WO2021149131A1 - 固定子およびこれを用いた回転電機 - Google Patents

固定子およびこれを用いた回転電機 Download PDF

Info

Publication number
WO2021149131A1
WO2021149131A1 PCT/JP2020/001816 JP2020001816W WO2021149131A1 WO 2021149131 A1 WO2021149131 A1 WO 2021149131A1 JP 2020001816 W JP2020001816 W JP 2020001816W WO 2021149131 A1 WO2021149131 A1 WO 2021149131A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
magnet
magnetic
coil
electric machine
Prior art date
Application number
PCT/JP2020/001816
Other languages
English (en)
French (fr)
Inventor
米谷 晴之
亮治 宮武
山田 拓郎
田中 賢治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080093383.5A priority Critical patent/CN114946107A/zh
Priority to PCT/JP2020/001816 priority patent/WO2021149131A1/ja
Priority to EP20915790.8A priority patent/EP4096062A4/en
Priority to US17/779,553 priority patent/US20230026553A1/en
Priority to JP2021572148A priority patent/JP7262623B2/ja
Publication of WO2021149131A1 publication Critical patent/WO2021149131A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • H02K3/493Slot-closing devices magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets

Definitions

  • the present application relates to a stator and a rotary electric machine using the stator.
  • the magnetic wave gearing device shown in Patent Document 1 has a stator from the outer peripheral side, a first rotor that rotates at a low speed, and a second rotor that rotates at a high speed according to a gear ratio, about a rotation axis.
  • the stator has a stator coil that can output generated power or control the generated torque.
  • the stator has a stator core provided with a plurality of stator slots, and both the stator coil and the stator magnet are stored in each stator slot. Therefore, one rotary electric machine can perform both shifting and power generation. Further, a chip portion made of a magnetic material as a back yoke is provided on a part of the stator coil side of the stator magnet so as to project from the wall surface of the stator slot to increase the output. However, if the chip portion is provided between the stator coil and the stator magnet, it becomes difficult to insert the stator coil into the bottom of the stator slot in the stator manufacturing process, which deteriorates workability. There was a challenge.
  • stator coil will not be stably fixed at the bottom of the stator slot, and the stator coil will be inside the stator slot. There is a problem that the insulation of the stator coil is deteriorated due to friction when moving to the stator magnet side and the reliability is impaired.
  • This application was made to solve the above-mentioned problems, and aims to obtain a high-output stator by a simple manufacturing process.
  • the stator disclosed in the present application includes a stator core provided with a plurality of stator teeth in the circumferential direction with respect to the center of rotation of the rotary electric machine, and a plurality of stator slots formed between the stator teeth.
  • a stator coil arranged on the bottom side of the stator and a stator magnet arranged on the open side of each of the plurality of stator slots and having the same polarity in the radial direction are provided.
  • a plate-shaped fixing member is provided between the stator coil and the stator magnet so as to be fitted with two facing wall surfaces of the stator slot, and the stator coil and the stator magnet are provided. It is equipped with a magnetic material between and.
  • a high output can be obtained by a simple manufacturing process.
  • FIG. 1 It is a schematic diagram which shows the cross section of the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the main part of the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the cross section of the stator slot of the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a schematic diagram explaining the magnetic flux around the stator magnet of the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the cross section of the stator slot of the rotary electric machine which concerns on Embodiment 2.
  • FIG. It is a schematic diagram which shows the cross section of the stator slot of the rotary electric machine which concerns on Embodiment 3.
  • FIG. It is a schematic diagram explaining the magnetic flux around the stator magnet of the rotary electric machine which concerns on Embodiment 3.
  • FIG. It is a schematic diagram which shows the cross section of another stator slot of the rotary electric machine which concerns on Embodiment 3.
  • FIG. It is a schematic diagram which shows the cross section of the stator slot of the rotary electric machine which concerns on Embodiment 4.
  • FIG. It is a schematic diagram which shows the cross section of another stator slot of the rotary electric machine which concerns on Embodiment 4.
  • FIG. It is a schematic diagram which shows the main part of the rotary electric machine which concerns on Embodiment 5.
  • FIG. 1 is a schematic view showing a cross section of the rotary electric machine 100
  • FIG. 2 is a schematic view showing a main part of the rotary electric machine 100.
  • FIG. 2 is an enlarged view of a portion surrounded by a broken line in FIG.
  • the rotary electric machine 100 is an annular stator 1 that surrounds a rotary shaft 40 that is the center of rotation of the rotary electric machine 100, and a first rotor that is coaxially provided with the stator 1. It includes a low-speed rotor 20 and a high-speed rotor 30 which is a second rotor facing the low-speed rotor 20 and coaxially provided with the low-speed rotor 20.
  • the stator 1 includes a stator core 2, a stator coil 3, and a stator magnet 4.
  • the annular stator core 2 includes a plurality of stator teeth 6 at equal intervals in the circumferential direction with respect to the center of rotation of the rotary electric machine 100.
  • the plurality of stator slots 5 formed between the stator teeth 6 each include a stator coil 3 and a stator magnet 4.
  • the stator coil 3 is arranged on the side of the bottom portion 5a of the stator slot 5.
  • the stator magnet 4 is arranged on the open side of the stator slot 5.
  • the stator magnets 4 are all magnetized in the same radial direction.
  • the stator magnet 4 is, for example, a neodymium sintered magnet, but is not limited thereto. Assuming that the inner diameter side of the stator magnet 4 is N pole, the inner diameter side of the adjacent stator teeth 6 is S pole, and the same number of pole logarithm Ns as the number of stator slots 5 is formed.
  • the low-speed rotor 20 is provided on the inner peripheral side of the stator 1 so as to face the stator magnet 4 through a minute gap.
  • the low-speed rotor 20 has a plurality of magnetic pole pieces 21 arranged at equal intervals in the circumferential direction, and rotates at a low speed by power from the outside.
  • the number of the magnetic pole pieces 21 is NL.
  • the high-speed rotor 30 is provided on the inner peripheral side of the low-speed rotor 20.
  • the high-speed rotor 30 has a plurality of permanent magnets, high-speed rotor magnets 31, at equal intervals on the outer peripheral portion, and has a logarithm of Nh.
  • FIG. 3 is a schematic view showing a cross section of a stator slot 5 of the rotary electric machine 100 according to the first embodiment.
  • Each stator slot 5 includes a stator coil 3, a stator magnet 4, and a magnetic material between the stator coil 3 and the stator magnet 4.
  • the magnetic material here is a plate-shaped fixing member made of a ferromagnetic material or a magnetic wedge 7 which is a plate-shaped fixing member containing a ferromagnetic material.
  • the magnetic wedge 7 is provided between the stator coil 3 and the stator magnet 4 so as to be fitted with a notch 5c of two facing wall surfaces 5b of the stator slot 5.
  • the stator coil 3 and the stator magnet 4 face each other via a magnetic wedge 7.
  • the magnetic wedge 7 is, for example, produced by mixing a magnetic powder with a resin material, but is not limited to this, and may be a magnetic wedge 7 made of a ferromagnetic material such as an electromagnetic steel plate.
  • the stator magnet 4 is magnetized so as to have the same polarity in the radial direction. For example, the direction of the arrow shown in FIG. 3 is the direction of magnetism.
  • the stator coil 3 is stably fixed at the bottom portion 5a of the stator slot 5.
  • the stator magnet 4 is fixed by being adhered to, for example, the wall surface 5b.
  • the magnetic wedge 7 is provided by inserting the stator coil 3 into the stator slot 5 and then inserting the stator coil 3 into the notch 5c from the axial direction perpendicular to the paper surface. Therefore, the magnetic wedge 7 does not prevent the stator coil 3 from being inserted into the stator slot 5, and the stator coil 3 can be easily inserted into the stator slot 5. Further, since the magnetic wedge 7 is provided by fitting, the magnetic wedge 7 can be easily installed in the stator slot 5, and the stator coil 3 is easily fixed in the stator slot 5.
  • FIG. 4 is a schematic view illustrating the magnetic flux 8 around the stator magnet 4 of the rotary electric machine 100 according to the first embodiment.
  • FIG. 4 is a diagram in which the magnetic flux 8 caused by the stator magnet 4 is added to FIG.
  • the magnetic flux 8 passes by the stator coil 3 and goes from the stator teeth 6 to the stator magnet 4.
  • the magnetic wedge 7 is provided, as shown in FIG. 4, the magnetic flux 8 passes through the magnetic wedge 7 and goes from the stator teeth 6 to the stator magnet 4. Since the magnetic flux 8 is concentrated on the magnetic wedge 7 and the magnetic flux 8 passes close to the stator magnet 4, the magnetic force of the stator magnet 4 is improved.
  • a high-output stator 1 can be obtained.
  • the structure is such that the magnetic force of the stator magnet 4 is improved, it is possible to obtain a predetermined torque as the rotary electric machine 100 by using the miniaturized stator magnet 4.
  • the stator 1 is a plate fitted between the stator coil 3 and the stator magnet 4 with the notch 5c of the two opposing wall surfaces 5b of the stator slot 5. Since the shaped magnetic wedge 7 is provided, the magnetic flux 8 passes close to the stator magnet 4, the magnetic force of the stator magnet 4 is improved, and the stator 1 having a high output can be obtained. Further, since the stator coil 3 can be easily inserted into the stator slot 5, the stator 1 can be manufactured by a simple manufacturing process. Further, since the magnetic wedge 7 is provided by fitting, the stator 1 can be manufactured by a simple manufacturing process. Further, the stator coil 3 can be fixed to the stator slot 5 by a simple manufacturing process.
  • FIG. 5 is a schematic view showing a cross section of the stator slot 5 of the rotary electric machine 100.
  • the stator 1 according to the second embodiment has a configuration in which a ferromagnetic material 10 is provided between the wedge 9 and the stator magnet 4.
  • the stator slot 5 includes a stator coil 3, a stator magnet 4, and a wedge 9 which is a plate-shaped fixing member between the stator coil 3 and the stator magnet 4, and further, the wedge 9 and the stator magnet 4
  • a ferromagnetic material 10 which is a magnetic material is provided between the two.
  • the wedge 9 is provided between the stator coil 3 and the stator magnet 4 so as to be fitted with a notch 5c of two facing wall surfaces 5b of the stator slot 5.
  • the stator coil 3 and the stator magnet 4 face each other via a wedge 9.
  • the wedge 9 is made of, for example, a non-magnetic resin material, but the wedge 9 is not limited to this, and may be a magnetic wedge 7.
  • the ferromagnetic material 10 is made of, for example, iron or an electromagnetic steel plate, but is not limited thereto.
  • the wedge 9 is provided by inserting the stator coil 3 into the stator slot 5 and then inserting the stator coil 3 into the notch 5c from the axial direction perpendicular to the paper surface. Therefore, the wedge 9 does not prevent the stator coil 3 from being inserted into the stator slot 5, and the stator coil 3 can be easily inserted into the stator slot 5. Further, since the wedge 9 is provided by fitting, the wedge 9 can be easily installed in the stator slot 5, and the stator coil 3 is easily fixed in the stator slot 5.
