WO2021145296A1 - セルロース誘導体を基剤とする機械的強度および酸素透過性が改善された硬カプセル - Google Patents

セルロース誘導体を基剤とする機械的強度および酸素透過性が改善された硬カプセル Download PDF

Info

Publication number
WO2021145296A1
WO2021145296A1 PCT/JP2021/000605 JP2021000605W WO2021145296A1 WO 2021145296 A1 WO2021145296 A1 WO 2021145296A1 JP 2021000605 W JP2021000605 W JP 2021000605W WO 2021145296 A1 WO2021145296 A1 WO 2021145296A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
hard capsule
cellulose derivative
mechanical strength
Prior art date
Application number
PCT/JP2021/000605
Other languages
English (en)
French (fr)
Inventor
貴久 田久保
比登美 土井
香織 佐藤
Original Assignee
カプスゲル・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カプスゲル・ジャパン株式会社 filed Critical カプスゲル・ジャパン株式会社
Priority to JP2021571178A priority Critical patent/JP7397886B2/ja
Publication of WO2021145296A1 publication Critical patent/WO2021145296A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate

Definitions

  • the present invention relates to a hard capsule based on a cellulose derivative.
  • the present invention has improved mechanical strength (elastic modulus, breaking strength) and oxygen impermeability based on hydroxypropylmethyl cellulose (hereinafter, may be abbreviated as "HPMC") which is a cellulose ether.
  • HPMC hydroxypropylmethyl cellulose
  • Hard capsules have been developed for the purpose of accommodating a unit amount of a drug and masking the unpleasant taste and odor of the drug to make it easier to swallow, and are used as the main oral administration preparation next to tablets.
  • Gelatin capsules have been widely used as hard capsules used in the fields of medicine and health foods.
  • Gelatin capsules are formed by a film composed of a composition containing gelatin as a base and, if necessary, a surfactant, a dye, a pigment or the like as a processing aid.
  • a pin for molding is immersed in a gelatin aqueous solution containing the above components, then a mold pin is pulled out of the solution, the gelatin aqueous solution adhering to the pin is dried, and the gelatin capsule film is removed from the pin. It is manufactured by trimming it into a finished form.
  • the flexibility and other characteristics of the gelatin film largely depend on the water content, and when the water content is 10% or less, the flexibility of the film decreases and it becomes extremely brittle. Therefore, when the capsule is mechanically handled in the content filling operation, the capsule film tends to be damaged such as cracks, cracks or chips. In addition, the decrease in water content due to drying during storage may cause inconveniences such as shrinkage of the film and loosening of the cap and body that make up the capsule.
  • Gelatin is obtained by decomposing and purifying collagen, which is the main protein of bones and skins of cows and pigs. Therefore, if the capsule contents contain aldehyde groups or reducing sugars, they react with gelatin and the capsules become insoluble. It is known to do. In addition, gelatin may be rejected for religious reasons, problems such as mad cow disease and foot-and-mouth disease in pigs, allergy problems, and vegetarianism.
  • non-animal capsule bases has progressed as a material for hard capsules for filling foods and pharmaceuticals.
  • a cellulose derivative for example, a water-soluble cellulose ether in which a part of the hydrogen atom of the hydroxyl group of cellulose is replaced with an alkyl group and a hydroxyalkyl group or a hydroxyalkyl group as a base. Since the water content in the hard capsule based on cellulose ether is less than 7%, hydrolysis is unlikely to occur even if a hygroscopic material is filled. Furthermore, since cellulose ethers are of plant origin, there are no problems due to their animal origin like gelatin.
  • HPMC hydroxypropyl methylcellulose
  • the films collide with each other due to a slight positional deviation between the body and the cap, and the cap portion of the cap portion.
  • the problem of powder leakage that leaks out may occur.
  • the cellulose film has a higher oxygen permeability than the gelatin film, it is known that when it is filled with oils that are easily oxidized, it is easily oxidized and the quality deteriorates.
  • Patent Document 1 describes, as a method for improving the mechanical film strength of a hard capsule based on water-soluble cellulose, in addition to water-soluble cellulose as a film component, sucrose fatty acid ester, potassium pyrophosphate, glacial acetic acid, and iota. Methods using carrageenan and agar have been proposed. However, there is still room for improvement in terms of film brittleness and moldability.
  • Patent Document 1 states that "all cellulose hard capsules prepared by the above disclosed methods have a mechanical film strength that is higher than that of conventional gelatin hard capsules in terms of mechanical film strength and oxygen permeability. It has the disadvantages of low and low oxygen permeability (think of it as a "high” typo). ", But the method of this patent does not improve oxygen permeability, although it points out two problems with HPMC capsules. Also, according to paragraph [0032], mechanical film strength is measured with a texture analyzer at an indentation depth of 4 mm from the surface of the capsule, which is an assessment of film hardness and is a major problem in the market. It is essentially different from the mechanical strength, which indicates the fragility of the capsule. Since the breaking strength and the cracking rate of the capsule have not been evaluated, the practicality of the above-mentioned hard capsule is unknown.
  • Patent Document 2 proposes a method for improving the hardness of a hard capsule based on hypromellose (hydroxypropyl methylcellulose), in which starch is further added as a film component. Further, Patent Document 3 proposes to blend a starch decomposition product having a DE value of more than 11 and less than 40 as a hardness improving agent for hard capsules based on a cellulose compound.
  • starch is a particle of 15 to 50 ⁇ m, and if these are dispersed in a hard capsule with a thickness of only about 100 ⁇ m, even if the hardness (elastic modulus) of the polymer film increases, the film becomes brittle and is very fragile. Is common. Since it is not presented in the above-mentioned Patent Documents 2 and 3 that this decrease in mechanical strength does not occur, it is not clear whether or not the capsule can be put into practical use as a hard capsule.
  • capsules based on cellulose derivatives have high oxygen permeability, and it is difficult to use them in capsules containing drugs that are easily affected by oxidation. Is not known.
  • Japanese Unexamined Patent Publication No. 2006-231022 Japanese Unexamined Patent Publication No. 2010-2700039 WO2018 / 0008660A
  • the hard capsule based on the cellulose derivative has been improved in various ways as an alternative to the gelatin hard capsule, but in terms of film brittleness, moldability, and oxygen impermeableness.
  • the reality was that there was room for improvement.
  • An object of the present invention is to solve the above problems with respect to cellulose derivatives, particularly water-soluble cellulose ethers, particularly hard capsules based on hydroxypropylmethyl cellulose (HPMC).
  • cellulose derivatives particularly water-soluble cellulose ethers, particularly hard capsules based on hydroxypropylmethyl cellulose (HPMC).
  • HPMC hydroxypropylmethyl cellulose
  • the present inventors have found that the cellulose derivative as the base is used. It has been found that when a part of the capsule is replaced with a water-soluble substance such as pullulan, an HPMC capsule film having excellent elastic modulus (hardness) and breaking strength and excellent practicality on the market can be obtained. Blends between different polymers are mostly phase-separated, especially in the negative direction for mechanical properties. However, it is very rare and surprising that these mechanical parameters can be improved by the use of film-forming polymers such as pullulan. This effect was further enhanced by the addition of surfactants. Furthermore, it was found that the hard capsule retains transparency and is significantly improved in oxygen impermeability.
  • a water-soluble substance is added, and if necessary, an appropriate additive is added to this solution to produce a hard capsule by a conventional production method.
  • the capsule has an increased elastic modulus (hardness), breaking strength, and oxygen impermeability, while maintaining transparency and solubility. Since all of the above water-soluble substances are permitted to be used in the fields of pharmaceuticals and foods, hard capsules produced by adding them can be safely used for humans or animals.
  • the hard capsule of the present invention has the following embodiments.
  • the base is a cellulose derivative
  • the mechanical strength improver is a water-soluble substance selected from pullulan, gum arabic, guar gum decomposition product, glucomannan, sodium polyacrylate, and cyclodextrin.
