WO2021147543A1 - 用户终端定位方法、设备及系统 - Google Patents

用户终端定位方法、设备及系统 Download PDF

Info

Publication number
WO2021147543A1
WO2021147543A1 PCT/CN2020/134914 CN2020134914W WO2021147543A1 WO 2021147543 A1 WO2021147543 A1 WO 2021147543A1 CN 2020134914 W CN2020134914 W CN 2020134914W WO 2021147543 A1 WO2021147543 A1 WO 2021147543A1
Authority
WO
WIPO (PCT)
Prior art keywords
service area
location service
user terminal
cloud server
correction model
Prior art date
Application number
PCT/CN2020/134914
Other languages
English (en)
French (fr)
Inventor
蒋鑫
赵悟
邹华
王健
徐辉
敖婷
Original Assignee
中移(上海)信息通信科技有限公司
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中移(上海)信息通信科技有限公司, 中国移动通信集团有限公司 filed Critical 中移(上海)信息通信科技有限公司
Priority to EP20915919.3A priority Critical patent/EP4092985A4/en
Priority to US17/759,097 priority patent/US20230041480A1/en
Publication of WO2021147543A1 publication Critical patent/WO2021147543A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/09Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing processing capability normally carried out by the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure belongs to the technical field of high-precision positioning, and in particular relates to a user terminal positioning method, edge cloud server, public cloud server, user terminal and system.
  • Satellite positioning technology means that the terminal calculates its coordinate position by receiving the navigation signal broadcast by the satellite.
  • the accuracy of the positioning technology is affected by factors such as the ionosphere, troposphere, and clock error.
  • the satellite ground-based augmentation system is to construct a network of reference stations on the determined position to continuously observe the satellite navigation signal and transmit the observation data back to the high-precision positioning platform.
  • the high-precision platform calculates the position correction information of the entire network based on the observation and true values of the reference station network.
  • the positioning terminal can calculate its high-precision position information by observing the satellite navigation signal and receiving the location correction information of the area where it is located.
  • the network architecture of the high-precision positioning system in the related technology is designed for a wide area service coverage (for example, the whole country, the whole province, and the whole city).
  • a wide area service coverage for example, the whole country, the whole province, and the whole city.
  • some local, closed, and mobile service scenarios such as mining areas, forest areas
  • a unified wide-area service architecture design is still adopted, it will affect the quality of positioning services and increase service construction and maintenance cost.
  • the embodiments of the present disclosure provide a user terminal positioning method, an edge cloud server, a public cloud server, a user terminal, and a system, which can improve the positioning accuracy of the user terminal.
  • a user terminal positioning method which is applied to an edge cloud server, and includes:
  • obtaining the differential correction model corresponding to the location service area from the public cloud server according to the location service area includes:
  • a method for locating a user terminal is provided, which is applied to a public cloud server, including:
  • the method before matching the differential correction model corresponding to the location service area according to the location service area, the method further includes:
  • the differential correction model of any grid coverage area is determined.
  • matching the differential correction model corresponding to the location service area includes:
  • the differential correction model corresponding to the location service area is matched.
  • a method for locating a user terminal is provided, which is applied to a user terminal, including:
  • an edge cloud server including:
  • the satellite positioning information receiving module is used to receive the satellite positioning information sent by the user terminal;
  • the location service area determination module is used to determine the location service area where the user terminal is located;
  • the differential correction model acquisition module is used to acquire the differential correction model corresponding to the location service area from the public cloud server according to the location service area;
  • the position calculation module is used to calculate the position by using the satellite positioning information and the differential correction model to obtain the position information of the user terminal;
  • the location information sending module is used to send location information to the user terminal.
  • the differential correction model acquisition module includes:
  • the location service area request sending unit is used to send the location service area request corresponding to the location service area to the public cloud server;
  • the differential correction model receiving unit is configured to receive the differential correction model corresponding to the location service area sent by the public cloud server.
  • a public cloud server including:
  • the location service area request receiving module is used to receive the location service area request sent by the edge cloud server;
  • the location service area request parsing module is used to parse the location service area request and determine the location service area corresponding to the location service area request;
  • the differential correction model matching module is used to match the differential correction model corresponding to the location service area according to the location service area;
  • the differential correction model sending module is used to send the differential correction model to the edge cloud server for the edge cloud server to determine the location information of the user terminal according to the differential correction model.
  • the public cloud server further includes:
  • Satellite observation data packet receiving module used to receive satellite observation data packets sent by the ground-based enhanced reference station network
  • Satellite observation data packet analysis module used to parse satellite observation data packets, and obtain observation data of each reference station in the ground-based enhanced reference station network
  • the coverage area dividing module is used to divide the coverage area of the ground-based enhanced reference station network to obtain a preset number of grid coverage areas;
  • the differential correction model determination module is used to determine the differential correction model of any grid coverage area based on the observation data and precise position coordinates of the reference station in any grid coverage area.
  • the differential correction model matching module includes:
  • the grid coverage area determining unit is used to determine the grid coverage area to which the location service area belongs based on the location service area;
  • the differential correction model matching unit is used to match the differential correction model corresponding to the location service area according to the grid coverage area to which the location service area belongs.
  • a user terminal including:
  • Satellite positioning information receiving module for receiving satellite positioning information sent by satellites
  • the satellite positioning information sending module is used to send satellite positioning information to the edge cloud server to obtain location information of the user terminal.
  • a user terminal positioning system in a seventh aspect, includes an edge cloud server, a public cloud server, and a user terminal.
  • the edge cloud server is used to execute the user terminal positioning method of the first aspect
  • the public cloud server is used to execute the first aspect.
  • the user terminal is used to execute the user terminal positioning method of the third aspect.
  • the user terminal positioning method, edge cloud server, public cloud server, user terminal, and system of the embodiments of the present disclosure can improve the positioning accuracy of the user terminal.
  • the differential correction model corresponding to the location service area is obtained from the public cloud server according to the location service area where the user terminal is located. Since the differential correction model corresponds to the location service area where the user terminal is located, the satellite positioning information is used Perform position calculation with the differential correction model to obtain the position information of the user terminal, which can improve the positioning accuracy of the user terminal.
  • FIG. 1 is a schematic flowchart of a method for positioning a user terminal according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of another user terminal positioning method provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of another method for positioning a user terminal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the architecture of a high-precision positioning system based on edge cloud technology provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a high-precision positioning system and modules based on edge cloud technology provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for implementing high-precision positioning based on edge cloud technology according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of an edge cloud server provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a public cloud server provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a user terminal provided by an embodiment of the present disclosure.
  • the network architecture of the high-precision positioning system in the related technology is designed for a wide area service coverage (for example, the whole country, the whole province, and the whole city).
  • a wide area service coverage for example, the whole country, the whole province, and the whole city.
  • some local, closed, and mobile service scenarios such as mining areas, forest areas
  • a unified wide-area service architecture design is still adopted, it will affect the quality of positioning services and increase service construction and maintenance cost.
