WO2021147805A1 - 一种爆轰合成用双管连接结构、爆轰式合成装置及其应用 - Google Patents

一种爆轰合成用双管连接结构、爆轰式合成装置及其应用 Download PDF

Info

Publication number
WO2021147805A1
WO2021147805A1 PCT/CN2021/072433 CN2021072433W WO2021147805A1 WO 2021147805 A1 WO2021147805 A1 WO 2021147805A1 CN 2021072433 W CN2021072433 W CN 2021072433W WO 2021147805 A1 WO2021147805 A1 WO 2021147805A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
detonation
sample tube
double
connection structure
Prior art date
Application number
PCT/CN2021/072433
Other languages
English (en)
French (fr)
Inventor
张万甲
张晔
范力澜
张旻
Original Assignee
成都奇点无限科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都奇点无限科技有限公司 filed Critical 成都奇点无限科技有限公司
Priority to JP2022543391A priority Critical patent/JP7340108B2/ja
Priority to GB2212188.3A priority patent/GB2607777B/en
Publication of WO2021147805A1 publication Critical patent/WO2021147805A1/zh
Priority to US17/866,690 priority patent/US20230001369A1/en
Priority to JP2023138477A priority patent/JP2023175710A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/08Application of shock waves for chemical reactions or for modifying the crystal structure of substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond

Definitions

  • the present disclosure relates to the technical field of new material synthesis, in particular to a double-pipe connection structure for detonation synthesis, a detonation synthesis device and applications thereof.
  • Diamond is a rare and multifunctional material. It is currently the hardest material in nature. As an ideal superhard material, it has been widely used in many traditional industries such as machinery, geology, transportation, building materials, and petroleum. Application has significantly improved production efficiency and promoted the upgrading of traditional industries.
  • the second is the dynamic pressure synthesis method.
  • the explosive high-pressure and high-temperature conditions are generated by the explosion of the explosive, so that the graphite is transformed into a polycrystalline diamond with a particle size of ⁇ m in a time scale of the order of ⁇ s.
  • Dynamic high-pressure synthesis technology does not require huge and expensive mechanical equipment. It is a new technology for synthesizing new materials. Now that this technology is fully mastered, only a few companies such as Du Pont in the United States have truly achieved industrialization.
  • polycrystalline diamond Compared with single crystal diamond, polycrystalline diamond is not only different in crystal structure and particle size, but also in performance. Polycrystalline diamond has excellent grinding performance and can be used in high-precision technical fields such as aviation, aerospace, precision ceramics, LED chips, and sapphire substrates. In addition, polycrystalline diamond also has many excellent properties and has broad application prospects in national defense and civilian fields.
  • Diamond and graphite are allotrope crystals of carbon. It is easy to think of using graphite as the synthetic raw material to synthesize diamond artificially.
  • the pressure-temperature phase diagram of carbon is a unit complex phase diagram, as shown in Figure 1.
  • the phase diagram shows the temperature and pressure areas where graphite and diamond are stable. In the stable area of diamond with higher pressure, the graphite crystal structure is unstable. Graphite must be transformed into diamond to reduce its own free energy; on the contrary, in the relatively stable area, the graphite crystal structure is unstable. In the low-pressure graphite stable region, the diamond-type polycrystalline structure is unstable, and it needs to be converted into graphite to reduce its own energy.
  • This heterogeneous phase diagram of carbon tells people: In order to explode and impact synthetic diamond, at least the following requirements must be met:
  • the diamond phase existing under high temperature and high pressure should be preserved when the transient detonation is unloaded to normal temperature and pressure to prevent graphitization;
  • the technical problem to be solved by the present disclosure is: in the existing process of detonation synthesis diamond, there are problems of low conversion rate and difficult recovery.
  • the present disclosure provides a double-pipe connection structure for detonation synthesis, a detonation synthesis device, and a detonation synthesis device that solve the above problems. Its application.
  • a double-tube connection structure for detonation synthesis comprising a driving tube, a sample tube and end plugs arranged at both ends of the sample tube, the driving tube is sleeved outside the sample tube, and there are both the driving tube, the sample tube and the end plug
  • the cavity also includes a fixed component, which covers the top port and the bottom port of the drive tube; after the explosive is detonated at the top, the detonation wave is transmitted from top to bottom in turn. Under the impact of the impact, the drive tube moves from top to bottom. Concentrating sliding movement to the axis of the sample tube occurs from top to bottom, so that the driving tube is sequentially wrapped around the top end plug of the sample tube, the sample tube, and the bottom end plug of the sample tube from top to bottom.
  • Detonation shock synthetic diamond is the introduction of a strong shock wave into the mixture of graphite and copper powder.
  • the strong shock wave generates a transient effect of thousands of degrees of temperature and hundreds of thousands of atmospheres, which transforms graphite into diamond. ;
  • This transient violent process is completed within tens of ⁇ s to hundreds of ⁇ s, so the dynamic high-pressure synthesis process itself is very difficult to control and control.
  • the sealed end plug at the end of the sample tube is easily exploded, causing the sample to fly and transform. The rate is low, and the recovery is extremely difficult.
  • the double-tube connection structure of the sample tube and the driving tube designed in the present disclosure enables the end of the driving tube to undergo converging motion and plastic deformation, and is further tightly wrapped on the end plug, which can effectively prevent the sealed end plug at the end of the sample tube from exploding It is beneficial to improve the conversion rate and recovery rate.
  • the drive tube in the present disclosure can mainly achieve the following two functions.
  • One is to act as a carrier for absorbing the energy of explosives. When it impacts the sample tube, it transfers energy to the sample and generates high temperature and high pressure conditions that convert graphite to diamond.
  • the drive tube is tightly wrapped on the sample tube and the sealed end plugs at both ends, so as to prevent the end plug from being blown off, and the raw material sample is completely sealed in the sample tube; drive tube, sample tube With the sealed end plugs at both ends through the detonation strengthening effect, a high-strength composite tube is formed, forming a complete recovery container for diamond samples, which can load samples with pressures above 20 GPa and thousands of degrees after impact loading. Seal it tightly.
  • the circumferentially equally spaced gap between the inner wall of the driving tube and the outer wall of the sample tube serves as a cavity.
  • the design of the present disclosure has no obstacles between the drive tube and the sample tube, which is beneficial to ensure the uniform propagation of detonation waves to form high-temperature and high-pressure synthesis conditions, and causes the drive tube to undergo concentric motion and plastic deformation to tightly wrap the sample tube and the end plug.
  • a composite pipe with closed ends is formed.
  • the outer diameter of the part on the end plug that is used for covering and contacting the driving tube is smaller than the outer diameter of the sample tube.
  • the outer diameter of the part that is designed to be in contact with the driving tube on the end plug is smaller than the outer diameter of the sample tube, so that the high-pressure detonation product pushes the driving tube toward the end plug axis to make a concentric movement, and the driving tube is in the end plug.
  • the shrinking aperture at the small diameter is smaller than the shrinking aperture at the sample tube, so the drive tube automatically forms an end-retracting structure, which improves the fastening effect of the end plug.
  • the end plug has a tapered structure, and the large diameter end of the tapered structure is connected to the sample tube.
  • the designed end plug has a tapered structure, which not only improves the fastening effect of the drive tube on the end plug, but also facilitates the smooth downward transmission of the detonation wave.
  • a fixed component is set at the end of the sample tube and the driving tube.
  • the fixed component gains momentum, it will fly outwards. The momentum is taken away, so that the end of the sample tube avoids the stretching zone, which effectively prevents the end of the recovery container from rupturing and achieves the purpose of complete recovery of the sample.
  • the fixing assembly installed on the top of the drive pipe, it includes a fixing ring and at least one layer of cover plate; one end of the fixing ring is connected with the top of the drive pipe, and the other end is connected with the cover plate.
  • the fixing assembly installed at the bottom of the drive pipe, it includes a fixing ring and a base. One end of the fixing ring is connected to the bottom of the drive pipe, and the other end is connected to the base. Supporting role.
  • the cover plate of the present disclosure is used to fix the sample tube, the driving tube and the fixing ring, and seal the top opening of the cavity between the sample tube and the driving tube to prevent explosives from entering the cavity.
  • the base is used to fix and support the drive tube and the sample tube.
  • end of the driving tube and the end of the fixing ring are spliced with each other to form a coaxial cylinder structure.
  • the driving tube and the fixed ring are connected by a splicing structure, which can ensure that the fixed ring can smoothly fly out and take away momentum during the detonation process, and can realize the maximum simplification of the structure and reduce the cost.
  • the bottom or top end surface of the drive tube is provided with a limiting ring I extending outward in the axial direction
  • the end surface of the corresponding fixing ring is provided with a limiting ring II extending outward in the axial direction.
  • connection structure between the drive tube and the fixed ring is greatly simplified, which is beneficial to reduce the production cost and the cost of loading and unloading; on the other hand, when the high-pressure detonation product pushes the end of the drive tube to converge, the connecting part of the fixed ring and the drive tube is different. There will be no resistance.
  • the fixing assembly further includes a fixing block, the fixing block is arranged in the fixing ring, and one end of the fixing block is connected with the end plug, and the other end is connected with the cover plate or the base.
  • the weight of the fixed ring and the fixed block can be increased, such as a metal ring or a metal block structure.
  • the present disclosure also discloses a detonation synthesis device, which includes a casing and the above-mentioned double-pipe connection structure for detonation synthesis placed in the casing; a cavity between the inner wall of the casing and the outer wall of the drive tube It is filled with main explosive; the bottom ends of the drive tube and the sample tube are installed on a tray through a fixing assembly, the tray is used to seal the bottom end of the shell, and the top of the shell is provided with an initiating component.
  • the present disclosure essentially provides a cylindrical sliding detonation double-tube impact synthesis device.
  • a detonation wave is formed, and the detonation wave propagates from top to bottom along the outer wall of the driving tube at a stable speed.
  • the high-pressure detonation product behind the detonation wave front pushes the drive tube towards the axis of the device to make a concentric sliding motion.
  • the driving tube will continue to obtain energy from the explosive and continue to accelerate.
  • the driving tube converges toward the axial center. Benefit, its free surface speed will also become faster and faster.
  • the conversion rate of the present disclosure is very high, reaching more than 90%, and 100% recovery is possible.
  • the detonating component includes a detonating charge, a detonator fixing plate and a detonator; the detonating charge is laid flat on the top layer of the main explosive, a detonator fixing plate is arranged on the detonating charge, and a detonator is fixed on the detonator fixing plate.
  • the above-mentioned double-pipe connection structure for detonation synthesis or the above-mentioned detonation synthesis device can be used to transform low-pressure phase materials into high-pressure phase materials or to pulverize hard materials.
  • the high-pressure phase materials include diamond, carbide, Nitride, boride.
  • the present disclosure also provides a high-strength composite tube, which is produced by the above-mentioned double-tube connection structure for detonation synthesis or the above-mentioned detonation synthesis device after detonation.
  • the present disclosure also provides a high-strength pressure vessel, which is produced by the above-mentioned double-pipe connection structure for detonation synthesis or the above-mentioned detonation synthesis device after detonation.
  • the present disclosure also provides a method for preparing the above-mentioned high-strength composite pipe or high-strength pressure vessel.
  • the high pressure, high temperature, and high strain rate produced by explosion and impact constitute a unique comprehensive means for material action, which has a wide range of application prospects.