  • the stator magnet 4 is fixed by being adhered to, for example, the wall surface 5b.
  • the ferromagnetic material 10 is inserted and fixed between the stator magnet 4 and the wedge 9.
  • the ferromagnetic material 10 may be fixed by adhering to either one or both of the stator magnet 4 and the wedge 9.
  • the magnetic flux 8 passes through the ferromagnetic material 10 and goes from the stator teeth 6 to the stator magnet 4. Since the magnetic flux 8 is concentrated on the ferromagnetic material 10 and the magnetic flux 8 passes close to the stator magnet 4, the magnetic force of the stator magnet 4 is improved. By improving the magnetic force of the stator magnet 4, a high-output stator 1 can be obtained. Further, since the structure is such that the magnetic force of the stator magnet 4 is improved, it is possible to obtain a predetermined torque as the rotary electric machine 100 by using the miniaturized stator magnet 4.
  • stator 1 since the stator 1 according to the second embodiment has the ferromagnetic material 10 added between the wedge 9 and the stator magnet 4, the stator 1 is configured even if the existing non-magnetic wedge 9 is used.
  • the magnetic flux 8 passes close to the stator magnet 4 without significantly changing the above, and the magnetic force of the stator magnet 4 can be improved to obtain a high-output stator 1.
  • FIG. 6 is a schematic view showing a cross section of the stator slot 5 of the rotary electric machine 100.
  • the stator 1 according to the third embodiment has a configuration in which the ferromagnetic material 10 is divided in the circumferential direction.
  • the stator slot 5 includes a stator coil 3, a stator magnet 4, and a wedge 9 which is a plate-shaped fixing member between the stator coil 3 and the stator magnet 4, and further, the wedge 9 and the stator magnet 4
  • a ferromagnetic material 10 which is a magnetic material divided in the circumferential direction is provided between the two.
  • the divided portion (divided portion 10a) is the center of the stator slot 5 in the circumferential direction.
  • This magnetic flux 8a is a leakage flux.
  • a dividing portion 10a is provided in order to reduce the leakage flux drawn into the ferromagnetic material 10.
  • the split portion 10a becomes an air layer, and the leakage flux drawn into the ferromagnetic material 10 is reduced.
  • the dividing portion 10a is provided at the center of the stator slot 5 in the circumferential direction. Since the stator magnet 4 is magnetized so as to have poles having the same polarity in the radial direction, the magnetic flux 8 passes through the ferromagnetic material 10 and from the stator teeth 6 to the stator magnet as shown in FIG. Head to 4. In the stator magnet 4, the magnetic flux 8 generated from the center of the stator slot 5 in the circumferential direction toward the stator teeth 6 is the most difficult to obtain magnetic force because the distance from the center to the stator teeth 6 is long.
  • the dividing portion 10a of the ferromagnetic material 10 is provided in the central portion of the stator slot 5, the dividing portion 10a is effectively provided, and the magnetic flux 8 passing in the vicinity of the stator magnet 4 is provided as much as possible. It is possible to reduce the leakage magnetic flux drawn from the stator coil 3 into the ferromagnetic material 10 without damaging it.
  • FIG. 8 is a schematic view showing a cross section of another stator slot 5 of the rotary electric machine 100 according to the third embodiment.
  • the laminating direction of the electromagnetic steel sheet may be the radial direction, but the laminating direction is not limited to this, and the laminating direction may be the circumferential direction. I do not care.
  • the stator 1 according to the third embodiment includes the ferromagnetic material 10 divided in the circumferential direction between the wedge 9 and the stator magnet 4, ferromagnetism is caused by the stator coil 3.
  • the leakage magnetic flux drawn into the material 10 can be reduced.
  • the dividing portion 10a of the ferromagnetic material 10 is provided in the center of the stator slot 5 in the circumferential direction, the ferromagnetic material is formed from the stator coil 3 without damaging the magnetic flux 8 flowing in the vicinity of the stator magnet 4 as much as possible.
  • the leakage magnetic flux drawn into 10 can be reduced.
  • FIG. 9 is a schematic view showing a cross section of the stator slot 5 of the rotary electric machine 100.
  • the stator 1 according to the fourth embodiment has a configuration in which a cover 11 is provided inside the stator slot 5.
  • the stator slot 5 includes a stator coil 3, a stator magnet 4, a ferromagnetic material 10, and a cover 11.
  • the cover 11 is provided from the fixing member 11a provided between the stator coil 3 and the stator magnet 4 by fitting the notch 5c of the two facing wall surfaces 5b of the stator slot 5 and the fixing member 11a. It is formed by two side wall portions 11b extending parallel to the opening direction along the wall surface 5b.
  • the cover 11 may be a non-magnetic material or a magnetic material, and if it is a non-magnetic material, it is made of, for example, a resin.
  • the stator magnet 4 is sandwiched between the two side wall portions 11b and is arranged on the open side of the stator slot 5.
  • the ferromagnetic material 10 which is a magnetic material is provided between the fixing member 11a and the stator magnet 4.
  • the stator coil 3 and the stator magnet 4 face each other via the ferromagnetic material 10 and the fixing member 11a.
  • the cover 11 By fitting and fixing the cover 11 to the notch 5c, the stator coil 3 is stably fixed at the bottom 5a of the stator slot 5.
  • the cover 11 is provided by inserting the stator coil 3 into the stator slot 5 and then inserting the stator coil 3 into the notch 5c from the axial direction perpendicular to the paper surface. Therefore, the cover 11 does not prevent the stator coil 3 from being inserted into the stator slot 5, and the stator coil 3 can be easily inserted into the stator slot 5. Further, since the cover 11 is provided by fitting, the cover 11 can be easily installed in the stator slot 5, and the stator coil 3 is easily fixed in the stator slot 5.
  • the stator magnet 4 is fixed by being adhered to, for example, the side wall portion 11b.
  • the ferromagnetic material 10 is inserted and fixed between the stator magnet 4 and the cover 11.
  • the ferromagnetic material 10 may be fixed by adhering to either one or both of the stator magnet 4 and the cover 11.
  • the stator magnet 4 and the ferromagnetic material 10 may be provided in the cover 11 after the cover 11 is provided in the stator slot 5, but the stator magnet 4 and the ferromagnetic material 10 may be provided in the cover 11 and then covered. 11 may be provided in the stator slot 5.
  • the magnetic flux 8 passes through the ferromagnetic material 10 and goes from the stator teeth 6 to the stator magnet 4. Since the magnetic flux 8 is concentrated on the ferromagnetic material 10 and the magnetic flux 8 passes close to the stator magnet 4, the magnetic force of the stator magnet 4 is improved. By improving the magnetic force of the stator magnet 4, a high-output stator 1 can be obtained. Further, since the structure is such that the magnetic force of the stator magnet 4 is improved, it is possible to obtain a predetermined torque as the rotary electric machine 100 by using the miniaturized stator magnet 4.
  • the ferromagnetic material 10 may have a configuration divided in the circumferential direction. By providing the dividing portion 10a on the ferromagnetic material 10, it is possible to reduce the leakage flux drawn into the ferromagnetic material 10 due to the stator coil 3.
  • the stator 1 since the cover 11 is provided inside the stator slot 5 and the stator magnet 4 and the ferromagnetic material 10 are provided inside the cover 11, the magnetic flux 8 is the stator. By passing close to the magnet 4, the magnetic force of the stator magnet 4 can be improved, and a high-output stator 1 can be obtained.
  • the stator magnet 4 and the ferromagnetic material 10 are provided on the cover 11 before the cover 11 is installed in the stator slot 5, the stator 1 can be manufactured by a simple manufacturing process.
  • FIG. 11 is a schematic view showing a main part of the rotary electric machine 100.
  • the rotary electric machine 100 according to the fifth embodiment has a configuration in which a plate-shaped magnetic wedge 7 is provided between the stator coil 3 and the stator magnet 4 in the stator slot 5.
  • the rotary electric machine 100 has an annular stator 1 surrounding a rotation axis (not shown) which is the center of rotation of the rotary electric machine 100, and a plurality of magnetic pole pieces 21. It has a low-speed rotor 20 which is a first rotor and is provided coaxially with the stator 1 so as to face 4 and a high-speed rotor magnet 31 which is a plurality of permanent magnets, and faces the low-speed rotor 20. A high-speed rotor 30 which is a second rotor provided coaxially with the low-speed rotor 20 is provided.
  • the stator 1 includes a stator core 2, a stator coil 3, a stator magnet 4, and a magnetic wedge 7.
  • the annular stator core 2 includes a plurality of stator teeth 6 at equal intervals in the circumferential direction with respect to the center of rotation of the rotary electric machine 100.
  • a stator slot 5 is formed between the stator teeth 6.
  • the magnetic wedge 7 is provided between the stator coil 3 and the stator magnet 4 so as to be fitted with a notch 5c of two facing wall surfaces 5b of the stator slot 5.
  • the magnetic wedge 7 is provided by inserting the stator coil 3 into the stator slot 5 and then inserting the stator coil 3 into the notch 5c from the axial direction perpendicular to the paper surface.
  • the rotary electric machine 100 according to the fifth embodiment is provided with the magnetic wedge 7, the magnetic flux passes close to the stator magnet 4, the magnetic force of the stator magnet 4 is improved, and the stator 1 has a high output. As a result, the rotary electric machine 100 has a high output. Further, since the stator coil 3 can be easily inserted into the stator slot 5, the rotary electric machine 100 can be manufactured by a simple manufacturing process, and the stator coil 3 can be inserted into the stator slot 5 by a simple manufacturing process. Can be fixed.
  • the rotary electric machine 100 using the stator 1 described in the first embodiment has been described, but the rotary electric machine 100 using the stator 1 described in the second to fourth embodiments has also been described.
  • the output of 100 is increased, and the rotary electric machine 100 can be manufactured by a simple manufacturing process. Further, the same effect can be obtained with a generator and a motor provided with a stator 1 having the same configuration as that of the present application.
  • the rotary electric machine 100 in which the stator 1 is on the outermost circumference has been described above, the arrangement of the stator 1 is not limited to the outermost circumference, and the stator 1 is an outer rotor type rotary electric machine on the innermost circumference. It doesn't matter if there is.
  • the stator core includes a plurality of stator slots opened toward the outer peripheral side of the rotary electric machine in the circumferential direction.
  • the present application also describes various exemplary embodiments and examples, although the various features, embodiments, and functions described in one or more embodiments are those of a particular embodiment. It is not limited to application, but can be applied to embodiments alone or in various combinations. Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
  • stator 1 stator, 2 stator core, 3 stator coil, 4 stator magnet, 5 stator slot, 5a bottom, 5b wall surface, 5c notch, 6 stator teeth, 7 magnetic wedge, 8 magnetic flux, 9 wedge, 10 ferromagnetic material, 10a split part, 11 cover, 11a fixing member, 11b side wall part, 20 low speed rotor, 21 magnetic pole piece, 30 high speed rotor, 31 high speed rotor magnet, 40 rotating shaft, 100 rotating electric machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