  • embodiments of the present disclosure provide a user terminal positioning method, an edge cloud server, a public cloud server, a user terminal, and a system. The following first introduces the user terminal positioning method provided by the embodiments of the present disclosure.
  • FIG. 1 is a schematic flowchart of a method for positioning a user terminal according to an embodiment of the present disclosure. As shown in Figure 1, the user terminal positioning method is applied to an edge cloud server and includes:
  • S101 Receive satellite positioning information sent by a user terminal.
  • S103 Acquire a differential correction model corresponding to the location service area from the public cloud server according to the location service area.
  • obtaining the differential correction model corresponding to the location service area from the public cloud server according to the location service area usually includes: sending a location service area request corresponding to the location service area to the public cloud server; The differential correction model corresponding to the location service area.
  • S104 Perform position calculation using the satellite positioning information and the differential correction model to obtain the position information of the user terminal.
  • S105 Send location information to the user terminal.
  • the edge cloud server After obtaining the differential correction model corresponding to the location service area, the edge cloud server uses the satellite positioning information and the differential correction model to perform position calculation, obtains the location information of the user terminal, and sends the location information to the user terminal.
  • FIG. 2 is a schematic flowchart of another user terminal positioning method provided by an embodiment of the present disclosure. As shown in FIG. 2, the user terminal positioning method is applied to a public cloud server and includes:
  • S202 Analyze the location service area request, and determine the location service area corresponding to the location service area request.
  • the differential correction model corresponding to the location service area before matching the differential correction model corresponding to the location service area according to the location service area, it usually includes: receiving satellite observation data packets sent by the ground-based enhanced reference station network; parsing the satellite observation data packets to obtain ground-based enhanced reference Observation data of each reference station in the station network; Divide the coverage area of the ground-based enhanced reference station network to obtain a preset number of grid coverage areas; Determine any reference station based on the observation data and precise position coordinates of the reference station in any grid coverage area.
  • a differential correction model for the area covered by a grid before matching the differential correction model corresponding to the location service area according to the location service area, it usually includes: receiving satellite observation data packets sent by the ground-based enhanced reference station network; parsing the satellite observation data packets to obtain ground-based enhanced reference Observation data of each reference station in the station network; Divide the coverage area of the ground-based enhanced reference station network to obtain a preset number of grid coverage areas; Determine any reference station based on the observation data and precise position coordinate
  • matching the differential correction model corresponding to the location service area according to the location service area may generally include: determining the grid coverage area to which the location service area belongs based on the location service area; and according to the network to which the location service area belongs. The grid coverage area is matched with the differential correction model corresponding to the location service area.
  • FIG. 3 is a schematic flowchart of another method for locating a user terminal according to an embodiment of the present disclosure. As shown in FIG. 3, the method for locating a user terminal is applied to a user terminal and includes:
  • S301 Receive satellite positioning information sent by the satellite.
  • S302 Send satellite positioning information to the edge cloud server to obtain location information of the user terminal.
  • This embodiment provides a positioning system and implementation method based on edge cloud technology.
  • the public cloud in Figures 4 and 5 is the public cloud server
  • the edge cloud is the edge cloud server
  • the terminal side is the user terminal.
  • the positioning system consists of a ground-based augmentation station network composed of reference stations distributed in the positioning service area, a high-precision positioning platform deployed on a public cloud server, a position calculation platform deployed on an edge cloud server, and user terminals.
  • the high-precision positioning platform is responsible for calculating the differential correction model of the entire network based on the observation data of the ground-based augmentation station network, and matching the corresponding regional correction model according to the service area of the edge cloud server to broadcast; the edge cloud server according to the regional correction model and user terminal
  • the observation data of the user terminal can be used to calculate the high-precision position of the user terminal.
  • This embodiment introduces an edge cloud computing network that is closer to users in the networking structure and more flexible in service deployment in the system architecture, so that the system can not only meet the needs of wide-area service coverage, but also flexibly meet the needs of local areas.
  • Sexual, closed, and mobile service scenarios (such as mining areas, forest areas).
  • the positioning implementation method based on edge cloud technology provided in this embodiment is realized by the collaboration of the high-precision positioning platform on the public cloud server and the position calculation platform on the edge cloud server.
  • the system and module composition are shown in FIG. 5 :
  • the reference station network satellite observation data receiving module of the high-precision positioning platform is responsible for collecting the satellite observation data packets of each station in the ground-based enhanced reference station network, solving the observation data of each reference station and sending it to the whole network for differential correction calculation Module.
  • the calculation module of the whole network differential correction model divides the coverage area of the reference station network into grids, and calculates the reference station observation data and its real coordinates in each grid to generate the differential correction model of each grid (including ionosphere and troposphere). Model, etc.), and send the network-wide differential correction model to the edge cloud service area matching module.
  • the data broadcasting module is responsible for receiving the service area requirements uploaded by the edge cloud location calculation platform and transmitting it to the service area matching module.
  • the edge cloud service area matching module matches the grid area of the entire network according to the edge cloud location service demand range, selects the grid correction data adjacent to the service area and calculates the differential correction model of the service demand area, and then transmits it to the data broadcast module .
  • the data broadcasting module then sends the differential correction model of the service range required by the edge cloud to the edge cloud location calculation platform.
  • the high-precision positioning platform can flexibly match and calculate according to the actual location service area requirements of the edge cloud location calculation platform, thereby improving the networking flexibility of the entire system.
  • the regional correction model module of the location calculation platform is responsible for uploading the required location service area to the high-precision positioning platform on the public cloud side, and obtains the regional correction model of the corresponding service demand area and then transmits it to the terminal location solution ⁇ module.
  • the terminal observation signal acquisition module is responsible for receiving the satellite signal observation value uploaded by the user terminal and then transmitting it to the terminal position calculation module.
  • the terminal position calculation module combines the area correction model with the original satellite observation signal of the user terminal to perform the calculation, obtains the high-precision position information of the user terminal, and then decides whether to download the positioning information to the user terminal according to specific application requirements.
  • the location calculation platform on the edge cloud side performs the location calculation of the user terminal. First, it can reduce the physical transmission delay of obtaining the regional differential correction model data from the high-precision platform on the public cloud server, and secondly, it can also ensure the probabilistic location of the user terminal. Only transmit within the edge cloud network, which improves user privacy.
  • the user terminal does not need to perform position calculation, it only needs to have a communication module and a satellite signal receiving module to obtain high-precision position information, thereby reducing the cost of the terminal and the complexity of software and hardware.
  • the satellite signal module is responsible for receiving and measuring satellite positioning and navigation signals
  • the communication module is responsible for reporting observation data to the edge position calculation platform and obtaining positioning data.
  • FIG. 6 is a schematic flowchart of a method for implementing high-precision positioning based on edge cloud technology according to an embodiment of the present disclosure.
  • the positioning system provided in this embodiment includes: a public cloud server, at least one edge cloud server, and at least one user terminal. This embodiment does not limit the number of public cloud servers, edge cloud servers, and user terminals, and FIG. 6 is only an example.
