WO2023223622A1 - 磁気ギア、および、磁気ギアード電気機械 - Google Patents

磁気ギア、および、磁気ギアード電気機械 Download PDF

Info

Publication number
WO2023223622A1
WO2023223622A1 PCT/JP2023/006185 JP2023006185W WO2023223622A1 WO 2023223622 A1 WO2023223622 A1 WO 2023223622A1 JP 2023006185 W JP2023006185 W JP 2023006185W WO 2023223622 A1 WO2023223622 A1 WO 2023223622A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
pole piece
circumferential direction
magnets
magnetic
Prior art date
Application number
PCT/JP2023/006185
Other languages
English (en)
French (fr)
Inventor
隆治 広江
強志 若狭
眞司 有永
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023223622A1 publication Critical patent/WO2023223622A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters

Definitions

  • a magnetic geared electric machine comprises a magnetic gear unit for transmitting magnetic torque.
  • the magnetic gear unit illustrated in Patent Document 1 includes, in order from the outside in the radial direction, an outer rotor, a magnetic pole piece module, and an inner rotor.
  • the outer rotor includes a plurality of outer magnets arranged in a circumferential direction
  • the inner rotor includes a plurality of inner magnets arranged in a circumferential direction.
  • the outer magnets and the inner magnets are permanent magnets.
  • the amount of change (gradient) in the rotational direction of the magnetomotive force caused by the permanent magnet contributes to the transmission torque of the magnetic gear unit.
  • the transmitted torque further includes a reluctance torque for bringing the tooth portion and the pole piece closer to each other in the rotational direction. It is desired that the transmitted torque be further improved in such a configuration.
  • the present disclosure provides a magnetic gear and a magnetically geared electric machine that have teeth that protrude toward the pole piece and support the magnet to improve transmission torque.
  • a magnetic gear includes: a first yoke unit including a plurality of first magnets arranged in a circumferential direction and a first yoke that supports the plurality of first magnets; a second yoke unit disposed on the outer circumferential side or the inner circumferential side of the first yoke unit, the plurality of second yoke units arranged in the circumferential direction, and the second yoke unit that supports the plurality of second yoke units; a second yoke unit including a yoke; between the first yoke unit and the second yoke unit, a plurality of magnetic poles arranged in the circumferential direction so as to face each of the plurality of first magnets and the plurality of second magnets with a gap therebetween; a pole piece unit including a piece; Equipped with The first yoke includes a first main body portion having an inner peripheral surface or an outer peripheral surface that supports the plurality of first magnets,
  • Each said pole piece is a first opposing surface facing the first magnet; a second opposing surface facing the second magnet; has When the length of the first opposing surface in the circumferential direction is L1, and the length of the second opposing surface in the circumferential direction is L2, At least one of the plurality of magnetic pole pieces satisfies the relationship L1>L2.
  • a magnetic gear includes: a first yoke unit including a plurality of first magnets arranged in a circumferential direction and a first yoke that supports the plurality of first magnets; a plurality of second yoke units disposed on the outer circumferential side or inner circumferential side of the first yoke unit, which are arranged in the circumferential direction and have a length shorter than the length of the first magnet in the circumferential direction; and a second yoke unit including a second yoke that supports the plurality of second magnets; between the first yoke unit and the second yoke unit, a plurality of magnetic poles arranged in the circumferential direction so as to face each of the plurality of first magnets and the plurality of second magnets with a gap therebetween; a pole piece unit including a piece; Equipped with The second yoke includes a second main body portion having an outer circumferential surface or an inner circumferential surface facing the pluralit
  • Each of the pole pieces has a second opposing surface that faces the second magnet, The second opposing surface is a third end that is one end in the circumferential direction; a fourth end that is the other end in the circumferential direction; has The at least one of the plurality of magnetic pole pieces is The main body and a third flange portion that protrudes from the main body portion to one side in the circumferential direction and has the third end of the second opposing surface; a fourth collar that protrudes from the main body toward the other side in the circumferential direction and has the fourth end of the second opposing surface; has When the length of the second opposing surface in the circumferential direction is L2, the average length of the magnetic pole piece in the circumferential direction is L3, and the length of the second magnet in the circumferential direction is N, At least one of the plurality of magnetic pole pieces satisfies the relationship: 0.9 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.1 ⁇ max ⁇ L
  • a magnetic gear includes: a first yoke unit including a plurality of first magnets arranged in a circumferential direction and a first yoke that supports the plurality of first magnets; a second yoke unit disposed on the outer circumferential side or the inner circumferential side of the first yoke unit, the plurality of second yoke units arranged in the circumferential direction, and the second yoke unit that supports the plurality of second yoke units; a second yoke unit including a yoke; between the first yoke unit and the second yoke unit, a plurality of magnetic poles arranged in the circumferential direction so as to face each of the plurality of first magnets and the plurality of second magnets with a gap therebetween; a pole piece unit including a piece; Equipped with The second yoke includes a second main body portion having an outer circumferential surface or an inner circumferential surface facing the plurality of second
  • Each of the pole pieces has a second opposing surface that faces the second magnet, L2 is the length of the second opposing surface in the circumferential direction, L3 is the average length of the magnetic pole piece in the circumferential direction, and two of the second teeth adjacent in the circumferential direction included in the plurality of second tooth portions are When the adjacent distance between teeth is M, At least one of the plurality of magnetic pole pieces satisfies the relationship 0.9 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ .
  • a magnetically geared electric machine includes: Any of the above magnetic gears, a coil wound around the second tooth or the magnetic pole piece; Equipped with
  • a magnetic gear and a magnetically geared electric machine that have teeth that protrude toward the magnetic pole piece and support the magnet, and that improve transmission torque.
  • FIG. 1 is a schematic diagram of a magnetic gear (magnetic geared generator) according to an embodiment.
  • FIG. 2 is a schematic diagram showing a first internal structure of a magnetic gear according to an embodiment.
  • FIG. 3 is a schematic diagram showing a second internal structure of a magnetic gear according to an embodiment.
  • FIG. 3 is a schematic diagram showing a third internal structure of a magnetic gear according to an embodiment.
  • FIG. 7 is a schematic diagram showing a fourth internal structure of a magnetic gear according to an embodiment.
  • FIG. 3 is a first conceptual diagram of a magnetic pole piece according to a first example.
  • FIG. 6 is a second conceptual diagram of the magnetic pole piece according to the first example.
  • FIG. 7 is a third conceptual diagram of the magnetic pole piece according to the first example.
  • FIG. 4 is a fourth conceptual diagram of a magnetic pole piece according to the first example.
  • FIG. 2 is a conceptual perspective view of a magnetic pole piece according to one embodiment.
  • FIG. 2 is a conceptual diagram of a first electrical steel sheet according to an embodiment.
  • FIG. 3 is a conceptual diagram of a second electromagnetic steel sheet according to an embodiment.
  • FIG. 2 is a schematic diagram of a magnetic pole piece according to a first example.
  • FIG. 7 is a first conceptual diagram of a magnetic pole piece according to a second example.
  • FIG. 7 is a second conceptual diagram of a magnetic pole piece according to a second example.
  • FIG. 7 is a third conceptual diagram of a magnetic pole piece according to a second example.
  • FIG. 6 is a schematic diagram of a second exemplary magnetic pole piece.
  • FIG. 7 is a conceptual diagram of a magnetic pole piece according to a third example.
  • FIG. 7 is a schematic diagram showing a third internal structure according to an embodiment.
  • FIG. 7 is a schematic diagram showing a third internal structure according to another embodiment.
  • FIG. 3 is a conceptual diagram showing electromagnetic force and permeance in a first internal structure according to an embodiment.
  • 5 is a conceptual graph showing various parameters according to circumferential positions of a plurality of magnetic pole pieces having different circumferential lengths.
  • FIG. 7 is a schematic diagram showing a third internal structure according to an embodiment.
  • 1 is a schematic diagram of a magnetically geared electric machine (magnetically geared generator) according to one embodiment.
  • FIG. 3 is a schematic diagram of a magnetically geared electric machine (magnetically geared generator) according to another embodiment.
  • 1 is a schematic diagram of a magnetically geared electric machine (magnetically geared motor) according to an embodiment;
  • FIG. 3 is a schematic diagram of a magnetically geared electric machine (magnetically geared motor) according to another embodiment.
  • FIGS. 1A and 1B are schematic diagrams of a magnetic gear 5 according to some embodiments of the present disclosure.
  • the "axial direction” is a direction parallel to the rotation axis (first rotation axis A1 or second rotation axis A2) of the magnetic gear 5, and the “radial direction” is perpendicular to the rotation axis of the magnetic gear 5.
  • the “circumferential direction” is the circumferential direction with the rotation axis of the magnetic gear 5 as a reference.
  • the circumferential length of a component of the magnetic gear 5 may be simply referred to as the circumferential length of the component.
  • Each of the magnetic gears 5 illustrated in FIGS. 1A and 1B includes a first yoke unit 10, a second yoke unit 20, and a magnetic pole piece unit 30 in this order from one side in the radial direction. All three units extend in the axial direction.
  • the first yoke unit 10 includes a plurality of first magnets 19 arranged in the circumferential direction, and a first yoke 15 that supports the plurality of first magnets 19.
  • the second yoke unit 20 includes a plurality of second magnets 29 arranged in the circumferential direction, and a second yoke 25 that supports the plurality of second magnets 29.
  • the magnetic pole piece unit 30 includes a plurality of magnetic pole pieces 50 arranged in the circumferential direction, and the plurality of magnetic pole pieces 50 are connected to the plurality of first magnets 19 between the first yoke unit 10 and the second yoke unit 20. and faces each of the plurality of second magnets 29 with gaps G1 and G2 (for example, see FIG. 2A). Any one of the first yoke unit 10, the second yoke unit 20, or the magnetic pole piece unit 30 functions as a stator, and the remaining two function as rotors.
  • the number of second magnets 29 is greater than the number of magnetic pole pieces 50, and the number of magnetic pole pieces 50 is greater than the number of first magnets 19.
  • the circumference of the first magnet 19 is longer than the circumference of the second magnet 29.
  • the second yoke unit 20 is arranged on the outer peripheral side of the first yoke unit 10, that is, the magnetic gears 5 are arranged in order from the radially inner side (inner peripheral side).
  • a first yoke unit 10, a magnetic pole piece unit 30, and a second yoke unit 20 are provided.
  • the second yoke unit 20 may be arranged on the inner peripheral side of the first yoke unit 10, that is, the magnetic gears 5 are arranged in order from the radially outer side (outer peripheral side) to the first yoke unit 10.
  • the unit 10, the pole piece unit 30, and the second yoke unit 20 may be provided (see FIGS. 2B and 2D).
  • the magnetic gear 5A(5) illustrated in FIG. 1A includes a housing 98 that may be installed on the base 101.
  • the second yoke unit 20 functions as a stator.
  • the housing 98 rotatably supports the first rotating shaft A1, which may function as an input shaft, via a bearing.
  • Both ends of the magnetic pole piece unit 30 in the axial direction are connected to a pair of end plates 97, respectively.
  • One end plate 97 is connected to the first rotation axis A1, and the other end plate 97 is connected via a bearing to a second rotation axis A2 arranged coaxially with the first rotation axis A1. Concatenated.
  • the magnetic pole piece unit 30 illustrated in the figure functions as a rotor that rotates together with the first rotation axis A1.
  • the second rotating shaft A2 in this example which may function as an output shaft, supports the first yoke unit 10 arranged between the pair of end plates 97. Therefore, the first yoke unit 10 illustrated in the figure functions as a rotor that rotates together with the second rotation axis A2.
  • the second rotating shaft A2 is rotatably supported by the housing 98 via a bearing. One end of the second rotating shaft A2 may be connected to the first rotating shaft A1 via a bearing, or may not be connected to the first rotating shaft A1.
  • the magnetic gear 5A operates as follows.
  • the first rotation axis A1 serving as the input shaft rotates together with the magnetic pole piece unit 30, the plurality of magnetic pole pieces 50 rotates relative to the plurality of first magnets 19 and the plurality of second magnets 29.
  • the magnetic flux flowing through the magnetic pole piece unit 30 between the first yoke unit 10 and the second yoke unit 20 changes, and the magnitude of the magnetic flux of the first magnet 19 increases in the first yoke unit. 10 rotates.
  • the second rotating shaft A2 serving as the output shaft rotates.
  • the second rotating shaft A2 may function as an input shaft
  • the first rotating shaft A1 may function as an output shaft.
  • the plurality of magnetic pole pieces 50 rotate relative to the plurality of first magnets 19.
  • the magnetic flux flowing through the magnetic pole piece unit 30 between the first yoke unit 10 and the second yoke unit 20 changes, and the magnitude of the magnetic flux flowing through the magnetic pole piece unit 30 increases. rotates.
  • the first rotating shaft A1 serving as the output shaft rotates.
  • NL/NH is greater than 1
  • the first yoke unit 10 functions as a high-speed rotor
  • the pole piece unit 30 functions as a low-speed rotor.
  • the number NL of magnetic poles of the magnetic pole piece 50 is smaller than the number NS of magnetic poles of the second magnet 29.
  • Magnetic gear 5B (5) according to other embodiments>
  • the magnetic pole piece unit 30 functions as a stator
  • the first yoke unit 10 and the second yoke unit 20 function as a rotor.
  • the magnetic gear 5B includes a housing 96 that may be installed on the base 101, and the magnetic pole piece unit 30 is supported by the housing 96.
  • the housing 96 rotatably supports a second rotating shaft A2, which may function as an output shaft, via a bearing.
  • the first rotating shaft A1 which is arranged coaxially with the second rotating shaft A2 and may function as an input shaft, is rotatably supported by a support unit not shown, and supports the connecting member 95.
  • the second yoke unit 20 may be connected to the magnetic pole piece unit 30 via a bearing.
  • the second rotating shaft A2 may be connected to the first rotating shaft A1 via a bearing, or may not be connected to the first rotating shaft A1.
  • the magnetic gear 5B operates as follows, for example.
  • the first rotating shaft A1 serving as an input shaft rotates together with the second yoke unit 20
  • the plurality of magnetic pole pieces 50 rotates relative to the plurality of second magnets 29.
  • the magnetic flux flowing through the magnetic pole piece unit 30 between the first yoke unit 10 and the second yoke unit 20 changes, and the magnetic flux flowing through the first magnet 19 increases in magnitude.
  • the iron unit 10 rotates.
  • the second rotating shaft A2 serving as the output shaft rotates.
  • the second rotating shaft A2 may function as an input shaft
  • the first rotating shaft A1 may function as an output shaft.
  • the plurality of magnetic pole pieces 50 rotate relative to the plurality of first magnets 19.
  • the magnetic flux flowing through the magnetic pole piece unit 30 between the first yoke unit 10 and the second yoke unit 20 changes, and the magnetic flux flowing through the second magnet 29 increases in magnitude.
  • the iron unit 20 rotates.
  • the first rotating shaft A1 serving as the output shaft rotates.
  • the magnetic gear 5 illustrated in FIGS. 1A and 1B can also be incorporated into a magnetically geared electric machine 1, which will be described later, which may be, for example, a magnetically geared generator 2 or a magnetically geared motor 3 (see FIGS. 11A to 11B). (See 11D).
  • a magnetically geared electric machine 1 is a magnetically geared generator 2
  • the first rotating shaft A1 or the second rotating shaft A2 functioning as an output shaft may not be provided.
  • the magnetically geared electric machine 1 is a magnetically geared motor 3
  • the first rotating shaft A1 or the second rotating shaft A2 functioning as an input shaft may not be provided.
  • the first rotation axis A1 and the second rotation axis A2 may be constituted by a single rotation axis.
  • one rotating shaft is rotatably supported by the housing 98 (see FIG. 1A) and rotatably connected to the first yoke unit 10.
  • a pair of end plates 97 may be fixed to the outer periphery of the rotating shaft.
  • the first yoke unit 10 and the pole piece unit 30 function as a rotor
  • the second yoke unit 20 functions as a stator.
  • Example of internal structure of magnetic gear 5> 2A to 2D are conceptual diagrams showing the internal structure of the magnetic gear 5 according to some embodiments of the present disclosure.
  • the circumferential direction is shown linearly.
  • Each magnetic pole piece 50 extending in the axial direction faces one or more of the plurality of first magnets 19 with a gap G1, and faces one or more of the plurality of second magnets 29 with a gap G2. do.
  • the plurality of first magnets 19 are composed of magnets with different magnetic poles (N-pole magnets and S-pole magnets) arranged alternately in the circumferential direction.
  • the plurality of second magnets 29 are composed of magnets with different magnetic poles (N-pole magnets and S-pole magnets) arranged alternately in the circumferential direction.
  • the surface of each magnetic pole piece 50 that faces the first magnet 19 is the first opposing surface 31
  • the surface that faces the second magnet 29 is the second opposing surface 32 .
  • the magnetic pole piece 50 has, for example, a structure in which a plurality of electromagnetic steel sheets 150 (see FIG. 4A) are laminated in the axial direction.
  • a cover not shown
  • the first opposing surface 31 is connected to the first magnet with the gap G1 and the cover open. 19, or the second opposing surface 32 may face the second magnet 29 with a gap G2 and a cover provided therebetween.
  • the magnetic pole piece unit 30 includes a holder (not shown) for holding a plurality of magnetic pole pieces 50.
  • the holder made of a non-magnetic material may be a single ring-shaped member, or may include a plurality of magnetic pole pieces 50 and a plurality of rod-shaped members arranged alternately in the circumferential direction. Both ends in the axial direction of the magnetic pole piece unit 30 configured in a ring shape by a plurality of magnetic pole pieces 50 and a holder may be respectively connected to the above-mentioned pair of end plates 97 (see FIG. 1A), or may be connected to the above-mentioned housing. 96 (see Figure 1B)
  • the first yoke unit 10 is arranged on either the outer circumference side or the inner circumference side of the magnetic pole piece unit 30, and the second yoke unit 20 is arranged on the other side. be done. Further, at least one of the first yoke unit 10 and the second yoke unit 20 is provided with a tooth portion that protrudes toward the magnetic pole piece unit 30, and the tooth portion is attached to a magnet (the first magnet 19 Or support the second magnet 29).
  • These variations regarding the internal structure of the magnetic gear 5 include a first internal structure, a second internal structure, a third internal structure, a fourth internal structure, a fifth internal structure, and a sixth internal structure.
  • First internal structure In the first internal structure illustrated in FIG. 2A, the first yoke unit 10 is arranged on the inner circumferential side of the magnetic pole piece unit 30, and the second yoke unit 20 is arranged on the outer circumferential side. Further, the first yoke unit 10 is not provided with teeth, and the second yoke unit 20 is provided with teeth.
  • the more detailed structure is as follows.
  • the first yoke 15 includes a first body portion 11, which may be a core formed of a soft magnetic material.
  • the first main body portion 11 illustrated in FIG. 2A has an outer circumferential surface 11B that supports a plurality of first magnets 19 arranged in the circumferential direction.
  • the outer peripheral surface 11B is a curved surface formed over the entire length of the magnetic gear 5 in the circumferential direction.
  • the second yoke 25 includes a second body portion 21, which may be a core formed of a soft magnetic material, and at least one second tooth portion 21T. In the example of FIG.
  • the second main body portion 21 has an inner circumferential surface 21A facing the plurality of second magnets 29, and the second tooth portion 21T protrudes from the inner circumferential surface 21A toward the magnetic pole piece 50.
  • the second magnet 29 described above is supported.
  • the second tooth portion 21T is made of a soft magnetic material, and may be formed integrally with the second main body portion 21. Further, as shown in the figure, the second tooth portion 21T may have a tip portion configured such that the circumference becomes longer as it approaches the magnetic pole piece 50. In another example, the second tooth portion 21T may have the same circumferential length regardless of the radial position (see FIG. 8).
  • Second internal structure In the second internal structure illustrated in FIG. 2B, the second yoke unit 20 is arranged on the inner circumferential side of the magnetic pole piece unit 30, and the first yoke unit 10 is arranged on the outer circumferential side. Further, like the first internal structure, the first yoke unit 10 is not provided with teeth, and the second yoke unit 20 is provided with teeth.
  • the more detailed structure is as follows.
  • the first yoke 15 includes a first body portion 11, which may be a core formed of a soft magnetic material.
  • the first main body portion 11 illustrated in FIG. 2B has an inner circumferential surface 11A that supports a plurality of first magnets 19 arranged in the circumferential direction.
  • the inner peripheral surface 11A is a curved surface formed over the entire length of the magnetic gear 5 in the circumferential direction.
  • the second yoke 25 includes a second body portion 21, which may be a core formed of a soft magnetic material, and at least one second tooth portion 21T. In the example of FIG.
  • the second main body portion 21 has an outer circumferential surface 21B facing the plurality of second magnets 29, and the second tooth portion 21T protrudes from the outer circumferential surface 21B toward the magnetic pole piece 50 and has one or more The second magnet 29 is supported.
  • the shape and material of the second tooth portion 21T are the same as the first internal structure, so a detailed explanation will be omitted.
  • Third internal structure In the third internal structure illustrated in FIG. 2C, like the first internal structure, the first yoke unit 10 is arranged on the inner circumferential side of the magnetic pole piece unit 30, and the second yoke unit 20 is arranged on the outer circumferential side. Ru. On the other hand, the third internal structure differs from the first internal structure in that both the first yoke unit 10 and the second yoke unit 20 are provided with teeth. The more detailed structure is as follows.
  • the first yoke unit 10 illustrated in the example of FIG. 2C includes a first main body portion 11, which may be a core formed of a soft magnetic material, and at least one first tooth portion 11T.
  • the first main body portion 11 has an outer circumferential surface 11B facing the plurality of first magnets 19, and the first tooth portion 11T protrudes from the outer circumferential surface 11B toward the magnetic pole piece 50, and the first body portion 11 has a plurality of first magnets 19. 1 magnet 19 is supported.
  • the outer peripheral surface 11B is a curved surface formed over the entire length of the magnetic gear 5 in the circumferential direction.
  • the first tooth portion 11T is made of a soft magnetic material, and may be formed integrally with the first body portion 11.
  • the second yoke unit 20 shown in the figure has the same configuration as the second yoke unit 20 having the first internal structure, so a detailed explanation will be omitted.
  • fourth internal structure In the fourth internal structure illustrated in FIG. 2D, like the second internal structure, the second yoke unit 20 is arranged on the inner circumferential side of the magnetic pole piece unit 30, and the first yoke unit 10 is arranged on the outer circumferential side. Ru. On the other hand, the fourth internal structure differs from the second internal structure in that both the first yoke unit 10 and the second yoke unit 20 are provided with teeth. The more detailed structure is as follows.
  • the first yoke unit 10 illustrated in the example of FIG. 2D includes a first body portion 11, which may be a core formed of a soft magnetic material, and at least one first tooth portion 11T.
  • the first main body portion 11 has an inner circumferential surface 11A facing the plurality of first magnets 19, and the first tooth portion 11T protrudes from the inner circumferential surface 11A toward the magnetic pole piece 50, and The first magnet 19 is supported.
  • the inner peripheral surface 11A is a curved surface formed over the entire length of the magnetic gear 5 in the circumferential direction.
  • the first tooth portion 11T is made of a soft magnetic material, and may be formed integrally with the first body portion 11.
  • the second yoke unit 20 shown in the figure has the same configuration as the second yoke unit 20 of the second internal structure, so a detailed explanation will be omitted.
  • the fifth internal structure has a structure in which the second yoke 25 in the third internal structure does not have the second tooth portion 21T.
  • the sixth internal structure has a structure in which the second yoke 25 in the fourth internal structure does not have the second tooth portion 21T. That is, in the fifth internal structure and the sixth internal structure, a configuration is adopted in which the inner circumferential surface 21A or the outer circumferential surface 21B of the second main body part 21 supports the second magnet 29. Detailed illustrations of these internal structures will be omitted.
  • FIGS. 3A to 6 Details of the shape of the magnetic pole piece 50> With reference to FIGS. 3A to 6, specific examples of the magnetic pole piece 50 applied to the above-mentioned internal structure are shown as a magnetic pole piece 51 (50) according to the first example and a magnetic pole piece 52 (50) according to the second example. , and a magnetic pole piece 53 (50) according to a third example.
  • Magnetic pole piece 51 (50) according to first example> A first exemplary magnetic pole piece 51 (50) will be described with reference to FIGS. 3A to 4C.
  • the magnetic pole piece 51 is applied to an internal structure in which only one of the first yoke unit 10 and the second yoke unit 20 is provided with teeth. That is, the internal structures to which the magnetic pole piece 51 can be applied include a first internal structure, a second internal structure, a fifth internal structure, and a sixth internal structure.
  • an embodiment in which the magnetic pole piece 51 is applied to the first internal structure will be described, and a description of an embodiment in which the magnetic pole piece 51 is applied to other internal structures will be omitted.
  • FIGS. 3A to 3D are conceptual diagrams of the magnetic pole piece 51 according to the first example.
  • the magnetic pole pieces 511 to 514 (51) illustrated in FIGS. 3A to 3D each have a first opposing surface 31A to 31D (31) facing the first magnet 19, and a second opposing surface facing the second magnet 29. It has surfaces 32A to 32D (32).
  • the magnetic pole pieces 511 to 514 (51) satisfy the relationship L1>L2.
  • L2 illustrated in the figure is shorter than the circumference of the first magnet 19 and longer than the circumference of the second magnet 29. In other examples, L2 may be shorter than the circumference of the second magnet 29.
  • a magnetically geared electric machine 1 which has teeth that protrude toward the magnetic pole piece 51 and support the magnet, and has improved transmission torque.
  • FIG. 3A a plurality of magnetic pole pieces 511 are arranged in the circumferential direction, and the above advantages can be obtained if at least one magnetic pole piece 511 satisfies the relationship L1>L2.
  • FIG. 3B at least one of the plurality of magnetic pole pieces 512 only needs to satisfy the relationship L1>L2. The same applies to the plurality of magnetic pole pieces 513 and 514 illustrated in FIGS. 3C and 3D.
  • the first opposing surfaces 31A to 31C (31) have first ends 311A to 311C (311) which are one end in the circumferential direction, and second ends 312A to 312C (312) which are the other end in the circumferential direction. and has.
  • the magnetic pole pieces 511 to 513 have main body portions 60A to 60C (60).
  • the main body 60 has the same circumferential length regardless of its radial position (for example, in FIG. 3C, both ends of the main body 60C in the circumferential direction are indicated by a two-dot chain line U).
  • the magnetic pole pieces 511 to 513 (51) include first flange portions 61A to 61C (61) that protrude from the main body portion 60 to one side in the circumferential direction, and a second flange portion that protrudes from the main body portion 60 to the other side in the circumferential direction. 62A to 62C (62).
  • the first flange 61 and the second flange 62 have shapes that are symmetrical to each other in the circumferential direction.
  • the first flange 61 and the second flange 62 may have shapes that are asymmetrical to each other in the circumferential direction.
  • first flange portions 61A to 61C (61) have first ends 311A to 311C (311) of the first opposing surface 31, and the second flange portions 62A to 62C (62) have the first ends 311A to 311C (311) of the first opposing surface 31. It has second ends 312A to 312C (312).
  • the circumferential length (L1) of the first opposing surface 31 of the magnetic pole piece 51 (50) increases. This reduces the magnetic resistance between the magnetic pole piece 51 (50) and the first yoke unit 10, and furthermore, the magnetic resistance between the first yoke unit 10 and the second yoke unit 20 is reduced through the magnetic pole piece 51 (50). This leads to an increase in the magnetic flux flowing between the two. Therefore, the transmitted torque is further improved.
  • the above advantages can be obtained if at least one of the plurality of magnetic pole pieces 511 has the first flange 61A and the second flange 62A.
  • at least one of the plurality of magnetic pole pieces 512 only needs to have the first flange 61B and the second flange 62B. The same applies to the plurality of magnetic pole pieces 513 illustrated in FIG. 3C.
  • the first flange portions 61A, 61B (61) are configured such that the length in the radial direction becomes shorter toward one side.
  • the second collar portions 62A, 62B (62) are configured such that the length in the radial direction becomes shorter toward the other side.
  • the first flange 61 has first tapered surfaces 701A and 701B (701) that are inclined with respect to the first opposing surface 31, and the second flange 62 has a second tapered surface that is inclined with respect to the first opposed surface 31. It has 702A and 702B (702).
  • the first tapered surface 701 and the second tapered surface 702 may be flat surfaces as shown in FIG. 3A, or may be curved surfaces as shown in FIG. 3B. In the example of FIGS. 3A and 3B, both the first tapered surface 701 and the second tapered surface 702 are directly connected to the first opposing surface 31. In other examples, the first flange 61 and the second flange 62 may be chamfered, that is, the first tapered surface 701 and the second tapered surface 702 are respectively connected to the first opposing surface through another surface. 31 (see FIG. 4C). The other surface may be either a flat surface or a curved surface.
  • the first flange portion 61 and the second flange portion 62 are close to the adjacent magnetic pole piece 51 (50) only at the tips. That is, the first flange 61 and the second flange 62 are partially separated from the adjacent magnetic pole piece 51. This suppresses the magnetic flux flowing back and forth between the two mutually adjacent magnetic pole pieces 51. That is, leakage magnetic flux is suppressed. Therefore, it is possible to suppress a decrease in transmitted torque due to leakage of magnetic flux.
  • the second opposing surface 32A (32) has a third end 323 that is one end in the circumferential direction, and a fourth end 324 that is the other end in the circumferential direction.
  • the end of the first flange 61A on the second opposing surface 32A side in the radial direction is an end 611
  • the end of the second flange 62A on the second opposing surface 32 side in the radial direction is an end 611. It is 621.
  • the magnetic pole piece 511 has a first connection surface 71 and a second connection surface 72.
  • the first connecting surface 71 and the second connecting surface 72 are planes extending in the radial direction.
  • the first connecting surface 71 connects the end 611 of the first flange 61A and the third end 323 of the second opposing surface 32A
  • the second connecting surface 72 connects the end 621 of the second flange 62A to the second opposing surface.
  • the fourth end 324 of the surface 32A is connected.
  • the first connecting surface 71 extending along the radial direction may be parallel to the radial direction or substantially parallel to the radial direction, for example, the first connecting surface 71 may be parallel to the radial direction. It is understood that the first connecting surface 71 is substantially radially parallel if the acute angle formed is less than or equal to 5°. It is understood that the same applies to the second connecting surface 72 extending in the radial direction.
  • the shape of the magnetic pole piece 51 is simplified, and the manufacturing is easy.
  • the average magnetoresistive length of the magnetic pole pieces 511 to 514 (51) in the circumferential direction is indicated by L3.
  • the magnetic reluctance average length L3 of the magnetic pole piece is given by formula (A). expressed. It is understood that L3 is the average length of the pole piece 50 in the circumferential direction.
  • At least one second tooth portion 21T of the second yoke unit 20 has a plurality of second tooth portions 21T lined up in the circumferential direction.
  • the adjacent distance (shortest distance) between two circumferentially adjacent second tooth portions 21T included in the plurality of second tooth portions 21T is M
  • the magnetic pole pieces 511 to 514 (51) are 0.9 ⁇ min.
  • the relationship ⁇ L2, L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ is satisfied.
  • min ⁇ L2, L3 ⁇ is the smaller value of L2 and L3
  • max ⁇ L2, L3 ⁇ is the larger value of L2 and L3.
  • the magnetic pole pieces 511 to 514 (51) satisfy the relationship 0.95 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.05 ⁇ max ⁇ L2, L3 ⁇ . More preferably, the magnetic pole pieces 511 to 514 (51) satisfy the relationship: 1.0 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.0 ⁇ max ⁇ L2, L3 ⁇ .