  • the above-mentioned devices can also be widely used in the development of other new materials.
  • it can be used to synthesize wurtzite type and sphalerite type boron nitride whose hardness is second only to diamond, and it can also be used to synthesize carbide, boride and nitride structure ceramics such as TiC, TiB, B4C and SiC.
  • It is a structural material with light weight and high temperature resistance that is urgently needed in many high-tech sectors; in addition, it can also be used to crush superhard materials such as diamonds that are difficult to crush under normal circumstances to make them suitable for various purposes.
  • the connecting structure of the sample tube and the driving tube provided by the present disclosure enables the end of the driving tube to undergo converging movement and plastic deformation, and is further tightly wrapped on the end plug, which can effectively prevent the sealed end plug at the end of the sample tube from exploding. It is beneficial to improve the conversion rate and recovery rate. Therefore, the driving tube in the present disclosure can mainly achieve the following two functions. One is to act as a carrier for absorbing the energy of the explosive, and when it impacts the sample tube, it transfers the energy to the sample and generates high temperature and high pressure conditions that convert graphite to diamond.
  • the raw material sample is completely sealed in the sample tube to promote the complete reaction of the raw material sample;
  • the sample tube and the sealed end plugs at both ends form a high-strength composite tube through the detonation strengthening effect, forming a recovery container for diamond samples, which can reach a pressure above 20 GPa and a high temperature of several thousand degrees after impact loading.
  • the sample is perfectly sealed.
  • the disclosed setting is beneficial to take away momentum and prevent the end of the sample tube from rupturing.
  • a stretching wave will be generated.
  • the stretching wave is at the end of the sample tube and has sufficient strength, it may break the nozzle at the end of the sample tube.
  • a fixed ring and a fixed block are set at the top and/or bottom of the sample tube and the driving tube. After the fixed ring and the fixed block gain momentum, they will move outwards. Disperse and take away the momentum, so that the end of the sample tube avoids the stretching zone, effectively preventing the end of the recovery container from rupturing, and achieving the purpose of complete recovery of the sample.
  • the fixed ring and the fixed block are arranged to facilitate the stable transmission of the detonation wave moving to the sample tube. Because when the explosive just detonates, there is a detonation distance from unstable to stable. By adding a fixed block and a fixed ring of an appropriate height to the top, it can also play a role in avoiding the unstable detonation zone of the explosive.
  • Detonation shock synthetic diamond is the introduction of a strong shock wave from the mixture of graphite and copper powder.
  • the strong shock wave generates a transient effect of thousands of degrees of temperature and hundreds of thousands of atmospheres to transform graphite into diamond; copper powder is used as a quenching agent to reduce the high temperature.
  • the stable diamond phase under high pressure is preserved at low temperature and low pressure.
  • the present disclosure turns this transient violent process into controllable and adjustable and can be controlled according to people's requirements.
  • the present disclosure is of great significance for breaking the technical blockade and realizing the industrialized production of polycrystalline diamond. Explosive synthesis or shock wave synthesis of new materials has become a new important technology in materials research, and this new technology has broad application prospects. After years of research on detonation shock wave physics, the inventor used profound theoretical knowledge and rich experimental skills, and mastered the internal law of the mechanism of graphite to diamond phase transition caused by impact, and ingeniously designed and invented this device, which can meet the conversion of graphite.
  • the high-temperature and high-pressure conditions of diamond formation enable the sample graphite to be uniformly compressed and converted into high-purity polycrystalline diamond in this device, and the conversion rate is unprecedentedly increased by more than 90%; and the converted product high-purity polycrystalline diamond is completely recovered ,
  • the device provided by the present disclosure can recover 100% of diamonds, and can realize industrialized production.
  • Figure 1 is the pressure-temperature phase diagram of carbon
  • the solid line the graphite-diamond phase equilibrium line
  • the dashed-dotted line the diamond melting line
  • the dashed line the graphite melting line
  • Figure 2 is a schematic structural diagram of a detonation synthesis device of the present disclosure
  • This embodiment provides a double-tube connection structure for detonation synthesis, including a driving tube 4 and a sample tube 2.
  • the driving tube 4 and the sample tube 2 are both round tube structures, and the driving tube 4 is coaxially sleeved outside the sample tube 2.
  • the annular gap between the inner wall of the driving tube 4 and the outer wall of the sample tube 2 is used as the cavity 3; the top port and the bottom port of the sample tube 2 are equipped with sealing end plugs 7, and the top and bottom ports of the sample tube 2 are both located in the driving Tube 4 inside. It also includes fixed components.
  • the top and bottom ports of the drive tube 4 are covered with fixed components to prevent the main explosive from entering the cavity 3; after detonation, the detonation waves are transmitted from top to bottom in sequence, and are impacted.
  • the driving tube 4 moves from top to bottom to the center of the sample tube 2 axis, so that the driving tube 4 is sequentially wrapped around the top end plug 7 of the sample tube 2, the sample tube 2 and the bottom of the sample tube 2 from top to bottom. Outside the end plug 7, a composite pipe is formed, and the composite pipe is a complete recovery container.
  • the outer diameter of the part on the end plug 7 that is used for coating contact with the drive tube 4 is smaller than the outer diameter of the sample tube 2; further preferably, the end plug 7 has a truncated cone structure, and The large-diameter end of the truncated cone structure is inserted into the port of the sample tube 2, and the small-diameter end of the truncated cone structure is connected to the fixing assembly.
  • the fixing assembly installed on the top of the drive pipe 4 includes a fixing ring 9 and two layers of cover plates 10; one end of the fixing ring 9 is connected to the top of the drive pipe 4, and the other end is connected to the cover plate 10; In the sealed cavity 3, an annular groove is opened on the lower surface of the cover plate 10, and the end of the fixing ring 9 can be embedded and fixed in the annular groove.
  • the fixing assembly installed at the bottom of the driving pipe 4 includes a fixing ring 9 and a base 11. One end of the fixing ring 9 is connected with the bottom of the driving pipe 4 and the other end is connected with the base 11; the base 11 plays a supporting role.
  • the structure for realizing the connection between the driving tube 4 and the fixed ring 9 is as follows: the end of the driving tube 4 and the end of the fixed ring 9 are spliced with each other to form a coaxial cylinder structure.
  • the connection structure between the top of the driving tube 4 and the fixing assembly is as follows: an inner end surface of the driving tube 4 is provided with a limiting inner ring extending axially outward, and the outer side of the end surface of the fixing ring 9 is extending axially outward a limiting outer ring, The limiting outer ring is sleeved outside the limiting inner ring, and the end surface of the limiting inner ring is in abutting contact with the end surface of the fixed ring 9, and the end surface of the limiting outer ring is in abutting contact with the end surface of the driving tube 4.
  • connection structure between the bottom of the drive tube 4 and the fixed assembly is: the outer end of the drive tube 4 is provided with a limiting outer ring extending axially outwards, and the inner end of the fixed ring 9 is extending axially outwards with a limiting inner ring.
  • the outer ring is sleeved outside the limiting inner ring, and the end surface of the limiting inner ring is in abutting contact with the end surface of the driving tube 4, and the end surface of the limiting outer ring is in abutting contact with the end surface of the fixing ring 9.
  • a further preferred solution further includes a fixing block 8, which is located inside the fixing ring 9, and one end of the fixing block 8 is connected to the end plug 7 and the other end is connected to the cover plate 10, as shown in Fig. 2; the fixing block 8 and the fixing
  • the ring 9 is made of metal material.
  • This embodiment provides a detonation synthesis device, including a housing 13.
  • the double pipe connection structure for detonation synthesis provided in the third embodiment is installed in the housing 13; the inner wall of the housing 13 and the drive tube 4
  • the cavity between the outer walls is filled with main explosive.
  • the fixing assembly arranged on the top of the sample tube 2 and the driving tube 4 is composed of a fixing ring 9, a fixing block 8 and a cover plate 10.
  • the fixing assembly arranged at the bottom of the sample tube 2 and the driving tube 4 is composed of a fixing ring 9, a fixing block 8 and a base 11, the base 11 is used to fix the sample tube 2 and the driving tube 4, as well as the fixing block 8 and the fixing ring 9.
  • the bottoms of the driving tube 4 and the sample tube 2 are installed on a wooden tray 12 through a fixing assembly.
  • the wooden tray 12 is used to seal the bottom end of the shell 13; the top of the shell 13 is provided with a detonating component.
  • the detonating component includes detonating charge 6, detonator fixing plate 14 and detonator 15; said detonating charge 6 is laid flat on the top layer of main explosive 5, and the bottom surface of the detonating charge layer and the fixing components The top surface is in contact with the bottom surface of the detonator fixing plate 14; the detonator 15 is provided on the detonator fixing plate 14. Explosives are the energy source of the synthesis device. In this embodiment, the device uses 260KG.
  • the main explosive is placed in the gap between the shell 13 and the drive tube 4; a layer of RDX high-energy detonator is laid on the entire top plane, the thickness of which is 1cm ⁇ 3cm; then insert the detonator 15 into the detonator positioning plate 14.
  • This embodiment essentially provides a cylindrical sliding detonation double-tube impact synthesis device.
  • a detonation wave is formed in the explosive, and the detonation wave moves along the outer wall of the driving tube at a stable speed. Propagating from top to bottom, the high-pressure detonation product behind the detonation wave front pushes the drive tube towards the axis of the device to make a concentric movement.
  • the driving tube will continue to obtain energy from the explosive and continue to accelerate. The driving tube converges toward the axis.
  • the sample can be mixed with metal powder with good thermal conductivity (such as copper powder).
  • good thermal conductivity such as copper powder
  • the sample ie, the mixture of diamond, graphite and copper powder
  • the sample is taken out of the composite tube recovery container, and then subjected to selective oxidation acid treatment to separate the diamond in the sample, and then perform the screening and classification of the diamond, etc.
  • the detonation device provided by the present disclosure can meet the high temperature and high pressure conditions for converting graphite into diamond, so that the sample graphite is uniformly compressed and converted into high-purity polycrystalline diamond in the device, and the conversion rate is unprecedentedly improved. More than 90%; and completely recover the high-purity polycrystalline diamond, the product of conversion, with a recovery rate of 100%
  • the inventor has successfully synthesized high-purity nano-structured polycrystalline diamond through this device, with a conversion rate of more than 90%, and fully recovered the converted product of high-purity nano-structured polycrystalline diamond with a particle size of 0-32 ⁇ m. Normal distribution can fully realize industrialized production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