  • the range is 10 parts by weight or more and less than 40 parts by weight, based on 100 parts by weight of the total weight of the cellulose derivative and the water-soluble substance which is the mechanical strength improving agent.
  • Hard capsules in the range of 5 parts by weight or more and less than 40 parts by weight in the case of gum arabic, guar gum decomposition product or glucomannan, in the range of 0.5 parts by weight or more and less than 40 parts by weight in the case of sodium polyacrylate or cyclodextrin. ..
  • the surfactant is at least one surfactant selected from the group consisting of sucrose fatty acid ester, polysorbate, glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, and sodium lauryl sulfate (7).
  • the hard capsule described in. (9) The hard capsule according to (7) or (8), wherein the addition rate of the surfactant is 5 parts by weight or less with respect to 100 parts by weight of the cellulose derivative.
  • the present invention it is possible to surely improve the softness of a capsule based on a cellulose derivative by using a water-soluble substance that can be safely used in the medical and food fields, and mechanical strength (elastic modulus, breaking strength). ) Can provide excellent hard capsules.
  • the hard capsule of the present invention can solve serious quality problems such as poor bending and poor sagging caused by the softness of the conventional capsule film.
  • the capsule based on the cellulose derivative has a drawback of high oxygen permeability, but according to the present invention, oxygen impermeableness can be improved. Therefore, there is a further effect that it can be suitably used for a drug that is easily affected by oxidation.
  • FIG. 1 shows the transmittance of the HPMC film and the film prepared by replacing a part of HPMC with pullulan at a wavelength of 200-1100 nm.
  • FIG. 2 shows a capsule (size 2) manufactured using an immersion solution containing 90 parts by weight of HPMC solution and 10 parts by weight of pullulan solution, and a commercially available HPMC capsule containing no pullulan (Vcaps (registered trademark) Plus size). The result of the dissolution test of 2) is shown.
  • the "hard capsule” is a type of capsule in which a capsule film is manufactured first and the manufactured capsule film is filled with the contents. Usually, it consists of a cap part and a body part, and is also called a hard capsule or a two-piece capsule.
  • the base of the hard capsule, the additive components, and the method for producing the hard capsule will be described below.
  • the "base” means a main component for forming a film of a hard capsule.
  • a cellulose derivative is used as a base.
  • the cellulose derivative include a water-soluble cellulose ether in which at least one group of an alkyl group or a hydroxyalkyl group is substituted with a hydrogen atom of the hydroxy group of cellulose.
  • Specific examples thereof include hydroxy lower alkyl cellulose such as hydroxypropyl cellulose (HPC); and hydroxy lower alkyl alkyl cellulose such as hydroxyethyl methyl cellulose, hydroxyethyl ethyl cellulose and hydroxypropyl methyl cellulose (HPMC).
  • HPMC hydroxypropylmethylcellulose
  • HPMC2910 containing about 10% of hydroxypropoxyl groups in about 29% of methoxy groups
  • HPMC2906 containing about 6% of hydroxypropoxyl groups in about 29% of methoxy groups
  • HPMC2208 containing about 8% hydroxypropoxyl group in about 22% methoxy group and the like.
  • the water-soluble substance used to improve the hardness and mechanical strength (elastic modulus and breaking strength) of the hard capsule is pullulan, arabic rubber, guagam decomposition product, glucomannan, poly. It is selected from the group consisting of sodium acrylate and cyclodextrin. Suitable water-soluble substances are pullulan, gum arabic, guar gum decomposition products, and glucomannan, and particularly suitable water-soluble substances are pullulan and gum arabic. Gum arabic is a natural rubber composed of hardened sap of trees of the genus Acacia, and is also known as reddile rubber, acacia rubber, Senegal rubber, Indian rubber and the like.
  • the amount of the above water-soluble substance added is specified as a substitution rate.
  • the substitution rate of the water-soluble substance is a value of parts by weight of the water-soluble substance when the total weight of the weight of the cellulose derivative and the water-soluble substance is 100 parts by weight. It may be described as% by weight.
  • the substitution rate of the water-soluble substance ranges from 0.5 parts by weight to less than 40 parts by weight, preferably 0.5 to 35 parts by weight, more preferably 2 parts by weight to 30 parts by weight, and further preferably 5 parts by weight to 25 parts by weight.
  • the range of parts by weight particularly 5 parts by weight to 20 parts by weight, particularly 5 parts by weight to 15 parts by weight, 7.5 parts by weight to 12.5 parts by weight, and in some cases 10 parts by weight to less than 40 parts by weight.
  • the range is 10 parts by weight to less than 40 parts by weight, and in the case of arabic rubber, guagam decomposition product, and glucomannan, 5 parts by weight to less than 40 parts by weight, preferably 5 parts by weight to 30 parts by weight.
  • the substitution rate is less than 0.5 parts by weight, the elastic modulus, breaking strength, and air impermeability cannot be improved. Further, if the replacement rate is made larger than 40 parts by weight, the elastic modulus increases, but the breaking strength may decrease, which increases the risk of the capsule breaking and makes it unsuitable for practical use.
  • surfactant When the above water-soluble substance is used in combination with a surfactant, the mechanical strength (elastic modulus, breaking strength) can be further improved.
  • Preferred surfactants include sucrose fatty acid ester, polysorbate, glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, and sodium lauryl sulfate.
  • the surfactant is used in a proportion of 0 to 5% by weight, preferably 0.5 to 4% by weight, more preferably 0.5 to 3.5% by weight, still more preferably 0.5 to 3% by weight. be able to.
  • Another embodiment of the ratio may be 2 to 3.5% by weight, preferably 2 to 3% by weight, based on the weight of the base.
  • fatty acids examples include fatty acids derived from vegetable fats and oils such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid and erucic acid used in pharmaceutical / edible surfactants.
  • An embodiment of the fatty acid can be lauric acid.
  • An embodiment of the sucrose fatty acid ester can be a sucrose monolauric acid ester.
  • the hard capsule of the present invention contains a gelling agent, a gelling aid, a plasticizer, a pH adjuster, a coloring agent, an acidulant, and a storage agent known above for the purpose of improving the physical characteristics of the film.
  • Agents, fragrances, wetting agents, disintegrants, moisture barriers and the like can be added.
  • the gelling agent include (kappa) carrageenan, gellan gum, gelatin, xanthan gum, alginic acid, guar gum, tamarind seed gum, farcerelan, tara gum, carrage gum, curdlan, agar, pectin, locust bean gum, and the like. There are no restrictions.
  • the range of the amount of the gelling agent used is 0 to 5% based on the weight of the cellulose derivative.
  • the gelling aid is a small amount of inorganic salt used for the purpose of gelling the gelling agent, and is appropriately selected from potassium salt, sodium salt, and calcium salt.
  • the range of the amount of the gelling aid used is 0 to 5% based on the weight of the cellulose derivative.
  • Plasticants include edible oils (eg sesame oil, olive oil, cottonseed oil, soybean oil, rapeseed oil, sunflower oil, palm oil, Benibana oil and its mixture), triethyl citrate, glycerin, propylene glycol, D-mannitol, D-sorbitol. , Trehalose, polyethylene glycol, triacetin, phthalates, pH regulators include phosphoric acid, hydrochloric acid, citric acid, glycine, gluconic acid, succinic acid, acetic acid, tartaric acid, lactic acid, fumaric acid, boric acid, maleic acid, There are sulfuric acid, malic acid, ammonia, hydroxides, amines, and salts thereof.
  • edible oils eg sesame oil, olive oil, cottonseed oil, soybean oil, rapeseed oil, sunflower oil, palm oil, Benibana oil and its mixture
  • triethyl citrate eglycerin
  • the colorant may be any colorant that can be used in the pharmaceutical or food fields.
  • raked tar pigments red iron oxides, water-soluble tar pigments and natural pigments can be used.
  • Titanium dioxide can be used for whitening (opacity).
  • acidulants include adipic acid, itaconic acid, citric acid, trisodium citrate, gluconodeltalactone, gluconic acid, potassium gluconate, sodium gluconate, succinic acid, monosodium succinate, and disodium succinate.
  • acidulants include sodium acetate, tartrate acid, lactic acid, sodium lactate, acetic acid, phytic acid, fumaric acid, malic acid and phosphoric acid.
