WO2021145092A1 - 高分子複合圧電フィルム - Google Patents
高分子複合圧電フィルム Download PDFInfo
- Publication number
- WO2021145092A1 WO2021145092A1 PCT/JP2020/045374 JP2020045374W WO2021145092A1 WO 2021145092 A1 WO2021145092 A1 WO 2021145092A1 JP 2020045374 W JP2020045374 W JP 2020045374W WO 2021145092 A1 WO2021145092 A1 WO 2021145092A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric
- polymer composite
- piezoelectric film
- layer
- film
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 97
- 229920000642 polymer Polymers 0.000 title claims abstract description 96
- 239000002245 particle Substances 0.000 claims abstract description 59
- 239000002861 polymer material Substances 0.000 claims abstract description 40
- 239000011159 matrix material Substances 0.000 claims abstract description 33
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims description 52
- 230000037303 wrinkles Effects 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 abstract description 18
- 239000010408 film Substances 0.000 description 155
- 239000010410 layer Substances 0.000 description 132
- 239000011241 protective layer Substances 0.000 description 71
- 230000010287 polarization Effects 0.000 description 49
- 238000011282 treatment Methods 0.000 description 41
- 239000000463 material Substances 0.000 description 30
- 238000005259 measurement Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 14
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 12
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010409 thin film Substances 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- -1 cyanoethyl hydroxypropyl Chemical group 0.000 description 10
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000005684 electric field Effects 0.000 description 8
- 238000010030 laminating Methods 0.000 description 7
- 239000003973 paint Substances 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 230000002269 spontaneous effect Effects 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 229920002799 BoPET Polymers 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- 229920000856 Amylose Polymers 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004373 Pullulan Substances 0.000 description 2
- 229920001218 Pullulan Polymers 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 2
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 2
- 230000028161 membrane depolarization Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 235000019423 pullulan Nutrition 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- KXJGSNRAQWDDJT-UHFFFAOYSA-N 1-acetyl-5-bromo-2h-indol-3-one Chemical compound BrC1=CC=C2N(C(=O)C)CC(=O)C2=C1 KXJGSNRAQWDDJT-UHFFFAOYSA-N 0.000 description 1
- VKNASXZDGZNEDA-UHFFFAOYSA-N 2-cyanoethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC#N VKNASXZDGZNEDA-UHFFFAOYSA-N 0.000 description 1
- AEPWOCLBLLCOGZ-UHFFFAOYSA-N 2-cyanoethyl prop-2-enoate Chemical compound C=CC(=O)OCCC#N AEPWOCLBLLCOGZ-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940044631 ferric chloride hexahydrate Drugs 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000003190 viscoelastic substance Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
- H04R17/005—Piezoelectric transducers; Electrostrictive transducers using a piezoelectric polymer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R31/00—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/04—Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
- H10N30/045—Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/074—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
- H10N30/077—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/08—Shaping or machining of piezoelectric or electrostrictive bodies
- H10N30/084—Shaping or machining of piezoelectric or electrostrictive bodies by moulding or extrusion
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/092—Forming composite materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/852—Composite materials, e.g. having 1-3 or 2-2 type connectivity
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2499/00—Aspects covered by H04R or H04S not otherwise provided for in their subgroups
- H04R2499/10—General applications
- H04R2499/15—Transducers incorporated in visual displaying devices, e.g. televisions, computer displays, laptops
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/88—Mounts; Supports; Enclosures; Casings
- H10N30/883—Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
Definitions
- the present invention relates to a polymer composite piezoelectric film used for an acoustic device such as a speaker.
- the speakers used in these thin displays are also required to be lighter and thinner. Further, in response to the development of a flexible display using a flexible substrate such as plastic, the speaker used for the flexible display is also required to be flexible.
- the shape of the conventional speaker is generally a funnel-shaped so-called cone shape, a spherical dome shape, or the like.
- a speaker if such a speaker is to be incorporated in the above-mentioned thin display, it cannot be made sufficiently thin, and there is a risk of impairing lightness and / or flexibility.
- the speaker when attached externally, it is troublesome to carry it.
- the electroacoustic piezoelectric film disclosed in Patent Document 1 includes a polymer composite piezoelectric body (piezoelectric layer) in which piezoelectric particles are dispersed in a viscoelastic matrix made of a polymer material having viscoelasticity at room temperature, and high molecular weight. It has an electrode layer formed on both sides of the molecular composite piezoelectric body and a protective layer formed on the surface of the electrode layer.
- a ferroelectric material such as PZT (lead zirconate titanate) is used as the piezoelectric particles.
- PZT lead zirconate titanate
- the crystal structure of this ferroelectric material is divided into many domains with different directions of spontaneous polarization. In this state, the spontaneous polarization of each region and the piezoelectric effect caused by the polarization cancel each other out, so that the piezoelectricity is not observed as a whole.
- electric polarization treatment such as corona polling is performed, and an electric field of a certain value or more is applied from the outside to align (orient) the directions of spontaneous polarization in each region.
- the piezoelectric particles that have been subjected to the electric polarization treatment exhibit a piezoelectric effect in response to an external electric field.
- the piezoelectric layer contains piezoelectric particles having such piezoelectricity, the piezoelectric film itself expands and contracts in the plane direction in response to the applied voltage, and the piezoelectric film itself expands and contracts in the plane direction in the direction perpendicular to the plane. By vibrating, vibration (sound) is converted into an electric signal.
- an X-ray diffraction method (XRD) is used as a method for analyzing a crystal structure, and XRD is used to investigate how atoms are arranged inside a crystal.
- XRD X-ray diffraction method
- Patent Document 1 as an index of orientation, the intensity ratio between the (002) plane peak intensity and the (200) plane peak intensity derived from the piezoelectric particles when the polymer composite piezoelectric body is evaluated by the X-ray diffraction method. : (002) Surface peak intensity / ((002) Surface peak intensity + (200) Surface peak intensity), and by setting this intensity ratio to 0.6 or more and less than 1, the sound pressure of the polymer composite piezoelectric film It is stated that it will be further improved.
- An object of the present invention is to solve such a problem of the prior art, and to provide a polymer composite piezoelectric film which has high conversion efficiency and can be reproduced at a sufficient volume.
- the present invention has the following configurations.
- the intensity ratio between the (002) plane peak intensity and the (200) plane peak intensity derived from the piezoelectric particles ⁇ 1 (002) plane peak intensity /
- the polymer composite piezoelectric film of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.
- the description of the constituent elements described below may be based on a typical embodiment of the present invention, but the present invention is not limited to such an embodiment.
- the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
- the polymer composite piezoelectric film of the present invention A polymer composite piezoelectric body containing piezoelectric particles in a matrix containing a polymer material, It has two electrode layers laminated on both sides of the polymer composite piezoelectric body, and has.
- the intensity ratio between the (002) plane peak intensity and the (200) plane peak intensity derived from the piezoelectric particles ⁇ 1 (002) plane peak intensity / ( It is a polymer composite piezoelectric film having a fluctuation coefficient of (002) surface peak intensity + (200) surface peak intensity) of less than 0.3.
- FIG. 1 shows a cross-sectional view schematically showing an example of the polymer composite piezoelectric film of the present invention.
- the polymer composite piezoelectric film (hereinafter, also referred to as a piezoelectric film) 10 of the present invention includes a polymer composite piezoelectric body 12 containing piezoelectric particles 26 in a matrix 24 containing a polymer material, and a polymer.
- the polymer composite piezoelectric body is a sheet-like material having piezoelectricity.
- the polymer composite piezoelectric body is also referred to as a piezoelectric layer.
- the (002) plane peak intensity and the (200) plane derived from the piezoelectric particles when the piezoelectric layer 12 made of the polymer composite piezoelectric body is evaluated by the X-ray diffraction method.
- the piezoelectric layer 12 shown in FIG. 1 contains the piezoelectric particles 26 in the matrix 24 containing the polymer material. Further, the lower electrode 14 and the upper electrode 16 are electrode layers in the present invention. Further, the lower protective layer 18 and the upper protective layer 20 are protective layers in the present invention. As will be described later, the piezoelectric film 10 (piezoelectric layer 12) is polarized in the thickness direction as a preferred embodiment.
- the piezoelectric layer 12 which is a polymer composite piezoelectric body, has a height in which the piezoelectric particles 26 are uniformly dispersed in a matrix 24 made of a polymer material, as conceptually shown in FIG. It is composed of a molecular composite piezoelectric material.
- the material of the matrix 24 (matrix and binder) of the polymer composite piezoelectric material constituting the piezoelectric layer 12 it is preferable to use a polymer material having viscoelasticity at room temperature.
- room temperature refers to a temperature range of about 0 to 50 ° C.
- the piezoelectric film 10 of the present invention is suitably used for a speaker having flexibility, such as a speaker for a flexible display.
- the polymer composite piezoelectric body (piezoelectric layer 12) used for the flexible speaker preferably has the following requirements. Therefore, it is preferable to use a polymer material having viscoelasticity at room temperature as a material satisfying the following requirements.
- the polymer composite piezoelectric material is required to behave hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less. Further, the loss tangent of the polymer composite piezoelectric body is required to be appropriately large for vibrations of all frequencies of 20 kHz or less.
- polymer solids have a viscoelastic relaxation mechanism, and large-scale molecular motion decreases (Relaxation) or maximizes loss elastic modulus (absorption) as the temperature rises or the frequency decreases.
- Relaxation large-scale molecular motion decreases
- absorption loss elastic modulus
- main dispersion the relaxation caused by the micro-Brownian motion of the molecular chain in the amorphous region is called main dispersion, and a very large relaxation phenomenon is observed.
- the temperature at which this main dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
- the polymer composite piezoelectric body (piezoelectric layer 12), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature, for vibration of 20 Hz to 20 kHz.
