WO2021143283A1 - 在测量时隙内收发信号的方法、网元设备及可读存储介质 - Google Patents

在测量时隙内收发信号的方法、网元设备及可读存储介质 Download PDF

Info

Publication number
WO2021143283A1
WO2021143283A1 PCT/CN2020/125511 CN2020125511W WO2021143283A1 WO 2021143283 A1 WO2021143283 A1 WO 2021143283A1 CN 2020125511 W CN2020125511 W CN 2020125511W WO 2021143283 A1 WO2021143283 A1 WO 2021143283A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
base station
cell group
frequency
processing capability
Prior art date
Application number
PCT/CN2020/125511
Other languages
English (en)
French (fr)
Inventor
金乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20913357.8A priority Critical patent/EP4080963A4/en
Priority to US17/758,939 priority patent/US20230055487A1/en
Publication of WO2021143283A1 publication Critical patent/WO2021143283A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1443Reselecting a network or an air interface over a different radio air interface technology between licensed networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • This application belongs to the field of communication technology, and in particular relates to a method for transmitting and receiving signals in a measurement time slot, a network element device, and a readable storage medium.
  • NR New Radio
  • NSA Non-Standalone
  • SA Standalone
  • NSA uses Multi-Radio Dual Connectivity (MR-DC) technology to provide a smooth transition of the network from Long Term Evolution (LTE) to NR, that is, the NSA core network uses 4G
  • MR-DC Multi-Radio Dual Connectivity
  • the core network can be deployed based on the existing 4G core network for 5G network deployment, which accelerates the commercial use of NR technology.
  • the core network of SA is the 5G core network (NR Core, NC), and the deployment success is even higher.
  • the terminal In the NSA networking mode, the terminal needs to access the 4G network and the 5G network at the same time. If the terminal supports MR-DC, the terminal needs to have independent radio frequency channels (or transceivers) of two communication standards (4G and 5G), so as to ensure that the terminal can receive data and send data on the networks of the two standards at the same time.
  • the user equipment Under MR-DC, when the signal quality of the current serving cell is poor, the user equipment (User Equipment, UE) needs to switch to another neighboring cell with better signal in time to obtain continuous service of the wireless network. Before the UE switches from the base station corresponding to the current serving cell to the neighboring base station, it needs to perform intra-frequency, inter-frequency and/or inter-system measurements according to the layout of the network cell.
  • UE User Equipment
  • the UE can support gap-assisted measurement (gap-assisted measurement) or non-gap-assisted measurement that requires a time slot gap (non-gap-assisted measurement). If the UE only supports the measurement that requires a gap, when the measurement is triggered, the base station configures the measurement gap for the UE. In the measurement gap, the base station and the UE stop sending and receiving signals from each other, and the UE receives neighboring cell signals to complete the measurement. Therefore, in the measurement gap, the base station and the UE stop sending and receiving data, resulting in a decrease in the uplink and downlink rate of the UE.
  • gap-assisted measurement gap-assisted measurement
  • non-gap-assisted measurement that requires a time slot gap
  • the embodiments of the present application provide a method for transmitting and receiving signals in a measurement time slot, a network element device, and a readable storage medium, which can solve the problem of a decrease in the uplink and downlink rate of the UE when the measurement requires a gap.
  • an embodiment of the present application provides a method for transmitting and receiving signals in a measurement time slot, which is applied to a user equipment UE, and the method for transmitting and receiving signals in a measurement time slot includes:
  • the measurement configuration information includes the configuration information of the frequency point to be measured and the measurement time slot gap
  • signals are sent and received with the base station according to the processing capability information of the UE.
  • the processing capability information is used to identify the first cell group in which the UE can transmit and receive signals in the measurement gap.
  • the processing capability information is based on The frequency to be measured and the UE capability are determined, and the UE capability is used to identify the frequency band combination supported by the UE.
  • the UE capability may be a radio frequency capability of the UE, and the UE capability is a combination of frequency bands supported by the UE.
  • the configuration information of the measurement gap may include: measurement gap repetition period (Measurement Gap Repetition Period, MGRP), measurement gap length (Measurement Gap Length, MGL), and time slot offset (gap Offset).
  • MGRP can be 40 milliseconds (ms)
  • MGL can be up to 6 ms.
  • the UE can configure the period of measuring the gap according to the MGRP configuration, the length of the gap according to the MGL configuration, and according to the MGRP, MGL, and gap Offset, it can determine that the starting position of the measurement gap is in the system frame number (System Frame Number, SFN) and sub-frame that meet the following conditions. On the subframe:
  • subframe gapOffset mod 10;
  • FLOOR means to round down gapOffset/10, and take the largest integer not greater than gapOffset/10.
  • gapOffset mod 10 means that the gapOffset and 10 are modulo arithmetic.
  • the processing capability information of the UE may be determined by the UE, or may be determined by the base station and sent to the UE.
  • the UE can transmit and receive signals with the base station in both the primary cell group and the secondary cell group in addition to the measurement gap.
  • the UE and the base station can continue to transmit data without interrupting signal transmission and reception in the first cell group, and the UE can switch at least one radio frequency channel in the second cell group to the frequency to be measured, and measure the frequency to be measured . Since in the measurement gap, signal transmission and reception may not be interrupted on the first cell group, the uplink and downlink rate of the UE can be improved.
  • the processing capability information of the UE is determined by the UE according to the frequency to be measured and the UE capability.
  • both the base station and the UE can determine the processing capability information of the UE according to the frequency to be measured and the UE capability, so that the base station and the UE do not need to inform each other of the processing capability information of the UE.
  • the UE can send the processing capability information of the UE to the base station, so that the base station does not need to determine the processing capability information of the UE.
  • the base station can send the processing capability information of the UE to the UE, and the UE can directly obtain the processing capability information of the UE without determining the processing capability information of the UE based on the frequency to be measured and the UE capability , UE can save some computing resources.
  • the base station determines the processing capability information of the UE according to the UE capability and the frequency to be measured, and sends the processing capability information of the UE to the UE through the measurement configuration information.
  • the transmitting and receiving signals with the base station according to the processing capability information of the UE includes: in the measurement gap, using physical uplink sharing on the first cell group
  • the PUSCH channel sends the first signal to the base station, and the physical downlink shared channel PDSCH receives the second signal sent by the base station.
  • the first cell group includes a primary cell group (Master Cell Group, MCG) and/or a secondary cell group (Secondary Cell Group, SCG).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the first cell group when the UE supports a frequency band combination consisting of a primary frequency band combination, a secondary frequency band combination, and the frequency to be measured, the first cell group includes MCG and SCG .