  • a plurality of magnetic pole pieces 511 are arranged in the circumferential direction, and at least one magnetic pole piece 511 has an angle of 0.9 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ (more preferably 0.95 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.05 ⁇ max ⁇ L2,L3 ⁇ , still more preferably 1.0 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.
  • L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ more preferably 0.95 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.05 ⁇ max ⁇ L2,L3 ⁇ , still more preferably 1.0 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.
  • At least one of the plurality of magnetic pole pieces 512 has a relationship of 0.9 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2,L3 ⁇ (more preferably 0.95 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.05 ⁇ max ⁇ L2, L3 ⁇ , more preferably 1.0 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.0 ⁇ max ⁇ L2, L3 ⁇ ) Just satisfy it.
  • FIG. 4A is a conceptual perspective view of a magnetic pole piece 511 (51) according to an embodiment of the present disclosure.
  • FIG. 4B is a conceptual diagram of the first electrical steel sheet 151 according to an embodiment of the present disclosure.
  • FIG. 4C is a conceptual diagram of the second electrical steel sheet 152 according to an embodiment of the present disclosure.
  • FIG. 4D is a conceptual diagram of a magnetic pole piece 51 (50) according to an embodiment of the present disclosure, in which the circumferential direction is illustrated linearly.
  • the first flange portion 61 includes a first edge portion 81 which is a portion of the magnetic pole piece 511 located closest to one side in the circumferential direction, and a first recess portion 91 that is recessed from the first edge portion 81 to the other side in the circumferential direction. has.
  • the first edge 81 extends in the axial direction, and the first recess 91 is open in the radial direction.
  • the second edge 82 in this example may have a shape that is symmetrical to the first edge 81 in the circumferential direction.
  • the second flange portion 62 includes a second edge portion 82 which is a portion of the magnetic pole piece 511 that is located on the other side in the circumferential direction, and a portion that extends from the second edge portion 82 to one side in the circumferential direction. It may also have a second recessed portion 92.
  • the second edge 82 extends in the axial direction, and the second recess 92 is open in the radial direction.
  • the number of first recesses 91 provided in the first collar portion 61 may be plural. In this case, the plurality of first recesses 91 are arranged at intervals in the axial direction.
  • the second collar portion 62 may have a plurality of second recesses 92 arranged at intervals in the axial direction.
  • the plurality of magnetic pole pieces 511 include a first adjacent magnetic pole piece 1511 and a second adjacent magnetic pole piece 1512 that are adjacent to each other in the circumferential direction.
  • the second adjacent magnetic pole piece 1512 is located on one side in the circumferential direction of the first adjacent magnetic pole piece 1511.
  • the first flange 61 of the first adjacent magnetic pole piece 1511 may face the second flange 62 of the second adjacent magnetic pole piece 1512 with a gap therebetween in the circumferential direction.
  • the first collar 61 of the first adjacent pole piece 1511 may contact the second collar 62 of the second adjacent pole piece 1512. Note that contact is a concept that includes bonding.
  • the transmitted torque increases.
  • the distance between two adjacent magnetic pole pieces 511 is too short, magnetic flux will leak to the adjacent magnetic pole pieces 511, reducing the transmitted torque.
  • the first flange 61 of the first adjacent magnetic pole piece 1511 and the second flange 62 of the second adjacent magnetic pole piece 1512 are , partially circumferentially spaced. Thereby, magnetic flux flowing back and forth between two adjacent magnetic pole pieces 511 can be suppressed.
  • first flange portion 61 and the second flange portion 62 illustrated in FIG. 4A may be applied to either of the magnetic pole pieces 512 and 513, or may be applied to other magnetic pole pieces 51. Even in this case, the above-mentioned advantages can be obtained.
  • the first recess 91 of the first adjacent pole piece 1511 may be arranged to overlap at least a portion of the second recess 92 of the second adjacent pole piece 1512 in the axial direction.
  • the first recess 91 may be arranged without overlapping the second recess 92 at all in the axial direction.
  • the first recess 91 and the second recess 92 have the same shape, and the first recess 91 of the first adjacent magnetic pole piece 1511 and the second recess 92 of the second adjacent magnetic pole piece 1512 are mutually arranged in the axial direction. arranged to match.
  • both of these two magnetic pole pieces 511 include a plurality of first recesses 91 and a plurality of second recesses 92, and each of the plurality of first recesses 91 is connected to a plurality of second recesses 92 in the axial direction. are arranged so that they coincide with each other.
  • the configurations of the first flange portion 61 and the second flange portion 62 described above may be applied to the magnetic pole pieces 512 and 513, or may be applied to other magnetic pole pieces 51. Even in this case, the above-mentioned advantages can be obtained.
  • the first recess 91 and the second recess 92 are arranged at the same position in the axial direction.
  • the magnetic pole piece 511 (51) has a plurality of electromagnetic steel plates 150 stacked in the axial direction.
  • the magnetic pole piece 511 (51) has an axial range in which the first edge 81 and the second edge 82 are formed, and an axial range in which the first recess 91 and the second recess 92 are formed. Therefore, the plurality of electromagnetic steel sheets 150 include a first electromagnetic steel sheet 151 and a second electromagnetic steel sheet 152 that have mutually different shapes.
  • the first electromagnetic steel sheet 151 forms a first edge 81 and a second edge 82 .
  • both ends of the first electromagnetic steel sheet 151 in the circumferential direction form a first edge 81 and a second edge 82, respectively.
  • the second electromagnetic steel plate 152 forms the bottom surfaces of the first recess 91 and the second recess 92, respectively.
  • the circumferential length (maximum circumferential length) of the second electromagnetic steel sheet 152 is shorter than the circumferential length (maximum circumferential length) of the first electromagnetic steel sheet 151. Note that the former circumference corresponds to dimension P2 in FIG. 4C, and the latter circumference corresponds to dimension P1 in FIG. 4B.
  • a plurality of first electromagnetic steel plates 151 are arranged on one side of the second electromagnetic steel plate 152 in the axial direction, and a plurality of first electromagnetic steel plates 151 are arranged on the other side of the second electromagnetic steel plate 152 in the axial direction.
  • the first recess 91 and the second recess 92 may be manufactured before the step of laminating the plurality of electromagnetic steel sheets 150.
  • a prescribed process for forming the first recess 91 and the second recess 92 may be performed.
  • the prescribed processing is, for example, drilling.
  • the bottom surfaces of the first recess 91 and the second recess 92 are formed by the second electromagnetic steel sheet 152 included in the plurality of electromagnetic steel sheets 150.
  • the configuration can be simplified. Note that the configurations of the first flange portion 61 and the second flange portion 62 described above may be applied to the magnetic pole pieces 512 and 513, or may be applied to other magnetic pole pieces 51. Even in this case, the above-mentioned advantages can be obtained.
  • the first electromagnetic steel sheet 151 includes a first base portion 151A forming the main body portion 60 of the magnetic pole piece 511, a first corner portion 151B forming the first edge portion 81, and a second edge portion 151B. 151C of 2nd corner
  • the first base portion 151A has the same shape as the main body portion 60 when viewed in the axial direction.
  • the first corner 151B is the part of the first electromagnetic steel sheet 151 that is located furthest to one side in the circumferential direction
  • the second corner 151C is the part of the first electromagnetic steel sheet 151 that is the furthest to the other side in the circumferential direction. This is the part where it is located.
  • the first corner 151B and the second corner 151C may be symmetrical to each other in the circumferential direction.
  • the second electromagnetic steel sheet 152 includes a second base portion 152A forming the main body portion 60 of the magnetic pole piece 511, a first protrusion 152B forming the bottom surface of the first recess 91, and a second It has a second protrusion 152C that forms the bottom surface of the recess 92.
  • the second base 152A has the same shape as the first base 151A.
  • the first protrusion 152B protrudes from the second base 152A to one side in the circumferential direction
  • the second protrusion 152C protrudes from the second base 152A to the other side in the circumferential direction.
  • the first protrusion 152B and the second protrusion 152C may be symmetrical to each other in the circumferential direction.
  • the bottom surface of the first recess 91 is formed by the tip of the first protrusion 152B, and the bottom surface of the second recess 92 is formed by the tip of the second protrusion 152C.
  • the plurality of magnetic pole pieces 51 (50) arranged in the circumferential direction may include a first defined magnetic pole piece 2511 and a second defined magnetic pole piece 2522 that are adjacent to each other in the circumferential direction.
  • the first defined magnetic pole piece 2511 and the second defined magnetic pole piece 2522 each have a main body portion 60, a first flange portion 61, and a second flange portion 62.
  • the first flange 61 of the first defined magnetic pole piece 2511 and the second flange 62 of the second defined magnetic pole piece 2522 are in contact with each other.
  • the plurality of first defined magnetic pole pieces 2511 and the plurality of second defined magnetic pole pieces 2522 are arranged alternately in the circumferential direction.
  • the first flange 61 of any first stipulating magnetic pole piece 2511 contacts the second flange 62 of the second stipulating magnetic pole piece 2522 on one side, and the second flange of the first stipulating magnetic pole piece 2511
  • the portion 62 contacts the first flange portion 61 of the second regulating magnetic pole piece 2522 on the other side.
  • the contact may be a connection, for example by welding.
  • the plurality of first defined magnetic pole pieces 2511 and the plurality of second defined magnetic pole pieces 2522 arranged alternately in the circumferential direction are integrally formed with each other. According to the above configuration, the reinforcing effect of the plurality of magnetic pole pieces 51 can be improved.
  • FIGS. 5A to 5D are conceptual diagrams of a magnetic pole piece 52 according to a second example.
  • FIG. 5D is a conceptual diagram of a plurality of magnetic pole pieces 52 (50), in which the circumferential direction is illustrated linearly.
  • the magnetic pole piece 52 according to the second example is applied to an internal structure in which at least the second yoke unit 20 of the first yoke unit 10 or the second yoke unit 20 is provided with teeth. That is, the internal structures applicable to the magnetic pole piece 52 include a first internal structure, a second internal structure, a third internal structure, and a fourth internal structure.
  • the magnetic pole piece 52 is applied to the third internal structure will be described, and a description of embodiments in which the magnetic pole piece 52 is applied to other internal structures will be omitted.
  • Each of the magnetic pole pieces 521 to 523 (52) shown in FIGS. 5A to 5C has a first opposing surface 310A to 310C (31) facing the first magnet 19 and a second opposing surface facing the second magnet 29.
  • the second opposing surfaces 320A to 320C have third ends 1323A to 1323C (323), which are ends on one side in the circumferential direction, and fourth ends 1324A to 1324C (324), which are ends on the other side in the circumferential direction. .
  • the magnetic pole pieces 521 to 523 (52) are The following relationship is satisfied: 0.9 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ . More preferably, the magnetic pole pieces 521 to 523 (52) satisfy the relationship 0.95 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.05 ⁇ max ⁇ L2, L3 ⁇ . More preferably, the magnetic pole pieces 521 to 523 (52) satisfy the relationship 1.0 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.0 ⁇ max ⁇ L2, L3 ⁇ .
  • the magnetic pole pieces 521 to 523 (52) include main body portions 160A to 160C (60), third collar portions 63A to 63C (63) protruding from the main body portion 60 to one side in the circumferential direction, and It has fourth collar portions 64A to 64C (64) that protrude to the other side in the circumferential direction.
  • the shape of the main body 60 of the pole piece 52 has the same shape as the main body 60 according to the first example.
  • the first flange 61 and the second flange 62 have shapes that are symmetrical to each other in the circumferential direction, but they may be asymmetrical.
  • the third flange portions 63A to 63C have third ends 1323A to 1323C of the second opposing surface 32
  • the fourth flange portions 64A to 64C have fourth ends 1324A to 1324C of the second opposing surface 32.
  • the relationship of 0.9 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ (more preferably 0.95 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.
  • the magnetic pole piece 52 that satisfies the relationship of 05 ⁇ max ⁇ L2, L3 ⁇ , more preferably the relationship of 1.0 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.0 ⁇ max ⁇ L2, L3 ⁇ ) is the magnetic gear 5.
  • the positional relationship between the magnetic pole piece 52 and the second yoke 25 changes relative to each other in the circumferential direction due to the operation of
  • the magnetic pole piece 50 that satisfies the relationship ⁇ L2, L3 ⁇ N ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ will be explained in detail).
  • the magnetic gear 5 is realized which has teeth that protrude toward the magnetic pole piece 52 and support the magnet, and has improved transmission torque. Further, according to the inventor's findings, when the magnetic pole piece 52 moves relative to each other so as to straddle the boundary between two adjacent second magnets 29, the magnetomotive force is switched between positive and negative.
  • the magnetic pole piece 52 since the magnetic pole piece 52 has the third flange portion 63 and the fourth flange portion 64, the magnetomotive force that switches between positive and negative can be partially short-circuited, and the magnetomotive force that switches between positive and negative can be short-circuited. can be made more gradual. Thereby, the magnetic gear 5 can continue to rotate smoothly.
  • a plurality of magnetic pole pieces 521 are arranged in the circumferential direction, and at least one magnetic pole piece 521 has a diameter of 0.9 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ . (more preferably 0.95 ⁇ min ⁇ L2,L3 ⁇ N ⁇ 1.05 ⁇ max ⁇ L2,L3 ⁇ , still more preferably 1.0 ⁇ min ⁇ L2,L3 ⁇ N ⁇ 1.
  • the above advantages can be obtained if the relationship 0 ⁇ max ⁇ L2, L3 ⁇ is satisfied.
  • At least one of the plurality of magnetic pole pieces 522 has a relationship of 0.9 ⁇ min ⁇ L2,L3 ⁇ N ⁇ 1.1 ⁇ max ⁇ L2,L3 ⁇ (more preferably 0.95 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.05 ⁇ max ⁇ L2, L3 ⁇ , more preferably 1.0 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.0 ⁇ max ⁇ L2, L3 ⁇ ) Just satisfy it.
  • the third flange portions 63A, 63B (63) are configured such that the length in the radial direction becomes shorter toward one side.
  • the fourth collar portions 64A, 64B (64) are configured such that the length in the radial direction becomes shorter toward the other side.
  • the third flange 63 has third tapered surfaces 703A, 703B (703) that are inclined with respect to the second opposing surface 32, and the second flange 62 has a fourth tapered surface that is inclined with respect to the second opposed surface 32. 704A, 704B (704).
  • the third tapered surface 703 and the fourth tapered surface 704 may be flat surfaces as shown in FIG. 5A, or may be curved surfaces as shown in FIG. 5B. In the example of FIGS. 5A and 5B, both the third tapered surface 703 and the fourth tapered surface 704 are directly connected to the second opposing surface 32. In other examples, the third flange 63 and the fourth flange 64 may be chamfered, that is, the third tapered surface 703 and the fourth tapered surface 704 are connected to the second opposing surface through another surface, respectively. 32 may be connected. The other surface may be either a flat surface or a curved surface.
  • the second facing surface 32 of the magnetic pole piece 52 can cover the second magnet 29 in the circumferential direction without excess or deficiency, and due to the magnetomotive force of the second magnet 29, the first yoke unit 10 Since the magnetic flux passing in the radial direction between the second yoke unit 20 and the second yoke unit 20 is maximized, the transmitted torque is further improved. If the circumferential length (L2) of the second opposing surface 32 of the magnetic pole piece 50 is smaller than the circumferential length (N) of the second magnet 29, the circumferential length N of the second magnet 29 is in excess of the circumferential length of the magnetic pole piece 50, The remaining portion of the magnetomotive force of the second magnet 29 is not transmitted to the magnetic pole piece 50 and is wasted.
  • the second opposing surface 32 of the magnetic pole piece 50 is The remaining portion of the second opposing surface 32 of the magnetic pole piece 50 receives a magnetomotive force in the opposite direction from the adjacent second magnet 29.
  • the magnetomotive force received by the two opposing surfaces 32 as a whole is weakened. In this way, it is effective for the second facing surface 32 of the magnetic pole piece 50 to cover the second magnet 29 in the circumferential direction without excess or deficiency.
  • the above advantages can be obtained if at least one of the plurality of magnetic pole pieces 521 has the third flange 63A and the fourth flange 64A.
  • at least one of the plurality of magnetic pole pieces 522 only needs to have the third flange 63B and the fourth flange 64B.
  • the first opposing surface 310A has a first end 1311 (311) that is one end in the circumferential direction, and a second end 1312 (312) that is the other end in the circumferential direction.
  • the end of the third flange 63A on the first opposing surface 31 side in the radial direction is an end 1611
  • the end of the fourth flange 64A on the first opposing surface 31 side in the radial direction is an end 1611. It is 1621.
  • the magnetic pole piece 521 has a third connection surface 73 and a fourth connection surface 74.
  • the third connection surface 73 and the fourth connection surface 74 are planes extending in the radial direction.
  • the third connecting surface 73 connects the end 1611 of the third flange 63 and the third end 1323A of the second opposing surface 32, and the fourth connecting surface 74 connects the end 1621 of the fourth flange 64 to the second opposing surface 1323A.
  • the fourth end 1324A of the surface 32 is connected.
  • the third connecting surface 73 extending along the radial direction may be parallel to the radial direction or substantially parallel to the radial direction.
  • the third connecting surface 73 may be parallel to the radial direction.
  • the third connecting surface 73 is substantially radially parallel if the acute angle formed is less than or equal to 5°. It is understood that the same applies to the fourth connecting surface 74 extending in the radial direction. According to the above configuration, the third connecting surface 73 and the fourth connecting surface 74 extend along the radial direction, thereby simplifying the shape of the magnetic pole piece 52 (50) and facilitating manufacturing.
  • At least one second tooth portion 21T of the second yoke unit 20 has a plurality of second tooth portions 21T lined up in the circumferential direction. If the adjacent distance (shortest distance) between two circumferentially adjacent second teeth 21T included in the plurality of second teeth 21T is M as in the first example, then the magnetic pole pieces 521 to 523 (52 ) satisfies the relationship 0.9 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ .
  • the magnetic pole pieces 521 to 523 (52) satisfy the relationship 0.95 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.05 ⁇ max ⁇ L2, L3 ⁇ . More preferably, the magnetic pole pieces 521 to 523 (52) satisfy the relationship 1.0 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.0 ⁇ max ⁇ L2, L3 ⁇ .
  • a plurality of magnetic pole pieces 521 are arranged in the circumferential direction, and at least one magnetic pole piece 521 has an angle of 0.9 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ (more preferably 0.95 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.05 ⁇ max ⁇ L2,L3 ⁇ , still more preferably 1.0 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.
  • L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ more preferably 0.95 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.05 ⁇ max ⁇ L2,L3 ⁇ , still more preferably 1.0 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.
  • At least one of the plurality of magnetic pole pieces 522 has a relationship of 0.9 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2,L3 ⁇ (more preferably 0.95 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.05 ⁇ max ⁇ L2, L3 ⁇ , more preferably 1.0 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.0 ⁇ max ⁇ L2, L3 ⁇ ) Just satisfy it.
  • the plurality of magnetic pole pieces 52 (50) arranged in the circumferential direction may include a first defined magnetic pole piece 3511 and a second defined magnetic pole piece 3522 that are adjacent to each other in the circumferential direction.
  • the first defined magnetic pole piece 3511 and the second defined magnetic pole piece 3522 each have a main body portion 60, a third flange portion 63, and a fourth flange portion 64.
  • the third flange 63 of the first defined magnetic pole piece 3511 and the fourth flange 64 of the second defined magnetic pole piece 3522 are in contact with each other.
  • the plurality of first defined magnetic pole pieces 3511 and the plurality of second defined magnetic pole pieces 3522 are arranged alternately in the circumferential direction.
  • the third flange 63 of any first stipulating magnetic pole piece 3511 contacts the fourth flange 64 of the second stipulating magnetic pole piece 3522 on one side, and the fourth flange of the first stipulating magnetic pole piece 3511
  • the portion 64 contacts the third flange portion 63 of the second regulating magnetic pole piece 3522 on the other side.
  • the contact may be a connection, for example by welding.
  • the plurality of first defined magnetic pole pieces 3511 and the plurality of second defined magnetic pole pieces 3522 arranged alternately in the circumferential direction are integrally formed with each other. According to the above configuration, the reinforcing effect of the plurality of magnetic pole pieces 52 (50) can be improved.
  • FIG. 6 is a conceptual diagram of a magnetic pole piece 53 (50) according to a third example.
  • the magnetic pole piece 53 is applied to an internal structure in which at least the second yoke unit 20 of the first yoke unit 10 or the second yoke unit 20 is provided with teeth. That is, the internal structures applicable to the magnetic pole piece 53 include a first internal structure, a second internal structure, a third internal structure, and a fourth internal structure.
  • the magnetic pole piece 53 is applied to the third internal structure will be described, and a description of embodiments in which the magnetic pole piece 53 is applied to other internal structures will be omitted.
  • the magnetic pole piece 53 (50) includes the first opposing surface 31 facing the first magnet 19 and the second opposing surface 32 facing the second magnet 29. Further, at least one second tooth portion 21T of the second yoke 25 has a plurality of second tooth portions 21T arranged in the circumferential direction. In the example shown in the figure, the first yoke 15 has a plurality of first teeth 11T arranged in the circumferential direction.
  • the circumferential length of the second opposing surface 32 is L2
  • the average length in the circumferential direction of the magnetic pole pieces 53 is L3
  • the two adjacent second teeth included in the plurality of second teeth 21T are
  • the adjacent distance between the teeth 21T is M
  • at least one of the plurality of magnetic pole pieces 53 satisfies the relationship 0.9 ⁇ min ⁇ L2,L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2,L3 ⁇ ( More preferably, the relationship is 0.95 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.05 ⁇ max ⁇ L2, L3 ⁇ , and even more preferably 1.0 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.0 ⁇ max ⁇ L2, L3 ⁇ relationship) is satisfied.
  • a magnetic gear 5 is realized that has teeth that protrude toward the magnetic pole piece 53 and support the magnet, and that improves transmission torque.
  • FIG. 7A is a schematic diagram showing a third internal structure according to one embodiment
  • FIG. 7B is a schematic diagram showing a third internal structure according to another embodiment.
  • at least one first tooth 11T includes a plurality of first teeth 11T arranged in the circumferential direction
  • at least one second tooth 21T includes a plurality of second teeth 21T arranged in the circumferential direction.
  • the number (p1) of the plurality of first magnets 19 relative to the number (h1) of the plurality of first teeth 11T is the number (p1) of the plurality of second teeth 21T ( It is equal to the ratio of the number (p2) of the plurality of second magnets 29 to h2). That is, the following formula (B) holds true.
  • the plurality of first magnets 19 are composed of N-pole magnets and S-pole magnets arranged alternately in the circumferential direction, and the plurality of second magnets 29 have a similar structure.
  • formula (B) holds true, when the magnetic gear 5 is operated, the first magnet 19 facing the magnetic pole piece 52 (50) is moved from either the N-pole magnet or the S-pole magnet to the other.
  • the period at which the second magnet 29 facing the magnetic pole piece 52 (50) switches from either the N-pole magnet or the S-pole magnet to the other coincides with each other. In the following description, these two periods that are the same may be referred to as a prescribed period.
  • the plurality of first magnets 19 shown in FIG. 7A have a first regulation magnet 191.
  • the center of the first regulating magnet 191 coincides with the center of the first tooth portion 11T that supports the first regulating magnet 191.
  • Both centers illustrated in FIG. 7A are on a two-dot chain line C1 parallel to the radial direction.
  • the center of the first tooth portion 11T and the center of the first magnet 19 do not coincide in the circumferential direction.
  • the above-mentioned first regulation magnet 191 may be arranged in each of the plurality of first tooth parts 11T. It is understood that if the shortest distance in the circumferential direction between the center of the first regulation magnet 191 and the center of the first tooth portion 11T is less than 10% of the circumference of the first regulation magnet 191, then both centers coincide with each other. be done.
  • the plurality of second magnets 29 have second adjacent magnets 295 that are adjacent to each other in the circumferential direction.
  • one of the midpoints of the two second adjacent magnets 295 coincides with the center of the single second tooth portion 21T that supports the two second adjacent magnets 295.
  • the intermediate point and the center are on a dashed double-dashed line C2 parallel to the radial direction.
  • the center of the second tooth section 21T and the two adjacent second magnets 29 It does not coincide with the midpoint in the circumferential direction.
  • two second adjacent magnets 295 may be arranged in each of the plurality of second tooth portions 21T. Note that if the shortest distance in the circumferential direction between the midpoint of the two second adjacent magnets 295 and the center of the single second tooth portion 21T is less than 10% of the circumferential length of the second magnet 29, the intermediate point It is understood that the points and the center coincide with each other.
  • transmission torque is improved by separating the phase relationship between the second tooth portion 21T and the second adjacent magnet 295 and the phase relationship between the first tooth portion 11T and the first adjacent magnet 195 by 180 degrees. (The reason will be explained in detail in ⁇ 7. Relationship among tooth position, magnet position, and transmitted torque>).
  • the timing at which the first magnet 19 facing the magnetic pole piece 50 is switched from either the N-pole magnet or the S-pole magnet to the other, and the timing when the second magnet 29 facing the magnetic pole piece 50 is switched to the N-pole magnet or the S-pole magnet The timing of switching from one of the polar magnets and the S-pole magnet to the other is shifted from each other by half of the above-mentioned prescribed period, that is, by 180 degrees in the prescribed period.
  • the timing of switching from one to the other is shifted by 180 degrees and occurs at equal intervals in the prescribed period, and the generated torque becomes uniform over time. Furthermore, in FIG.
  • the magnetomotive force exerted by the first magnet 19 on the magnetic pole piece 50 is maximum, but the N magnetic pole and the S magnetic pole of the second magnet 29 cancel each other out, and the magnetic force exerted on the magnetic pole piece 50 from the second magnet The magnetomotive force of does not act. Thereby, it is possible to avoid a decrease in the transmission torque of the magnetic gear 5 due to magnetic flux saturation.
  • the plurality of first magnets 19 have two first adjacent magnets 195 that are adjacent to each other in the circumferential direction.
  • the midpoint between the two first adjacent magnets 195 coincides with the center of the single first tooth portion 11T that supports the two first adjacent magnets 195.
  • the intermediate point and the center are on a two-dot chain line C3 parallel to the radial direction.
  • the center of the first tooth portion 11T and the two adjacent first magnets 19 It does not coincide with the midpoint in the circumferential direction.
  • two first adjacent magnets 195 may be arranged in each of the plurality of first teeth 11T. Note that if the shortest distance in the circumferential direction between the midpoint of the two first adjacent magnets 195 and the center of the single first tooth portion 11T is less than 10% of the circumferential length of the first magnet 19, the intermediate point It is understood that the points and the center coincide with each other.
  • the plurality of second magnets 29 have a second regulation magnet 291.
  • the center of the second regulation magnet 291 coincides with the center of the single second tooth portion 21T that supports the second regulation magnet 291.
  • Both centers illustrated in FIG. 7B are on a two-dot chain line C4 parallel to the radial direction.
  • the center of the second tooth portion 21T and the center of the second magnet 29 do not coincide in the circumferential direction. do not.
  • the above-mentioned second regulation magnet 291 may be arranged in each of the plurality of second teeth portions 21T.
  • the two-dot chain lines C3 and C4 coincide in the circumferential direction. That is, the midpoint between the two first adjacent magnets 195, the center of the first tooth portion 11T, the center of the second regulation magnet 291, and the center of the second tooth portion 21T coincide with each other in the circumferential direction. If the shortest distance in the circumferential direction between two circumferential ends of these centers or intermediate points is less than 3% of the circumferential length of the second magnet 29, these centers and intermediate points coincide with each other in the circumferential direction. Then it will be understood.
  • the timing at which the first magnet 19 facing the magnetic pole piece 50 is switched from either the N-pole magnet or the S-pole magnet to the other, and the timing when the second magnet 29 facing the magnetic pole piece 50 is switched from the N-pole magnet or the S-pole magnet to the other The timing of switching from one of the S-pole magnets to the other is shifted from each other by half of the above-mentioned prescribed period. Thereby, the magnetic gear 5 can improve the transmission torque.
  • FIG. 8 is a conceptual diagram showing electromagnetic force and permeance in the first internal structure.
  • the second yoke unit 20 is a stator, and the first yoke unit 10 and the pole piece unit 30 are both rotors.
  • the magnetic flux that does not pass through the magnetic pole piece 50 is considered to be zero.
  • the distance from the rotation center of the magnetic gear 5 (hereinafter also simply referred to as the axis) to the outer circumferential surface 11B of the first main body portion 11 (one end surface of the first magnet 19) is assumed to be R1. .
  • the distance from the axis to one end surface of the second magnet 29 facing the magnetic pole piece 50 is defined as R2.
  • the distance from the axis to the other end surface of the second magnet 29 (the tip of the second tooth portion 21T) is R3.
  • the magnetomotive force F T acting on the second tooth portion 21T and the magnetic pole piece 50 can be approximated by the following equation (3), where the magnetic moment of the second magnet 29 at position ⁇ is written as M 3 ⁇ .
  • the value of M 3 ⁇ is +M or ⁇ M depending on ⁇ .
  • the magnetic flux ⁇ T between the second tooth portion 21T and the magnetic pole piece 50 is expressed by the following equation (4).
  • the direction of the magnetic flux ⁇ T between the second tooth portion 21T and the magnetic pole piece 50 is positive from the magnetic pole piece 50 to the second tooth portion 21T.
  • ⁇ T g T (F T -F 2 ) (4)
  • the first yoke 15 is not provided with teeth, and the magnetic pole pieces 50 as a whole are aligned in the radial direction with respect to the first yoke 15.
  • the area surrounded by the rectangle indicated by the two-dot chain line J2 in the figure corresponds to this area.
  • the permeance g B of the magnetic pole piece 50 and the first yoke 15 is expressed by the following equation (5), if t 1 + t 2 ⁇ R 1 , and the axial length of the first tooth portion 11T is written as L.
  • the magnetomotive force F B acting on the magnetic pole piece 50 and the first yoke 15 is expressed by the following equation (6), where the magnetic moment of the magnetic pole of the first yoke 15 at position ⁇ is denoted by M 1 ⁇ .
  • the value of M 1 ⁇ is +M or ⁇ M depending on ⁇ .
  • the magnetic flux ⁇ B between the magnetic pole piece 50 and the first yoke 15 is expressed by the following equation (7).
  • the direction from the first yoke 15 to the magnetic pole piece 50 is positive.
  • the torque generated in the first yoke 15 and the magnetic pole piece 50 is obtained by partially differentiating the energy of the magnetic flux between the first yoke 15 and the second yoke 25 at each position.
  • the torque T 1 generated in the first yoke 15 by the magnetic flux ⁇ L passing through the magnetic pole piece 50 is expressed by the following equation (11), assuming that the position of the first yoke 15 is ⁇ 1 .
  • the torque T 2 generated in the magnetic pole piece 50 by the magnetic flux ⁇ is expressed by the following equation (12), where ⁇ 2 is the position of the magnetic pole piece 50.
  • the torque T 2 consists of a term proportional to the permeance gradient ⁇ g TB / ⁇ 2 in the first term on the right-hand side, and a gradient of magnetomotive force ⁇ F TB / ⁇ in the second term on the right-hand side. 2 + ⁇ F B / ⁇ It is the sum of terms proportional to 2 .
  • the term proportional to the permeance gradient is the force with which the magnet attracts the pole piece 50, and is the reluctance torque.
  • the term proportional to the gradient of the magnetomotive force is the repulsion/attraction force that acts on the magnets, and is the magnet torque.
