WO2021149466A1 - 処理装置および測定システム - Google Patents

処理装置および測定システム Download PDF

Info

Publication number
WO2021149466A1
WO2021149466A1 PCT/JP2020/049205 JP2020049205W WO2021149466A1 WO 2021149466 A1 WO2021149466 A1 WO 2021149466A1 JP 2020049205 W JP2020049205 W JP 2020049205W WO 2021149466 A1 WO2021149466 A1 WO 2021149466A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
cooling
processing apparatus
heating
accommodating
Prior art date
Application number
PCT/JP2020/049205
Other languages
English (en)
French (fr)
Inventor
崇裕 宮戸
貴亮 森
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021573039A priority Critical patent/JP7394886B2/ja
Publication of WO2021149466A1 publication Critical patent/WO2021149466A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/579Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving limulus lysate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • This disclosure relates to processing equipment and measurement systems.
  • a measurement using a lysate reagent containing a horseshoe crab blood cell extract is known.
  • the amount of endotoxin and the amount of ⁇ -glucan in the sample solution can be measured.
  • Endotoxin is a lipopolysaccharide that constitutes the cell wall of Gram-negative bacteria, and is a typical pyrogen that causes a biological reaction such as fever when it enters the blood even in a trace amount.
  • Specimens include biological samples such as blood, as well as pharmaceuticals (for example, injections) that are directly introduced into the living body.
  • Japanese Unexamined Patent Publication No. 2017-129249 describes a measuring device for measuring the amount of endotoxin in a sample solution using a LAL (Limulus Amebocyte Lysate) reagent as a lysate reagent. Further, Japanese Patent Application Laid-Open No. 08-029432 describes a processing apparatus for pretreating a sample solution.
  • LAL Limulus Amebocyte Lysate
  • the processing apparatus described in Japanese Patent Application Laid-Open No. 08-029432 includes a transport mechanism for transporting a sample container from a heating unit to a cooling unit by a handling robot.
  • a transport mechanism for transporting a sample container from a heating unit to a cooling unit by a handling robot.
  • the sample container inserted into the container insertion hole of the heating unit is grasped by the handling robot, and the arm of the robot is moved upward to pull out the sample container from the container insertion hole.
  • the handling robot conveys the sample container to the upper part of the cooling unit, and the arm of the robot is moved downward to insert the sample container into the container insertion hole of the cooling unit.
  • the technique of the present disclosure can suppress a transport defect when transporting the sample container from the heating section to the cooling section, and can suppress a long processing time due to the transport of the sample container. It is an object of the present invention to provide a possible processing device and a measurement system including the processing device.
  • the processing apparatus comes into contact with a storage block that houses a sample container, a heating block that heats the sample solution in the sample container to a first temperature by contacting the storage block, and the storage block.
  • a cooling block that cools the sample solution in the sample container to a second temperature lower than the first temperature, a first state in which the heating block contacts the storage block, and a second state in which the cooling block contacts the storage block. It is provided with a contact mechanism that selectively brings the heating block or the cooling block into contact with the accommodating block by switching between.
  • the contact mechanism may move the heating block and the cooling block with respect to the accommodating block.
  • the heating block and the cooling block may be moved linearly relative to the accommodating block so that they can selectively contact the accommodating block.
  • the heating block and the cooling block may be arranged at positions facing each other across the accommodating block and may be moved integrally.
  • a heat insulating material is provided which is arranged between the heating block and the cooling block and is in contact with the outer shell region located on the outer shell of the accommodation block among the facing surfaces where the heating block and the cooling block face each other. You may.
  • the periphery of the heating block and the cooling block may be covered with a heat insulating material.
  • the heat capacity of the accommodating block may be smaller than the heat capacity of the heating block and the cooling block.
  • a control unit that brings the cooling block into contact with the accommodating block by controlling the contact mechanism after a preset set time has elapsed since the heating block was brought into contact with the accommodating block. You may prepare.
  • the temperature of the heating block may be 30 ° C. or higher and 80 ° C. or lower.
  • the temperature of the heating block may be 60 ° C. or higher and 80 ° C. or lower.
  • the temperature of the cooling block may be, for example, 0 ° C. or higher and 10 ° C. or lower.
  • the storage block may be configured to store a plurality of sample containers.
  • the sample solution is the measurement target of the measurement using the reagent containing the horseshoe crab blood cell extract, and the process of changing the temperature of the sample solution by the contact mechanism is performed before the above measurement is performed. It may be a pretreatment performed in.
  • the measurement system includes the above-mentioned processing device and a measuring device for measuring a sample solution.
  • an apparatus and a measurement system including the processing apparatus can be provided.
  • FIG. 9A shows the time of heating
  • FIG. 9B shows the time of cooling
  • FIG. 10A shows the time of heating
  • FIG. 10B shows the time of cooling.
  • FIG. 1 is a diagram showing an outline of a measurement system 1 provided with a processing device 10 according to the first embodiment of the present disclosure.
  • the measuring system 1 includes a processing device 10 and a measuring device 60.
  • the processing apparatus 10 performs pretreatment performed before performing endotoxin measurement on the sample solution C produced by adding the buffer solution B to the sample A such as a biological sample and diluting it.
  • the measuring device 60 executes endotoxin measurement with the sample solution C after pretreatment as a measurement target.
  • endotoxin is a typical pyrogen that causes a biological reaction such as fever by entering the blood even in a small amount, and sample A is directly introduced into the living body in addition to a biological sample such as blood. Pharmaceuticals (eg, injections, etc.).
  • the amount of endotoxin in the sample solution C is measured, and the endotoxin in the sample A is quantified.
  • the endotoxin measurement is a measurement using a reagent such as lysate reagent D containing horseshoe crab blood cell extract.
  • Endotoxin measurement is a measurement utilizing the fact that endotoxin causes aggregation and coagulation of horseshoe crab blood cell extract.
  • lysate reagent D containing horseshoe crab blood cell extract is added to sample solution C.
  • the sample solution E is produced by stirring the sample solution C to which the lysate reagent D is added.
  • the amount of endotoxin in the sample solution E is measured based on the change in the characteristics of the sample solution E.
  • a lysate reagent prepared from a blood cell extract of Atlantic horseshoe crab is called a LAL (Limulus Amebocyte Lysate) reagent.
  • the measuring device 60 in the measuring system 1 of the present embodiment uses the LAL reagent as the lysate reagent D, and the ratio using the change in turbidity of the sample solution E in the process of gelation of the lysate reagent D by the reaction with endotoxin as an index. Endotoxin is measured by the turbidity method.
  • endotoxin measurement is performed by the turbidimetry method, pretreatment for heating and cooling the sample solution C is required prior to the measurement. As shown in FIG. 1, pretreatment is performed on the sample solution C, and endotoxin measurement is performed on the sample solution E containing the sample solution C and the lysate reagent D after the pretreatment.
  • a sample solution C produced by adding a buffer solution B to a sample A and diluting the sample solution C is about.
  • Heat treatment is performed to inactivate the interfering factors in endotoxin measurement by heating at a temperature of 70 ° C. for about 10 minutes.
  • the sample solution C at about 70 ° C. is cooled to a temperature of about 5 ° C. to perform a cooling treatment for stopping the inactivation treatment.
  • the time of the cooling process from the start of cooling to the end of cooling is, for example, about 3 minutes.
  • the cooling treatment if it takes time to cool the sample solution C at about 70 ° C to a temperature of about 5 ° C., the time for the inactivation treatment for the sample solution C varies, and the accuracy of endotoxin measurement decreases. Therefore, in the pretreatment, it is necessary to rapidly cool the sample solution C, specifically, to cool the sample solution C at about 70 ° C to a temperature of about 5 ° C. in a short time.
  • the processing device 10 in the measurement system 1 of the present embodiment is a device that performs the above pretreatment on the sample solution C diluted by adding the buffer solution B to the sample A.
  • FR front, rear, upper, lower, right, and left sides used in the following description are referred to as "FR”, “RR”, “UP”, “DO”, “RH”, and “LH” in the respective figures, respectively. Corresponds to the direction of the arrow shown. These directions are set for convenience of explanation, and do not necessarily match the front, back, left, and right in the actual product.
  • FIG. 3 is a schematic view showing the configuration of the processing device 10.
  • the processing device 10 includes a housing block 20, a temperature adjusting unit 30, a moving mechanism 12, and a control unit 11.
  • the storage block 20 stores the sample container 5.