  • the primary frequency band combination is the frequency band combination on the primary node (the primary base station accessed by the UE)
  • the secondary frequency band combination is the frequency band combination on the secondary node (the secondary base station accessed by the UE).
  • the first cell group is an MCG.
  • the first cell group is an SCG.
  • the method when the first cell includes MCG or SCG, after the acquiring measurement configuration information sent by the base station, the method further includes:
  • the radio frequency path of at least one component carrier is selected from the second cell group, and the frequency point to be measured is measured according to the measurement configuration information in the measurement gap.
  • the method further includes: Identifying that the confirmation message of the measurement configuration information has been received to the base station.
  • the method before the transmitting and receiving signals with the base station according to the processing capability information of the UE, the method further includes:
  • the processing capability information of the UE is used to instruct the base station to keep transmitting and receiving signals with the UE in the measurement gap.
  • the processing capability information of the UE is carried in the radio resource control RRC signaling or the media intervention control layer control cell MAC CE.
  • the RRC signaling can be RRCConnectionReconfigurationComplete or UE auxiliary information signaling.
  • the UE may determine the processing capability information of the UE based on the radio frequency capabilities supported by the UE and the frequency to be measured, and report the processing capability information to the base station, and the base station and the UE may send and receive signals based on the processing capability information determined by the UE.
  • the processing capability information determined and reported by the UE based on its actual UE capabilities is more accurate than the UE processing capability information determined by the base station based on the UE capabilities reported by the UE, that is, it can determine more accurately and comprehensively.
  • the first cell group can increase the possible scenarios of frequency point combinations supported in the measurement gap, thereby further improving the uplink and downlink rate of the UE.
  • the processing capability information of the UE is carried in the RRC signaling.
  • the processing capability information of the UE is carried in UE auxiliary information signaling.
  • the processing capability information of the UE is carried in a media intervention control layer control cell MAC CE.
  • the UE may report the processing capability information of the UE in various forms.
  • an embodiment of the present application provides a method for transmitting and receiving signals in a measurement time slot, which is applied to a base station, and the method for transmitting and receiving signals in a measurement time slot includes:
  • the measurement configuration information includes the frequency point to be measured and configuration information of the measurement gap
  • the UE performs signal transmission and reception according to the processing capability information of the UE.
  • the processing capability information of the UE is used to identify the first cell group in which the UE can transmit and receive signals in the measurement gap.
  • the capability information is determined according to the frequency point to be measured and the UE capability, and the UE capability is used to identify the frequency band combination supported by the UE.
  • the processing capability information of the UE may be determined by the UE or the base station.
  • both the base station and the UE can determine the processing capability information of the UE according to the frequency to be measured and the UE capability, so that the base station and the UE do not need to inform each other of the processing capability information of the UE.
  • the UE may send the processing capability information of the UE to the base station, so that the base station does not need to determine the processing capability information of the UE.
  • the base station can send the processing capability information of the UE to the UE, and the UE can directly obtain the processing capability information of the UE. There is no need to determine the processing capability information of the UE based on the frequency to be measured and the UE capability, and the UE can save a portion of computing resources.
  • the base station determines the processing capability information of the UE according to the UE capability and the frequency to be measured, and sends the processing capability information of the UE to the UE through the measurement configuration information.
  • the base station in addition to the measurement gap, can transmit and receive signals with the UE in both the primary cell group and the secondary cell group.
  • the UE and the base station may not interrupt signal transmission and reception in the first cell group, the base station stops scheduling the UE in the second cell group, and at least one radio frequency path of the UE in the second cell group is switched to the frequency to be measured. Frequency point for measurement. Since in the measurement gap, the signal transmission and reception is not interrupted on the first cell group, the uplink and downlink rate of the UE in the first cell group can be increased, and the data transmission rate of the UE can be increased.
  • the transmitting and receiving signals with the UE according to the processing capability information of the UE includes: in the measurement gap, using physical uplink sharing on the first cell group
  • the channel PUSCH receives data sent by the UE, and sends data to the UE through the physical downlink shared channel PDSCH.
  • the first cell group includes a primary cell group MCG and/or a secondary cell group SCG.
  • the method when the first cell includes MCG or SCG, after the sending measurement configuration information to the UE, the method further includes: stopping on the second cell group in the measurement gap. Perform signal transmission and reception with the UE.
  • the method before the transmitting and receiving signals with the UE according to the processing capability information of the UE, the method further includes: receiving a message sent by the UE for identifying that the measurement has been received. Confirmation message of configuration information.
  • the method before the transmitting and receiving signals with the UE according to the processing capability information of the UE, the method further includes:
  • the UE capability is the frequency band combination supported by the UE reported by the UE.
  • the base station may also send the processing capability information of the UE to the UE, and the UE does not need to determine the processing capability information of the UE.
  • the base station may carry the processing capability information of the UE in the measurement configuration information. That is, the measurement configuration information also includes UE processing capability information.
  • the method before transmitting and receiving signals with the UE according to the processing capability information of the UE, the method further includes: receiving the processing capability information of the UE sent by the UE.
  • the first cell group when the UE supports a frequency band combination consisting of a primary frequency band combination, a secondary frequency band combination, and the frequency to be measured, the first cell group includes MCG and SCG .
  • the first cell group when the UE supports a frequency band combination composed of a main frequency band combination and the frequency point to be measured, the first cell group includes an MCG.
  • the first cell group is an SCG.
  • the processing capability information is carried in the RRC signaling.
  • the processing capability information of the UE is carried in UE auxiliary information signaling.
  • the processing capability information of the UE is carried in a media intervention control layer control cell MAC CE.
  • an embodiment of the present application provides a signal receiving and sending device.
  • the signal receiving and sending device may be a user equipment UE, and includes:
  • the obtaining unit is configured to obtain measurement configuration information sent by the base station under dual connectivity, where the measurement configuration information includes the frequency point to be measured and configuration information of the measurement gap;
  • the transmission unit is configured to transmit and receive signals with the base station according to the processing capability information of the UE in the measurement gap, and the processing capability information is used to identify the first cell group in which the UE can transmit and receive signals in the measurement gap.
  • the processing capability information is determined according to the frequency to be measured and the UE capability, and the UE capability is used to identify the frequency band combination supported by the UE.
  • the UE capability may be a radio frequency capability of the UE, and the UE capability is a combination of frequency bands supported by the UE.
  • the processing capability information of the UE is determined by the UE according to the frequency to be measured and the UE capability.
  • the processing capability information is determined by the base station according to the frequency to be measured and the UE capability reported by the UE and then sent to the UE.
  • the transmission unit is specifically configured to: in the measurement gap, send the first signal to the base station through the physical uplink shared channel PUSCH on the first cell group, and The second signal sent by the base station is received through the physical downlink shared channel PDSCH.