  • Equation (13) shows that only the permeance g T between the first tooth portion 11T and the magnetic pole piece 50 is affected by the first yoke 15, and the permeance g B between the first yoke 15 and the magnetic pole piece 50 is influenced by the magnetic pole. This is simplified by taking advantage of the fact that it has nothing to do with the piece 50. It can be seen from equation (13) that by increasing g B , the value of the first term of equation (12) increases, and the torque generated in the pole piece unit 30 also increases. In order to increase gB , for example, the circumference of the first opposing surface 31 may be increased. In other words, it is understood that the transmission torque is improved by setting L1>L2. If the number of magnetic pole pieces 50 is smaller than the number of magnetic poles of the first yoke 15, L1 may be long enough to make two adjacent magnetic pole pieces 50 contact each other.
  • the same conclusion can be drawn when the magnetic pole piece unit 30 is a stator and the first yoke unit 10 and the second yoke unit 20 are rotors. can get. Moreover, the same conclusion can be obtained even when the second internal structure, the fifth internal structure, and the sixth internal structure are adopted.
  • FIG. 9 is a conceptual graph showing various parameters depending on the circumferential position of a plurality of magnetic pole pieces 50 having different circumferential lengths.
  • the magnetomotive force F T acting on the magnetic pole piece 50 and the second tooth portion 21T is expressed by equation (3).
  • the same figure (A) shows the magnetic moment M3 ⁇ of the second magnet 29 according to the circumferential position.
  • the second magnet 29 that is, the N-pole magnet and the S-pole magnet
  • the magnetomotive force F T acting on the magnetic pole piece 50 is aligned in the radial direction with the second tooth portion 21T in the magnetic pole piece 50.
  • (B) shows the magnetomotive force ( F The magnetomotive force (F T ) 2/2 when the circumference is equal to the circumference of the second magnet 29 (D) is the magnetomotive force when the circumference of the magnetic pole piece 50 is 1.5 times the circumference of the second magnet 29 ( F T ) represents 3/2 .
  • the case where the circumferential length of the magnetic pole piece 50 is half of the circumferential length of the magnetic pole of the second tooth portion 21T will be referred to as a first case
  • the case where both are equal will be referred to as a second case
  • the circumferential length of the magnetic pole piece 50 will be referred to as a second case.
  • a case where the circumference is 1.5 times the circumference of the magnetic pole of the portion 21T is called a third case.
  • (E) of the figure shows g T F T according to ⁇ 2
  • (F) of the same figure shows g T F T ⁇ F T / ⁇ 2 according to ⁇ 2 .
  • ⁇ 2 is the circumferential position of the circumferential center of the magnetic pole piece 50.
  • the gradient of the magnetomotive force ⁇ F T / ⁇ 2 of (F T ) 1/2 in the first case is the largest among the three, but there is a section where the gradient is zero.
  • the disadvantage of the torque in the first case (g T F T ⁇ F T / ⁇ 2 ) 1/2 is that the torque due to the gradient of the magnetomotive force becomes zero in the section where the gradient is zero, and the torque becomes intermittent. It is.
  • the second case has the advantage that torque (g T F T ⁇ F T / ⁇ 2 ) 2/2 can be obtained without interruption. This is advantageous for reducing vibrations and the like. This feature is obtained because the circumferential length (L2) of the magnetic pole piece 50 is equal to or longer than the circumferential length (N) of the second magnet 29.
  • the second case is the best because it can continuously obtain large torque.
  • it is ideal for the circumferential length L2 of the magnetic pole piece 50 to match N.
  • the ideal state is approximately achieved. According to the inventor's knowledge, if the difference between the two does not exceed about 10%, it can be considered an approximate ideal state (of course, it is better to keep the difference between the two as small as possible.
  • the circumferential length L2 of the magnetic pole piece 50 is the value of the second facing surface 32 of the magnetic pole piece 50 that faces the second magnet 29 (that is, the value of the local part of the magnetic pole piece 50). Then, the circumferential length L2 of the second opposing surface 32A is extended, as in the case of the magnetic pole piece 512 (see FIG. 3A) taken as an example of the magnetic pole piece 50, or the magnetic pole piece 514 (see FIG. 3D) taken as an example of the magnetic pole piece 50 is extended. ), the circumferential length L2 of the second opposing surface 32D can be shortened.
  • the relationship between only two, L2 and N does not necessarily represent the essence of the technology of the present disclosure (that is, the magnitude of the transmitted torque is not necessarily determined only by these two parameters). Therefore, as a representative value of the circumferential length of the magnetic pole piece 50, L3, which is the magnetoresistive average circumference of the magnetic pole piece 50 defined by formula (A), is used as an auxiliary value, and 0.9 ⁇ min ⁇ L2, L3 ⁇
  • L3 which is the magnetoresistive average circumference of the magnetic pole piece 50 defined by formula (A)
  • 0.9 ⁇ min ⁇ L2, L3 ⁇ The inventor claims that if the magnetic pole piece 50 that satisfies the relationship of ⁇ N ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ is employed, further improvement in transmission torque is expected.
  • 0.9 and 1.1 in the inequality correspond to the lower limit and upper limit, respectively, of the 10% difference from the ideal state described above.
  • the magnetic pole pieces that satisfy the relationship 0.95 ⁇ min ⁇ L2,L3 ⁇ N ⁇ 1.05 ⁇ max ⁇ L2,L3 ⁇ 50 is preferably adopted.
  • a magnetic pole piece 50 that satisfies the relationship 1.0 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.0 ⁇ max ⁇ L2, L3 ⁇ should be adopted. is preferred.
  • FIG. 10 is a schematic diagram showing a third internal structure according to one embodiment.
  • the second tooth portion 21T strongly influences the magnetic resistance torque of the first term on the right side of Equations (11) and (12).
  • g TB is the permeance between the first yoke 15 and the second yoke 25, and is expressed by equation (9) as described above.
  • g B is the permeance between the first yoke 15 and the magnetic pole piece 50.
  • FIG. 10 shows a state in which the entire magnetic pole piece 50 is aligned with the first tooth portion 11T of the first yoke 15 in the radial direction.
  • FIG. 10B shows a state in which the magnetic pole piece 50 is displaced in the circumferential direction with respect to the first tooth portion 11T.
  • the magnetic pole piece 50 is aligned with the second tooth portion 21T in the radial direction in the region indicated by the two-dot chain line Q1 in FIG . write down The magnetic pole piece 50 is aligned in the radial direction with the first tooth portion 11T in the region indicated by the two-dot chain line Q2 in FIG . It is written as Since g T ⁇ g B , the permeance g TB between the first yoke 15 and the second yoke 25 may be approximated as g T as shown in the following equation (14). Therefore, the permeance gradient is expressed by the following equation (15).
  • Equation (15) is based on the area of the surface of one end surface of the second magnet 29 that faces the magnetic pole piece 50 (that is, the area is the surface area of the second opposing surface 32 of the magnetic pole piece 50 that faces the second magnet 29). This shows that the magnetic resistance torque can be obtained in proportion to the area (which can be approximated as the area). Therefore, in the case of (A) in the figure, both the magnetic resistance torque of the first term and the magnet torque of the second term on the right side of equation (12) act on the second yoke 25. This situation is preferable because the transmitted torque is improved.
  • Magnetic geared electric machine 1 in which magnetic gear 5 is incorporated> 11A to 11D a magnetically geared electric machine 1 incorporating a magnetic gear 5 is illustrated.
  • the magnetically geared electric machines 1A and 1B(1) illustrated in FIGS. 11A and 11B are magnetically geared generators 2A and 2B(2) configured to be driven by input from the prime mover 9 to generate electricity.
  • the magnetic geared generator 2 is configured to supply electric power P generated by power generation to a power supply destination 4, which may be, for example, an electric power system.
  • the magnetically geared electric machines 1C and 1D (1) illustrated in FIGS. 11C and 11D drive the rotating machine 8 by receiving power P from the power supply source 6, which may be an electric power system, for example.
  • the rotating machine 8 may be an electric vehicle driven by the magnetic geared motor 3, for example.
  • the magnetic geared motor 3 may be connected to a drive shaft of an electric vehicle, which is a component of the rotating machine 8.
  • a magnetic gear 5A (see FIG. 1A) is incorporated in the magnetically geared electric machines 1A and 1C illustrated in FIGS. 11A and 11C, and a magnetic gear 5A (see FIG. 1A) is incorporated in the magnetically geared electric machines 1B and 1D illustrated in FIGS. 11B and 11D. 5B (see FIG. 1B).
  • the magnetically geared generators 2A, 2B (2) include a magnetic gear 5 and a coil 99 wound around the second tooth portion 21T or the magnetic pole piece 50.
  • the coil 99 is provided with a coil 99 that can be electrically connected to the power supply destination 4 .
  • Coils 99 functioning as stator windings (armature windings) are provided at the plurality of second tooth portions 21T in FIG. 11A, and are provided at the plurality of magnetic pole pieces 50 in FIG. 11B.
  • the magnetic geared generator 2A illustrated in FIG. 11A operates, for example, as follows.
  • the first yoke unit 10 rotates according to the principle described above.
  • a current is generated in the coil 99 due to electromagnetic induction caused by the rotation of the magnetic pole piece unit 30 and the first yoke unit 10.
  • the magnetic geared generator 2A can generate electricity.
  • the first yoke unit 10 is urged in the rotational direction by a rotating magnetic field generated due to the generation of current in the coil 99.
  • the operating principle of the magnetically geared generator 2B illustrated in FIG. 11B is similar to that of the magnetically geared generator 2A.
  • the prime mover 9 connected to the second rotating shaft A2 which functions as an input shaft in the figure, is driven, the first yoke unit 10 rotates, and the second yoke unit 20 rotates according to the principle described above.
  • a current is generated in the coil 99 due to electromagnetic induction that occurs as the first yoke unit 10 and the second yoke unit 20 rotate.
  • the magnetic geared generator 2B can generate electricity.
  • the second yoke unit 20 is biased in the rotational direction by a rotating magnetic field generated as a result of the current generation in the coil 99.
  • Magnetic geared motor 3A, 3B (3) >
  • the magnetic geared motors 3A, 3B (3) include a magnetic gear 5 and a coil 99 wound around the second tooth portion 21T or the magnetic pole piece 50.
  • the coil 99 is provided with a coil 99 that can be electrically connected to the power supply source 6 .
  • Coils 99 functioning as stator windings (armature windings) are provided at the plurality of second teeth 21T in FIG. 11C, and are provided at the plurality of magnetic pole pieces 50 in FIG. 11D.
  • the magnetic geared motor 3A illustrated in FIG. 11C operates, for example, as follows.
  • the first yoke unit 10 is energized by the rotating magnetic field generated by the energization of the coil 99.
  • the magnetic pole piece unit 30 rotates according to the principle described above.
  • a first rotating shaft A1 functioning as an output shaft drives the rotating machine 8.
  • the operating principle of the magnetic geared motor 3B illustrated in FIG. 11D is similar to that of the magnetic geared motor 3A.
  • the second yoke unit 20 is energized by the rotating magnetic field generated by the energization of the coil 99.
  • the first yoke unit 10 rotates according to the principle described above.
  • the second rotating shaft A2 which functions as an output shaft, drives the rotating machine 8.
  • the magnetically geared generator 2 does not need to include the first rotating shaft A1 or the second rotating shaft A2 that functions as an output shaft, and the magnetically geared motor 3 does not have to include the first rotating shaft A1 or the second rotating shaft A2 that functions as an input shaft. It is not necessary to provide the rotation axis A1 or the second rotation axis A2. Even in this case, the above advantages can be obtained.
  • the magnetic gear (5) includes: a first yoke unit (10) including a plurality of first magnets (19) arranged in a circumferential direction, and a first yoke (15) that supports the plurality of first magnets (19); A second yoke unit (20) disposed on the outer circumferential side or the inner circumferential side of the first yoke unit (10), comprising a plurality of second magnets (29) arranged in the circumferential direction; a second yoke unit (20) including a second yoke (25) supporting a second magnet (29); A gap is provided between the first yoke unit (10) and the second yoke unit (20) with each of the plurality of first magnets (19) and the plurality of second magnets (29).
  • the first yoke (15) includes a first body portion (11) having an inner circumferential surface (11A) or an outer circumferential surface (11B) that supports the plurality of first magnets (19),
  • the second yoke (25) includes a second body portion (21) having an outer peripheral surface (21B) or an inner peripheral surface (21A) facing the plurality of second magnets (29), and the second main body portion.
  • Each of the magnetic pole pieces (50) includes: a first opposing surface (31) facing the first magnet (19); a second opposing surface (32) facing the second magnet (29); has When the length of the first opposing surface (31) in the circumferential direction is L1, and the length of the second opposing surface (32) in the circumferential direction is L2, At least one of the plurality of magnetic pole pieces (50) satisfies the relationship L1>L2.
  • a magnetic gear (5) is realized that has teeth that protrude toward the magnetic pole piece (50) and support the magnet, and has improved transmission torque.
  • the first opposing surface (31) is a first end (311) that is one end in the circumferential direction; a second end (312) that is the other end in the circumferential direction; has
  • the at least one of the plurality of pole pieces (50) is A main body (60); a first flange (61) protruding from the main body (60) to the one side in the circumferential direction, the first flange having the first end (311) of the first opposing surface (31); (61) and a second flange (62) protruding from the main body (60) toward the other side in the circumferential direction, the second flange having the second end (312) of the first opposing surface (31); (62) and has.
  • the magnetic pole piece (50) since the magnetic pole piece (50) has the first flange (61) and the second flange (62), the length of the first opposing surface (31) in the circumferential direction is increased. do. This reduces the magnetic reluctance between the pole piece (50) and the first yoke unit (10), and further reduces the magnetic resistance between the pole piece (50) and the first yoke unit (10) and the second yoke unit. This leads to an increase in the magnetic flux flowing between (20) and (20). Therefore, the transmitted torque is further improved.
  • the first flange (61) is configured such that the length in the radial direction becomes shorter toward the one side
  • the second flange (62) is configured such that the length in the radial direction becomes shorter toward the other side.
  • the first flange (61) and the second flange (62) are close to the adjacent magnetic pole piece (50) only at the tips. That is, the first flange (61) and the second flange (62) are partially separated from the adjacent magnetic pole pieces (50). Thereby, it is possible to suppress magnetic flux from flowing back and forth between two mutually adjacent magnetic pole pieces (50). That is, leakage magnetic flux is suppressed. Therefore, it is possible to suppress a decrease in transmitted torque due to leakage of magnetic flux.
  • the plurality of magnetic pole pieces (50) include a first defined magnetic pole piece (2511) and a second defined magnetic pole piece (2522) that are adjacent to each other in the circumferential direction,
  • the first defined magnetic pole piece (2511) and the second defined magnetic pole piece (2512) each include the main body part (60), the first flange part (61), and the second flange part (62). death,
  • the first flange (61) of the first defined magnetic pole piece (2511) and the second flange (62) of the second defined magnetic pole piece (2512) are in contact with each other.
  • the magnetic gear (5) according to any one of 2) to 4) above,
  • the second opposing surface (32) is a third end (323) that is one end in the circumferential direction; a fourth end (324) that is the other end in the circumferential direction; has The at least one of the plurality of pole pieces (50) is Connecting an end (611) of the first flange (61) on the second opposing surface (32) side in the radial direction and the third end (323) of the second opposing surface (32). a first connection surface (71) extending along the radial direction; Connecting an end (612) of the second flange (62) on the second opposing surface (32) side in the radial direction and the fourth end (324) of the second opposing surface (32). a second connecting surface (72) extending along the radial direction; including.
  • the first connecting surface (71) and the second connecting surface (72) both extend along the radial direction, thereby simplifying the shape of the magnetic pole piece (50), Manufacture of the magnetic pole piece (50) can be facilitated.
  • the magnetic gear (5) according to any one of 3) to 5) above,
  • the first flange portion (61) is a first edge (81) that is a portion of the magnetic pole piece (50) located closest to the one side in the circumferential direction and extends in the axial direction of the magnetic gear; a first recess (91) recessed from the first edge (81) toward the other side in the circumferential direction and open in the radial direction; has
  • the second flange portion (62) is a second edge (82) that is a portion of the magnetic pole piece (50) located closest to the other side in the circumferential direction and extends in the axial direction; a second recess (92) recessed from the second edge (82) toward the one side in the circumferential direction and open in the radial direction; including.
  • the transmission Torque increases.
  • the distance between two adjacent magnetic pole pieces (50) is too short, magnetic flux will circulate between the two magnetic pole pieces (50), reducing the transmitted torque.
  • configuration 6) above by providing the first recess (91) and the second recess (92), the first flange (61) and the second flange (62) are Partially circumferentially spaced from the pole piece (50). This makes it possible to suppress magnetic flux flowing between two adjacent magnetic pole pieces (50). That is, leakage magnetic flux can be suppressed. Therefore, the transmitted torque is further improved.
  • the plurality of magnetic pole pieces (50) include a first adjacent magnetic pole piece (1511) and a second adjacent magnetic pole piece (1512) that are adjacent to each other in the circumferential direction,
  • the first recess (91) of the first adjacent magnetic pole piece (1511) is arranged to overlap in the axial direction with at least a portion of the second recess (92) of the second adjacent magnetic pole piece (1512). Ru.
  • the gap between the first recess (91) of the first adjacent magnetic pole piece (1511) and the second recess (92) of the second adjacent magnetic pole piece (1512) can be increased. , it is possible to more effectively suppress magnetic flux from going back and forth between the first adjacent magnetic pole piece (1511) and the second adjacent magnetic pole piece (1512).
  • the magnetic gear (5) described in 7) above, The at least one of the plurality of magnetic pole pieces (50) has a plurality of electromagnetic steel plates (150) laminated in the axial direction of the magnetic gear (5),
  • the plurality of electrical steel sheets (150) are at least one first electrical steel sheet (151) forming the first edge (81) and the second edge (82); at least one second electromagnetic steel plate (152) having a length shorter than the circumferential length of the first electromagnetic steel plate (151), the first recess (91) and the second recess (92); at least one second electrical steel plate (152) forming the bottom surface of each of the has.
  • each of the first recess (91) and the second recess (92) is formed by the second electromagnetic steel sheet (152) included in the plurality of electromagnetic steel sheets.
  • the configurations of the recess (91) and the second recess (92) can be simplified.
  • the magnetic gear (5) according to any one of 1) to 8) above, At least one second tooth portion (21T) has a plurality of second tooth portions (21T) arranged in the circumferential direction, The average length of the magnetic pole piece (50) in the circumferential direction is L3, and the adjacent distance between two circumferentially adjacent second tooth portions (21T) included in the plurality of second tooth portions (21T) is L3.
  • M is At least one of the plurality of magnetic pole pieces (50) satisfies the relationship 0.9 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ .
  • the magnetic flux passing through a specific magnetic pole piece (50) crosses back and forth in the radial direction between the first yoke unit (10) and the second yoke unit (20) without leaking to the adjacent magnetic pole piece (50).
  • the transmitted torque increases.
  • the magnetic flux will flow from one second tooth (21T) to another second tooth (21T) via the magnetic pole piece (50). flow, and the magnetic flux flowing radially decreases.
  • configuration 8) above it is possible to prevent the adjacent distance between the two second tooth portions (21T) from becoming too short, so that the distance between the second tooth portion (21T) and another second tooth portion (21T) can be suppressed. ) can be suppressed from flowing through the magnetic pole piece (50). Therefore, transmission torque can be improved.
  • the magnetic gear (5) includes: a first yoke unit (10) including a plurality of first magnets (19) arranged in a circumferential direction, and a first yoke (15) that supports the plurality of first magnets (19); A second yoke unit (20) disposed on the outer circumferential side or inner circumferential side of the first yoke unit (10), which is arranged in the circumferential direction and arranged in the circumferential direction of the first magnet (19).
  • a second yoke unit (20) including a plurality of second yoke (29) having a length shorter than the second yoke, and a second yoke (25) supporting the plurality of second magnets (29);
  • a gap is provided between the first yoke unit (10) and the second yoke unit (20) with each of the plurality of first magnets (19) and the plurality of second magnets (29).
  • Each of the pole pieces (50) has a second facing surface (32) facing the second magnet (29),
  • the second opposing surface (32) is a third end (323) that is one end in the circumferential direction; a fourth end (324) that is the other end in the circumferential direction; has
  • the at least one of the plurality of pole pieces (50) is A main body (60);
  • a third flange (63) that protrudes from the main body (60) to one side in the circumferential direction and has the third end (323) of the second opposing surface (32).
  • the length of the second opposing surface (32) in the circumferential direction is L2
  • the average length of the magnetic pole pieces in the circumferential direction is L3
  • the length of the second magnet (29) in the circumferential direction is N.
  • At least one of the plurality of magnetic pole pieces (50) satisfies the relationship: 0.9 ⁇ min ⁇ L2, L3 ⁇ N ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ .
  • the magnetic pole piece (50) that satisfies the relationship 0.9 ⁇ min ⁇ L2,L3 ⁇ N ⁇ 1.1 ⁇ max ⁇ L2,L3 ⁇ is effective in operating the magnetic gear (5). Accordingly, continuous magnetic resistance torque can be obtained in the process in which the positional relationship between the magnetic pole piece (50) and the second yoke (25) changes relative to each other in the circumferential direction. Therefore, according to configuration 10) above, a magnetic gear (5) is realized that has teeth that protrude toward the magnetic pole piece (50) and support the magnet, thereby improving transmission torque.
  • the magnetic pole piece (50) moves relative to each other so as to straddle the boundary between two adjacent second magnets (29), the magnetomotive force switches between positive and negative.
  • the magnetic pole piece (50) has the third flange (63) and the fourth flange (64), so that the magnetomotive force that switches between positive and negative can be partially short-circuited. , and the switching between positive and negative magnetomotive force can be made gradual. Thereby, the magnetic gear (5) can continue to rotate smoothly.
  • the magnetic gear (5) described in 10) above is configured such that the length in the radial direction becomes shorter toward the one side,
  • the fourth flange (64) is configured such that its length in the radial direction becomes shorter toward the other side.
  • the second opposing surface (32) of the magnetic pole piece (50) can cover the second magnet (29) in the circumferential direction in just the right amount and the magnetomotive force of the second magnet (29). Due to this, the magnetic flux passing in the radial direction between the first yoke unit (10) and the second yoke unit (20) is maximized, so that the transmitted torque is further improved.
  • the plurality of magnetic pole pieces (50) include a first defined magnetic pole piece (3511) and a second defined magnetic pole piece (3522) that are adjacent to each other in the circumferential direction,
  • the first defined magnetic pole piece (3511) and the second defined magnetic pole piece (3512) each include the main body (60), the third flange (63), and the fourth flange (64). death,
  • the third flange (63) of the first defined magnetic pole piece (3511) and the fourth flange (64) of the second defined magnetic pole piece (3512) are in contact with each other.
  • the reinforcing effect of the plurality of magnetic pole pieces (50) can be improved.
  • each of the pole pieces (50) has a first facing surface (31) facing the first magnet (19),
  • the first opposing surface (31) is a first end (311) that is one end in the circumferential direction; a second end (312) that is the other end in the circumferential direction; has The at least one of the plurality of pole pieces (50) is Connecting an end (1611) of the third flange (63) on the first opposing surface (31) side in the radial direction and the first end (311) of the first opposing surface (31).
  • connection surface (73) extending along the radial direction; Connecting an end (1621) of the fourth flange (64) on the first opposing surface (31) side in the radial direction to the second end (312) of the first opposing surface (31). a fourth connection surface (74) extending along the radial direction; including.
  • the third connecting surface (73) and the fourth connecting surface (74) both extend along the radial direction, thereby simplifying the shape of the magnetic pole piece (50), Easy to manufacture.
  • the magnetic gear (5) according to any one of 10) to 13) above,
  • the at least one second tooth portion (21T) has a plurality of second tooth portions (21T) arranged in the circumferential direction,
  • the adjacent distance between two circumferentially adjacent second teeth (21T) included in the plurality of second teeth (21T) is M
  • At least one of the plurality of magnetic pole pieces (50) satisfies the relationship 0.9 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ .
  • the first yoke (15) includes a first main body portion (11) having an inner circumferential surface (11A) or an outer circumferential surface (11B) facing the plurality of first magnets (19), and the first main body portion. (11) A plurality of first magnets projecting in the radial direction from the inner peripheral surface (11A) or the outer peripheral surface (11B) toward the magnetic pole piece (50) and supporting the plurality of first magnets (19).
  • the at least one second tooth portion (21T) has a plurality of second tooth portions (21T),
  • the ratio of the number of the plurality of first magnets (19) to the number of the plurality of first tooth parts (11T) is the ratio of the number of the plurality of second magnets (29) to the number of the plurality of second tooth parts (21T). is equal to the ratio of the numbers of
  • the plurality of first magnets (19) include a first regulation magnet (191), In the circumferential direction, the center of the first regulating magnet (191) coincides with the center of the first tooth portion (11T) that supports the first regulating magnet (191),
  • the plurality of second magnets (29) have two second adjacent magnets (295) adjacent to each other, In the circumferential direction, a midpoint between the two second adjacent magnets (295) coincides with the center of the single second tooth portion (21T) that supports the two second adjacent magnets (295).
  • the timing at which the first magnet (19) facing the magnetic pole piece (50) switches from either the N-pole magnet or the S-pole magnet to the other, and the timing when the first magnet (19) facing the magnetic pole piece (50) and the timing at which the opposing second magnet (29) switches from either the N-pole magnet or the S-pole magnet to the other are shifted from each other by half of the period of 15), that is, by 180 degrees in the period.
  • the timing at which the second magnet (29) switches from either the N-pole magnet or the S-pole magnet at the second tooth portion (21T) to the other, and the timing at which the second magnet (29) switches from either the N-pole magnet or the S-pole magnet at the second tooth portion (11T) to the other occurs at equal intervals with a 180 degree shift in the above cycle, and the generated torque becomes uniform over time. Thereby, it is possible to avoid a decrease in the transmission torque of the magnetic gear 5 due to magnetic flux saturation.
  • the plurality of first magnets (19) have two first adjacent magnets (195) adjacent to each other, In the circumferential direction, the midpoint of the two first adjacent magnets (195) coincides with the center of the single first tooth portion (11T) that supports the two first adjacent magnets (195),
  • the plurality of second magnets (29) include a second regulation magnet (291), In the circumferential direction, the center of the second regulating magnet (291) coincides with the center of the single second tooth portion (21T) that supports the second regulating magnet (291).
  • the timing at which the second magnet (29) switches from either the N-pole magnet or the S-pole magnet to the other is shifted from each other by half the period of 20) above. This can reduce the time period in which the magnetic pole pieces (50) arranged radially with the second teeth (21T) are out of alignment in the circumferential direction with respect to the plurality of first teeth (11T). Therefore, the magnetic gear (5) can improve the transmitted torque.
  • the magnetic gear (5) includes: a first yoke unit (10) including a plurality of first magnets (19) arranged in a circumferential direction, and a first yoke (15) that supports the plurality of first magnets (19); A second yoke unit (20) disposed on the outer circumferential side or the inner circumferential side of the first yoke unit (10), comprising a plurality of second magnets (29) arranged in the circumferential direction; a second yoke unit (20) including a second yoke (25) supporting a second magnet (29); A gap is provided between the first yoke unit (10) and the second yoke unit (20) with each of the plurality of first magnets (19) and the plurality of second magnets (29).
  • a plurality of second tooth portions (21T) arranged in the circumferential direction that protrude in the radial direction from the surface or the inner peripheral surface toward the magnetic pole piece (50) and support the second magnet (29); including,
  • Each of the pole pieces (50) has a second facing surface (32) facing the second magnet (29), L2 is the length of the second opposing surface (32) in the circumferential direction, L3 is the average length of the magnetic pole piece in the circumferential direction, and adjacent in the circumferential direction is included in the plurality of second tooth portions (21T).
  • the adjacent distance between the two second tooth portions (21T) is M
  • At least one of the plurality of magnetic pole pieces (50) satisfies the relationship 0.9 ⁇ min ⁇ L2, L3 ⁇ M ⁇ 1.1 ⁇ max ⁇ L2, L3 ⁇ .
  • a magnetic gear (5) is realized that has teeth that protrude toward the magnetic pole piece (50) and support the magnet, and that improves transmission torque.
  • the first yoke (15) includes a first main body portion (11) having an inner circumferential surface or an outer circumferential surface facing the plurality of first magnets (19), and a plurality of first tooth portions (11T) protruding in the radial direction from the peripheral surface or the outer peripheral surface toward the magnetic pole piece (50) and supporting the plurality of first magnets (19);
  • the ratio between the number of the first teeth (11T) and the number of the plurality of first magnets (19) is the number of the second teeth (21T) and the number of the plurality of second magnets (29). is equal to the ratio of
  • the plurality of first magnets (19) include a first regulation magnet (191), In the circumferential direction, the center of the first regulating magnet (191) coincides with the center of the first tooth portion (11T) that supports the first regulating magnet (191),
  • the plurality of second magnets (29) have two second adjacent magnets (295) adjacent to each other, In the circumferential direction, a midpoint between the two second adjacent magnets (295) coincides with the center of the single second tooth portion (21T) that supports the two second adjacent magnets (295).
  • the plurality of first magnets (19) have two first adjacent magnets (195) adjacent to each other, In the circumferential direction, the midpoint of the two first adjacent magnets (195) coincides with the center of the single first tooth portion (11T) that supports the two first adjacent magnets (195),
  • the plurality of second magnets (29) include a second regulation magnet (291), In the circumferential direction, the center of the second regulating magnet (291) coincides with the center of the single second tooth portion (21T) that supports the second regulating magnet (291).
  • a magnetic geared electric machine (1) includes: The magnetic gear (5) according to any one of 1) to 21) above, a coil (99) wound around the second tooth portion (21T) or the magnetic pole piece (50); Equipped with
  • the magnetic A geared electric machine (1) is realized. Further, since torque due to the magnetic field generated by energizing the coil (99) can be obtained, the magnetically geared electric machine (1) can improve the transmission torque.
  • expressions expressing shapes such as a square shape or a cylindrical shape do not only mean shapes such as a square shape or a cylindrical shape in a strict geometric sense, but also within the range where the same effect can be obtained. , shall also represent shapes including uneven parts, chamfered parts, etc.
  • the expressions "comprising,””including,” or “having" one component are not exclusive expressions that exclude the presence of other components.
  • Magnetic geared electric machine 5 Magnetic gear 10 : First yoke unit 11 : First body part 11A : Inner peripheral surface 11B : Outer peripheral surface 11T : First tooth part 15 : First yoke 19 : First magnet 20 : Second yoke unit 21 : Second body part 21A : Inner peripheral surface 21B : Outer peripheral surface 21T : Second tooth part 25 : Second yoke 29 : Second magnet 30 : Pole piece unit 31 : First opposing surface 32 : Second opposing surface 50 : Magnetic pole piece 60 : Main body part 61 : First flange part 62 : Second flange part 63 : Third flange part 64 : Fourth flange part 71 : First connection surface 72 : Second connection surface 73 : Third connection surface 74 : Fourth connection surface 81 : First edge 82 : Second edge 91 : First recess 92 : Second recess 99 : Coil 150 : Electromagnetic steel sheet 151 : First electromagnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