  • the temperature adjusting unit 30 includes a heating block 31 and a cooling block 32.
  • the moving mechanism 12 moves the temperature adjusting unit 30 relative to the accommodating block 20.
  • the control unit 11 controls the temperature adjusting unit 30 and the moving mechanism 12.
  • the sample container 5 loaded in the processing device 10 has a cylindrical appearance, and includes a main body 5a and a lid 5b.
  • the storage block 20 is a rectangular parallelepiped as an example, and a plurality of container insertion holes 20b for inserting the sample container 5 are formed on the upper surface 20a.
  • a plurality of container insertion holes 20b in this example, 10 container insertion holes 20b are arranged side by side in a row.
  • the processing device 10 can be loaded with up to 10 sample containers 5 and can be pretreated at the same time.
  • the inner diameter of the container insertion hole 20b is formed to be slightly larger than the outer diameter of the sample container 5, but is substantially the same diameter. Therefore, when the sample container 5 is inserted into the container insertion hole 20b, the sample container 5 is held in the container insertion hole 20b without tilting.
  • the accommodating block 20 is fixed to the housing of the processing device 10.
  • the accommodation block 20 extends from above the processing device 10 toward the accommodation block 20, and is fixed in position by a fixing means (not shown) such as an engaging portion that engages with the accommodation block 20.
  • the storage block 20 should have a small heat capacity. This is because the containment block 20 is used for the pretreatment of sequentially heating and cooling the sample solution C. This is because the smaller the heat capacity of the storage block 20, the easier it is to transfer heat to the sample container 5 in the storage block 20 and the easier it is to cool.
  • the properties required for the material of the containment block 20 in order to reduce the heat capacity of the containment block 20 are as follows.
  • the material constituting the accommodating block 20 is preferably excellent in thermal conductivity.
  • the material constituting the accommodating block 20 may be a material having high machinability and easy precision processing even if the volume is small. preferable.
  • an inexpensive material is preferable.
  • a material satisfying these conditions for example, brass can be used.
  • the accommodating block 20 is made of brass.
  • FIG. 4 is a perspective view of the temperature adjusting unit 30.
  • FIG. 5 is an exploded perspective view of the temperature adjusting unit 30.
  • FIG. 6 is a cross-sectional view of the temperature adjusting unit 30 (VI-VI line cross-sectional view in FIG. 4). In FIG. 6, the sample container 5 is not a cross-sectional view but a side view.
  • the temperature adjusting unit 30 includes a heating block 31, a cooling block 32, and a heat insulating material 33.
  • the heating block 31 includes a heat storage block 40 and a heater 41 that heats the heat storage block 40 to the first temperature.
  • the heat storage block 40 has a rectangular parallelepiped outer diameter, and the portion in contact with the storage block 20 is hollowed out. Since the heat storage block 40 is conveyed by the moving mechanism 12, it is preferable that the heat storage block 40 is lightweight. Therefore, the material constituting the heat storage block 40 is preferably a material having a small specific gravity. Further, the material constituting the heat storage block 40 is preferably a material having excellent thermal conductivity, rust resistance, low cost, and high processability. As a material satisfying these conditions, for example, aluminum can be used. In the present embodiment, the heat storage block 40 is made of aluminum. Further, the volume of the heat storage block 40 is larger than the volume of the storage block 20, and the heat capacity of the storage block 20 is smaller than the heat capacity of the heat storage block 40.
  • the heater 41 is fixed so that the heat generating surface is in direct contact with the rear surface 40d (here, the surface on the RR side) of the heat storage block 40.
  • the temperature of the heater 41 can be set to 30 ° C. or higher and 80 ° C. or lower.
  • the temperature of the heater 41 is more preferably 60 ° C. or higher and 80 ° C. or lower.
  • the temperature of the heater 41 is set to 70 ° C. (an example of the first temperature) based on the control from the control unit 11.
  • the heating block 31 excludes the front surface 40c of the heat storage block 40 (here, a substantially U-shaped surface on the front FR side and a contact surface with the heat insulating material 33) and the contact surface (40 g to 40j) of the accommodating block 20.
  • the periphery is covered with a heat insulating material (not shown) other than the heat insulating material 33.
  • the cooling block 32 includes a heat storage block 42 and a cooling element 43 that cools the heat storage block 42 to a second temperature.
  • the heat storage block 42 has the same shape as the heat storage block 40 of the heating block 31 and is made of the same material, and the heat capacity of the accommodation block 20 is smaller than the heat capacity of the heat storage block 42.
  • the cooling element 43 is fixed so that the cooling surface is in direct contact with the front surface 42c (here, the surface on the front FR side) of the heat storage block 42.
  • the temperature of the cooling element 43 can be set to 0 ° C. or higher and 10 ° C. or lower.
  • the temperature of the cooling element 43 is set to 5 ° C. (an example of the second temperature) based on the control from the control unit 11.
  • a Perche element is used as the cooling element 43.
  • the cooling block 32 excludes the rear surface 42d of the heat storage block 42 (here, a substantially U-shaped surface on the rear RR side and a contact surface with the heat insulating material 33) and the contact surface (42 g to 42j) of the accommodating block 20.
  • the periphery is covered with a heat insulating material (not shown) other than the heat insulating material 33.
  • the heat insulating material 33 is arranged between the heating block 31 and the cooling block 32, and comes into contact with the outer shell region located on the outer shell of the accommodating block 20 in the facing surfaces where the heating block 31 and the cooling block 32 face each other.
  • the outer region is the front surface 40C of the heat storage block 40 in the heating block 31, and the rear surface 42d of the heat storage block 42 in the cooling block.
  • the moving mechanism 12 relatively moves the temperature adjusting unit 30 and the accommodating block 20.
  • the moving mechanism 12 moves the temperature adjusting unit 30 with respect to the accommodating block 20 whose position is fixed.
  • the moving mechanism 12 is composed of an actuator that linearly moves the temperature adjusting unit 30 between the front FR and the rear RR in FIG.
  • the moving mechanism 12 switches the heating block 31 with respect to the accommodating block 20 by switching between the first state in which the heating block 31 contacts the accommodating block 20 and the second state in which the cooling block 32 contacts the accommodating block 20.
  • it functions as a contact mechanism for selectively contacting the cooling block 32.
  • the control unit 11 includes a CPU (Central Processing Unit) 11a, a memory 11b, and a storage 11c in which a control program is stored.
  • the memory 11b is a work memory used by the CPU 11a when executing a control program, and for example, a volatile memory is used.
  • the storage 11c is a non-volatile memory for storing various data, and a flash memory or the like is used.
  • the control unit 11 functions as a control unit that controls each unit of the heater 41, the cooling element 43, and the moving mechanism 12 by executing the control program.
  • FIG. 7 is a schematic view showing the configuration of the measuring device 60.
  • the measuring device 60 includes an LED (Light Emitting Diode) 61 that irradiates the sample container 5 with measurement light, and a PD (Photodiode) arranged at a position facing the LED 61 across the sample container 5. ) 62 and a measurement control unit 63.
  • the measurement control unit 63 measures the amount of endotoxin in the sample solution E based on the detection result of PD62. Further, the measurement control unit 63 controls the LED 61 and the PD 62.
  • the sample container 5 contains a sample solution E in which the pretreated sample solution C and the lysate reagent D are mixed.
  • the measurement control unit 63 includes a CPU (Central Processing Unit) 63a, a memory 63b, and a storage 63c in which a measurement control program is stored.
  • the memory 63b is a work memory used by the CPU 63a when executing a measurement control program, and for example, a volatile memory is used.
  • the storage 63c is a non-volatile memory for storing various data, and a flash memory or the like is used.
  • the measurement control unit 63 functions as a control unit that controls each unit of the LED 61 and the PD 62 by executing the measurement control program. Further, the measurement control unit 63 functions as a measurement unit that measures the amount of endotoxin in the sample solution E based on the detection result of PD62 by executing the measurement control program.
  • the turbidimetry method is a method using the change in turbidity in the process of gelation of lysate reagent D by the action of endotoxin as an index.
  • the turbidity of the sample solution E changes depending on the amount of endotoxin in the sample solution E and the elapsed time from the addition of the lysate reagent D to the sample solution C after the pretreatment.
  • the turbidity of the sample solution E changes, the amount of measurement light transmitted through the sample solution E changes.
  • the state and transition of the turbidity of the sample solution E are measured by measuring the change over time in the amount of transmitted light with the PD62. can do.
  • the measurement control unit 63 calculates the amount of endotoxin in the sample solution E based on the state and transition of the turbidity of the sample solution E.