  • the first cell group includes a master cell group (Master Cell Group, MCG) and/or a secondary cell group (Secondary Cell Group, SCG).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the first cell group when the UE supports a frequency band combination consisting of a primary frequency band combination, a secondary frequency band combination, and the frequency to be measured, the first cell group includes MCG and SCG .
  • the first cell group is an MCG.
  • the first cell group is an SCG.
  • the signal receiving and sending device when the first cell includes MCG or SCG, the signal receiving and sending device further includes:
  • the measuring unit is configured to, after the acquiring unit acquires the measurement configuration information sent by the base station, select at least one component carrier from the second cell group, and measure the frequency point to be measured according to the measurement configuration information in the measurement gap .
  • the signal transceiver device further includes:
  • the sending unit is configured to send confirmation information for identifying that the measurement configuration information has been received to the base station before the transmission unit performs signal transmission and reception with the base station according to the processing capability information.
  • the signal transceiver device further includes:
  • a determining unit configured to determine the processing capability information according to the frequency point to be measured and the UE capability
  • the sending unit is further configured to: after the determining unit determines the processing capability information, before the transmission unit communicates with the base station according to the processing capability information, send the processing capability information of the UE to the The base station, the processing capability information of the UE is used to indicate that the base station can transmit and receive signals with the UE in the measurement gap.
  • the processing capability information of the UE is carried in the RRC signaling.
  • the processing capability information of the UE is carried in UE auxiliary information signaling.
  • the processing capability information of the UE is carried in a media intervention control layer control cell MAC CE.
  • the UE may report the processing capability information of the UE in various forms.
  • an embodiment of the present application provides a signal receiving and sending device.
  • the signal receiving and sending device may be a base station, and the signal receiving and sending device includes:
  • the sending unit is configured to send measurement configuration information to the UE under dual connectivity, where the measurement configuration information includes the frequency point to be measured and the configuration information of the measurement gap;
  • the transmission unit is configured to transmit and receive signals with the UE according to the processing capability information of the UE in the measurement gap, and the processing capability information of the UE is used to identify the first cell group in which the UE can transmit and receive signals in the measurement gap,
  • the processing capability information of the UE is determined according to the frequency to be measured and the UE capability, and the UE capability is used to identify a frequency band combination supported by the UE.
  • the transmission unit is specifically configured to: in the measurement gap, receive the first signal sent by the UE through the physical uplink shared channel PUSCH on the first cell group, And sending the second signal to the UE through the physical downlink shared channel PDSCH.
  • the first cell group includes a primary cell group MCG and/or a secondary cell group SCG.
  • the signal transceiver device when the first cell includes MCG or SCG, the signal transceiver device further includes:
  • the control unit is configured to, after the sending unit sends the measurement configuration information to the UE, further comprising: in the measurement gap, stopping signal transmission and reception with the UE on the second cell group.
  • the signal transceiver device further includes:
  • the receiving unit is configured to receive a confirmation message sent by the UE for identifying that the measurement configuration information has been received before the transmission unit performs signal transmission and reception with the UE according to the processing capability information of the UE.
  • the signal transceiver device further includes:
  • the determining unit is configured to determine the processing capability of the UE according to the frequency to be measured and the UE capability reported by the UE before the transmission unit performs signal transmission and reception with the UE according to the processing capability information of the UE information. It can be understood that the UE capability is the frequency band combination supported by the UE reported by the UE.
  • the measurement configuration information further includes UE processing capability information.
  • the receiving unit is further configured to: before the transmitting unit performs signal transmission and reception with the UE according to the processing capability information of the UE, receive all data sent by the UE.
  • the processing capability information of the UE is further configured to: before the transmitting unit performs signal transmission and reception with the UE according to the processing capability information of the UE, receive all data sent by the UE.
  • the processing capability information of the UE is further configured to: before the transmitting unit performs signal transmission and reception with the UE according to the processing capability information of the UE, receive all data sent by the UE.
  • the processing capability information of the UE is further configured to: before the transmitting unit performs signal transmission and reception with the UE according to the processing capability information of the UE, receive all data sent by the UE.
  • the processing capability information of the UE is further configured to: before the transmitting unit performs signal transmission and reception with the UE according to the processing capability information of the UE, receive all data sent by the UE.
  • the processing capability information of the UE is
  • the first cell group when the UE supports a frequency band combination consisting of a primary frequency band combination, a secondary frequency band combination, and the frequency to be measured, the first cell group includes MCG and SCG .
  • the first cell group when the UE supports a frequency band combination consisting of a main frequency band combination and the frequency point to be measured, the first cell group includes an MCG.
  • the first cell group is an SCG.
  • the processing capability information is carried in the RRC signaling.
  • the processing capability information of the UE is carried in UE auxiliary information signaling.
  • the processing capability information of the UE is carried in a media intervention control layer control cell MAC CE.
  • an embodiment of the present application provides a network element device, including a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor executes the computer program
  • the network element device executes the method for transmitting and receiving signals in the measurement time slot in any possible implementation manner of the first aspect, or executes the method for transmitting and receiving signals in the measurement time slot in any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the network element device executes the first aspect described above.
  • Any one of the possible implementation manners is a method for transmitting and receiving signals in a measurement time slot, or a method for transmitting and receiving signals in a measurement time slot in any one of the possible implementation manners of the second aspect described above.
  • the embodiments of the present application provide a computer program product.
  • the computer program product runs on a network element device, the network element device executes the measurement in any one of the possible implementation manners of the first aspect.
  • the embodiment of the present application has the beneficial effect that under dual connectivity, in the measurement gap, a cell group that does not support signal transmission and reception in the measurement gap is used to perform inter-frequency measurement or inter-system measurement.
  • the signal transmission and reception can be continued in the measurement gap, which can increase the uplink and downlink rate of the cell group and increase the uplink and downlink rate of the UE.
  • FIG. 1 is a schematic diagram of an EN-DC network structure provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an NGEN-DC network structure provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of an NE-DC network structure provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a system architecture example provided by an embodiment of the present application.
  • FIG. 5 is an interaction diagram of a method for transmitting and receiving signals in a measurement time slot according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a measurement time slot provided by an embodiment of the present application.
  • FIG. 7 is an interaction diagram of a method for transmitting and receiving signals in a measurement time slot according to another embodiment of the present application.
  • FIG. 8 is an interaction diagram of a method for transmitting and receiving signals in a measurement time slot according to still another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a signal receiving and sending device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a signal receiving and sending device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network element device provided by an embodiment of the present application.
  • the term “if” can be construed as “when” or “once” or “in response to determination” or “in response to detecting “.