磁気ギアは、周方向に並ぶ複数の第1磁石、周方向に並ぶ複数の第2磁石、および、周方向に並ぶ複数の磁極片を備える。各々の磁極片は、第1磁石と対向する第1対向面と、第2磁石と対向する第2対向面とを有する。第1対向面の周方向における長さをL1、第2対向面における周方向における長さをL2とした場合に、複数の磁極片の少なくとも1つは、L1>L2の関係を満たす。

Description

磁気ギア、および、磁気ギアード電気機械
 本開示は、磁気ギア、および、磁気ギアード電気機械に関する。
 本願は、2022年5月18日に日本国特許庁に出願された特願2022-081212号に基づき優先権を主張し、その内容をここに援用する。
 磁気ギアード電気機械は、磁気トルクを伝達するための磁気ギアユニットを備える。特許文献1で例示される磁気ギアユニットは径方向外側から順に、外側ロータ、磁極片モジュール、及び、内側ロータを備える。外側ロータは、周方向に並ぶ複数の外側磁石を含み、内側ロータは、周方向に並ぶ複数の内側磁石を含む。複数の外側磁石及び複数の内側磁石は、永久磁石である。
特許6202354号公報
 上記磁気ギアユニットの伝達トルクには、上記永久磁石に起因する起磁力の回転方向における変化量(勾配)が寄与する。上記磁気ギアユニットにおいて、外側ロータおよび内側ロータの少なくとも一方には、磁極片に向かって突出すると共に磁石を支持する歯部が設けられていることが好ましい。なぜなら、この場合、伝達トルクが、歯部と磁極片とを回転方向において互いに近づけるための磁気抵抗トルクをさらに含むからである。このような構成において伝達トルクがさらに向上することが望まれる。
 本開示は、磁極片に向かって突出すると共に磁石を支持する歯部を有し、伝達トルクを向上させた磁気ギア、および、磁気ギアード電気機械を提供することである。
 本開示の少なくとも一実施形態に係る磁気ギアは、
 周方向に並ぶ複数の第1磁石、および、前記複数の第1磁石を支持する第1継鉄を含む第1継鉄ユニットと、
 前記第1継鉄ユニットの外周側または内周側に配置された第2継鉄ユニットであって、前記周方向に並ぶ複数の第2磁石、および、前記複数の第2磁石を支持する第2継鉄を含む第2継鉄ユニットと、
 前記第1継鉄ユニットと前記第2継鉄ユニットとの間において、前記複数の第1磁石および前記複数の第2磁石のそれぞれと隙間を空けて対向するように前記周方向に並ぶ複数の磁極片を含む磁極片ユニットと、
を備え、
 前記第1継鉄は、前記複数の第1磁石を支持する内周面または外周面を有する第1本体部を含み、
 前記第2継鉄は、前記複数の第2磁石に対向する外周面または内周面を有する第2本体部と、前記第2本体部の前記外周面または前記内周面から前記磁極片に向かって径方向に突出すると共に前記第2磁石を支持する少なくとも1つの第2歯部と、を含み、
 各々の前記磁極片は、
  前記第1磁石と対向する第1対向面と、
  前記第2磁石と対向する第2対向面と、
 を有し、
 前記第1対向面の前記周方向における長さをL1、前記第2対向面における前記周方向における長さをL2とした場合に、
 前記複数の磁極片の少なくとも1つは、L1>L2の関係を満たす。
 本開示の少なくとも一実施形態に係る磁気ギアは、
 周方向に並ぶ複数の第1磁石、および、前記複数の第1磁石を支持する第1継鉄を含む第1継鉄ユニットと、
 前記第1継鉄ユニットの外周側または内周側に配置された第2継鉄ユニットであって、前記周方向に並ぶとともに前記第1磁石の前記周方向における長さよりも短い長さを有する複数の第2磁石、および、前記複数の第2磁石を支持する第2継鉄を含む第2継鉄ユニットと、
 前記第1継鉄ユニットと前記第2継鉄ユニットとの間において、前記複数の第1磁石および前記複数の第2磁石のそれぞれと隙間を空けて対向するように前記周方向に並ぶ複数の磁極片を含む磁極片ユニットと、
を備え、
 前記第2継鉄は、前記複数の第2磁石に対向する外周面または内周面を有する第2本体部と、前記第2本体部の前記外周面または前記内周面から前記磁極片に向かって径方向に突出すると共に前記第2磁石を支持する少なくとも1つの第2歯部と、を含み、
 各々の前記磁極片は、前記第2磁石と対向する第2対向面を有し、
 前記第2対向面は、
  前記周方向における一方側の端である第3端と、
  前記周方向における他方側の端である第4端と、
を有し、
 前記複数の磁極片の前記少なくとも1つは、
  本体部と、
  前記本体部から前記周方向における一方側に突出する第3鍔部であって前記第2対向面の前記第3端を有する第3鍔部と、
  前記本体部から前記周方向における他方側に突出する第4鍔部であって前記第2対向面の前記第4端を有する第4鍔部と、
を有し、
 前記第2対向面における前記周方向における長さをL2、前記磁極片の前記周方向における平均長さをL3、前記第2磁石の前記周方向における長さをNとした場合に、
 前記複数の磁極片の少なくとも1つは、0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係を満たす。
 本開示の少なくとも一実施形態に係る磁気ギアは、
 周方向に並ぶ複数の第1磁石、および、前記複数の第1磁石を支持する第1継鉄を含む第1継鉄ユニットと、
 前記第1継鉄ユニットの外周側または内周側に配置された第2継鉄ユニットであって、前記周方向に並ぶ複数の第2磁石、および、前記複数の第2磁石を支持する第2継鉄を含む第2継鉄ユニットと、
 前記第1継鉄ユニットと前記第2継鉄ユニットとの間において、前記複数の第1磁石および前記複数の第2磁石のそれぞれと隙間を空けて対向するように前記周方向に並ぶ複数の磁極片を含む磁極片ユニットと、
を備え、
 前記第2継鉄は、前記複数の第2磁石に対向する外周面または内周面を有する第2本体部と、前記第2本体部の前記外周面または前記内周面から前記磁極片に向かって径方向に突出すると共に前記第2磁石を支持する周方向に並んだ複数の第2歯部と、を含み、
 各々の前記磁極片は、前記第2磁石と対向する第2対向面を有し、
 前記第2対向面における前記周方向における長さをL2、前記磁極片の前記周方向における平均長さをL3、前記複数の第2歯部に含まれる前記周方向に隣接する2つの前記第2歯部の隣接距離をMとした場合に、
 前記複数の磁極片の少なくとも1つは、0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係を満たす。
 本開示の一実施形態に係る磁気ギアード電気機械は、
 上記のいずれかの磁気ギアと、
 前記第2歯部または前記磁極片に巻かれたコイルと、
 を備える。
 本開示によれば、磁極片に向かって突出すると共に磁石を支持する歯部を有し、伝達トルクを向上させた磁気ギア、および、磁気ギアード電気機械を提供できる。
一実施形態に係る磁気ギア(磁気ギアード発電機)の概略図。 他の実施形態に係る磁気ギア(磁気ギアード発電機)の概略図。 一実施形態に係る磁気ギアの第1内部構造を示す概略図。 一実施形態に係る磁気ギアの第2内部構造を示す概略図。 一実施形態に係る磁気ギアの第3内部構造を示す概略図。 一実施形態に係る磁気ギアの第4内部構造を示す概略図。 第1の例示に係る磁極片の第1の概念図。 第1の例示に係る磁極片の第2の概念図。 第1の例示に係る磁極片の第3の概念図。 第1の例示に係る磁極片の第4の概念図。 一実施形態に係る磁極片の概念的な斜視図。 一実施形態に係る第1電磁鋼板の概念図。 一実施形態に係る第2電磁鋼板の概念図。 第1の例示に係る磁極片の概略図。 第2の例示に係る磁極片の第1の概念図。 第2の例示に係る磁極片の第2の概念図。 第2の例示に係る磁極片の第3の概念図。 第2の例示に係る磁極片の概略図。 第3の例示に係る磁極片の概念図。 一実施形態に係る第3内部構造を示す概略図。 他の実施形態に係る第3内部構造を示す概略図。 一実施形態に係る第1内部構造における電磁力とパーミアンスを示す概念図。 周長が互いに異なる複数の磁極片の周方向位置に応じた各種パラメータを示す概念的なグラフ。 一実施形態に係る第3内部構造を示す概略図。 一実施形態に係る磁気ギアード電気機械(磁気ギアード発電機)の概略図。 他の実施形態に係る磁気ギアード電気機械(磁気ギアード発電機)の概略図。 一実施形態に係る磁気ギアード電気機械(磁気ギアードモータ)の概略図。 他の実施形態に係る磁気ギアード電気機械(磁気ギアードモータ)の概略図。
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
<1.磁気ギア5の概要>
 図1A、図1Bは、本開示の幾つかの実施形態に係る磁気ギア5の概略図である。以下の説明においては、「軸方向」は磁気ギア5の回転軸(第1回転軸A1または第2回転軸A2)に平行な方向であり、「径方向」は磁気ギア5の回転軸と直交する方向であり、「周方向」は、磁気ギア5の回転軸を基準とした周方向である。また、以下の説明では、磁気ギア5の構成要素の周方向の長さを、当該構成要素の周長と簡略的に称す場合がある。
 図1A、図1Bで例示される磁気ギア5はいずれも、径方向の一方側から順に、第1継鉄ユニット10、第2継鉄ユニット20、および、磁極片ユニット30を備える。これら3つのユニットはいずれも軸方向に延在する。第1継鉄ユニット10は、周方向に並ぶ複数の第1磁石19、および、複数の第1磁石19を支持する第1継鉄15を含む。第2継鉄ユニット20は、周方向に並ぶ複数の第2磁石29、および、複数の第2磁石29を支持する第2継鉄25を含む。そして、磁極片ユニット30は周方向に並ぶ複数の磁極片50を含み、複数の磁極片50は、第1継鉄ユニット10と第2継鉄ユニット20との間において、複数の第1磁石19および複数の第2磁石29のそれぞれと隙間G1、G2(例えば図2A参照)を空けて対向する。第1継鉄ユニット10、第2継鉄ユニット20、または、磁極片ユニット30のいずれか1つは固定子として機能し、残る2つは回転子として機能する。第2磁石29の個数は磁極片50の個数よりも多く、磁極片50の個数は第1磁石19の個数よりも多い。第1磁石19の周長は、第2磁石29の周長よりも長い。
 図1A、図1Bの例では、第2継鉄ユニット20は第1継鉄ユニット10の外周側に配置されており、即ち、磁気ギア5は径方向の内側(内周側)から順に、第1継鉄ユニット10、磁極片ユニット30、および、第2継鉄ユニット20を備える。他の例では、第2継鉄ユニット20は第1継鉄ユニット10の内周側に配置されてもよく、即ち、磁気ギア5は径方向の外側(外周側)から順に、第1継鉄ユニット10、磁極片ユニット30、および、第2継鉄ユニット20を備えてもよい(図2B、図2D参照)。
<1-1.一実施形態に係る磁気ギア5A(5)>
 図1Aで例示される磁気ギア5A(5)は、ベース101に設置されてもよいハウジング98を備える。同図の例では、第2継鉄ユニット20が固定子として機能する。ハウジング98は、入力軸として機能してもよい第1回転軸A1を、ベアリングを介して回転可能に支持する。磁極片ユニット30の軸方向の両端はそれぞれ一対のエンドプレート97に連結される。そして、一方のエンドプレート97は第1回転軸A1に連結されており、他方のエンドプレート97は、第1回転軸A1と同軸となるように配置される第2回転軸A2にベアリングを介して連結される。従って、同図で例示される磁極片ユニット30は、第1回転軸A1と共に回転する回転子として機能する。出力軸として機能してもよい本例の第2回転軸A2は、一対のエンドプレート97の間に配置される第1継鉄ユニット10を支持する。従って、同図で例示される第1継鉄ユニット10は、第2回転軸A2と共に回転する回転子として機能する。第2回転軸A2は、ベアリングを介してハウジング98によって回転可能に支持される。第2回転軸A2の一端部はベアリングを介して第1回転軸A1に連結されてもよいし、第1回転軸A1とは非連結であってもよい。
 磁気ギア5Aは例えば以下のように作動する。入力軸としての第1回転軸A1が磁極片ユニット30と共に回転すると、複数の磁極片50は、複数の第1磁石19および複数の第2磁石29に対して相対的に回転する。これにより、第1継鉄ユニット10と第2継鉄ユニット20の間において磁極片ユニット30を介して流れる磁束が変化し、第1磁石19の磁束の大きさが増える方向に第1継鉄ユニット10が回転する。これにより、出力軸としての第2回転軸A2は回転する。
 上記の磁気ギア5Aにおいては、第2回転軸A2が入力軸として機能し、第1回転軸A1が出力軸として機能してもよい。この場合であっても、第1継鉄ユニット10が第2回転軸A2と共に回転すると、複数の磁極片50は、複数の第1磁石19に対して相対的に回転する。これにより、第1継鉄ユニット10と第2継鉄ユニット20の間において磁極片ユニット30を介して流れる磁束が変化し、磁極片ユニット30を流れる磁束の大きさが増える方向に磁極片ユニット30が回転する。これにより、出力軸としての第1回転軸A1は回転する。
 上記の磁気ギア5Aでは、磁極片ユニット30に対する第1継鉄ユニット10の回転数の比は、第1磁石19の極対数NHに対する磁極片50の磁極数NLの比(=NL/NH)で表される。本例では、NL/NHが1よりも大きく、第1継鉄ユニット10は高速ロータとして機能し、磁極片ユニット30は低速ロータとして機能する。なお、磁極片50の磁極数NLは、第2磁石29の磁極数NSよりも少ない。
<1-2.他の実施形態に係る磁気ギア5B(5)>
 図1Bで例示される他の実施形態に係る磁気ギア5B(5)では、磁極片ユニット30が固定子として機能し、第1継鉄ユニット10と第2継鉄ユニット20が回転子として機能する。磁気ギア5Bは、ベース101に設置されてもよいハウジング96を備え、ハウジング96によって磁極片ユニット30は支持される。ハウジング96はベアリングを介して、出力軸として機能してもよい第2回転軸A2を回転可能に支持する。また、第2回転軸A2と同軸となるように配置される、入力軸として機能してもよい第1回転軸A1は、図示外の支持ユニットによって回転可能に支持されると共に、連結部材95を介して第2継鉄ユニット20に連結される。第2継鉄ユニット20は磁極片ユニット30にベアリングを介して連結されてもよい。なお、第2回転軸A2は第1回転軸A1にベアリングを介して連結されてもよいし、第1回転軸A1とは非連結であってもよい。
 磁気ギア5Bは、例えば以下のように作動する。入力軸としての第1回転軸A1が第2継鉄ユニット20と共に回転すると、複数の磁極片50は、複数の第2磁石29に対して相対的に回転する。これにより、第1継鉄ユニット10と第2継鉄ユニット20の間において磁極片ユニット30を介して流れる磁束が変化し、第1磁石19を流れる磁束の大きさが大きくなる方向に第1継鉄ユニット10が回転する。これにより、出力軸としての第2回転軸A2は回転する。
 上記の磁気ギア5Bにおいては、第2回転軸A2が入力軸として機能し、第1回転軸A1が出力軸として機能してもよい。この場合であっても、第1継鉄ユニット10が第2回転軸A2と共に回転すると、複数の磁極片50は、複数の第1磁石19に対して相対的に回転する。これにより、第1継鉄ユニット10と第2継鉄ユニット20の間において磁極片ユニット30を介して流れる磁束が変化し、第2磁石29を流れる磁束の大きさが大きくなる方向に第2継鉄ユニット20が回転する。これにより、出力軸としての第1回転軸A1は回転する。
<1-3.磁気ギア5の補足>
 図1A、図1Bで例示される磁気ギア5は、例えば磁気ギアード発電機2または磁気ギアードモータ3であってもよい後述の磁気ギアード電気機械1に組み込まれることも可能である(図11A~図11D参照)。磁気ギアード電気機械1が磁気ギアード発電機2である場合、出力軸として機能する第1回転軸A1または第2回転軸A2は設けられなくてもよい。また、磁気ギアード電気機械1が磁気ギアードモータ3である場合、入力軸として機能する第1回転軸A1または第2回転軸A2は設けられなくてもよい。さらに、磁気ギアード電気機械1が磁気ギアード発電機2または磁気ギアードモータ3のいずれであっても、第1回転軸A1と第2回転軸A2は単一の回転軸によって構成されてもよい。詳細な図示は省略するが当該実施形態に係る磁気ギア5では、1本の回転軸がハウジング98(図1A参照)により回転可能に支持されると共に、第1継鉄ユニット10に回転可能に連結されてもよく、該回転軸の外周部に一対のエンドプレート97がそれぞれ固定されてもよい。この場合、第1継鉄ユニット10と磁極片ユニット30が回転子として機能し、第2継鉄ユニット20が固定子として機能する。
<2.磁気ギア5の内部構造の例示>
 図2A~図2Dは、本開示の幾つかの実施形態に係る磁気ギア5の内部構造を示す概念図である。概略図としての図2A~図2Dでは、周方向を直線的に図示している。軸方向に延在する各磁極片50は、隙間G1を空けて複数の第1磁石19のいずれか1以上と対向し、隙間G2を空けて複数の第2磁石29のいずれか1以上と対向する。複数の第1磁石19は、周方向に交互に配置される磁極の異なる磁石(N極磁石およびS極磁石)によって構成される。同様に複数の第2磁石29は、周方向に交互に配置される磁極の異なる磁石(N極磁石およびS極磁石)によって構成される。各々の磁極片50のうちで第1磁石19と対向する面は第1対向面31であり、第2磁石29と対向する面は第2対向面32である。磁極片50は、一例として複数の電磁鋼板150(図4A参照)が軸方向に積層された構造を有する。なお、磁極片50の外周側表面または内周側表面の少なくとも一方がカバー(図示外)によって覆われてもよく、この場合、第1対向面31は、隙間G1およびカバーを空けて第1磁石19と対向してもよいし、第2対向面32は、隙間G2およびカバーを空けて第2磁石29と対向してもよい。
 磁極片ユニット30は、複数の磁極片50を保持するためのホルダ(図示外)を含む。一例として非磁性材料からなるホルダは、単一のリング状部材であってもよいし、複数の磁極片50と周方向に交互に並ぶ複数の棒状部材を含んでもよい。複数の磁極片50とホルダとによってリング状に構成される磁極片ユニット30の軸方向の両端は、上述した一対のエンドプレート97にそれぞれ連結されてもよいし(図1A参照)、上述したハウジング96に固定されてもよい(図1B参照)
 図2A~図2Dで例示されるように、磁極片ユニット30の外周側または内周側のいずれか一方側に第1継鉄ユニット10が配置され、他方側に第2継鉄ユニット20が配置される。また、第1継鉄ユニット10または第2継鉄ユニット20の少なくとも一方の継鉄ユニットには、磁極片ユニット30に向けて突出する歯部が設けられ、該歯部が磁石(第1磁石19または第2磁石29)を支持する。磁気ギア5の内部構造に関するこれらのバリエーションは、第1内部構造、第2内部構造、第3内部構造、第4内部構造、第5内部構造、および、第6内部構造を含む。
<2-1.第1内部構造>
 図2Aで例示される第1内部構造では、磁極片ユニット30の内周側に第1継鉄ユニット10が配置され、外周側に第2継鉄ユニット20が配置される。また、第1継鉄ユニット10には歯部が設けられず、第2継鉄ユニット20には歯部が設けられる。より詳細な構造は以下の通りである。
 第1継鉄15は、軟磁性材料によって形成されるコアであってもよい第1本体部11を含む。図2Aで例示される第1本体部11は、周方向に並ぶ複数の第1磁石19を支持する外周面11Bを有する。外周面11Bは、磁気ギア5の周方向の全長に亘って形成される湾曲面である。第2継鉄25は、軟磁性材料によって形成されるコアであってもよい第2本体部21と、少なくとも1つの第2歯部21Tとを含む。図2Aの例では、第2本体部21は複数の第2磁石29に対向する内周面21Aを有し、第2歯部21Tは内周面21Aから磁極片50に向かって突出すると共に1以上の第2磁石29を支持する。第2歯部21Tは、軟磁性材料によって形成されており、第2本体部21と一体的に形成されてもよい。また、第2歯部21Tは、同図で示されるように、磁極片50に近づくに従い周長が長くなるように構成される先端部を有してもよい。他の例では、第2歯部21Tは、径方向位置に関わらず同じ周長を有してもよい(図8参照)。
<2-2.第2内部構造>
 図2Bで例示される第2内部構造では、磁極片ユニット30の内周側に第2継鉄ユニット20が配置され、外周側に第1継鉄ユニット10が配置される。また第1内部構造と同様、第1継鉄ユニット10には歯部が設けられず、第2継鉄ユニット20には歯部が設けられる。より詳細な構造は以下の通りである。
 第1継鉄15は、軟磁性材料によって形成されるコアであってもよい第1本体部11を含む。図2Bで例示される第1本体部11は、周方向に並ぶ複数の第1磁石19を支持する内周面11Aを有する。内周面11Aは、磁気ギア5の周方向の全長に亘って形成される湾曲面である。第2継鉄25は、軟磁性材料によって形成されるコアであってもよい第2本体部21と、少なくとも1つの第2歯部21Tとを含む。図2Bの例では、第2本体部21は複数の第2磁石29に対向する外周面21Bを有し、第2歯部21Tは外周面21Bから磁極片50に向かって突出すると共に1以上の第2磁石29を支持する。第2歯部21Tの形状・材質については、第1内部構造と同様であるので詳説を割愛する。
<2-3.第3内部構造>
 図2Cで例示される第3内部構造では、第1内部構造と同様、磁極片ユニット30の内周側に第1継鉄ユニット10が配置され、外周側に第2継鉄ユニット20が配置される。一方で、第3内部構造は、第1継鉄ユニット10と第2継鉄ユニット20の双方に歯部が設けられる点において、第1内部構造とは異なる。より詳細な構造は以下の通りである。
 図2Cの例で例示される第1継鉄ユニット10は、軟磁性材料によって形成されるコアであってもよい第1本体部11と、少なくとも1つの第1歯部11Tとを含む。図2Cの例では、第1本体部11は複数の第1磁石19と対向する外周面11Bを有し、第1歯部11Tは外周面11Bから磁極片50に向かって突出すると共に複数の第1磁石19を支持する。外周面11Bは、磁気ギア5の周方向の全長に亘って形成される湾曲面である。第1歯部11Tは、軟磁性材料によって形成されており、第1本体部11と一体的に形成されてもよい。同図で示される第2継鉄ユニット20は、第1内部構造の第2継鉄ユニット20と同じ構成を有するので、詳説を割愛する。
<2-4.第4内部構造>
 図2Dで例示される第4内部構造では、第2内部構造と同様、磁極片ユニット30の内周側に第2継鉄ユニット20が配置され、外周側に第1継鉄ユニット10が配置される。一方で、第4内部構造は、第1継鉄ユニット10と第2継鉄ユニット20の双方に歯部が設けられる点において、第2内部構造とは異なる。より詳細な構造は以下の通りである。
 図2Dの例で例示される第1継鉄ユニット10は、軟磁性材料によって形成されるコアであってもよい第1本体部11と、少なくとも1つの第1歯部11Tとを含む。図2Dの例では、第1本体部11は複数の第1磁石19と対向する内周面11Aを有し、第1歯部11Tは内周面11Aから磁極片50に向かって突出すると共に複数の第1磁石19を支持する。内周面11Aは、磁気ギア5の周方向の全長に亘って形成される湾曲面である。第1歯部11Tは、軟磁性材料によって形成されており、第1本体部11と一体的に形成されてもよい。同図で示される第2継鉄ユニット20は、第2内部構造の第2継鉄ユニット20と同じ構成を有するので、詳説を割愛する。
<2-5.第5内部構造、および、第6内部構造>
 第5内部構造は、第3内部構造における第2継鉄25が第2歯部21Tを有さない構造を有する。第6内部構造は、第4内部構造における第2継鉄25が第2歯部21Tを有さない構造を有する。つまり、第5内部構造および第6内部構造においては、第2本体部21の内周面21Aまたは外周面21Bが第2磁石29を支持する構成が採用される。これら内部構造についての詳細な図示は省略する。
<3.磁極片50の形状の詳細>
 図3A~図6を参照し、上述の内部構造に適用される磁極片50の具体例を、第1の例示に係る磁極片51(50)、第2の例示に係る磁極片52(50)、および、第3の例示に係る磁極片53(50)として順に以下説明する。
<3-1.第1の例示に係る磁極片51(50)>
 図3A~図4Cを参照して、第1の例示に係る磁極片51(50)を説明する。磁極片51は、第1継鉄ユニット10または第2継鉄ユニット20のいずれか一方のみに歯部が設けられる内部構造に適用される。即ち、磁極片51が適用可能な内部構造は、第1内部構造、第2内部構造、第5内部構造、および、第6内部構造を含む。以下では磁極片51が第1内部構造に適用される実施形態を説明し、他の内部構造に適用される実施形態の説明を割愛する。
 図3A~図3Dは、第1の例示に係る磁極片51の概念図である。図3A~図3Dで例示される磁極片511~514(51)はいずれも、第1磁石19と対向する第1対向面31A~31D(31)と、第2磁石29と対向する第2対向面32A~32D(32)とを有する。そして、第1対向面31の周長をL1、第2対向面32の周長をL2とした場合に、磁極片511~514(51)は、L1>L2の関係を満たす。なお、同図で例示されるL2は、第1磁石19の周長より短く、且つ、第2磁石29の周長よりも長い。他の例では、L2は第2磁石29の周長よりも短くてもよい。
 発明者の知見によれば、L1>L2の関係を満たす磁極片51(50)が採用されると、伝達トルクが向上する(具体的な理由については、<5.L1>L2の関係を満たす磁極片51(50)について>で後述する)。よって、上記構成によれば、磁極片51に向かって突出すると共に磁石を支持する歯部を有し、伝達トルクが向上した磁気ギアード電気機械1が実現される。
 なお、図3Aでは、複数の磁極片511が周方向に配置されており、少なくとも1つの磁極片511がL1>L2の関係を満たせば、上記利点は得られる。図3Bでも同様に、複数の磁極片512の少なくとも1つがL1>L2の関係を満たせばよい。図3C、図3Dで例示される複数の磁極片513、514についても同様である。
 図3A~図3Cを参照し、磁極片511~513(51)の形状の詳説を続ける。第1対向面31A~31C(31)は、周方向における一方側の端である第1端311A~311C(311)と、周方向における他方側の端である第2端312A~312C(312)とを有する。また、磁極片511~513は、本体部60A~60C(60)を有する。本体部60は、径方向位置に関わらず同じ周長を有する(例えば図3Cでは、本体部60Cの周方向の両端を二点鎖線Uによって図示する)。磁極片511~513(51)は、本体部60から周方向における一方側に突出する第1鍔部61A~61C(61)と、本体部60から周方向における他方側に突出する第2鍔部62A~62C(62)とを有する。同図の例では、第1鍔部61と第2鍔部62は周方向において互いに対称な形状を有する。しかし、第1鍔部61と第2鍔部62は周方向において互いに非対称な形状であってもよい。また、第1鍔部61A~61C(61)は、第1対向面31の第1端311A~311C(311)を有し、第2鍔部62A~62C(62)は、第2対向面32の第2端312A~312C(312)を有する。
 上記構成によれば、第1鍔部61および第2鍔部62を有することにより、磁極片51(50)は、第1対向面31の周長(L1)が増加する。これは、磁極片51(50)と第1継鉄ユニット10との間の磁気抵抗を減じ、さらに、磁極片51(50)を通って第1継鉄ユニット10と第2継鉄ユニット20の間を流れる磁束を増すことにつながる。よって、伝達トルクはさらに向上する。