  • the public cloud server generates a network-wide differential correction model based on the observation data of the reference station network, and generates the differential correction model of the target area according to the service demand area of the edge cloud server, and then transmits it to the edge cloud server.
  • the edge cloud server performs high-precision position calculation of the user terminal according to the difference correction model between the satellite signal observation value of the user terminal and the target area.
  • Step S601 The high-precision positioning platform of the public cloud server receives the observation data of the reference station network;
  • Step S602 The high-precision platform divides the coverage area of the reference station network into multiple grids, and calculates each network The differential correction model of the grid area;
  • step S603, the high-precision positioning platform matches the location service demand area uploaded by the edge cloud server with the grid, and generates the differential correction model of the target area, and then sends it back to the edge cloud server.
  • Step S611 The user terminal initiates a positioning request;
  • Step S612 The user terminal observes satellite signals and transmits the observation value to the edge cloud server.
  • steps 601 (602, 603) and step 611 (612) are performed independently and are processed in parallel, which can improve the flexibility of system networking and reduce the time delay for users to obtain location services.
  • Step 621 The edge cloud server calculates the high-precision location information of the user terminal after receiving the differential correction model and the observation value of the user terminal, and then transmits it back to the user terminal.
  • the position solution platform on the edge cloud is used to provide high-precision positioning services to the terminal, and the original high-precision positioning platform is fully decoupled from the terminal, thereby improving the flexibility and portability of the entire positioning system.
  • This embodiment does not require the terminal device to provide computing resources on the hardware, which can reduce the implementation complexity and hardware cost of the terminal device, and improve the convenience and portability of the terminal;
  • This embodiment does not require the terminal device to integrate a high-precision positioning algorithm on the software, which can save the algorithm cost of the terminal device and further reduce the implementation complexity of the terminal device.
  • This embodiment uses the edge cloud to receive the approximate location information of the user terminal, ensuring that the user location information is only transmitted in the edge cloud trusted network and system, and avoids the risk of leakage of user privacy data uploaded to the public cloud.
  • the high-precision platform of the public cloud is used to push the differential correction number in the area to the position calculation platform on the edge cloud, which can reduce the delay for the user terminal to obtain the differential correction service.
  • the position calculation platform of the edge cloud is used to calculate the position of the terminal, which can improve the accuracy of the terminal positioning algorithm by using more abundant computing resources on the edge cloud.
  • edge cloud server public cloud server, user terminal, and system provided by embodiments of the present disclosure.
  • the edge cloud server, public cloud server, user terminal, and system described below can interact with the user terminal positioning method described above. Corresponding reference.
  • FIG. 7 is a schematic structural diagram of an edge cloud server provided by an embodiment of the present disclosure. As shown in FIG. 7, the edge cloud server includes:
  • the satellite positioning information receiving module 701 is used to receive the satellite positioning information sent by the user terminal;
  • the location service area determining module 702 is used to determine the location service area where the user terminal is located;
  • the differential correction model acquisition module 703 is configured to acquire the differential correction model corresponding to the location service area from the public cloud server according to the location service area;
  • the position calculation module 704 is configured to use the satellite positioning information and the differential correction model to perform position calculation to obtain the position information of the user terminal;
  • the location information sending module 705 is used to send location information to the user terminal.
  • the differential correction model acquisition module 703 includes:
  • the location service area request sending unit is used to send the location service area request corresponding to the location service area to the public cloud server;
  • the differential correction model receiving unit is configured to receive the differential correction model corresponding to the location service area sent by the public cloud server.
  • Each module in the edge cloud server provided in FIG. 7 has the function of implementing each step in the example shown in FIG. 1, and achieves the same technical effect as the user terminal positioning method shown in FIG.
  • the embodiment of the present disclosure also provides a public cloud server.
  • the public cloud server includes:
  • the location service area request receiving module 801 is configured to receive the location service area request sent by the edge cloud server;
  • the location service area request parsing module 802 is used to parse the location service area request and determine the location service area corresponding to the location service area request;
  • the differential correction model matching module 803 is configured to match the differential correction model corresponding to the location service area according to the location service area;
  • the differential correction model sending module 804 is configured to send the differential correction model to the edge cloud server for the edge cloud server to determine the location information of the user terminal according to the differential correction model.
  • the public cloud server further includes:
  • Satellite observation data packet receiving module used to receive satellite observation data packets sent by the ground-based enhanced reference station network
  • Satellite observation data packet analysis module used to parse satellite observation data packets and obtain observation data of each reference station in the ground-based enhanced reference station network
  • the coverage area dividing module is used to divide the coverage area of the ground-based enhanced reference station network to obtain a preset number of grid coverage areas;
  • the differential correction model determination module is used to determine the differential correction model of any grid coverage area based on the observation data and precise position coordinates of the reference station in any grid coverage area.
  • the differential correction model matching module 803 includes:
  • the grid coverage area determining unit is used to determine the grid coverage area to which the location service area belongs based on the location service area;
  • the differential correction model matching unit is used to match the differential correction model corresponding to the location service area according to the grid coverage area to which the location service area belongs.
  • Each module in the public cloud server provided in FIG. 8 has the function of implementing each step in the example shown in FIG. 2 and achieves the same technical effect as the user terminal positioning method shown in FIG. 2. For brevity, details are not repeated here.
  • the embodiment of the present disclosure also provides a user terminal.
  • the user terminal includes:
  • the satellite positioning information receiving module 901 is used to receive the satellite positioning information sent by the satellite;
  • the satellite positioning information sending module 902 is configured to send satellite positioning information to the edge cloud server to obtain location information of the user terminal.
  • Each module in the user terminal provided in FIG. 9 has the function of implementing each step in the example shown in FIG. 3, and achieves the same technical effect as the positioning method of the user terminal shown in FIG. 3. For concise description, it will not be repeated here.
  • the embodiments of the present disclosure also provide a user terminal positioning system.
  • the system includes an edge cloud server, a public cloud server, and a user terminal.
  • the edge cloud server is used to execute the user terminal positioning method of the foregoing embodiment
  • the public cloud server is used to execute In the user terminal positioning method of the foregoing embodiment
  • the user terminal is used to execute the user terminal positioning method of the foregoing embodiment.
  • the functional blocks shown in the above-mentioned structural block diagram can be implemented as hardware, software, firmware, or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, plug-ins, function cards, and so on.
  • ASIC application specific integrated circuit
  • the elements of the present disclosure are programs or code segments used to perform required tasks.
  • the program or code segment may be stored in a machine-readable medium, or transmitted on a transmission medium or a communication link through a data signal carried in a carrier wave.
  • "Machine-readable medium" may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and so on.
  • the code segment can be downloaded via a computer network such as the Internet, an intranet, and so on.
  • each module is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated in a certain chip of the above-mentioned device for implementation.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, which is determined by a certain processing element of the above-mentioned device.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital signal processor, DSP), or one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本公开公开了一种用户终端定位方法、设备及系统。该用户终端定位方法,应用于边缘云服务器,包括:接收用户终端发送的卫星定位信息;确定用户终端所在的位置服务区域;根据位置服务区域从公有云服务器获取与位置服务区域对应的差分改正模型;利用卫星定位信息和差分改正模型进行位置解算,得到用户终端的位置信息;向用户终端发送位置信息。