- a polymer composite piezoelectric material that is hard and behaves softly against slow vibrations of several Hz or less is realized.
- the polymer material having viscoelasticity at room temperature various known materials can be used as long as they have dielectric properties.
- a polymer material having a maximum loss tangent value of 0.5 or more at a frequency of 1 Hz by a dynamic viscoelasticity test at room temperature, that is, 0 ° C. to 50 ° C. is used.
- the polymer material preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 100 MPa or more at 0 ° C. and 10 MPa or less at 50 ° C.
- E' storage elastic modulus
- the polymer material has a relative permittivity of 10 or more at 25 ° C.
- a voltage is applied to the polymer composite piezoelectric body, a higher electric field is applied to the piezoelectric particles in the matrix, so that a large amount of deformation can be expected.
- the polymer material has a relative permittivity of 10 or less at 25 ° C.
- polymer material satisfying such conditions examples include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinyl polyisoprene block copolymer, polyvinyl methyl ketone, and polybutyl. Methacrylate and the like are exemplified. Further, as these polymer materials, commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be preferably used.
- Hybler 5127 manufactured by Kuraray Co., Ltd.
- the polymer material it is preferable to use a material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA.
- these polymer materials may use only 1 type, and may use a plurality of types in combination (mixing).
- a plurality of polymer materials may be used in combination, if necessary. That is, in addition to the polymer material having viscoelasticity at room temperature, other dielectric polymer materials may be added to the matrix 24 for the purpose of adjusting the dielectric properties and the mechanical properties. ..
- dielectric polymer material examples include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer.
- fluoropolymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethyl cellulose, cyanoethyl hydroxysaccharose, cyanoethyl hydroxycellulose, cyanoethyl hydroxypurrane, cyanoethyl methacrylate, cyanoethyl acrylate, cyanoethyl.
- Cyano groups such as hydroxyethyl cellulose, cyanoethyl amylose, cyanoethyl hydroxypropyl cellulose, cyanoethyl dihydroxypropyl cellulose, cyanoethyl hydroxypropyl amylose, cyanoethyl polyacrylamide, cyanoethyl polyacrylate, cyanoethyl pullulan, cyanoethyl polyhydroxymethylene, cyanoethyl glycidol pullulan, cyanoethyl saccharose and cyanoethyl sorbitol.
- a polymer having a cyanoethyl group a synthetic rubber such as a nitrile rubber or a chloroprene rubber, and the like are exemplified.
- a polymer material having a cyanoethyl group is preferably used.
- the dielectric polymer material added in addition to the polymer material having viscoelasticity at room temperature such as cyanoethylated PVA is not limited to one type, and a plurality of types are added. You may.
- the matrix 24 contains a thermoplastic resin such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene, and phenol for the purpose of adjusting the glass transition point.
- a resin, a urea resin, a melamine resin, an alkyd resin, and a thermosetting resin such as mica may be added.
- a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added.
- the amount to be added when a material other than the viscoelastic polymer material such as cyanoethylated PVA is added is not particularly limited, but is 30% by mass or less in proportion to the matrix 24. Is preferable. As a result, the characteristics of the polymer material to be added can be exhibited without impairing the viscoelastic relaxation mechanism in the matrix 24, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion to the piezoelectric particles 26 and the electrode layer can be improved. In this respect, favorable results can be obtained.
- the piezoelectric layer 12 is a polymer composite piezoelectric body containing piezoelectric particles 26 in such a matrix 24.
- the piezoelectric particles 26 are made of ceramic particles having a perovskite-type or wurtzite-type crystal structure. Examples of the ceramic particles constituting the piezoelectric particles 26 include lead zirconate titanate (PZT), lead lanthanate lanthanate titanate (PLZT), barium titanate (BaTIO 3 ), zinc oxide (ZnO), and zinc oxide (ZnO). Examples thereof include a solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3). Only one type of these piezoelectric particles 26 may be used, or a plurality of types may be used in combination (mixed).
- the particle size of the piezoelectric particles 26 is not limited, and may be appropriately selected depending on the size and application of the polymer composite piezoelectric body (piezoelectric film 10).
- the particle size of the piezoelectric particles 26 is preferably 1 to 10 ⁇ m. By setting the particle size of the piezoelectric particles 26 in this range, favorable results can be obtained in that the polymer composite piezoelectric body (piezoelectric film 10) can achieve both high piezoelectric characteristics and flexibility.
- the piezoelectric particles 26 in the piezoelectric layer 12 are uniformly and regularly dispersed in the matrix 24, but the present invention is not limited to this. That is, the piezoelectric particles 26 in the piezoelectric layer 12 may be irregularly dispersed in the matrix 24 as long as they are preferably uniformly dispersed.
- the amount ratio of the matrix 24 and the piezoelectric particles 26 in the piezoelectric layer 12 is not limited, and the size and thickness of the piezoelectric layer 12 in the plane direction are not limited.
- the suitable setting may be made according to the application of the polymer composite piezoelectric body, the characteristics required for the polymer composite piezoelectric body, and the like.
- the volume fraction of the piezoelectric particles 26 in the piezoelectric layer 12 is preferably 30 to 80%, more preferably 50% or more, and therefore more preferably 50 to 80%.
- the thickness of the piezoelectric layer 12 is not limited, and may be appropriately set according to the application of the polymer composite piezoelectric body, the characteristics required for the polymer composite piezoelectric body, and the like.
- the thickness of the piezoelectric layer 12 is preferably 10 to 300 ⁇ m, more preferably 20 to 200 ⁇ m, and even more preferably 30 to 150 ⁇ m. By setting the thickness of the piezoelectric layer 12 within the above range, favorable results can be obtained in terms of ensuring both rigidity and appropriate flexibility.
- the piezoelectric film 10 of the illustrated example has a lower electrode 14 on one surface of the piezoelectric layer 12, a lower protective layer 28 on the surface thereof, and a lower protective layer 28 on the other surface of the piezoelectric layer 12.
- the upper electrode 16 is provided, and the upper protective layer 30 is provided on the surface thereof.
- the upper electrode 16 and the lower electrode 14 form an electrode pair.
- the piezoelectric film 10 has a structure in which both sides of the piezoelectric layer 12 are sandwiched between electrode pairs, that is, the upper electrode 16 and the lower electrode 14, and the laminate is sandwiched between the lower protective layer 28 and the upper protective layer 30. Has. As described above, in the piezoelectric film 10, the region held by the upper electrode 16 and the lower electrode 14 is expanded and contracted according to the applied voltage.
- the lower protective layer 28 and the upper protective layer 30 cover the upper electrode 16 and the lower electrode 14, and also play a role of imparting appropriate rigidity and mechanical strength to the piezoelectric layer 12. That is, in the piezoelectric film 10, the piezoelectric layer 12 composed of the matrix 24 and the piezoelectric particles 26 exhibits extremely excellent flexibility against slow bending deformation, but is rigid depending on the application. And mechanical strength may be insufficient.
- the piezoelectric film 10 is provided with a lower protective layer 28 and an upper protective layer 30 to supplement the piezoelectric film 10.
- the lower protective layer 28 and the upper protective layer 30 are not limited, and various sheet-like materials can be used, and as an example, various resin films are preferably exemplified.
- various resin films are preferably exemplified.
- PET polyethylene terephthalate
- PP polypropylene
- PS polystyrene
- PC polycarbonate
- PPS polyphenylene sulfide
- PMMA polymethylmethacrylate
- PET polyethylene terephthalate
- PET polypropylene
- PS polystyrene
- PC polycarbonate
- PPS polyphenylene sulfide
- PMMA polymethylmethacrylate
- PEI Polyetherimide
- PI Polystyrene
- PEN Polyethylene Naphthalate
- TAC Triacetyl Cellulose
- a resin film made of a cyclic olefin resin or the like are preferably used.
- the thickness of the lower protective layer 28 and the upper protective layer 30 there is also no limitation on the thickness of the lower protective layer 28 and the upper protective layer 30. Further, the thicknesses of the lower protective layer 28 and the upper protective layer 30 are basically the same, but may be different. Here, if the rigidity of the lower protective layer 28 and the upper protective layer 30 is too high, not only the expansion and contraction of the piezoelectric layer 12 is restrained, but also the flexibility is impaired. Therefore, the thinner the lower protective layer 28 and the upper protective layer 30, the more advantageous it is, except when mechanical strength and good handleability as a sheet-like material are required.
- the thickness of the lower protective layer 28 and the upper protective layer 30 is preferably 3 ⁇ m to 100 ⁇ m, more preferably 3 ⁇ m to 50 ⁇ m, further preferably 3 ⁇ m to 30 ⁇ m, and particularly preferably 4 ⁇ m to 10 ⁇ m.
- the thickness of the lower protective layer 28 and the upper protective layer 30 is twice or less the thickness of the piezoelectric layer 12, the rigidity can be ensured and the appropriate flexibility can be achieved. A favorable result can be obtained in this respect.
- the thickness of the piezoelectric layer 12 is 50 ⁇ m and the lower protective layer 28 and the upper protective layer 30 are made of PET
- the thickness of the lower protective layer 28 and the upper protective layer 30 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. It is preferably 25 ⁇ m or less, and more preferably 25 ⁇ m or less.
- a lower electrode 14 is formed between the piezoelectric layer 12 and the lower protective layer 28, and an upper electrode 16 is formed between the piezoelectric layer 12 and the upper protective layer 30.
- the lower electrode 14 and the upper electrode 16 are provided to apply a driving voltage to the piezoelectric layer 12.
- the material for forming the lower electrode 14 and the upper electrode 16 is not limited, and various conductors can be used. Specifically, alloys such as carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, titanium, chromium and molybdenum, laminates and composites of these metals and alloys, and Examples thereof include indium tin oxide. Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferably exemplified as the lower electrode 14 and the upper electrode 16.