 なお図3Aの例では、複数の磁極片511の少なくとも1つが第1鍔部61Aと第2鍔部62Aを有すれば、上記利点は得られる。図3Bでも同様に、複数の磁極片512の少なくとも1つが第1鍔部61Bと第2鍔部62Bを有すればよい。図3Cで例示される複数の磁極片513についても同様である。
 図3A、図3Bを参照し、磁極片511、512(51)の形状の詳説を続ける。第1鍔部61A、61B(61)は、一方側に向かうに従い径方向における長さが短くなるように構成される。同様に、第2鍔部62A、62B(62)は、他方側に向かうに従い径方向における長さが短くなるように構成される。第1鍔部61は第1対向面31に対して傾斜する第1テーパ面701A、701B(701)を有し、第2鍔部62は第1対向面31に対して傾斜する第2テーパ面702A、702B(702)を有する。第1テーパ面701と第2テーパ面702は、図3Aで示すような平面であってもよいし、図3Bで示すような湾曲面であってもよい。図3A、図3Bの例では、第1テーパ面701と第2テーパ面702はいずれも第1対向面31に直接的に接続される。他の例では、第1鍔部61と第2鍔部62は面取りされていてもよく、即ち、第1テーパ面701と第2テーパ面702はそれぞれ、別の面を介して第1対向面31と接続されてもよい(図4C参照)。別の面は平面または湾曲面のいずれであってもよい。
 上記構成によれば、第1鍔部61と第2鍔部62は先端においてのみ、隣接する磁極片51(50)と近接する。つまり、第1鍔部61と第2鍔部62は、隣接する磁極片51から部分的に離隔する。これにより、互いに隣接する2つの磁極片51の間で磁束が行き交う磁束が抑制される。即ち、漏れ磁束が抑制される。よって、磁束の漏れによる伝達トルクの低下を抑制することができる。
 図3Aを参照し、磁極片511(51)の形状の詳説を続ける。第2対向面32A(32)は、周方向における一方側の端である第3端323と、周方向における他方側の端である第4端324とを有する。また、第1鍔部61Aのうちで径方向における第2対向面32A側の端は、端611であり、第2鍔部62Aのうちで径方向における第2対向面32側の端は、端621である。
 磁極片511(51)は、第1接続面71と第2接続面72とを有する。第1接続面71と第2接続面72は径方向に沿って延在する平面である。第1接続面71は、第1鍔部61Aの端611と第2対向面32Aの第3端323とを接続し、第2接続面72は、第2鍔部62Aの端621と第2対向面32Aの第4端324とを接続する。径方向に沿って延在する第1接続面71は、径方向に平行であっても、実質的に径方向に平行であってもよい、例えば、第1接続面71が径方向に対してなす鋭角が5°以下であるなら、第1接続面71は実質的に径方向に平行であると了解される。径方向に沿って延在する第2接続面72についても同様のことが了解される。
 上記構成によれば、第1接続面71と第2接続面72が、第2対向面32A側に向かうに従い互いに近づくテーパ形状を有する場合に比べて、磁極片51の形状が単純化され、製造が容易である。
 図3A~図3Dを参照し、磁極片511~514(51)の形状の詳説を続ける。図3A~図3Dでは、磁極片511~514(51)の周方向の磁気抵抗的な平均長さをL3によって示す。磁極片の径方向の長さをH,磁極片において径方向位置hにおいて磁極片の周方向の長さをLhと記すと,磁極片の磁気抵抗的な平均長さL3は式(A)で表される。L3は、磁極片50の周方向における平均長さであると了解される。
Figure JPOXMLDOC01-appb-M000001
 同図の例では、第2継鉄ユニット20の少なくとも1つの第2歯部21Tは、周方向に並ぶ複数の第2歯部21Tを有する。複数の第2歯部21Tに含まれる周方向に隣接する2つの第2歯部21Tの隣接距離(最短距離)をMとした場合、磁極片511~514(51)は、0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係を満たす。ここで、min{L2,L3}はL2とL3の小さいほうの値であり,max{L2,L3}はL2とL3の大きいほうの値である。またより好ましくは、磁極片511~514(51)は、0.95×min{L2,L3}≦M≦1.05×max{L2,L3}の関係を満たす。さらに好ましくは、磁極片511~514(51)は、1.0×min{L2,L3}≦M≦1.0×max{L2,L3}の関係を満たす。
 特定の磁極片51を通過する磁束が、隣接する磁極片51に漏れることなく、第1継鉄ユニット10と第2継鉄ユニット20の間を径方向に行き交えば、伝達トルクが増大する。ところが、隣接する2つの第2歯部21Tの隣接距離(M)が短すぎると、磁束が第2歯部21Tから別の第2歯部21Tへ磁極片51を経由して漏れ、径方向に流れる磁束が低下する。この点、上記構成によって、2つの第2歯部21Tの隣接距離が短くなり過ぎるのを抑制できるので、第2歯部21Tから別の第2歯部21Tへ磁極片51(50)を経由して磁束が漏れるのを抑制できる。よって、伝達トルクを向上できる。
 なお、図3Aでは、複数の磁極片511が周方向に配置されており、少なくとも1つの磁極片511が0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係(より好ましくは0.95×min{L2,L3}≦M≦1.05×max{L2,L3}の関係、さらに好ましくは1.0×min{L2,L3}≦M≦1.0×max{L2,L3}の関係)を満たせば、上記利点は得られる。図3Bでも同様に、複数の磁極片512の少なくとも1つが0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係(より好ましくは0.95×min{L2,L3}≦M≦1.05×max{L2,L3}の関係、さらに好ましくは1.0×min{L2,L3}≦M≦1.0×max{L2,L3}の関係)を満たせばよい。図3C、図3Dで例示される複数の磁極片513、514についても同様である。
 図4Aは、本開示の一実施形態に係る磁極片511(51)の概念的な斜視図である。図4Bは、本開示の一実施形態に係る第1電磁鋼板151の概念図である。図4Cは、本開示の一実施形態に係る第2電磁鋼板152の概念図である。図4Dは、本開示の一実施形態に係る磁極片51(50)の概念図であり、同図では周方向が直線的に図示されている。
 第1鍔部61は、磁極片511のうちで周方向において最も一方側に位置する部位である第1縁部81と、第1縁部81から周方向において他方側に凹む第1凹部91とを有する。第1縁部81は軸方向に延在しており、第1凹部91は径方向に開放されている。本例の第2縁部82は周方向において第1縁部81と対称な形状を有しもよい。より具体的には、第2鍔部62は、磁極片511のうちで周方向において最も他方側に位置する部位である第2縁部82と、第2縁部82から周方向において一方側に凹む第2凹部92とを有してもよい。第2縁部82は軸方向に延在しており、第2凹部92は径方向に開放されている。第1鍔部61に設けられる第1凹部91の個数は複数であってもよい。この場合、複数の第1凹部91は軸方向に間隔を空けて配置される。同様に、第2鍔部62は、軸方向に間隔を空けて配置された複数の第2凹部92を有してもよい。また、複数の磁極片511は、周方向において互いに隣接する第1隣接磁極片1511および第2隣接磁極片1512を含む。同図では第2隣接磁極片1512は第1隣接磁極片1511よりも周方向の一方側に位置する。第1隣接磁極片1511の第1鍔部61は、第2隣接磁極片1512の第2鍔部62と隙間を空けて周方向に対向してもよい。他の例では、第1隣接磁極片1511の第1鍔部61は、第2隣接磁極片1512の第2鍔部62に接触してもよい。なお、接触は結合を含む概念である。
 磁極片51の磁束を隣接する磁極片51に漏らすことなく、第1継鉄ユニット10と第2継鉄ユニット20の間を径方向に行き交う磁束とすれば、伝達トルクが増大する。ところが、隣接する2つの磁極片511の距離が短すぎると、磁束が隣接する磁極片511に漏れ、伝達トルクが低下する。この点、上記構成によれば、第1凹部91と第2凹部92が設けられることで、第1隣接磁極片1511の第1鍔部61および第2隣接磁極片1512の第2鍔部62は、部分的に周方向に離隔する。これにより、隣接する2つの磁極片511の間で磁束が行き交う磁束を抑制できる。即ち磁束漏れを抑制できる。よって、伝達トルクはさらに向上する。
 なお、図4Aで例示した第1鍔部61と第2鍔部62の構成は、磁極片512、513のいずれにも適用されてよいし、その他の磁極片51に適用されてもよい。この場合であっても、上記した利点は得られる。
 図4Aで例示されるように、第1隣接磁極片1511の第1凹部91は、第2隣接磁極片1512の第2凹部92の少なくとも一部と、軸方向において重なるように配置してもよいし、あるいは第1凹部91は第2凹部92と軸方向において全く重なることなく配置してもよい。本例では第1凹部91と第2凹部92は互いに同一の形状を有し、第1隣接磁極片1511の第1凹部91と、第2隣接磁極片1512の第2凹部92は軸方向において互いに一致するように配置される。また本例では、これら2つの磁極片511がいずれも、複数の第1凹部91と複数の第2凹部92を含んでおり、複数の第1凹部91がそれぞれ複数の第2凹部92と軸方向において互いに一致するように配置される。
 上記構成によれば、第1隣接磁極片1511の第1凹部91と、第2隣接磁極片1512の第2凹部92との間の隙間を大きくできるので、第1隣接磁極片1511と第2隣接磁極片1512との間で磁束が行き交うことをより効果的に抑制できる。即ち、漏れ磁束を効果的に抑制できる。
 なお、上記した第1鍔部61と第2鍔部62の構成は、磁極片512、513に適用されてもよいし、その他の磁極片51に適用されてもよい。この場合であっても、上記した利点は得られる。
 図4Aで例示される軸方向に延在する各磁極片511では、第1凹部91と第2凹部92は、軸方向において互いに同じ位置に配置される。磁極片511(51)は、軸方向において積層される複数の電磁鋼板150を有する。磁極片511(51)においては、第1縁部81と第2縁部82が形成される軸方向範囲と、第1凹部91と第2凹部92が形成される軸方向範囲とがある。そのため、複数の電磁鋼板150は、形状が互いに異なる第1電磁鋼板151と第2電磁鋼板152とを有する。第1電磁鋼板151は、第1縁部81と第2縁部82を形成する。より具体的には、第1電磁鋼板151の周方向の両端がそれぞれ第1縁部81と第2縁部82を形成する。第2電磁鋼板152は第1凹部91と第2凹部92のそれぞれの底面を形成する。第2電磁鋼板152の周長(最大周長)は、第1電磁鋼板151の周長(最大周長)よりも短い。なお、前者の周長は図4Cの寸法P2に該当し、後者の周長は図4Bの寸法P1に該当する。
 図4Aの例では、第2電磁鋼板152の軸方向の一方側に複数の第1電磁鋼板151が配置され、第2電磁鋼板152の軸方向の他方側にも複数の第1電磁鋼板151が配置される。一実施形態に係る第1凹部91と第2凹部92は、複数の電磁鋼板150の積層工程よりも前に製作されてもよい。他の実施形態では、複数の電磁鋼板150が積層された後に、第1凹部91と第2凹部92を形成するための規定の加工が実行されてもよい。規定の加工は、例えば穴あけ加工である。
 上記構成によれば、複数の電磁鋼板150に含まれる第2電磁鋼板152によって、第1凹部91と第2凹部92のそれぞれの底面が形成されるので、第1凹部91と第2凹部92の構成を簡易化できる。
 なお、上記した第1鍔部61と第2鍔部62の構成は、磁極片512、513に適用されてもよいし、その他の磁極片51に適用されてもよい。この場合であっても、上記した利点は得られる。
 図4Bで例示されるように、第1電磁鋼板151は、磁極片511の本体部60を形成する第1基部151Aと、第1縁部81を形成する第1角部151Bと、第2縁部82を形成する第2角部151Cとを有する。第1基部151Aは、軸方向視において、本体部60と同一の形状を有する。第1角部151Bは、第1電磁鋼板151のうちで周方向において最も一方側に位置する部位であり、第2角部151Cは、第1電磁鋼板151のうちで周方向において最も他方側に位置する部位である。第1角部151Bと第2角部151Cは周方向において互いに対称であってもよい。
 図4Cで例示されるように、第2電磁鋼板152は、磁極片511の本体部60を形成する第2基部152Aと、第1凹部91の底面を形成する第1突部152Bと、第2凹部92の底面を形成する第2突部152Cとを有する。第2基部152Aは第1基部151Aと同一の形状を有する。第1突部152Bは、第2基部152Aから周方向における一方側へ突出し、第2突部152Cは、第2基部152Aから周方向における他方側へ突出する。第1突部152Bと第2突部152Cは、周方向において互いに対称であってもよい。第1凹部91の底面は、第1突部152Bの先端によって形成され、第2凹部92の底面は、第2突部152Cの先端によって形成される。
 図4Dで例示されるように、周方向に並ぶ複数の磁極片51(50)は、周方向において互いに隣接する第1規定磁極片2511および第2規定磁極片2522を含んでもよい。第1規定磁極片2511および第2規定磁極片2522は各々、本体部60、第1鍔部61、および、第2鍔部62を有する。そして、第1規定磁極片2511の第1鍔部61と、第2規定磁極片2522の第2鍔部62は接触する。図4Dの例では、複数の第1規定磁極片2511と、複数の第2規定磁極片2522は周方向に交互に配置される。従って、任意の第1規定磁極片2511の第1鍔部61は、一方側にある第2規定磁極片2522の第2鍔部62に接触すると共に、該第1規定磁極片2511の第2鍔部62は、他方側にある第2規定磁極片2522の第1鍔部61に接触する。接触は例えば溶接などによる結合であってもよい。この場合、周方向に交互に並ぶ複数の第1規定磁極片2511および複数の第2規定磁極片2522は互いに一体的に構成される。上記構成によれば、複数の磁極片51の補強効果を向上できる。
<3-2.第2の例示に係る磁極片52(50)>
 図5A~図5Dを参照し、第2の例示に係る磁極片52(50)を説明する。図5A~図5Cは、第2の例示に係る磁極片52の概念図である。図5Dは複数の磁極片52(50)の概念図であり、同図では周方向が直線的に図示されている。第2の例示に係る磁極片52は、第1継鉄ユニット10または第2継鉄ユニット20のうち少なくとも第2継鉄ユニット20に歯部が設けられる内部構造に適用される。即ち、磁極片52に適用可能な内部構造は、第1内部構造、第2内部構造、第3内部構造、および、第4内部構造を含む。以下では磁極片52が第3内部構造に適用される実施形態を説明し、他の内部構造に適用される実施形態の説明を割愛する。
 図5A~図5Cで示される磁極片521~523(52)はいずれも、第1磁石19と対向する第1対向面310A~310C(31)と、第2磁石29と対向する第2対向面320A~320C(32)とを有する。第2対向面320A~320Cは、周方向における一方側の端である第3端1323A~1323C(323)と、周方向における他方側の端である第4端1324A~1324C(324)とを有する。第2対向面32の周長をL2、磁極片52の周方向における平均長さをL3、各々の第2磁石29の周長をNとした場合に、磁極片521~523(52)は、0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係を満たす。より好ましくは、磁極片521~523(52)は、0.95×min{L2,L3}≦N≦1.05×max{L2,L3}の関係を満たす。さらに好ましくは、磁極片521~523(52)は、1.0×min{L2,L3}≦N≦1.0×max{L2,L3}の関係を満たす。
 また、磁極片521~523(52)は、本体部160A~160C(60)と、本体部60から周方向における一方側に突出する第3鍔部63A~63C(63)と、本体部60から周方向における他方側に突出する第4鍔部64A~64C(64)とを有する。本例では、磁極片52の本体部60の形状は、第1の例示に係る本体部60と同一の形状を有する。また、同図の例では、第1鍔部61と第2鍔部62は周方向において互いに対称な形状を有するが、非対称であってもよい。第3鍔部63A~63Cは、第2対向面32の第3端1323A~1323Cを有し、第4鍔部64A~64Cは、第2対向面32の第4端1324A~1324Cを有する。
 上記構成によれば、0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係(より好ましくは0.95×min{L2,L3}≦N≦1.05×max{L2,L3}の関係、さらに好ましくは1.0×min{L2,L3}≦N≦1.0×max{L2,L3}の関係)を満たす磁極片52は、磁気ギア5の作動に伴って磁極片52と第2継鉄25との位置関係が周方向に相対変化する過程において、連続的な磁気抵抗トルクを得ることができる(理由は<6.0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係を満たす磁極片50>で詳説する)。よって、上記構成によれば、磁極片52に向かって突出すると共に磁石を支持する歯部を有し、伝達トルクを向上させた磁気ギア5が実現される。また、発明者の知見によれば、隣接する2つの第2磁石29の境目を跨ぐように磁極片52が相対移動するとき、起磁力の正負が切り替わる。この点、上記構成によれば、磁極片52が第3鍔部63と第4鍔部64を有することで、正負が切り替わる起磁力を部分的に短絡させることができ、起磁力の正負の切り替わりを緩やかにすることができる。これにより、磁気ギア5はスムーズに回転を継続することができる。
 なお、図5Aでは、複数の磁極片521が周方向に配置されており、少なくとも1つの磁極片521が0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係(より好ましくは0.95×min{L2,L3}≦N≦1.05×max{L2,L3}の関係、さらに好ましくは1.0×min{L2,L3}≦N≦1.0×max{L2,L3}の関係)を満たせば、上記利点は得られる。図5Bでも同様に、複数の磁極片522の少なくとも1つが0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係(より好ましくは0.95×min{L2,L3}≦N≦1.05×max{L2,L3}の関係、さらに好ましくは1.0×min{L2,L3}≦N≦1.0×max{L2,L3}の関係)を満たせばよい。図5Cで例示される複数の磁極片523についても同様である。
 図5A、図5Bを参照し、磁極片521、522(52)の形状の詳説を続ける。第3鍔部63A、63B(63)は、一方側に向かうに従い径方向における長さが短くなるように構成される。同様に、第4鍔部64A、64B(64)は、他方側に向かうに従い径方向における長さが短くなるように構成される。第3鍔部63は第2対向面32に対して傾斜する第3テーパ面703A、703B(703)を有し、第2鍔部62は第2対向面32に対して傾斜する第4テーパ面704A、704B(704)を有する。第3テーパ面703と第4テーパ面704は、図5Aで示すような平面であってもよいし、図5Bで示すような湾曲面であってもよい。図5A、図5Bの例では、第3テーパ面703と第4テーパ面704はいずれも第2対向面32に直接的に接続される。他の例では、第3鍔部63と第4鍔部64は面取りされていてもよく、即ち、第3テーパ面703と第4テーパ面704はそれぞれ、別の面を介して第2対向面32と接続されてもよい。別の面は平面または湾曲面のいずれであってもよい。
 上記構成によれば、磁極片52の第2対向面32は第2磁石29を周方向に過不足なく覆うことができ、第2磁石29の起磁力に起因して、第1継鉄ユニット10と第2継鉄ユニット20の間を径方向に行き交う磁束が最大化されるので、伝達トルクはさらに向上する。
 磁極片50の第2対向面32の周長(L2)が第2磁石29の周長(N)より小さければ、第2磁石29の周長Nは磁極片50の周長に対して余り、第2磁石29の起磁力のうち前記余りの部分は磁極片50に伝わらず無駄になる。一方、第2磁石29の周長(N)が磁極片50の周長が磁極片50の第2対向面32の周長(L2)より大きければ、磁極片50の第2対向面32は第2磁石29の周長(N)に対して余り、磁極片50の第2対向面32の前記余りの部分は隣接する第2磁石29から逆向きの起磁力を受けるので、磁極片50の第2対向面32は全体として受ける起磁力が弱まる。このように、磁極片50の第2対向面32は第2磁石29を周方向に過不足なく覆うことは有効である。
 なお図5Aの例では、複数の磁極片521の少なくとも1つが第3鍔部63Aと第4鍔部64Aを有すれば、上記利点は得られる。図5Bでも同様に、複数の磁極片522の少なくとも1つが第3鍔部63Bと第4鍔部64Bを有すればよい。
 図5Aを参照し、磁極片521(52)の形状の詳説を続ける。第1対向面310Aは、周方向における一方側の端である第1端1311(311)と、周方向における他方側の端である第2端1312(312)とを有する。また、第3鍔部63Aのうちで径方向における第1対向面31側の端は、端1611であり、第4鍔部64Aのうちで径方向における第1対向面31側の端は、端1621である。
 磁極片521(52)は、第3接続面73および第4接続面74を有する。第3接続面73と第4接続面74は径方向に沿って延在する平面である。第3接続面73は、第3鍔部63の端1611と第2対向面32の第3端1323Aとを接続し、第4接続面74は、第4鍔部64の端1621と第2対向面32の第4端1324Aとを接続する。径方向に沿って延在する第3接続面73は、径方向に平行であっても、実質的に径方向に平行であってもよい、例えば、第3接続面73が径方向に対してなす鋭角が5°以下であるなら、第3接続面73は実質的に径方向に平行であると了解される。径方向に沿って延在する第4接続面74についても同様のことが了解される。上記構成によれば、第3接続面73と第4接続面74が径方向に沿って延在することで、磁極片52(50)の形状が単純化され、製造を容易にできる。
 図5A~図5Cを参照し、磁極片521~523(52)の形状の詳説を続ける。同図の例では、第2継鉄ユニット20の少なくとも1つの第2歯部21Tは、周方向に並ぶ複数の第2歯部21Tを有する。複数の第2歯部21Tに含まれる周方向に隣接する2つの第2歯部21Tの隣接距離(最短距離)を、第1の例示と同様にMとした場合、磁極片521~523(52)は、0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係を満たす。より好ましくは、磁極片521~523(52)は、0.95×min{L2,L3}≦M≦1.05×max{L2,L3}の関係を満たす。さらに好ましくは、磁極片521~523(52)は、1.0×min{L2,L3}≦M≦1.0×max{L2,L3}の関係を満たす。
 既述の通り、隣接する2つの第2歯部21Tの隣接距離が短すぎると、磁束が第2歯部21Tから別の第2歯部21Tへ磁極片52(50)を経由して漏れ、径方向に流れる磁束が低下する。この点、上記構成によれば、2つの第2歯部21Tの隣接距離が短くなり過ぎるのを抑制できるので、第2歯部21Tから別の第2歯部21Tへ磁極片52を経由して磁束が流れるのを抑制できる。即ち、漏れ磁束を抑制できる。よって、伝達トルクを向上できる。
 なお、図5Aでは、複数の磁極片521が周方向に配置されており、少なくとも1つの磁極片521が0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係(より好ましくは0.95×min{L2,L3}≦M≦1.05×max{L2,L3}の関係、さらに好ましくは1.0×min{L2,L3}≦M≦1.0×max{L2,L3}の関係)を満たせば、上記利点は得られる。図5Bでも同様に、複数の磁極片522の少なくとも1つが0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係(より好ましくは0.95×min{L2,L3}≦M≦1.05×max{L2,L3}の関係、さらに好ましくは1.0×min{L2,L3}≦M≦1.0×max{L2,L3}の関係)を満たせばよい。図5Cで例示される複数の磁極片523についても同様である。
 図5Dで例示されるように、周方向に並ぶ複数の磁極片52(50)は、周方向において互いに隣接する第1規定磁極片3511および第2規定磁極片3522を含んでもよい。第1規定磁極片3511および第2規定磁極片3522は各々、本体部60、第3鍔部63、および、第4鍔部64を有する。そして、第1規定磁極片3511の第3鍔部63と、第2規定磁極片3522の第4鍔部64は接触する。図4Dの例では、複数の第1規定磁極片3511と、複数の第2規定磁極片3522は周方向に交互に配置される。従って、任意の第1規定磁極片3511の第3鍔部63は、一方側にある第2規定磁極片3522の第4鍔部64に接触すると共に、該第1規定磁極片3511の第4鍔部64は、他方側にある第2規定磁極片3522の第3鍔部63に接触する。接触は例えば溶接などによる結合であってもよい。この場合、周方向に交互に並ぶ複数の第1規定磁極片3511および複数の第2規定磁極片3522は互いに一体的に構成される。上記構成によれば、複数の磁極片52(50)の補強効果を向上できる。
<3-3.第3の例示に係る磁極片53(50)>
 図6は、第3の例示に係る磁極片53(50)の概念図である。磁極片53は、第1継鉄ユニット10または第2継鉄ユニット20のうち少なくとも第2継鉄ユニット20に歯部が設けられる内部構造に適用される。即ち、磁極片53に適用可能な内部構造は、第1内部構造、第2内部構造、第3内部構造、および、第4内部構造を含む。以下では磁極片53が第3内部構造に適用される実施形態を説明し、他の内部構造に適用される実施形態の説明を割愛する。
 既述の通り磁極片53(50)は、第1磁石19と対向する第1対向面31、および、第2磁石29と対向する第2対向面32を含む。また、第2継鉄25の少なくとも1つの第2歯部21Tは、周方向に並んだ複数の第2歯部21Tを有する。また同図の例では、第1継鉄15は、周方向に並んだ複数の第1歯部11Tを有する。
 第2の例示と同様に、第2対向面32の周長をL2とし、磁極片53の周方向における平均長さをL3とし、複数の第2歯部21Tに含まれる隣接する2つの第2歯部21Tの隣接距離をMとした場合に、複数の磁極片53の少なくとも1つは、0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係(より好ましくは0.95×min{L2,L3}≦M≦1.05×max{L2,L3}の関係、さらに好ましくは1.0×min{L2,L3}≦M≦1.0×max{L2,L3}の関係)を満たす。なお、図6で例示される磁極片53(50)の形状は一例に過ぎない。例えば、第1の例示に係る磁極片511~514(51)、または、第2の例示に係る磁極片521~523(52)のいずれかの形状が磁極片53に適用されても何ら問題ない。