  • Preservatives include benzoic acid, sodium benzoate, paraoxybenzoic acid esters, sodium sulfite, sodium hyposulfite, sodium pyrosulfite, potassium pyrosulfite, propionic acid, calcium propionate, sodium propionate, egonoki extract, and kawarayomogi extract.
  • the fragrance various essences, flavors, peppermint, menthol, mint, cinnamon, fennel, camphor and the like can be mentioned.
  • the hard capsule of the present invention can be produced by using a conventional dipping method (also referred to as dip molding method). Specifically, an aqueous solution containing the above-mentioned components (1) and (2) and, if necessary, components (3) and (4) is used as a dipping solution (also referred to as "capsule preparation solution").
  • a dipping solution also referred to as "capsule preparation solution”
  • the capsule molding pin is immersed and then pulled up to cool and gel the capsule preparation solution formed on the outer surface of the capsule molding pin, and then the gelled film is dried at 20 to 80 ° C. After drying, a capsule is manufactured by fitting a pair of caps with a body from which unnecessary parts have been cut.
  • Test Example 1 Effect of Pullulan on Mechanical Strength (Breaking Strength and Elastic Modulus) of HPMC-Based Film HPMC solution and pullulan solution were prepared separately according to the following procedure. A film was prepared using the HPMC solution and a solution in which a part of the HPMC solution was replaced with a pullulan solution. The elastic modulus and breaking strength of the obtained film were measured.
  • -Method for preparing HPMC solution 800 g of water at 80 ° C. is added to 200 g of HPMC2906 (viscosity 5 cP), and the mixture is stirred with a spatula until there is no lump. Cool the solution with occasional stirring until the HPMC does not sink, and when it reaches room temperature, leave it in the refrigerator overnight to dissolve it completely.
  • -Preparation method of pullulan solution Add 800 g of water at room temperature to 200 g of pullulan of food grade and stir with a spatula. When the pullulan and water are familiar, store at 80 ° C for 1 hour and mix well. Store at 80 ° C. for 1 hour, and when melted, cool to room temperature.
  • Film preparation method 1. Apply a release agent of vegetable oil to a glass plate warmed to 105 ° C, and after drying, pour a film-forming solution to a thickness of 100 ⁇ m. 2. After storing in an oven at 60 ° C.
  • the HPMC solution at room temperature and the pullulan solution were mixed at a ratio of 100: 0, 90:10, 80:20, 60:40, 40:60, respectively, and defoamed. Then, a 1 ⁇ 7 cm film was prepared according to the above-mentioned film preparation method, and the breaking strength and elastic modulus were measured to obtain an average value. The results are shown in Table 1.
  • the “elastic modulus” is a value representing the physical property value of the difficulty of elastic deformation. Since “hardness” is the resistance force of the material when a force is applied from the outside, it can be evaluated that the increase in the elastic modulus value means that the hardness is increasing.
  • Test Example 2 Effect of gum arabic on mechanical strength (breaking strength and elastic modulus) of a film based on HPMC
  • a gum arabic solution was prepared in the same manner as the pullulan solution of Test Example 1.
  • the HPMC solution at room temperature and the gum arabic solution were mixed at a ratio of 100: 0, 95: 5, 90: 10, 80:20, 70:30, 60:40, respectively, and defoamed.
  • a 1 ⁇ 7 cm film was prepared according to the above-mentioned film preparation method, and the breaking strength and elastic modulus were measured to obtain an average value. The results are shown in Table 2.
  • Test Example 3 Effect of various water-soluble substances on the film based on HPMC on mechanical strength Similar to Test Examples 1 and 2, a part of HPMC is divided into sodium alginate, xanthan gum, guagam decomposition product, glucomannan, gellan gum, polyacrylic. The elasticity and breaking strength of the film obtained by substituting sodium acid, Karaya gum, PEG4000, PEP-101, sodium carboxymethyl cellulose (CMC / Na), ⁇ -cyclodextrin, propylene glycol, and glycerin were measured. Table 3 shows the results.
  • the water-soluble substances that can be used as the mechanical strength improving agent include purulan, gum arabic, sodium alginate, guagam decomposition product, and gluco. Mannan, sodium polyacrylate, sodium carboxymethyl cellulose (CMC / Na), and cyclodextrin were evaluated as suitable.
  • Test Example 4 Effect of Surfactant on Mechanical Strength The breaking strength and elastic modulus of the following films were measured.
  • -A film prepared by using the HPMC solution as it is -A film prepared by replacing 7.5% and 10% of the HPMC solution with a pullulan solution.
  • sucrose monolauric acid ester trade name: L-1695 of Mitsubishi Chemical Foods Co., Ltd.
  • Test Example 5 Transparency of film A film was prepared in the same manner as in Test Example 1 by substituting 5%, 10% and 20% of the HPMC solution with a pullulan solution. The transmittances of these films at wavelengths of 200-1100 nm were compared with a Shimadzu ultraviolet-visible spectrophotometer UV-1800. FIG. 1 shows the result. When the substitution rate of pullulan is within 10% by weight, the transmittance of visible light (400 to 800 nm) can be secured at 70% or more, and a transparent film can be secured.
  • Test Example 6 Effect of pullulan on the mechanical strength of hydroxypropyl cellulose-based coatings Preparation of HPC solution 1. Add 800 g of water at 80 ° C. to 200 g of HPC (viscosity 5 cP) and stir with a spatula until there are no lumps. 2. Cool the solution with occasional stirring until the HPC does not sink, and leave it in the refrigerator overnight at room temperature. Except for the above, the breaking strength and elastic modulus of the film prepared from the hydroxypropyl cellulose solution in the same manner as in Test Example 1 and the film prepared from the solution in which 20%, 50%, and 80% of the hydroxypropyl cellulose solution were replaced with pullulan. was measured. Table 5 shows the results.
  • the film based on hydroxypropyl cellulose was also able to improve the breaking strength and elastic modulus by adding pullulan (substitution rate 20% by weight).
  • Test Example 7 Oxygen permeability test of the film Oxygen permeability was evaluated for the following films. -A film prepared by using the HPMC solution as it is -A film prepared by replacing 10%, 20%, and 30% of the HPMC solution with a pullulan solution. -A film prepared by substituting 10% of the HPMC solution with an Arabic rubber solution. Oxygen permeability was measured using a gas permeability measuring device (GTR-10XFKS) (manufactured by GTR Tech Co., Ltd.) using an isobaric method and a gas chromatograph. The detection formula was used. Oxygen (dried at 25 ° C.) was used as the measurement gas. The results are shown in Table 6.
  • GTR-10XFKS gas permeability measuring device
  • Example 1 Example of production of hard capsules 20 parts by weight of HPMC is added to high temperature water, and the temperature is gradually lowered while stirring to completely dissolve the HPMC. Separately, add 10 parts by weight of pullulan solution to 90 parts by weight of HPMC solution and 3 parts by weight of sucrose monolauric acid ester to 100 parts by weight of HPMC, and stir well. Then, a heated mold was immersed in a viscous-adjusted dipping solution to produce a capsule (No. 2 size) in which a body and a pair of caps were fitted.
  • HPMC-based hard capsules (commercially available Vcaps (registered trademark) Plus, manufactured by Capsgel) of the same size as this capsule were prepared as reference products 1 to 4.
  • This reference product does not contain pullulan, gum arabic, sodium alginate, guagam degradation products, glucomannan, sodium polyacrylate, sodium carboxymethyl cellulose, or cyclodextrin, which act as mechanical strength improvers.
  • the conventional hard capsules on the market were broken in the semi-automatic hard capsule filling machine and had problems such as sasakure, but the hard capsules of the present invention were able to perform the filling operation without any problem.
  • Example 2 Elution test of hard capsules HPMC solution and pullulan solution were prepared in the same manner as in Example 1.
  • a capsule No. 2 size
  • This capsule and a commercially available HPMC capsule Vcaps (registered trademark) plus) of the same size and containing no pullulan were filled with acetaminophen powder, and the dissolution test of the capsule was performed with water at 37 ° C. As shown in FIG. 2, both showed good dissolution property.
  • the mechanical strength improver of the present invention can provide hard capsules with improved performance in the filling device without causing a decrease in dissolution property.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Preparation (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