  • FIG. 8 is a flowchart for explaining the flow of preprocessing in the processing apparatus 10.
  • sample solution C is produced by adding buffer solution B to sample A and diluting it.
  • the sample container 5 containing the generated sample solution C is inserted into the container insertion hole 20b of the storage block 20.
  • the control unit 11 controls the moving mechanism 12 to move the temperature adjusting unit 30 to the front FR, so that the heating block 31 comes into contact with the accommodating block 20 as shown in FIG. 9A in the upper part of FIG.
  • the first state is set (step S1). As a result, the heating of the storage block 20 is started, and the heating of the sample solution C in the sample container 5 is started through the heating of the storage block 20.
  • control unit 11 determines whether or not 10 minutes have passed since the first state (step S2). If it is determined in step S2 that 10 minutes have not passed (determination result No.), the control unit 11 continues the first state.
  • step S2 When it is determined in step S2 that 10 minutes have passed (determination result Yes), the control unit 11 controls the moving mechanism 12 to move the temperature adjusting unit 30 to the rear RR, and the lower diagram in FIG. 9 shows. As shown in 9B, the second state is in which the cooling block 32 comes into contact with the accommodating block 20 (step S3). As a result, the cooling of the storage block 20 is started, and the cooling of the sample solution C in the sample container 5 is started through the cooling of the storage block 20.
  • control unit 11 determines whether or not 3 minutes have passed since the second state (step S4). If it is determined in step S4 that 3 minutes have not passed (determination result No.), the control unit 11 continues the second state.
  • step S4 determines whether 3 minutes have passed in step S4 (determination result Yes). If it is determined that 3 minutes have passed in step S4 (determination result Yes), the process proceeds to step S5.
  • step S5 the control unit 11 controls the moving mechanism 12 to move the temperature adjusting unit 30 to the front FR, and the accommodating block 20 does not come into contact with either the heating block 31 or the cooling block 32 (that is, the cooling block). The process is terminated as (contact release).
  • the processing apparatus 10 of the present embodiment heats the sample solution C in the sample container 5 to the first temperature by contacting the storage block 20 containing the sample container 5 with the storage block 20.
  • the cooling block 32 that cools the sample solution C in the sample container 5 to a second temperature lower than the first temperature by contacting the heating block 31 and the accommodating block 20, and the heating block 31 comes into contact with the accommodating block 20.
  • a contact mechanism that selectively brings the heating block 31 or the cooling block 32 into contact with the accommodating block 20 by switching between the first state and the second state in which the cooling block 32 comes into contact with the accommodating block 20. It includes a moving mechanism 12.
  • both heating and cooling can be performed without moving the plurality of sample containers 5. Therefore, the processing time can be shortened as compared with the case where the sample containers are transported one by one by the handling robot as in the conventional processing apparatus.
  • the processing device 10 of the present embodiment is configured such that the accommodating block 20 is fixed to the housing of the processing apparatus 10 and the heating block 31 and the cooling block 32 move relative to the accommodating block 20. .. With such a configuration, it is possible to both heat and cool the sample solution C in the sample container 5 while keeping the sample container 5 in a stationary state. Since the processing device 10 of the present embodiment does not need to move the sample container 5, it is effective when it is not preferable to apply vibration accompanying the movement to the sample container 5 or the sample solution C.
  • the processing device 10 of the present embodiment is configured such that the heating block 31 and the cooling block 32 move linearly relative to the accommodating block 20.
  • the configuration of the contact mechanism in which the moving mechanism 12 is shown as an example is simplified as compared with the case where the heating block 31 and the cooling block 32 are moved by a curved path or a bent path. can do.
  • the moving time can be easily shortened as compared with the case where the curved path or the bent path is moved.
  • the processing device 10 of the present embodiment is configured such that the heating block 31 and the cooling block 32 are arranged at positions facing each other with the accommodating block 20 interposed therebetween and move integrally.
  • the configuration of the contact mechanism in which the moving mechanism 12 is shown as an example can be simplified as compared with the case where the heating block 31 and the cooling block 32 are moved separately.
  • the heat insulating material 33 is provided between the heating block 31 and the cooling block 32, the heat transfer between the heating block 31 and the cooling block 32 is suppressed, and the thermal efficiency of the heating block 31 and the cooling block 32 is suppressed. Can be improved. Therefore, the power saving of the heater 41 and the cooling element 43 can be achieved.
  • the heat insulating material is provided around the heating block 31 and the cooling block 32, the thermal efficiency of the heating block 31 and the cooling block 32 can be improved. Therefore, the power saving of the heater 41 and the cooling element 43 can be achieved.
  • the heat capacity of the accommodating block 20 is the heating block 31 (specifically, the heat storage block 40 in the heating block 31) and the cooling block 32 (specifically, the heat storage in the cooling block 32). It is configured to be smaller than the heat capacity of block 42). With such a configuration, when the heating block 31 or the cooling block 32 is brought into contact with the accommodating block 20, the temperature of the accommodating block 20 can be quickly changed to the temperature of each block.
  • the cooling block 32 is brought into contact with the accommodating block 20 by controlling the moving mechanism 12, which is an example of the contact mechanism.
  • the control unit 11 preprocessing can be automated.
  • a heat treatment suitable for the pretreatment for endotoxin measurement by the turbidimetry method can be performed.
  • the heat treatment can be performed more efficiently.
  • a cooling treatment suitable for the pretreatment for endotoxin measurement by the turbidimetry method can be performed.
  • the processing device 10 is not limited to the mode in which the accommodating block 20 is fixed and the temperature adjusting unit 30 is moved, as shown in FIG.
  • the temperature adjusting unit 30 may be fixed and the accommodating block 20 may be moved.
  • a moving mechanism (not shown) for moving the accommodating block 20 is provided instead of the moving mechanism 12 described above.
  • the temperature adjusting unit is not limited to the mode in which the heating block and the cooling block move integrally, but may be a mode in which the heating block and the cooling block move individually.
  • the movement of the heating block and the cooling block is not limited to the linear movement, but may be a curved movement, or may be any mode such as bending the moving direction in the middle of the linear movement.
  • the lysate reagent used for endotoxin measurement is not limited to the LAL reagent, and a TAL (Tachypleus Amebocyte Lysate) reagent prepared from a blood cell extract of a horseshoe crab (Tachypleus tridentatus), which is a different species from the American horseshoe crab, may be used.
  • TAL Techypleus Amebocyte Lysate
  • the endotoxin test method is not limited to the turbidimetry method described in the above embodiment, but is a gelation method using the gel formation of a lysate reagent by the action of endotoxin as an index, or a color development by hydrolysis of a synthetic substrate as an index. You may use the colorimetric method.
  • the measurement using the reagent containing the horseshoe crab blood cell extract is not limited to endotoxin, but may be ⁇ -glucan.
  • a processing apparatus that performs pretreatment for measurement using a reagent containing horseshoe crab blood cell extract has been described as an example, but it is applied to a processing apparatus that performs pretreatment for measurement using other reagents. You may.
  • the pretreatment for the sample solution is not limited to the treatment for heating for 10 minutes and then cooling for 3 minutes as described in the above embodiment, and may be appropriately changed according to the measurement performed on the sample solution.
  • the temperature adjustment process for the sample solution performed by the processing device is not limited to the pretreatment performed prior to the measurement, and may be used for any purpose.
  • processors for example, as the hardware structure of the processing unit (Processing Unit) that executes various processes such as the control unit 11 and the measurement control unit 63, various processors (Processors) shown below are used. Can be used.
  • the circuit configuration can be changed after the manufacture of FPGA (Field Programmable Gate Array), etc.
  • FPGA Field Programmable Gate Array
  • a dedicated electric circuit that is a processor having a circuit configuration specially designed to execute a specific process such as a programmable logic device (PLD) and / or an ASIC (Application Specific Integrated Circuit). Etc. are included.
  • One processor may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs and / or a CPU and a CPU). It may be configured in combination with FPGA).
  • the various processing units are configured by using one or more of the above-mentioned various processors as a hardware structure.
  • an electric circuit in which circuit elements such as semiconductor elements are combined can be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