 既述の通り、隣接する2つの第2歯部21Tの隣接距離が短すぎると、磁束が第2歯部21Tから隣接する第2歯部21Tへ磁極片53を経由して流れ、径方向に流れる磁束が低下する。この点、上記構成によれば、2つの第2歯部21Tの隣接距離が短くなり過ぎるのを抑制できるので、第2歯部21Tから隣接する第2歯部21Tへ磁極片53を経由して磁束が流れるのを抑制できる。即ち、漏れ磁束を抑制できる。よって、磁極片53に向かって突出すると共に磁石を支持する歯部を有し、伝達トルクを向上させた磁気ギア5が実現される。
<4.磁極片52、53(50)が適用される内部構造の追加説明>
 既述の通り、磁極片52、53(50)に適用可能な内部構造は、第3内部構造および第4内部構造を含む。これらの内部構造における追加的な構成を、第3内部構造を示す図7A、図7Bを用いて説明する。なお、説明の重複を避けるため、第4内部構造についての同様の説明は割愛する。図7Aは、一実施形態に係る第3内部構造を示す概略図であり、図7Bは、他の実施形態に係る第3内部構造を示す概略図である。両図においては、少なくとも1つの第1歯部11Tは周方向に並ぶ複数の第1歯部11Tを含み、少なくとも1つの第2歯部21Tは周方向に並ぶ複数の第2歯部21Tを含む。
 図7A、図7Bで示される実施形態ではいずれも、複数の第1歯部11Tの個数(h1)に対する複数の第1磁石19の個数(p1)は、複数の第2歯部21Tの個数(h2)に対する複数の第2磁石29の個数(p2)の比と等しい。即ち、以下の式(B)が成立する。
 p1:h1=p2:h2   式(B)
 なお、p1は複数の第1磁石19の極数であり、p2は複数の第2磁石29の極数である。
 既述の通り、複数の第1磁石19は、周方向に交互に配置されるN極磁石およびS極磁石により構成され、複数の第2磁石29も同様の構成を有する。上記構成によれば、式(B)が成立することにより、磁気ギア5の作動時、磁極片52(50)と対向する第1磁石19がN極磁石またはS極磁石のいずれか一方から他方に切り替わる周期と、磁極片52(50)と対向する第2磁石29がN極磁石またはS極磁石のいずれか一方から他方に切り替わる周期とが互いに一致する。以下の説明では、これらの互いに同じ2つの周期を規定周期という場合がある。
 図7Aで示される複数の第1磁石19は第1規定磁石191を有する。周方向において、第1規定磁石191の中心は、第1規定磁石191を支持する第1歯部11Tの中心と一致する。図7Aで例示される両中心は、径方向に平行な二点鎖線C1上にある。本例では、第1規定磁石191を支持する第1歯部11Tと隣り合う別の第1歯部11Tでは、第1歯部11Tの中心と第1磁石19の中心は周方向において一致はしない。別の例では、複数の第1歯部11Tの各々において上述の第1規定磁石191が配置されることがあってもよい。なお、第1規定磁石191の中心と第1歯部11Tの中心との周方向における最短距離が、第1規定磁石191の周長の10%未満であるならば、両中心は互いに一致すると了解される。
 さらに、複数の第2磁石29は周方向において互いに隣り合う第2隣接磁石295を有する。周方向において、2つの第2隣接磁石295の中間点のいずれか一つは、2つの第2隣接磁石295を支持する単一の第2歯部21Tの中心と一致する。該中間点と該中心は、図7Aの例において径方向に平行な二点鎖線C2上にある。本例では、2つの第2隣接磁石295が設けられる第2歯部21Tと隣り合う別の第2歯部21Tにおいては、第2歯部21Tの中心と、2つの隣接し合う第2磁石29の中間点とは周方向において一致はしない。別の例では複数の第2歯部21Tの各々において2つの第2隣接磁石295が配置されることがあってもよい。なお、2つの第2隣接磁石295の中間点と単一の第2歯部21Tの中心との周方向における最短距離が、第2磁石29の周長の10%未満であるならば、該中間点と該中心は互いに一致すると了解される。
 発明者の知見によれば、第2歯部21Tと第2隣接磁石295との位相関係と、第1歯部11Tと第1隣接磁石195との位相関係を180度離すことが伝達トルクの向上に有効である(理由は<7.歯部の位置、磁石の位置、および伝達トルクの関係>で詳述する)。この点、上記構成によれば、磁極片50と対向する第1磁石19がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングと、磁極片50と対向する第2磁石29がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングとが、上述した規定周期の半分、すなわち規定周期において180度、互いにずれる。これにより、第2歯部21Tにおいて第2磁石29がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングと、第1歯部11Tにおいて第1磁石19がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングが、規定周期において180度ずれて等間隔で発生し、発生するトルクが時間的に均一化する。さらに、図7Aでは、第1磁石19が磁極片50に対して及ぼす起磁力は最大となるが、第2磁石29についてはN磁極とS磁極が相殺し,磁極片50には第2磁石からの起磁力は作用しない。これにより、磁束飽和によって磁気ギア5の伝達トルクが減少することを回避できる。
 図7Bで示される他の実施形態において、複数の第1磁石19は、周方向において互いに隣り合う2つ第1隣接磁石195を有する。周方向において、2つの第1隣接磁石195の中間点は、2つの第1隣接磁石195を支持する単一の第1歯部11Tの中心と一致する。該中間点と該中心は、径方向に平行な二点鎖線C3上にある。本例では、2つの第1隣接磁石195が設けられる第1歯部11Tと隣り合う別の第1歯部11Tにおいては、第1歯部11Tの中心と、2つの隣接し合う第1磁石19の中間点とは周方向において一致はしない。別の例では、複数の第1歯部11Tの各々において2つの第1隣接磁石195が配置されることがあってもよい。なお、2つの第1隣接磁石195の中間点と単一の第1歯部11Tの中心との周方向における最短距離が、第1磁石19の周長の10%未満であるならば、該中間点と該中心は互いに一致すると了解される。
 さらに、複数の第2磁石29は第2規定磁石291を有する。周方向において、第2規定磁石291の中心は、第2規定磁石291を支持する単一の第2歯部21Tの中心と一致する。図7Bで例示される両中心は、径方向に平行な二点鎖線C4上にある。本例では、第2規定磁石291を支持する第2歯部21Tと隣り合う別の第2歯部21Tでは、第2歯部21Tの中心と、第2磁石29の中心は周方向において一致はしない。別の例では、複数の第2歯部21Tの各々において上述の第2規定磁石291が配置されることがあってもよい。なお、第2規定磁石291の中心と第2歯部21Tの中心との周方向における最短距離が、第2規定磁石291の周長の10%未満であるならば、両中心は互いに一致すると了解される。
 図7Bの例では、二点鎖線C3、C4は周方向において一致する。即ち、2つの第1隣接磁石195の中間点、第1歯部11Tの中心、第2規定磁石291の中心、および、第2歯部21Tの中心は周方向において互いに一致する。これらの中心または中間点のうち周方向の両端となる2点間の周方向における最短距離が第2磁石29の周長の3%未満であるなら、これら中心および中間点は周方向において互いに一致すると了解される。
 上記構成によれば、磁極片50と対向する第1磁石19がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングと、磁極片50と対向する第2磁石29がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングとが、上述した規定周期の半分、互いにずれる。これにより、磁気ギア5は伝達トルクを向上できる。
<5.L1>L2の関係を満たす磁極片51(50)について>
 L1>L2の関係が満たされることに伴い伝達トルクが向上する理由は、磁極片51(50)の第1対向面31の周長が長くなることで、磁極片50の内部を通過する磁束を増やすことができ、漏れ磁束を低減できるからであると感覚的には了解される。以下ではこのことを数式を用いて説明する。図8は、第1内部構造における電磁力とパーミアンスを示す概念図である。
 物体または空間(以下、対象という場合がある)の単位体積の磁気モーメントをM、対象の透磁率をμと記すと、対象の単位体積の磁界のエネルギーは次の式(1)で表される。
 W=μM/2   (1)
 式(1)を、同図で示される第1内部構造に適用して検討をする。同図の第1内部構造では、第2継鉄ユニット20は固定子であり、第1継鉄ユニット10と磁極片ユニット30はいずれも回転子である。以下では、第1継鉄15と第2継鉄25の間の磁束のうちで磁極片50を通過しない磁束を0とみなす。
 また、以下の説明では、磁気ギア5の回転中心(以下、単に軸心ともいう)から、第1本体部11の外周面11B(第1磁石19の一端面)のまでの距離をR1とする。軸心から、磁極片50と対向する第2磁石29の一端面までの距離をR2とする。軸心から、第2磁石29の他端面(第2歯部21Tの先端)までの距離をR3とする。第1磁石19、磁極片50、および、第2磁石29の径方向長さをそれぞれ、t、t、tとする。隙間G1(図2A参照)と隙間G2(図2A参照)の径方向長さをそれぞれ、t12、t23とする。
 磁極片50と第2歯部21Tとの間の磁束を考える。磁気ギア5の周方向における位置をθで表す。磁極片50と第2歯部21TはθLT≦θ≦θRTとなる区間において径方向に並ぶ。同図の二点鎖線J1によって示す長方形が、磁極片50と第2歯部21Tが並ぶ領域である。磁極片50と第2歯部21Tのパーミアンスgは、t+t<<Rであるならば、第2歯部21Tの軸方向長さをLとして、次の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 第2歯部21Tと磁極片50とに作用する起磁力Fは、位置θにおける第2磁石29の磁気モーメントをM3θと記して、次の式(3)で近似できる。M3θの値はθに応じて+Mまたは-Mである。
Figure JPOXMLDOC01-appb-M000003
 磁極片50の磁位をFとすると、第2歯部21Tと磁極片50の間の磁束φは次の式(4)で表される。第2歯部21Tと磁極片50の間の磁束φの向きは、磁極片50から第2歯部21Tへの方向を正とする。
φ=g(F-F)   (4)
 次に、磁極片50と第1継鉄15との間の磁束について考える。同図の例では、第1継鉄15には歯部が設けられておらず、第1継鉄15に対し磁極片50は全体として径方向に並ぶ。同図の二点鎖線J2によって示す長方形で囲んだ領域がそれに相当する。磁極片50と第1継鉄15のパーミアンスgは、t+t<<Rであるならば、第1歯部11Tの軸方向の長さをLと記すと次の式(5)で表される。
Figure JPOXMLDOC01-appb-M000004
 磁極片50と第1継鉄15とに作用する起磁力Fは、位置θにおける第1継鉄15の磁極の磁気モーメントをM1θと記すと、次の式(6)で表される。M1θの値はθに応じて+Mまたは-Mである。
Figure JPOXMLDOC01-appb-M000005
 磁極片50と第1継鉄15の間の磁束φは次の式(7)で表される。第1継鉄15と磁極片50の間の磁束φTの向きは、第1継鉄15から磁極片50の方向を正とする。
φ=g(F-F)   (7)
 明らかにφ=φだから、式(4)と式(7)からを次の式(8)を得る。
Figure JPOXMLDOC01-appb-M000006
 第1継鉄15と第2継鉄25の間のパーミアンスを式gTBとすると、gTBは次の式(9)で表される。
Figure JPOXMLDOC01-appb-M000007
 式(8)は式(8A)で表すことができる。
φ=gTB(F-F)   式(8A)
 式(1)、式(8A)から、第1継鉄15と第2継鉄25の間の磁界のエネルギーWTBは式(10)で表される。
Figure JPOXMLDOC01-appb-M000008
 第1継鉄15と磁極片50に発生するトルクは第1継鉄15と第2継鉄25の間の磁束のエネルギーをそれぞれの位置で偏微分することにより得られる。磁極片50を通る磁束φにより第1継鉄15に発生するトルクTは、第1継鉄15の位置をθとすると次の式(11)で表される。
Figure JPOXMLDOC01-appb-M000009
 同様に、磁束φにより磁極片50に発生するトルクTは、磁極片50の位置をθとすると次の式(12)で表される。
Figure JPOXMLDOC01-appb-M000010
 磁極片50に発生するトルクTを大きくすることを考える。トルクTは、式(12)に示すように、右辺第1項のパーミアンスの勾配∂gTB/∂θ2に比例する項と、右辺第2項の起磁力の勾配∂FTB/∂θ2+∂FB/∂θ2に比例する項の和である。パーミアンスの勾配に比例する項は、磁石が磁極片50を吸引する力であり、磁気抵抗トルク(リラクタンストルク)である。起磁力の勾配に比例する項は磁石同士に作用する斥力・吸引力であり磁石トルクである。磁気抵抗トルクについて、パーミアンスの勾配は第1継鉄15の位置によって式(13)のように変化する。式(13)は、第1歯部11Tと磁極片50の間のパーミアンスgのみが第1継鉄15の影響を受け、第1継鉄15と磁極片50の間のパーミアンスgは磁極片50と無関係であることを利用して簡単化している。
Figure JPOXMLDOC01-appb-M000011
 式(13)からgを大きくすることにより、式(12)の第1項の値が増大し、磁極片ユニット30に発生するトルクも増えることが分かる。gを大きくするためには、例えば、第1対向面31周長を長くすればよい。つまり、L1>L2とすることで伝達トルクが向上することが了解される。磁極片50の数が第1継鉄15の磁極の数より少ないならば、互いに隣接する2つの磁極片50が接触する程度に、L1を長くしてもよい。
 なお、同図で示される第1内部構造において、磁極片ユニット30が固定子であり、且つ、第1継鉄ユニット10と第2継鉄ユニット20が回転子である場合も、同様の結論が得られる。また、第2内部構造、第5内部構造、および第6内部構造が採用される場合においても、同様の結論が得られる。
<6.0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係を満たす磁極片50>
 図9を参照し、0.9×min{L2,L3}≦N≦1.1×max{L2,L3}を満たす磁極片50が採用されると伝達トルクが向上する理由を説明する。この理由は感覚的には以下のように了解される。即ち、磁極片50の周長が短すぎると(1.1×max{L2,L3}<N)、1つの磁極片50が特定の第2磁石29(N極磁石またはS極磁石)と周方向の全長に対して対向することができない。磁極片50と対向しない該第2磁石29の一部は、該磁極片50に起磁力に影響を及ぼすことができない余剰部位となってしまい、無駄が生じる。他方で、磁極片50の周長が長すぎると(0.9×min{L2,L3}>N)、1つの磁極片50は、隣接する2つの第2磁石29と常に対向する。2つの第2磁石29にそれぞれ起因する2つの起磁力は互いに逆向きであるため、磁極片50に作用する起磁力は全体として弱まる。
 以下では、このことを数式を用いて詳説する。図9は、周長が互いに異なる複数の磁極片50の周方向位置に応じた各種パラメータを示す概念的なグラフである。
 磁極片50と第2歯部21Tとに作用する起磁力Fは式(3)で表されることは既に述べた。同図(A)は、周方向位置に応じた第2磁石29の磁気モーメントM3θを示す。同図(A)に示すように、第2磁石29(即ちN極磁石とS極磁石)は、第2磁石29の磁気モーメントの極性を-M、+M、…のように反転させるように周方向に配置されている。第2磁石29が第2歯部21Tの弧の内側に覆われる場合を考えると、磁極片50に作用する起磁力Fは、磁極片50のうちで第2歯部21Tと径方向に並ぶ部位の磁気モーメントの平均値に比例する。同図において、(B)は磁極片50の周長が第2磁石29の周長の半分の場合の起磁力(F1/2を示し、(C)は磁極片50の周長が第2磁石29の周長と等しい場合の起磁力(F2/2、(D)は磁極片50の周長が第2磁石29の周長の1.5倍の場合の起磁力(F3/2を表している。以下では,磁極片50の周長が第2歯部21Tの磁極の周長の半分の場合を第1のケース、両者が等しい場合を第2のケース、磁極片50の周長が第2歯部21Tの磁極の周長に対して1.5倍である場合を第3のケースと呼ぶ。同図の(E)はθに応じたgを示しており、同図の(F)は、θに応じたg・∂F/∂θを示す。θは磁極片50の周方向中心の周方向位置である。
 第1のケースの(F1/2の起磁力の勾配∂F/∂θは三者で最も大きいが、勾配がゼロとなる区間がある。第1のケースのトルク(g・∂F/∂θ1/2は、勾配がゼロの区間において起磁力の勾配によるトルクがゼロとなり、トルクが断続的になることが欠点である。これに対し、第2のケースでは、トルク(g・∂F/∂θ2/2が間断なく得られる特長がある。これは、振動の低減などに有利である。この特長は,磁極片50の周長(L2)が、第2磁石29の周長(N)と等しい、または、第2磁石29の周長(N)よりも長いことにより得られる。
 第3のケースでは、磁極片50が、正負両側の2つの第2磁石29(N極磁石およびS極磁石)に対向するので、磁気モーメントの相殺が起きる。このため、同図(D)に示すように第3のケースの起磁力(F3/2のピークは、他の二つより小さい。トルクは、起磁力の勾配×(起磁力×パーミアンス)に比例する。同図(E)に示すように、第3のケースの(起磁力×パーミアンス)g・∂F/∂θでは、起磁力(F3/2の低下が、磁極片50の周長が長いことによってパーミアンスgが増加したことで補われている。しかし、それでも、3者で最小である。つまり、磁極片50の周長(L2)が、第2磁石29の周長(N)の1.5倍以上になると、トルクの低下が起こることが判る。
 3者を比較すると,連続的に大きなトルクが得られる第2のケースが最良である。この比較結果からも判る通り,磁極片50の周長L2は、Nに一致させることが理想状態である。しかし,L2とNの値が近ければ,近似的に理想状態が達成される。発明者の知見では,両者の差は10%程度を超えない範囲であれば近似的な理想状態であるとみなせる(当然、両者の差はできるだけ小さい方が良い。例えば両者の差を5%以内とすれば、近似的な理想状態がより好ましく達成され、誤差が0%とみなせるのであれば、理想状態がさらに好ましく達成される。)。さらに,磁極片50の周長L2は,磁極片50のうちで第2磁石29に対向する第2対向面32の数値(即ち,磁極片50の極所的な部位の数値)である。そして,磁極片50の一例として挙げた磁極片512(図3A参照)のように第2対向面32Aの周長L2を延長する,または,磁極片50の一例として挙げた磁極片514(図3D参照)のように第2対向面32Dの周長L2を短縮することができる。つまり,L2とNの2つだけの関係が本開示の技術の本質を必ずしも表すわけではない(即ち、これら2つのパラメータだけでもって伝達トルクの大小が決まるとは限らない)。そこで,磁極片50の周長の代表値として,式(A)で定める磁極片50の磁気抵抗的な平均周長としてのL3を補助的に用いて、0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係を満たす磁極片50が採用されれば、伝達トルクの更なる向上が期待されると発明者は主張する。不等式中の0.9と1.1は、前述した理想状態との差10%の,それぞれ,下限値と上限値に相当する。これは本願の説明に共通である。また、上記の通り、近似的な理想状態がより好ましく達成されるためには、0.95×min{L2,L3}≦N≦1.05×max{L2,L3}の関係を満たす磁極片50が採用されることが好ましい。近似的な理想状態がさらに好ましく達成されるためには、1.0×min{L2,L3}≦N≦1.0×max{L2,L3}の関係を満たす磁極片50が採用されることが好ましい。
 なお、上記では、磁極片50が回転子である実施形態を前提に説明したが、磁極片50が固定子である実施形態であっても同様の結果が得られる。伝達トルクは、第1継鉄ユニット10、第2継鉄ユニット20、および磁極片ユニット30のそ周方向における位置関係が相対的に変化することで生じるからである。
<7.歯部の位置、磁石の位置、および伝達トルクの関係>
 図10を参照し、複数の第1歯部11Tと複数の第2歯部21Tのいずれに対してもずれる周方向位置にある磁極片50における伝達トルクが低下する理由を説明する。図10は、一実施形態に係る第3内部構造を示す概略図である。
 1つの磁極片50が第1継鉄15に及ぼすトルクTと、当該磁極片50が第2継鉄25に及ぼすトルクTは、既述の通り、式(11)と式(12)で表される。式(11)、式(12)の右辺の第1項の磁気抵抗トルクには第2歯部21Tが強く影響する。gTBは第1継鉄15と第2継鉄25の間のパーミアンスであり、既述の通り式(9)で表される。gは、第1継鉄15と磁極片50のパーミアンスである。
 磁極片50の少なくとも一部が第2歯部21Tと径方向に並ぶときの磁気抵抗トルクについて、2つのケースを考える。まず、図10の(A)は、磁極片50の全体が第1継鉄15の第1歯部11Tと径方向に並ぶ状態を示す。図10の(B)は、磁極片50が第1歯部11Tに対して周方向にずれる状態を示す。
 磁極片50は第2歯部21Tと同図の(A)の二点鎖線Q1で示す領域において径方向に並んでおり、該領域における磁極片50と第2歯部21Tのパーミアンスをgと記す。磁極片50は、第1歯部11Tと同図の(A)の二点鎖線Q2で示す領域において径方向に並んでおり、該領域における磁極片50と第1歯部11Tのパーミアンスをgと記す。g<<gなので第1継鉄15と第2継鉄25の間のパーミアンスgTBは、次の式(14)のとおり、gとして近似されてよい。
Figure JPOXMLDOC01-appb-M000012
 よって、パーミアンスの勾配は次の式(15)となる。式(15)は、第2磁石29の一端面のうち磁極片50と対向する面の面積(即ち、該面積は磁極片50の第2対向面32のうち第2磁石29と対向する面の面積と近似できる)に比例して,磁気抵抗トルクが得られることを示している。
Figure JPOXMLDOC01-appb-M000013
 従って,同図の(A)であれば第2継鉄25には式(12)の右辺の第1項の磁気抵抗トルクと,第2項の磁石トルクの両方が作用する。この状況は伝達トルクが向上し好ましい。
 次に,同図の(B)のように,磁極片50が第1歯部11Tと径方向に並んでいない場合、g≒0であるので、第1継鉄15と第2継鉄25の間のパーミアンスgTBは、次の式(16)で示される通り、0で一定である。
Figure JPOXMLDOC01-appb-M000014
 従って、パーミアンスの勾配もゼロであり、磁気抵抗トルクは次の式(17)で示される通り、発生しない。
Figure JPOXMLDOC01-appb-M000015
 従って、下図の(B)であれば第1継鉄ユニット10には式(12)の右辺の第1項の磁気抵抗トルクも,第2項の磁石トルクも,どちらも作用しない。この状況は好ましくない。伝達トルクを増大するには,下図の(A)の状況の頻繁に発生させ、下図の(B)の状況の発生頻度を減らすことが有効である。つまり、磁気ギア5の作働時、第2歯部21Tと径方向に並ぶ磁極片50が、複数の第1歯部11Tに対して周方向にずれた位置にある場合、伝達トルクは低下することが了解される。
<8.磁気ギア5が組み込まれる磁気ギアード電気機械1>
 図11A~図11Dを参照して、磁気ギア5が組み込まれる磁気ギアード電気機械1を例示する。図11A、図11Bで例示される磁気ギアード電気機械1A、1B(1)は、原動機9からの入力によって駆動されて発電するように構成された磁気ギアード発電機2A、2B(2)である。磁気ギアード発電機2は、発電により生成された電力Pを例えば電力系統であってもよい電力供給先4に向けて供給するように構成される。図11C、図11Dで例示される磁気ギアード電気機械1C、1D(1)は、例えば電力系統であってもよい電力供給源6からの電力Pの供給を受けて、回転機械8を駆動するように構成される磁気ギアードモータ3A、3B(3)である。回転機械8は、例えば磁気ギアードモータ3の駆動によって走行する電動車両であってもよい。この場合、磁気ギアードモータ3は、回転機械8の構成要素となる、電動車両のドライブシャフトに連結されてもよい。図11A、図11Cで例示される磁気ギアード電気機械1A、1Cには磁気ギア5A(図1A参照)が組み込まれ、図11B、図11Dで例示される磁気ギアード電気機械1B、1Dには磁気ギア5B(図1B参照)が組み込まれている。
<8-1.磁気ギアード発電機2A、2B(2)>
 磁気ギアード発電機2A、2B(2)は、磁気ギア5と、第2歯部21Tまたは磁極片50に巻かれたコイル99とを備える。コイル99は、電力供給先4と導通可能なコイル99が設けられる。固定子巻線(電機子巻線)として機能するコイル99は、図11Aでは複数の第2歯部21Tに設けられ、図11Bでは複数の磁極片50に設けられる。
 図11Aで例示される磁気ギアード発電機2Aは、例えば以下のように作動する。同図で入力軸として機能する第1回転軸A1に連結される原動機9が駆動すると、既述の原理により、第1継鉄ユニット10が回転する。結果、磁極片ユニット30と第1継鉄ユニット10の回転に伴って起こる電磁誘導によってコイル99に電流が発生する。これにより、磁気ギアード発電機2Aは発電することができる。なお、コイル99における電流の発生に伴い生じる回転磁界により、第1継鉄ユニット10は回転方向に付勢される。
 図11Bで例示される磁気ギアード発電機2Bの作動原理は、磁気ギアード発電機2Aと類似する。同図で入力軸として機能する第2回転軸A2に連結される原動機9が駆動すると、第1継鉄ユニット10が回転し、既述の原理により、第2継鉄ユニット20が回転する、結果、第1継鉄ユニット10と第2継鉄ユニット20の回転に伴って起こる電磁誘導によってコイル99に電流が発生する。これにより、磁気ギアード発電機2Bは発電することができる。なお、コイル99における電流の発生に伴い生じる回転磁界により、第2継鉄ユニット20は回転方向に付勢される。
<8-2.磁気ギアードモータ3A、3B(3)>
 磁気ギアードモータ3A、3B(3)は、磁気ギア5と、第2歯部21Tまたは磁極片50に巻かれたコイル99とを備える。コイル99は、電力供給源6と導通可能なコイル99が設けられる。固定子巻線(電機子巻線)として機能するコイル99は、図11Cでは複数の第2歯部21Tに設けられ、図11Dでは複数の磁極片50に設けられる。
 図11Cで例示される磁気ギアードモータ3Aは、例えば以下のように作動する。コイル99の通電によって発生する回転磁界によって、第1継鉄ユニット10は付勢される。第1継鉄ユニット10が第2回転軸A2と共に回転すると、既述の原理により、磁極片ユニット30が回転する。同図の例において出力軸として機能する第1回転軸A1が回転機械8を駆動する。
 図11Dで例示される磁気ギアードモータ3Bの作動原理は、磁気ギアードモータ3Aと類似する。コイル99の通電によって発生する回転磁界によって、第2継鉄ユニット20は付勢される。第2継鉄ユニット20が第1回転軸A1と共に回転すると、既述の原理により、第1継鉄ユニット10が回転する。同図の例において出力軸として機能する第2回転軸A2が回転機械8を駆動する。