Description

用户终端定位方法、设备及系统
相关申请的交叉引用
本申请主张在2020年1月21日在中国提交的中国专利申请号No.202010069444.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开属于高精度定位技术领域,尤其涉及一种用户终端定位方法、边缘云服务器、公有云服务器、用户终端及系统。
背景技术
卫星定位技术是指终端通过接收卫星广播的导航信号计算其坐标位置,该定位技术的精度受电离层、对流层、钟差等因素影响。卫星地基增强系统是在确知位置上建设参考站网对卫星导航信号进行持续观测并将观测数据回传给高精度定位平台。高精度平台根据参考站网的观测值与真实值计算出整网的位置修正信息。定位终端通过观测卫星导航信号并接收其所在区域的位置修正信息,可计算出其高精度的位置信息。
相关技术中的高精度定位系统网络架构是针对于广域的服务覆盖范围(例如全国、全省、全市)进行设计。在面对一些局域性的、封闭性的、移动性的服务场景(例如矿区、林区)时,若仍采用统一的广域服务架构设计,则会影响定位服务质量,增加服务建设及维护成本。
因此,如何提高用户终端的定位精度是本领域技术人员亟需解决的技术问题。
发明内容
本公开实施例提供一种用户终端定位方法、边缘云服务器、公有云服务器、用户终端及系统,能够提高用户终端的定位精度。
第一方面,提供了一种用户终端定位方法,应用于边缘云服务器,包括:
接收用户终端发送的卫星定位信息;
确定用户终端所在的位置服务区域;
根据位置服务区域从公有云服务器获取与位置服务区域对应的差分改正模型;
利用卫星定位信息和差分改正模型进行位置解算,得到用户终端的位置信息;
向用户终端发送位置信息。
可选地,根据位置服务区域从公有云服务器获取与位置服务区域对应的差分改正模型,包括:
向公有云服务器发送位置服务区域对应的位置服务区域请求;
接收公有云服务器发送的与位置服务区域对应的差分改正模型。
第二方面,提供了一种用户终端定位方法,应用于公有云服务器,包括:
接收边缘云服务器发送的位置服务区域请求;
解析位置服务区域请求,确定位置服务区域请求对应的位置服务区域;
根据位置服务区域,匹配位置服务区域对应的差分改正模型;
向边缘云服务器发送差分改正模型,以用于边缘云服务器根据差分改正模型确定用户终端的位置信息。
可选地,根据位置服务区域,匹配位置服务区域对应的差分改正模型之前,还包括:
接收地基增强参考站网络发送的卫星观测数据包;
解析卫星观测数据包,获取地基增强参考站网络中各个参考站的观测数据;
划分地基增强参考站网络的覆盖区域,得到预设数量个网格覆盖区域;
根据任一网格覆盖区域中参考站的观测数据和精确位置坐标,确定任一网格覆盖区域的差分改正模型。
可选地,根据位置服务区域,匹配位置服务区域对应的差分改正模型,包括:
基于位置服务区域,确定位置服务区域所归属的网格覆盖区域;
根据位置服务区域所归属的网格覆盖区域,匹配位置服务区域对应的差分改正模型。
第三方面,提供了一种用户终端定位方法,应用于用户终端,包括:
接收卫星发送的卫星定位信息;
向边缘云服务器发送卫星定位信息以获取用户终端的位置信息。
第四方面,提供了一种边缘云服务器,包括:
卫星定位信息接收模块,用于接收用户终端发送的卫星定位信息;
位置服务区域确定模块,用于确定用户终端所在的位置服务区域;
差分改正模型获取模块,用于根据位置服务区域从公有云服务器获取与位置服务区域对应的差分改正模型;
位置解算模块,用于利用卫星定位信息和差分改正模型进行位置解算,得到用户终端的位置信息;
位置信息发送模块,用于向用户终端发送位置信息。
可选地,差分改正模型获取模块,包括:
位置服务区域请求发送单元,用于向公有云服务器发送位置服务区域对应的位置服务区域请求;
差分改正模型接收单元,用于接收公有云服务器发送的与位置服务区域对应的差分改正模型。
第五方面,提供了一种公有云服务器,包括:
位置服务区域请求接收模块,用于接收边缘云服务器发送的位置服务区域请求;
位置服务区域请求解析模块,用于解析位置服务区域请求,确定位置服务区域请求对应的位置服务区域;
差分改正模型匹配模块,用于根据位置服务区域,匹配位置服务区域对应的差分改正模型;
差分改正模型发送模块,用于向边缘云服务器发送差分改正模型,以用于边缘云服务器根据差分改正模型确定用户终端的位置信息。
可选地,该公有云服务器还包括:
卫星观测数据包接收模块,用于接收地基增强参考站网络发送的卫星观测数据包;
卫星观测数据包解析模块,用于解析卫星观测数据包,获取地基增强参 考站网络中各个参考站的观测数据;
覆盖区域划分模块,用于划分地基增强参考站网络的覆盖区域,得到预设数量个网格覆盖区域;
差分改正模型确定模块,用于根据任一网格覆盖区域中参考站的观测数据和精确位置坐标,确定任一网格覆盖区域的差分改正模型。
可选地,差分改正模型匹配模块,包括:
网格覆盖区域确定单元,用于基于位置服务区域,确定位置服务区域所归属的网格覆盖区域;
差分改正模型匹配单元,用于根据位置服务区域所归属的网格覆盖区域,匹配位置服务区域对应的差分改正模型。
第六方面,提供了一种用户终端,包括:
卫星定位信息接收模块,用于接收卫星发送的卫星定位信息;
卫星定位信息发送模块,用于向边缘云服务器发送卫星定位信息以获取用户终端的位置信息。
第七方面,提供了一种用户终端定位系统,系统包括边缘云服务器、公有云服务器和用户终端,其中,边缘云服务器用于执行第一方面的用户终端定位方法,公有云服务器用于执行第二方面的用户终端定位方法,用户终端用于执行第三方面的用户终端定位方法。
本公开实施例的用户终端定位方法、边缘云服务器、公有云服务器、用户终端及系统,能够提高用户终端的定位精度。在该用户终端定位方法中,根据用户终端所在的位置服务区域从公有云服务器获取与位置服务区域对应的差分改正模型,由于差分改正模型对应于用户终端所在的位置服务区域,故利用卫星定位信息和差分改正模型进行位置解算,得到用户终端的位置信息,能够提高用户终端的定位精度。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种用户终端定位方法的流程示意图;
图2是本公开实施例提供的另一种用户终端定位方法的流程示意图;
图3是本公开实施例提供的又一种用户终端定位方法的流程示意图;
图4是本公开实施例提供的一种基于边缘云技术的高精度定位系统架构示意图;
图5是本公开实施例提供的一种基于边缘云技术的高精度定位系统及模块组成示意图;
图6是本公开实施例提供的一种基于边缘云技术的高精度定位实现方法的流程示意图;
图7是本公开实施例提供的一种边缘云服务器的结构示意图;
图8是本公开实施例提供的一种公有云服务器的结构示意图;