回転電機(100)の回転の中心に対して固定子ティース(6)を周方向に複数備えた固定子鉄心(2)と、固定子ティース(6)の間に形成された複数の固定子スロット(5)のそれぞれの底部(5a)の側に配置された固定子コイル(3)と、複数の固定子スロット(5)のそれぞれの開口した側に配置され、径方向に同一の極性を備えた固定子磁石(4)とを備え、それぞれの固定子スロット(5)において、板状の固定部材が、固定子コイル(3)と固定子磁石(4)との間に、固定子スロット(5)の対向した2つの壁面と嵌め合って設けられ、固定子コイル(3)と固定子磁石(4)との間に磁性体を備える。

Description

固定子およびこれを用いた回転電機
 本願は、固定子およびこれを用いた回転電機に関するものである。
 従来から、回転電機が回転の中心に備えた回転軸に連結され、回転電機の回転を減速する機械式変速機が低速駆動を必要とする用途に対して用いられてきた。機械式変速機を用いた場合、機械的な摩耗などが変速機に生じるため、定期的なメンテナンスが必要となる。一方、非接触で回転子の回転速度を変速できる回転電機が、磁気波動歯車装置もしくは磁気ギアード発電機として開示されている(例えば、特許文献1参照)。
 特許文献1に示された磁気波動歯車装置は、回転軸を中心に、外周側から固定子、低速で回転する第1の回転子、および変速比に応じて高速で回転する第2の回転子を備える。固定子は、発電電力を出力する、あるいは発生トルクを制御することができる固定子コイルを有する。この回転電機を用いると、非接触で回転子の回転速度を変速できるため、機械的な摩耗などに起因したメンテナンスが不要であり、メンテナンスについての負荷の軽減を実現することができる。また、この回転電機を発電機として使用すれば、機械式変速機なしに1つの回転電機で変速と発電が可能で、発電システムは小型となり、省スペース化が実現できる。
特開2016-135014号公報
 上記特許文献1における回転電機の構造では、固定子は複数の固定子スロットを備えた固定子鉄心を有し、それぞれの固定子スロット内に固定子コイルと固定子磁石の両方を格納しているため、1つの回転電機で変速と発電の両方を行うことができる。また、固定子磁石の固定子コイルの側の一部に、バックヨークとして磁性体であるチップ部が固定子スロットの壁面から突出して設けられ、高出力化が図られている。しかしながら、チップ部を固定子コイルと固定子磁石との間に設けた場合、固定子の製造工程において固定子スロットの底部に固定子コイルを挿入することが難しくなるため、工作性が悪化するという課題があった。
 固定子スロットの底部に固定子コイルを容易に挿入するためにチップ部を設けなかった場合、固定子コイルが固定子スロットの底部で安定して固定されないため、固定子コイルが固定子スロットの内部で固定子磁石の側に動いた際の摩擦などにより固定子コイルの絶縁が劣化して信頼性が損なわれるという課題があった。
 本願は前記のような課題を解決するためになされたものであり、簡易な製造工程で、高出力な固定子を得ることを目的とする。
 本願に開示される固定子は、回転電機の回転の中心に対して固定子ティースを周方向に複数備えた固定子鉄心と、前記固定子ティースの間に形成された複数の固定子スロットのそれぞれの底部の側に配置された固定子コイルと、複数の前記固定子スロットのそれぞれの開口した側に配置され、径方向に同一の極性を備えた固定子磁石とを備え、それぞれの前記固定子スロットにおいて、板状の固定部材が、前記固定子コイルと前記固定子磁石との間に、前記固定子スロットの対向した2つの壁面と嵌め合って設けられ、前記固定子コイルと前記固定子磁石との間に磁性体を備えたものである。
 本願に開示される固定子によれば、簡易な製造工程で、高い出力を得ることができる。
実施の形態1に係る回転電機の断面を示す模式図である。 実施の形態1に係る回転電機の要部を示す模式図である。 実施の形態1に係る回転電機の固定子スロットの断面を示す模式図である。 実施の形態1に係る回転電機の固定子磁石の周囲の磁束を説明する模式図である。 実施の形態2に係る回転電機の固定子スロットの断面を示す模式図である。 実施の形態3に係る回転電機の固定子スロットの断面を示す模式図である。 実施の形態3に係る回転電機の固定子磁石の周囲の磁束を説明する模式図である。 実施の形態3に係る回転電機の別の固定子スロットの断面を示す模式図である。 実施の形態4に係る回転電機の固定子スロットの断面を示す模式図である。 実施の形態4に係る回転電機の別の固定子スロットの断面を示す模式図である。 実施の形態5に係る回転電機の要部を示す模式図である。
 以下、本願の実施の形態による固定子およびこれを用いた回転電機を図に基づいて説明する。なお、各図において同一、または相当部材、部位については同一符号を付して説明する。
実施の形態1.
 図1は回転電機100の断面を示す模式図、図2は回転電機100の要部を示す模式図である。図2は、図1の破線で囲んだ箇所を拡大して示した図である。回転電機100は、図1に示すように、回転電機100の回転の中心である回転軸40を取り囲む円環状の固定子1と、固定子1と同軸に設けられた第1の回転子である低速回転子20と、低速回転子20に対向して低速回転子20と同軸に設けられた第2の回転子である高速回転子30とを備える。まず、回転電機100として磁気ギアード発電機についての一般的な構造と動作を説明する。
 固定子1は、図2に示すように、固定子鉄心2、固定子コイル3、および固定子磁石4を備える。円環状の固定子鉄心2は、回転電機100の回転の中心に対して固定子ティース6を周方向に等間隔で複数備える。固定子ティース6の間に形成された複数の固定子スロット5は、それぞれが固定子コイル3と固定子磁石4を備える。固定子コイル3は、固定子スロット5の底部5aの側に配置される。固定子磁石4は、固定子スロット5の開口した側に配置される。固定子磁石4は、全て径方向の同じ向きに着磁されている。固定子磁石4は、例えばネオジウム焼結磁石であるが、これに限るものではない。固定子磁石4の内径側をN極とすると、隣接した固定子ティース6の内径側はS極となり、固定子スロット5の数と同じ数の極対数Nsが形成される。
 低速回転子20は、固定子1の内周側に固定子磁石4に対向して、微小なギャップを介して設けられる。低速回転子20は、周方向に等間隔で配置された複数の磁極片21を有し、外部からの動力により低速で回転する。この磁極片21の数を、NLとする。高速回転子30は、低速回転子20の内周側に設けられる。高速回転子30は、外周部に複数の永久磁石である高速回転子磁石31を等間隔で有し、Nhの極対数が形成される。
 Ns、NL、Nhの関係が、NL=Ns±Nhを満足すれば、固定子磁石4と高速回転子磁石31の磁力の相互作用により、低速回転子20に負のトルクが発生する。これに対して低速回転子20を外部からの動力により回転させることで、低速回転子20に入力を得ることができる。低速回転子20の入力に対して、高速回転子30をフリーランさせるように固定子コイル3に固定子電流を流せば、高速回転子30は低速回転子20のNL/Nh倍の回転速度で回転する。高速回転子30が低速回転子20のNL/Nh倍速で回転すると、固定子コイル3に誘導起電力が発生する。誘導起電力の発生により、固定子コイル3から発電電力が出力される。