- the method of forming the lower electrode 14 and the upper electrode 16 and the vapor deposition method (vacuum film deposition method) such as vacuum deposition and sputtering, the film formation by plating, and the foil formed of the above materials can be used.
- vapor deposition method vacuum film deposition method
- sputtering the film formation by plating
- foil formed of the above materials can be used.
- Various known methods such as a method of sticking can be used.
- thin films such as copper and aluminum formed by vacuum deposition are preferably used as the lower electrode 14 and the upper electrode 16 because the flexibility of the piezoelectric film 10 can be ensured.
- a copper thin film produced by vacuum deposition is preferably used.
- the thickness of the lower electrode 14 and the upper electrode 16 are basically the same, but may be different.
- the lower electrode 14 and the upper electrode 16 are preferably thin film electrodes.
- the thickness of the lower electrode 14 and the upper electrode 16 is thinner than the protective layer, preferably 0.05 ⁇ m to 10 ⁇ m, more preferably 0.05 ⁇ m to 5 ⁇ m, further preferably 0.08 ⁇ m to 3 ⁇ m, and 0.1 ⁇ m to 2 ⁇ m. Especially preferable.
- the film is flexible. It is suitable because it does not significantly impair the properties.
- the lower protective layer 28 and the upper protective layer 30 are made of PET (Young's modulus: about 6.2 GPa) and the lower electrode 14 and the upper electrode 16 are made of copper (Young's modulus: about 130 GPa)
- the lower protective layer 28 is used.
- the thickness of the lower electrode 14 and the upper electrode 16 is preferably 1.2 ⁇ m or less, more preferably 0.3 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
- the piezoelectric film 10 preferably has a maximum value of loss tangent (Tan ⁇ ) at a frequency of 1 Hz as measured by dynamic viscoelasticity measurement at room temperature, and more preferably has a maximum value of 0.1 or more at room temperature.
- Tan ⁇ loss tangent
- the piezoelectric film 10 preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 GPa to 30 GPa at 0 ° C. and 1 GPa to 10 GPa at 50 ° C.
- E' storage elastic modulus
- the piezoelectric film 10 can have a large frequency dispersion in the storage elastic modulus (E'). That is, it can behave hard for vibrations of 20 Hz to 20 kHz and soft for vibrations of several Hz or less.
- the product of the thickness and the storage elastic modulus at a frequency of 1 Hz by dynamic viscoelasticity measurement is 1.0 ⁇ 10 5 to 2.0 ⁇ 10 6 (1.0E + 05 to 2. It is preferably 0E + 06) N / m, and preferably 1.0 ⁇ 10 5 to 1.0 ⁇ 10 6 (1.0E + 05 to 1.0E + 06) N / m at 50 ° C.
- the piezoelectric layer 12 can be provided with appropriate rigidity and mechanical strength as long as the flexibility and acoustic characteristics are not impaired.
- the piezoelectric film 10 preferably has a loss tangent of 0.05 or more at 25 ° C. and a frequency of 1 kHz in the master curve obtained from the dynamic viscoelasticity measurement. The same applies to the piezoelectric layer 12 with respect to this condition. As a result, the frequency characteristics of the speaker using the piezoelectric film 10 are smoothed, and the change in sound quality when the minimum resonance frequency f 0 changes with the change in the curvature of the speaker can be reduced.
- the storage elastic modulus (Young's modulus) and the loss tangent of the piezoelectric film 10 and the piezoelectric layer 12 and the like may be measured by a known method.
- the measurement may be performed using a dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology Inc. (manufactured by SII Nanotechnology Inc.).
- the measurement frequency is 0.1 Hz to 20 Hz (0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz and 20 Hz)
- the measurement temperature is -50 to 150 ° C.
- the temperature rise rate is 2 ° C./min (in a nitrogen atmosphere)
- the sample size is 40 mm ⁇ 10 mm (including the clamp region)
- the inter-chuck distance is 20 mm, respectively.
- the piezoelectric film 10 includes, for example, an upper electrode 16, an electrode drawing portion for drawing an electrode from the lower electrode 14, and a region where the piezoelectric layer 12 is exposed. May have an insulating layer or the like that covers the above and prevents a short circuit or the like.
- the electrode extraction portion a portion where the electrode layer and the protective layer project convexly outside the surface direction of the piezoelectric layer may be provided, or a part of the protective layer may be removed to form a hole portion. Then, a conductive material such as silver paste may be inserted into the pores to electrically conduct the conductive material and the electrode layer to form an electrode extraction portion.
- the number of electrode extraction portions is not limited to one, and two or more electrode extraction portions may be provided.
- the piezoelectric film 10 of the present invention has the (002) plane peak intensity and the (200) plane derived from the piezoelectric particles when the polymer composite piezoelectric body which is the piezoelectric layer 12 is evaluated by the X-ray diffraction method.
- a ferroelectric material such as PZT is used as the piezoelectric particles.
- the crystal structure of this ferroelectric material is divided into many domains with different directions of spontaneous polarization, and in this state, the spontaneous polarization of each domain and the piezoelectric effect caused by it cancel each other out. No piezoelectricity is seen as a whole.
- the direction of spontaneous polarization in each region is aligned by applying an electric polarization treatment such as corona polling to the piezoelectric layer and applying an electric field of a certain value or more from the outside. It has been.
- the piezoelectric particles that have been subjected to the electric polarization treatment exhibit a piezoelectric effect in response to an external electric field.
- the piezoelectric film itself expands and contracts in the plane direction and vibrates in the direction perpendicular to the plane, thereby converting vibration (sound) and an electric signal.
- the direction of spontaneous polarization of each domain of the crystal structure of the ferroelectric material (hereinafter, also simply referred to as the domain direction) is not only the thickness direction of the piezoelectric film but also various plane directions and the like. It is facing the direction of. Therefore, for example, even when an electric polarization process is performed by applying a higher voltage, it is not possible to direct all the directions of the domains facing the plane direction to the thickness direction to which an electric field is applied. In other words, the 90 ° domain cannot be completely removed. Therefore, in the conventional piezoelectric film, the directions of the domains are oriented in various directions, and the orientation of the domains varies widely. A piezoelectric film using a piezoelectric layer having a large variation in domain orientation could not obtain higher piezoelectricity.
- an X-ray diffraction method is used as a method for analyzing the crystal structure of such a piezoelectric layer (piezoelectric particles), and XRD is used to investigate how atoms are arranged inside the crystal. Is being done.
- the (002) plane peak intensity is a tetragonal peak near 43.5 ° in the XRD pattern obtained by the XRD analysis
- the (200) plane peak intensity is the XRD pattern obtained by the XRD analysis. Is a tetragonal peak near 45 °.
- the XRD analysis can be performed using an X-ray diffractometer (SmartLab manufactured by Rigaku Co., Ltd.) or the like.
- the (002) plane peak strength corresponds to the ratio of the domain (c domain) in the thickness direction of the piezoelectric film
- the (200) plane peak strength corresponds to the domain (a domain) in the plane direction of the piezoelectric film. Corresponds to the ratio.
- the piezoelectric film of the present invention has the (002) plane peak intensity derived from the piezoelectric particles and (200) when the polymer composite piezoelectric body which is the piezoelectric layer 12 is evaluated by the X-ray diffraction method.
- the coefficient of variation of the intensity ratio ⁇ 1 with the surface peak intensity is less than 0.3. That is, the variation in domain orientation is small.
- a piezoelectric film using a piezoelectric layer in which the variation in the orientation of the domains is small and the orientations of the domains are uniform can obtain higher piezoelectricity.
- the piezoelectric film of the present invention can have a higher conversion efficiency between vibration (sound) and an electric signal, and can be reproduced at a sufficient volume when the piezoelectric film is used as a diaphragm of a speaker. Become. Moreover, since the conversion efficiency is high, the power consumption can be reduced.
- the coefficient of variation of the intensity ratio ⁇ 1 is the above-mentioned X-ray diffraction method (XRD) at any five points at intervals of 10 mm or more in the plane direction (vertical direction in the thickness direction) of the piezoelectric layer.
- the intensity ratio ⁇ 1 used may be measured, the average value and the standard deviation may be calculated, and the standard deviation may be divided by the average value.
- the (002) plane peak intensity and the (200) plane peak intensity derived from the piezoelectric particles when the polymer composite piezoelectric body is evaluated by the X-ray diffraction method The intensity ratio ⁇ 1 is preferably 0.6 or more and less than 1, more preferably 0.67 to 0.75. That is, the higher the intensity ratio ⁇ 1 (the higher the ratio of the (002) plane peak intensity), the larger the proportion of domains (c domains) in the thickness direction of the piezoelectric film, and higher piezoelectricity can be obtained. ..
- the ratio of the domain (a domain) in the plane direction is large, when a driving voltage is applied, the 90 ° domain wall moves, causing distortion hysteresis, and distortion occurs in the reproduced sound. There is a risk that it will end up.
- the ratio of the domain (a domain) in the plane direction by reducing the ratio of the domain (a domain) in the plane direction, the 90 ° domain motion when the drive voltage is applied is reduced, and the distortion of the reproduced sound is reduced.
- the piezoelectricity can be further improved by setting the strength ratio ⁇ 1 to 0.75 or less and leaving the domain (a domain) facing the plane direction at a constant ratio.
- a lower electrode laminate 11a in which the lower electrode 14 is formed on the lower protective layer 18 is prepared.
- the lower electrode laminate 11a may be produced by forming a copper thin film or the like as the lower electrode 14 on the surface of the lower protective layer 18 by vacuum deposition, sputtering, plating or the like.
