firing and are useful components for ensuring sinterability at a temperature of 900 ° C. or lower.
  • Li 2 O, Na 2 O and K 2 O are also components that tend to cause high dielectric loss at high frequencies.
  • the present inventors have repeated experiments and found that if the ratio of the contents of these components satisfies a predetermined condition, the effect of promoting firing can be obtained, while the increase in dielectric loss can be suppressed. From the above findings, the molar ratio (Li 2 O: Na 2 O: K 2 O) of the contents of Li 2 O, Na 2 O, and K 2 O in the glass composition of the present embodiment is 1: 0 to 1. .9: 0 to 0.9. That is, the glass composition of the present embodiment contains Li 2 O as an essential component. On the other hand, Na 2 O and K 2 O may or may not be contained.
  • the alkali metal oxide in the glass composition of the present embodiment contains only Li 2 O and does not contain Na 2 O and K 2 O. Even when Na 2 O and K 2 O are contained , the content of Li 2 O is preferably 35% or more with respect to the total content of Li 2 O, Na 2 O and K 2 O, and is preferably 60. It is more preferably% or more, and most preferably 80% or more.
  • the molar ratio of the contents of Li 2 O and Na 2 O in the glass composition of the present embodiment is 1: 1.9 or less, more preferably 1: 1.5 or less, still more preferably 1: 1.3 or less.
  • the molar ratio (Li 2 O: Na 2 O) of the contents of Li 2 O and Na 2 O in the glass composition of the present embodiment is preferably 1: 0.6 or more, more preferably 1: 0.75 or more. It is preferably 1: 0.9 or more, and most preferably 1: 0.9 or more.
  • the content of Na 2 O is 1.9 times or less, more preferably 1.5 times or less, still more preferably 1.3 times or less of the content of Li 2 O. ..
  • the Na 2 O content is preferably 0.6 times or more, more preferably 0.75 times or more, and most preferably 0.9 times or more.
  • the molar ratio (Li 2 O: K 2 O) of the contents of Li 2 O and K 2 O in the glass composition of the present embodiment is 1: 0.9. It is more preferably 1: 0.7 or less, further preferably 1: 0.5 or less, and particularly preferably 1: 0.3 or less. That is, when K 2 O is contained, the content of K 2 O is 0.9 times or less, more preferably 0.7 times or less, still more preferably 0.5 times or less of the content of Li 2 O. , 0.3 times or less is particularly preferable.
  • the molar ratio (Na 2 O: K 2 O) of the contents of Na 2 O and K 2 O in the glass composition of the present embodiment is preferably 1: 1 or less. : 0.5 or less is more preferable, 1: 0.3 or less is further preferable, and 1: 0.25 or less is particularly preferable.
  • K 2 O may not be contained, but when it is contained, the molar ratio is preferably 1: 0.1 or more. That is, the content of K 2 O is preferably 1 time or less, more preferably 0.5 times or less, further preferably 0.3 times or less, particularly preferably 0.25 times or less, and particularly preferably 0.25 times or less of the content of Na 2 O. , 0.1 times or more is preferable.
  • the total content of Li 2 O, Na 2 O, and K 2 O in the glass composition of the present embodiment is preferably 0.3% or more, more preferably 0. It is 4% or more, more preferably 0.5% or more.
  • the total content of Li 2 O, Na 2 O, and K 2 O in the glass composition of the present embodiment is preferably 1.0% or less, more preferably 1.0% or less. Is 0.9% or less, more preferably 0.8% or less.
  • Li 2 O is an essential component.
  • the content of Li 2 O in the glass composition of the present embodiment is preferably 0.2% or more, more preferably 0.3% or more from the viewpoint of improving sinterability. Further, from the viewpoint of reducing the dielectric loss at high frequencies, the Li 2 O content is preferably 1.0% or less, more preferably 0.9% or less, still more preferably 0.8% or less.
  • BaO is a component that can be a substitute for CaO, and a part or all of CaO can be replaced with BaO.
  • BaO is a component that lowers the melting temperature of glass and promotes firing, and is not an essential component, but may be contained in the glass composition of the present embodiment.
  • the content of BaO in the glass composition of the present embodiment is preferably 3% or more, more preferably 3.5% or more, still more preferably 4% or more.
  • the content of BaO in the glass composition of the present embodiment is preferably 9% or less, more preferably 7% or less, still more preferably 6% or less.
  • SrO is a component that can substitute for CaO, and a part or all of CaO can be replaced with SrO.
  • SrO is a component that lowers the melting temperature of glass and promotes firing, and is not an essential component, but may be contained in the glass composition of the present embodiment.
  • the SrO content of the glass composition of the present embodiment is preferably 3% or more, more preferably 3.5% or more, still more preferably 4% or more.
  • the SrO content of the glass composition of the present embodiment is preferably 9% or less, more preferably 7% or less, still more preferably 6% or less.
  • CaO, SrO, and BaO may include all three types, and any one or two types may be selected and used.
  • the total content thereof is preferably 3% or more, more preferably 3.5% or more, still more preferably 4% or more.
  • the content thereof is preferably 9% or less, more preferably 7% or less, still more preferably 6% or less.
  • the glass composition of the present embodiment may contain components other than the above as long as the content is within the range in which the effects of the present invention are exhibited.
  • the glass of this embodiment may contain MgO, ZnO, CeO 2 , ZrO 2 , CuO, and AgO. It should be noted that these are merely examples, and other components that can be contained in the glass composition of the present embodiment are not limited to these.
  • the total content of other components that can be contained is preferably 5% or less, more preferably 3% or less.
  • the suitable temperature for firing the composite powder material containing the glass powder composed of the glass composition of the present embodiment depends on the shrinkage start temperature Sp of the glass composition and the softening point Ts.
  • the shrinkage start temperature Sp is a temperature at which melting shrinkage of the glass composition begins to occur, and is a temperature indicating a third inflection point in differential thermal analysis (DTA).
  • the shrinkage start temperature Sp of the glass composition of the present embodiment is too low, the resin used for slurrying when firing the composite powder material even if the temperature is suitable for firing the composite powder material containing the glass composition.
  • the component is not decomposed and remains as it is or as a carbon component inside the fired body, which may hinder the formation of a dense fired body. Therefore, the shrinkage start temperature Sp of the glass composition is preferably 750 ° C. or higher, more preferably 770 ° C. or higher, and even more preferably 790 ° C. or higher.
  • the shrinkage start temperature Sp of the glass composition is preferably 850 ° C. or lower, more preferably 840 ° C. or lower, still more preferably 830 ° C. or lower, from the viewpoint of lowering the firing temperature of the composite powder material.
  • the softening point Ts of the glass composition of the present embodiment is preferably 850 ° C. or higher, more preferably 860 ° C. or higher, still more preferably 870 ° C. or higher, and the glass composition of the present embodiment.
  • the softening point Ts is preferably 920 ° C. or lower, more preferably 910 ° C. or lower, and even more preferably 900 ° C. or lower.
  • the method for producing the glass composition of the present embodiment is not particularly limited, and examples thereof include the methods shown below.
  • the raw materials are mixed to prepare a raw material mixture.
  • the raw material is not particularly limited as long as it is a raw material used for producing ordinary oxide-based glass, and oxides, carbonates, and the like can be used.
  • the types and proportions of the raw materials are appropriately adjusted to obtain a raw material mixture so that the composition of the obtained glass falls within the above range.
  • the heating temperature is preferably 1500 ° C. or higher, more preferably 1550 ° C. or higher, preferably 1700 ° C. or lower, and more preferably 1650 ° C. or lower.
  • the heating time is preferably 90 minutes or more, more preferably 100 minutes or more, preferably 180 minutes or less, and more preferably 140 minutes or less.
  • the glass composition of the present embodiment can be obtained by cooling and solidifying the melt.
  • the cooling method is not particularly limited. For example, it can be cooled by using a roll-out machine, a press machine, or the like, and can be rapidly cooled by dropping it on a cooling liquid or the like.
  • the glass composition of the present embodiment thus obtained may be in any form.
  • it may be block-shaped, plate-shaped, thin plate-shaped (flake-shaped), powder-shaped, or the like.
  • the composite powder material of the present embodiment preferably contains 45% by mass to 55% by mass of the glass powder composed of the above glass composition and 45% by mass to 55% by mass of the alumina filler.
  • the glass powder contained in the composite powder material of the present embodiment is a glass powder composed of the above glass composition.
  • the content of the glass powder in the composite powder material of the present embodiment is preferably 45% by mass or more, more preferably 47% by mass or more, and further preferably 48% by mass or more.