処理装置は、検体容器を収容する収容ブロックと、収容ブロックと接触することにより、検体容器内の検体溶液を第1温度に加熱する加熱ブロックと、収容ブロックと接触することにより、検体容器内の検体溶液を第1温度よりも低い第2温度に冷却する冷却ブロックと、収容ブロックに加熱ブロックが接触する第1状態と、収容ブロックに冷却ブロックが接触する第2状態とを切り替えることにより、収容ブロックに対して、加熱ブロックまたは冷却ブロックを選択的に接触させる接触機構と、を備える。

Description

処理装置および測定システム
 本開示は、処理装置および測定システムに関する。
 生体試料などの検体を分析するために、検体に含まれる種々の物質を測定することが行われている。このような測定として、カブトガニ血球抽出物を含むライセート試薬を用いた測定が知られている。ライセート試薬を用いることにより、検体溶液中のエンドトキシン量およびβ-グルカン量の測定を行うことができる。エンドトキシンは、グラム陰性菌の細胞壁を構成するリポ多糖であり、微量でも血中に入ることで、発熱などの生体反応を引き起こす代表的な発熱物質である。検体は、血液などの生体試料の他、生体内に直接導入される医薬品(例えば、注射剤など)などがある。このようなライセート試薬を用いた測定を行う際には、測定に先立って、検体溶液を加熱した後、検体溶液を冷却するといった前処理を行う場合があり、こうした前処理を行う処理装置が知られている。
 特開平2017-129429号公報には、ライセート試薬としてLAL(Limulus Amebocyte Lysate)試薬を用いて、検体溶液中のエンドトキシン量の測定を行う測定装置が記載されている。また、特開平08-029432号公報には、検体溶液に対して前処理を行う処理装置が記載されている。
 特開平08-029432号公報に記載の処理装置は、ハンドリングロボットによって検体容器を加熱部から冷却部に搬送する搬送機構を備えている。この搬送機構は、加熱部の容器挿入孔に挿入された検体容器をハンドリングロボットによって把持し、ロボットのアームを上方に移動させて容器挿入孔から検体容器を引き抜く。次に、ハンドリングロボットによって冷却部の上部まで検体容器を搬送し、ロボットのアームを下方に移動させて冷却部の容器挿入孔に検体容器を挿入する。
 しかしながら、特開平08-029432号公報の搬送機構のように、ハンドリングロボットによって検体容器を搬送する場合、搬送中にハンドリングロボットによって把持された検体容器が傾いて、冷却部の容器挿入孔に挿入できなくなるといった搬送不良が生じるおそれがある。また、ハンドリングロボットによって検体容器を1個ずつ搬送する場合、検体容器の数が多いと搬送効率が悪く、処理時間が長時間化するという問題がある。
 上記事情に鑑み、本開示の技術は、検体容器を加熱部から冷却部に搬送する際の搬送不良を抑制し、かつ、検体容器の搬送に起因する処理時間の長時間化を抑制することが可能な処理装置およびこの処理装置を備えた測定システムを提供することを目的とする。
 本開示の一態様に係る処理装置は、検体容器を収容する収容ブロックと、収容ブロックと接触することにより、検体容器内の検体溶液を第1温度に加熱する加熱ブロックと、収容ブロックと接触することにより、検体容器内の検体溶液を第1温度よりも低い第2温度に冷却する冷却ブロックと、収容ブロックに加熱ブロックが接触する第1状態と、収容ブロックに冷却ブロックが接触する第2状態とを切り替えることにより、収容ブロックに対して、加熱ブロックまたは冷却ブロックを選択的に接触させる接触機構とを備えている。
 上記態様の処理装置においては、接触機構は、加熱ブロックおよび冷却ブロックを、収容ブロックに対して移動させてもよい。
 また、上記態様の処理装置においては、加熱ブロックおよび冷却ブロックは、収容ブロックに対して直線的に相対移動することにより、それぞれが収容ブロックと選択的に接触するようにしてもよい。
 また、上記態様の処理装置においては、加熱ブロックおよび冷却ブロックは、収容ブロックを挟んで対向する位置に配置され、かつ、一体的に移動するようにしてもよい。
 また、上記態様の処理装置においては、加熱ブロックと冷却ブロックの間に配置され、加熱ブロックと冷却ブロックとが対向する対向面のうち収容ブロックの外郭に位置する外郭領域と接触する断熱材を備えてもよい。
 また、上記態様の処理装置においては、加熱ブロックおよび冷却ブロックの周囲は、断熱材によって覆われていてもよい。
 また、上記態様の処理装置においては、収容ブロックの熱容量が、加熱ブロックおよび前記冷却ブロックの熱容量よりも小さくしてもよい。
 また、上記態様の処理装置においては、収容ブロックに加熱ブロックを接触させてから予め設定された設定時間が経過した後、接触機構を制御することにより、収容ブロックに冷却ブロックを接触させる制御部を備えてもよい。
 また、上記態様の処理装置においては、加熱ブロックの温度は、30℃以上80℃以下であってもよい。なお、加熱ブロックの温度は、60℃以上80℃以下であってもよい。
 また、上記態様の処理装置においては、冷却ブロックの温度は、例えば0℃以上10℃以下であってもよい。
 また、上記態様の処理装置においては、収容ブロックは、複数の検体容器を収容する構成とされていてもよい。
 また、上記態様の処理装置においては、検体溶液は、カブトガニ血球抽出物を含む試薬を用いた測定の測定対象であり、接触機構によって検体溶液の温度を変化させる処理は、上記測定を実行する前に行われる前処理であってもよい。
 本開示の一態様に係る測定システムは、上記処理装置と、検体溶液に対する測定を行う測定装置と、を備える。
 本開示の技術によれば、検体容器を加熱部から冷却部に搬送する際の搬送不良を抑制し、かつ、検体容器の搬送に起因する処理時間の長時間化を抑制することが可能な処理装置およびこの処理装置を備えた測定システムを提供することができる。
測定システムの概要を示す図である。 前処理における検体溶液の温度変化の推移を示すグラフである。 第1実施形態に係る処理装置の構成を示す概略図である。 温度調整部の斜視図である。 温度調整部の分解斜視図である。 温度調整部の断面図である。 測定装置の構成を示す概略図である。 処理装置における前処理の流れを説明するためのフローチャートである。 処理装置における加熱時および冷却時の状態を示す図である。図9Aは加熱時を示し、図9Bは冷却時を示す。 他の態様の処理装置における加熱時および冷却時の状態を示す図である。図10Aは加熱時を示し、図10Bは冷却時を示す。
[測定システムの全体構成]
 図1は、本開示の第1実施形態に係る処理装置10を備えた測定システム1の概要を示す図である。図1に示すように、測定システム1は、処理装置10と、測定装置60とを備えている。処理装置10は、生体試料などの検体Aに緩衝液Bを加えて希釈することにより生成した検体溶液Cに対して、エンドトキシン測定を実行する前に行われる前処理を行う。測定装置60は、前処理後の検体溶液Cを測定対象として、エンドトキシン測定を実行する。
 上述したとおり、エンドトキシンは、微量でも血中に入ることで、発熱などの生体反応を引き起こす代表的な発熱物質であり、検体Aは、血液などの生体試料の他、生体内に直接導入される医薬品(例えば、注射剤など)などである。エンドトキシン測定では、検体溶液C中のエンドトキシン量が測定され、検体A中のエンドトキシンの定量化が行われる。エンドトキシン測定は、カブトガニ血球抽出物を含むライセート試薬Dなどの試薬を用いた測定である。エンドトキシン測定は、エンドトキシンによりカブトガニ血球抽出物の凝集および凝固が起こることを利用した測定である。エンドトキシン測定では、先ず、カブトガニ血球抽出物を含むライセート試薬Dが検体溶液Cに添加される。ライセート試薬Dが添加された検体溶液Cが攪拌されることにより、検体溶液Eが生成される。次に、検体溶液Eの特性の変化に基づいて、検体溶液E中のエンドトキシン量が測定される。
 ライセート試薬Dの原料となるカブトガニとして、アメリカカブトガニ(Limulus polyphemus)の血球抽出物から調製されるライセート試薬は、LAL(Limulus Amebocyte Lysate)試薬と呼ばれる。
 本実施形態の測定システム1における測定装置60は、ライセート試薬DとしてLAL試薬を使用し、エンドトキシンとの反応によりライセート試薬Dがゲル化する過程での検体溶液Eの濁度変化を指標とする比濁法によりエンドトキシン測定を行う。比濁法によりエンドトキシン測定を行う場合、測定に先立って検体溶液Cに対して加熱および冷却を行う前処理が必要である。図1に示すとおり、検体溶液Cに対して前処理が行われ、前処理後の検体溶液Cとライセート試薬Dとを含む検体溶液Eに対してエンドトキシン測定が行われる。
 比濁法によりエンドトキシン測定を行う場合の前処理は、具体的には、図2のグラフに示すように、先ず、検体Aに緩衝液Bを加えて希釈することにより生成した検体溶液Cを約70℃の温度で約10分間加熱することにより、エンドトキシン測定における干渉因子を不活化する加熱処理を行う。その後、約70°の検体溶液Cを約5℃の温度まで冷却することにより、不活化処理を停止する冷却処理を行う。冷却開始から冷却終了までの冷却処理の時間は例えば約3分間である。冷却処理において、約70°の検体溶液Cを約5℃の温度まで冷却するのに時間がかかると、検体溶液Cに対する不活化処理の時間にバラツキが生じて、エンドトキシン測定の精度が低下する。そのため、前処理において、検体溶液Cの冷却は急激に、具体的には、約70°の検体溶液Cを約5℃の温度まで冷却する時間を短時間で行う必要がある。
 本実施形態の測定システム1における処理装置10は、検体Aに緩衝液Bを加えて希釈した検体溶液Cに対し、上記前処理を行う装置である。
<処理装置>
 以下の説明で用いる前方、後方、上方、下方、右方、および左方は、それぞれ、各図において「FR」、「RR」、「UP」、「DO」、「RH」、「LH」にて示す矢印方向に対応する。これらの方向は説明の便宜上設定されるものであり、実際の製品における前後左右と必ずしも一致するものではない。