セルロース誘導体を基剤とし、プルラン、アラビアゴム、グアガム分解物、グルコマンナン、ポリアクリル酸ナトリウム、シクロデキストリンからなる群から選択される、1種の水溶性物質からなる機械的強度改善剤を含有することを特徴とする、弾性率、破断強度および酸素不透過性が改善された硬カプセル。

Description

セルロース誘導体を基剤とする機械的強度および酸素透過性が改善された硬カプセル
 本発明は、セルロース誘導体を基剤とする硬質カプセルに関する。特に本発明は、セルロースエーテルであるヒドロキシプロピルメチルセルロース(以下、「HPMC」と略記することがある)を基剤とする、機械的強度(弾性率、破断強度)および酸素不透過性が改善された硬質カプセルに関する。
 硬カプセルは、薬物の服用単位量を収容し、且つ薬物の不快な味や臭いをマスクして飲みやすくすることを目的として開発され、錠剤に次いで主要な経口投与製剤として利用されている。
 医薬や健康食品分野などに用いられている硬カプセルとしては、従来からゼラチンカプセルが汎用されている。ゼラチンカプセルは、ゼラチンを基剤とし、これに必要に応じて加工助剤として界面活性剤、染料、顔料等を配合した組成物からなる皮膜により形成されたものである。このゼラチンカプセルは、上記の成分を配合したゼラチン水溶液に成形用のピンを浸漬し、続いて金型ピンを溶液から引き上げ、ピンに付着したゼラチン水溶液を乾燥させ、ゼラチンのカプセル皮膜をピンから抜いて、それをトリミングして完成した形態にすることによって製造されている。
 しかしながら、ゼラチン皮膜は、その柔軟性等の特性が水分含有量に大きく依存し、水分が10%以下になると皮膜の柔軟性が低下して極めて脆くなる。このため、内容物充填作業でのカプセルの機械的取り扱いに際して、ひび、割れまたは欠けなど、カプセル皮膜に損傷を生じる傾向がある。また 保存時の乾燥等による水分含有量の低下によって、皮膜が収縮してカプセルを構成するキャップとボディとの嵌合が緩くなるなどの不都合が生じることもある。
 これら不都合の発生を防止するため、ゼラチンカプセルの水分含有量を13~15重量%の最適範囲に保つ必要がある。このため、水分との接触が不都合を生じさせるような薬剤にはその使用が制限される場合がある。また、吸湿性を有する内容物を充填した場合には、水分含有量の低下によるゼラチンフィルムの強度低下によって、割れ等の不都合を生じるおそれもある。
 ゼラチンは、牛や豚の骨や皮の主要蛋白質であるコラーゲンを分解、精製して得たものであるため、カプセル内容物にアルデヒド基や還元糖を含む場合、ゼラチンと反応がおこりカプセルが不溶化することが知られている。さらに、ゼラチンは、宗教上の理由や、狂牛病や豚の口蹄疫などの問題、アレルギーの問題、菜食主義の観点から、拒否される場合もある。
 以上の理由から、食品や、医薬品を充填する硬カプセルの材料として、動物性でないカプセル基剤の開発が進んできた。ゼラチンカプセルに代わるものとして、セルロース誘導体、例えばセルロースの水酸基の水素原子の一部を、アルキル基及びヒドロキシアルキル基、又はヒドロキシアルキル基で置換した水溶性セルロースエーテルを基剤とするものがある。セルロースエーテルを基剤とする硬質カプセル中の水分含量は7%未満であるため、吸湿性材料を充填しても加水分解が起きにくい。さらに、セルロースエーテルは、植物起源であるから、ゼラチンのように動物起源であることに起因する問題は生じない。通常のゼラチンカプセルに比べて、割れにくく、またアルデヒド基や還元糖とも反応しないため不溶化することが少ないといった優れた特徴も有している。中でもヒドロキシプロピルメチルセルロース(HPMC)を基剤としたカプセルは、既に実用化されている。
 しかし、セルロース誘導体を基剤とする硬カプセルは、セルロースの物理的特性によりゼラチンと比べて皮膜の硬度が低いため製造したカプセルも柔らかくなる。それゆえ、カプセルの調製時およびこのカプセル中に薬物または食品を充填する際に、次のような問題が生じる。
 すなわち、ツーピース硬カプセル中に食品または薬物を充填した後にカプセルのキャップ部とボディ部を機械で高速に嵌合する際に、ボディとキャップの僅かな位置ズレにより皮膜同士が衝突してキャップ部の一部が内側に捲れるササクレ不良(telescope issue)、嵌合時に充填物の粉末が嵌合部に入り込みボディ部を内側に折り曲げる中折れ不良(crease issue)が生じ、その溝から充填粉末がカプセル外に漏れ出す粉漏れ問題が発生することがある。
 さらにセルロース類の皮膜は酸素透過性がゼラチン皮膜と比較して高い為、酸化されやすい油類を充填すると、容易に酸化して品質が落ちることが知られている。
 これまでに、セルロース誘導体を基剤とする硬カプセルの強度や硬度を改善するために種々の検討がなされてきた。
 特許文献1には、水溶性セルロースを基剤とする硬質カプセルの 機械的フィルム強度を向上させる方法として、フィルム成分として水溶性セルロースに加えて、スクロース脂肪酸エステル、ピロリン酸カリウム、氷酢酸、イオタ-カラギーナンおよび寒天を使用する方法が提案されている。しかし、フィルムの脆弱性、成形性の点で改善の余地が残されている。
 特許文献1の段落[0008]は、「上記の開示された方法によって調製された全てのセルロースハードカプセルは、従来のゼラチンハードカプセルの機械的フィルム強度および酸素透過性と比較して、機械的フィルム強度が低く、酸素透過性が低い(「高い」の誤記と考えられる)という欠点を有する。」とHPMCカプセルの問題点を2つ指摘しているが、この特許の方法では酸素透過性の改善を行っていない。また、段落[0032]によれば、機械的フィルム強度はテクスチャー分析器でカプセルの表面から4mmの押し込み深度において測定されるが、これはフィルム硬さを評価したもので、市場で大きな問題となるカプセルの割れやすさを示す機械的強度とは本質的に異なる。破断強度やカプセルの割れ率について評価されていない為、上記の硬カプセルの実用性は不明である。
 特許文献2では、ヒプロメロース(ヒドロキシプロピルメチルセルロース)を基剤とする硬質カプセルの硬度を向上させる方法であって、フィルム成分としてさらにデンプンを配合する方法が提案されている。さらに、特許文献3には、セルロース化合物を基剤とする硬カプセルの硬度改善剤としてDE値が11より大きく40未満であるでんぷん分解物等を配合することが提案されている。
 しかし、でんぷんは15~50μmの粒子であり、これらを厚さ僅か100μm程度の硬質カプセルに分散させると高分子皮膜の硬度(弾性率)は上がっても、皮膜は脆くなって非常に割れやすいカプセルになることが一般的である。上記の特許文献2、3にはこの機械的強度の低下が生じないことは提示されていないため、硬カプセルとして実用に耐えるものか否かは明らかではない。
 さらに、セルロース誘導体を基剤としたカプセルは酸素の透過性が高く、酸化の影響を受け易い薬剤を内容物とするカプセルにおける使用は困難であるが、この問題については、従来これを解決する試みは知られていない。
特開2006-231022号公報 特開2010-270039号公報 WO2018/008660A
 上記のように、セルロース誘導体を基剤とする硬カプセルは、ゼラチン硬カプセルに代わる製剤として、各種の改良が行われてはいるものの、フィルム脆弱性および成型性、酸素不透過性といった点で、改善の余地が残されているというのが実情であった。
 本発明は、セルロース誘導体、特に水溶性セルロースエーテル類、とりわけヒドロキシプロピルメチルセルロース(HPMC)を基剤とする硬質カプセルについて、上記の問題点を解決することを目的とするものである。
 本発明者らは、セルロース誘導体を基剤とするカプセルの中折れ(crease)、ササクレ(telescope)の問題、酸素透過性の問題を改善すべく検討を重ねた結果、基剤となるセルロース誘導体の一部をプルランなどの水溶性物質で置換すると、弾性率(硬度)と破断強度の両方が優れた、市場の実用性に優れるHPMC製カプセル皮膜が得られることを見出した。異なるポリマー間のブレンドは相分離して、特に機械的特性についてはネガティブな方向に行くのが大半である。しかし、プルランのような皮膜形成性ポリマーの使用により、これらの機械的パラメーターが改善できることは非常にまれなことであり、驚くべきことである。この作用は、界面活性剤を添加することによってよりいっそう増強された。さらに当該硬カプセルは、透明性を保持し、酸素不透過性においても顕著に改善されることが見出された。
 具体的には、セルロース誘導体を溶解した溶液に、プルラン、アラビアゴム、アルギン酸ナトリウム、グアガム分解物、グルコマンナン、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム、シクロデキストリンから選択される1種又は2種以上の水溶性物質を加え、この溶液にさらに必要に応じて適当な添加物を加えて従来の製造法により硬カプセルを製造する。当該カプセルは上記の水溶性物質を添加しない場合に比べて、弾性率(硬度)や、破断強度、酸素不透過性が上昇する一方、透明性、溶解性は維持されている。上記の水溶性物質はいずれも医薬品、食品分野における使用が許されているものであるから、これらを添加して製造した硬カプセルは、人あるいは動物に対し安全に使用することができる。
 本発明の硬カプセルは、以下の実施態様を有するものである。
(1)基剤と機械的強度改善剤を含む硬カプセルであって、
 前記基剤がセルロース誘導体であり、
 前記機械的強度改善剤が、プルラン、アラビアゴム、グアガム分解物、グルコマンナン、ポリアクリル酸ナトリウム、シクロデキストリンから選択される、1種の水溶性物質であり、
 セルロース誘導体と前記機械的強度改善剤である水溶性物質の重量の合計100重量部に対して、該水溶性物質が
プルランの場合は10重量部以上40重量部未満の範囲、
アラビアゴム、グアガム分解物またはグルコマンナンの場合は5重量部以上40重量部未満の範囲
ポリアクリル酸ナトリウムまたはシクロデキストリンの場合は0.5重量部以上、40重量部未満の範囲である、硬カプセル。
(2)前記機械的強度改善剤が、プルラン、アラビアゴム、グアガム分解物、グルコマンナン、またはシクロデキストリンから選択される1種の水溶性物質である(1)の硬カプセル。
(3)前記セルロース誘導体がヒドロキシプロピルメチルセルロース(HPMC)またはヒドロキシプロピルセルロース(HPC)である(1)または(2)の硬カプセル。
(4)前記セルロース誘導体がヒドロキシプロピルメチルセルロース(HPMC)である(3)の硬カプセル。