爆轰合成用双管连接结构、爆轰式合成装置及其应用,爆轰合成用双管连接结构包括驱动管(4)、样品管(2)、固定组件和设置在样品管(2)端口的端塞(7),驱动管(4)套设在样品管(2)外并且驱动管(4)与样品管(2)及端塞(7)之间均存在空腔(3),固定组件在驱动管(4)和样品管(2)的两端;起爆后,爆轰波由上至下传递,在爆轰波作用下,驱动管(4)向样品管(2)做聚心滑移运动并包覆在样品管(2)的顶部端塞(7)、样品管(2)及样品管(2)的底部端塞(7)外。爆轰式合成装置包括上述爆轰合成用双管连接结构;该装置能够使得石墨样品有效转换成高纯度多晶金刚石,转化率可达90%以上;使转化得到的高纯度多晶金刚石完整回收,回收率达100%,利于实现产业化生产。

Description

一种爆轰合成用双管连接结构、爆轰式合成装置及其应用 技术领域
本公开涉及新材料合成技术领域,具体涉及一种爆轰合成用双管连接结构、爆轰式合成装置及其应用。
背景技术
金刚石是一种少有的多功能材料,是目前自然界中硬度最高的物质,作为一种最理想的超硬材料,已经在机械、地质、交通、建材、石油等许多传统产业领域得到了广泛的应用,明显提高了生产效率,促进了传统产业的升级换代。
现在金刚石微粉及制品已经广泛应用于汽车、机械、工具、电子、集成电路、手机、航空、航天、光学仪器、玻璃、陶瓷、石油、地质、蓝宝石、芯片、医学、电子信息通信等领域。
金刚石在地球上的蕴藏量非常稀少,且藏于地层深处不易开采,远远满足不了工业和科技迅速发展的需要,为此,人们花了大量的人力、物力进行人工合成金刚石的科学研究,成功发明了两种人造金刚石的方法,第一种是采用高温高压机械设备,使石墨经相变转化为单晶金刚石的静压法,现在这种技术已比较成熟和普及,但这种方法设备投资较大,原材料复杂,产品粒度在mm量级。
第二种是动压合成方法,由炸药爆炸产生冲击动高压高温条件,使石墨在μs量级的时间尺度内转变成粒度为μm量级的多晶金刚石。动高压合成技术不需要庞大而昂贵的机械设备,是合成新材料的一种新技术,现在完全掌握了此项技术,真正实现了产业化的只有美国的Du Pont等少数公司。
多晶金刚石与单晶金刚石相比,不仅是晶体结构和颗粒大小的区别,在性 能上也有许多不同之处。多晶金刚石具有优异的磨削性能,可用于航空、航天、精密陶瓷、LED芯片、蓝宝石基片等高精尖技术领域。除此之外,多晶金刚石还具有许多优异性能,在国防和民用领域的应用前景广阔。
金刚石与石墨是碳元素的同素异形晶体,要人工合成金刚石自然容易想到用石墨来作合成原料。碳的压力—温度相图是一个单元复相图,如图1所示。相图给出了石墨、金刚石稳定存在的温度、压力区域,在压力较高的金刚石稳定区域,石墨型晶体结构是不稳定的,石墨必需转变为金刚石以降低本身的自由能;相反,在较低压力的石墨稳定区域,金刚石型多晶体结构是不稳定的,它要转变为石墨以降低自身的能量。碳的这种多相性相图告诉人们:要想爆炸冲击合成金刚石,至少需要满足以下要求:
第一,必须研制合适的爆轰装置,创造一定的高温、高压条件,使石墨转变为金刚石;
第二,要使高温、高压下存在的金刚石相,在瞬态的爆轰卸载到常温常压时保存下来,防止石墨化;
第三,因爆炸是一个很难驾驭的过程,必须解决金刚石回收的技术难题。
现有技术难点主要集中在要用动高压合成高纯度多晶金刚石的同时提高金刚石的转化率和回收率,并且还要最大限度降低成本以实现产业化生产。
发明内容
本公开所要解决的技术问题是:现有爆轰合成金刚石过程中存在转化率低、回收困难的问题,本公开提供了解决上述问题的爆轰合成用双管连接结构、爆轰式合成装置及其应用。
本公开通过下述技术方案实现:
一种爆轰合成用双管连接结构,包括驱动管、样品管和设置在样品管两端 的端塞,驱动管套设在样品管外,所述驱动管与样品管及端塞之间均存在空腔;还包括固定组件,在驱动管的顶部端口和底部端口处均覆盖设有固定组件;炸药在顶部起爆后,爆轰波由上至下依次传递,受冲击作用,驱动管由上至下发生向样品管轴线的聚心滑移运动,使驱动管由上至下依次包覆在样品管的顶部端塞、样品管及样品管的底部端塞外。
以爆轰冲击合成金刚石为例,爆轰冲击合成金刚石就是石墨与铜粉的混合物中引入一强冲击波,通过强冲击波产生几千度温度和几十万大气压的瞬态作用,使石墨转变为金刚石;这一瞬态暴烈过程在几十μs到几百μs内完成,因此动高压合成过程本身调控和驾驭难度非常大,样品管端部的密封端塞极易被炸开,造成样品飞散,转化率低、且回收难度极大。
本公开设计的样品管和驱动管双管连接结构,使驱动管端部能够发生聚心运动和塑性形变,进一步紧紧包覆在端塞上,可有效防止样品管端部的密封端塞炸开,利于提高转化率和回收率。
因此,本公开中的驱动管主要可实现以下两个功能,其一是作为吸收炸药能量的载体,当其冲击样品管时将能量传递给样品,产生使石墨转变为金刚石的高温高压条件,其二是爆炸后,当驱动管在空腔飞行与端塞及样品管高速碰撞后,驱动管与端塞及样品管的碰撞压力已远高出驱动管本身材质的Hugoniot弹性极限,材料进入塑性区,经聚心效应和塑性形变,驱动管紧紧地包覆在样品管和两端的密封端塞上,从而能够防止端塞被炸飞,原料样品被完全密封在样品管内;驱动管、样品管和两端的密封端塞通过爆轰强化效应作用,就构成了一个很高强度的复合管,形成了金刚石样品的完整回收容器,能将冲击加载后达到20GPa以上的压力和几千度高温的样品完好地密封起来。
进一步地,沿样品管的整个轴向位置处,所述驱动管内壁和样品管外壁之 间的环向等间距间隙作为空腔。本公开设计驱动管和样品管之间无任何障碍,利于保障爆轰波均匀传播,以形成高温高压合成条件,且使驱动管发生聚心运动和塑性变形紧紧包覆在样品管及端塞外形成两端封闭的复合管。
进一步地,所述端塞上用于与驱动管包覆接触的部位的外径小于样品管的外径。
作为优选方案,设计端塞上用于与驱动管包覆接触的部位的外径小于样品管的外径,这样高压爆轰产物推动驱动管向端塞轴线做聚心运动,驱动管在端塞小径处收缩后的口径要小于在样品管处收缩的口径,因此驱动管自动形成端部缩口结构,对端塞的紧固作用进步增大。
进一步地,所述端塞呈锥形结构,且锥形结构的大径端与样品管连接。
设计端塞呈锥形结构,在提高驱动管对端塞紧固作用的同时,利于爆轰波平稳向下传输。
进一步地,在起爆后,爆轰波传递至驱动管的端部与固定组件连接处时,驱动管的端部与固定组件连接处断开,固定组件受拉伸波作用向外飞散。
从爆轰物理学可知,在空气中,当柱形装药从一端平面起爆时,朝爆轰波运动方向传播的质量(M1)和能量(E1)与同爆轰波运动相反方向传播的质量(M2)和能量(E2)之比为:M1/M2=4/5,E1/E2=16/11。在装置的端部,即样品管的顶端和底端,当高压爆轰产物向空中作散心膨胀时,将产生拉伸波,拉伸波在样品管的端部且有足够的强度时,则可能使样品管端部管口破裂,而使管内样品喷射泄漏,为了避开端部的拉伸区,在样品管和驱动管的端部设置固定组件,当固定组件获得动量之后,向外飞散而把动量带走,使样品管的端部躲开拉伸区,有效防止回收容器端部管口破裂,达到完整回收样品的目的。