- the lower protective layer 18 with a separator temporary support
- PET or the like having a thickness of 25 ⁇ m to 100 ⁇ m can be used.
- the separator may be removed after the upper electrode 16 and the upper protective layer 20 are thermocompression bonded, and before any member is laminated on the lower protective layer 18.
- a polymer material to be a matrix material is dissolved in an organic solvent, and piezoelectric particles 26 such as PZT particles are added, and the mixture is stirred to prepare a dispersed coating material.
- organic solvent there are no restrictions on the organic solvent other than the above substances, and various organic solvents can be used.
- the paint is cast (coated) on the lower electrode laminate 11a to evaporate the organic solvent and dry it.
- a first laminated body 11b having a lower electrode 14 on the lower protective layer 18 and forming a piezoelectric layer 12 on the lower electrode 14 is produced.
- the lower electrode 14 is an electrode on the base material side when the piezoelectric layer 12 is applied, and does not indicate the vertical positional relationship in the laminated body.
- a dielectric polymer material may be added to the matrix 24 in addition to the viscoelastic material such as cyanoethylated PVA.
- the polymer materials to be added to the paint described above may be dissolved.
- the upper electrode laminate 11c in which the upper electrode 16 is formed on the upper protective layer 20 is prepared.
- the upper electrode laminate 11c may be produced by forming a copper thin film or the like as the upper electrode 16 on the surface of the upper protective layer 20 by vacuum vapor deposition, sputtering, plating or the like.
- the upper electrode 16 is piezoelectric as shown in FIG.
- the upper electrode laminate 11c is laminated on the first laminate 11b toward the body layer 12.
- the laminate of the first laminate 11b and the upper electrode laminate 11c is thermocompression bonded by a heating press device or a heating roller or the like so as to sandwich the upper protective layer 20 and the lower protective layer 18.
- the piezoelectric layer 12 is subjected to an electrical polarization treatment (polling).
- thermocompression bonding process described later can be smoothly performed.
- the electric polarization treatment is not limited to the configuration performed after laminating the upper electrode laminated body 11c on the first laminated body 11b, and may be performed before laminating the upper electrode laminated body 11c.
- the electrical polarization process switches the domain (180 ° domain) facing in the direction opposite to the direction in which the electric field is applied in the thickness direction, that is, causes a 180 ° domain motion to cause a 180 ° domain motion in the thickness direction. You can align the directions of the domains.
- a polymer composite piezoelectric film in which an electrode layer and a protective layer are laminated on both sides of the piezoelectric layer 12 is produced.
- the produced polymer composite piezoelectric film may be cut into a desired shape according to various uses.
- Such a polymer composite piezoelectric film may be produced by using a sheet-like material in the form of a cut sheet, or may be produced by roll-to-roll (hereinafter, also referred to as RtoR).
- the temperature of the piezoelectric layer In the electric polarization treatment, if the temperature of the piezoelectric layer is low, the temperature moves away from the Curie point and it becomes difficult to polarize. Therefore, when the polarization treatment is performed, it is preferable to heat the piezoelectric layer to promote the polarization.
- the temperature of the piezoelectric layer during the electric polarization treatment is non-uniform in the plane direction and the temperature varies, the polarization will vary depending on the position of the piezoelectric layer in the plane direction, resulting in polarization. There is a risk of non-uniformity.
- a method of heating the piezoelectric layer during the electric polarization treatment there are a method using a hot plate, a method using hot air, a method using infrared rays, and the like. Normally, when heating by these methods, the temperature depends on the position. It tends to be non-uniform.
- the coefficient of variation of the intensity ratio ⁇ 1 can be set to less than 0.3.
- the temperature of the piezoelectric layer during the electric polarization treatment is preferably 20 ° C. to 130 ° C., more preferably 50 ° C. to 100 ° C., and even more preferably 80 ° C. to 100 ° C.
- the temperature of the piezoelectric layer during the electric polarization treatment may be estimated indirectly by measuring the surface temperature of the electrode layer or the protective layer using a contact thermometer.
- the temperature of the piezoelectric layer is measured at arbitrary 5 points at intervals of 10 mm or more, the average value and the standard deviation are calculated, and the standard deviation is the average value. It may be calculated by dividing.
- the process 2 applies pressure to the piezoelectric layer 12 when the piezoelectric layer 12 is electrically polarized.
- pressure is applied to the piezoelectric layer 12
- charge asymmetry is caused, so that the piezoelectric layer 12 is easily oriented by an electric field. Therefore, by applying pressure to the piezoelectric layer 12 to perform the electric polarization treatment, the domains can be easily oriented and the coefficient of variation of the intensity ratio ⁇ 1 can be set to less than 0.3.
- the laminate of the first laminate 11b and the upper electrode laminate 11c is placed on each side of the upper protection layer 20 and the lower protection layer 18.
- the pressure may be applied to the piezoelectric layer 12 by pressing from the above.
- the pressure may be applied to the piezoelectric layer 12 by pressing from each side of the piezoelectric layer 12 and the lower protective layer 18.
- the pressure applied to the piezoelectric layer 12 is preferably 0.3 MPa to 0.9 MPa, more preferably 0.5 MPa to 0.9 MPa, and even more preferably 0.6 MPa to 0.8 MPa. It is preferable that the pressure is uniformly applied to the piezoelectric layer 12 in the surface direction.
- the amplitude of the wrinkles formed on the piezoelectric film is set to 1 ⁇ m to 20 ⁇ m.
- wrinkles may occur in the piezoelectric film (laminated body) in the step of laminating the upper electrode laminated body 11c on the first laminated body 11b. This is due to the difference in Young's modulus and degree of thermal expansion of each layer. If the piezoelectric film has wrinkles, stress concentrates on the wrinkles. In the stress-concentrated portion, depolarization occurs and the orientation is reduced.
- the coefficient of variation of the intensity ratio ⁇ 1 can be set to less than 0.3.
- the tension applied to the first laminated body 11b and the upper electrode laminated body 11c is such that the first laminated body 11b and the upper electrode laminated body 11c are damaged depending on the thickness, material, etc. of the first laminated body 11b and the upper electrode laminated body 11c. Instead, the tension capable of suppressing wrinkles may be appropriately set.
- the amplitude of the wrinkles formed on the piezoelectric film is preferably 1 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 10 ⁇ m.
- the amplitude of the wrinkles formed on the piezoelectric film is measured as follows. First, the piezoelectric film is cut into a size of 20 mm in the longitudinal direction and 200 mm in the width direction (direction orthogonal to the longitudinal direction) with scissors or the like. Next, the cut piezoelectric film is placed on the XY stage, weights are placed on the regions of 5 mm at both ends in the width direction, and the film is fixed at a pressure of 0.6 g / cm 2.
- the piezoelectric film After fixing the piezoelectric film, scan the surface of the piezoelectric film with a laser displacement meter (measurement range: 100 ⁇ m) in any direction and in the direction orthogonal to this direction at a speed of 40 mm / s to wrinkle the surface of the piezoelectric film. Measure the amplitude of. The larger value in the two measured directions is defined as the amplitude of the wrinkles formed on the piezoelectric film. Such a measurement is carried out at arbitrary three points at intervals of 5 mm or more, and the average value of the wrinkle amplitude is obtained.
- the XY stage for example, the XY stage BS-2020SG manufactured by Komusu Co., Ltd. can be used.
- the laser displacement meter for example, a laser displacement meter LT-9030M manufactured by KEYENCE CORPORATION can be used.
- the piezoelectric film is preferably hard.
- the piezoelectric film is less likely to vibrate, and the conversion efficiency may decrease.
- the Young's modulus of the piezoelectric film is preferably 0.5 GPa to 3.5 GPa, more preferably 0.5 GPa to 2.0 GPa, and preferably 0.8 GPa to 1.5 GPa. More preferred.
- a step of applying a mechanical polarization treatment may be carried out.
- the mechanical polarization treatment is a step of applying shear stress to the piezoelectric layer 12 of the second laminated body 11d in which the upper electrode laminated body 11c is laminated on the first laminated body 11b.
- shear stress to the piezoelectric layer 12
- the proportion of a domains facing the plane direction can be reduced, and the proportion of c domains facing the thickness direction can be increased. That is, the strength ratio ⁇ 1 in the piezoelectric layer can be increased by subjecting the mechanical polarization treatment.
- the piezoelectric layer 12 is derived from the piezoelectric particles when evaluated by the X-ray diffraction method.
- the intensity ratio ⁇ 1 between the (002) surface peak intensity and the (200) surface peak intensity can be set to 0.6 or more, and higher piezoelectricity can be obtained.
- the mechanical polarization treatment is performed after the electrical polarization treatment.
- the 90 ° domain motion caused by the mechanical polarization process is more likely to occur due to the elimination of the 180 ° domain wall. Therefore, 180 ° domain motion is generated by the electric polarization process, the 180 ° domain wall is eliminated to make it easy for 90 ° domain motion to occur, and then the mechanical polarization process is performed to cause 90 ° domain motion. Therefore, the a domain facing the plane direction can be turned into the c domain by facing the thickness direction, and the proportion of the c domain can be increased.
- a method of applying shear stress to the piezoelectric layer 12 as the mechanical polarization treatment as shown in FIG. 5, a method of pressing a roller from one surface side of the second laminated body 11d and the like can be mentioned.
- the type of roller is not particularly limited, and a rubber roller, a metal roller, or the like can be appropriately used.
- the value of the shear stress applied to the piezoelectric layer 12 is not particularly limited, and may be appropriately set according to the performance required for the piezoelectric film, the material and thickness of each layer of the piezoelectric film, and the like.
- the shear stress applied to the piezoelectric layer 12 may be obtained by dividing the applied shear load by the cross-sectional area parallel to the shear load, or by detecting the tensile strain or compressive strain generated by the tensile or compressive stress. Shear stress may be calculated from the detection result.