(5)セルロース誘導体と機械的強度改善剤として選択された水溶性物質の重量の合計100重量部に対して、ポリアクリル酸ナトリウムまたはシクロデキストリンが2~30重量部の範囲である(1)~(4)のいずれかに記載の硬カプセル。
(6)セルロース誘導体と機械的強度改善剤として選択された水溶性物質の重量の合計100重量部に対して、アラビアゴムが5~25重量部の範囲である(1)~(4)のいずれかに記載の硬カプセル。
(7)界面活性剤を含む(1)~(6)のいずれかに記載の硬カプセル。
(8)界面活性剤が、ショ糖脂肪酸エステル、ポリソルベート、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ラウリル硫酸ナトリウムからなる群から選択される少なくとも1種の界面活性剤である(7)に記載の硬カプセル。
(9)界面活性剤の添加率は、セルロース誘導体100重量部に対して5重量部以下である(7)または(8)に記載の硬カプセル。
(10)ゲル化剤、またはゲル化剤およびゲル化補助剤を含有する(1)~(9)のいずれかに記載の硬カプセル。
(11)可塑剤、pH調整剤、着色剤、酸味剤、保存剤、香料からなる群から選ばれる少なくとも一種の添加物を含有する(1)~(10)のいずれかに記載の硬カプセル。
 本発明によれば、医療や食品分野において安全に使用できる水溶性物質を用いてセルロース誘導体を基剤とするカプセルの柔らかさを確実に改善することができ、機械的強度(弾性率、破断強度)に優れた硬カプセルを提供することができる。本発明の硬カプセルにより、従来のカプセル皮膜の柔らかさに起因する中折れ不良、ササクレ不良等の深刻な品質問題を解決することができる。
 また、セルロース誘導体を基剤としたカプセルは酸素の透過性が高いことが欠点であったが、本発明により、酸素の不透過性を向上させることができる。したがって、酸化の影響を受け易い薬剤にも好適に使用できるというさらなる効果がある。
図1は、HPMC皮膜及びHPMCの一部をプルランで置換して作製した皮膜の波長200-1100nmの透過率を示したものである。 図2は、90重量部のHPMC溶液と10重量部のプルラン溶液を含む浸漬液を用いて製造されたカプセル(サイズ2)と、市販のプルランを含まないHPMCカプセル(Vcaps(登録商標)Plus サイズ2)の溶出試験の結果を示したものである。
 本発明において、「硬質カプセル」とは、カプセル皮膜を先に製造し、製造されたカプセル皮膜に内容物を充填するタイプのカプセルである。通常、キャップ部とボディ部とからなり、ハードカプセル、又はツーピースカプセルとも呼ばれる。以下、硬カプセルの基剤、添加成分、硬カプセルの製造方法について解説する。
(1)基剤
 本発明において、「基剤」とは、硬質カプセルの皮膜を形成するための主成分をいう。本願発明においては基剤としてセルロース誘導体が使用される。セルロース誘導体としては、アルキル基またはヒドロキシアルキル基の少なくとも一つの基でセルロースのヒドロキシ基の水素原子で置換された水溶性のセルロースエーテルが挙げられる。
 具体的には、ヒドロキシプロピルセルロース(HPC)等のヒドロキシ低級アルキルセルロース;ならびにヒドロキシエチルメチルセルロース、ヒドロキシエチルエチルセルロースおよびヒドロキシプロピルメチルセルロース(HPMC)等のヒドロキシ低級アルキルアルキルセルロースなどを挙げることができる。
 このうち、ヒドロキシプロピルメチルセルロース(HPMC)が特に好適であり、メトキシ基約29%にヒドロキシプロポキシル基約10%を含有するHPMC2910、メトキシ基約29%にヒドロキシプロポキシル基約6%を含有するHPMC2906、メトキシ基約22%にヒドロキシプロポキシル基約8%を含有するHPMC2208等が挙げられる。これらの成分は、単独で使用してもよいが、混合して使用してもよい。
(2)水溶性物質
 本発明において、硬カプセルの硬度および機械的強度(弾性率および破断強度)を改善するために使用する水溶性物質は、プルラン、アラビアゴム、グアガム分解物、グルコマンナン、ポリアクリル酸ナトリウムおよびシクロデキストリンからなる群から選ばれる。好適な水溶性物質は、プルラン、アラビアゴム、グアガム分解物、グルコマンナンであり、特に好適な水溶性物質は、プルラン、アラビアゴムである。
 アラビアゴムは、アカシア属の木の硬化樹液からなる天然ゴムであり、スダニゴム、アカシアゴム、セネガルゴム、インドゴムなどとしても知られている。
 上記の水溶性物質の添加量は、置換率として特定される。水溶性物質の置換率は、セルロース誘導体の重量と水溶性物質をあわせた総重量を100重量部とした場合の水溶性物質の重量部の値である。重量%と記載する場合もある。
 水溶性物質の置換率が0.5重量部~40重量部未満までの範囲、好ましくは0.5~35重量部、より好ましくは2重量部~30重量部、さらに好ましくは5重量部~25重量部の範囲の場合、特に5重量部~20重量部、とりわけ5重量部~15重量部、7.5重量部~12.5重量部の範囲、場合により10重量部~40重量部未満までの範囲において、カプセル皮膜の弾性率、破断強度、空気不透過性を改善することができる。
 また、プルランの場合には10重量部~40重量部未満の範囲、アラビアゴム、グアガム分解物、グルコマンナンの場合には5重量部~40重量部未満、好ましくは5重量部~30重量部、さらに好ましくは5重量部~25重量部の範囲、ポリアクリル酸ナトリウム、シクロデキストリンの場合には0.5重量部~40重量部未満、好ましくは2~30重量部の範囲で使用することが好ましい。
 置換率が0.5重量部より小さいと、弾性率、破断強度、空気不透過性の改善が得られない。また、置換率を40重量部より大きくすると弾性率は上昇するが、破断強度が低下することがあるため、カプセルが割れる危険性が増して実用に適さなくなる。
(3)界面活性剤
 上記の水溶性物質を界面活性剤と併用すると、機械的強度(弾性率、破断強度)をさらに改善することができる。好ましい界面活性剤としては、ショ糖脂肪酸エステル、ポリソルベート、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ラウリル硫酸ナトリウムが挙げられる。
 界面活性剤は、0~5重量%、好ましくは0.5~4重量%、より好ましくは0.5~3.5重量%、さらにより好ましくは0.5~3重量%の割合で使用することができる。比率の別の実施形態は、基剤の重量に対して2~3.5重量%、好ましくは2~3重量%であってもよい。
 上記の脂肪酸としては、医薬/食用界面活性剤に使用されているラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘニン酸、エルカ酸などの植物油脂由来の脂肪酸が挙げられる。脂肪酸の実施形態は、ラウリン酸であり得る。ショ糖脂肪酸エステルの実施形態は、ショ糖モノラウリン酸エステルであり得る。
(4)その他の添加成分
 本発明の硬質カプセルには、フィルム物性の改善を目的として、上記に公知のゲル化剤、ゲル化補助剤、可塑剤、pH調整剤、着色剤、酸味剤、保存剤、香料、湿潤剤、崩壊剤、防湿剤等を添加することが出来る。
 ゲル化剤としては、(カッパ)カラギーナン、ジェランガム、ゼラチン、キサンタンガム、アルギン酸、グアーガム、タマリンドシードガム、ファーセレラン、タラガム、カラヤガム、カードラン、寒天、ペクチン、ローカストビーンガム、などが挙げられるが、これらに制限されるものではない。ゲル化剤の使用量の範囲はセルロース誘導体の重量に対して0~5%である。
 ゲル化補助剤は上記ゲル化剤をゲル化する目的で用いられる少量の無機塩で、カリウム塩、ナトリウム塩、カルシウム塩から適宜選ばれる。ゲル化補助剤の使用量の範囲はセルロース誘導体の重量に対して0~5%である。
 可塑剤としては、食用油(例えばごま油、オリーブ油、綿実油、大豆油、なたね油、ひまわり油、ヤシ油、ベニバナ油やその混合油)、クエン酸トリエチル、グリセリン、プロピレングリコール、D-マンニトール、D-ソルビトール、トレハロース、ポリエチレングリコール、トリアセチン、フタル酸エステル類、pH調整剤としては、リン酸、塩酸、クエン酸、グリシン、グルコン酸、コハク酸、酢酸、酒石酸、乳酸、フマル酸、ホウ酸、マレイン酸、硫酸、リンゴ酸、アンモニア、水酸化物、アミン類、及びそれらの塩などがある。
 着色剤としては、医薬或いは食品分野で使用できるものであればよい。例えば、レーキ化したタール色素、ベンガラ、水溶性のタール色素や天然色素を用いることができる。白色化(不透明化)を行う場合は、二酸化チタンを使用できる。
 また、酸味剤としては、アジピン酸、イタコン酸、クエン酸、クエン酸三ナトリウム、グルコノデルタラクトン、グルコン酸、グルコン酸カリウム、グルコン酸ナトリウム、コハク酸、コハク酸一ナトリウム、コハク酸二ナトリウム、酢酸ナトリウム、酒石酸、乳酸、乳酸ナトリウム、酢酸、フィチン酸、フマル酸、リンゴ酸、リン酸が挙げられる。
 保存剤としては、安息香酸、安息香酸ナトリウム、パラオキシ安息香酸エステル類、亜硫酸ナトリウム、次亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、プロピオン酸、プロピオン酸カルシウム、プロピオン酸ナトリウム、エゴノキ抽出物、カワラヨモギ抽出物、しらこたん白抽出物、ソルビン酸化合物、酢酸、デヒドロ酢酸ナトリウム、ナイシン、二酸化硫黄、ペクチン分解物、ε-ポリリシンなどがある。
 さらに香料としては、各種エッセンス、フレーバー類、ペパーミント、メントール、ハッカ、ケイヒ、ウイキョウ、カンフルなどが挙げられる。
(5)硬質カプセルの製造方法
 本発明の硬質カプセルは、定法の浸漬法(浸漬成形法、dip molding とも言う。)を利用して製造することができる。
 具体的には前述の(1)および(2)の成分、及び必要に応じてさらに(3)、(4)成分を含有する水溶液を浸漬液(「カプセル調製液」ともいう)とし、これにカプセル成型用ピンを浸漬し、次いで引き上げてカプセル成型用ピンの外表面に形成されたカプセル調製液を冷却してゲル化させ、その後、ゲル化した皮膜を20~80℃で乾燥する。乾燥後、不要な部分をカットしたボディとキャップ一対を嵌合することでカプセルが製造される。
 以下、試験例及び実施例を示して本発明を説明するが、本発明はかかる実施例によって制限されるものではない。なお、特に言及しない限り、下記でいう水溶性物質の量の比率を表す%は重量%である。
試験例1:
HPMCを基剤とする皮膜の機械的強度(破断強度及び弾性率)に対するプルランの効果
 以下の手順でHPMC溶液とプルラン溶液を別々に調製した。HPMC溶液およびHPMC溶液の一部をプルラン溶液で置換した溶液を用いて皮膜を製造した。得られる皮膜の弾性率と破断強度を測定した。
 