 上記構成によれば、コイル(99)を通電することで発生する磁界に起因したトルクが得られるので、磁気ギアード電気機械(1)は伝達トルクを向上できる。なお、既述した通り、磁気ギアード発電機2は、出力軸として機能する第1回転軸A1または第2回転軸A2を備えなくてもよく、磁気ギアードモータ3は、入力軸として機能する第1回転軸A1または第2回転軸A2を備えなくてもよい。この場合であっても上記利点は得られる。
<9.まとめ>
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。
1)本開示の少なくとも一実施形態に係る磁気ギア(5)は、
 周方向に並ぶ複数の第1磁石(19)、および、前記複数の第1磁石(19)を支持する第1継鉄(15)を含む第1継鉄ユニット(10)と、
 前記第1継鉄ユニット(10)の外周側または内周側に配置された第2継鉄ユニット(20)であって、前記周方向に並ぶ複数の第2磁石(29)、および、前記複数の第2磁石(29)を支持する第2継鉄(25)を含む第2継鉄ユニット(20)と、
 前記第1継鉄ユニット(10)と前記第2継鉄ユニット(20)との間において、前記複数の第1磁石(19)および前記複数の第2磁石(29)のそれぞれと隙間を空けて対向するように前記周方向に並ぶ複数の磁極片(50)を含む磁極片ユニット(30)と、
を備え、
 前記第1継鉄(15)は、前記複数の第1磁石(19)を支持する内周面(11A)または外周面(11B)を有する第1本体部(11)を含み、
 前記第2継鉄(25)は、前記複数の第2磁石(29)に対向する外周面(21B)または内周面(21A)を有する第2本体部(21)と、前記第2本体部(21)の前記外周面(21B)または前記内周面(21A)から前記磁極片(50)に向かって径方向に突出すると共に前記第2磁石(29)を支持する少なくとも1つの第2歯部(21T)と、を含み、
 各々の前記磁極片(50)は、
  前記第1磁石(19)と対向する第1対向面(31)と、
  前記第2磁石(29)と対向する第2対向面(32)と、
 を有し、
 前記第1対向面(31)の前記周方向における長さをL1、前記第2対向面(32)における前記周方向における長さをL2とした場合に、
 前記複数の磁極片(50)の少なくとも1つは、L1>L2の関係を満たす。
 発明者の知見によれば、L1>L2の関係を満たす磁極片(50)が採用されると伝達トルクが向上する。よって、上記1)の構成によれば、磁極片(50)に向かって突出すると共に磁石を支持する歯部を有し、伝達トルクが向上した磁気ギア(5)が実現される。
2)幾つかの実施形態では、上記1)に記載の磁気ギア(5)であって、
 前記第1対向面(31)は、
  前記周方向における一方側の端である第1端(311)と、
  前記周方向における他方側の端である第2端(312)と、
を有し、
 前記複数の磁極片(50)の前記少なくとも1つは、
  本体部(60)と、
  前記本体部(60)から前記周方向における前記一方側に突出する第1鍔部(61)であって、前記第1対向面(31)の前記第1端(311)を有する第1鍔部(61)と、
  前記本体部(60)から前記周方向における前記他方側に突出する第2鍔部(62)であって、前記第1対向面(31)の前記第2端(312)を有する第2鍔部(62)と、
を有する。
 上記2)の構成によれば、磁極片(50)が第1鍔部(61)および第2鍔部(62)を有することにより、第1対向面(31)の周方向における長さが増加する。これは、磁極片(50)と第1継鉄ユニット(10)との間の磁気抵抗を減じ、さらに、磁極片(50)を通って第1継鉄ユニット(10)と第2継鉄ユニット(20)の間を流れる磁束を増すことにつながる。よって、伝達トルクはさらに向上する。
3)幾つかの実施形態では、上記2)に記載の磁気ギア(5)であって、
 前記第1鍔部(61)は、前記一方側に向かうに従い前記径方向における長さが短くなるように構成され、
 前記第2鍔部(62)は、前記他方側に向かうに従い前記径方向における長さが短くなるように構成される。
 上記3)の構成によれば、第1鍔部(61)と第2鍔部(62)は先端においてのみ、隣接する磁極片(50)と近接する。つまり、第1鍔部(61)と第2鍔部(62)は、隣接する磁極片(50)から部分的に離隔する。これにより、互いに隣接する2つの磁極片(50)の間で磁束が行き交うことを抑制できる。即ち、漏れ磁束が抑制される。よって、磁束の漏れによる伝達トルクの低下を抑制することができる。
4)幾つかの実施形態では、上記3)に記載の磁気ギア(5)であって、
 前記複数の磁極片(50)は、前記周方向において互いに隣接する第1規定磁極片(2511)および第2規定磁極片(2522)を含み、
 前記第1規定磁極片(2511)および前記第2規定磁極片(2512)は各々、前記本体部(60)、前記第1鍔部(61)、および、前記第2鍔部(62)を有し、
 前記第1規定磁極片(2511)の前記第1鍔部(61)と、前記第2規定磁極片(2512)の前記第2鍔部(62)は、互いに接触する。
 上記4)の構成によれば、複数の磁極片(50)の補強効果を向上できる。
5)幾つかの実施形態では、上記2)乃至4)の何れかに記載の磁気ギア(5)であって、
 前記第2対向面(32)は、
  前記周方向における一方側の端である第3端(323)と、
  前記周方向における他方側の端である第4端(324)と、
を有し、
 前記複数の磁極片(50)の前記少なくとも1つは、
  前記第1鍔部(61)のうちで前記径方向における前記第2対向面(32)側の端(611)と、前記第2対向面(32)の前記第3端(323)とを接続する、前記径方向に沿って延在する第1接続面(71)と、
  前記第2鍔部(62)のうちで前記径方向における前記第2対向面(32)側の端(612)と、前記第2対向面(32)の前記第4端(324)とを接続する、前記径方向に沿って延在する第2接続面(72)と、
を含む。
 上記5)の構成によれば、第1接続面(71)と第2接続面(72)がいずれも径方向に沿って延在することで、磁極片(50)の形状が単純化され、磁極片(50)の製造を容易にできる。
6)幾つかの実施形態では、上記3)乃至5)の何れかに記載の磁気ギア(5)であって、
 前記第1鍔部(61)は、
  前記磁極片(50)のうちで前記周方向において最も前記一方側に位置する部位であって、前記磁気ギアの軸方向に延在する第1縁部(81)と、
  前記第1縁部(81)から前記周方向において前記他方側に凹むと共に、前記径方向に開放される第1凹部(91)と、
を有し、
 前記第2鍔部(62)は、
  前記磁極片(50)のうちで前記周方向において最も前記他方側に位置する部位であって、前記軸方向に延在する第2縁部(82)と、
  前記第2縁部(82)から前記周方向において前記一方側に凹むと共に、前記径方向に開放される第2凹部(92)と、
を含む。
 磁極片(50)の磁束を隣接する磁極片(50)に漏らすことなく、第1継鉄ユニット(10)と第2継鉄ユニット(20)の間を径方向に行き交う磁束とすれば、伝達トルクが増大する。ところが、隣接する2つの磁極片(50)の距離が短すぎると、磁束が2つの磁極片(50)の間で行き交い、伝達トルクが低下する。この点、上記6)の構成によれば、第1凹部(91)と第2凹部(92)が設けられることで、第1鍔部(61)および第2鍔部(62)は、隣接する磁極片(50)から部分的に周方向に離隔する。これにより、隣接する2つの磁極片(50)の間で行き交う磁束を抑制できる。即ち漏れ磁束を抑制できる。よって、伝達トルクはさらに向上する。
7)幾つかの実施形態では、上記6)の磁気ギア(5)であって、
 前記複数の磁極片(50)は、前記周方向において互いに隣接する第1隣接磁極片(1511)および第2隣接磁極片(1512)を含み、
 前記第1隣接磁極片(1511)の前記第1凹部(91)は、前記第2隣接磁極片(1512)の前記第2凹部(92)の少なくとも一部と前記軸方向において重なるように配置される。
 上記7)の構成によれば、第1隣接磁極片(1511)の第1凹部(91)と、第2隣接磁極片(1512)の第2凹部(92)との間の隙間を大きくできるので、第1隣接磁極片(1511)と第2隣接磁極片(1512)との間で磁束が行き交うことをより効果的に抑制できる。
8)幾つかの実施形態では、上記7)に記載の磁気ギア(5)であって、
 前記複数の磁極片(50)の前記少なくとも1つは、前記磁気ギア(5)の軸方向に積層される複数の電磁鋼板(150)を有し、
 前記複数の電磁鋼板(150)は、
   前記第1縁部(81)および前記第2縁部(82)を形成する少なくとも1つの第1電磁鋼板(151)と、
   前記第1電磁鋼板(151)の前記周方向における長さよりも短い長さを有する少なくとも1つの第2電磁鋼板(152)であって、前記第1凹部(91)および前記第2凹部(92)のそれぞれの底面を形成する少なくとも1つの第2電磁鋼板(152)と、
を有する。
 上記8)の構成によれば、複数の電磁鋼板に含まれる第2電磁鋼板(152)によって、第1凹部(91)と第2凹部(92)のそれぞれの底面が形成されるので、第1凹部(91)と第2凹部(92)の構成を簡易化できる。
9)幾つかの実施形態では、上記1)から8)のいずれかに記載の磁気ギア(5)であって、
 少なくとも1つの第2歯部(21T)は、前記周方向に並ぶ複数の前記第2歯部(21T)を有し、
 前記磁極片(50)の前記周方向における平均長さをL3とし、前記複数の第2歯部(21T)に含まれる前記周方向に隣接する2つの前記第2歯部(21T)の隣接距離をMとした場合に、
 前記複数の磁極片(50)の少なくとも1つは、0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係を満たす。
 特定の磁極片(50)を通過する磁束が、隣接する磁極片(50)に漏れることなく、第1継鉄ユニット(10)と第2継鉄ユニット(20)の間を径方向に行き交えば、伝達トルクが増大する。ところが、隣接する2つの第2歯部(21T)の隣接距離が短すぎると、磁束が第2歯部(21T)から別の第2歯部(21T)へ磁極片(50)を経由して流れ、径方向に流れる磁束が低下する。この点、上記8)の構成によれば、2つの第2歯部(21T)の隣接距離が短くなり過ぎるのを抑制できるので、第2歯部(21T)から別の第2歯部(21T)へ磁極片(50)を経由して磁束が流れるのを抑制できる。よって、伝達トルクを向上できる。
10)本開示の少なくとも一実施形態に係る磁気ギア(5)は、
 周方向に並ぶ複数の第1磁石(19)、および、前記複数の第1磁石(19)を支持する第1継鉄(15)を含む第1継鉄ユニット(10)と、
 前記第1継鉄ユニット(10)の外周側または内周側に配置された第2継鉄ユニット(20)であって、前記周方向に並ぶとともに前記第1磁石(19)の前記周方向における長さよりも短い長さを有する複数の第2磁石(29)、および、前記複数の第2磁石(29)を支持する第2継鉄(25)を含む第2継鉄ユニット(20)と、
 前記第1継鉄ユニット(10)と前記第2継鉄ユニット(20)との間において、前記複数の第1磁石(19)および前記複数の第2磁石(29)のそれぞれと隙間を空けて対向するように前記周方向に並ぶ複数の磁極片(50)を含む磁極片ユニット(30)と、
を備え、
 前記第2継鉄(25)は、前記複数の第2磁石(29)に対向する外周面(21B)または内周面(21A)を有する第2本体部(21)と、前記第2本体部(21)の前記外周面(21B)または前記内周面(21A)から前記磁極片(50)に向かって径方向に突出すると共に前記第2磁石(29)を支持する少なくとも1つの第2歯部(21T)と、を含み、
 各々の前記磁極片(50)は、前記第2磁石(29)と対向する第2対向面(32)を有し、
 前記第2対向面(32)は、
  前記周方向における一方側の端である第3端(323)と、
  前記周方向における他方側の端である第4端(324)と、
を有し、
 前記複数の磁極片(50)の前記少なくとも1つは、
  本体部(60)と、
  前記本体部(60)から前記周方向における一方側に突出する第3鍔部(63)であって前記第2対向面(32)の前記第3端(323)を有する第3鍔部(63)と、
  前記本体部(60)から前記周方向における他方側に突出する第4鍔部(64)であって前記第2対向面(32)の前記第4端(324)を有する第4鍔部(64)と、
を有する、
 前記第2対向面(32)における前記周方向における長さをL2、前記磁極片の前記周方向における平均長さをL3、前記第2磁石(29)の前記周方向における長さをNとした場合に、
 前記複数の磁極片(50)の少なくとも1つは、0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係を満たす。
 発明者の知見によれば、0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係を満たす磁極片(50)は、磁気ギア(5)の作動に伴って磁極片(50)と第2継鉄(25)との位置関係が周方向に相対変化する過程において、連続的な磁気抵抗トルクを得ることができる。よって、上記10)の構成によれば、磁極片(50)に向かって突出すると共に磁石を支持する歯部を有し、伝達トルクを向上させた磁気ギア(5)が実現される。また、発明者の知見によれば、隣接する2つの第2磁石(29)の境目を跨ぐように磁極片(50)が相対移動するとき、起磁力の正負が切り替わる。この点、上記10)の構成によれば、磁極片(50)が第3鍔部(63)と第4鍔部(64)を有することで、正負が切り替わる起磁力を部分的に短絡させることができ、起磁力の正負の切り替わりを緩やかにすることができる。これにより、磁気ギア(5)はスムーズに回転を継続することができる。
11)幾つかの実施形態では、上記10)に記載の磁気ギア(5)であって、
 前記第3鍔部(63)は、前記一方側に向かうに従い前記径方向における長さが短くなるように構成され、
 前記第4鍔部(64)は、前記他方側に向かうに従い前記径方向における長さが短くなるように構成される。
 上記11)の構成によれば、磁極片(50)の第2対向面(32)は第2磁石(29)を周方向に過不足なく覆うことができ、第2磁石(29)の起磁力に起因して、第1継鉄ユニット(10)と第2継鉄ユニット(20)の間を径方向に行き交う磁束が最大化されるので、伝達トルクはさらに向上する。
12)幾つかの実施形態では、上記10)または11)に記載の磁気ギア(5)であって、
 前記複数の磁極片(50)は、前記周方向において互いに隣接する第1規定磁極片(3511)および第2規定磁極片(3522)を含み、
 前記第1規定磁極片(3511)および前記第2規定磁極片(3512)は各々、前記本体部(60)、前記第3鍔部(63)、および、前記第4鍔部(64)を有し、
 前記第1規定磁極片(3511)の前記第3鍔部(63)と、前記第2規定磁極片(3512)の前記第4鍔部(64)は、互いに接触する。
 上記12)の構成によれば、複数の磁極片(50)の補強効果を向上できる。
13)幾つかの実施形態では、上記10)乃至12)の何れかに記載の磁気ギア(5)であって、
 各々の前記磁極片(50)は、前記第1磁石(19)と対向する第1対向面(31)を有し、
 前記第1対向面(31)は、
  前記周方向における一方側の端である第1端(311)と、
  前記周方向における他方側の端である第2端(312)と、
を有し、
 前記複数の磁極片(50)の前記少なくとも1つは、
  前記第3鍔部(63)のうちで前記径方向における前記第1対向面(31)側の端(1611)と、前記第1対向面(31)の前記第1端(311)とを接続する、前記径方向に沿って延在する第3接続面(73)と、
  前記第4鍔部(64)のうちで前記径方向における前記第1対向面(31)側の端(1621)と、前記第1対向面(31)の前記第2端(312)とを接続する、前記径方向に沿って延在する第4接続面(74)と、
を含む。
 上記13)の構成によれば、第3接続面(73)と第4接続面(74)がいずれも径方向に沿って延在することで、磁極片(50)の形状が単純化され、製造を容易にできる。
14)幾つかの実施形態では、上記10)から13)のいずれかに記載の磁気ギア(5)であって、
 前記少なくとも1つの第2歯部(21T)は、前記周方向に並んだ複数の第2歯部(21T)を有し、
 前記複数の第2歯部(21T)に含まれる前記周方向に隣接する2つの前記第2歯部(21T)の隣接距離をMとした場合に、
 前記複数の磁極片(50)の少なくとも1つは、0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係を満たす。
 上記14)の構成によれば、上記9)と同様の利点が得られる。
15)幾つかの実施形態では、上記10)から14)のいずれかに記載の磁気ギア(5)であって、
 前記第1継鉄(15)は、前記複数の第1磁石(19)と対向する内周面(11A)または外周面(11B)を有する第1本体部(11)と、前記第1本体部(11)の前記内周面(11A)または前記外周面(11B)から前記磁極片(50)に向かって前記径方向に突出すると共に前記複数の第1磁石(19)を支持する複数の第1歯部(11T)と、を含み、
 前記少なくとも1つの前記第2歯部(21T)は、複数の前記第2歯部(21T)を有し、
 前記複数の第1歯部(11T)の個数に対する前記複数の第1磁石(19)の個数の比は、前記複数の第2歯部(21T)の個数に対する前記複数の第2磁石(29)の個数の比と等しい。
 上記15)の構成によれば、磁気ギア(5)の作動時、磁極片(50)と対向する第1磁石(19)がN極磁石からS極磁石に切り替わる周期と、磁極片(50)と対向する第2磁石(29)がN極磁石からS極磁石に切り替わる周期とが互いに一致することができる。
16)幾つかの実施形態では、上記15)に記載の磁気ギア(5)であって、
 前記複数の第1磁石(19)は、第1規定磁石(191)を有し、
 前記周方向において、前記第1規定磁石(191)の中心は、前記第1規定磁石(191)を支持する前記第1歯部(11T)の中心と一致し、
 前記複数の第2磁石(29)は、互いに隣り合う2つの第2隣接磁石(295)を有し、
 前記周方向において、前記2つの第2隣接磁石(295)の中間点は、前記2つの第2隣接磁石(295)を支持する単一の前記第2歯部(21T)の中心と一致する。
 この点、上記16)の構成によれば、磁極片(50)と対向する第1磁石(19)がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングと、磁極片(50)と対向する第2磁石(29)がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングとが、上記15)の周期の半分、即ち、上記周期において180度、互いにずれる。これにより、第2歯部(21T)において第2磁石(29)がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングと、第1歯部(11T)において第1磁石(19)がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングが、上記周期において180度ずれて等間隔で発生し、発生するトルクが時間的に均一化する。これにより、磁束飽和によって磁気ギア5の伝達トルクが減少することを回避できる。
17)幾つかの実施形態では、上記15)に記載の磁気ギア(5)であって、
 前記複数の第1磁石(19)は、互いに隣り合う2つの第1隣接磁石(195)を有し、
 前記周方向において、前記2つの第1隣接磁石(195)の中間点は、前記2つの第1隣接磁石(195)を支持する単一の前記第1歯部(11T)の中心と一致し、
 前記複数の第2磁石(29)は、第2規定磁石(291)を有し、
 前記周方向において、前記第2規定磁石(291)の中心は、前記第2規定磁石(291)を支持する単一の前記第2歯部(21T)の中心と一致する。
 上記17)の構成によれば、磁極片(50)と対向する第1磁石(19)がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングと、磁極片(50)と対向する第2磁石(29)がN極磁石またはS極磁石のいずれか一方から他方に切り替わるタイミングとが、上記20)の周期の半分、互いにずれる。これにより、第2歯部(21T)と径方向に並ぶ磁極片(50)が、複数の第1歯部(11T)に対して周方向にずれた状態となる時間帯を低減することができるので、磁気ギア(5)は伝達トルクを向上できる。
18)本開示の少なくとも一実施形態に係る磁気ギア(5)は、
 周方向に並ぶ複数の第1磁石(19)、および、前記複数の第1磁石(19)を支持する第1継鉄(15)を含む第1継鉄ユニット(10)と、
 前記第1継鉄ユニット(10)の外周側または内周側に配置された第2継鉄ユニット(20)であって、前記周方向に並ぶ複数の第2磁石(29)、および、前記複数の第2磁石(29)を支持する第2継鉄(25)を含む第2継鉄ユニット(20)と、
 前記第1継鉄ユニット(10)と前記第2継鉄ユニット(20)との間において、前記複数の第1磁石(19)および前記複数の第2磁石(29)のそれぞれと隙間を空けて対向するように前記周方向に並ぶ複数の磁極片(50)を含む磁極片ユニット(30)と、
を備え、
 前記第2継鉄(25)は、前記複数の第2磁石(29)に対向する外周面または内周面を有する第2本体部(21)と、前記第2本体部(21)の前記外周面または前記内周面から前記磁極片(50)に向かって径方向に突出すると共に前記第2磁石(29)を支持する前記周方向に並んだ複数の第2歯部(21T)と、を含み、
 各々の前記磁極片(50)は、前記第2磁石(29)と対向する第2対向面(32)を有し、
 前記第2対向面(32)における前記周方向における長さをL2、前記磁極片の前記周方向における平均長さをL3、前記複数の第2歯部(21T)に含まれる前記周方向に隣接する2つの前記第2歯部(21T)の隣接距離をMとした場合に、
 前記複数の磁極片(50)の少なくとも1つは、0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係を満たす。
 第1継鉄ユニット(10)と第2継鉄ユニット(20)の間で発生する磁束が径方向に流れるほど、磁極片(50)の相対的な回転に対する磁束の勾配が増大し、伝達トルクが増大する。ところが、隣接する2つの第2歯部(21T)の隣接距離が短すぎると、磁束が第2歯部(21T)Tから隣接する第2歯部(21T)へ磁極片(50)を経由して流れ、径方向に流れる磁束が低下する。この点、上記18)の構成によれば、2つの第2歯部(21T)の隣接距離が短くなり過ぎるのを抑制できるので、第2歯部(21T)から隣接する第2歯部(21T)へ磁極片(50)を経由して磁束が流れるのを抑制できる。よって、磁極片(50)に向かって突出すると共に磁石を支持する歯部を有し、伝達トルクを向上させた磁気ギア(5)が実現される。
19)幾つかの実施形態では、上記18)に記載の磁気ギア(5)であって、
 前記第1継鉄(15)は、前記複数の第1磁石(19)と対向する内周面または外周面を有する第1本体部(11)と、前記第1本体部(11)の前記内周面または前記外周面から前記磁極片(50)に向かって前記径方向に突出すると共に前記複数の第1磁石(19)を支持する複数の第1歯部(11T)と、を含み、
 前記第1歯部(11T)の個数と前記複数の第1磁石(19)の個数との比は、前記第2歯部(21T)の個数と前記複数の第2磁石(29)の個数との比と等しい。
 上記19)の構成によれば、上記15)と同様の利点が得られる。
20)幾つかの実施形態では、上記19)に記載の磁気ギア(5)であって、
 前記複数の第1磁石(19)は、第1規定磁石(191)を有し、
 前記周方向において、前記第1規定磁石(191)の中心は、前記第1規定磁石(191)を支持する前記第1歯部(11T)の中心と一致し、
 前記複数の第2磁石(29)は、互いに隣り合う2つの第2隣接磁石(295)を有し、
 前記周方向において、前記2つの第2隣接磁石(295)の中間点は、前記2つの第2隣接磁石(295)を支持する単一の前記第2歯部(21T)の中心と一致する。
 上記20)の構成によれば、上記16)と同様の利点が得られる。
21)幾つかの実施形態では、上記19)に記載の磁気ギア(5)であって、
 前記複数の第1磁石(19)は、互いに隣り合う2つの第1隣接磁石(195)を有し、
 前記周方向において、前記2つの第1隣接磁石(195)の中間点は、前記2つの第1隣接磁石(195)を支持する単一の前記第1歯部(11T)の中心と一致し、
 前記複数の第2磁石(29)は、第2規定磁石(291)を有し、
 前記周方向において、前記第2規定磁石(291)の中心は、前記第2規定磁石(291)を支持する単一の前記第2歯部(21T)の中心と一致する。
 上記21)の構成によれば、上記17)と同様の利点が得られる。
22)本開示の少なくとも一実施形態に係る磁気ギアード電気機械(1)は、
 上記1)~21)のいずれかに記載の磁気ギア(5)と、
 前記第2歯部(21T)または前記磁極片(50)に巻かれたコイル(99)と、
を備える。
 上記22)の構成によれば、上記1)、10)、および18)と同様の理由により、磁極片に向かって突出すると共に磁石を支持する歯部を有し、伝達トルクを向上させた磁気ギアード電気機械(1)が実現される。また、コイル(99)を通電することで発生する磁界に起因したトルクが得られるので、磁気ギアード電気機械(1)は伝達トルクを向上できる。
 以上、本開示の実施形態について説明したが、本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1     :磁気ギアード電気機械
5     :磁気ギア
10    :第1継鉄ユニット
11    :第1本体部
11A   :内周面
11B   :外周面
11T   :第1歯部
15    :第1継鉄
19    :第1磁石
20    :第2継鉄ユニット
21    :第2本体部
21A   :内周面
21B   :外周面
21T   :第2歯部
25    :第2継鉄
29    :第2磁石
30    :磁極片ユニット
31    :第1対向面
32    :第2対向面
50    :磁極片
60    :本体部
61    :第1鍔部
62    :第2鍔部
63    :第3鍔部
64    :第4鍔部
71    :第1接続面
72    :第2接続面
73    :第3接続面
74    :第4接続面
81    :第1縁部
82    :第2縁部
91    :第1凹部
92    :第2凹部
99    :コイル
150   :電磁鋼板
151   :第1電磁鋼板
151B  :第1角部
151C  :第2角部
152   :第2電磁鋼板
160  :本体部
191   :第1規定磁石
195   :第1隣接磁石
291   :第2規定磁石
295   :第2隣接磁石
311、1311   :第1端
312、1312   :第2端
323、1323   :第3端
324、1324   :第4端
1511  :第1隣接磁極片
1512  :第2隣接磁極片
1611、1621  :端
G1、G2    :隙間