  • the composite powder material of the present embodiment by setting the content of the glass powder to 55% by mass or less, a sufficient amount of the alumina filler described later can be contained, and a sufficiently low dielectric loss can be obtained at high frequencies. Therefore, the content of the glass powder in the composite powder material of the present embodiment is preferably 55% by mass or less, more preferably 53% by mass or less, and further preferably 51% by mass or less.
  • the average particle size D50 of the glass powder in the present embodiment is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, still more preferably 3 ⁇ m or less, from the viewpoint of obtaining a dense fired body by firing.
  • a glass powder having an average particle size D50 that is too small has a high production cost when it is industrially produced. Therefore, the average particle size D50 of the glass powder in the present embodiment is preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more, still more preferably 1.5 ⁇ m or more.
  • the particle size in which the cumulative amount is 50% cumulative from the smallest particle is defined as "average particle size D50".
  • Alumina filler is a component that reduces dielectric loss at high frequencies.
  • the content of the alumina filler in the composite powder material of the present embodiment is preferably 45% by mass or more, more preferably 47% by mass or more, and further preferably 49% by mass or more.
  • the content of the alumina filler in the composite powder material of the present embodiment is preferably 55% by mass or less, more preferably 53% by mass or less, and further preferably 52% by mass or less.
  • the average particle size D50 of the alumina filler in the present embodiment is for obtaining a sufficiently dense fired body by firing, for improving the surface smoothness of the obtained fired body, and for further reducing the dielectric loss at high frequencies. Is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, and even more preferably 3 ⁇ m or less. On the other hand, in order to improve the bending strength, the average particle size D50 of the alumina filler in the present embodiment is preferably 0.3 ⁇ m or more, more preferably 0.6 ⁇ m or more, still more preferably 1.5 ⁇ m or more.
  • the Al 2 O 3 content of the alumina filler of the present embodiment is preferably 99.5% by mass or more, more preferably 99.9% by mass or more, and further preferably 99.99% by mass or more.
  • Al 2 O 3 in the alumina filler may have a plurality of crystal structures, but from the viewpoint of reducing the dielectric loss, the alumina filler in the present embodiment preferably contains a large amount of corundum crystals.
  • the alumina filler in the present embodiment preferably has a corundum crystal ratio of 30% by mass or more, more preferably 50% by mass or more, and more preferably 75% by mass or more with respect to the ratio of all crystal components. It is more preferably 100% by mass, and most preferably 100% by mass. The ratio is determined by X-ray crystal structure analysis.
  • the composite powder material of the present embodiment may further contain an inorganic oxide filler other than the alumina filler.
  • the inorganic oxide filler other than the alumina filler include magnesia filler.
  • the magnesia filler is a component having an effect of preventing the precipitation of orthoboric acid from the glass powder having low water resistance after the composite powder material is made into a green sheet. If orthoboric acid is deposited on the surface of the green sheet, adhesion failure occurs at the interface where the layers are laminated after lamination and firing, and problems such as peeling and cracking occur.
  • magnesia filler for example, keeping the green sheet at a low temperature and low humidity, shortening the storage time, and the like. Therefore, the magnesia filler is not an essential component in the composite powder material of the present embodiment.
  • the content of the magnesia filler is preferably 0.3% by mass or more, more preferably 0.5% by mass or more, still more preferably 0.8% by mass. % Or more.
  • the content of the magnesia filler in the composite powder material of the present embodiment is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1.5% by mass or less.
  • inorganic oxide fillers other than alumina fillers include fillers such as steatite, forsterite, cordierite, willemite, fused quartz, cerium oxide, zirconium oxide, copper oxide, and silver oxide, in addition to magnesia fillers.
  • the composite powder material of the present embodiment may contain components other than the above as long as the content is within the range in which the effects of the present invention are exhibited.
  • the composite powder material of the present embodiment contains glass frit, lithium carbonate, sodium carbonate, potassium carbonate, calcium carbonate, barium carbonate, strontium carbonate, boric anhydride, aluminum hydroxide, etc., which act as a firing aid. May be good. Since the glass frit acts as a firing aid, it is different from the glass powder made of the glass composition of the present embodiment. Further, the above other components are merely examples, and the other components that can be contained in the composite powder material of the present embodiment are not limited to these.
  • the composite powder material of the present embodiment is obtained by mixing a glass powder composed of the above glass composition, an alumina filler, and other components added as needed.
  • the mixing method is not particularly limited, and a known mixing method can be adopted.
  • the preferred embodiment of the glass composition constituting the glass powder is the same as the preferred embodiment of the glass composition described above.
  • the composite powder material of the present embodiment is preferably used to obtain a fired body such as LTCC by firing.
  • the firing method is not particularly limited, and examples thereof include a green sheet method.
  • the green sheet method will be briefly described below.
  • the composite powder material of the present embodiment is first mixed with the resin.
  • an additive such as a plasticizer may be added as needed.
  • it is mixed with a solvent to form a slurry, which is formed into a sheet on a film such as polyethylene terephthalate.
  • the slurry formed into a sheet is dried to remove the solvent to obtain a green sheet.
  • the resin is not particularly limited, and those usually used in the green sheet method may be used, but for example, polyvinyl butyral resin, acrylic resin and the like can be used.
  • the plasticizer is not particularly limited, and those usually used in the green sheet method may be used, but for example, dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate and the like can be used.
  • the solvent is not particularly limited, and the solvent usually used in the green sheet method may be used, but for example, toluene, xylene, butanol and the like can be used.
  • the method for molding the slurry is also not particularly limited, and examples thereof include a doctor blade method.
  • a wiring pattern and vias as through conductors are formed by screen printing or the like using a silver paste or a silver conductor, if necessary. Further, an overcoated glass for protecting the wiring or the like formed of silver may be formed by screen printing or the like. After that, a plurality of green sheets are laminated as needed, cut into a desired shape, and fired to obtain a fired body (substrate).
  • the temperature at the time of firing is preferably 900 ° C. or lower, more preferably 880 ° C. or lower, still more preferably 870 ° C. in order to suppress deterioration of electrical characteristics due to diffusion of silver during firing and browning due to redox. It is as follows. Since the composite powder material of the present embodiment contains a predetermined amount of glass powder made of a glass composition having excellent sinterability, firing proceeds sufficiently even at such a low temperature. On the other hand, the temperature at the time of firing is preferably 850 ° C. or higher, more preferably 860 ° C. or higher in order for the firing to proceed sufficiently. The time for firing the composite powder material of the present embodiment is not particularly limited, but is, for example, about 20 to 60 minutes.
  • the suitable temperature for firing the composite powder material of the present embodiment depends on the glass transition temperature Tg of the composite powder material, the shrinkage start temperature Sp, and the softening point Ts.
  • the shrinkage start temperature Sp is the temperature at which the melting shrinkage of the glass composition begins to occur, and is the temperature at which the third inflection point is indicated in the differential thermal analysis (DTA).
  • DTA differential thermal analysis
  • the glass transition temperature Tg of the composite powder material of the present embodiment is preferably 650 ° C. or higher, more preferably 665 ° C. or higher, still more preferably 680 ° C. or higher.
  • the glass transition temperature Tg of the composite powder material of the present embodiment is preferably 730 ° C. or lower, more preferably 715 ° C. or lower, still more preferably 710 ° C. or lower, from the viewpoint of lowering the firing temperature of the composite powder material.
  • the shrinkage start temperature Sp of the composite powder material of the present embodiment is preferably 820 ° C. or higher, more preferably 830 ° C. or higher, still more preferably 840 ° C. or higher.