进一步地,对于安装在驱动管顶部的固定组件而言,其包括固定环和至少 一层盖板;所述固定环的一端与驱动管的顶部连接、另一端与盖板连接,所述盖板用于密封空腔;对于安装在驱动管底部的固定组件而言,其包括固定环和底座,所述固定环的一端与驱动管的底部连接、另一端与底座连接,所述底座起固定和支撑作用。
本公开的盖板用来固定样品管和驱动管以及固定环,并且密封住样品管和驱动管之间的空腔的顶部开口处,以防止炸药进入空腔内。底座用于固定和支撑驱动管和样品管。
进一步地,所述驱动管的端部与固定环的端部相互拼接成同轴筒体结构。
本公开使驱动管和固定环采用拼接结构连接,即可保障在爆轰过程中固定环能顺利飞出带走动量,又可实现结构的最大化简化,降低成本。
进一步地,所述驱动管的底部或顶部端面处设有沿轴向向外延伸的限位环I,对应固定环的端面处设有沿轴向向外延伸的限位环II,通过限位环I和限位环II的相互套设实现驱动管与固定环的连接。
一方面使得驱动管和固定环之间的连接结构大大简化,利于降低制作成本及装卸成本;另一方,高压爆轰产物推动驱动管端部发生聚心运动时,固定环和驱动管连接部位不会产生任何阻力。
进一步地,固定组件还包括固定块,所述固定块设置于固定环内,且固定块的一端与端塞连接、另一端与盖板或底座连接。
在样品管和驱动管的端部加上固定块和固定环,当这些块和环获得动量之后,向外飞散而把动量带走,这样就能有效保护回收容器的端部,利于完整回收样品。为保护样品管端部尽可能带走较多的动量,可增加固定环和固定块的重量,如采用金属环或金属块结构。
本公开还公开了一种爆轰式合成装置,其包括壳体,还包括置于壳体内的 上述的爆轰合成用双管连接结构;壳体的内壁和驱动管的外壁之间的腔室内填充有主炸药;所述驱动管和样品管的底端通过固定组件安装在托盘上,所述托盘用于封住壳体的底端,壳体的顶端设有引爆部件。
本公开实质上提供了一种柱面滑移爆轰双管冲击合成装置,当在装置顶端起爆后,形成一个爆轰波,爆轰波以稳定速度沿着驱动管外壁从上向下传播,爆轰波阵面后的高压爆轰产物推动驱动管向装置轴线作聚心滑移运动。在空腔飞行过程中,在炸药-驱动管交界面上,由于压缩波与稀疏波的相互作用,驱动管将不断从炸药中获得能量而持续加速,驱动管越向轴心会聚,由于聚心效益,它的自由面速度也将越来越快。当驱动管与样品管高速碰撞后,在样品中形成了一个稳定的爆轰冲击波系统,从上到下穿越整个样品,使样品达到均匀压缩。因此,本公开的转化率非常高,达到90%以上,可100%回收。
进一步地,所述引爆部件包括引爆药、雷管固定板和雷管;所述引爆药平铺于主炸药的顶层,引爆药上设置雷管固定板,雷管固定板上固定有雷管。
上述的爆轰合成用双管连接结构或者上述的爆轰式合成装置,能够用于将低压相材料转变成高压相材料或者用于粉碎硬质材料,所述高压相材料包括金刚石、碳化物、氮化物、硼化物。
本公开还提供了一种高强度复合管,所述高强度复合管由上述爆轰合成用双管连接结构或上述爆轰式合成装置爆轰后制得。
本公开还提供了一种高强度压力容器,所述高强度压力容器由上述爆轰合成用双管连接结构或上述爆轰式合成装置爆轰后制得。
本公开还提供了上述高强度复合管或高强度压力容器的制备方法,利用上述爆轰合成用双管连接结构或上述爆轰式合成装置爆轰后制得所述高强度复合管或所述高强度压力容器。
爆炸与冲击作用产生的高压、高温、高应变率构成了对物质作用的独一无二的综合手段,有广泛的应用前景,除了用于合成金刚石,上述装置也可广泛应用在其他新材料的研制中,如可以用来合成硬度仅次于金刚石的纤锌矿型和闪锌矿型氮化硼,也可以用来合成TiC、TiB、B4C和SiC等碳化物、硼化物和氮化物结构陶瓷,这些正是许多高技术部门中迫切需要的质量轻耐高温的结构材料;此外,还可用来粉碎在常规情况下难以粉碎的如金刚石一类的超硬材料,使之适合于各种不同的用途。
本公开具有如下的优点和有益效果:
1、本公开提供的样品管和驱动管连接结构,使驱动管端部能够发生聚心运动和塑性形变,进一步紧紧包覆在端塞上,可有效防止样品管端部的密封端塞炸开,利于提高转化率和回收率。因此,本公开中驱动管主要可实现以下两个功能,其一是作为吸收炸药能量的载体,当其冲击样品管时将能量传递给样品,产生使石墨转变为金刚石的高温高压条件,其二是爆炸后,当驱动管在空腔飞行与端塞及样品管高速碰撞后,驱动管与端塞及样品管的碰撞压力已远高出驱动管本身材质的Hugoniot弹性极限,材料进入塑性区,经聚心效应和塑性形变,驱动管紧紧地包覆在样品管和两端密封端塞上,防止端塞被炸飞,原料样品被完全密封在样品管内,促进原料样品完全反应;驱动管、样品管和两端的密封端塞通过爆轰强化效应作用,就构成了一个很高强度的复合管,形成了金刚石样品的回收容器,能将冲击加载后达到20GPa以上的压力和几千度高温的样品完好的密封起来。
2、本公开设置利于带走动量,防止样品管端部破裂。在装置的端部,当高压爆轰产物向空中作散心膨胀时,将产生拉伸波,拉伸波在样品管的端部且有足够的强度时,则可能使样品管端部管口破裂,而使管内样品喷射泄漏,为 了避开端部的拉伸区,在样品管和驱动管的顶端和/或底端设置固定环和固定块,当固定环和固定块获得动量之后,向外飞散而把动量带走,使样品管的端部躲开拉伸区,有效防止回收容器端部破裂,达到完整回收样品的目的。
3、本公开设置固定环和固定块利于移动至样品管处的爆轰波稳定传输。因为炸药刚起爆时,有一段从不稳定到稳定的爆轰距离,通过在顶端加适当高度的固定块和固定环,也能起到避开炸药不稳定爆轰区的作用。
爆轰冲击合成金刚石就是石墨与铜粉的混合物引入一强冲击波,通过强冲击波产生几千度温度和几十万大气压的瞬态作用,使石墨转变为金刚石;用铜粉作淬火剂,把高温高压下稳定的金刚石相在低温低压下保存下来。本公开就是将这一瞬态暴烈过程变成可控可调并且能按人们的要求实现可驾驭。
本公开对于破除技术封锁、实现多晶金刚石产业化生产具有重要意义。爆炸合成或者冲击波合成新材料,在材料研究中已成为一种新的重要技术,这种新技术有着广阔的应用前景。发明人经多年的爆轰冲击波物理研究,运用渊博的理论知识和丰富的实验功底,并且掌握了冲击引起石墨至金刚石相转机理的内在规律,巧妙地设计发明了这种装置,能够满足石墨转换成金刚石的高温高压条件,使得样品石墨在本装置内被均匀地压缩转换成高纯度多晶金刚石,转化率得到空前的提高达到90%以上;并且使转化的产物高纯度多晶金刚石完整地回收,本公开提供的装置可以100%回收金刚石,可实现产业化生产。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本公开的一部分,并不构成对本公开实施例的限定。在附图中:
图1为碳的压力—温度相图;