图9是本公开实施例提供的一种用户终端的结构示意图。
具体实施方式
下面将详细描述本公开的各个方面的特征和示例性实施例,为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本公开进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本公开,并不被配置为限定本公开。对于本领域技术人员来说,本公开可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本公开的示例来提供对本公开更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
相关技术中的高精度定位系统网络架构是针对于广域的服务覆盖范围 (例如全国、全省、全市)进行设计。在面对一些局域性的、封闭性的、移动性的服务场景(例如矿区、林区)时,若仍采用统一的广域服务架构设计,则会影响定位服务质量,增加服务建设及维护成本。
为了解决相关技术问题,本公开实施例提供了一种用户终端定位方法、边缘云服务器、公有云服务器、用户终端及系统。下面首先对本公开实施例所提供的用户终端定位方法进行介绍。
图1是本公开实施例提供的一种用户终端定位方法的流程示意图。如图1所示,该用户终端定位方法应用于边缘云服务器,包括:
S101、接收用户终端发送的卫星定位信息。
S102、确定用户终端所在的位置服务区域。
S103、根据位置服务区域从公有云服务器获取与位置服务区域对应的差分改正模型。
在一个实施例中,根据位置服务区域从公有云服务器获取与位置服务区域对应的差分改正模型,通常包括:向公有云服务器发送位置服务区域对应的位置服务区域请求;接收公有云服务器发送的与位置服务区域对应的差分改正模型。
S104、利用卫星定位信息和差分改正模型进行位置解算,得到用户终端的位置信息。
S105、向用户终端发送位置信息。
边缘云服务器在获取与位置服务区域对应的差分改正模型后,利用卫星定位信息和差分改正模型进行位置解算,得到用户终端的位置信息,并向用户终端发送位置信息。
图2是本公开实施例提供的另一种用户终端定位方法的流程示意图,如图2所示,该用户终端定位方法应用于公有云服务器,包括:
S201、接收边缘云服务器发送的位置服务区域请求。
S202、解析位置服务区域请求,确定位置服务区域请求对应的位置服务区域。
S203、根据位置服务区域,匹配位置服务区域对应的差分改正模型。
在一个实施例中,根据位置服务区域,匹配位置服务区域对应的差分改 正模型之前,通常还可以包括:接收地基增强参考站网络发送的卫星观测数据包;解析卫星观测数据包,获取地基增强参考站网络中各个参考站的观测数据;划分地基增强参考站网络的覆盖区域,得到预设数量个网格覆盖区域;根据任一网格覆盖区域中参考站的观测数据和精确位置坐标,确定任一网格覆盖区域的差分改正模型。
在一个实施例中,根据位置服务区域,匹配位置服务区域对应的差分改正模型,通常可以包括:基于位置服务区域,确定位置服务区域所归属的网格覆盖区域;根据位置服务区域所归属的网格覆盖区域,匹配位置服务区域对应的差分改正模型。
S204、向边缘云服务器发送差分改正模型,以用于边缘云服务器根据差分改正模型确定用户终端的位置信息。
图3是本公开实施例提供的又一种用户终端定位方法的流程示意图,如图3所示,该用户终端定位方法应用于用户终端,包括:
S301、接收卫星发送的卫星定位信息。
S302、向边缘云服务器发送卫星定位信息以获取用户终端的位置信息。
下面以一个具体实施例对上述内容进行说明,具体如下:
该实施例提供了一种基于边缘云技术的定位系统与实现方法。如图4所示,图4和图5中公有云即为公有云服务器,边缘云即为边缘云服务器,终端侧即为用户终端。该定位系统由分布在定位服务区域的参考站组成的地基增强站网络、部署于公有云服务器上的高精度定位平台、部署于边缘云服务器的位置解算平台以及用户终端构成。其中,高精度定位平台负责根据地基增强站网络的观测数据计算整网的差分改正模型,并根据边缘云服务器的服务区域匹配相应的区域改正模型进行播发;边缘云服务器根据区域改正模型及用户终端的观测数据进行用户终端的高精度位置解算。
该实施例通过在系统架构中引入在组网结构上更靠近用户,在服务部署上更为灵活的边缘云计算网络,使得本系统既可以满足广域的服务覆盖需求也可以灵活的满足局域性的、封闭性的、移动性的服务场景(例如矿区、林区)。
该实施例提供的一种基于边缘云技术的定位实现方法由公有云服务器上 的高精度定位平台与边缘云服务器上的位置解算平台的协同而实现,其系统及模块组成如图5所示:
在公有云侧,高精度定位平台的参考站网络卫星观测数据接收模块负责收集地基增强参考站网络中各站点的卫星观测数据包,解出各参考站的观测数据并传送给全网差分改正计算模块。全网差分改正模型计算模块将参考站网络覆盖区域按网格进行划分,并结合各网格中参考站观测数据及其真实坐标进行计算,生成各个格网的差分改正模型(包括电离层、对流层模型等),并将全网差分改正模型传送给边缘云服务区域匹配模块。数据播发模块负责接收边缘云位置解算平台上传的服务区域需求,并传送给服务区域匹配模块。边缘云服务区域匹配模块根据边缘云位置服务需求范围与全网的网格区域进行匹配,选取与服务区域邻近的网格改正数据并计算出服务需求区域的差分改正模型,再传送给数据播发模块。数据播发模块再将边缘云需求的服务范围的差分改正模型发送至边缘云位置解算平台。高精度定位平台可根据边缘云位置解算平台的实际位置服务区域需求,灵活的进行匹配与计算,从而提升整个系统的组网灵活性。
在边缘云侧,位置解算平台的区域改正模型模块负责将所需求的位置服务区域上传给公有云侧的高精度定位平台,并获取相应的服务需求区域的区域改正模型再传送给终端位置解算模块。终端观测信号获取模块负责接收用户终端上传的卫星信号观测值再传送给终端位置解算模块。终端位置解算模块结合区域改正模型与用户终端的原始卫星观测信号进行解算,获得用户终端的高精度位置信息,再根据具体应用需求决定是否将定位信息下传给用户终端。在边缘云侧的位置解算平台进行用户终端的位置解算,首先可以减少从公有云服务器上的高精度平台获取区域差分改正模型数据的物理传输时延,其次还可以保证用户终端的概率位置只在边缘云网络内传输,提升了用户隐私性。
在终端侧,因为用户终端不需要进行位置解算,故只需要具备通信模块与卫星信号接收模块就可以获得高精度位置信息,从而降低了终端的成本及软硬件复杂度。卫星信号模块负责接收测量卫星定位导航信号,通信模块负责向边缘侧位置解算平台上报观测数据并获取定位数据。
图6是本公开实施例提供的一种基于边缘云技术的高精度定位实现方法的流程示意图。如图6所示,本实施例提供的定位系统包括:公有云服务器,至少一个边缘云服务器和至少一个用户终端。本实施例对于公有云服务器,边缘云服务器,用户终端的数目并不限定,图6仅为一种示例。