  • the shrinkage start temperature Sp of the composite powder material of the present embodiment is preferably 880 ° C. or lower, more preferably 870 ° C. or lower, and further preferably 860 ° C. or lower.
  • the softening point Ts of the composite powder material of the present embodiment is preferably 865 ° C. or higher, more preferably 870 ° C. or higher, still more preferably 875 ° C. or higher.
  • the softening point Ts of the composite powder material of the present embodiment is preferably 910 ° C. or lower, more preferably 905 ° C. or lower, and further preferably 900 ° C. or lower.
  • the composite powder material of the present embodiment When firing the composite powder material of the present embodiment, a plurality of green sheet laminates are usually arranged in a firing furnace and fired, but the firing temperature may be slightly different for each laminate depending on the arrangement location in the firing furnace. There is a possibility that the deviation will occur. It is preferable that a homogeneous fired body can be obtained even when the firing temperature deviates slightly in this way. Therefore, the composite powder material of the present embodiment has the density of the fired body (fired body (B)) obtained by firing at 870 ° C. for 60 minutes, which was measured by firing by the method described in the column of Examples. , The ratio to the density of the fired body (fired body (C)) obtained by firing at 900 ° C.
  • the ratio is preferably 101.0% or less, more preferably 100.8% or less, and further preferably 100.5% or less. Further, such a ratio is preferably 99.0% or more, more preferably 99.2% or more, and further preferably 99.5% or more.
  • the firing temperature is preferably lower, and the firing time is also preferably shorter. Therefore, the composite powder material of the present embodiment has the density of the fired body (fired body (B)) obtained by firing at 870 ° C. for 60 minutes, which was measured by firing by the method described in the column of Examples.
  • the ratio to the density of the fired body (fired body (A)) obtained by firing at 870 ° C. for 20 minutes ((density of fired body (B) / density of fired body (A)) ⁇ 100.
  • the ratio) is preferably 102.0% or less, more preferably 101.5% or less, and further preferably 101.0% or less. Further, such a ratio is preferably 98.0% or more, more preferably 98.5% or more, and further preferably 99.0% or more.
  • the composite powder material of the present embodiment is a dielectric at 1 MHz of a fired body (fired body (B)) obtained by firing at 870 ° C. for 60 minutes, which is measured by firing by the method described in the column of Examples.
  • the rate is preferably 6.5 or less, more preferably 6.4 or less, and even more preferably 6.3 or less.
  • the Q value in this case is preferably 500 or more, more preferably 2500 or more, and even more preferably 3300 or more.
  • the significance of such a Q value will be described below. Since the Q value is the reciprocal of the dielectric loss, a large Q value means that the dielectric loss is low.
  • a green sheet for LTCC in which a silver electrode can be used is commercially available from DuPont, Ferro and the like. This dielectric constant is about 7 to 8.
  • a value of a dielectric constant is low as 0.5 or more, which is significant in design.
  • the Q value is 500 or more, when it is used for communication as an LTCC, the reception sensitivity and the transmission sensitivity at the corresponding frequency are good, and the amount of power used does not become too large, which is preferable.
  • the composite powder material of the present embodiment is a dielectric at 1 MHz of a fired body (fired body (C)) obtained by firing at 900 ° C. for 60 minutes, which is measured by firing by the method described in the column of Examples.
  • the rate is preferably 6.5 or less, more preferably 6.4 or less, and even more preferably 6.3 or less.
  • the Q value in this case is preferably 500 or more, more preferably 2500 or more, and even more preferably 3300 or more.
  • the composite powder material of the present embodiment is a dielectric at 1 MHz of a fired body (fired body (A)) obtained by firing at 870 ° C. for 20 minutes, which is measured by firing by the method described in the column of Examples.
  • the rate is preferably 6.5 or less, more preferably 6.4 or less, and even more preferably 6.3 or less.
  • the Q value in this case is preferably 500 or more, more preferably 2500 or more, and even more preferably 3300 or more.
  • the composite powder material of the present embodiment is a fired body (fired body (A)) fired under the conditions of a firing temperature of 870 ° C. and a firing time of 20 minutes, which is measured by firing by the method described in the column of Examples.
  • the dielectric constant at high frequencies is preferably 6.5 or less, and more preferably 6.4 or less.
  • the Q value in this case is preferably 450 or more, more preferably 470 or more, and most preferably 500 or more.
  • the high frequency is 14 GHz or more, and it is preferable that the dielectric constant and the Q value satisfy the above range in the frequency range of 14 GHz to 16 GHz.
  • the powder, alumina filler (purity 99.9%, corundum single crystal), and magnesia filler (purity 99.9%) of each of the obtained glass compositions were mixed at the ratios shown in Table 2 and an alcohol solvent was used.
  • Each composite powder material was obtained by mixing with a wet ball mill for 1 hour, dehydration filtration, and drying.
  • the composite powder material of Example 2-1 uses the powder of the glass composition of Example 1-1, and similarly, the composite powder materials of Examples 2-2 to 2-12 are each of Example 1-.
  • the powder of the glass composition of 2 to 1-12 is used.
  • Examples 2-1 to 2-4 are examples, and examples 2-5 to 2-12 are comparative examples.
  • the glass transition temperature Tg, the shrinkage start temperature Sp, and the softening point Ts were evaluated using a differential thermal analyzer. The results are shown in Table 2. Further, 3 g of the composite powder material was placed in a mold having a diameter of 30 mm, and the powder was compacted at a pressure of 200 MPa and fired at 870 ° C. for 20 minutes, 870 ° C. for 60 minutes, or 900 ° C. for 60 minutes to obtain a fired body. The density, dielectric constant and Q value were measured. Each measurement method is as shown below, and the results are shown in Table 2. In Table 2, the fired body (A) was fired at 870 ° C. for 20 minutes, the fired body (B) was fired at 870 ° C. for 60 minutes, and the fired body (C) was fired at 900 ° C. for 60 minutes. Means each thing.
  • the composite powder materials of Examples 2-1 to 2-4 and 2-12 were fired at 870 ° C. for 20 minutes to obtain a fired body (fired body (A)), and the dielectric properties at high frequencies were measured. ..
  • the composite powder materials of Examples 2-1 to 2-4 are a fired body obtained by firing at 870 ° C. for 60 minutes (fired body (B)) and a fired body obtained by firing at 900 ° C. for 60 minutes. It is a material in which the dielectric property of the fired body (C) at 1 MHz is good, and the ratio of the density of the fired body (B) to the density of the fired body (C) is good.
  • the dielectric properties at high frequencies were measured using a PNA network analyzer N5227A manufactured by Keysight Technology Co., Ltd. by a method according to JIS R 1627 (1996). The measurement frequencies are shown in Table 2 together with the results.
  • the composite powder material of Example 2-1 to Example 2-4 containing the powder of the glass composition of Examples 1-1 to 1-4 is a fired body (B) obtained by firing at 870 ° C. for 60 minutes, and a fired body (B).
  • the fired body (C) obtained by firing at 900 ° C. for 60 minutes had a dielectric constant of 6.5 or less at 1 MHz and a Q value of 2500 or more, and was obtained by firing at 900 ° C. for 60 minutes.
  • the ratio of the density of the fired body (B) obtained by firing at 870 ° C. for 60 minutes to the density of the fired body (C) was 99% to 101%. From this, it was judged that a homogeneous and dense fired body was formed in a wide temperature range.
  • these composite powder materials have a ratio of the density of the fired body (B) obtained by firing at 870 ° C. for 60 minutes to 98% of the density of the fired body (A) obtained by firing at 870 ° C. for 20 minutes.
  • the dielectric constant of the fired body (A) obtained by firing at 870 ° C. for 20 minutes is 6.5 or less at a high frequency such as about 15 GHz, and the Q value is 500 or more.
  • the composite powder material of Examples 2-5 to 2-12 containing the powder of the glass composition of Examples 1-5 to 1-12 is any one of the above-mentioned viewpoints of dielectric constant, Q value, and sinterability. It was inferior at 1 or more.
  • Example 2-12 containing the powder of the glass composition of Example 1-12 not containing the alkali metal oxide
  • the proportion of the glass composition was increased and the proportion of the alumina filler was decreased, but the temperature was 870 ° C.
  • the ratio of the density of the fired body (B) obtained by firing at 870 ° C. for 60 minutes to the density of the fired body (A) obtained by firing for 20 minutes was extremely poor at 104.0%, as compared with the examples. It was significantly inferior in sinterability.
  • the Q value of the fired body (A) obtained by firing at 870 ° C. for 20 minutes at a high frequency of about 15 GHz was also significantly inferior to 67.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本発明は、LiOと、酸化物基準のモル%表示で、SiOを60%~67%、Bを20%~29%、CaOを3%~9%、およびAlを3%~6%と、を含み、LiO、NaO、およびKOの含有量のモル比(LiO:NaO:KO)が1:0~1.9:0~0.9であるガラス組成物に関する。