附图1中,实线:石墨—金刚石相平衡线;点划线:金刚石熔化线;虚线: 石墨熔化线;
图2为本公开的一种爆轰式合成装置结构示意图;
以上附图中标记及对应的零部件名称:
1-样品,2-样品管,3-空腔,4-驱动管,5-主炸药,6-引爆药,7-端塞,8-固定块,9-固定环,10-盖板,11-底座,12-木托盘,13-壳体,14-雷管定位板,15-雷管。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本公开作进一步的详细说明,本公开的示意性实施方式及其说明仅用于解释本公开,并不作为对本公开的限定。
实施例1:
本实施例提供了一种爆轰合成用双管连接结构,包括驱动管4和样品管2,驱动管4和样品管2均为圆管结构,驱动管4同轴套设在样品管2外,驱动管4内壁和样品管2外壁之间的环向间隙作为空腔3;样品管2的顶端口和底端口均设置密封端塞7,且样品管2的顶端口和底端口均位于驱动管4内。还包括固定组件,在驱动管4的顶部端口和底部端口处均覆盖设有固定组件,可防止主炸药进入空腔3内;起爆后,爆轰波由上至下依次传递,受冲击作用,驱动管4由上至下发生向样品管2轴线的聚心滑移运动,使驱动管4由上至下依次包覆在样品管2的顶部端塞7、样品管2及样品管2的底部端塞7外,形成复合管,该复合管即为一个完整的回收容器。
实施例2:
在实施例1的基础上进一步改进,所述端塞7上用于与驱动管4包覆接触的部位的外径小于样品管2的外径;进一步优选,端塞7为圆台体结构,且圆 台体结构的大径端塞入样品管2的端口内,圆台体结构的小径端与固定组件连接。
实施例3:
在实施例1或2的基础上进一步改进,所述固定组件在起爆后爆轰波传递至驱动管4的端部与固定组件的连接处时,驱动管4的端部与固定组件连接处断开分离,固定组件受拉伸波作用向外飞散;驱动管4的端部做向样品管2轴线聚心运动后包覆在端塞7外。作为优选方案,对于安装在驱动管4顶部的固定组件包括固定环9和两层盖板10;固定环9的一端与驱动管4的顶部连接、另一端与盖板10连接;盖板10用于密封空腔3,在盖板10的下板面上开设有环形槽,所述固定环9的端部可嵌入环形槽内固定。对于安装在驱动管4底部的固定组件包括固定环9和底座11,固定环9的一端与驱动管4的底部连接、另一端与底座11连接;底座11起到支撑作用。
对于实现驱动管4和固定环9连接的结构如下所示:驱动管4的端部与固定环9的端部相互拼接构成同轴筒体结构。具体地,驱动管4顶部与固定组件的连接结构为:驱动管4的端面内侧沿轴向向外延伸设有限位内环,固定环9的端面外侧沿轴向向外延伸有限位外环,限位外环套设在限位内环外,且限位内环的端面与固定环9的端面相抵接触,限位外环的端面与驱动管4的端面相抵接触。在驱动管4底部与固定组件的连接结构为:驱动管4的端面外侧沿轴向向外延伸设有限位外环,固定环9的端面内侧沿轴向向外延伸有限位内环,限位外环套设在限位内环外,且限位内环的端面与驱动管4的端面相抵接触,限位外环的端面与固定环9的端面相抵接触。
进一步优选方案,还包括固定块8,固定块8位于固定环9内侧,且固定块8的一端与端塞7连接、另一端与盖板10连接,如图2所示;固定块8和 固定环9均采用金属材质制作而成。
实施例4:
本实施例提供了一种爆轰式合成装置,包括壳体13,实施例3提供的一种爆轰合成用双管连接结构安装在壳体13内;壳体13的内壁和驱动管4的外壁之间的腔室内填充有主炸药。设置在样品管2和驱动管4顶部的固定组件由固定环9、固定块8和盖板10构成,设置在样品管2和驱动管4底部的固定组件由固定环9、固定块8和底座11构成,底座11用来固定样品管2和驱动管4以及固定块8和固定环9。驱动管4和样品管2的底部通过固定组件安装在木质托盘12上,木质托盘12用于封住壳体13的底端;壳体13的顶端设有引爆部件。
实施例5:
在实施例4的基础上进一步改进,所述引爆部件包括引爆药6、雷管固定板14和雷管15;所述引爆药6平铺于主炸药5的顶层,且引爆药层的底面与固定组件的顶部接触、顶面与雷管固定板14的下板面接触;雷管固定板14上设置雷管15。炸药是合成装置的能源,本实施例装置用药量为260KG,将主炸药放入壳体13与驱动管4之间的间隙中;在整个顶平面上铺一层RDX高能引爆药,其厚度为1cm~3cm;然后将雷管15插在雷管定位板14中。
采用实施例5提供的装置合成多晶金刚石,合成原理分析如下:
1、能够创造一定的高温、高压条件,使石墨转变为金刚石,且获得高转化率:
本实施例实质上是提供了一种柱面滑移爆轰双管冲击合成装置,当在装置顶端起爆炸药后,在炸药中形成一个爆轰波,爆轰波以稳定速度沿着驱动管外壁从上向下传播,爆轰波阵面后的高压爆轰产物推动驱动管向装置轴线作聚心 运动。在空腔飞行过程中,在炸药--驱动管交界面上,由于压缩波与稀疏波的相互作用,驱动管将不断从炸药中获得能量而持续加速,驱动管越向轴心会聚,由于聚心效益,它的自由面速度也将越来越快。当驱动管与样品管高速碰撞后,在样品管中冲击波,形成了一个稳定的爆轰冲击系统,从上到下穿越整个样品,使样品达到均匀压缩。因此,我们的转化率非常高,达到90%以上。
2、能够防止石墨化:
与冲击压缩过程相随的是压力的卸载过程,在卸载过程中,为了尽可能的减少金刚石向石墨的逆向相变,在样品中掺和导热性能好的金属粉末(如铜粉)就能起到冲击淬火的作用,合适选择石墨和金属粉末的混合比例就能达到这一要求。
3、回收率高:
由于驱动管与样品管的碰撞压力已远高出驱动管本身材质的Hugoniot弹性极限,材料进入塑性区,经聚心效应和塑性形变,驱动管紧紧地包覆在样品管和两端密封塞上,驱动管、样品管和两端的密封塞通过爆轰作用,就构成了一个强度很高的复合管,成为了生成金刚石的回收容器。此外,在装置的端部,当高压爆轰产物向空中作散心膨胀时,将产生拉伸波,拉伸波在样品管的端部且有足够的强度时,则可能使样品管管口破裂,而使管内样品喷射泄漏,为了避开样品管端部的拉伸区,在样品管和驱动管的端部加上固定块和固定环,这样就能有效保护回收容器的端部不被炸开。金刚石回收率可达100%
经爆轰冲击合成金刚石后,从复合管回收容器中取出样品(即金刚石,石墨和铜粉混合物),进行选择性氧化的酸处理,以分离出样品中的金刚石,然后进行金刚石的筛选分级等后续提纯工作。
综上所述,本公开提供的爆轰装置,能够满足石墨转换成金刚石的高温高 压条件,使得样品石墨在本装置内被均匀地压缩转换成高纯度多晶金刚石,转化率得到空前的提高达到90%以上;并且使转化的产物高纯度多晶金刚石完整地回收,回收率达100%
发明人已通过该装置成功合成高纯度纳米结构多晶金刚石,转化率达到90%以上,并且使转化的产物高纯度纳米结构多晶金刚石完整地100%回收,其粒度在0-32μm之间呈正态分布,完全可以实现产业化生产。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (16)