  • the phrase “if determined” or “if detected [described condition or event]” can be construed to mean “once determined” or “in response to determination” or “once detected [described condition or event]” depending on the context. ]” or “in response to detection of [condition or event described]”.
  • MR-DC dual-connectivity
  • MR-DC multi-standard multi-standard dual-connectivity
  • LTE Long Term Evolution
  • MR-DC mainly includes EN-DC (E-UTRA-NR Dual Connectivity, E-UTRA-NR dual connectivity), NGEN-DC (NG-RAN E-UTRA-NR Dual Connectivity, NG-RAN E-UTRA-NR dual connectivity) Connection) and NE-DC (NR-E-UTRA Dual Connectivity, NR-E-UTRA dual connection) 3 types.
  • EN-DC E-UTRA-NR Dual Connectivity, E-UTRA-NR dual connectivity
  • NGEN-DC NG-RAN E-UTRA-NR Dual Connectivity, NG-RAN E-UTRA-NR dual connectivity
  • NE-DC NR-E-UTRA Dual Connectivity, NR-E-UTRA dual connection
  • Figure 1 is a schematic diagram of an EN-DC network structure provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of an NGEN-DC network structure provided by an embodiment of the present application.
  • the network uses LTE's Evolved Packet Core (EPC), LTE access network, and NR access network.
  • EPC Evolved Packet Core
  • the UE is connected to eNodeB (4G base station) and gNodeB (5G base station) at the same time, and uses eNodeB as the primary node and gNodeB as the secondary node.
  • control plane signaling mainly reaches the UE through LTE
  • NR mainly provides user plane data transmission, and at the same time, operators do not need to deploy NR Core (NC).
  • NC NR Core
  • the network uses the NR core network NC, the LTE access network, and the NR access network.
  • the UE is connected to the eNodeB and the gNodeB at the same time, and still uses the eNodeB as the primary node and the gNodeB as the secondary node.
  • control plane signaling still mainly reaches the UE through LTE, and NR mainly provides user plane data transmission.
  • Operators need to deploy NR core network NC.
  • the network uses NR core network NC, LTE access network and NR access network.
  • the UE is connected to the eNodeB and the gNodeB at the same time, with the gNodeB as the primary node and the eNodeB as the secondary node.
  • the control plane signaling mainly reaches the UE through NR
  • LTE mainly provides user plane data transmission.
  • Operators need to deploy NR core network NC.
  • the UE needs to have independent radio frequency paths of two standards (4G and 5G) to ensure that data is received and sent on the two standards at the same time.
  • 4G and 5G radio frequency paths with different physical characteristics may be required. Due to the cost of the UE, generally the UE cannot support all frequency band combinations.
  • the UE can support the LTE B3+NR n78 band combination, but does not support the LTE B3+LTE B3+NR n78 band combination Combination (here the two LTE B3 are in-band non-continuous), because there are no two LTE B3 radio frequency channels, the UE can simultaneously send and receive data on the two LTE B3s. Among them, the UE knows the frequency band combination supported by the base station UE through the UE capability report.
  • the UE Under MR-DC, the UE also needs to implement mobility management.
  • the signal quality of the primary cell (SpCell of a Master Cell Group, PCell) of the primary cell group (Master Cell Group, MCG) where the UE is located is poor, the UE needs to measure the serving cell and neighboring cells according to the measurement configuration information issued by the base station. And report the measurement results to the base station; the base station instructs the UE to switch from the primary cell of the primary cell group where it is located to another neighboring cell with better signal based on the measurement results to obtain continuous network services from the wireless network. It is implemented in the following ways:
  • FIG. 4 is a schematic diagram of a system architecture example provided by an embodiment of the present application.
  • cell 1 is a cell on the primary node, such as an LTE anchor cell under EN-DC
  • cell 2 is a cell on a secondary node, such as an NR cell under EN-DC
  • cell 3 is either cell 1 or cell 2 Different frequency neighboring area or different system neighboring area.
  • the coverage of cell 1 and cell 2 are the same, and the coverage of cell 3 is different from the coverage of cell 1/cell 2.
  • the base station When the UE camps on cell 1, the base station issues the signaling of adding a secondary cell group to the UE, so that the UE adds cell 2 as the primary cell of the secondary cell group (Primary Cell of Secondary Cell Group, through the process of adding secondary nodes). PSCell), so that the UE works under MR-DC.
  • the UE under MR-DC, the UE is in the RRC connected state, and the UE reports the UE capabilities to inform the base station of the frequency band combination (4G frequency band + 5G frequency band) supported by the UE.
  • the base station sends measurement configuration information for the serving cell to the UE through radio resource control (Radio Resource Control, RRC) signaling RRCConnectionReconfiguration according to the current serving cell (such as cell 1) where the UE is currently located and the frequency band combination supported by the UE.
  • RRC Radio Resource Control
  • the UE sends the RRC signaling RRCConnectionReconfigurationComplete to the base station to inform the base station to confirm receipt of the measurement configuration information.
  • the UE continuously measures the signal quality of the serving cell based on the measurement configuration information for the serving cell.
  • the measurement result of the serving cell of the base station is reported through the RRC signaling MeasurementReport.
  • the base station judges whether to initiate neighbor cell measurement according to the measurement result. For example, when the signal quality of the current PCell where the UE is located is poor, it is determined that the UE is already at the edge of the cell, and neighbor cell measurement needs to be initiated to find a neighbor cell with good signal quality as the target cell for handover.
  • the frequency to be measured and the frequency of the current serving cell have the same standard and frequency
  • the frequency to be measured and the frequency of the current serving cell are of different standards, it is called a different system measurement.
  • the base station When the base station confirms that it needs to initiate neighboring cell measurement, it sends measurement configuration information for the neighboring cell to the UE through RRC signaling, so that the UE continuously measures the signal quality of the serving cell and the neighboring cell according to the measurement configuration information for the neighboring cell.
  • the UE reports the measurement results of the serving cell and neighboring cells of the base station.
  • the base station makes a decision whether to initiate a handover to the neighboring cell based on the measurement result. For example, when the signal quality of the serving cell is lower than the first threshold, and the signal quality of the neighboring cell is higher than the second threshold, and the second threshold is greater than the first threshold, the base station instructs the UE to switch from the current serving cell to the neighboring cell. For example, as shown in Figure 4, when the UE moves to the edge of cell 1 or cell 2, the base station initiates inter-frequency measurement or inter-system measurement, and the measurement result will be used as the basis for the UE to switch to cell 3.