在上述实施例中,由公有云服务器根据基准站网的观测数据生成全网的差分改正模型,并根据边缘云服务器的服务需求区域生成该目标区域的差分改正模型,再传输给边缘云服务器。边缘云服务器根据用户终端的卫星信号观测值与目标区域的差分改正模型进行用户终端的高精度位置解算。其详细步骤如图6所示:步骤S601公有云服务器的高精度定位平台接收基准站网的观测数据;步骤S602高精度平台将基准站网络的覆盖区域划分成多个网格,并计算各网格区域的差分改正模型;步骤S603高精度定位平台根据边缘云服务器上传的位置服务需求区域与网格进行匹配,并生成目标区域的差分改正模型,再回传给边缘云服务器。步骤S611用户终端发起定位请求;步骤S612用户终端观测卫星信号,并将观测值传送至边缘云服务器。需要注意的是,步骤601(602,603)与步骤611(612)的进行是相互独立的,并行处理的,因而可以提升系统组网的灵活性并降低用户获取位置服务的时延。步骤621边缘云服务器在接收到差分改正模型与用户终端的观测值后计算出用户终端的高精度位置信息,再回传给用户终端。
本实施例具有如下有益效果:
1、灵活性高:
a)本实施例采用边缘云上的位置解算平台向终端提供高精度定位服务,充分的将原高精度定位平台与终端进行解耦,从而提升了整个定位系统的灵活性与可移植性。
2、终端设备要求低:
a)本实施例在硬件上不需要终端设备提供计算资源,可以降低终端设备的实现复杂度及硬件成本,提升终端的简便易携性;
b)本实施例在软件上不需要终端设备集成高精度定位算法,可以节省终端设备的算法花销,进一步降低终端设备的实现复杂度。
3、用户隐私性高:
a)本实施例使用边缘云接收用户终端的概略位置信息,保证用户位置信息只在边缘云可信网络与系统中进行传输,避免了用户隐私数据上传至公有云中的泄露风险。
4、定位服务质量高:
a)本实施例采用公有云的高精度平台向边缘云上的位置解算平台推送其区域内的差分改正数,可以降低用户终端获取差分改正服务的时延。
b)本实施例采用边缘云的位置解算平台进行终端的位置计算,可以通过边缘云上更丰富的计算资源提升终端定位算法的精度。
下面对本公开实施例提供的一种边缘云服务器、公有云服务器、用户终端及系统进行介绍,下文描述的边缘云服务器、公有云服务器、用户终端及系统与上文描述的用户终端定位方法可相互对应参照。
图7是本公开实施例提供的一种边缘云服务器的结构示意图,如图7所示,该边缘云服务器,包括:
卫星定位信息接收模块701,用于接收用户终端发送的卫星定位信息;
位置服务区域确定模块702,用于确定用户终端所在的位置服务区域;
差分改正模型获取模块703,用于根据位置服务区域从公有云服务器获取与位置服务区域对应的差分改正模型;
位置解算模块704,用于利用卫星定位信息和差分改正模型进行位置解算,得到用户终端的位置信息;
位置信息发送模块705,用于向用户终端发送位置信息。
可选地,差分改正模型获取模块703,包括:
位置服务区域请求发送单元,用于向公有云服务器发送位置服务区域对应的位置服务区域请求;
差分改正模型接收单元,用于接收公有云服务器发送的与位置服务区域对应的差分改正模型。
图7提供的边缘云服务器中的各个模块具有实现图1所示实例中各个步骤的功能,并达到与图1所示用户终端定位方法相同的技术效果,为简洁描述,在此不再赘述。
本公开实施例还提供了一种公有云服务器,如图8所示,该公有云服务 器,包括:
位置服务区域请求接收模块801,用于接收边缘云服务器发送的位置服务区域请求;
位置服务区域请求解析模块802,用于解析位置服务区域请求,确定位置服务区域请求对应的位置服务区域;
差分改正模型匹配模块803,用于根据位置服务区域,匹配位置服务区域对应的差分改正模型;
差分改正模型发送模块804,用于向边缘云服务器发送差分改正模型,以用于边缘云服务器根据差分改正模型确定用户终端的位置信息。
可选地,该公有云服务器还包括:
卫星观测数据包接收模块,用于接收地基增强参考站网络发送的卫星观测数据包;
卫星观测数据包解析模块,用于解析卫星观测数据包,获取地基增强参考站网络中各个参考站的观测数据;
覆盖区域划分模块,用于划分地基增强参考站网络的覆盖区域,得到预设数量个网格覆盖区域;
差分改正模型确定模块,用于根据任一网格覆盖区域中参考站的观测数据和精确位置坐标,确定任一网格覆盖区域的差分改正模型。
可选地,差分改正模型匹配模块803,包括:
网格覆盖区域确定单元,用于基于位置服务区域,确定位置服务区域所归属的网格覆盖区域;
差分改正模型匹配单元,用于根据位置服务区域所归属的网格覆盖区域,匹配位置服务区域对应的差分改正模型。
图8提供的公有云服务器中的各个模块具有实现图2所示实例中各个步骤的功能,并达到与图2所示用户终端定位方法相同的技术效果,为简洁描述,在此不再赘述。
本公开实施例还提供了一种用户终端,如图9所示,该用户终端,包括:
卫星定位信息接收模块901,用于接收卫星发送的卫星定位信息;
卫星定位信息发送模块902,用于向边缘云服务器发送卫星定位信息以 获取用户终端的位置信息。
图9提供的用户终端中的各个模块具有实现图3所示实例中各个步骤的功能,并达到与图3所示用户终端定位方法相同的技术效果,为简洁描述,在此不再赘述。
本公开实施例还提供了一种用户终端定位系统,系统包括边缘云服务器、公有云服务器和用户终端,其中,边缘云服务器用于执行上述实施例的用户终端定位方法,公有云服务器用于执行上述实施例的用户终端定位方法,用户终端用于执行上述实施例的用户终端定位方法。
需要明确的是,本公开并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本公开的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本公开的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本公开的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本公开中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本公开不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件 的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
以上所述,仅为本公开的具体实施方式,所属领域的技术人员可以清楚 地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。