 図3は、処理装置10の構成を示す概略図である。図3に示すように、処理装置10は、収容ブロック20と、温度調整部30と、移動機構12と、制御部11とを備える。収容ブロック20は、検体容器5を収容する。温度調整部30は、加熱ブロック31および冷却ブロック32を備える。移動機構12は、温度調整部30を収容ブロック20に対して相対移動させる。制御部11は、温度調整部30および移動機構12を制御する。処理装置10に装填される検体容器5は、外観が円筒形状であり、本体5aと蓋体5bとを備えている。
 収容ブロック20は、一例として直方体であり、上面20aには、検体容器5を挿入するための複数の容器挿入孔20bが形成されている。本実施形態の処理装置10の収容ブロック20においては、複数個の容器挿入孔20b、本例では10個の容器挿入孔20bが一列に並べて配置されている。処理装置10は、最大10個までの検体容器5を装填し、同時に前処理を行うことが可能である。容器挿入孔20bの内径は、検体容器5の外径よりもわずかに大きく形成されているが、ほぼ同径である。そのため、検体容器5を容器挿入孔20bに挿入した際に、は、検体容器5は容器挿入孔20b内において傾くことなく保持される。
 収容ブロック20は、処理装置10の筐体に対して固定されている。収容ブロック20は、例えば、処理装置10の上方から収容ブロック20に向けて延び、収容ブロック20と係合する係合部などの図示しない固定手段によって位置が固定される。
 収容ブロック20は、熱容量が小さい方がよい。というのも、収容ブロック20は、検体溶液Cの加熱と冷却を順次行う前処理に用いられる。収容ブロック20の熱容量が小さい方が、収容ブロック20内の検体容器5に熱を伝えやすく、冷却もしやすいためである。収容ブロック20の熱容量を小さくするために、収容ブロック20の材料に対して要求される特性は次のとおりである。
第1に、収容ブロック20を構成する材料は、熱伝導性に優れていることが好ましい。また、第2に、熱容量を小さくするには体積が小さい方がよいので、収容ブロック20を構成する材料は、体積が小さくても、切削加工性が高く精密加工が容易な材料であることが好ましい。熱容量の観点から要求される特性に加えて、コスト面を考えると、もちろん、安価な材料であることが好ましい。これらの条件を満たす材料としては、例えば黄銅を用いることができる。本実施形態において、収容ブロック20は、黄銅により構成されている。
 図4は、温度調整部30の斜視図である。図5は、温度調整部30の分解斜視図である。図6は、温度調整部30の断面図(図4中のVI-VI線断面図)である。なお、図6において、検体容器5は、断面図ではなく、側面図を示している。図4~6に示すように、温度調整部30は、加熱ブロック31と、冷却ブロック32と、断熱材33と、を備えている。
 加熱ブロック31は、蓄熱ブロック40と、蓄熱ブロック40を第1温度に加熱するヒーター41と、を備えている。
 蓄熱ブロック40は、外径が直方体で、収容ブロック20が接触する部分がくり抜かれた形状である。蓄熱ブロック40は、移動機構12により搬送されるため、軽量であることが好ましい。そのため、蓄熱ブロック40を構成する材料は、比重が小さい材料であることが好ましい。また、蓄熱ブロック40を構成する材料は、熱伝導性に優れ、さびにくく、安価で、加工性が高い材料であることが好ましい。これらの条件を満たす材料としては、例えばアルミニウムを用いることができる。本実施形態において、蓄熱ブロック40は、アルミニウムにより構成されている。また、蓄熱ブロック40の体積は、収容ブロック20の体積よりも大きく、収容ブロック20の熱容量が、蓄熱ブロック40の熱容量よりも小さくなるように構成されている。
 ヒーター41は、発熱面が蓄熱ブロック40の後面40d(ここでは、RR側の面)に直接接触するように固着されている。比濁法によりエンドトキシン測定を行う場合の検体溶液Cに対する前処理としては、30℃以上80℃以下で加熱することが好ましい。そのため、ヒーター41の温度は、30℃以上80℃以下に設定可能である。なお、ヒーター41の温度は、60℃以上80℃以下とすることがより好ましい。本実施形態では、制御部11からの制御に基づいて、ヒーター41の温度は、70℃(第1温度の一例)に設定される。
 加熱ブロック31は、蓄熱ブロック40における前面40c(ここでは、前方FR側の略U字状の面であり、断熱材33との接触面)および収容ブロック20の接触面(40g~40j)を除く周囲が、断熱材33とは別の図示しない断熱材によって覆われている。
 冷却ブロック32は、蓄熱ブロック42と、蓄熱ブロック42を第2温度に冷却する冷却素子43と、を備えている。
 蓄熱ブロック42は、加熱ブロック31の蓄熱ブロック40と同じ形状で、同じ材料から構成されており、収容ブロック20の熱容量が、蓄熱ブロック42の熱容量よりも小さくなるように構成されている。
 冷却素子43は、冷却面が蓄熱ブロック42の前面42c(ここでは、前方FR側の面)に直接接触するように固着されている。比濁法によりエンドトキシン測定を行う場合の検体溶液Cに対する前処理としては、0℃以上10℃以下で冷却することが好ましい。そのため、冷却素子43の温度は、0℃以上10℃以下に設定可能である。本実施形態では、制御部11からの制御に基づいて、冷却素子43の温度は、5℃(第2温度の一例)に設定される。冷却素子43としては、ペルチェ素子を用いる。
 冷却ブロック32は、蓄熱ブロック42における後面42d(ここでは、後方RR側の略U字状の面であり、断熱材33との接触面)および収容ブロック20の接触面(42g~42j)を除く周囲が、断熱材33とは別の図示しない断熱材によって覆われている。
 断熱材33は、加熱ブロック31と冷却ブロック32の間に配置され、加熱ブロック31と冷却ブロック32とが対向する対向面のうち収容ブロック20の外郭に位置する外郭領域と接触する。外郭領域は、加熱ブロック31においては蓄熱ブロック40の前面40Cであり、冷却ブロックにおいては蓄熱ブロック42の後面42dである。
 移動機構12は、温度調整部30と収容ブロック20とを相対的に移動させる。移動機構12は、本例では、位置が固定されている収容ブロック20に対して温度調整部30を移動させる。移動機構12は、温度調整部30を図3中の前方FR-後方RR間で直線的に移動させるアクチュエータにより構成されている。この移動機構12は、収容ブロック20に加熱ブロック31が接触する第1状態と、収容ブロック20に冷却ブロック32が接触する第2状態とを切り替えることにより、収容ブロック20に対して、加熱ブロック31または冷却ブロック32を選択的に接触させる接触機構として機能する。
 制御部11は、CPU(Central Processing Unit)11aと、メモリ11bと、制御用プログラムが格納されたストレージ11cと、を備えている。メモリ11bは、CPU11aが制御用プログラムを実行する際に使用するワークメモリであり、例えば揮発性メモリが使用される。ストレージ11cは、種々のデータを格納するための不揮発性メモリであり、フラッシュメモリなどが使用される。制御部11は、制御用プログラムを実行することにより、ヒーター41、冷却素子43、および移動機構12の各部を制御する制御部として機能する。
<測定装置>
 図7は、測定装置60の構成を示す概略図である。図7に示すように、測定装置60は、検体容器5に対して測定光を照射するLED(Light Emitting Diode)61と、検体容器5を挟んでLED61と対向する位置に配されたPD(Photodiode)62と、測定制御部63と、を備える。測定制御部63は、PD62の検出結果に基づいて検体溶液E中のエンドトキシン量の測定を行う。また、測定制御部63は、LED61およびPD62を制御する。検体容器5内には、前処理後の検体溶液Cとライセート試薬Dとが混合された検体溶液Eが収容される。
 測定制御部63は、CPU(Central Processing Unit)63aと、メモリ63bと、測定制御用プログラムが格納されたストレージ63cと、を備えている。メモリ63bは、CPU63aが測定制御用プログラムを実行する際に使用するワークメモリであり、例えば揮発性メモリが使用される。ストレージ63cは、種々のデータを格納するための不揮発性メモリであり、フラッシュメモリなどが使用される。測定制御部63は、測定制御用プログラムを実行することにより、LED61およびPD62の各部を制御する制御部として機能する。また、測定制御部63は、測定制御用プログラムを実行することにより、PD62の検出結果に基づいて検体溶液E中のエンドトキシン量の測定を行う測定部として機能する。
 測定装置60におけるエンドトキシン測定の手法としては、上述のとおり比濁法が用いられる。比濁法は、エンドトキシンの作用によりライセート試薬Dがゲル化する過程での濁度変化を指標とする手法である。検体溶液E中のエンドトキシンの量と、前処理後の検体溶液Cに対してライセート試薬Dを添加してからの経過時間とに応じて、検体溶液Eの濁度に変化が生じる。検体溶液Eの濁度が変化すると、検体溶液Eを透過する測定光の光量が変化するため、PD62により透過光量の経時変化を測定することにより、検体溶液Eの濁度の状態および推移を測定することができる。測定制御部63は、検体溶液Eの濁度の状態および推移に基づいて、検体溶液E中のエンドトキシン量の演算を行う。
[前処理の流れ]
 図8は、処理装置10における前処理の流れを説明するためのフローチャートである。
 まず、検体Aに緩衝液Bを加えて希釈することにより検体溶液Cが生成される。生成された検体溶液Cが収容された検体容器5は、収容ブロック20の容器挿入孔20bに挿入される。この後、制御部11は、移動機構12を制御して温度調整部30を前方FRに移動させることにより、図9において上段の図9Aに示すように、収容ブロック20に加熱ブロック31が接触する第1状態とする(ステップS1)。これにより収容ブロック20の加熱が開始され、収容ブロック20の加熱を通じて検体容器5内の検体溶液Cの加熱が開始される。