  • the signal quality of the serving cell or neighboring cell can be one of the following or any combination of at least two: Reference Signal Receiving Power (RSRP), Reference Signal Receiving Quality (RSRQ), and Signal To Interference plus Noise Ratio (Signal to Interference plus Noise Ratio, SINR).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • SINR Signal To Interference plus Noise Ratio
  • the measurement of the inter-frequency neighboring cell or the neighboring cell of the different system in the same frequency range (Frequency Range, FR) of the serving cell requires the measurement of the gap.
  • the measurement configuration information of the neighboring cell of the system includes measurement gap configuration information, and the measurement gap configuration information is used to configure the measurement gap.
  • the measurement of inter-frequency neighboring cells or neighboring cells of different systems in the same frequency range of the serving cell requires measurement gaps.
  • the prior art provides a method for configuring measurement time slots.
  • the base station starts inter-frequency measurement and/or inter-system measurement, it directly configures the measurement gap for the UE, that is, the measurement configuration information for the inter-frequency neighboring cell or the neighboring cell of the different system in the same frequency range of the serving cell includes the measurement gap configuration information.
  • the measurement gap is valid for the master cell group (Master Cell Group, MCG) corresponding to the master node and the secondary cell group (Secondary Cell Group, SCG) of the secondary node.
  • the UE switches to the neighboring cell at the starting position of measuring the gap to measure the signal quality of the neighboring cell.
  • the base station stops scheduling the UE, and the UE stops sending and receiving data on both MCG and SCG, which wastes time-frequency resources and causes the user rate to drop.
  • the UE supports the frequency band combination of LTE B1+LTE B3+NR n78, indicating that the UE has independent radio frequency channels for B1, B3, and n78, and can send and receive data on B1, B3, and n78 at the same time. If the UE works in the EN-DC combination of LTE B1+NR n78 and initiates inter-frequency measurement at the B3 frequency point, according to the current protocol, the base station still needs to configure gap.
  • the working status of the radio frequency channel is as follows:
  • the radio frequency channels of LTE B1 and NR n78 are in an inoperative state, and the actual UE can support sending and receiving data on the frequency band combination of LTE B1 and NR n78.
  • FDD Frequency Division Duplexing
  • the UE reports the capability of the UE or the base station through RRC signaling to instruct the UE to perform inter-frequency measurement or inter-system measurement in the current serving cell whether the gap needs to be measured.
  • the base station starts inter-frequency measurement or inter-system measurement, it can determine whether to configure the measurement gap according to the UE capability.
  • the base station does not need to configure a measurement gap for the UE, that is, the measurement configuration information does not include the measurement gap configuration information.
  • the base station configures the measurement gap for the UE.
  • the UE if the UE has multiple sets of independent radio frequency channels that can support receiving and sending signals on the serving cell while receiving signals on the neighboring cell of a different frequency or a neighboring cell of a different system, then the UE supports measurement without measuring the gap. For example, when the UE supports the frequency band combination of LTE B1+LTE B3+NR n78, the UE can instruct the base station to measure the different frequency points of LTE B3 under the EN-DC combination of LTE B1+NR n78 without gap.
  • the UE does not support measurement that does not need to measure the gap.
  • the base station when the base station does not need to configure the measurement gap for the UE, it can avoid the situation that the UE rate is reduced because the UE cannot transmit and receive data in the measurement gap.
  • the measurement gap is valid for both MCG and SCG.
  • the base station stops scheduling the UE, and the UE stops sending and receiving data on both MCG and SCG.
  • the radio frequency path for the UE to support data transmission and reception may also be idle, unable to transmit data in the measurement gap, and unable to effectively increase the UE rate.
  • the UE For example, suppose the UE has only one LTE B3 radio frequency channel and one NR n78 radio frequency channel, then the UE supports the LTE B3+NR n78 band combination, but does not support the LTE B3+LTE B3+NR n78 band combination (two If LTE B3 is in-band discontinuous), if the UE is working under the EN-DC of LTE B3+NR n78, and the LTE side initiates the measurement of the LTE B3 inter-frequency frequency point, the gap needs to be measured. At this time, the working status of the radio frequency channel is shown in the following table:
  • the radio frequency channel of NR n78 is in an idle state, and the radio frequency channel of NR n78 can actually be used in n78.
  • the radio frequency path of NR n78 is not effectively used for data transmission and reception in the measurement gap, the uplink and downlink rates on the NR cell cannot be increased.
  • the UE supports the frequency band combination of LTE B3+NR n78 and also supports the frequency band combination of LTE B41+NR n78, but because LTE B3 and LTE B41 cannot work independently on the radio channels at the same time, the UE does not support LTE B3+LTE B41 +NR n78 band combination, when the UE works in the LTE B3+NR n78 EN-DC combination to initiate inter-frequency measurement of LTE B41, it needs to measure the gap.
  • the working status of the radio frequency channel is as follows:
  • the radio frequency path of NR n78 is also idle, and can also be used to send and receive data on the n78 serving cell. This situation also exists: because the radio frequency channel of NR n78 is not effectively used for data transmission and reception in the measurement gap, the problem that the UE rate on the NR cell cannot be increased.
  • the UE supports the band combination of LTE B3+NR n78, but does not support the band combination of LTE B3+NR n78+NR n78 (because the UE has only one radio frequency channel of NR n78), then when the UE works in LTE B3+NR Under the EN-DC combination of the n78, when the inter-frequency measurement of the n78 is initiated, the gap needs to be measured. At this time, the working status of the radio frequency channel is as follows:
  • the radio frequency path of LTE B3 is also in an idle state, and can also be used to send and receive data on the LTE B3 serving cell. This situation also exists: because the radio frequency channel of LTE B3 is not effectively used for data transmission and reception in the measurement gap, the problem that the UE rate on the LTE cell cannot be increased.
  • this application provides a method for transmitting and receiving signals in a measurement time slot.
  • the method for transmitting and receiving signals in the measurement time slot is mainly used for inter-frequency measurement and/or inter-system measurement under MR-DC.
  • the existing measurement configuration process and the process of reporting measurement results are used to improve the effective range of the measurement gap.
  • it is effective for both MCG and SCG.
  • inter-frequency and/or inter-system measurement is performed under MR-DC.
  • the measurement gap is only valid for the measurement gap.
  • the cell group that supports signal transmission and reception is valid. details as follows:
  • the base station issues measurement configuration according to the existing protocol, and the UE obtains the measurement configuration information issued by the base station.
  • the UE transmits and receives signals with the base station according to the processing capability information of the UE, and the processing capability information is used to identify the UE The first cell group in the measurement gap that can send and receive signals.
  • the measurement gap in the measurement configuration information issued by the base station is only valid for the second cell group that cannot transmit and receive signals in the measurement gap.
  • the base station and UE stop signal transmission and reception on the second cell group.