Description

ガラス組成物および複合粉末材料
 本発明は、ガラス組成物および前記ガラス組成物からなる粉末を含む複合粉末材料に関する。
 ガラスフリットや無機酸化物の混合物(複合粉末材料)を樹脂に分散させたシートを積層焼成して製造される低温焼成同時焼成セラミックス(LTCC)が知られている。LTCCには、層間の厚みを狭くして小型化するため、配線間の距離を狭くして緻密化するため、高機能化するため等の種々の目的により、材料自体の誘電率の低減が求められている。さらに、携帯電話、スマートフォンなどの通信デバイスにおける第五世代通信規格(通称5G)に対応するために、特にマイクロ波領域での誘電損失の低い材料が求められている。
 例えば、特許文献1では、アルカリ金属酸化物の含有量が低いホウケイ酸ガラスとアルミナの混合物が開示されている。特許文献1では、これを950℃で2時間焼結させることで、高周波において誘電率5.7以下、誘電損失0.0014以下の特性を達成している。
日本国特許第4047050号公報
 LTCCの電極部材としては、金、銀、銅などの電気抵抗の小さい金属が用いられるが、銀電極が最も広く一般的に用いられている。LTCCの製造時における焼成温度は、複合粉末材料に含まれるガラス成分のガラス転移温度Tg、軟化点Tsや結晶化温度Tcといった熱特性に応じて、焼成が十分に進行するように適した温度が選択されるが、通常は900℃超である。しかしながら、銀は焼成温度が900℃を超えると、ガラスセラミックス(焼成体)へ拡散して材料の電気特性を低下させたり、酸化還元によって銀電極周辺部を茶変させたりする。銀の拡散は焼成温度を低くすることや、焼成時間を短くすることによって、ある程度は抑えられる。しかし、従来の材料では前述の条件では、緻密な焼成体ができず、電気特性が低下してしまう。このようなことから、900℃以下の温度、より好ましくは870℃程度の温度で焼成でき、かつ要求される電気特性が得られる材料が求められている。
 一方、電極に銅を用いた場合では、ガラスセラミックスへの拡散は起こりにくい。しかし焼成時に銅が酸化して酸化銅となることで電気抵抗が上昇し、性能が低下してしまう。そのため、酸素のない還元雰囲気下での焼成を必要とする。このような還元雰囲気下での焼成には、大掛かりな製造設備が必要となり量産が容易ではない。
 特許文献1では、950℃での焼成で低誘電率、および低誘電損失を達成しているものの、この焼成温度では銀電極を使用できず、大掛かりな製造設備を用意して銅電極を使用する必要がある。したがって、量産コストが高くなる。
 本発明は上記に鑑みてなされたものであり、銀電極も使用できるような低温度での焼成が可能であり、さらに、高周波での低誘電率及び低誘電損失を実現可能な焼成体が得られる複合粉末材料に用いられるガラス組成物を提供することを目的とする。
 具体的には、複合粉末材料の低温度での焼成とは、870℃での焼成や、870℃~900℃といった広い低温度域での均質な焼成を目的とする。低誘電率とは、誘電率6.5以下を目的とする。低誘電損失とは、誘電損失の逆数で表されるQ値が、測定周波数が1MHzである場合には500以上であり、測定周波数が14GHz~16GHzである場合には450以上を目的とする。
 また、本発明は当該ガラス組成物を粉末として含み、上記特性を有する複合粉末材料を提供することを目的とする。
 本発明者らが鋭意検討した結果、所定の組成を有するガラス組成物を用いることによって、900℃以下での焼成が可能であり、高周波での低誘電率及び低誘電損失を実現できることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記のとおりである。
[1] LiOと、酸化物基準のモル%表示で、SiOを60%~67%、Bを20%~29%、CaOを3%~9%、およびAlを3%~6%と、を含み、LiO、NaO、およびKOの含有量のモル比(LiO:NaO:KO)が1:0~1.9:0~0.9であるガラス組成物。
[2] LiO、NaO、およびKOの含有量の合計が、酸化物基準のモル%表示で0.3%~1.0%である、前記[1]に記載のガラス組成物。
[3] 収縮開始温度が790℃以上である、前記[1]または[2]に記載のガラス組成物。
[4] 軟化点が900℃以下である、前記[1]~[3]のいずれか1に記載のガラス組成物。
[5] LiOの含有量が、酸化物基準のモル%表示で0.2%~1.0%である、前記[1]~[4]のいずれか1に記載のガラス組成物。
[6] ガラス粉末を45質量%~55質量%、アルミナフィラーを45質量%~55質量%含む複合粉末材料であって、前記ガラス粉末は前記[1]~[5]のいずれか1に記載のガラス組成物からなる粉末である、複合粉末材料。
[7] ガラス転移温度が650℃以上である、前記[6]に記載の複合粉末材料。
[8] 収縮開始温度が820℃以上である、前記[6]又は[7]に記載の複合粉末材料。
[9] 軟化点が900℃以下である、前記[6]~[8]のいずれか1に記載の複合粉末材料。
[10] 複合粉末材料を、870℃で20分間焼成して得られる焼成体を焼成体(A)、870℃で60分間焼成して得られる焼成体を焼成体(B)とした際に、{焼成体(B)の密度/焼成体(A)の密度}×100で表される割合が98.0%~102.0%である、前記[6]~[9]のいずれか1に記載の複合粉末材料。
[11] 複合粉末材料を、870℃で60分間焼成して得られる焼成体を焼成体(B)、900℃で60分間焼成して得られる焼成体を焼成体(C)とした際に、{焼成体(B)の密度/焼成体(C)の密度}×100で表される割合が99.0%~101.0%である、前記[6]~[10]のいずれか1に記載の複合粉末材料。
 本発明に係るガラス組成物からなるガラス粉末を含む複合粉末材料は、870℃といった低温度や870℃~900℃といった広い低温度域での均質な焼成が可能である。また、かかる複合粉末材料を焼成することで得られる焼成体は、高周波においても、低誘電率及び低誘電損失の実現が可能である。
 以下、本発明の実施形態について説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
[ガラス組成物]
 まず、本発明のガラス組成物の実施形態について説明する。本実施形態のガラス組成物は、酸化物基準のモル%表示で、SiOを60%~67%、Bを20%~29%、CaOを3%~9%、およびAlを3%~6%含む。また、LiOを含み、LiO、NaO、およびKOの含有量のモル比(LiO:NaO:KO)が1:0~1.9:0~0.9であるガラス組成物である。
 本実施形態のガラス組成物のガラス組成について以下に説明する。なお、本明細書ではガラス組成における各成分の含有量は、特に説明のない場合は酸化物基準のモル%表示での含有量を意味する。
 SiOはガラスを安定化する成分であり、必須成分である。
 ガラスの安定化、および低誘電率化の観点から、本実施形態のガラス組成物のSiOの含有量は60%以上とし、好ましくは62%以上、より好ましくは63%以上とする。
 一方、ガラスの溶融性を確保し、均質なガラスを安価に生産できるようにするために、本実施形態のガラス組成物のSiOの含有量は67%以下とし、好ましくは66.5%以下、より好ましくは66%以下とする。
 Bはガラスの焼成を促進する成分であり必須成分である。
 900℃以下の温度での焼結性の確保のために、本実施形態のガラス組成物のBの含有量は20%以上とし、好ましくは23%以上、より好ましくは24%以上とする。
 一方、溶解時のガラスの分相を防ぐために、本実施形態のガラス組成物のBの含有量は29%以下とし、好ましくは27%以下、より好ましくは26%以下とする。分相しやすいガラスは、安定な量産に適さない。
 Alはガラスを安定化するための成分であり必須成分である。
 ガラスの分相を防ぐために、本実施形態のガラス組成物のAlの含有量は3%以上とし、好ましくは3.5%以上、より好ましくは4%以上とする。
 一方、ガラスの溶解温度の高温化を抑制するために、本実施形態のガラス組成物のAlの含有量は6%以下とし、好ましくは5.7%以下、より好ましくは5.5%以下とする。溶解温度が高すぎるガラスは、量産に適さない。
 CaOはガラスの溶融温度を低下させるとともに、焼成を促進する成分であり必須成分である。
 900℃以下の温度での焼結性の確保のために、本実施形態のガラス組成物のCaOの含有量は3%以上とし、好ましくは3.5%以上、より好ましくは4%以上とする。
 一方、低誘電率化のために、本実施形態のガラス組成物のCaOの含有量は9%以下とし、好ましくは7%以下、より好ましくは6%以下とする。
 LiO、NaOおよびKOは焼成を促進させる成分であり、900℃以下の温度での焼結性の確保のために有用な成分である。その一方でLiO、NaOおよびKOは高周波における高誘電損失化を招きやすい成分でもある。本発明者らは実験を繰り返し、これら成分の含有量の割合が所定の条件を満たせば焼成の促進の効果を得られる一方で、高誘電損失化を抑制できることを見出した。
 上記の知見より、本実施形態のガラス組成物のLiO、NaO、およびKOの含有量のモル比(LiO:NaO:KO)は1:0~1.9:0~0.9とする。
 すなわち、本実施形態のガラス組成物は、LiOは必須成分として含有する。一方、NaO、KOは含有してもしなくてもよい。