 次に、制御部11は、第1状態としてから10分が経過したか否かの判定を行う(ステップS2)。ステップS2において、10分が経過していないと判定された場合(判定結果No)、制御部11は、第1状態を継続させる。
 ステップS2において、10分が経過したと判定された場合(判定結果Yes)、制御部11は、移動機構12を制御して温度調整部30を後方RRに移動させ、図9においての下段の図9Bに示すように、収容ブロック20に冷却ブロック32が接触する第2状態とする(ステップS3)。これにより収容ブロック20の冷却が開始され、収容ブロック20の冷却を通じて検体容器5内の検体溶液Cの冷却が開始される。
 次に、制御部11は、第2状態としてから3分が経過したか否かの判定を行う(ステップS4)。ステップS4において、3分が経過していないと判定された場合(判定結果No)、制御部11は、第2状態を継続させる。
 ステップS4において、3分が経過したと判定された場合(判定結果Yes)、ステップS5に移行する。ステップS5において、制御部11は、移動機構12を制御して温度調整部30を前方FRに移動させ、収容ブロック20が加熱ブロック31および冷却ブロック32のいずれにも接触しない状態(すなわち、冷却ブロック接触解除)として、処理を終了する。
[作用効果]
 本実施形態の処理装置10は、以上で説明したように、検体容器5を収容する収容ブロック20と、収容ブロック20と接触することにより、検体容器5内の検体溶液Cを第1温度に加熱する加熱ブロック31と、収容ブロック20と接触することにより、検体容器5内の検体溶液Cを第1温度よりも低い第2温度に冷却する冷却ブロック32と、収容ブロック20に加熱ブロック31が接触する第1状態と、収容ブロック20に冷却ブロック32が接触する第2状態とを切り替えることにより、収容ブロック20に対して、加熱ブロック31または冷却ブロック32を選択的に接触させる接触機構の一例として移動機構12と、を備える。
 このような構成とすることにより、検体容器5を収容ブロック20に装填したまま、検体容器5内の検体溶液Cに対して加熱と冷却の両方を行うことができる。これにより、加熱部と冷却部が個別に設けられている従来の処理装置のように、検体容器を加熱部から冷却部まで搬送するハンドリングロボットのような搬送機構を設ける必要がなくなるため、検体容器の搬送不良の問題を解消することができる。
 また、収容ブロック20に複数の検体容器5を装填した場合でも、複数の検体容器5を移動させることなく、加熱と冷却の両方を行うことができる。そのため、従来の処理装置のように、ハンドリングロボットによって検体容器を1個ずつ搬送する場合と比較して、処理時間を短縮することができる。
 また、本実施形態の処理装置10は、収容ブロック20を処理装置10の筐体に対して固定し、加熱ブロック31および冷却ブロック32が収容ブロック20に対して相対移動するように構成されている。このような構成とすることにより、検体容器5を静止状態に保ったまま、検体容器5内の検体溶液Cに対する加熱と冷却の両方を行うことができる。本実施形態の処理装置10は、検体容器5を移動させずに済むため、検体容器5又は検体溶液Cに対して移動に伴う振動を加えることが好ましくない場合に有効である。
 また、本実施形態の処理装置10は、加熱ブロック31および冷却ブロック32が収容ブロック20に対して直線的に相対移動するように構成されている。このような構成とすることにより、加熱ブロック31および冷却ブロック32を、曲線的な経路又は屈曲した経路で移動させる場合と比較して、移動機構12を一例として示した接触機構の構成を簡素化することができる。また、加熱ブロック31および冷却ブロック32を直線的に移動させることにより、曲線的な経路又は屈曲した経路を移動させる場合と比較して、移動時間も短縮化しやすい。
 また、本実施形態の処理装置10は、加熱ブロック31および冷却ブロック32が、収容ブロック20を挟んで対向する位置に配置され、かつ、一体的に移動するように構成されている。このような構成とすることにより、加熱ブロック31および冷却ブロック32を別々に移動させる場合と比較して、移動機構12を一例として示した接触機構の構成を簡素化することができる。
 また、加熱ブロック31と冷却ブロック32との間に断熱材33を設けているため、加熱ブロック31と冷却ブロック32との間での熱の移動を抑制し、加熱ブロック31および冷却ブロック32の熱効率を向上させることができる。そのため、ヒーター41および冷却素子43の省電力化を図ることができる。
 また、加熱ブロック31および冷却ブロック32の周囲にも断熱材を設けているため、加熱ブロック31および冷却ブロック32の熱効率を向上させることができる。そのため、ヒーター41および冷却素子43の省電力化を図ることができる。
 また、本実施形態の処理装置10は、収容ブロック20の熱容量が、加熱ブロック31(詳細には、加熱ブロック31中の蓄熱ブロック40)および冷却ブロック32(詳細には、冷却ブロック32中の蓄熱ブロック42)の熱容量よりも小さくなるように構成されている。このような構成とすることにより、収容ブロック20に加熱ブロック31または冷却ブロック32を接触させた際に、収容ブロック20の温度を各ブロックの温度に速やかに変化させることができる。
 また、収容ブロック20に加熱ブロック31を接触させてから予め設定された設定時間が経過した後、接触機構の一例である移動機構12を制御することにより、収容ブロック20に冷却ブロック32を接触させる制御部11を備えることにより、前処理の自動化を行うことができる。
 また、加熱ブロック31の温度を30℃以上80℃以下に設定することにより、比濁法によるエンドトキシン測定用の前処理に適した加熱処理を行うことができる。なお、加熱ブロック31の温度を60℃以上80℃以下に設定することにより、加熱処理をより効率的に行うことができる。
 また、冷却ブロック32の温度を0℃以上10℃以下に設定することにより、比濁法によるエンドトキシン測定用の前処理に適した冷却処理を行うことができる。
[変形例]
 上記実施形態は、一例であり、以下に示すように種々の変形が可能である。
 例えば、処理装置10は、収容ブロック20を固定して温度調整部30を移動させる態様に限らず、図10(上段の図10Aは加熱時、下段の図10Bは冷却時を示す)に示すように、温度調整部30を固定して収容ブロック20を移動させる態様としてもよい。この場合、接触機構としては、上述の移動機構12の代わりに、収容ブロック20を移動させる移動機構(図示せず)が設けられる。
 また、温度調整部は、加熱ブロックおよび冷却ブロックが一体的に移動する態様に限らず、個別に移動する態様としてもよい。
 また、加熱ブロックおよび冷却ブロックの移動は、直線的移動に限らず、曲線的移動としてもよいし、直線的移動の途中で移動方向を折り曲げる態様とするなど、どのような態様としてもよい。
 また、エンドトキシン測定に用いるライセート試薬としては、LAL試薬に限らず、アメリカカブトガニとは別種のカブトガニ(Tachypleus tridentatus)の血球抽出物から調製されるTAL(Tachypleus Amebocyte Lysate)試薬を用いてもよい。
 また、エンドトキシン試験の手法としては、上記実施形態で説明した比濁法に限らず、エンドトキシンの作用によるライセート試薬のゲル形成を指標とするゲル化法、または、合成基質の加水分解による発色を指標にする比色法を用いてもよい。
 また、カブトガニ血球抽出物を含む試薬を用いた測定は、エンドトキシンに限らず、β-グルカンでもよい。
 また、本開示の処理装置として、カブトガニ血球抽出物を含む試薬を用いた測定の前処理を行う処理装置を例に説明したが、他の試薬を用いた測定の前処理を行う処理装置に適用してもよい。
 また、検体溶液に対する前処理は、上記実施形態で説明した、10分加熱後に3分冷却する処理に限らず、検体溶液に対して行う測定に合わせて、適宜変更してもよい。
 また、処理装置で行う検体溶液への温度調整処理は、測定に先だって行われる前処理に限らず、どのような用途であってもよい。
 また、上記実施形態において、例えば、制御部11および測定制御部63等の各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。各種のプロセッサには、ソフトウェアを実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)に加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、および/またはASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせ、および/または、CPUとFPGAとの組み合わせ)で構成されてもよい。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)を用いることができる。
 なお、以上に示した記載内容および図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用、および効果に関する説明は、本開示の技術に係る部分の構成、機能、作用、および効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容および図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことはいうまでもない。また、錯綜を回避し、本開示の技術に係る部分の理解を容易にするために、以上に示した記載内容および図示内容では、本開示の技術の実施を可能にする上で特に説明を要しない技術常識などに関する説明は省略されている。
 2020年1月22日に出願された日本出願特願2020-008730の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (14)