  • the base station and UE can still transmit and receive signals on the first cell group, so as to make full use of the radio frequency path that the UE supports in the measurement gap for signal transmission and reception, which can effectively improve the UE The uplink and downlink rate.
  • signal transceiving includes sending or receiving signaling, data, and so on.
  • the measurement gap in the measurement configuration information issued by the base station is invalid for both cell groups, so that the measurement gap is .
  • the base station and the UE can still send and receive signals in the two cell groups, and the UE uses the redundant radio frequency channel to perform measurements.
  • the processing capability information of the UE may be determined by the UE or the base station.
  • both the base station and the UE can determine the processing capability information of the UE according to the frequency to be measured and the UE capability, so that the base station and the UE do not need to inform each other of the processing capability information of the UE.
  • the base station can send the processing capability information of the UE to the UE, and the UE can directly obtain the processing capability information of the UE, without requiring the frequency to be measured and the UE
  • the capability determines the processing capability information of the UE, and the UE can save some computing resources.
  • the base station determines the processing capability information of the UE according to the UE capability and the frequency to be measured, and sends the processing capability information of the UE to the UE through the measurement configuration information.
  • the UE may send the processing capability information of the UE to the base station, so that the base station does not need to determine the processing capability information of the UE.
  • FIG. 5 is an interaction diagram of a method for transmitting and receiving signals in a measurement time slot according to an embodiment of the present application.
  • Both the base station and the UE can determine the processing capability information of the UE according to the frequency to be measured and the UE capability.
  • the method for transmitting and receiving signals in the measurement time slot is mainly used for inter-frequency and/or inter-system measurement under MR-DC.
  • MR-DC the UE is connected to eNodeB and gNodeB at the same time, so that it can simultaneously access the LTE network and the NR network.
  • eNodeB can be used as a master node
  • gNodeB can be used as a secondary node.
  • gNodeB can be used as the primary node, and eNodeB can be used as the secondary node.
  • the primary node is used to manage the primary cell group MCG
  • the secondary node is used to manage the secondary cell group SCG.
  • the MCG includes one primary cell (Primary Cell, PCell) or additionally includes one or more secondary cells (Secondary Cell, SCell).
  • the SCG includes one primary secondary cell (Primary Secondary Cell, PSCell) or additionally includes one or more secondary cells.
  • the method for transmitting and receiving signals in the measurement time slot in this embodiment includes the following steps:
  • the base station determines the processing capability information of the UE according to the frequency to be measured and the UE capability reported by the UE.
  • the processing capability information is used to identify the first cell group in which the UE can send and receive signals in the measurement gap, and the UE capability Used to identify the frequency band combination supported by the UE.
  • the UE includes, but is not limited to, mobile phones, tablet computers, notebook computers, netbooks, personal digital assistants (personal digital assistants, PDAs) and other terminals that can access wireless networks.
  • the base station refers to the base station corresponding to a certain operator.
  • the base station confirms that the signal quality of the serving cell where the UE is currently located is poor.
  • the base station queries the neighboring cell corresponding to the serving cell according to the cell list, and determines the frequency to be measured corresponding to the neighboring cell to initiate the inter-frequency Neighboring cell measurement and/or different system neighboring cell measurement.
  • the signal quality can be measured by any one or at least two of the reference signal received power RSRP, the reference signal received quality RSRQ, and the signal to interference plus noise ratio SINR.
  • the base station obtains the UE capabilities reported by the UE.
  • the UE can report the UE capabilities to the base station when the UE accesses the base station, and the base station queries the UE capabilities.
  • the UE may also report the UE capability to the base station when it switches to a new cell and the base station queries the UE capability.
  • the UE capability can be used to identify the frequency band combination supported by the UE.
  • the UE capability may be a frequency band combination supported by the UE, for example, the UE capability identifier: the UE supports a frequency band combination of LTE B3+NR n78, and a frequency band combination of LTE B41+NR n78.
  • the UE capability may also be the radio frequency capability of the UE.
  • the radio frequency capability of the UE refers to the radio frequency path that the UE has.
  • the UE may determine the frequency band combination supported by the UE according to the radio frequency capability of the UE.
  • the frequency band combination supported by the UE includes the main frequency band combination supported by the primary node and the secondary frequency band combination supported by the secondary node.
  • the UE may determine the frequency band combination supported by the UE according to the frequency band combination supported by the UE or the radio frequency capability of the UE.
  • the UE has an LTE radio frequency channel and an NR n78 radio frequency channel.
  • the radio frequency path of LTE is shared by LTE B3 and LTE B41. In other words, LTE B3 and LTE B41 cannot work independently at the same time.
  • the UE supports the frequency band combination of LTE B3+NR n78, and the frequency band combination of LTE B41+NR n78.
  • the base station can determine whether the UE needs to measure the gap when measuring the frequency to be measured according to the frequency to be measured and the capabilities of the UE.
  • the first cell group includes MCG and SCG.
  • the first cell group that can send and receive signals in the measurement gap is further determined; the processing capability information of the UE is obtained according to the determination result.
  • the processing capability information is used to identify the first cell group in which the UE can transmit and receive signals in the measurement gap.
  • the first cell group includes MCG and/or SCG. When the first cell group includes MCG and SCG, it indicates that the UE does not need to measure gap when measuring the frequency to be measured; when the first cell group includes MCG or SCG, it indicates that the UE needs to measure the frequency point to be measured. .
  • the radio frequency path corresponding to at least one component carrier (CC) in the second cell group is used to measure the frequency to be measured in the measurement gap.
  • the first cell group is MCG
  • the second cell group is SCG
  • the second cell group is MCG.
  • the UE when the UE capability is identified, the UE supports a frequency band combination composed of a main frequency band combination, a secondary frequency band combination, and a frequency point to be measured, the first cell group includes MCG and SCG.
  • the main frequency band combination is the frequency band combination on the primary node
  • the secondary frequency band combination is the frequency band combination on the secondary node.
  • the first cell group is MCG.
  • the first cell group is an SCG.
  • the method for the base station to determine whether the UE needs to measure the gap when measuring the frequency to be measured according to the frequency to be measured and the capability of the UE may be specifically as follows:
  • the base station determines whether the UE supports the first frequency band combination composed of the main frequency band combination, the secondary frequency band combination, and the frequency band to be measured according to the frequency point to be measured and the frequency band combination supported by the UE. If the UE supports the first frequency band combination, the UE does not need to measure the gap when measuring the frequency to be measured. At this time, the first cell group includes MCG and SCG. If the UE does not support the first frequency band combination, the UE needs to measure the gap when measuring the frequency to be measured. At this time, the first cell group is MCG or SCG.