 本願の要部である固定子スロット5の内部の構成について説明する。図3は実施の形態1に係る回転電機100の固定子スロット5の断面を示す模式図である。それぞれの固定子スロット5は、固定子コイル3、固定子磁石4、および固定子コイル3と固定子磁石4との間に磁性体を備える。ここでの磁性体は、強磁性材からなる板状の固定部材もしくは強磁性材を含む板状の固定部材である磁性ウエッジ7である。磁性ウエッジ7は、固定子コイル3と固定子磁石4との間で、固定子スロット5の対向した2つの壁面5bの切欠き部5cと嵌め合って設けられる。固定子コイル3と固定子磁石4とは、磁性ウエッジ7を介して対向する。磁性ウエッジ7は、例えば、樹脂材料に磁性粉末を混ぜて作製されるがこれに限るものではなく、電磁鋼板などの強磁性材からなる磁性ウエッジ7であっても構わない。固定子磁石4は、径方向に同一の極性を備えるように着磁される。例えば、図3に示した矢印の方向が着磁の方向である。
 磁性ウエッジ7を切欠き部5cと嵌め合って固定することで、固定子コイル3は固定子スロット5の底部5aで安定して固定される。固定子磁石4は、例えば壁面5bと接着して固定される。固定子1の製造工程において、磁性ウエッジ7は、固定子コイル3を固定子スロット5に挿入した後に、切欠き部5cに紙面に垂直な軸方向から挿入して設けられる。そのため、磁性ウエッジ7は、固定子コイル3の固定子スロット5への挿入を妨げることはなく、固定子コイル3の固定子スロット5への挿入は容易である。また、磁性ウエッジ7は嵌め合いで設けられるため、磁性ウエッジ7の固定子スロット5への設置は容易であり、固定子コイル3は固定子スロット5に容易に固定される。
 図4は、実施の形態1に係る回転電機100の固定子磁石4の周囲の磁束8を説明する模式図である。図4は、固定子磁石4に起因した磁束8を図3に追記した図である。磁性ウエッジ7を設けていない場合、磁束8は固定子コイル3の側を通って、固定子ティース6から固定子磁石4に向かう。磁性ウエッジ7を設けた場合、図4に示すように、磁束8は磁性ウエッジ7を通って、固定子ティース6から固定子磁石4に向かう。磁性ウエッジ7に磁束8が集中し、磁束8は固定子磁石4に近接して通るため、固定子磁石4の磁力が向上する。固定子磁石4の磁力が向上することで、高出力な固定子1が得られる。また、固定子磁石4の磁力を向上させる構成なため、小型化した固定子磁石4を用いて、回転電機100として予め定めたトルクを得ることも可能となる。
 以上のように、実施の形態1による固定子1は、固定子コイル3と固定子磁石4との間に、固定子スロット5の対向した2つの壁面5bの切欠き部5cと嵌め合った板状の磁性ウエッジ7を備えたため、磁束8が固定子磁石4に近接して通り、固定子磁石4の磁力を向上させ、高出力な固定子1を得ることができる。また、固定子コイル3の固定子スロット5への挿入は容易であるため、簡易な製造工程で固定子1を作製することができる。また、磁性ウエッジ7は嵌め合いで設けられるため、簡易な製造工程で固定子1を作製することができる。また、簡易な製造工程で固定子コイル3を固定子スロット5に固定することができる。
実施の形態2.
 実施の形態2に係る固定子1について説明する。図5は、回転電機100の固定子スロット5の断面を示す模式図である。実施の形態2に係る固定子1は、ウエッジ9と固定子磁石4との間に強磁性材10を備えた構成になっている。
 固定子スロット5は、固定子コイル3、固定子磁石4、および固定子コイル3と固定子磁石4との間に板状の固定部材であるウエッジ9を備え、さらにウエッジ9と固定子磁石4との間に磁性体である強磁性材10を備える。ウエッジ9は、固定子コイル3と固定子磁石4との間で、固定子スロット5の対向した2つの壁面5bの切欠き部5cと嵌め合って設けられる。固定子コイル3と固定子磁石4とは、ウエッジ9を介して対向する。ウエッジ9は、例えば、非磁性の樹脂材料から作製されるがこれに限るものではなく、磁性ウエッジ7であっても構わない。強磁性材10は、例えば、鉄、電磁鋼板から作製されるがこれに限るものではない。
 ウエッジ9を切欠き部5cと嵌め合って固定することで、固定子コイル3は固定子スロット5の底部5aで安定して固定される。固定子1の製造工程において、ウエッジ9は、固定子コイル3を固定子スロット5に挿入した後に、切欠き部5cに紙面に垂直な軸方向から挿入して設けられる。そのため、ウエッジ9は、固定子コイル3の固定子スロット5への挿入を妨げることはなく、固定子コイル3の固定子スロット5への挿入は容易である。また、ウエッジ9は嵌め合いで設けられるため、ウエッジ9の固定子スロット5への設置は容易であり、固定子コイル3は固定子スロット5に容易に固定される。固定子磁石4は、例えば壁面5bと接着して固定される。強磁性材10は、固定子磁石4とウエッジ9との間に挿入して固定される。強磁性材10は、固定子磁石4とウエッジ9の何れか一方、もしくは双方と接着して固定してもよい。
 強磁性材10を設けたことで、ウエッジ9が非磁性であっても、磁束8は強磁性材10を通って、固定子ティース6から固定子磁石4に向かう。強磁性材10に磁束8が集中し、磁束8は固定子磁石4に近接して通るため、固定子磁石4の磁力が向上する。固定子磁石4の磁力が向上することで、高出力な固定子1が得られる。また、固定子磁石4の磁力を向上させる構成なため、小型化した固定子磁石4を用いて、回転電機100として予め定めたトルクを得ることも可能となる。
 以上のように、実施の形態2による固定子1は、ウエッジ9と固定子磁石4との間に強磁性材10を付加したため、既存の非磁性のウエッジ9を用いた構成であっても構成を大幅に変更することなく、磁束8が固定子磁石4に近接して通り、固定子磁石4の磁力を向上させ、高出力な固定子1を得ることができる。
実施の形態3.
 実施の形態3に係る固定子1について説明する。図6は、回転電機100の固定子スロット5の断面を示す模式図である。実施の形態3に係る固定子1は、強磁性材10が周方向に分割された構成になっている。
 固定子スロット5は、固定子コイル3、固定子磁石4、および固定子コイル3と固定子磁石4との間に板状の固定部材であるウエッジ9を備え、さらにウエッジ9と固定子磁石4との間に周方向に分割された磁性体である強磁性材10を備える。分割された箇所(分割部10a)は、固定子スロット5の周方向の中央である。強磁性材10を設けたことで、ウエッジ9が非磁性であっても、強磁性材10に磁束8が集中し、固定子磁石4の磁力は向上する。しかしながら、図7に示すように、強磁性材10には固定子磁石4に起因した磁束8だけでなく、固定子コイル3に起因した磁束8aも通過する。この磁束8aは、漏れ磁束である。強磁性材10に引き込まれる漏れ磁束が大きくなると、固定子コイル3からの発電電力は低下する。強磁性材10に引き込まれる漏れ磁束を低減するために、分割部10aが設けられる。分割部10aが空気層となり、強磁性材10に引き込まれる漏れ磁束は低減される。
 分割部10aを、固定子スロット5の周方向の中央に設けた理由について説明する。固定子磁石4は径方向に同一の極性の極となるように着磁されているため、磁束8は、図7に示すように、強磁性材10を通って固定子ティース6から固定子磁石4に向かう。固定子磁石4において、固定子スロット5の周方向の中央から固定子ティース6に向かって発生する磁束8は、中央から固定子ティース6までの距離が長いため、最も磁力が得にくい。すなわち、この固定子スロット5の中央部に強磁性材10の分割部10aを設ければ、効果的に分割部10aを設けたことになり、固定子磁石4に近接して通る磁束8を極力損なうことなく、固定子コイル3から強磁性材10に引き込まれる漏れ磁束を低減することができる。