- the temperature of the piezoelectric film and the roller is preferably 20 ° C to 130 ° C, more preferably 50 ° C to 100 ° C. If the temperature is too high, the polymer material becomes too soft and it becomes difficult for shearing force to be transmitted. At low temperatures, the polymer material becomes too hard and the domain ratio does not change easily. Therefore, it is considered that the domain ratio is likely to change.
- the piezoelectric film of the present invention generates (reproduces) sound due to vibration in response to an electric signal in various acoustic devices (audio equipment) such as speakers, microphones, and pickups used in musical instruments such as guitars. Alternatively, it is used to convert sound vibrations into electrical signals.
- the piezoelectric film can also be used for pressure-sensitive sensors, power generation elements, and the like.
- a piezoelectric film when used for a speaker, it may be used as a sound generated by the vibration of the film-shaped piezoelectric film itself.
- the piezoelectric film may be attached to a diaphragm and used as an exciter that vibrates the diaphragm by the vibration of the piezoelectric film to generate sound.
- Example 1 (Preparation process) A lower electrode laminate 11a and an upper electrode laminate 11c formed by vacuum-depositing a copper thin film having a thickness of 0.1 ⁇ m on a PET film having a thickness of 4 ⁇ m were prepared. That is, in this example, the upper electrode 16 and the lower electrode 14 are copper-deposited thin films having a thickness of 0.1 ⁇ m, and the upper protective layer 20 and the lower protective layer 18 are PET films having a thickness of 4 ⁇ m. In order to obtain good handling during the process, a PET film having a thickness of 50 ⁇ m with a separator (temporary support PET) was used, and after thermocompression bonding of the upper electrode laminate 11c, the separator of each protective layer was used. Removed.
- a separator temporary support PET
- PZT particles ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 300 parts by mass ⁇ Cyanoethylated PVA ⁇ ⁇ ⁇ ⁇ ⁇ 15 parts by mass ⁇ MEK ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 85 parts by mass
- PZT particles commercially available PZT raw material powder was sintered at 1000 to 1200 ° C., and then crushed and classified so as to have an average particle size of 5 ⁇ m.
- a paint for forming the previously prepared piezoelectric layer 12 was applied onto the lower electrode 14 (copper-deposited thin film) of the previously prepared lower electrode laminate 11a using a slide coater. The paint was applied so that the film thickness of the coating film after drying was 20 ⁇ m. Next, the MEK was evaporated by heating and drying the product coated with the paint on the lower electrode laminate 11a on a hot plate at 120 ° C.
- the upper electrode laminate 11c was laminated on the first laminate 11b with the upper electrode 16 (copper thin film side) side facing the piezoelectric layer 12, and thermocompression bonded at 120 ° C. At that time, a tension of 5 N / mm 2 was applied to the first laminated body 11b and the upper electrode laminated body 11c, respectively (process 3). As a result, the piezoelectric layer 12, the upper electrode 16 and the lower electrode 14 were adhered to each other to prepare a second laminated body 11d.
- Electrode polarization treatment process A voltage was applied between the lower electrode 14 and the upper electrode 16 of the second laminated body 11d to apply an electric polarization treatment to the piezoelectric layer 12.
- the second laminated body 12d is placed on a hot plate, the temperature of the piezoelectric layer 12 is set to 100 ° C., and a DC voltage of 6 kV is applied between the lower electrode 14 and the upper electrode 16. It was applied.
- the piezoelectric layer was placed after the hot plate was sufficiently heated, and the piezoelectric layer was covered with a metal flat plate to suppress the temperature fluctuation of the piezoelectric layer 12 and make the temperature distribution uniform (treatment 1).
- the coefficient of variation of the temperature of the piezoelectric layer 12 was 0.02. Further, during the electric polarization treatment, the second laminated body 11d was uniformly pressed from the lower protective layer 18 and the upper protective layer 20 side to apply pressure to the piezoelectric layer 12, and the electric polarization treatment was performed (). Process 2). The pressure applied to the piezoelectric layer 12 was 0.7 MPa. From the above, a polymer composite piezoelectric film was produced.
- the crystal structure of the piezoelectric particles 26 in the piezoelectric layer 12 was subjected to an X-ray diffraction method (XRD) using an X-ray diffractometer (SmartLab Cu radiation source manufactured by Rigaku Co., Ltd., 45 kV, 200 mA). , XRD pattern was measured.
- the sample was fixed on an adsorption sample table, and the measurement was performed with an angle of incidence on the sample surface of 0.5 °. Prior to the measurement, the electrode was peeled off from the piezoelectric film as described below, and then the above measurement was performed.
- the piezoelectric film was cut into 40 mm pieces with scissors or the like.
- an iron chloride aqueous solution prepared by mixing ferric chloride hexahydrate and pure water was prepared at 1.5 mol / L.
- the cut piezoelectric film was immersed in the prepared iron chloride aqueous solution for 12 hours while hanging. Then, the immersed piezoelectric film was taken out and washed with pure water several times. The corners of the washed piezoelectric film were pinched, and the upper electrode laminate was peeled off from the piezoelectric layer at a speed of about 4 mm / s to expose the piezoelectric layer.
- the piezoelectric film from which the upper electrode laminate was peeled off was washed with pure water several times and then naturally dried for 24 hours. In this way, the electrode was peeled off from the piezoelectric film, and the above XRD measurement of the piezoelectric layer was performed.
- the ratio ⁇ 1 (002) surface peak intensity / ((002) surface peak intensity + (200) surface peak intensity) was determined. Such a measurement was measured at any five points, and the coefficient of variation was calculated from the average value and standard deviation of the intensity ratio ⁇ 1 at the five points. The coefficient of variation of the intensity ratio ⁇ 1 was 0.09. The intensity ratio ⁇ 1 (average value) was 0.80.
- the Young's modulus of the produced piezoelectric film was 1.2 GPa.
- Examples 2 to 8, Comparative Example 1 The polymer composite piezoelectric film is the same as in Example 1 except that the presence or absence of the treatment 3 in the second lamination step and the treatments 1 and 2 in the electrical polarization treatment step is changed as shown in Table 1 below. 10 was prepared. Further, the piezoelectric film each XRD pattern was produced and measured in the same manner as in Example 1, coefficient of variation of the intensity ratio alpha 1, and was determined intensity ratio alpha 1 (average value).
- Example 2 A polymer composite was prepared in the same manner as in Example 7 except that the lower electrode laminate 11a and the upper electrode laminate 11c formed by vacuum-depositing a copper thin film with a thickness of 0.1 ⁇ m on a polypropylene film having a thickness of 4 ⁇ m were prepared. A piezoelectric film was produced. Further, the piezoelectric film each XRD pattern was produced and measured in the same manner as in Example 1, coefficient of variation of the intensity ratio alpha 1, and was determined intensity ratio alpha 1 (average value).
- Comparative Example 3 A polymer was prepared in the same manner as in Comparative Example 1 except that a lower electrode laminate 11a and an upper electrode laminate 11c formed by vacuum-depositing a copper thin film with a thickness of 0.1 ⁇ m on a polyaramid film having a thickness of 4 ⁇ m were prepared. A composite piezoelectric film was produced. Further, the piezoelectric film each XRD pattern was produced and measured in the same manner as in Example 1, coefficient of variation of the intensity ratio alpha 1, and was determined intensity ratio alpha 1 (average value).
- the method for measuring the Young's modulus of the piezoelectric film is shown below.
- a tensile tester eg, manufactured by A & D, RTF-1310
- a measurement sample having a length of 80 mm and a width of 12.8 mm (including a gripping margin) was cut out from the piezoelectric film with a cutter (Olfa work cutter, product number: XB141).
- the top and bottom of the measurement sample were fixed.
- the distance between the gripping jigs was 50 mm.
- stress was gradually applied in the direction of pulling the measurement sample.
- the pulling speed was 10 mm / min.
- the temperature of the measurement room was 25 degrees and the humidity was 55%.
- Young's modulus was calculated using the following formula.
- E ( ⁇ N / S) / ( ⁇ x / L) ⁇ 10 -3 ⁇ N: Change in stress (N), S: Cross-sectional area of test piece (mm 2 ), ⁇ x: Elongation amount (mm), L: Distance between gripping jigs (mm)
- the stress range was set to 0.3N to 5.0N, and the stress change ( ⁇ N) and elongation ( ⁇ x) at this time were used in the calculation.
- the diaphragm When the conversion film is taken out from the electroacoustic converter, the diaphragm may be scraped off and the electroacoustic conversion film may be taken out as follows.
- the electroacoustic transducer is then fixed on the milling machine using a Fujicopian fix film.
- the diaphragm is cut with a milling machine, and the electroacoustic conversion film from which the diaphragm has been removed is taken out. To confirm whether the diaphragm was removed from the electroacoustic converter and the electroacoustic conversion film could be taken out, the thickness of the layer containing the electroacoustic conversion film remaining after milling was determined (“Electricacoustic converter obtained above”.
- the sound pressure level of the manufactured electroacoustic transducer was measured, and the sound pressure sensitivity was determined. Specifically, the microphone P is placed at a position 0.5 m away from the center of the piezoelectric film of the electroacoustic converter, and a sign of 1 kHz and 1 W is placed between the upper electrode and the lower electrode of the electroacoustic converter. A wave was input, the sound pressure level was measured, and converted into sound pressure sensitivity. The evaluation results are shown in Table 1.
- Examples 1 to 8 of the polymer composite piezoelectric film of the present invention have improved sound pressure sensitivity as compared with Comparative Examples 1 to 3. From the comparison of the examples, it can be seen that the smaller the coefficient of variation of the intensity ratio ⁇ 1 and the higher the average value, the better the sound pressure sensitivity.