  1.  検体容器を収容する収容ブロックと、
     前記収容ブロックと接触することにより、前記検体容器内の検体溶液を第1温度に加熱する加熱ブロックと、
     前記収容ブロックと接触することにより、前記検体容器内の前記検体溶液を前記第1温度よりも低い第2温度に冷却する冷却ブロックと、
     前記収容ブロックに前記加熱ブロックが接触する第1状態と、前記収容ブロックに前記冷却ブロックが接触する第2状態とを切り替えることにより、前記収容ブロックに対して、前記加熱ブロックまたは前記冷却ブロックを選択的に接触させる接触機構とを備えている処理装置。
  2.  前記接触機構は、前記加熱ブロックおよび前記冷却ブロックを、前記収容ブロックに対して移動させる
     請求項1に記載の処理装置。
  3.  前記加熱ブロックおよび前記冷却ブロックは、前記収容ブロックに対して直線的に相対移動することにより、それぞれが前記収容ブロックと選択的に接触する
     請求項2に記載の処理装置。
  4.  前記加熱ブロックおよび前記冷却ブロックは、前記収容ブロックを挟んで対向する位置に配置され、かつ、一体的に移動する
     請求項2または3に記載の処理装置。
  5.  前記加熱ブロックと前記冷却ブロックの間に配置され、前記加熱ブロックと前記冷却ブロックとが対向する対向面のうち前記収容ブロックの外郭に位置する外郭領域と接触する断熱材を備える
     請求項4に記載の処理装置。
  6.  前記加熱ブロックおよび前記冷却ブロックの周囲は、断熱材によって覆われている
     請求項1から5のいずれか1項に記載の処理装置。
  7.  前記収容ブロックの熱容量が、前記加熱ブロックおよび前記冷却ブロックの熱容量よりも小さい
     請求項1から6のいずれか1項に記載の処理装置。
  8.  前記収容ブロックに前記加熱ブロックを接触させてから予め設定された設定時間が経過した後、前記接触機構を制御することにより、前記収容ブロックに前記冷却ブロックを接触させる制御部を備える
     請求項1から7のいずれか1項に記載の処理装置。
  9.  前記加熱ブロックの温度は、30℃以上80℃以下である
     請求項1から8のいずれか1項に記載の処理装置。
  10.  前記加熱ブロックの温度は、60℃以上80℃以下である
     請求項9項に記載の処理装置。
  11.  前記冷却ブロックの温度は、0℃以上10℃以下である
     請求項1から10のいずれか1項に記載の処理装置。
  12.  前記収容ブロックは、複数の前記検体容器を収容する構成とされている
     請求項1から11のいずれか1項に記載の処理装置。
  13.  前記検体溶液は、カブトガニ血球抽出物を含む試薬を用いた測定の測定対象であり、
     前記接触機構によって前記検体溶液の温度を変化させる処理は、前記測定を実行する前に行われる前処理である
     請求項1から12のいずれか1項に記載の処理装置。
  14.  請求項1から13のいずれか1項に記載の処理装置と、
     前記検体溶液に対する測定を行う測定装置と、を備える測定システム。
PCT/JP2020/049205 2020-01-22 2020-12-28 処理装置および測定システム WO2021149466A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021573039A JP7394886B2 (ja) 2020-01-22 2020-12-28 処理装置および測定システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-008730 2020-01-22
JP2020008730 2020-01-22