Claims (13)

  1. 一种用户终端定位方法,应用于边缘云服务器,包括:
    接收用户终端发送的卫星定位信息;
    确定所述用户终端所在的位置服务区域;
    根据所述位置服务区域从公有云服务器获取与所述位置服务区域对应的差分改正模型;
    利用所述卫星定位信息和所述差分改正模型进行位置解算,得到所述用户终端的位置信息;
    向所述用户终端发送所述位置信息。
  2. 根据权利要求1所述的用户终端定位方法,其中,所述根据所述位置服务区域从公有云服务器获取与所述位置服务区域对应的差分改正模型,包括:
    向所述公有云服务器发送所述位置服务区域对应的位置服务区域请求;
    接收所述公有云服务器发送的与所述位置服务区域对应的差分改正模型。
  3. 一种用户终端定位方法,应用于公有云服务器,包括:
    接收边缘云服务器发送的位置服务区域请求;
    解析所述位置服务区域请求,确定所述位置服务区域请求对应的位置服务区域;
    根据所述位置服务区域,匹配所述位置服务区域对应的差分改正模型;
    向所述边缘云服务器发送所述差分改正模型,以用于所述边缘云服务器根据所述差分改正模型确定所述用户终端的位置信息。
  4. 根据权利要求3所述的用户终端定位方法,其中,所述根据所述位置服务区域,匹配所述位置服务区域对应的差分改正模型之前,还包括:
    接收地基增强参考站网络发送的卫星观测数据包;
    解析所述卫星观测数据包,获取所述地基增强参考站网络中各个参考站的观测数据;
    划分所述地基增强参考站网络的覆盖区域,得到预设数量个网格覆盖区域;
    根据任一网格覆盖区域中所述参考站的观测数据和精确位置坐标,确定所述任一网格覆盖区域的差分改正模型。
  5. 根据权利要求4所述的用户终端定位方法,其中,所述根据所述位置服务区域,匹配所述位置服务区域对应的差分改正模型,包括:
    基于所述位置服务区域,确定所述位置服务区域所归属的所述网格覆盖区域;
    根据所述位置服务区域所归属的所述网格覆盖区域,匹配所述位置服务区域对应的差分改正模型。
  6. 一种用户终端定位方法,应用于用户终端,包括:
    接收卫星发送的卫星定位信息;
    向边缘云服务器发送所述卫星定位信息以获取所述用户终端的位置信息。
  7. 一种边缘云服务器,包括:
    卫星定位信息接收模块,用于接收用户终端发送的卫星定位信息;
    位置服务区域确定模块,用于确定所述用户终端所在的位置服务区域;
    差分改正模型获取模块,用于根据所述位置服务区域从公有云服务器获取与所述位置服务区域对应的差分改正模型;
    位置解算模块,用于利用所述卫星定位信息和所述差分改正模型进行位置解算,得到所述用户终端的位置信息;
    位置信息发送模块,用于向所述用户终端发送所述位置信息。
  8. 根据权利要求7所述的边缘云服务器,其中,所述差分改正模型获取模块,包括:
    位置服务区域请求发送单元,用于向所述公有云服务器发送所述位置服务区域对应的位置服务区域请求;
    差分改正模型接收单元,用于接收所述公有云服务器发送的与所述位置服务区域对应的差分改正模型。
  9. 一种公有云服务器,包括:
    位置服务区域请求接收模块,用于接收边缘云服务器发送的位置服务区域请求;
    位置服务区域请求解析模块,用于解析所述位置服务区域请求,确定所 述位置服务区域请求对应的位置服务区域;
    差分改正模型匹配模块,用于根据所述位置服务区域,匹配所述位置服务区域对应的差分改正模型;
    差分改正模型发送模块,用于向所述边缘云服务器发送所述差分改正模型,以用于所述边缘云服务器根据所述差分改正模型确定所述用户终端的位置信息。
  10. 根据权利要求9所述的公有云服务器,还包括:
    卫星观测数据包接收模块,用于接收地基增强参考站网络发送的卫星观测数据包;
    卫星观测数据包解析模块,用于解析所述卫星观测数据包,获取所述地基增强参考站网络中各个参考站的观测数据;
    覆盖区域划分模块,用于划分所述地基增强参考站网络的覆盖区域,得到预设数量个网格覆盖区域;
    差分改正模型确定模块,用于根据任一网格覆盖区域中所述参考站的观测数据和精确位置坐标,确定所述任一网格覆盖区域的差分改正模型。
  11. 根据权利要求10所述的公有云服务器,其中,所述差分改正模型匹配模块,包括:
    网格覆盖区域确定单元,用于基于所述位置服务区域,确定所述位置服务区域所归属的所述网格覆盖区域;
    差分改正模型匹配单元,用于根据所述位置服务区域所归属的所述网格覆盖区域,匹配所述位置服务区域对应的差分改正模型。
  12. 一种用户终端,包括:
    卫星定位信息接收模块,用于接收所述卫星发送的卫星定位信息;
    卫星定位信息发送模块,用于向边缘云服务器发送所述卫星定位信息以获取所述用户终端的位置信息。
  13. 一种用户终端定位系统,所述系统包括边缘云服务器、公有云服务器和用户终端,其中,所述边缘云服务器用于执行权利要求1和权利要求2所述的用户终端定位方法,所述公有云服务器用于执行权利要求3至5任一项所述的用户终端定位方法,所述用户终端用于执行权利要求6所述的用户 终端定位方法。
PCT/CN2020/134914 2020-01-21 2020-12-09 用户终端定位方法、设备及系统 WO2021147543A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20915919.3A EP4092985A4 (en) 2020-01-21 2020-12-09 POSITIONING METHOD, APPARATUS AND SYSTEM FOR USER TERMINALS
US17/759,097 US20230041480A1 (en) 2020-01-21 2020-12-09 User terminal positioning method, device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010069444.6 2020-01-21
CN202010069444.6A CN113225360B (zh) 2020-01-21 2020-01-21 用户终端定位方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2021147543A1 true WO2021147543A1 (zh) 2021-07-29

Family

ID=76991807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134914 WO2021147543A1 (zh) 2020-01-21 2020-12-09 用户终端定位方法、设备及系统

Country Status (4)