  • the base station If the base station confirms that the UE needs to measure the gap when measuring the frequency to be measured, it continues to determine whether the UE supports the second frequency band combination composed of the main frequency band and the frequency to be measured, and whether the UE supports the secondary frequency band combination and the frequency to be measured.
  • the third band combination composed of dots. If the base station confirms that the UE supports the second frequency band combination but does not support the third frequency band combination, then the first cell group is MCG. If the UE does not support the second frequency band combination but supports the third frequency band combination, then the first cell group is an SCG.
  • the currently configured frequency band combination of the UE is BC1+BC2
  • BC1 is the frequency band combination on the primary node
  • BC2 is the frequency band combination on the secondary node
  • the UE needs to measure the gap when measuring the frequency to be measured, and the base station needs to configure the measurement gap. At this time, it is necessary to continue to determine whether the UE supports the frequency band combination of BC1+fi and the frequency band combination of BC2+fi.
  • the base station is measuring Within the gap, uplink and downlink signal reception and transmission are performed on the primary cell group, and the UE can perform uplink and downlink signal transmission and reception on the primary cell group; the first cell group is MCG.
  • the base station is measuring Within the gap, uplink and downlink signal reception and transmission are performed on the secondary node cell, and the UE performs uplink and downlink signal transmission and reception on the secondary node cell; the first cell group is SCG.
  • the base station is measuring gap
  • the uplink and downlink signal reception and transmission are not performed on the internal primary cell group and the secondary cell group, and the UE does not perform uplink and downlink signal transmission and reception on the primary cell group and the secondary cell group.
  • the UE supports the band combination of LTE B3+NR n78, and also supports the band combination of LTE B41+NR n78, but because LTE B3 and LTE B41 cannot work independently at the same time, the UE does not support LTE B3+LTE B41+NR n78 band combination, when the UE works under the EN-DC combination of LTE B3 + NR n78 to initiate inter-frequency measurement of LTE B41, it needs to measure gap. Since the main band combination is the band combination on the primary node, and the secondary band combination is the band combination on the secondary node, the main band combination is: LTE B3, and the secondary band combination is: NR n78.
  • the UE Since the UE's LTE B3 and LTE B41 radio frequency channels cannot work independently at the same time, the UE does not support the LTE B3+LTE B41 frequency band combination. In other words, at this time, the UE does not support the frequency band combination composed of the main band combination + the frequency to be measured, and it supports the frequency band combination of the secondary frequency band + the frequency to be measured.
  • the first cell group is the secondary cell group SCG
  • the second cell group is the MCG.
  • the UE performs inter-frequency measurement through the radio frequency path of LTE B41 or the radio frequency path of LTE B3; the UE and the base station maintain normal uplink and downlink signal transmission and reception on NR n78.
  • the UE capability can be used to identify whether the UE needs to measure the gap capability when measuring different frequency bands under different frequency band combinations.
  • the method for the UE to determine whether the UE needs to measure the gap during the measurement of the frequency to be measured according to the frequency to be measured and the UE capability can be specifically as follows:
  • the UE According to the frequency point to be measured and whether the measurement of different frequency bands under different frequency band combinations by the UE requires the ability to measure gap, it is determined that the measurement of the frequency point to be measured under the first frequency band combination composed of the primary frequency band combination and the secondary frequency band combination is determined by the UE. Does it support the gap without measuring. If it is supported, the UE does not need to measure the gap when measuring the frequency to be measured. At this time, the first cell group includes MCG and SCG. If the UE does not support it, then the UE needs to measure the gap when measuring the frequency to be measured. At this time, the first cell group is MCG or SCG.
  • the base station If the base station confirms that the UE needs to measure the gap when measuring the frequency to be measured, then it continues to determine whether the measurement of the frequency to be measured under the main frequency band combination supports the measurement of the gap without measurement, and the measurement of the frequency to be measured under the secondary frequency band combination Whether the UE supports the gap without measuring. If the measurement UE at the frequency to be measured under the primary frequency band combination supports no measurement gap, but the measurement UE at the frequency to be measured does not support the measurement gap under the secondary frequency band combination, then the first cell group is MCG. If the measurement UE at the frequency to be measured under the primary frequency band combination does not support the measurement without gap, but the measurement UE at the frequency to be measured under the secondary frequency band combination supports the measurement without the gap, then the first cell group is an SCG.
  • the currently configured frequency band combination of the UE is BC1+BC2
  • BC1 is the frequency band combination on the primary node
  • BC2 is the frequency band combination on the secondary node
  • the UE supports the measurement of fi under BC1+BC2 without measuring gap, then the UE does not need to measure gap when measuring the frequency to be measured, and the base station does not need to configure measurement gap.
  • the UE does not support the measurement of fi under BC1+BC2 without measuring gap, then when the UE measures the frequency to be measured, the gap needs to be measured, and the base station needs to configure the measurement gap. At this time, it is necessary to continue to determine whether the UE supports measurement of fi under BC1 without measuring gap, and measurement of fi under BC2 without measuring gap.
  • the base station receives and sends uplink and downlink signals on the primary cell group in the measurement gap, and the UE can send and receive uplink and downlink signals on the primary cell group; the first cell group is MCG.
  • the base station sends measurement configuration information to the UE, where the measurement configuration information includes the frequency point to be measured and configuration information of the measurement gap.
  • Dual connection usually referred to as MR-DC.
  • the base station When initiating inter-frequency measurement and/or inter-system measurement, the base station sends measurement configuration information to the UE.
  • the base station may deliver measurement configuration information to the UE through RRC signaling RRCConnectionReconfiguration.
  • the measurement configuration information may include measurement object information, measurement gap configuration information, and may also include report configuration information, measurement identification, and measurement quantity configuration information.
  • the information of the measurement object is used to identify that the UE needs to perform intra-frequency measurement, inter-frequency measurement, or inter-system measurement.
  • the UE needs to perform the same frequency measurement.
  • the frequency to be measured and the frequency of the current serving cell have the same standard but different frequencies, the UE needs to perform inter-frequency measurement.
  • the frequency to be measured is different from the frequency of the current serving cell, the UE needs to perform different system measurement.
  • the existing protocol when performing inter-frequency measurement and/or inter-system measurement under MR-DC, the existing protocol is used to issue measurement configuration information, and the measurement configuration information includes the measurement gap.
  • This solution improves the effective range of the measurement gap. Compared with the measurement gap configured in the prior art, it is effective for both MCG and SCG.
  • inter-frequency measurement and/or inter-system measurement are performed under MR-DC. And when the gap needs to be measured, the measurement gap is only valid for the cell group that does not support data transmission and reception in the measurement gap, and the cell group that supports the data transmission and reception in the measurement gap can perform signal transmission and reception.