 高周波における高誘電損失化を特に抑制するためには、本実施形態のガラス組成物におけるアルカリ金属酸化物をLiOのみにし、NaO、KOは含有しないことが最も好ましい。NaO、KOを含有する場合でも、LiO、NaO、KOの合計の含有量に対して、LiOの含有量が35%以上であることが好ましく、60%以上であることがさらに好ましく、80%以上であることが最も好ましい。
 高周波における高誘電損失化を特に抑制し、ガラスの軟化点が低くガラスの製造を容易にしやすくするためには、本実施形態のガラス組成物におけるLiOとNaOの含有量のモル比(LiO:NaO)は1:1.9以下であり、1:1.5以下がより好ましく、1:1.3以下がさらに好ましい。また、本実施形態のガラス組成物におけるLiOとNaOの含有量のモル比(LiO:NaO)は1:0.6以上が好ましく、1:0.75以上がより好ましく、1:0.9以上が最も好ましい。すなわち、NaOを含有する場合のNaOの含有量は、LiOの含有量の1.9倍以下であり、1.5倍以下がより好ましく、1.3倍以下がさらに好ましい。また、NaOを含有する場合のNaO含有量は、0.6倍以上が好ましく、0.75倍以上がさらに好ましく、0.9倍以上が最も好ましい。
 高周波における高誘電損失化を特に抑制するためには、本実施形態のガラス組成物におけるLiOとKOの含有量のモル比(LiO:KO)は1:0.9以下であり、1:0.7以下がより好ましく、1:0.5以下がさらに好ましく、1:0.3以下が特に好ましい。すなわち、KOを含有する場合のKOの含有量は、LiOの含有量の0.9倍以下であり、0.7倍以下がより好ましく、0.5倍以下がさらに好ましく、0.3倍以下が特に好ましい。
 高周波における誘電損失の低減の観点からは、本実施形態のガラス組成物におけるNaOとKOの含有量のモル比(NaO:KO)は1:1以下が好ましく、1:0.5以下がより好ましく、1:0.3以下がさらに好ましく、1:0.25以下が特に好ましい。また、KOは含有しなくてもよいが、含有する場合には、かかるモル比は1:0.1以上が好ましい。すなわち、KOの含有量はNaOの含有量の1倍以下が好ましく、0.5倍以下がより好ましく、0.3倍以下がさらに好ましく、0.25倍以下が特に好ましく、また、0.1倍以上が好ましい。
 焼結性の向上の観点からは、本実施形態のガラス組成物におけるLiO、NaO、およびKOの含有量の合計は、好ましくは0.3%以上、より好ましくは0.4%以上、さらに好ましくは0.5%以上である。
 一方、高周波における誘電損失の低減のためには、本実施形態のガラス組成物におけるLiO、NaO、およびKOの含有量の合計は、好ましくは1.0%以下、より好ましくは0.9%以下、さらに好ましくは0.8%以下である。
 上記アルカリ金属酸化物のうち、LiOは必須成分である。本実施形態のガラス組成物におけるLiOの含有量は、焼結性向上の観点から0.2%以上が好ましく、0.3%以上がより好ましい。また、高周波における誘電損失の低減の観点から、LiOの含有量は1.0%以下が好ましく、0.9%以下がより好ましく、0.8%以下がさらに好ましい。
 BaOは、CaOの代替とできる成分であり、CaOの一部または全部をBaOに置換できる。BaOはガラスの溶融温度を低下させるとともに、焼成を促進する成分であり、必須成分ではないが本実施形態のガラス組成物に含まれていてもよい。900℃以下の温度での焼結性の確保のために、本実施形態のガラス組成物のBaOの含有量は3%以上が好ましく、より好ましくは3.5%以上、さらに好ましくは4%以上とする。
 一方、低誘電率化のために、本実施形態のガラス組成物のBaOの含有量は9%以下が好ましく、より好ましくは7%以下、さらに好ましくは6%以下とする。
 SrOは、CaOの代替とできる成分であり、CaOの一部または全部をSrOに置換できる。SrOはガラスの溶融温度を低下させるとともに、焼成を促進する成分であり、必須成分ではないが本実施形態のガラス組成物に含まれていてもよい。900℃以下の温度での焼結性の確保のために、本実施形態のガラス組成物のSrOの含有量は3%以上が好ましく、より好ましくは3.5%以上、さらに好ましくは4%以上とする。
 一方、低誘電率化のために、本実施形態のガラス組成物のSrOの含有量は9%以下が好ましく、より好ましくは7%以下、さらに好ましくは6%以下とする。
 CaOとSrOとBaOは、3種類全てを含んでいてもよく、また任意の1種類又は2種類を選択して使用することもできる。それらの含有量の合計は3%以上が好ましく、より好ましくは3.5%以上、さらに好ましくは4%以上とする。
 一方、低誘電率化のために、それらの含有量は9%以下が好ましく、より好ましくは7%以下、さらに好ましくは6%以下とする。
 本実施形態のガラス組成物は、本発明の効果を奏する範囲の含有量であれば、上記以外の成分を含有してもよい。例えば、本実施形態のガラスはMgO、ZnO、CeO、ZrO、CuO、AgOを含有してもよい。なお、これらはあくまで例示であり、本実施形態のガラス組成物が含有しうる他の成分はこれらに限定されない。
 含有しうる他の成分の合計の含有量は、5%以下が好ましく、3%以下がより好ましい。
 本実施形態のガラス組成物からなるガラス粉末を含む複合粉末材料を焼成する際の適した温度は、ガラス組成物の収縮開始温度Sp、軟化点Tsに依存する。なお収縮開始温度Spとは、ガラス組成物の溶解収縮が起こり始める温度であり、示差熱分析(DTA)において第3変曲点を示す温度である。
 本実施形態のガラス組成物の収縮開始温度Spは、低すぎると、ガラス組成物を含む複合粉末材料の焼成に適した温度にしても、複合粉末材料を焼成する際のスラリー化に用いた樹脂成分が分解されずにそのまま、又は炭素成分として、焼成体内部に残留してしまい、緻密な焼成体形成の妨げとなり得る。そのため、ガラス組成物の収縮開始温度Spは、好ましくは750℃以上、より好ましくは770℃以上、さらに好ましくは790℃以上である。またガラス組成物の収縮開始温度Spは、複合粉末材料の焼成温度を低温化する観点から、好ましくは850℃以下、より好ましくは840℃以下、さらに好ましくは830℃以下である。
 同様の観点より、本実施形態のガラス組成物の軟化点Tsは、好ましくは850℃以上、より好ましくは860℃以上、さらに好ましくは870℃以上であり、また、本実施形態のガラス組成物の軟化点Tsは、好ましくは920℃以下、より好ましくは910℃以下、さらに好ましくは900℃以下である。
 本実施形態のガラス組成物の製造方法は、特に限定されないが、例えば、以下に示す方法が挙げられる。
 まず、原料を混合して原料混合物を準備する。原料は、通常の酸化物系ガラスの製造に用いる原料であれば特に限定されず、酸化物や炭酸塩等を使用できる。得られるガラスの組成が上記の範囲となるように、原料の種類および割合を適宜調整して原料混合物とする。
 次に、原料混合物を公知の方法で加熱して溶融物を得る。加熱する温度(溶融温度)は、1500℃以上が好ましく、1550℃以上がより好ましく、また、1700℃以下が好ましく、1650℃以下がより好ましい。加熱する時間は、90分以上が好ましく、100分以上がより好ましく、また、180分以下が好ましく、140分以下がより好ましい。
 その後、溶融物を冷却し固化することにより、本実施形態のガラス組成物を得られる。冷却方法は特に限定されない。例えば、ロールアウトマシン、プレスマシン等を用いて冷却でき、冷却液体への滴下等により急冷することもできる。
 こうして得られる本実施形態のガラス組成物は、いかなる形態であってもよい。例えば、ブロック状、板状、薄い板状(フレーク状)、粉末状等であってもよい。
[複合粉末材料]
 次に、本実施形態の複合粉末材料について説明する。本実施形態の複合粉末材料は、上記のガラス組成物からなるガラス粉末を45質量%~55質量%、及びアルミナフィラーを45質量%~55質量%含むことが好ましい。
 本実施形態の複合粉末材料に含まれるガラス粉末は、上記のガラス組成物からなるガラス粉末である。
 本実施形態の複合粉末材料において、ガラス粉末の含有量を45質量%以上とすることにより、900℃以下の温度での十分な焼結性を実現できる。したがって、本実施形態の複合粉末材料におけるガラス粉末の含有量は45質量%以上が好ましく、より好ましくは47質量%以上、さらに好ましくは48質量%以上とする。
 一方、本実施形態の複合粉末材料において、ガラス粉末の含有量を55質量%以下とすることにより、後述するアルミナフィラーを十分量含有でき、高周波において十分に低い誘電損失を得られる。したがって、本実施形態の複合粉末材料におけるガラス粉末の含有量は55質量%以下が好ましく、より好ましくは53質量%以下、さらに好ましくは51質量%以下とする。
 本実施形態におけるガラス粉末の平均粒径D50は、焼成により緻密な焼成体を得るという観点から5μm以下が好ましく、4μm以下がより好ましく、3μm以下がさらに好ましい。
 一方、平均粒径D50が小さすぎるガラス粉末は、工業的に製造する場合の製造コストが高い。したがって、本実施形態におけるガラス粉末の平均粒径D50は、0.5μm以上が好ましく、0.8μm以上がより好ましく、1.5μm以上がさらに好ましい。
 なお、レーザー回折法により測定した体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を「平均粒径D50」とする。