HPMC溶液の調製方法
200gのHPMC2906(粘度5cP)に80℃の水800gを加え、スパーテルでダマがなくなるまで攪拌する。上記のHPMCが沈まなくなるまで時々攪拌しながら溶液を冷却し、常温になったら冷蔵庫で一晩置いて完全に溶解する。
プルラン溶液の調製方法
食品グレ-ドのプルラン200gに常温の水 800gを加え、スパーテルで攪拌する。プルランと水が馴染んだら、80℃で1時間保管し、全体をよく混ぜる。さらに80℃で1時間保管し、溶解したら常温まで冷やす。
皮膜作製方法
1.   105℃に温めたガラス板に植物油の離型剤を塗布し、乾燥後厚さ100μmの厚さになるように皮膜形成性の溶液を流す。
2.   60℃のオーブンで15分保管後、一昼夜室内環境で乾燥させた後、皮膜を1×7cmに切り抜き、室温で湿度2.5%RHの環境に1週間保管した。
強度試験
1×7cmの上記皮膜をINSTRON 5565号型万能材料試験機に挟んで5mm/minの速度で引っ張り、n=5で破断強度と弾性率を測定して平均値を求める。
 常温のHPMC溶液とプルラン溶液をそれぞれ、100対0、90対10、80対20、60対40、40対60の比率で混合し、脱泡した。その後、前記の皮膜作製方法に従い1×7cmの皮膜を調製し、破断強度と弾性率を測定して平均値を求めた。その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 HPMCに対するプルランの置換率が10%および20%において、弾性率及び破断強度が共に高い皮膜を得ることができた。
 なお、“弾性率”は弾性変形のしにくさの物性値を表す値である。“硬さ”は外部から力を加えた時の材料のもつ抵抗力であるから、弾性率の値が増大することは硬さが増していると評価することができる。
試験例2:
HPMCを基剤とする皮膜の機械的強度(破断強度および弾性率)に対するアラビアゴムの効果
 試験例1のプルラン溶液と同様の方法でアラビアゴム溶液を調製した。常温のHPMC溶液とアラビアゴム溶液をそれぞれ、100対0、95対5、90対10、80対20、70対30、60対40の比率で混合し、脱泡した。その後、前記の皮膜作製方法に従い1×7cmの皮膜を調製し、破断強度と弾性率を測定して平均値を求めた。その結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 HPMCに対するアラビアゴムの置換率が5%~30%において、弾性率及び破断強度が共に高い皮膜を得ることができた。
試験例3:
HPMCを基剤とする皮膜に対する各種の水溶性物質の機械的強度に対する影響
 試験例1および2と同様にして、HPMCの一部をアルギン酸ナトリウム、キサンタンガム、グアガム分解物、グルコマンナン、ジェランガム、ポリアクリル酸ナトリウム、カラヤガム、PEG4000、PEP-101、カルボキシメチルセルロースナトリウム(CMC・Na)、αシクロデキストリン、プロピレングリコール、グリセリンに置換して得られる皮膜の弾性率及び破断強度を測定した。表3はその結果を示したものである。
Figure JPOXMLDOC01-appb-T000003
 HPMCを基剤とする皮膜の弾性率、破断強度の改善の程度が優れている点から、機械的強度改善剤となる水溶性物質としては、プルラン、アラビアゴム、アルギン酸ナトリウム、グアガム分解物、グルコマンナン、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム(CMC・Na)、シクロデキストリンが好適であると評価された。
試験例4:
界面活性剤の機械的強度に対する効果
 以下の皮膜について破断強度、弾性率を測定した。
-HPMC溶液をそのまま使用して作製した皮膜
-HPMC溶液の7.5%、10%をプルラン溶液で置換して作製した皮膜
-HPMC溶液の5%、7.5%、10%をプルラン溶液で置換し、さらに3重量部のショ糖モノラウリン酸エステル(三菱ケミカルフーズ(株)の商品名:L-1695)を添加して作製した皮膜
 皮膜作製は、試験例1の皮膜の作製方法に従って行った。その結果を表4に示した。
Figure JPOXMLDOC01-appb-T000004
 界面活性剤を併用すると、プルランの使用量が少なくても弾性率、破断強度を増加させることができた。
試験例5:
皮膜の透明性
 HPMC溶液の5%、10%、20%をプルラン溶液で置換して試験例1と同様にして皮膜を作製した。これらの皮膜の波長200-1100nmの透過率を島津製紫外可視分光光度計UV-1800にて比較した。図1はその結果を示したものである。プルランの置換率が10重量%以内であれば可視光(400~800nm)の透過率は70%以上を確保でき、透明性を有する被膜を確保できる。
試験例6:
ヒドロキシプロピルセルロースを基剤とする皮膜の機械的強度に対するプルランの効果
HPC溶液の調整
1.   200gのHPC(粘度5cP)に80℃の水800gを加え、スパーテルでダマがなくなるまで攪拌する。
2.   HPCが沈まなくなるまで時々攪拌しながら溶液を冷却し、常温になったら冷蔵庫で一晩置く。
 