- the amplitude of the wrinkles formed on the piezoelectric film is preferably 20 ⁇ m or less.
- Comparative Example 2 it can be seen that when the Young's modulus of the piezoelectric film is low, wrinkles are likely to occur even if the treatment 3 (tension is applied), so that the sound pressure sensitivity is low. From the above results, the effect of the present invention is clear.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Abstract
Description
高分子複合圧電フィルムは、圧電体層がこのような圧電性を有する圧電体粒子を含有することで、印加電圧に応答して、圧電フィルム自身が面方向に伸縮し、面に垂直な方向に振動することで、振動(音)と電気信号とを変換する。
特許文献1では、配向性の指標として、高分子複合圧電体をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率:(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)を用いて、この強度比率を0.6以上1未満とすることで、高分子複合圧電フィルムの音圧をより向上することが記載されている。
(1) 高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体と、
高分子複合圧電体の両面に積層された2つの電極層と、を有し、
高分子複合圧電体をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)の変動係数が0.3未満である高分子複合圧電フィルム。
(2) 強度比率α1が、0.6以上1未満である請求項1に記載の高分子複合圧電フィルム。
(3) 高分子複合圧電フィルムに形成されるシワの振幅が1μm~20μmである請求項1または2に記載の高分子複合圧電フィルム。
(4) 高分子複合圧電フィルムのヤング率が0.5GPa~3.5GPaである請求項1~3のいずれか一項に記載の高分子複合圧電フィルム。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本発明の高分子複合圧電フィルムは、
高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体と、
高分子複合圧電体の両面に積層された2つの電極層と、を有し、
高分子複合圧電体をX線回折法で評価した際の、圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)の変動係数が0.3未満である高分子複合圧電フィルムである。
図1に示すように、本発明の高分子複合圧電フィルム(以下、圧電フィルムともいう)10は、高分子材料を含むマトリックス24中に圧電体粒子26を含む高分子複合圧電体12、高分子複合圧電体12の一方の面に積層される下部電極14と、下部電極14上に積層される下部保護層18と、高分子複合圧電体12の他方の面に積層される上部電極16と、上部電極16上に積層される上部保護層20とを有する。高分子複合圧電体は、圧電性を有するシート状物である。以下、高分子複合圧電体を圧電体層ともいう。
また、好ましくは、強度比率α1が、0.6以上1未満である。
この点に関しては後に詳述する。
後述するが、圧電フィルム10(圧電体層12)は、好ましい態様として、厚さ方向に分極されている。
圧電フィルム10において、高分子複合圧電体である圧電体層12は、図1に概念的に示すような、高分子材料からなるマトリックス24中に、圧電体粒子26を均一に分散してなる高分子複合圧電体からなるものである。
圧電体層12を構成する高分子複合圧電体のマトリックス24(マトリックス兼バインダ)の材料として、常温で粘弾性を有する高分子材料を用いるのが好ましい。なお、本明細書において、「常温」とは、0~50℃程度の温度域を指す。
例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
(ii) 音質
スピーカーは、20Hz~20kHzのオーディオ帯域の周波数で圧電体粒子を振動させ、その振動エネルギーによって高分子複合圧電体(圧電素子)全体が一体となって振動することで音が再生される。従って、振動エネルギーの伝達効率を高めるために高分子複合圧電体には適度な硬さが求められる。また、スピーカーの周波数特性が平滑であれば、曲率の変化に伴い最低共振周波数が変化した際の音質の変化量も小さくなる。従って、高分子複合圧電体の損失正接は適度に大きいことが求められる。
高分子複合圧電体(圧電体層12)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移温度が常温、すなわち、0~50℃にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部におけるマトリックスと圧電体粒子との界面の応力集中が緩和され、良好な可撓性が得られる。
これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz~20kHzの音響振動に対しては硬く振る舞うことができる。
しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
なお、これらの高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。
すなわち、マトリックス24には、誘電特性および機械的特性の調節等を目的として、常温で粘弾性を有する高分子材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
中でも、シアノエチル基を有する高分子材料は、好適に利用される。
また、圧電体層12のマトリックス24において、シアノエチル化PVA等の常温で粘弾性を有する高分子材料に加えて添加される誘電性高分子材料は、1種に限定はされず、複数種を添加してもよい。
さらに、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、および、石油樹脂等の粘着付与剤を添加しても良い。
これにより、マトリックス24における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子26および電極層との密着性向上等の点で好ましい結果を得ることができる。
圧電体粒子26は、ペロブスカイト型またはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
圧電体粒子26を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。
これらの圧電体粒子26は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。
圧電体粒子26の粒径は、1~10μmが好ましい。圧電体粒子26の粒径をこの範囲とすることにより、高分子複合圧電体(圧電フィルム10)が高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
すなわち、圧電体層12中の圧電体粒子26は、好ましくは均一に分散されていれば、マトリックス24中に不規則に分散されていてもよい。
圧電体層12中における圧電体粒子26の体積分率は、30~80%が好ましく、50%以上がより好ましく、従って、50~80%とするのが、さらに好ましい。
マトリックス24と圧電体粒子26との量比を上記範囲とすることにより、高い圧電特性と可撓性とを両立できる等の点で好ましい結果を得ることができる。
圧電体層12の厚さは、10~300μmが好ましく、20~200μmがより好ましく、30~150μmがさらに好ましい。
圧電体層12の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
図1に示すように、図示例の圧電フィルム10は、圧電体層12の一面に、下部電極14を有し、その表面に下部保護層28を有し、圧電体層12の他方の面に、上部電極16を有し、その表面に上部保護層30を有してなる構成を有する。ここで、上部電極16と下部電極14とが電極対を形成する。
このように、圧電フィルム10において、上部電極16および下部電極14で挾持された領域は、印加された電圧に応じて伸縮される。
中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂等からなる樹脂フィルムが、好適に利用される。
ここで、下部保護層28および上部保護層30の剛性が高過ぎると、圧電体層12の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、下部保護層28および上部保護層30は、薄いほど有利である。
ここで、圧電フィルム10においては、下部保護層28および上部保護層30の厚さが、圧電体層12の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
例えば、圧電体層12の厚さが50μmで下部保護層28および上部保護層30がPETからなる場合、下部保護層28および上部保護層30の厚さは、100μm以下が好ましく、50μm以下がより好ましく、25μm以下がさらに好ましい。
下部電極14および上部電極16は、圧電体層12に駆動電圧を印加するために設けられる。
下部電極14および上部電極16の厚さには、制限はない。また、下部電極14および上部電極16の厚さは、基本的に同じであるが、異なってもよい。
例えば、下部保護層28および上部保護層30がPET(ヤング率:約6.2GPa)で、下部電極14および上部電極16が銅(ヤング率:約130GPa)からなる組み合わせの場合、下部保護層28および上部保護層30の厚さが25μmだとすると、下部電極14および上部電極16の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、中でも0.1μm以下とするのが好ましい。
これにより、圧電フィルム10が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
これにより、圧電フィルム10が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
これにより、圧電フィルム10が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
これにより、圧電フィルム10を用いたスピーカーの周波数特性が平滑になり、スピーカーの曲率の変化に伴い最低共振周波数f0が変化した際の音質の変化を小さくできる。
測定条件としては、一例として、測定周波数は0.1Hz~20Hz(0.1Hz、0.2Hz、0.5Hz、1Hz、2Hz、5Hz、10Hzおよび20Hz)が、測定温度は-50~150℃が、昇温速度は2℃/分(窒素雰囲気中)が、サンプルサイズは40mm×10mm(クランプ領域込み)が、チャック間距離は20mmが、それぞれ、例示される。
なお、各電極層において、電極引出し部は1つには限定されず、2以上の電極引出し部を有していてもよい。特に、保護層の一部を除去して孔部に導電材料を挿入して電極引出し部とする構成の場合には、より確実に通電を確保するために、電極引出し部を3以上有するのが好ましい。
そこで、従来の圧電フィルムにおいては、圧電体層にコロナポーリング等の電気的な分極処理を施し、外部からある値以上の電界を加えることで、各分域の自発分極の方向を揃えることが行われている。電気的分極処理された圧電体粒子は、外部からの電界に応じて圧電効果を示すようになる。これにより、高分子複合圧電フィルムは、印加電圧に応答して、圧電フィルム自身が面方向に伸縮し、面に垂直な方向に振動することで、振動(音)と電気信号とを変換する。