 アルミナフィラーは高周波における誘電損失を低下させる成分である。本実施形態の複合粉末において、アルミナフィラーの含有量を45質量%以上とすることにより、高周波において十分に低い誘電損失を得られる。したがって、本実施形態の複合粉末材料におけるアルミナフィラーの含有量は45質量%以上が好ましく、より好ましくは47質量%以上、さらに好ましくは49質量%以上とする。
 一方、本実施形態の複合粉末材料において、アルミナフィラーの含有量を55質量%以下とすることにより、900℃以下の温度での十分な焼結性を実現できる。したがって、本実施形態の複合粉末材料におけるアルミナフィラーの含有量は55質量%以下が好ましく、より好ましくは53質量%以下、さらに好ましくは52質量%以下とする。
 本実施形態におけるアルミナフィラーの平均粒径D50は、焼成により十分に緻密な焼成体を得るため、得られる焼成体の表面平滑性の向上のため、及び高周波における誘電損失をよりいっそう低下させるためには、5μm以下が好ましく、4μm以下がより好ましく、3μm以下がさらに好ましい。
 一方、抗折強度の向上のためには、本実施形態におけるアルミナフィラーの平均粒径D50は、0.3μm以上が好ましく、0.6μm以上がより好ましく、1.5μm以上がさらに好ましい。
 本実施形態のアルミナフィラーの純度は高いほど好ましい。具体的には、本実施形態のアルミナフィラーのAl含有率は99.5質量%以上が好ましく、99.9質量%以上がより好ましく、99.99質量%以上がさらに好ましい。
 また、アルミナフィラー中のAlは複数の結晶構造を有している場合があるが、誘電損失を低下させる観点からは、本実施形態におけるアルミナフィラーはコランダム結晶を多く含むことが好ましい。本実施形態におけるアルミナフィラーは、コランダム結晶の割合が全結晶成分の割合に対して30質量%以上であることが好ましく、50質量%以上であることがより好ましく、75質量%以上であることがさらに好ましく、100質量%であることが最も好ましい。
 当該割合は、X線結晶構造解析により求められる。
 本実施形態の複合粉末材料は、さらにアルミナフィラー以外の無機酸化物フィラーを含有してもよい。アルミナフィラー以外の無機酸化物フィラーとしては、例えばマグネシアフィラーが挙げられる。
 マグネシアフィラーは、複合粉末材料をグリーンシート化した後に耐水性の低いガラス粉末からオルトホウ酸が析出することを防ぐ効果を有する成分である。オルトホウ酸がグリーンシート表面に析出していると、積層、焼成後に積層した界面で接着不良を起こし、剥がれ、割れ等の不具合が生じる。なお、オルトホウ酸の析出は、マグネシアフィラーの添加の他、例えばグリーンシートを低温低湿に保つ、保管時間の短縮等の方法によっても防げる。そのため、本実施形態の複合粉末材料において、マグネシアフィラーは必須成分ではない。
 マグネシアフィラーの添加によりオルトホウ酸の析出を防ぐ効果を得たい場合は、マグネシアフィラーの含有量は好ましくは0.3質量%以上、より好ましくは0.5質量%以上、さらに好ましくは0.8質量%以上である。
 一方、マグネシアフィラーの含有量が増えすぎると、900℃以下の温度での焼結性が不十分となる恐れがある。したがって、本実施形態の複合粉末材料における、マグネシアフィラーの含有量は、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1.5質量%以下である。
 アルミナフィラー以外の無機酸化物フィラーとしてマグネシアフィラー以外にも、例えばステアタイト、フォルステライト、コージライト、ウィレマイト、溶融石英、酸化セリウム、酸化ジルコニウム、酸化銅、酸化銀等のフィラーが挙げられる。
 本実施形態の複合粉末材料は、本発明の効果を奏する範囲の含有量であれば、上記以外の他の成分を含有してもよい。例えば、本実施形態の複合粉末材料は、焼成助剤として作用するガラスフリットや炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸バリウム、炭酸ストロンチウム、無水ホウ酸、水酸化アルミニウムなどを含有してもよい。なお、上記ガラスフリットとは、焼成助剤として作用するものであるから、本実施形態のガラス組成物からなるガラス粉末とは異なるものである。また、上記他の成分はあくまで例示であり、本実施形態の複合粉末材料が含有しうる他の成分はこれらに限定されない。
 本実施形態の複合粉末材料は、上記ガラス組成物からなるガラス粉末と、アルミナフィラーと、必要に応じて添加される他の成分とを混合することにより得られる。混合の方法は特に限定されず、公知の混合方法を採用できる。ガラス粉末を構成するガラス組成物の好ましい態様は、上述のガラス組成物の好ましい態様と同様である。
 本実施形態の複合粉末材料は、好ましくは、焼成してLTCC等の焼成体を得るために用いられる。焼成の方法は特に限定されないが、例えばグリーンシート法が挙げられる。以下にグリーンシート法を簡単に説明する。
 グリーンシート法においては、本実施形態の複合粉末材料はまず樹脂と混合される。この際、必要に応じて可塑剤等の添加剤が添加されてもよい。次に、溶剤と混合されてスラリー化され、ポリエチレンテレフタレート等のフィルム上にシート状に成形する。最後に、シート状に成形されたスラリーを乾燥し、溶剤が除去されてグリーンシートとなる。
 樹脂は特に限定はされず、通常グリーンシート法において用いられるものを用いればよいが、例えばポリビニルブチラール樹脂やアクリル樹脂等を使用できる。
 可塑剤も特に限定はされず、通常グリーンシート法において用いられるものを用いればよいが、例えばフタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル等を用使用できる。
 溶媒も特に限定されず、通常グリーンシート法において用いられるものを用いればよいが、例えばトルエン、キシレン、ブタノール等を使用できる。
 スラリーの成型方法も特に限定されないが、例えばドクターブレード法が挙げられる。
 得られたグリーンシートには、必要に応じて銀ペーストや銀導体等を用いたスクリーン印刷等によって配線パターンや貫通導体であるビアなどが形成される。また、銀で形成された配線等を保護するためのオーバーコートガラスがスクリーン印刷等によって形成されてもよい。
 その後、グリーンシートが必要に応じて複数枚積層され、また、所望の形状に切断されて、焼成されることにより焼成体(基板)が得られる。
 焼成する際の温度は、焼成時における銀の拡散による電気特性の低下や、酸化還元による茶変を抑制するためには、好ましくは900℃以下、より好ましくは880℃以下、さらに好ましくは870℃以下である。本実施形態の複合粉末材料は焼結性に優れるガラス組成物からなるガラス粉末を所定量含有することから、このような低い温度でも十分に焼成が進行する。
 一方、焼成する際の温度は、十分に焼成を進行させるためには、好ましくは850℃以上、より好ましくは860℃以上である。
 本実施形態の複合粉末材料を焼成する時間は、特に限定されないが、例えば20分~60分程度である。
 本実施形態の複合粉末材料を焼成する際の適した温度は、複合粉末材料のガラス転移温度Tg、収縮開始温度Sp、及び軟化点Tsに依存する。なお、収縮開始温度Spとは先述したように、ガラス組成物の溶解収縮が起こり始める温度であり、示差熱分析(DTA)において第3変曲点を示す温度である。
 また、本実施形態の複合粉末材料のガラス転移温度Tgは、低すぎると、複合粉末材料の焼成に適した温度にしても、焼成する際のスラリー化に用いた樹脂成分が分解されずにそのまま、又は炭素成分として、焼成体内部に残留してしまい、緻密な焼成体形成の妨げとなり得る。そのため、本実施形態の複合粉末材料のガラス転移温度Tgは好ましくは650℃以上、より好ましくは665℃以上、さらに好ましくは680℃以上である。また本実施形態の複合粉末材料のガラス転移温度Tgは、複合粉末材料の焼成温度を低温化する観点から、好ましくは730℃以下、より好ましくは715℃以下、さらに好ましくは710℃以下である。
 同様の観点より、本実施形態の複合粉末材料の収縮開始温度Spは、好ましくは820℃以上、より好ましくは830℃以上、さらに好ましくは840℃以上である。また本実施形態の複合粉末材料の収縮開始温度Spは、好ましくは880℃以下、より好ましくは870℃以下、さらに好ましくは860℃以下である。
 同様の観点より、本実施形態の複合粉末材料の軟化点Tsは、好ましくは865℃以上、より好ましくは870℃以上、さらに好ましくは875℃以上である。また本実施形態の複合粉末材料の軟化点Tsは、好ましくは910℃以下、より好ましくは905℃以下、さらに好ましくは900℃以下である。
 本実施形態の複合粉末材料を焼成する際には、通常グリーンシートの積層体を焼成炉内に複数配置して焼成を行うが、焼成炉内における配置場所により、積層体ごとに焼成温度に若干のずれが生じる可能性がある。このように焼成温度が若干ずれた場合においても均質な焼成体が得られることが好ましい。
 したがって、本実施形態の複合粉末材料は、実施例の欄に記載の方法で焼成して測定された、870℃で60分間焼成して得られた焼成体(焼成体(B))の密度と、900℃で60分間焼成して得られた焼成体(焼成体(C))の密度との比((焼成体(B)の密度/焼成体(C)の密度)×100で表される割合)が、101.0%以下であることが好ましく、100.8%以下であることがより好ましく、100.5%以下であることがさらに好ましい。