Publications (1)

Publication Number Publication Date
WO2021149466A1 true WO2021149466A1 (ja) 2021-07-29

Family

ID=76993330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049205 WO2021149466A1 (ja) 2020-01-22 2020-12-28 処理装置および測定システム

Country Status (2)

Country Link
JP (1) JP7394886B2 (ja)
WO (1) WO2021149466A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152266A (ja) * 1990-01-08 1992-05-26 Eastman Kodak Co 化学反応パックの搬送装置
JPH08117590A (ja) * 1994-10-20 1996-05-14 Sanyo Electric Co Ltd 温度サイクル装置
JP2000504231A (ja) * 1996-11-08 2000-04-11 エペンドルフ―ネテレル―ヒンツ ゲーエムベーハー 温度調節器を有する温度調節ブロック
JP2002536155A (ja) * 1999-02-05 2002-10-29 ビラテック ゲゼルシャフト ツア エントヴィックルング ビオテヒノロギッシヤー ジステーメ ミット ベシュレンクテル ハフツング 個々の容器を選択的に温度調整するための装置
JP2007078665A (ja) * 2005-09-16 2007-03-29 Japan Science & Technology Agency 血液エンドトキシン測定方法
JP2007510911A (ja) * 2003-11-07 2007-04-26 キャンブレックス・バイオ・サイエンス・ウォーカーズヴィル・インコーポレーテッド 内毒素レベルを測定するオンライン装置および方法
WO2008146754A1 (ja) * 2007-05-23 2008-12-04 Trust Co., Ltd. 反応液用容器、及びそれを用いる反応促進装置、並びにその方法
JP2017129429A (ja) * 2016-01-19 2017-07-27 稲田 捷也 多白血球血漿の調整方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152266A (ja) * 1990-01-08 1992-05-26 Eastman Kodak Co 化学反応パックの搬送装置
JPH08117590A (ja) * 1994-10-20 1996-05-14 Sanyo Electric Co Ltd 温度サイクル装置
JP2000504231A (ja) * 1996-11-08 2000-04-11 エペンドルフ―ネテレル―ヒンツ ゲーエムベーハー 温度調節器を有する温度調節ブロック
JP2002536155A (ja) * 1999-02-05 2002-10-29 ビラテック ゲゼルシャフト ツア エントヴィックルング ビオテヒノロギッシヤー ジステーメ ミット ベシュレンクテル ハフツング 個々の容器を選択的に温度調整するための装置
JP2007510911A (ja) * 2003-11-07 2007-04-26 キャンブレックス・バイオ・サイエンス・ウォーカーズヴィル・インコーポレーテッド 内毒素レベルを測定するオンライン装置および方法
JP2007078665A (ja) * 2005-09-16 2007-03-29 Japan Science & Technology Agency 血液エンドトキシン測定方法
WO2008146754A1 (ja) * 2007-05-23 2008-12-04 Trust Co., Ltd. 反応液用容器、及びそれを用いる反応促進装置、並びにその方法
JP2017129429A (ja) * 2016-01-19 2017-07-27 稲田 捷也 多白血球血漿の調整方法

Also Published As

Publication number Publication date
JPWO2021149466A1 (ja) 2021-07-29
JP7394886B2 (ja) 2023-12-08

Similar Documents

Publication Publication Date Title
US6214626B1 (en) Apparatus (cuvette) for taking up and storing liquids and for carrying out optical measurements
Chevallet et al. Silver staining of proteins in polyacrylamide gels
KR101813343B1 (ko) 자동 검체 프로세싱 시스템들 및 이를 이용한 방법들
JP2019537709A (ja) 制御試料蒸発による無損失クライオ・グリッド調製
JPH03181853A (ja) 酵素免疫測定用カートリツジ、それを用いた測定方法及び測定装置
WO2021149466A1 (ja) 処理装置および測定システム
WO2010117045A1 (ja) 自動分析装置
WO2014102184A2 (en) Specimen processing systems and methods for aligning slides
US20210101154A1 (en) Methods and apparatus for rapid heating of biological specimens
US10509216B2 (en) Specimen processing systems and methods for aligning slides
JP2022130664A (ja) 非接触のスライド上流体混合
US20210053047A1 (en) Measuring arrangement for measuring the total nitrogen bound in a measuring liquid
JPH119259A (ja) インキュベータおよびそれを備えた分析装置
JP2011529173A (ja) 体液検査における細胞性成分の崩壊
AU2013369470A1 (en) Specimen processing systems and methods for moderating evaporation
WO2021153002A1 (ja) 処理装置および測定システム
WO2021153003A1 (ja) 処理装置および測定システム
WO2021149465A1 (ja) 処理装置および測定システム
Arslan et al. Determining total protein and bioactive protein concentrations in bovine colostrum
WO2021149464A1 (ja) 処理装置および測定システム
JP4280690B2 (ja) サンプル容器およびサンプル容器用圧着装置
US7287388B2 (en) Cryostat having an integrated staining station
JP2015021906A (ja) 測定方法、測定用のカートリッジ及び測定装置
CN110199199B (zh) 自动分析装置
US20240024867A1 (en) Flowcell holder and biological analysis systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915996

Country of ref document: EP

Kind code of ref document: A1