 図8は、実施の形態3に係る回転電機100の別の固定子スロット5の断面を示す模式図である。強磁性材10が電磁鋼板から作製された場合、図8に示すように、電磁鋼板の積層の方向は径方向で構わないがこれに限るものではなく、積層の方向は周方向であっても構わない。
 以上のように、実施の形態3による固定子1では、ウエッジ9と固定子磁石4との間に周方向に分割された強磁性材10を備えたため、固定子コイル3に起因して強磁性材10に引き込まれる漏れ磁束を低減することができる。また、強磁性材10の分割部10aを固定子スロット5の周方向の中央に設けた場合、固定子磁石4に近接して流れる磁束8を極力損なうことなく、固定子コイル3から強磁性材10に引き込まれる漏れ磁束を低減することができる。
実施の形態4.
 実施の形態4に係る固定子1について説明する。図9は回転電機100の固定子スロット5の断面を示す模式図である。実施の形態4に係る固定子1は、固定子スロット5の内部にカバー11を備えた構成になっている。
 固定子スロット5は、固定子コイル3、固定子磁石4、強磁性材10、およびカバー11を備える。カバー11は、固定子コイル3と固定子磁石4との間で、固定子スロット5の対向した2つの壁面5bの切欠き部5cと嵌め合って設けられた固定部材11aと、固定部材11aから壁面5bに沿って開口の方向に平行して伸長した2つの側壁部11bとにより形成される。カバー11は、非磁性材であっても磁性材であってもよく、非磁性材であれば例えば樹脂で作製される。固定子磁石4は、2つの側壁部11bに挟まれて、固定子スロット5の開口した側に配置される。磁性体である強磁性材10は、固定部材11aと固定子磁石4との間に設けられる。固定子コイル3と固定子磁石4とは、強磁性材10と固定部材11aとを介して対向する。
 カバー11を切欠き部5cと嵌め合って固定することで、固定子コイル3は固定子スロット5の底部5aで安定して固定される。固定子1の製造工程において、カバー11は、固定子コイル3を固定子スロット5に挿入した後に、切欠き部5cに紙面に垂直な軸方向から挿入して設けられる。そのため、カバー11は、固定子コイル3の固定子スロット5への挿入を妨げることはなく、固定子コイル3の固定子スロット5への挿入は容易である。また、カバー11は嵌め合いで設けられるため、カバー11の固定子スロット5への設置は容易であり、固定子コイル3は固定子スロット5に容易に固定される。
 固定子磁石4は、例えば側壁部11bと接着して固定される。強磁性材10は、固定子磁石4とカバー11との間に挿入して固定される。強磁性材10は、固定子磁石4とカバー11の何れか一方、もしくは双方と接着して固定してもよい。固定子磁石4と強磁性材10は、カバー11を固定子スロット5に設けた後にカバー11内に設けてもよいが、固定子磁石4と強磁性材10をカバー11内に設けてからカバー11を固定子スロット5に設けても構わない。カバー11の固定子スロット5への設置前に、カバー11に固定子磁石4と強磁性材10を設けることで、製造工程は簡易となる。
 強磁性材10を設けたことで、カバー11が非磁性であっても、磁束8は強磁性材10を通って、固定子ティース6から固定子磁石4に向かう。強磁性材10に磁束8が集中し、磁束8は固定子磁石4に近接して通るため、固定子磁石4の磁力が向上する。固定子磁石4の磁力が向上することで、高出力な固定子1が得られる。また、固定子磁石4の磁力を向上させる構成なため、小型化した固定子磁石4を用いて、回転電機100として予め定めたトルクを得ることも可能となる。
 強磁性材10は、図10に示すように、周方向に分割された構成であっても構わない。強磁性材10に分割部10aを設けることで、固定子コイル3に起因して強磁性材10に引き込まれる漏れ磁束を低減することができる。
 以上のように、実施の形態4による固定子1では、固定子スロット5の内部にカバー11を備え、カバー11の内部に固定子磁石4と強磁性材10を設けたため、磁束8が固定子磁石4に近接して通り、固定子磁石4の磁力を向上させ、高出力な固定子1を得ることができる。カバー11の固定子スロット5への設置前に、カバー11に固定子磁石4と強磁性材10を設けた場合、簡易な製造工程で固定子1を製造することができる。
実施の形態5.
 実施の形態5では、実施の形態1で説明した固定子1を用いた回転電機100について説明する。図11は回転電機100の要部を示す模式図である。実施の形態5に係る回転電機100は、固定子スロット5内の固定子コイル3と固定子磁石4との間に板状の磁性ウエッジ7を備えた構成になっている。
 回転電機100は、図11に示すように、回転電機100の回転の中心である回転軸(図示せず)を取り囲む円環状の固定子1と、複数の磁極片21を有し、固定子磁石4と対向して固定子1と同軸に設けられた第1の回転子である低速回転子20と、複数の永久磁石である高速回転子磁石31を有し、低速回転子20と対向して低速回転子20と同軸に設けられた第2の回転子である高速回転子30とを備える。固定子1は、固定子鉄心2、固定子コイル3、固定子磁石4、および磁性ウエッジ7を備える。円環状の固定子鉄心2は、回転電機100の回転の中心に対して固定子ティース6を周方向に等間隔で複数備える。固定子ティース6の間に、固定子スロット5が形成される。磁性ウエッジ7は、固定子コイル3と固定子磁石4との間で、固定子スロット5の対向した2つの壁面5bの切欠き部5cと嵌め合って設けられる。固定子1の製造工程において、磁性ウエッジ7は、固定子コイル3を固定子スロット5に挿入した後に、切欠き部5cに紙面に垂直な軸方向から挿入して設けられる。
 以上のように、実施の形態5による回転電機100では、磁性ウエッジ7を備えたため、磁束が固定子磁石4に近接して通り、固定子磁石4の磁力を向上させ、高出力な固定子1を得ることができ、ひいては回転電機100が高出力化される。また、固定子コイル3の固定子スロット5への挿入は容易であるため、簡易な製造工程で回転電機100を作製することができ、簡易な製造工程で固定子コイル3を固定子スロット5に固定することができる。
 以上では、実施の形態1で説明した固定子1を用いた回転電機100について説明したが、実施の形態2から実施の形態4で説明した固定子1を用いた回転電機100においても、回転電機100は高出力化され、簡易な製造工程で回転電機100を作製することができる。また、本願と同様の構成の固定子1を備えた発電機、モータにおいても同様の効果を奏する。また、以上では固定子1が最外周にある回転電機100について記載したが、固定子1の配置は最外周に限るものではなく、固定子1が最内周にあるアウターロータ形の回転電機であっても構わない。固定子1を最内周に設けた場合、固定子鉄心は回転電機の外周側に向けて開口した固定子スロットを周方向に複数備える。
 また本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 固定子、2 固定子鉄心、3 固定子コイル、4 固定子磁石、5 固定子スロット、5a 底部、5b 壁面、5c 切欠き部、6 固定子ティース、7 磁性ウエッジ、8 磁束、9 ウエッジ、10 強磁性材、10a 分割部、11 カバー、11a 固定部材、11b 側壁部、20 低速回転子、21 磁極片、30 高速回転子、31 高速回転子磁石、40 回転軸、100 回転電機