  1. 一种爆轰合成用双管连接结构,包括驱动管(4)、样品管(2)、固定组件和设置在样品管(2)两端的端塞(7),所述驱动管(4)套设在样品管(2)外并且驱动管(4)与样品管(2)及端塞(7)之间均存在空腔(3),所述固定组件设置在驱动管(4)和样品管(3)的两端并用于固定所述驱动管(4)和样品管(2);
    其中,顶部起爆时爆轰波由上至下传递,驱动管(4)在爆轰波作用下由上至下发生向样品管(2)轴线的聚心滑移运动,固定组件受拉伸波作用与驱动管(4)和样品管(3)分离并向外飞出,所述驱动管(4)由上至下依次包覆在样品管(2)的顶部端塞(7)、样品管(2)及样品管(2)的底部端塞(7)外并形成两端封闭的复合管成为一个完整的回收容器。
  2. 根据权利要求1所述的爆轰合成用双管连接结构,其中,所述驱动管(4)的内壁和样品管(2)的外壁之间的环向间隙作为空腔(3)。
  3. 根据权利要求1或2所述的爆轰合成用双管连接结构,其中,所述端塞(7)上用于与驱动管(4)包覆接触的部位的外径小于样品管(2)的外径。
  4. 根据权利要求3所述的爆轰合成用双管连接结构,其中,所述端塞(7)呈锥形结构,且锥形结构的大径端与样品管(2)连接。
  5. 根据权利要求1所述的爆轰合成用双管连接结构,其中,设置在驱动管(4)顶部的固定组件包括固定环(9)和至少一层盖板(10);所述固定环(9)的一端与驱动管(4)的顶部连接且另一端与所述盖板(10)连接,所述盖板(10)用于密封空腔(3);设置在驱动管(4)底部的固定组件包括固定环(9)和底座(11),所述固定环(9)的一端与驱动管(4)的底部连接且另一端与底座(11)连接,所述底座(11)起到固定和支撑作用。
  6. 根据权利要求5所述的爆轰合成用双管连接结构,其中,所述驱动管 (4)的顶部或底部与固定环(9)的端部相互拼接形成同轴筒体结构。
  7. 根据权利要求6所述的爆轰合成用双管连接结构,其中,所述驱动管(4)的底部或顶部端面处设有沿轴向向外延伸的限位环I,对应固定环(9)的端面处设有沿轴向向外延伸的限位环II,通过限位环I和限位环II的相互套设实现驱动管(4)与固定环(9)的连接。
  8. 根据权利要求5至7中任一项所述的爆轰合成用双管连接结构,其中,所述固定组件还包括固定块(8),所述固定块(8)设置于固定环(9)内,所述固定块(8)的一端与端塞(7)连接且另一端与盖板(10)或底座(11)连接。
  9. 一种爆轰式合成装置,包括壳体(13)和置于壳体(13)内的如权利要求1至8任一项所述的爆轰合成用双管连接结构;其中,所述壳体(13)的内壁与驱动管(4)的外壁之间腔室内填充有主炸药(5),所述驱动管(4)和样品管(2)的底端通过固定组件安装在托盘(12)上并且所述托盘(12)用于封住壳体(13)的底端,所述壳体(13)的顶端设有引爆部件。
  10. 根据权利要求9所述的爆轰式合成装置,其中,所述引爆部件包括引爆药(6)、雷管固定板(14)和雷管(15),所述引爆药(6)平铺于主炸药(5)的顶层,引爆药(6)上设置有雷管固定板(14),所述雷管固定板(14)上固定有雷管(15)。
  11. 如权利要求1至8中任一项所述爆轰合成用双管连接结构的应用,所述爆轰合成用双管连接结构用于将低压相材料转变成高压相材料或者用于粉碎硬质材料,其中,所述高压相材料包括金刚石、碳化物、氮化物、硼化物。
  12. 如权利要求9或10所述爆轰式合成装置的应用,所述爆轰式合成装置用于将低压相材料转变成高压相材料或者用于粉碎硬质材料,其中,所述高 压相材料包括金刚石、碳化物、氮化物、硼化物。
  13. 一种高压相材料,采用权利要求9或10所述的爆轰式合成装置合成,所述高压相材料包括多晶金刚石、碳化物、氮化物、硼化物。
  14. 一种高强度复合管,所述高强度复合管由权利要求1至8中任一项所述的爆轰合成用双管连接结构或权利要求9或10所述的爆轰式合成装置爆轰后制得。
  15. 一种高强度压力容器,所述高强度压力容器由权利要求1至8中任一项所述的爆轰合成用双管连接结构或权利要求9或10所述的爆轰式合成装置爆轰后制得。
  16. 如权利要求14所述的高强度复合管或如权利要求15的所述高强度压力容器的制备方法,其特征在于,利用权利要求1至8中任一项所述的爆轰合成用双管连接结构或权利要求9或10所述的爆轰式合成装置爆轰后制得所述高强度复合管或所述高强度压力容器。
PCT/CN2021/072433 2020-01-21 2021-01-18 一种爆轰合成用双管连接结构、爆轰式合成装置及其应用 WO2021147805A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022543391A JP7340108B2 (ja) 2020-01-21 2021-01-18 爆轟合成用二重管接続構造、爆轟合成装置、爆轟合成用二重管接続構造又は爆轟合成装置の使用、および高強度複合管又は高強度圧力容器の作製方法
GB2212188.3A GB2607777B (en) 2020-01-21 2021-01-18 Double-tube connection structure for detonation synthesis, detonation synthesis device and application thereof
US17/866,690 US20230001369A1 (en) 2020-01-21 2022-07-18 Double-tube connection structure for detonation synthesis, detonation synthesis device and application thereof
JP2023138477A JP2023175710A (ja) 2020-01-21 2023-08-28 爆轟合成用二重管接続構造、爆轟合成装置、爆轟合成用二重管接続構造又は爆轟合成装置の使用、および高強度複合管又は高強度圧力容器の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010071587.0A CN111195506B (zh) 2020-01-21 2020-01-21 一种爆轰式合成装置
CN202010071587.0 2020-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/866,690 Continuation-In-Part US20230001369A1 (en) 2020-01-21 2022-07-18 Double-tube connection structure for detonation synthesis, detonation synthesis device and application thereof