 

Claims (22)

  1.  周方向に並ぶ複数の第1磁石、および、前記複数の第1磁石を支持する第1継鉄を含む第1継鉄ユニットと、
     前記第1継鉄ユニットの外周側または内周側に配置された第2継鉄ユニットであって、前記周方向に並ぶ複数の第2磁石、および、前記複数の第2磁石を支持する第2継鉄を含む第2継鉄ユニットと、
     前記第1継鉄ユニットと前記第2継鉄ユニットとの間において、前記複数の第1磁石および前記複数の第2磁石のそれぞれと隙間を空けて対向するように前記周方向に並ぶ複数の磁極片を含む磁極片ユニットと、
    を備え、
     前記第1継鉄は、前記複数の第1磁石を支持する内周面または外周面を有する第1本体部を含み、
     前記第2継鉄は、前記複数の第2磁石に対向する外周面または内周面を有する第2本体部と、前記第2本体部の前記外周面または前記内周面から前記磁極片に向かって径方向に突出すると共に前記第2磁石を支持する少なくとも1つの第2歯部と、を含み、
     各々の前記磁極片は、
      前記第1磁石と対向する第1対向面と、
      前記第2磁石と対向する第2対向面と、
     を有し、
     前記第1対向面の前記周方向における長さをL1、前記第2対向面における前記周方向における長さをL2とした場合に、
     前記複数の磁極片の少なくとも1つは、L1>L2の関係を満たす、
    磁気ギア。
  2.  前記第1対向面は、
      前記周方向における一方側の端である第1端と、
      前記周方向における他方側の端である第2端と、
    を有し、
     前記複数の磁極片の前記少なくとも1つは、
      本体部と、
      前記本体部から前記周方向における前記一方側に突出する第1鍔部であって、前記第1対向面の前記第1端を有する第1鍔部と、
      前記本体部から前記周方向における前記他方側に突出する第2鍔部であって、前記第1対向面の前記第2端を有する第2鍔部と、
    を有する、
    請求項1に記載の磁気ギア。
  3.  前記第1鍔部は、前記一方側に向かうに従い前記径方向における長さが短くなるように構成され、
     前記第2鍔部は、前記他方側に向かうに従い前記径方向における長さが短くなるように構成された、
    請求項2に記載の磁気ギア。
  4.  前記複数の磁極片は、前記周方向において互いに隣接する第1規定磁極片および第2規定磁極片を含み、
     前記第1規定磁極片および前記第2規定磁極片は各々、前記本体部、前記第1鍔部、および、前記第2鍔部を有し、
     前記第1規定磁極片の前記第1鍔部と、前記第2規定磁極片の前記第2鍔部は、互いに接触する、
    請求項3に記載の磁気ギア。
  5.  前記第2対向面は、
      前記周方向における一方側の端である第3端と、
      前記周方向における他方側の端である第4端と、
    を有し、
     前記複数の磁極片の前記少なくとも1つは、
      前記第1鍔部のうちで前記径方向における前記第2対向面側の端と、前記第2対向面の前記第3端とを接続する、前記径方向に沿って延在する第1接続面と、
      前記第2鍔部のうちで前記径方向における前記第2対向面側の端と、前記第2対向面の前記第4端とを接続する、前記径方向に沿って延在する第2接続面と、
    を含む、
    請求項2乃至4の何れか1項に記載の磁気ギア。
  6.  前記第1鍔部は、
      前記磁極片のうちで前記周方向において最も前記一方側に位置する部位であって、前記磁気ギアの軸方向に延在する第1縁部と、
      前記第1縁部から前記周方向において前記他方側に凹むと共に、前記径方向に開放される第1凹部と、
    を有し、
     前記第2鍔部は、
      前記磁極片のうちで前記周方向において最も前記他方側に位置する部位であって、前記軸方向に延在する第2縁部と、
      前記第2縁部から前記周方向において前記一方側に凹むと共に、前記径方向に開放される第2凹部と、
    を含む、
    請求項3に記載の磁気ギア。
  7.  前記複数の磁極片は、前記周方向において互いに隣接する第1隣接磁極片および第2隣接磁極片を含み、
     前記第1隣接磁極片の前記第1凹部は、前記第2隣接磁極片の前記第2凹部の少なくとも一部と前記軸方向において重なるように配置される、
    請求項6に記載の磁気ギア。
  8.  前記複数の磁極片の前記少なくとも1つは、前記磁気ギアの軸方向に積層される複数の電磁鋼板を有し、
     前記複数の電磁鋼板は、
       前記第1縁部および前記第2縁部を形成する少なくとも1つの第1電磁鋼板と、
       前記第1電磁鋼板の前記周方向における長さよりも短い長さを有する少なくとも1つの第2電磁鋼板であって、前記第1凹部および前記第2凹部のそれぞれの底面を形成する少なくとも1つの第2電磁鋼板と、
    を有する、
    請求項7に記載の磁気ギア。
  9.  少なくとも1つの第2歯部は、前記周方向に並ぶ複数の前記第2歯部を有し、
     前記磁極片の前記周方向における平均長さをL3とし、前記複数の第2歯部に含まれる前記周方向に隣接する2つの前記第2歯部の隣接距離をMとした場合に、
     前記複数の磁極片の少なくとも1つは、0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係を満たす、
    請求項7または8に記載の磁気ギア。
  10.  周方向に並ぶ複数の第1磁石、および、前記複数の第1磁石を支持する第1継鉄を含む第1継鉄ユニットと、
     前記第1継鉄ユニットの外周側または内周側に配置された第2継鉄ユニットであって、前記周方向に並ぶとともに前記第1磁石の前記周方向における長さよりも短い長さを有する複数の第2磁石、および、前記複数の第2磁石を支持する第2継鉄を含む第2継鉄ユニットと、
     前記第1継鉄ユニットと前記第2継鉄ユニットとの間において、前記複数の第1磁石および前記複数の第2磁石のそれぞれと隙間を空けて対向するように前記周方向に並ぶ複数の磁極片を含む磁極片ユニットと、
    を備え、
     前記第2継鉄は、前記複数の第2磁石に対向する外周面または内周面を有する第2本体部と、前記第2本体部の前記外周面または前記内周面から前記磁極片に向かって径方向に突出すると共に前記第2磁石を支持する少なくとも1つの第2歯部と、を含み、
     各々の前記磁極片は、前記第2磁石と対向する第2対向面を有し、
     前記第2対向面は、
      前記周方向における一方側の端である第3端と、
      前記周方向における他方側の端である第4端と、
    を有し、
     前記複数の磁極片の前記少なくとも1つは、
      本体部と、
      前記本体部から前記周方向における一方側に突出する第3鍔部であって前記第2対向面の前記第3端を有する第3鍔部と、
      前記本体部から前記周方向における他方側に突出する第4鍔部であって前記第2対向面の前記第4端を有する第4鍔部と、
    を有し、
     前記第2対向面における前記周方向における長さをL2、前記磁極片の前記周方向における平均長さをL3、前記第2磁石の前記周方向における長さをNとした場合に、
     前記複数の磁極片の少なくとも1つは、0.9×min{L2,L3}≦N≦1.1×max{L2,L3}の関係を満たす、
    磁気ギア。
  11.  前記第3鍔部は、前記一方側に向かうに従い前記径方向における長さが短くなるように構成され、
     前記第4鍔部は、前記他方側に向かうに従い前記径方向における長さが短くなるように構成された、
    請求項10に記載の磁気ギア。
  12.  前記複数の磁極片は、前記周方向において互いに隣接する第1規定磁極片および第2規定磁極片を含み、
     前記第1規定磁極片および前記第2規定磁極片は各々、前記本体部、前記第3鍔部、および、前記第4鍔部を有し、
     前記第1規定磁極片の前記第3鍔部と、前記第2規定磁極片の前記第4鍔部は、互いに接触する、
    請求項11に記載の磁気ギア。
  13.  各々の前記磁極片は、前記第1磁石と対向する第1対向面を有し、
     前記第1対向面は、
      前記周方向における一方側の端である第1端と、
      前記周方向における他方側の端である第2端と、
    を有し、
     前記複数の磁極片の前記少なくとも1つは、
      前記第3鍔部のうちで前記径方向における前記第1対向面側の端と、前記第1対向面の前記第1端とを接続する、前記径方向に沿って延在する第3接続面と、
      前記第4鍔部のうちで前記径方向における前記第1対向面側の端と、前記第1対向面の前記第2端とを接続する、前記径方向に沿って延在する第4接続面と、
    を含む、
    請求項10乃至12の何れか1項に記載の磁気ギア。
  14.  前記少なくとも1つの第2歯部は、前記周方向に並んだ複数の第2歯部を有し、
     前記複数の第2歯部に含まれる前記周方向に隣接する2つの前記第2歯部の隣接距離をMとした場合に、
     前記複数の磁極片の少なくとも1つは、0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係を満たす、
    請求項13に記載の磁気ギア。
  15.  前記第1継鉄は、前記複数の第1磁石と対向する内周面または外周面を有する第1本体部と、前記第1本体部の前記内周面または前記外周面から前記磁極片に向かって前記径方向に突出すると共に前記複数の第1磁石を支持する複数の第1歯部と、を含み、
     前記少なくとも1つの前記第2歯部は、複数の前記第2歯部を有し、
     前記複数の第1歯部の個数に対する前記複数の第1磁石の個数の比は、前記複数の第2歯部の個数に対する前記複数の第2磁石の個数の比と等しい、
    請求項10または11に記載の磁気ギア。
  16.  前記複数の第1磁石は、第1規定磁石を有し、
     前記周方向において、前記第1規定磁石の中心は、前記第1規定磁石を支持する前記第1歯部の中心と一致し、
     前記複数の第2磁石は、互いに隣り合う2つの第2隣接磁石を有し、
     前記周方向において、前記2つの第2隣接磁石の中間点は、前記2つの第2隣接磁石を支持する単一の前記第2歯部の中心と一致する、
    請求項15に記載の磁気ギア。
  17.  前記複数の第1磁石は、互いに隣り合う2つの第1隣接磁石を有し、
     前記周方向において、前記2つの第1隣接磁石の中間点は、前記2つの第1隣接磁石を支持する単一の前記第1歯部の中心と一致し、
     前記複数の第2磁石は、第2規定磁石を有し、
     前記周方向において、前記第2規定磁石の中心は、前記第2規定磁石を支持する単一の前記第2歯部の中心と一致する、
    請求項15に記載の磁気ギア。
  18.  周方向に並ぶ複数の第1磁石、および、前記複数の第1磁石を支持する第1継鉄を含む第1継鉄ユニットと、
     前記第1継鉄ユニットの外周側または内周側に配置された第2継鉄ユニットであって、前記周方向に並ぶ複数の第2磁石、および、前記複数の第2磁石を支持する第2継鉄を含む第2継鉄ユニットと、
     前記第1継鉄ユニットと前記第2継鉄ユニットとの間において、前記複数の第1磁石および前記複数の第2磁石のそれぞれと隙間を空けて対向するように前記周方向に並ぶ複数の磁極片を含む磁極片ユニットと、
    を備え、
     前記第2継鉄は、前記複数の第2磁石に対向する外周面または内周面を有する第2本体部と、前記第2本体部の前記外周面または前記内周面から前記磁極片に向かって径方向に突出すると共に前記第2磁石を支持する前記周方向に並んだ複数の第2歯部と、を含み、
     各々の前記磁極片は、前記第2磁石と対向する第2対向面を有し、
     前記第2対向面における前記周方向における長さをL2、前記磁極片の前記周方向における平均長さをL3、前記複数の第2歯部に含まれる前記周方向に隣接する2つの前記第2歯部の隣接距離をMとした場合に、
     前記複数の磁極片の少なくとも1つは、0.9×min{L2,L3}≦M≦1.1×max{L2,L3}の関係を満たす、
    磁気ギア。
  19.  前記第1継鉄は、前記複数の第1磁石と対向する内周面または外周面を有する第1本体部と、前記第1本体部の前記内周面または前記外周面から前記磁極片に向かって前記径方向に突出すると共に前記複数の第1磁石を支持する複数の第1歯部と、を含み、
     前記第1歯部の個数と前記複数の第1磁石の個数との比は、前記第2歯部の個数と前記複数の第2磁石の個数との比と等しい、
    請求項18に記載の磁気ギア。
  20.  前記複数の第1磁石は、第1規定磁石を有し、
     前記周方向において、前記第1規定磁石の中心は、前記第1規定磁石を支持する前記第1歯部の中心と一致し、
     前記複数の第2磁石は、互いに隣り合う2つの第2隣接磁石を有し、
     前記周方向において、前記2つの第2隣接磁石の中間点は、前記2つの第2隣接磁石を支持する単一の前記第2歯部の中心と一致する、
    請求項19に記載の磁気ギア。
  21.  前記複数の第1磁石は、互いに隣り合う2つの第1隣接磁石を有し、
     前記周方向において、前記2つの第1隣接磁石の中間点は、前記2つの第1隣接磁石を支持する単一の前記第1歯部の中心と一致し、
     前記複数の第2磁石は、第2規定磁石を有し、
     前記周方向において、前記第2規定磁石の中心は、前記第2規定磁石を支持する単一の前記第2歯部の中心と一致する、
    請求項19に記載の磁気ギア。
  22.  請求項1、10、または18に記載の磁気ギアと、
     前記第2歯部または前記磁極片に巻かれたコイルと、
     を備える磁気ギアード電気機械。

     
PCT/JP2023/006185 2022-05-18 2023-02-21 磁気ギア、および、磁気ギアード電気機械 WO2023223622A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022081212A JP7257577B1 (ja) 2022-05-18 2022-05-18 磁気ギア、および、磁気ギアード電気機械
JP2022-081212 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023223622A1 true WO2023223622A1 (ja) 2023-11-23

Family

ID=85979260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006185 WO2023223622A1 (ja) 2022-05-18 2023-02-21 磁気ギア、および、磁気ギアード電気機械

Country Status (2)

Country Link
JP (1) JP7257577B1 (ja)
WO (1) WO2023223622A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695620U (ja) * 1979-12-25 1981-07-29
JP2012235554A (ja) * 2011-04-28 2012-11-29 Katsuhiro Hirata 磁気変速装置
US20130093275A1 (en) * 2010-06-23 2013-04-18 Amotech Co., Ltd. Double-stator/double-rotor type motor and direct drive apparatus for washer using same
CN105790543A (zh) * 2016-03-17 2016-07-20 北京工业大学 一种线圈静止型电磁涡流调速器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5695620B2 (ja) 2012-09-19 2015-04-08 株式会社東芝 表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695620U (ja) * 1979-12-25 1981-07-29
US20130093275A1 (en) * 2010-06-23 2013-04-18 Amotech Co., Ltd. Double-stator/double-rotor type motor and direct drive apparatus for washer using same
JP2012235554A (ja) * 2011-04-28 2012-11-29 Katsuhiro Hirata 磁気変速装置
CN105790543A (zh) * 2016-03-17 2016-07-20 北京工业大学 一种线圈静止型电磁涡流调速器

Also Published As

Publication number Publication date
JP7257577B1 (ja) 2023-04-13
JP2023169902A (ja) 2023-12-01

Similar Documents

Publication Publication Date Title
US8067871B2 (en) Permanent magnet rotating electric machine and electric car using the same
US7679260B2 (en) Axial gap motor
JP6485102B2 (ja) 回転電機
JP5921244B2 (ja) 永久磁石型回転電機
JP6561692B2 (ja) 回転電機
JP6569396B2 (ja) 回転電機
JP2011078202A (ja) アキシャルギャップモータ
JP5290795B2 (ja) ブラシ給電式ハイブリッド励磁モータ及びブラシ給電式ハイブリッド励磁モータの駆動方法
WO2021131071A1 (ja) ハイブリッド界磁式ダブルギャップ同期機および駆動システム
JP2000209825A (ja) 永久磁石発電機
WO2017195263A1 (ja) 永久磁石型モータ
JP2009153305A (ja) ブラシレスモータ
CN110235343B (zh) 旋转电机
JP2003299281A (ja) 回転電機及びその回転電機を用いたハイブリッド車両
US11050331B2 (en) Rotational electric machine
WO2023223622A1 (ja) 磁気ギア、および、磁気ギアード電気機械
EP4451520A1 (en) Electric motor having adjustable magnetic field, and vehicle
JP6555019B2 (ja) 回転電機
JP3985281B2 (ja) 回転電機
JP6766574B2 (ja) 回転電機
US20240055920A1 (en) Rotating electric machine
US11133732B2 (en) Rotational electric machine
WO2021149131A1 (ja) 固定子およびこれを用いた回転電機
JP5578979B2 (ja) アキシャルギャップモータ
JP5114135B2 (ja) アキシャルギャップ型モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807240

Country of ref document: EP

Kind code of ref document: A1