Claims (6)

  1.  回転電機の回転の中心に対して固定子ティースを周方向に複数備えた固定子鉄心と、
    前記固定子ティースの間に形成された複数の固定子スロットのそれぞれの底部の側に配置された固定子コイルと、
    複数の前記固定子スロットのそれぞれの開口した側に配置され、径方向に同一の極性を備えた固定子磁石と、を備え、
    それぞれの前記固定子スロットにおいて、
    板状の固定部材が、前記固定子コイルと前記固定子磁石との間に、前記固定子スロットの対向した2つの壁面と嵌め合って設けられ、
    前記固定子コイルと前記固定子磁石との間に磁性体を備えたことを特徴とする固定子。
  2.  前記磁性体は、強磁性材からなる前記固定部材もしくは強磁性材を含む前記固定部材であることを特徴とする請求項1に記載の固定子。
  3.  前記磁性体は、前記固定部材と前記固定子磁石との間に備えた強磁性材であることを特徴とする請求項1に記載の固定子。
  4.  前記固定部材と、前記固定部材から前記壁面に沿って前記開口の方向に平行して伸長した2つの側壁部とにより形成されたカバーを備え、
    前記磁性体は、前記固定部材と前記固定子磁石との間に備えた強磁性材であることを特徴とする請求項1に記載の固定子。
  5.  前記磁性体は、周方向に分割されていることを特徴とする請求項3または請求項4に記載の固定子。
  6.  請求項1から5のいずれか1項に記載した固定子と、
    複数の磁極片を有し、前記固定子磁石と対向して前記固定子と同軸に設けられた第1の回転子と、
    複数の永久磁石を有し、前記第1の回転子と対向して前記第1の回転子と同軸に設けられた第2の回転子と、を備えたことを特徴とする回転電機。
PCT/JP2020/001816 2020-01-21 2020-01-21 固定子およびこれを用いた回転電機 WO2021149131A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080093383.5A CN114946107A (zh) 2020-01-21 2020-01-21 定子以及使用该定子的旋转电机
PCT/JP2020/001816 WO2021149131A1 (ja) 2020-01-21 2020-01-21 固定子およびこれを用いた回転電機
EP20915790.8A EP4096062A4 (en) 2020-01-21 2020-01-21 STATOR AND ROTATING ELECTRICAL MACHINE WITH IT
US17/779,553 US20230026553A1 (en) 2020-01-21 2020-01-21 Stator and rotary electric machine using same
JP2021572148A JP7262623B2 (ja) 2020-01-21 2020-01-21 固定子およびこれを用いた回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001816 WO2021149131A1 (ja) 2020-01-21 2020-01-21 固定子およびこれを用いた回転電機

Publications (1)

Publication Number Publication Date
WO2021149131A1 true WO2021149131A1 (ja) 2021-07-29

Family

ID=76992234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001816 WO2021149131A1 (ja) 2020-01-21 2020-01-21 固定子およびこれを用いた回転電機

Country Status (5)

Country Link
US (1) US20230026553A1 (ja)
EP (1) EP4096062A4 (ja)
JP (1) JP7262623B2 (ja)
CN (1) CN114946107A (ja)
WO (1) WO2021149131A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116054438A (zh) * 2023-01-13 2023-05-02 南京航空航天大学 定子槽口复用型感应励磁电机及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250865A (ja) * 1986-04-22 1987-10-31 Mitsubishi Electric Corp 超電導回転電機の回転子
JPS649821B2 (ja) * 1982-04-07 1989-02-20 Hitachi Ltd
JP2003164088A (ja) * 2001-11-28 2003-06-06 Nissan Motor Co Ltd 電動機の固定子構造
JP2007221913A (ja) * 2006-02-16 2007-08-30 Sawafuji Electric Co Ltd 回転電機用電機子
JP2014163431A (ja) * 2013-02-22 2014-09-08 Ihi Corp 磁気波動歯車装置
JP2016135014A (ja) * 2015-01-20 2016-07-25 株式会社Ihi 磁気波動歯車装置