 また、かかる割合は99.0%以上であることが好ましく、99.2%以上であることがより好ましく、99.5%以上であることがさらに好ましい。
 さらに、製造するコストの低減や設備の大規模化を抑えるために、焼成温度はより低温であることが好ましく、焼成する時間もより短いことが好ましい。
 したがって、本実施形態の複合粉末材料は、実施例の欄に記載の方法で焼成して測定された、870℃で60分間焼成して得られた焼成体(焼成体(B))の密度と、870℃で20分間焼成して得られた焼成体(焼成体(A))の密度との比((焼成体(B)の密度/焼成体(A)の密度)×100で表される割合)が、102.0%以下であることが好ましく、101.5%以下であることがより好ましく、101.0%以下であることがさらに好ましい。
 また、かかる割合は98.0%以上であることが好ましく、98.5%以上であることがより好ましく、99.0%以上であることがさらに好ましい。
 本実施形態の複合粉末材料は、実施例の欄に記載の方法で焼成して測定された、870℃で60分間焼成して得られた焼成体(焼成体(B))の1MHzでの誘電率が6.5以下であることが好ましく、6.4以下であることがより好ましく、6.3以下であることがさらに好ましい。
 また、この場合のQ値は500以上が好ましく、2500以上がより好ましく、3300以上がさらに好ましい。
 かかるQ値の意義について、以下に説明する。
 Q値は誘電損失の逆数であることから、Q値が大きいことは、誘電損失が低いことを意味する。LTCCは、層間の厚みを狭くして小型化するため、配線間の距離を狭くして緻密化するため、高機能化するため等の種々の目的により、材料自体の誘電率は低ければ低いほど好ましい。一般的に銀電極が使用可能なLTCC用グリーンシートが、Dupont社、Ferro社などから市販されている。この誘電率は7~8程度である。この誘電率から、設計上の有意性がある0.5以上低い誘電率の値を示すことが好ましい。
 Q値が500以上である場合、LTCCとして通信で使用する場合に、該当する周波数での受信感度、発信感度が良好であり、電力の使用量も大きくなりすぎないため、好ましい。
 本実施形態の複合粉末材料は、実施例の欄に記載の方法で焼成して測定された、900℃で60分間焼成して得られた焼成体(焼成体(C))の1MHzでの誘電率が6.5以下であることが好ましく、6.4以下であることがより好ましく、6.3以下であることがさらに好ましい。また、この場合のQ値は500以上が好ましく、2500以上がより好ましく、3300以上がさらに好ましい。
 本実施形態の複合粉末材料は、実施例の欄に記載の方法で焼成して測定された、870℃で20分間焼成して得られた焼成体(焼成体(A))の1MHzでの誘電率が6.5以下であることが好ましく、6.4以下であることがより好ましく、6.3以下であることがさらに好ましい。また、この場合のQ値は500以上が好ましく、2500以上がより好ましく、3300以上がさらに好ましい。
 携帯電話、スマートフォンなどの通信デバイスにおける第五世代通信規格(通称5G)に対応するために、特にマイクロ波領域での誘電損失の低い材料が求められている。本実施形態の複合粉末材料は、実施例の欄に記載の方法で焼成して測定された、焼成温度870℃、焼成時間20分の条件で焼成された焼成体(焼成体(A))の場合であっても、高周波での誘電率が6.5以下であることが好ましく、6.4以下であることがより好ましい。また、この場合のQ値は450以上であることが好ましく、470以上であることがさらに好ましく、500以上であることが最も好ましい。
 なお、本明細書において高周波とは、14GHz以上であり、14GHz~16GHzの周波数範囲において、誘電率及びQ値が上記範囲を満たすことが好ましい。
 以下、本発明に関して実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 [ガラス組成物の製造]
 表1に示したガラス組成となるようにガラス原料を調合して混合し、1550℃~1650℃の電気炉中で白金ルツボを用いて2時間溶融し、薄板状ガラスに成形してガラス組成物を得た。その後、ボールミルで粉砕し、D50=2.0μmの各ガラス組成物の粉末を得た。例1-1~例1-4が実施例であり、例1-5~例1-12が比較例である。
 [ガラス組成物の評価]
 得られた各ガラス組成物の粉末について、示差熱分析装置を用いて、収縮開始温度Sp、および軟化点Tsの評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [複合粉末材料の製造]
 得られた各ガラス組成物の粉末、アルミナフィラー(純度99.9%、コランダム単結晶)、およびマグネシアフィラー(純度99.9%)を、表2に示す比率で混合し、アルコール溶剤を用いた湿式ボールミルにて1時間混合し、脱水ろ過、乾燥させることで、各複合粉末材料を得た。なお、例2-1の複合粉末材料は例1-1のガラス組成物の粉末を用いたものであり、同様に、例2-2~例2-12の複合粉末材料は、それぞれ例1-2~例1-12のガラス組成物の粉末を用いたものである。例2-1~例2-4が実施例であり、例2-5~例2-12が比較例である。
 [複合粉末材料の評価]
 得られた各複合粉末材料について、示差熱分析装置を用いて、ガラス転移温度Tg、収縮開始温度Sp、および軟化点Tsの評価を行った。結果を表2に示す。
 また、直径30mmの金型に複合粉末材料を3g入れ、200MPaの圧力で圧粉したものを、870℃で20分間、870℃で60分間、又は900℃で60分間、焼成した焼成体を得て、密度、誘電率及びQ値の測定を行った。各測定方法は下記に示すとおりであり、結果を表2に示す。表2中、焼成体(A)とは870℃で20分間焼成したもの、焼成体(B)とは870℃で60分間焼成したもの、焼成体(C)とは900℃で60分間焼成したものをそれぞれ意味する。
 (密度の測定)
 各複合粉末材料を各焼成条件で焼成して得られた焼成体の密度を、アルキメデス法により測定した。
 (誘電特性の測定)
 誘電特性の測定は、LCRメーター(Agilent製、4192A)を用いて、各複合粉末材料の焼成体を所定形状(直径20mm、厚さ3mm)の円柱状とし、JIS C 2138(2007)に準拠した方法で、20℃、1MHzにおける誘電率および誘電損失を測定した。Q値は誘電損失の逆数として算出した。
 (高周波における誘電特性の測定)
 例2-1~例2-4及び例2-12の複合粉末材料について、870℃で20分間焼成して焼成体(焼成体(A))を得て、高周波における誘電特性の測定を行った。例2-1~例2-4の複合粉末材料は、870℃で60分間焼成して得られた焼成体(焼成体(B))、および900℃で60分間焼成して得られた焼成体(焼成体(C))の1MHzでの誘電特性が良好であって、焼成体(C)の密度に対する焼成体(B)の密度の割合が良好だった材料である。
 高周波での誘電特性は、キーサイト・テクノロジー社製PNAネットワークアナライザN5227Aを用いて、JIS R 1627(1996)に準ずる方法にて、測定を行った。測定周波数は結果と共に表2に示した。
Figure JPOXMLDOC01-appb-T000002
 例1-1~例1-4のガラス組成物の粉末を含む例2-1~例2-4の複合粉末材料は、870℃で60分間焼成して得られた焼成体(B)、および900℃で60分間焼成して得られた焼成体(C)の1MHzでの誘電率がともに6.5以下、Q値がともに2500以上であって、900℃で60分間焼成して得られた焼成体(C)の密度に対する870℃で60分間焼成して得られた焼成体(B)の密度の割合が99%~101%であった。このことから、幅広い温度範囲で均質で緻密な焼成体が形成されていると判断された。更に、これらの複合粉末材料は870℃で20分間焼成して得られた焼成体(A)の密度に対する870℃で60分間焼成して得られた焼成体(B)の密度の割合が98%~102%であり、かつ、870℃20分間焼成して得られた焼成体(A)の約15GHzといった高周波での誘電率が6.5以下、Q値が500以上であり、優れた誘電特性を有していた。
 一方、例1-5~例1-12のガラス組成物の粉末を含む例2-5~例2-12の複合粉末材料は、前述の誘電率、Q値、焼結性の観点のいずれか1以上で劣っていた。またアルカリ金属酸化物を含まない例1-12のガラス組成物の粉末を含む例2-12の複合粉末材料においては、ガラス組成物の割合を増やし、アルミナフィラーの割合を減らしたが、870℃で20分間焼成して得られた焼成体(A)の密度に対する870℃で60分間焼成して得られた焼成体(B)の密度の割合が104.0%と著しく悪く、実施例に比べて焼結性に大きく劣った。また、870℃で20分間焼成して得られた焼成体(A)の約15GHzといった高周波におけるQ値も67と大きく劣った。
 以上、本発明の好ましい実施の形態について説明したが、本発明は、上述した実施の形態に制限されるものではなく、本発明の範囲を逸脱しない範囲において、上述した実施の形態に種々の変形及び置換を加えることができる。 
 本出願は、2020年1月28日出願の日本特許出願2020-011937に基づくものであり、その内容はここに参照として取り込まれる。