Country Link
US (1) US20230041480A1 (zh)
EP (1) EP4092985A4 (zh)
CN (1) CN113225360B (zh)
WO (1) WO2021147543A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114327689A (zh) * 2022-03-15 2022-04-12 浙江云针信息科技有限公司 一种面向复杂边缘计算环境的策略调度方法及系统
CN115361438A (zh) * 2022-10-19 2022-11-18 山东远联信息科技有限公司 一种面向云计算和大数据定位的业务处理方法和系统
CN117098116A (zh) * 2023-10-18 2023-11-21 湖北省国土测绘院 一种基于cors的gnss用户终端位置隐私保护方法
WO2024051759A1 (zh) * 2022-09-09 2024-03-14 华为技术有限公司 卫星定位方法和相关产品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114019585B (zh) * 2021-10-11 2024-06-11 武汉大学 一种大高差地区高精度定位cors网fkp解算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295014A (zh) * 2008-05-19 2008-10-29 中国测绘科学研究院 基于gnss的远距离高精度实时/快速定位方法和系统
CN101299065A (zh) * 2008-06-19 2008-11-05 宇龙计算机通信科技(深圳)有限公司 一种移动终端的定位方法及系统
US20100149028A1 (en) * 2008-12-11 2010-06-17 International Business Machines Corporation System and method for optimizing power consumption of container tracking devices through mesh networks
CN105785410A (zh) * 2014-12-25 2016-07-20 中国移动通信集团公司 一种提供位置信息的方法和系统
CN108513248A (zh) * 2017-02-24 2018-09-07 千寻位置网络有限公司 通信基站及其波束赋形方法
CN111090111A (zh) * 2018-10-23 2020-05-01 千寻位置网络有限公司 基于边缘计算的动态差分定位方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259008B2 (en) * 2008-11-17 2012-09-04 Qualcomm Incorporated DGNSS correction for positioning
JP5392177B2 (ja) * 2010-05-12 2014-01-22 セイコーエプソン株式会社 電子機器
EP3035080B1 (en) * 2014-12-16 2022-08-31 Trimble Inc. Navigation satellite system positioning involving the generation of correction information
CN104977596B (zh) * 2015-06-08 2018-08-17 深圳北斗应用技术研究院有限公司 基于云计算的高精度位置修正定位系统
CN106019336B (zh) * 2015-08-28 2019-07-23 千寻位置网络有限公司 全球导航卫星系统的差分中继方法及其装置
CN106569239B (zh) * 2015-10-09 2019-08-23 唐颖哲 一种广播式网络rtk定位技术
CN105334524B (zh) * 2015-10-21 2018-06-05 山东天星北斗信息科技有限公司 一种基于虚拟网格的伪距差分定位方法
CN107820204B (zh) * 2017-10-23 2020-09-18 千寻位置网络有限公司 保护用户位置隐私的高精度定位方法及系统
CN109150818B (zh) * 2017-12-25 2021-06-15 北极星云空间技术股份有限公司 分布式cors系统中的差分网格数据融合服务组件设计
CN110095797B (zh) * 2019-05-28 2020-06-02 北京讯腾智慧科技股份有限公司 一种基于卫星导航系统的格网化精准定位服务方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295014A (zh) * 2008-05-19 2008-10-29 中国测绘科学研究院 基于gnss的远距离高精度实时/快速定位方法和系统
CN101299065A (zh) * 2008-06-19 2008-11-05 宇龙计算机通信科技(深圳)有限公司 一种移动终端的定位方法及系统
US20100149028A1 (en) * 2008-12-11 2010-06-17 International Business Machines Corporation System and method for optimizing power consumption of container tracking devices through mesh networks
CN105785410A (zh) * 2014-12-25 2016-07-20 中国移动通信集团公司 一种提供位置信息的方法和系统
CN108513248A (zh) * 2017-02-24 2018-09-07 千寻位置网络有限公司 通信基站及其波束赋形方法
CN111090111A (zh) * 2018-10-23 2020-05-01 千寻位置网络有限公司 基于边缘计算的动态差分定位方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4092985A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114327689A (zh) * 2022-03-15 2022-04-12 浙江云针信息科技有限公司 一种面向复杂边缘计算环境的策略调度方法及系统
WO2024051759A1 (zh) * 2022-09-09 2024-03-14 华为技术有限公司 卫星定位方法和相关产品
CN115361438A (zh) * 2022-10-19 2022-11-18 山东远联信息科技有限公司 一种面向云计算和大数据定位的业务处理方法和系统
CN115361438B (zh) * 2022-10-19 2023-02-28 山东远联信息科技有限公司 一种面向云计算和大数据定位的业务处理方法和系统
CN117098116A (zh) * 2023-10-18 2023-11-21 湖北省国土测绘院 一种基于cors的gnss用户终端位置隐私保护方法
CN117098116B (zh) * 2023-10-18 2023-12-26 湖北省国土测绘院 一种基于cors的gnss用户终端位置隐私保护方法

Also Published As

Publication number Publication date
EP4092985A1 (en) 2022-11-23
CN113225360A (zh) 2021-08-06
CN113225360B (zh) 2023-04-18
EP4092985A4 (en) 2024-02-28
US20230041480A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2021147543A1 (zh) 用户终端定位方法、设备及系统
US11125884B2 (en) Positioning method in mobile network, server, base station, mobile terminal, and system
WO2019141090A1 (zh) 定位方法和相关设备
WO2017070909A1 (zh) 移动网络中的定位方法、基站和移动终端
US10877161B2 (en) Positioning method in mobile network, base station, and mobile terminal
CN104202723B (zh) 位置增强数据播发服务系统及方法
CA2558341C (en) Gps data management module for use in location-based service systems
CN109541542B (zh) 基准站组网解算方法、系统和基准站组网系统
JP2018509614A (ja) モバイルデバイスの位置を決定することに使用するための支援データ
US9479902B1 (en) Determining a propagation-time adjustment for a wireless coverage area, based on information provided by wireless terminals
CN113316164A (zh) 信息传输方法及装置
CN110149592B (zh) 室内定位方法、终端、客户前置设备、电子设备
CN113316182A (zh) 信息传输方法及装置
KR20200072206A (ko) 가상 기준국의 최적화 정보를 이용하여 위성 위치 좌표의 보정 정보를 생성하는 장치 및 방법
CN111586833A (zh) 一种定位方法、装置、终端、基站及管理功能实体
Wang et al. Combining TWSTFT and GPS PPP using a Kalman filter
WO2014063584A1 (zh) 电离层延迟修正参数的传递方法、装置及导航卫星
CN114509794A (zh) 基于云端解算技术的卫星差分定位系统和方法
CN109150922A (zh) 一种基于cors系统的gnss终端差分服务认证方法
WO2014063617A1 (zh) 电离层延迟修正参数的配置方法、装置及系统
WO2024093905A1 (zh) 一种通信方法及装置
WO2024082214A1 (en) Improved target positioning by using multiple terminal devices
WO2024032199A1 (zh) 一种定位方法及装置
CN114363802A (zh) 天线定位方法、装置、介质及电子设备
Qinjuan et al. Research on Standalone BeiDou Radio Frequency Minimum Performance Test for Mobile Communication Terminals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020915919

Country of ref document: EP

Effective date: 20220819