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1260674A (en) * 1918-03-26 Westinghouse Electric & Mfg Co Coil-wedge for dynamo-electric machines.
US1024572A (en) * 1909-08-02 1912-04-30 Westinghouse Electric & Mfg Co Magnetizable wedge for dynamo-electric machines.
US984182A (en) * 1909-08-02 1911-02-14 Westinghouse Electric & Mfg Co Magnetizable wedge for dynamo-electric machines.
US1150022A (en) * 1913-08-02 1915-08-17 Westinghouse Electric & Mfg Co Coil-wedge.
US1268020A (en) * 1914-03-03 1918-05-28 Westinghouse Electric & Mfg Co Ventilating apparatus.
US1494047A (en) * 1921-12-17 1924-05-13 Allis Chalmers Mfg Co Dynamo-electric-machine construction
US2015554A (en) * 1933-12-08 1935-09-24 Gen Electric Magnetic wedge
GB732783A (en) * 1951-12-12 1955-06-29 Vickers Electrical Co Ltd Improvements relating to the construction of dynamo electric machines
US2661434A (en) * 1952-08-01 1953-12-01 Gen Electric Dynamoelectric machine core ventilation
US2664512A (en) * 1952-08-30 1953-12-29 Gen Electric Dynamoelectric machine core and winding ventilation arrangement
US2745030A (en) * 1952-09-03 1956-05-08 Gen Electric Dynamoelectric machine core member and method of making same
US3119033A (en) * 1961-11-07 1964-01-21 Parsons C A & Co Ltd Dynamo-electric machines
US3408516A (en) * 1966-02-07 1968-10-29 Gen Electric Dynamoelectric machine rotor with current carrying rotor wedges
US3440462A (en) * 1966-03-03 1969-04-22 Gen Electric Dynamoelectric machine gap pick rotor wedges
US3444407A (en) * 1966-07-20 1969-05-13 Gen Electric Rigid conductor bars in dynamoelectric machine slots
US3437858A (en) * 1966-11-17 1969-04-08 Glastic Corp Slot wedge for electric motors or generators
CH460150A (de) * 1967-02-06 1968-07-31 Tokyo Shibaura Electric Co Dynamoelektrische Maschine
US3488532A (en) * 1968-03-05 1970-01-06 James W Endress Squirrel cage motor structure and method of forming same
GB1430756A (en) * 1972-07-11 1976-04-07 Reyrolle Parsons Ltd Dynamo-electric machines
DE2310948C3 (de) * 1973-03-05 1978-12-14 Siemens Ag, 1000 Berlin Und 8000 Muenchen Ständer für dauermagneterregte Maschinen
US4152610A (en) * 1973-08-22 1979-05-01 Patentbureau Danubia Turbogenerator having dual cooling
CH579844A5 (ja) * 1974-12-04 1976-09-15 Bbc Brown Boveri & Cie
US3984711A (en) * 1975-04-07 1976-10-05 Warner Electric Brake & Clutch Company Variable reluctance step motor with permanent magnets
DE2633278C3 (de) * 1976-07-23 1979-04-12 Kraftwerk Union Ag, 4330 Muelheim Anordnung zum Verspannen einer im Luftspalt eines Synchrongenerators angeordneten Ständerwicklung
DE2737959C3 (de) * 1977-08-23 1985-04-04 Kraftwerk Union Ag, 4330 Muelheim Anordnung zum Verspannen einer Luftspaltwicklung im Ständer einer elektrischen Maschine
FR2440639A1 (fr) * 1978-11-03 1980-05-30 Alsthom Atlantique Rotor de machine electrique refroidi par circulation de gaz
US4282450A (en) * 1979-09-25 1981-08-04 Westinghouse Electric Corp. Dynamoelectric machine with cryostable field winding
US4385252A (en) * 1981-09-17 1983-05-24 General Electric Company Support for exciter winding bar
US4634911A (en) * 1985-04-16 1987-01-06 Westinghouse Electric Corp. High voltage dynamoelectric machine with selectively increased coil turn-to-turn insulation strength
US4667125A (en) * 1985-10-25 1987-05-19 General Electric Company Rotor slot insulation system for electrical machine and article incorporating same
US4827597A (en) * 1987-06-17 1989-05-09 Magnetek, Inc. Method of forming magnetic top wedge
EP0493603B1 (en) * 1990-06-29 1995-01-25 Kabushiki Kaisha Toshiba Insulating magnetic wedge fitted into slot
US5258681A (en) * 1990-06-29 1993-11-02 Kabushiki Kaisha Toshiba Magnetic slot wedges for dynamo-electric machines
US5329197A (en) * 1992-10-29 1994-07-12 General Electric Company Generator rotor winding with two coils per slot
US5325008A (en) * 1992-12-09 1994-06-28 General Electric Company Constrained ripple spring assembly with debondable adhesive and methods of installation
US5854525A (en) * 1993-07-30 1998-12-29 Jeumont Industrie Jacketed rotary machine
US5489810A (en) * 1994-04-20 1996-02-06 Sundstrand Corporation Switched reluctance starter/generator
US5519269A (en) * 1994-06-10 1996-05-21 Westinghouse Electric Corp. Electric induction motor and related method of cooling
JP3574221B2 (ja) * 1995-06-09 2004-10-06 三菱電機株式会社 回転電機の回転子
US5866964A (en) * 1996-01-29 1999-02-02 Emerson Electric Company Reluctance machine with auxiliary field excitations
US5821652A (en) * 1996-08-28 1998-10-13 Marathon Electric Manufacturing Corporation Dynamoelectric machines with shaft voltage prevention method and structure
DE19742900A1 (de) * 1997-09-29 1999-04-01 Asea Brown Boveri Nutverschlußanordnung
JP3450710B2 (ja) * 1997-10-24 2003-09-29 オークマ株式会社 スウィッチトリラクタンスモータ
US6262503B1 (en) * 1998-10-15 2001-07-17 Massachusetts Institute Of Technology Method and apparatus for cooling current carrying coil
US6278217B1 (en) * 1999-12-09 2001-08-21 General Electric Company High voltage generator stator with radially inserted cable windings and assembly method
US6268668B1 (en) * 2000-01-03 2001-07-31 General Electric Co. Gas cooled generator stator structure and method for impingement cooling of generator stator coil
DE10115186A1 (de) * 2001-03-27 2002-10-24 Rexroth Indramat Gmbh Gekühltes Primärteil oder Sekundärteil eines Elektromotors
EP1251624B1 (en) * 2001-04-20 2009-01-21 Converteam Ltd Cooling of air gap winding of electrical machines
DE10244202A1 (de) * 2002-09-23 2004-03-25 Alstom (Switzerland) Ltd. Elektrische Maschine mit einem Stator mit gekühlten Wicklungsstäben
GB2393335B (en) * 2002-09-23 2005-10-26 Alstom Gas-cooled generator stator
DE10329678A1 (de) * 2003-07-01 2005-02-03 Siemens Ag Elektromotor für einen Antrieb eines Fahrzeugs, insbesondere Bahnantriebe, sowie einen Antrieb mit einem solchen Elektromotor
BRPI0402045B1 (pt) * 2004-05-12 2021-04-13 Oscar Rolando Avilla Cusicanqui Motor elétrico híbrido de relutância
DE102005016257B4 (de) * 2005-04-08 2008-03-13 Siemens Ag Reluktanzmotor
ES2379191T3 (es) * 2006-02-17 2012-04-23 Ansaldo Energia S.P.A. Rotor ventilado de un turbogenerador de alta potencia para la producción de electricidad
FR2898439B1 (fr) * 2006-03-08 2008-05-30 Centre Nat Rech Scient Machine electrique a commutation de flux et a double excitation
US7868511B2 (en) * 2007-05-09 2011-01-11 Motor Excellence, Llc Electrical devices using disk and non-disk shaped rotors
US20090121557A1 (en) * 2007-11-09 2009-05-14 Tai-Her Yang Electric machinery with a conduction winding excited magnetic poles sandwiched PM magnetic pole
US8183734B2 (en) * 2008-07-28 2012-05-22 Direct Drive Systems, Inc. Hybrid winding configuration of an electric machine
US7859146B2 (en) * 2008-09-22 2010-12-28 Hamilton Sundstrand Corporation End winding cooling
EP2360815B1 (en) * 2008-11-27 2021-03-31 Kabushiki Kaisha Toshiba Dynamo-electric machine and stator thereof
US20100162560A1 (en) * 2008-12-31 2010-07-01 Lape Brock M Method and system for removing wedges
EP2228887A1 (de) * 2009-03-09 2010-09-15 Siemens Aktiengesellschaft Rotor für einen Turbogenerator sowie Turbogenerator mit einem Rotor
US8987965B2 (en) * 2010-03-23 2015-03-24 Shin-Etsu Chemical Co., Ltd. Rotor and permanent magnet rotating machine
US8362661B2 (en) * 2010-10-06 2013-01-29 General Electric Company Ventilated rotor and stator for dynamoelectric machine
JP2012178957A (ja) * 2011-02-28 2012-09-13 Seiko Epson Corp 電気機械装置、移動体及びロボット
US9729020B2 (en) * 2011-03-22 2017-08-08 Hamilton Sundstrand Corporation Motor stator having channels used for cooling and method of providing the channels
US20120306298A1 (en) * 2011-06-02 2012-12-06 Samsung Electro-Mechanics Co., Ltd. Switched reluctance motor
JP2013005564A (ja) * 2011-06-15 2013-01-07 Asmo Co Ltd ブラシレスモータ
JP5696694B2 (ja) * 2012-08-01 2015-04-08 トヨタ自動車株式会社 回転電機のステータ
US9106122B2 (en) * 2013-01-25 2015-08-11 Everette Energy, LLC Single phase switched reluctance machine with short flux path
US9729036B2 (en) * 2013-03-15 2017-08-08 Hamilton Sundstrand Corporation Permanent magnet machine for integrated starter generator
US10770953B2 (en) * 2013-04-03 2020-09-08 Lcdrives Corp. Liquid cooled stator for high efficiency machine
KR101533228B1 (ko) * 2013-07-31 2015-07-06 전자부품연구원 고정자 및 이를 구비한 스위치드 릴럭턴스 모터
US20150091398A1 (en) * 2013-10-02 2015-04-02 Remy Technologies, Llc Electric machine with in slot cooling system
EP2958215B1 (en) * 2014-06-18 2018-02-21 Siemens Aktiengesellschaft Generator armature
JP2016032385A (ja) * 2014-07-30 2016-03-07 ダイキン工業株式会社 電動機
DE102014216148A1 (de) * 2014-08-14 2016-02-18 Wobben Properties Gmbh Synchrongenerator, insbesondere vielpoliger Synchron-Ringgenerator einer getriebelosen Windenergieanlage, und Windenergieanlage mit selbigem
US10110079B2 (en) * 2015-03-30 2018-10-23 Honeywell International Inc. Wound field generator system featuring combined permanent magnet generator excitation with exciter stator
DE102017204472A1 (de) * 2017-03-17 2018-09-20 Siemens Aktiengesellschaft Stator mit Wicklungskühlung und elektrische Maschine
DE102017208550A1 (de) * 2017-05-19 2018-11-22 Mahle International Gmbh Elektrische Maschine, insbesondere für ein Fahrzeug
DE102018102754A1 (de) * 2018-02-07 2019-08-08 IPGATE Capital Holding AG Innenstator für eine Drehfeldmaschine (E-Motor) mit Außenrotor, mit Statorzahngruppen, welche jeweils zwei zueinander benachbarte Statorzähne aufweisen
DE102018219820A1 (de) * 2018-11-19 2020-06-04 Mahle International Gmbh Isolationskörper für eine elektrische Maschine
US11258322B2 (en) * 2018-12-20 2022-02-22 Teco-Westinghouse Motor Company High speed induction machine
EP3934072A4 (en) * 2019-02-26 2022-04-06 Panasonic Intellectual Property Management Co., Ltd. MAGNETIC GEAR MOTOR
DE102019211267A1 (de) * 2019-07-30 2021-02-04 Rolls-Royce Deutschland Ltd & Co Kg Spulenanordnung für eine elektrische Maschine
US11411444B2 (en) * 2020-07-20 2022-08-09 Lin Engineering, Inc. Variable reluctance step motor having enhanced holding torque
JP7357805B2 (ja) * 2020-09-07 2023-10-06 三菱電機株式会社 回転電機および固定子の製造方法
JP2023146831A (ja) * 2022-03-29 2023-10-12 ニデック株式会社 ステータ及びウェッジ挿入装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649821B2 (ja) * 1982-04-07 1989-02-20 Hitachi Ltd
JPS62250865A (ja) * 1986-04-22 1987-10-31 Mitsubishi Electric Corp 超電導回転電機の回転子
JP2003164088A (ja) * 2001-11-28 2003-06-06 Nissan Motor Co Ltd 電動機の固定子構造
JP2007221913A (ja) * 2006-02-16 2007-08-30 Sawafuji Electric Co Ltd 回転電機用電機子
JP2014163431A (ja) * 2013-02-22 2014-09-08 Ihi Corp 磁気波動歯車装置
JP2016135014A (ja) * 2015-01-20 2016-07-25 株式会社Ihi 磁気波動歯車装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4096062A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116054438A (zh) * 2023-01-13 2023-05-02 南京航空航天大学 定子槽口复用型感应励磁电机及方法
CN116054438B (zh) * 2023-01-13 2024-04-02 南京航空航天大学 定子槽口复用型感应励磁电机及方法