Publications (1)

Publication Number Publication Date
WO2021147805A1 true WO2021147805A1 (zh) 2021-07-29

Family

ID=70742330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072433 WO2021147805A1 (zh) 2020-01-21 2021-01-18 一种爆轰合成用双管连接结构、爆轰式合成装置及其应用

Country Status (5)

Country Link
US (1) US20230001369A1 (zh)
JP (2) JP7340108B2 (zh)
CN (1) CN111195506B (zh)
GB (1) GB2607777B (zh)
WO (1) WO2021147805A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111195506B (zh) * 2020-01-21 2021-01-15 成都奇点无限科技有限公司 一种爆轰式合成装置
CN112516920B (zh) * 2020-12-01 2022-06-24 四川久纳新材料有限公司 爆炸冲击合成多晶金刚石微粉生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065811A (zh) * 1991-04-19 1992-11-04 中国矿业大学 爆炸制造金刚石的方法及装置
CN2336852Y (zh) * 1998-03-27 1999-09-08 大连理工大学 一种粉末材料的爆炸合成与处理装置
CN1354131A (zh) * 2000-11-21 2002-06-19 日本油脂株式会社 高压相材料的制造方法
KR20170099502A (ko) * 2016-02-24 2017-09-01 (주)대주기계 자유 피스톤을 이용한 무격막 충격파관
JP2018126726A (ja) * 2017-02-10 2018-08-16 伊東 繁 衝撃波発生装置細線供給機構一式
CN111195506A (zh) * 2020-01-21 2020-05-26 成都奇点无限科技有限公司 一种爆轰式合成装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1281002A (en) * 1968-06-28 1972-07-12 Du Pont Method of subjecting solids to high dynamic pressures
JPS598415B2 (ja) * 1981-11-30 1984-02-24 工業技術院長 凝縮系物質の衝撃処理方法及び装置
JPS5893598A (ja) * 1981-11-30 1983-06-03 Agency Of Ind Science & Technol 凝縮系物質の高圧衝撃処理方法
US4713871A (en) * 1984-12-12 1987-12-22 Nippon Oil & Fats Co., Ltd. Method for producing amorphous alloy shaped articles
JPH0733523B2 (ja) * 1985-07-25 1995-04-12 日本油脂株式会社 非晶金属質成形体ないしは結晶金属質成形体の製造方法
JPS63243205A (ja) * 1987-03-30 1988-10-11 Takashi Chiba 粉末圧搾体の製造方法
JPH02253838A (ja) * 1989-03-28 1990-10-12 N R D:Kk 固体材料の衝撃圧縮方法及び装置
JPH06121923A (ja) * 1992-10-12 1994-05-06 Mitsui Mining Co Ltd ダイヤモンドの製造方法
KR100524340B1 (ko) * 2001-04-24 2005-10-28 아사히 가세이 가부시키가이샤 자석용 고형 재료
CN1151906C (zh) * 2001-09-28 2004-06-02 大连理工大学 块体非晶态合金管及其复合管的多层爆炸焊接技术
JP2005306674A (ja) * 2004-04-22 2005-11-04 Nof Corp 多結晶ダイヤモンド材料及びその製造方法
CN101745639A (zh) * 2008-12-05 2010-06-23 南京理工大学 非晶颗粒增强铝基复合材料爆炸压实制备方法
JP5509668B2 (ja) * 2009-04-27 2014-06-04 日油株式会社 ダイヤモンドの製造方法、及びこの製造方法によって製造されたダイヤモンド
CN206926049U (zh) * 2017-07-06 2018-01-26 湖北金兰特种金属材料有限公司 一种双管爆炸压实陶瓷粉末装置
CN208483991U (zh) * 2018-04-13 2019-02-12 江西忠朋陶瓷有限公司 一种双管爆炸压实功能陶瓷粉末装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065811A (zh) * 1991-04-19 1992-11-04 中国矿业大学 爆炸制造金刚石的方法及装置
CN2336852Y (zh) * 1998-03-27 1999-09-08 大连理工大学 一种粉末材料的爆炸合成与处理装置
CN1354131A (zh) * 2000-11-21 2002-06-19 日本油脂株式会社 高压相材料的制造方法
KR20170099502A (ko) * 2016-02-24 2017-09-01 (주)대주기계 자유 피스톤을 이용한 무격막 충격파관
JP2018126726A (ja) * 2017-02-10 2018-08-16 伊東 繁 衝撃波発生装置細線供給機構一式
CN111195506A (zh) * 2020-01-21 2020-05-26 成都奇点无限科技有限公司 一种爆轰式合成装置

Also Published As

Publication number Publication date
GB202212188D0 (en) 2022-10-05
US20230001369A1 (en) 2023-01-05
GB2607777B (en) 2024-05-22
JP2023504294A (ja) 2023-02-02
JP7340108B2 (ja) 2023-09-06
CN111195506B (zh) 2021-01-15
CN111195506A (zh) 2020-05-26
JP2023175710A (ja) 2023-12-12
GB2607777A (en) 2022-12-14

Similar Documents

Publication Publication Date Title
WO2021147805A1 (zh) 一种爆轰合成用双管连接结构、爆轰式合成装置及其应用
US3608014A (en) Method of explosively shocking solid materials
AU2011320466A2 (en) Direct drill bit drive for tools on the basis of a heat engine
CN102435109A (zh) 激光起爆飞片式无起爆药雷管
CN111472773B (zh) 一种用于产生可控冲击波的复合液体破岩棒及其制作方法
CN111472772A (zh) 一种用于产生冲击波的破岩棒及其制作方法
Nesterenko et al. Dynamic behavior of particulate/porous energetic materials
Meyers et al. Effect of shock pressure and plastic strain on chemical reactions in Nb Si and Mo Si systems
CN103449943B (zh) 一种激光激发微射流的装置及使用该装置的雷管
CN103953342A (zh) 一种用于煤矿的改进二氧化碳震裂装置及组装方法
Yang et al. Microcrystalline PETN prepared using microfluidic recrystallization platform and its performance characterization
CN101234428B (zh) 可提高飞片速度的平板爆炸装置
US3659972A (en) Diamond implosion apparatus
US6352029B1 (en) Thermally actuated release mechanism
RU2794547C1 (ru) Конструкция соединения двух труб для детонационного синтеза, устройство детонационного синтеза и их применение
US3499732A (en) Method for making diamond
CN102600769A (zh) 一种高淬火速率的材料冲击合成及回收装置
CN117108261B (zh) 一种基于含能液气流体复合控制燃爆的页岩压裂方法
RU185845U1 (ru) Устройство для получения алмазов и алмазоподобных материалов
CN216956382U (zh) 深井激发地震勘探高能震源
Jiao et al. Structural response of aluminum core–shell particles in detonation environment
JPH02253838A (ja) 固体材料の衝撃圧縮方法及び装置
CN106643328A (zh) 一种充气点火一体式气体爆破器引爆装置及致裂器
GB918880A (en) Improvements in carbon products and in their production
GB847775A (en) Improvements in or relating to the production of hollow bodies from powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543391

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202212188

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210118

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744572

Country of ref document: EP

Kind code of ref document: A1