 上記以外は、試験例1と同様にしてヒドロキシプロピルセルロース溶液から作製した皮膜と、ヒドロキシプロピルセルロース溶液の20%、50%、80%をプルランに置換した溶液から作製した皮膜の破断強度、弾性率を測定した。表5は、その結果を示したものである。
Figure JPOXMLDOC01-appb-T000005
 ヒドロキシプロピルセルロースを基剤とした皮膜もプルランの添加(置換率20重量%)により、破断強度、および弾性率を向上させることができた。
試験例7:
皮膜の酸素透過性試験
 以下の皮膜について酸素透過性を評価した。
-HPMC溶液をそのまま使用して作製した皮膜
-HPMC溶液の10%、20%、30%をプルラン溶液で置換して作製した皮膜
-HPMC溶液の10%をアラビアゴム溶液で置換して作製した皮膜
 酸素透過率の測定は、ガス透過率測定装置(GTR-10XFKS)(GTRテック(株)製)を用い、等圧法、ガスクロマトグラフ検出式で行った。測定ガスは酸素(25℃ドライ)を使用した。表6にその結果を示す。
 HPMCの10~30%がプルランにより置換された皮膜、10%がアラビアゴムで置換された皮膜は、置換が行われていない皮膜に比べ酸素不透過率が向上した。これらの皮膜、特に、HPMCの20%がプルランで置換された皮膜は、酸素に不安定な薬物や食品に好適に使用できる。
Figure JPOXMLDOC01-appb-T000006
実施例1:
硬カプセルの製造例
 高温水に20重量部のHPMCを投入し攪拌しながら徐々に温度を下げて完全に溶解させる。別に、高温水に対し20重量部のプルランを溶解した水溶液をHPMC溶液90重量部に対しプルラン溶液10重量部、及びHPMC100重量部に対し3重量部のショ糖モノラウリン酸エステルを添加して良く攪拌したのち粘度調整した浸漬液に加熱した金型を浸漬してボディとキャップ一対を嵌合したカプセル(2号サイズ)を製造した。
 このカプセルと同じサイズのHPMC基剤の硬カプセル(市販のVcaps(登録商標)Plus、カプスゲル社製)を参照品1~4として用意した。この参照品は、機械的強度改善剤の作用のあるプルラン、アラビアゴム、アルギン酸ナトリウム、グアガム分解物、グルコマンナン、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウム、シクロデキストリンのいずれも含んでいない。
 半自動硬カプセル充填機 CAP8(登録商標) (キャップエイト)を使用し、同一の運転条件(真空度0.2バール、速度1500RPM)で中折れやササクレが特に発生し易い乳糖-結晶セルロース混合粉末の充填作業を行った。その結果を表7に示した。
Figure JPOXMLDOC01-appb-T000007
 従来の市販品の硬カプセルは、半自動硬カプセル充填機で中折れ、ササクレなどの不具合が発生したが、本発明の硬カプセルでは問題なく充填操作を行うことができた。
実施例2:
硬カプセルの溶出性試験
 実施例1と同様にHPMC溶液およびプルラン溶液を調製した。HPMC溶液90重量部に対しプルラン溶液10重量部を加えた浸漬液を使用してボディとキャップ一対を嵌合したカプセル(2号サイズ)を製造した。このカプセル及び、これと同じサイズでプルランを含まない市販のHPMCカプセル(Vcaps(登録商標)plus)にアセトアミノフェン粉末を充填し、カプセルの溶出試験を37℃の水で行った。図2に示すように、両者ともに良好な溶出性を示した。
 上記の結果は、本願発明の機械的強度改善剤により、溶出性の低下を招くことなく、充填装置におけるパフォーマンスが改善された硬カプセルが得られることを示している。