そのため、従来の圧電フィルムでは、ドメインの方向が種々の方向に向いており、ドメインの配向性のばらつきが大きかった。ドメインの配向性のばらつきが大きい圧電体層を用いた圧電フィルムでは、より高い圧電性を得ることができなかった。
XRD解析は、X線回折装置(株式会社リガク製 SmartLab)等を用いて行うことができる。
また、(002)面ピーク強度は、圧電フィルムの厚さ方向のドメイン(cドメイン)の割合に対応しており、(200)面ピーク強度は、圧電フィルムの面方向のドメイン(aドメイン)の割合に対応している。
したがって、本発明の圧電フィルムは、例えば、振動(音)と電気信号との変換効率をより高くすることができ、圧電フィルムをスピーカの振動板として用いた場合に、十分な音量で再生可能となる。また、変換効率が高いので消費電力を低減することができる。
すなわち、強度比率α1が高いほど((002)面ピーク強度の比率が高いほど)、圧電フィルムの厚さ方向のドメイン(cドメイン)の割合が多くなり、より高い圧電性を得ることができる。
これに対して、面方向のドメイン(aドメイン)の割合を少なくすることで、駆動電圧を印加した際の90°ドメインモーションが減少し、再生される音の歪みが低減される。
したがって、強度比率α1を0.75以下として、面方向を向いているドメイン(aドメイン)を一定の割合で残したほうが、圧電性をより高くすることができる。
下部保護層18が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの下部保護層18を用いても良い。なお、セパレータとしては、厚さ25μm~100μmのPET等を用いることができる。セパレータは、上部電極16および上部保護層20を熱圧着した後、下部保護層18に何らかの部材を積層する前に、取り除けばよい。
上記物質以外の有機溶媒としては制限はなく各種の有機溶媒が利用可能である。
マトリックス24に、これらの高分子材料を添加する際には、上述した塗料に添加する高分子材料を溶解すればよい。
なお、この電気的分極処理の前に、圧電体層12の表面を加熱ローラ等を用いて平滑化する、カレンダー処理を施してもよい。このカレンダー処理を施すことで、後述する熱圧着工程がスムーズに行える。
処理1は、圧電体層12の電気的分極処理を行う際に、圧電体層12を加熱して分極処理を行い、その際の圧電体層12の温度の変動係数を0.5未満とするものである。
ここで、電気的分極処理の際の圧電体層の温度が面方向において不均一で、温度にばらつきがあると、圧電体層の面方向の位置によって分極のされ方にばらつきが生じ、分極が不均一になるおそれがある。例えば、電気的分極処理の際に圧電体層を加熱する方法として、ホットプレートを用いる方法、熱風による方法、赤外線による方法等があるが、通常、これらの方法で加熱する場合、温度が位置によって不均一になりやすい。
処理2は、圧電体層12の電気的分極処理を行う際に、圧電体層12に圧力を付与するものである。
圧電体層12に圧力を加えると、電荷の非対称性を起こすため、電界で配向しやすくなる。従って、圧電体層12に圧力を加えて電気的分極処理を行うことで、ドメインが配向しやすくなり、強度比率α1の変動係数を0.3未満とすることができる。
なお、圧電体層12には、面方向に均一に圧力が付与されることが好ましい。
処理3は、圧電フィルムに形成されるシワの振幅を1μm~20μmとするものである。
圧電フィルムの製造方法において、第1積層体11bに上部電極積層体11cを積層する工程で圧電フィルム(積層体)にシワが発生する場合がある。これは各層のヤング率や熱膨張の程度の違いに起因するものである。圧電フィルムにシワがあると、シワ部に応力が集中する。応力が集中した部分では、脱分極が起こり、配向性が低下してしまう。
まず、圧電フィルムを長手方向に20mm、幅方向(長手方向と直交する方向)に200mmのサイズにハサミ等で裁断する。次に、裁断した圧電フィルムをXYステージに載置し、幅方向の両端部5mmの領域の上に重りを載せて、0.6g/cm2の圧力でフィルムを固定する。圧電フィルムを固定したら、レーザー変位計(測定レンジ:100μm)で圧電フィルムの表面を、任意の方向、および、この方向に直交する方向に、40mm/sの速度でスキャンし、圧電フィルム表面のシワの振幅を計測する。測定した2方向のうち値が大きいほうを圧電フィルムに形成されるシワの振幅とする。
このような測定を5mm以上の間隔をあけて任意の3点で実施し、シワの振幅の平均値を求める。
なお、XYステージとしては、例えば、コムス株式会社製XYステージBS-2020SGを用いることができる。また、レーザー変位計としては、例えば、株式会社キーエンス製レーザー変位計LT-9030Mを用いることができる。
圧電体層12(圧電体粒子26)にせん断応力をかけると、圧電体粒子26は、縦方向(厚さ方向)に伸びざるをえないため、その際に、90°ドメインモーションが起きて、面方向を向いているaドメインが、厚さ方向に向いて、cドメインとなる。また、厚さ方向を向いているcドメインの向きが変わることはない。その結果、aドメインの割合が減って、cドメインの割合が増加すると推定される。
機械的分極処理により生じる90°ドメインモーションは、180°ドメインウォールが無くなることで起こりやすくなる。
したがって、電気的分極処理によって、180°ドメインモーションを起こし、180°ドメインウォールを無くして、90°ドメインモーションが起きやすい状態にした後に、機械的分極処理を行うことで、90°ドメインモーションを起こして、面方向を向いたaドメインを厚さ方向に向かせてcドメインにすることができ、cドメインの割合を増加させることができる。
ローラを用いて圧電体層12にせん断応力を加える場合の、ローラの種類には特に限定はなく、ゴムローラ、金属ローラ等が適宜利用可能である。
また、圧電フィルムは、これ以外にも、感圧センサおよび発電素子等にも利用可能である。
(準備工程)
厚さ4μmのPETフィルムに、厚さ0.1μmの銅薄膜を真空蒸着してなる下部電極積層体11aおよび上部電極積層体11cを用意した。すなわち、本例においては、上部電極16および下部電極14は、厚さ0.1μmの銅蒸着薄膜であり、上部保護層20および下部保護層18は厚さ4μmのPETフィルムとなる。
なお、プロセス中、良好なハンドリングを得るために、PETフィルムには厚さ50μmのセパレータ(仮支持体 PET)付きのものを用い、上部電極積層体11cの熱圧着後に、各保護層のセパレータを取り除いた。
まず、下記の組成比で、シアノエチル化PVA(CR-V 信越化学工業社製)をメチルエチルケトン(MEK)に溶解した。その後、この溶液に、PZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で分散させて、圧電体層12を形成するための塗料を調製した。
・PZT粒子・・・・・・・・・・・300質量部
・シアノエチル化PVA・・・・・・・15質量部
・MEK・・・・・・・・・・・・・・85質量部
なお、PZT粒子は、市販のPZT原料粉を1000~1200℃で焼結した後、これを平均粒径5μmになるように解砕および分級処理したものを用いた。
次いで、下部電極積層体11aの上に塗料を塗布した物を、120℃のホットプレート上で加熱乾燥することでMEKを蒸発させた。
第1積層体11bの上に、上部電極16(銅薄膜側)側を圧電体層12に向けて上部電極積層体11cを積層し、120℃で熱圧着した。その際、第1積層体11bおよび上部電極積層体11cにそれぞれ5N/mm2のテンションを付与した(処理3)。
これによって、圧電体層12と上部電極16および下部電極14とを接着して第2積層体11dを作製した。
第2積層体11dの下部電極14と上部電極16との間に電圧を印加して、圧電体層12に電気的分極処理を施した。なお、電気的分極処理は、第2積層体12dをホットプレート上に載置して、圧電体層12の温度を100℃として、下部電極14と上部電極16との間に6kVの直流電圧を印加して行った。
その際、ホットプレートを十分に加熱した後に圧電体層を載せ、その上を金属平板で覆うことで、圧電体層12の温度の変動を抑制し、温度分布を均一にした(処理1)。圧電体層12の温度の変動係数は0.02であった。
また、電気的分極処理の際に、第2積層体11dを下部保護層18および上部保護層20側から均一に押圧して圧電体層12に圧力を付与しながら電気的分極処理を行った(処理2)。圧電体層12に付与する圧力は、0.7MPaとした。
以上により、高分子複合圧電フィルムを作製した。
作製した圧電フィルムについて、圧電体層12中の圧電体粒子26の結晶構造を、X線回折装置(株式会社リガク製 SmartLab Cu線源、45kV、200mA)を用いたX線回折法(XRD)により、XRDパターンを測定した。サンプルは吸着試料台にて固定し、サンプル表面に対する入射角を0.5°として測定を行った。
なお、測定に先立ち、下記のようにして圧電フィルムから電極を剥がした後、上記測定を行った。
このような測定を任意の5点で測定し、5点の強度比率α1の平均値および標準偏差から変動係数を算出した。
強度比率α1の変動係数は0.09であった。また、強度比率α1(平均値)は、0.80であった。
第2積層工程における処理3、ならびに、電気的分極処理工程における処理1および処理2の実施の有無を下記表1に示すように変更した以外は、実施例1と同様にして高分子複合圧電フィルム10を作製した。
また、作製した圧電フィルムそれぞれのXRDパターンを実施例1と同様にして測定し、強度比率α1の変動係数、および、強度比率α1(平均値)を求めた。
厚さ4μmのポリプロピレンフィルムに、厚さ0.1μmの銅薄膜を真空蒸着してなる下部電極積層体11aおよび上部電極積層体11cを用意した以外は、実施例7と同様にして、高分子複合圧電フィルムを作製した。
また、作製した圧電フィルムそれぞれのXRDパターンを実施例1と同様にして測定し、強度比率α1の変動係数、および、強度比率α1(平均値)を求めた。
厚さ4μmのポリアラミドフィルムに、厚さ0.1μmの銅薄膜を真空蒸着してなる下部電極積層体11aおよび上部電極積層体11cを用意した以外は、比較例1と同様にして、高分子複合圧電フィルムを作製した。
また、作製した圧電フィルムそれぞれのXRDパターンを実施例1と同様にして測定し、強度比率α1の変動係数、および、強度比率α1(平均値)を求めた。
圧電フィルムのヤング率の測定方法を以下に示す。
引っ張り試験機(例えばエー・アンド・デイ製、RTF-1310)を使用した。
圧電フィルムから、長さ80mm、幅12.8mm(つかみしろ含む)の測定サンプルをカッター(オルファ製 細工カッター、品番:XB141)で切り出した。
測定サンプルの上下を固定した。つかみ治具間距離は50mmとした。
測定サンプルをチャック後、測定サンプルを引っ張る方向に応力を徐々にかけた。引っ張り速度は10mm/minとした。測定室の温度は25度、湿度は55%とした。この時の応力の変化と伸び量から、以下の式を用いてヤング率を計算した。
E=(ΔN/S)/(Δx/L)×10-3
ΔN:応力の変化(N)、S:試験片の断面積(mm2)、Δx:伸び量(mm)、L:つかみ治具間距離(mm)
応力の範囲としては0.3Nから5.0Nとし、この時の応力変化(ΔN)と伸び量(Δx)を計算に使用した。
<音圧感度>
(電気音響変換器の作製)
厚さ200μmのPETフィルムの両面に酸化珪素膜が30μm蒸着されたシートをA4サイズにカットし、振動板として準備した。
作製した電気音響変換フィルムを5cm×10cmにカットし、片面側全面に厚さ10μmの両面テープを貼り付け、A4サイズの振動板の中央部に貼り付けた。次いでA4サイズ振動板の両方の短辺をプラスチック棒に固定し、電気音響変換器を作製した。
電気音響変換器から振動板を削り取るため、はじめに電気音響変換器面内にある振動板のみの部分の厚みを東京精密製ミニコムにより測定する。面内の測定位置は振動板のみの部分の面積が平均±10%の範囲で同一となるように均等に10区画に分割し、各区画の中でn=5回ずつランダムな位置で厚み測定を行って、10区画×n=5の50点の厚みを平均して振動板の代表厚みを求める。次いで電気音響変換フィルムが張り付けてある部分の電気音響変換器の厚みを5mm以上の間隔をあけてn=5点測定を行い、電気音響変換器の平均厚みを求める。