Claims (11)

  1.  LiOと、酸化物基準のモル%表示で、SiOを60%~67%、Bを20%~29%、CaOを3%~9%、およびAlを3%~6%と、を含み、
     LiO、NaO、およびKOの含有量のモル比(LiO:NaO:KO)が1:0~1.9:0~0.9であるガラス組成物。
  2.  LiO、NaO、およびKOの含有量の合計が、酸化物基準のモル%表示で0.3%~1.0%である、請求項1に記載のガラス組成物。
  3.  収縮開始温度が790℃以上である、請求項1または2に記載のガラス組成物。
  4.  軟化点が900℃以下である、請求項1~3のいずれか1項に記載のガラス組成物。
  5.  LiOの含有量が、酸化物基準のモル%表示で0.2%~1.0%である、請求項1~4のいずれか1項に記載のガラス組成物。
  6.  ガラス粉末を45質量%~55質量%、アルミナフィラーを45質量%~55質量%含む複合粉末材料であって、
     前記ガラス粉末は請求項1~5のいずれか1項に記載のガラス組成物からなる粉末である、複合粉末材料。
  7.  ガラス転移温度が650℃以上である、請求項6に記載の複合粉末材料。
  8.  収縮開始温度が820℃以上である、請求項6又は7に記載の複合粉末材料。
  9.  軟化点が900℃以下である、請求項6~8のいずれか1項に記載の複合粉末材料。
  10.  複合粉末材料を、870℃で20分間焼成して得られる焼成体を焼成体(A)、870℃で60分間焼成して得られる焼成体を焼成体(B)とした際に、{焼成体(B)の密度/焼成体(A)の密度}×100で表される割合が98.0%~102.0%である、請求項6~9のいずれか1項に記載の複合粉末材料。
  11.  複合粉末材料を、870℃で60分間焼成して得られる焼成体を焼成体(B)、900℃で60分間焼成して得られる焼成体を焼成体(C)とした際に、{焼成体(B)の密度/焼成体(C)の密度}×100で表される割合が99.0%~101.0%である、請求項6~10のいずれか1項に記載の複合粉末材料。
PCT/JP2021/001923 2020-01-28 2021-01-20 ガラス組成物および複合粉末材料 WO2021153388A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021574675A JPWO2021153388A1 (ja) 2020-01-28 2021-01-20
CN202180011014.1A CN115103822A (zh) 2020-01-28 2021-01-20 玻璃组合物和复合粉末材料
US17/814,982 US20220363590A1 (en) 2020-01-28 2022-07-26 Glass composition and composite powder material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020011937 2020-01-28
JP2020-011937 2020-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/814,982 Continuation US20220363590A1 (en) 2020-01-28 2022-07-26 Glass composition and composite powder material

Publications (1)

Publication Number Publication Date
WO2021153388A1 true WO2021153388A1 (ja) 2021-08-05

Family

ID=77079879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001923 WO2021153388A1 (ja) 2020-01-28 2021-01-20 ガラス組成物および複合粉末材料

Country Status (5)

Country Link
US (1) US20220363590A1 (ja)
JP (1) JPWO2021153388A1 (ja)
CN (1) CN115103822A (ja)
TW (1) TW202138324A (ja)
WO (1) WO2021153388A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006690A (ja) * 2008-06-26 2010-01-14 Korea Inst Of Science & Technology 低温焼成用低誘電率誘電体セラミック組成物
JP2010531287A (ja) * 2007-11-01 2010-09-24 コリア インスティテュート オブ サイエンス アンド テクノロジー 高強度及び高q値を有する低温焼成用誘電体セラミック組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2701611C1 (ru) * 2017-11-07 2019-09-30 Ферро Корпорэйшн Композиции диэлектрика с низкой к для применений при высоких частотах

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531287A (ja) * 2007-11-01 2010-09-24 コリア インスティテュート オブ サイエンス アンド テクノロジー 高強度及び高q値を有する低温焼成用誘電体セラミック組成物
JP2010006690A (ja) * 2008-06-26 2010-01-14 Korea Inst Of Science & Technology 低温焼成用低誘電率誘電体セラミック組成物

Also Published As

Publication number Publication date
CN115103822A (zh) 2022-09-23
US20220363590A1 (en) 2022-11-17
TW202138324A (zh) 2021-10-16
JPWO2021153388A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
JP7115609B2 (ja) ガラス
CN103221355B (zh) 结晶性玻璃粉末
JP5040918B2 (ja) ガラスセラミック組成物、ガラスセラミック焼結体および積層セラミック電子部品
WO2005108327A1 (ja) 積層誘電体製造方法
JP5003683B2 (ja) ガラスセラミック組成物、ガラスセラミック焼結体および積層セラミック電子部品
WO2004094338A1 (ja) 誘電体形成用無鉛ガラス、誘電体形成用ガラスセラミックス組成物、誘電体および積層誘電体製造方法
JPWO2016185921A1 (ja) 低温焼結セラミック材料、セラミック焼結体およびセラミック電子部品
JP2001114554A (ja) 低温焼成セラミック組成物及びセラミック多層基板
JP7348587B2 (ja) ガラスセラミック誘電体
JP2004339049A (ja) 誘電体形成用無鉛ガラス、誘電体形成用ガラスセラミックス組成物、誘電体および積層誘電体製造方法
WO2021153388A1 (ja) ガラス組成物および複合粉末材料
JP5070723B2 (ja) 積層誘電体および層状誘電体の製造方法
JP4229045B2 (ja) 電子回路基板および電子回路基板作製用無鉛ガラス
JP2020196635A (ja) アルミナ質焼結体及び配線基板
WO2022191020A1 (ja) ガラスセラミック材料、積層体、及び、電子部品
JP7491377B2 (ja) ガラス、ガラスセラミックス及び積層セラミック電子部品
JPH1160266A (ja) ガラス及びガラスセラミック材料
JP2017197415A (ja) ガラス
JP2007302541A (ja) 積層誘電体および層状誘電体の製造方法
JP2006298716A (ja) ガラス、ガラスセラミックス組成物および誘電体
JP2021187688A (ja) 複合粉末、顆粒粉末、タブレット、シート焼結体及び焼結体
JP4057853B2 (ja) ガラスセラミック焼結体および多層配線基板
JP4345458B2 (ja) ガラスセラミック基板
JP2004010437A (ja) 高周波部品用低誘電率磁器組成物
KR20040021319A (ko) 유전체 세라믹 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747208

Country of ref document: EP

Kind code of ref document: A1