Also Published As

Publication number Publication date
EP4096062A4 (en) 2023-01-18
EP4096062A1 (en) 2022-11-30
JPWO2021149131A1 (ja) 2021-07-29
US20230026553A1 (en) 2023-01-26
CN114946107A (zh) 2022-08-26
JP7262623B2 (ja) 2023-04-21

Similar Documents

Publication Publication Date Title
WO2021149128A1 (ja) 固定子およびこれを用いた回転電機
JP5921244B2 (ja) 永久磁石型回転電機
WO2022049750A1 (ja) 回転電機および固定子の製造方法
JP2006304539A (ja) アキシャルギャップ型回転電機のロータ構造
CN114946111A (zh) 磁齿轮复合旋转电机
JP5124923B2 (ja) 界磁子、電動機及びその駆動方法
WO2021149131A1 (ja) 固定子およびこれを用いた回転電機
WO2021149130A1 (ja) 固定子およびこれを用いた回転電機
JP2007067252A (ja) ハイブリッド型磁石並びにそれを用いた電動モータ及び発電機
JP2006304532A (ja) アキシャルギャップ型回転電機のロータ構造
JP4704883B2 (ja) 永久磁石式回転電機および円筒型リニアモータ
JP6804699B1 (ja) 固定子およびこれを用いた回転電機
JP2020010486A (ja) 電動機のロータ
WO2017043387A1 (ja) 磁気歯車装置
WO2021181496A1 (ja) 回転子およびこれを用いた回転電機
JP7415050B2 (ja) 回転機
JP2006304562A (ja) アキシャルギャップ型回転電機のロータ構造
US20240079921A1 (en) Motor generator
WO2022114176A1 (ja) 電動機
JP7358267B2 (ja) 回転電機及びこれを用いた電動ホイール
WO2023223622A1 (ja) 磁気ギア、および、磁気ギアード電気機械
US20230049968A1 (en) Magnetic geared rotary electric machine and stator manufacturing method
WO2021131298A1 (ja) 回転電機
JP2021035107A (ja) モータ
CN117652081A (zh) 磁波动齿轮装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020915790

Country of ref document: EP

Effective date: 20220822