次いでフライス盤上に電気音響変換器をフジコピアン製フィックスフィルムを使用して固定する。次いでフライス盤での振動板切削を行い、振動板が除去された電気音響変換フィルムを取り出す。電気音響変換器から振動板が除去され、電気音響変換フィルムが取り出せたか否かの確認は、フライス切削されて残った電気音響変換フィルムを含む層の厚みが(「上記で求めた電気音響変換器の厚み」-「上記で求めた振動板の厚み」)±5μmの範囲に入るか否かで行う。残った電気音響変換フィルムを含む層の厚みは面内を5mm以上の間隔をあけてn=5点測定を行い平均厚みとする。ここでの電気音響変換フィルムは上記で定義した厚み範囲となっていれば、わずかに振動板の残留物や、振動板と電気音響変換フィルムを接着する両面テープが残留していてもよい。
作製した電気音響変換器の音圧レベルを測定し、音圧感度を求めた。
具体的には、電気音響変換器の圧電フィルムの中央に向けて、0.5m離した位置にマイクロフォンPを配置し、電気音響変換器の上部電極と下部電極との間に1kHz、1Wのサイン波を入力して、音圧レベルを測定し、音圧感度に換算した。
評価結果を表1に示す。
実施例の対比から、強度比率α1の変動係数が小さく、平均値が高いほど音圧感度が向上することがわかる。
また、比較例2から、圧電フィルムのヤング率が低い場合には、処理3(テンション付与)を行ってもシワが入りやすいため、音圧感度が低くなることがわかる。
以上の結果より、本発明の効果は、明らかである。
11a 下部電極積層体
11b 第1積層体
11c 上部電極積層体
11d 第2積層体
12 圧電体層
14 下部電極
16 上部電極
18 下部保護層
20 上部保護層
24 粘弾性マトリックス
26 圧電体粒子
Claims (4)
- 高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体と、
前記高分子複合圧電体の両面に積層された2つの電極層と、を有し、
前記高分子複合圧電体をX線回折法で評価した際の、前記圧電体粒子に由来する(002)面ピーク強度と(200)面ピーク強度との強度比率α1=(002)面ピーク強度/((002)面ピーク強度+(200)面ピーク強度)の変動係数が0.3未満である高分子複合圧電フィルム。 - 前記強度比率α1が、0.6以上1未満である請求項1に記載の高分子複合圧電フィルム。
- 前記高分子複合圧電フィルムに形成されるシワの振幅が1μm~20μmである請求項1または2に記載の高分子複合圧電フィルム。
- 前記高分子複合圧電フィルムのヤング率が0.5GPa~3.5GPaである請求項1~3のいずれか一項に記載の高分子複合圧電フィルム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227023113A KR20220108154A (ko) | 2020-01-16 | 2020-12-07 | 고분자 복합 압전 필름 |
CN202080092280.7A CN114930556A (zh) | 2020-01-16 | 2020-12-07 | 高分子复合压电薄膜 |
EP20913657.1A EP4093050A4 (en) | 2020-01-16 | 2020-12-07 | POLYMER COMPOSITE PIEZOELECTRIC FILM |
JP2021570676A JP7331143B2 (ja) | 2020-01-16 | 2020-12-07 | 高分子複合圧電フィルム |
US17/863,703 US20220344573A1 (en) | 2020-01-16 | 2022-07-13 | Polymer-based piezoelectric composite material film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020004898 | 2020-01-16 | ||
JP2020-004898 | 2020-01-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/863,703 Continuation US20220344573A1 (en) | 2020-01-16 | 2022-07-13 | Polymer-based piezoelectric composite material film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021145092A1 true WO2021145092A1 (ja) | 2021-07-22 |
Family
ID=76864231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/045374 WO2021145092A1 (ja) | 2020-01-16 | 2020-12-07 | 高分子複合圧電フィルム |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220344573A1 (ja) |
EP (1) | EP4093050A4 (ja) |
JP (1) | JP7331143B2 (ja) |
KR (1) | KR20220108154A (ja) |
CN (1) | CN114930556A (ja) |
TW (1) | TW202143517A (ja) |
WO (1) | WO2021145092A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114883476A (zh) * | 2022-05-12 | 2022-08-09 | 业泓科技(成都)有限公司 | 压电元件附着性的改善方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010030875A (ja) * | 2008-06-30 | 2010-02-12 | Hitachi Metals Ltd | セラミックス焼結体および圧電素子 |
JP2014199888A (ja) * | 2013-03-29 | 2014-10-23 | 富士フイルム株式会社 | 高分子複合圧電体 |
WO2017018313A1 (ja) | 2015-07-27 | 2017-02-02 | 富士フイルム株式会社 | 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5915440B2 (ja) * | 1981-07-22 | 1984-04-09 | 株式会社東芝 | 超音波探触子 |
-
2020
- 2020-12-07 JP JP2021570676A patent/JP7331143B2/ja active Active
- 2020-12-07 KR KR1020227023113A patent/KR20220108154A/ko not_active Application Discontinuation
- 2020-12-07 EP EP20913657.1A patent/EP4093050A4/en active Pending
- 2020-12-07 CN CN202080092280.7A patent/CN114930556A/zh active Pending
- 2020-12-07 WO PCT/JP2020/045374 patent/WO2021145092A1/ja unknown
- 2020-12-16 TW TW109144566A patent/TW202143517A/zh unknown
-
2022
- 2022-07-13 US US17/863,703 patent/US20220344573A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010030875A (ja) * | 2008-06-30 | 2010-02-12 | Hitachi Metals Ltd | セラミックス焼結体および圧電素子 |
JP2014199888A (ja) * | 2013-03-29 | 2014-10-23 | 富士フイルム株式会社 | 高分子複合圧電体 |
WO2017018313A1 (ja) | 2015-07-27 | 2017-02-02 | 富士フイルム株式会社 | 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー |
Non-Patent Citations (1)
Title |
---|
See also references of EP4093050A4 |
Also Published As
Publication number | Publication date |
---|---|
TW202143517A (zh) | 2021-11-16 |
JP7331143B2 (ja) | 2023-08-22 |
JPWO2021145092A1 (ja) | 2021-07-22 |
EP4093050A1 (en) | 2022-11-23 |
CN114930556A (zh) | 2022-08-19 |
EP4093050A4 (en) | 2023-09-13 |
KR20220108154A (ko) | 2022-08-02 |
US20220344573A1 (en) | 2022-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6431984B2 (ja) | 電気音響変換フィルムおよびその製造方法、ならびに、電気音響変換器、フレキシブルディスプレイ、声帯マイクロフォンおよび楽器用センサー | |
JP6071932B2 (ja) | 電気音響変換フィルム | |
WO2020196850A1 (ja) | 圧電フィルム、積層圧電素子および電気音響変換器 | |
JP6199245B2 (ja) | 電気音響変換フィルムおよび電気音響変換フィルムの導通方法 | |
JP6018108B2 (ja) | 高分子複合圧電体 | |
WO2020261954A1 (ja) | 電気音響変換フィルムおよび電気音響変換器 | |
JP7166428B2 (ja) | 電気音響変換器 | |
JP7137689B2 (ja) | 圧電フィルム、積層圧電素子および電気音響変換器 | |
KR20220080171A (ko) | 압전 소자 | |
WO2021225075A1 (ja) | 高分子圧電フィルム | |
WO2021145092A1 (ja) | 高分子複合圧電フィルム | |
WO2021075204A1 (ja) | 圧電素子 | |
JP7177268B2 (ja) | 高分子複合圧電体および圧電フィルム | |
WO2020261837A1 (ja) | 圧電フィルム | |
WO2022190715A1 (ja) | 圧電フィルム | |
WO2021095461A1 (ja) | 圧電素子 | |
JP7394873B2 (ja) | 圧電フィルム | |
WO2023286544A1 (ja) | 圧電フィルム | |
WO2022215524A1 (ja) | 圧電フィルム | |
WO2023181699A1 (ja) | 電気音響変換器 | |
WO2022202195A1 (ja) | 圧電フィルム | |
WO2022190807A1 (ja) | 圧電フィルムおよび積層圧電素子 | |
WO2023188966A1 (ja) | 圧電フィルム、圧電素子、および、電気音響変換器 | |
WO2023248696A1 (ja) | 圧電フィルム、圧電素子および電気音響変換器、ならびに、圧電フィルムの製造方法 | |
WO2023054019A1 (ja) | 圧電フィルムおよび積層圧電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20913657 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227023113 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021570676 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020913657 Country of ref document: EP Effective date: 20220816 |