Claims (11)

  1.  基剤と機械的強度改善剤を含む硬カプセルであって、
     前記基剤がセルロース誘導体であり、
     前記機械的強度改善剤が、プルラン、アラビアゴム、グアガム分解物、グルコマンナン、ポリアクリル酸ナトリウム、シクロデキストリンから選択される、1種の水溶性物質であり、
     セルロース誘導体と前記機械的強度改善剤である水溶性物質の重量の合計100重量部に対して、該水溶性物質が
    プルランの場合は10重量部以上40重量部未満の範囲、
    アラビアゴム、グアガム分解物またはグルコマンナンの場合は、5重量部以上40重量部未満の範囲、
    ポリアクリル酸ナトリウムまたはシクロデキストリンの場合は0.5重量部以上、40重量部未満の範囲である、硬カプセル。
  2.  前記機械的強度改善剤が、プルラン、アラビアゴム、グアガム分解物、グルコマンナン、またはシクロデキストリンから選択される、1種の水溶性物質である請求項1の硬カプセル。
  3.  前記セルロース誘導体がヒドロキシプロピルメチルセルロース(HPMC)またはヒドロキシプロピルセルロース(HPC)である請求項1または2の硬カプセル。
  4.  前記セルロース誘導体がヒドロキシプロピルメチルセルロース(HPMC)である請求項3の硬カプセル。
  5.  セルロース誘導体と機械的強度改善剤として選択された水溶性物質の重量の合計100重量部に対して、ポリアクリル酸ナトリウムまたはシクロデキストリンが2重量部~30重量部の範囲である請求項1~4のいずれか1項に記載の硬カプセル。
  6.  セルロース誘導体と機械的強度改善剤として選択された水溶性物質の重量の合計100重量部に対して、アラビアゴムが5重量部~25重量部の範囲である請求項1~4のいずれか1項に記載の硬カプセル。
  7.  界面活性剤を含む請求項1~6のいずれか1項に記載の硬カプセル。
  8.  界面活性剤が、ショ糖脂肪酸エステル、ポリソルベート、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ラウリル硫酸ナトリウムからなる群から選択される少なくとも1種の界面活性剤である請求項7に記載の硬カプセル。
  9.  界面活性剤の添加率は、セルロース誘導体100重量部に対して5重量部以下である請求項7または8に記載の硬カプセル。
  10.  ゲル化剤、またはゲル化剤およびゲル化補助剤を含有する請求項1~9のいずれか1項に記載の硬カプセル。
  11.  可塑剤、pH調整剤、着色剤、酸味剤、保存剤、香料からなる群から選ばれる少なくとも一種の添加物を含有する請求項1~10のいずれか1項に記載の硬カプセル。
     
     
     
     
     

     
PCT/JP2021/000605 2020-01-14 2021-01-12 セルロース誘導体を基剤とする機械的強度および酸素透過性が改善された硬カプセル WO2021145296A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021571178A JP7397886B2 (ja) 2020-01-14 2021-01-12 セルロース誘導体を基剤とする機械的強度および酸素透過性が改善された硬カプセル

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP20151712.5 2020-01-14
JPPCT/JP2020/000827 2020-01-14
JP2020000827 2020-01-14
EP20151712 2020-01-14
JPPCT/JP2020/029007 2020-07-29
JP2020029007 2020-07-29

Publications (1)

Publication Number Publication Date
WO2021145296A1 true WO2021145296A1 (ja) 2021-07-22

Family

ID=76863766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000605 WO2021145296A1 (ja) 2020-01-14 2021-01-12 セルロース誘導体を基剤とする機械的強度および酸素透過性が改善された硬カプセル

Country Status (2)

Country Link
JP (1) JP7397886B2 (ja)
WO (1) WO2021145296A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1927186A (zh) * 2006-08-26 2007-03-14 青岛大学 一种植物源硬胶囊壳的配方及其制备方法
CN101439028A (zh) * 2009-01-06 2009-05-27 湖州展望天明药业有限公司 羟丙甲纤维素组合物及其在制备植物基药用胶囊中的应用
EP2179728A1 (en) * 2007-08-10 2010-04-28 Shanghai Huiyuan Vegetal Capsule Co., Ltd Non-gelatin shell material of hard capsule and process for preparing thereof
US20100113620A1 (en) * 2007-03-29 2010-05-06 Aston University Enteric pharmaceutical capsules
CN106265592A (zh) * 2016-09-30 2017-01-04 山东赫尔希胶囊有限公司 羟丙甲纤维素空心硬胶囊及其制备方法
WO2020009142A1 (ja) * 2018-07-04 2020-01-09 キャプシュゲル・ベルジウム・エヌ・ヴィ 白色化剤として界面活性剤又は界面活性剤と塩を含有する皮膜形成性組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1927186A (zh) * 2006-08-26 2007-03-14 青岛大学 一种植物源硬胶囊壳的配方及其制备方法
US20100113620A1 (en) * 2007-03-29 2010-05-06 Aston University Enteric pharmaceutical capsules
EP2179728A1 (en) * 2007-08-10 2010-04-28 Shanghai Huiyuan Vegetal Capsule Co., Ltd Non-gelatin shell material of hard capsule and process for preparing thereof
CN101439028A (zh) * 2009-01-06 2009-05-27 湖州展望天明药业有限公司 羟丙甲纤维素组合物及其在制备植物基药用胶囊中的应用
CN106265592A (zh) * 2016-09-30 2017-01-04 山东赫尔希胶囊有限公司 羟丙甲纤维素空心硬胶囊及其制备方法
WO2020009142A1 (ja) * 2018-07-04 2020-01-09 キャプシュゲル・ベルジウム・エヌ・ヴィ 白色化剤として界面活性剤又は界面活性剤と塩を含有する皮膜形成性組成物

Also Published As

Publication number Publication date
JPWO2021145296A1 (ja) 2021-07-22
JP7397886B2 (ja) 2023-12-13

Similar Documents

Publication Publication Date Title
EP2476439B2 (en) Production method for enteric hard capsules
EP0946637B1 (en) Polymer film compositions for capsules
EP1117736B2 (en) Modified starch film compositions
JP4065691B2 (ja) プルラン膜組成物
KR101762460B1 (ko) 내산성 캡슐
JP5860480B2 (ja) プルランを含む新しい硬カプセル
US20070254024A1 (en) Process for manufacturing films
JPWO2006082842A1 (ja) 溶解性が改善された硬カプセル
JP5253235B2 (ja) 腸溶性カプセル
TWI539976B (zh) 腸溶硬膠囊之組合物與使用此組合物所得之腸溶硬膠囊
JP2005137935A (ja) 硬質カプセル及びその製造方法
JP2000202003A (ja) 硬質カプセル及びその製造方法
JP5489471B2 (ja) Peg充填硬質カプセル剤のバンドシール
EP1072633A1 (en) Pullulan film compositions
JP5334727B2 (ja) ソフトカプセルの製造方法
WO2021145296A1 (ja) セルロース誘導体を基剤とする機械的強度および酸素透過性が改善された硬カプセル
KR20180007321A (ko) 장용성 경캡슐용 조성물 및 장용성 경캡슐의 제조 방법
JPWO2008084823A1 (ja) 褐色皮膜組成物およびその調製方法
JP7377782B2 (ja) フィルム成形用組成物及びフィルム
CN108042505A (zh) 一种专用于头孢克肟的植物空心胶囊
WO2022244713A1 (ja) 非ゼラチン硬カプセル及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021571178

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741516

Country of ref document: EP

Kind code of ref document: A1