  • the information of the measurement object may include information such as the standard and frequency of the frequency to be measured, and the cell list on the frequency.
  • the standard and frequency of the frequency to be tested can be the same as or different from the standard and frequency of the current serving cell.
  • the reporting configuration information may include: reporting criteria, which are used to describe the manner of reporting measurement results, that is, reporting according to a period or triggered by an event. If the report is triggered by an event, the trigger condition may be that the reported measurement quantity falls below or exceeds the preset threshold.
  • the measurement quantity includes but is not limited to one of the following or any combination of at least two: RSRP, RSRQ, SINR, etc.
  • the measurement configuration information may include multiple reported configuration information, and each reported configuration information has an ID.
  • Measurement identification Associate a measurement object with a reported configuration information through their respective ID identification, that is, determine the reported configuration information of each measurement object.
  • Measured quantity configuration information Describes the filter parameters of the measured quantity.
  • the measurement gap configuration information mainly includes three parameters: Measurement Gap Repetition Period (MGRP), Measurement Gap Length (MGL), and Gap Offset.
  • MGRP can be 40 milliseconds (ms)
  • MGL can be up to 6 ms.
  • FIG. 6 is a schematic diagram of a measurement time slot provided in an embodiment of the present application. As shown in Figure 6, gap Offset is used to indicate the offset of the start subframe of the measurement gap in the measurement gap period.
  • S103 The UE acquires measurement configuration information sent by the base station under dual connectivity.
  • the UE In dual connectivity, the UE is in the RRC connected state, and the UE obtains the measurement configuration information sent by the base station.
  • the base station delivers the measurement configuration information through the RRC signaling RRCConnectionReconfiguration
  • the UE receives the RRC signaling, it parses the RRC signaling to obtain the measurement configuration information in the RRC signaling.
  • the UE can configure the period of measuring the gap according to the MGRP configuration, the length of the gap according to the MGL configuration, and according to the MGRP, MGL, and gap Offset, it can determine that the starting position of the measurement gap is in the system frame number (System Frame Number, SFN) and sub-frame that meet the following conditions. On the subframe:
  • subframe gapOffset mod 10;
  • FLOOR means to round down gapOffset/10, and take the largest integer not greater than gapOffset/10.
  • gapOffset mod 10 means that the gapOffset and 10 are modulo arithmetic.
  • the UE determines the processing capability information of the UE according to the frequency to be measured and the UE capability, the UE capability is used to identify the frequency band combination supported by the UE, and the processing capability information is used to identify that the UE is in the measurement gap
  • the first cell group that can send and receive signals.
  • the method for the UE to determine the processing capability information of the UE is the same as the method for the base station to determine the processing capability information of the UE in S101 according to the frequency to be measured and the UE capability.
  • the relevant description in S101 please refer to the relevant description in S101, which is not repeated here.
  • the first cell group includes MCG and/or SCG.
  • the first cell group includes MCG and SCG, it indicates that the UE does not need to measure gap when measuring the frequency to be measured; when the first cell group includes MCG or SCG, it indicates that the UE needs to measure the frequency point to be measured. .
  • the radio frequency paths corresponding to some of the component carriers CC in the second cell group are used to measure the frequency to be measured in the measurement gap.
  • the first cell group is MCG
  • the second cell group is SCG
  • the second cell group is MCG.
  • the first cell group includes MCG and SCG.
  • the main frequency band combination is the frequency band combination on the primary node
  • the secondary frequency band combination is the frequency band combination on the secondary node.
  • the first cell group is MCG.
  • the first cell group is an SCG.
  • S105 The UE sends a confirmation message to the base station for identifying that the measurement configuration information has been received.
  • the UE When the UE obtains the measurement configuration information sent by the base station, it sends confirmation information to the base station.
  • the confirmation message is used to inform the base station that the UE has received the measurement configuration information issued by the base station.
  • the UE sends the RRC signaling RRCConnectionReconfigurationComplete to the base station to inform the base station to confirm receipt of the measurement configuration information.
  • S105 may be executed after S103, or may be executed after S104.
  • S105 is performed after S104.
  • the UE transmits and receives signals with the base station according to the processing capability information of the UE.
  • the UE uses the resources allocated by the base station for the UE to perform signal transmission and reception with the base station according to the processing capability information of the UE, so that the UE and the base station do not interrupt signal transmission and reception during the measurement gap.
  • the UE and the base station can send and receive signals in the first cell group.
  • Signals include, but are not limited to, signaling, information (for example, indication information, scheduling information), reference signals, and data involved in the communication process between the base station and the UE.
  • the resources allocated by the base station to the UE can be the resources configured by the base station for the UE when the UE accesses the base station, such as PDCCH time-frequency resources, SRS or CSI-RS time-frequency resources, etc.; it can also be the DCI sent by the base station in the measurement gap The indicated resource.
  • DCI can carry PDSCH scheduling information and PUSCH scheduling information.
  • the PDSCH scheduling information is used to instruct the UE to receive data on the PDSCH; the PUSCH scheduling information is used to instruct the UE to send data on the PUSCH.
  • the UE receives PDSCH information through the first cell group and transmits PUSCH information according to PDCCH scheduling information.
  • the scheduling information of the PDCCH may be sent by the base station in the measurement gap, or sent by the UE before the measurement gap starts.
  • S106 may be specifically: in the measurement gap, the UE sends the first signal through the physical uplink shared channel PUSCH on the first cell group To the base station, and receive the second signal sent by the base station through the physical downlink shared channel PDSCH.
  • first signal and the second signal may be signaling to be transmitted, or other data to be transmitted except for signaling, and there is no limitation here.
  • the UE receives the PDCCH information sent by the base station in the measurement gap, and obtains PDSCH scheduling information and PUSCH scheduling information from it.
  • the UE is in the first cell group, receives data on the PDSCH according to the scheduling information of the PDSCH, and sends data on the PUSCH according to the scheduling information of the PUSCH.
  • the UE obtains the DCI sent by the base station, and obtains the PDSCH scheduling information and the PUSCH scheduling information carried by the DCI.
  • the UE can receive CRS, synchronization signal and PBCH block (Synchronization Signal and PBCH block, SSB) sent by the base station, or Channel-state information reference signal (CSI-RS), based on CRS/SSB /CSI-RS performs downlink channel quality measurement.
  • PBCH is a physical broadcast channel (Physical Broadcast Channel).
  • the UE may also send the SRS according to the configuration information of the SRS, so that the base station can perform channel measurement and estimation when the SRS is received.
  • the UE needs to configure a measurement gap to measure the frequency to be measured.
  • the UE may further include: the UE selects radio frequency channels of some component carriers from the second cell group, and measures the frequency points to be measured according to the measurement configuration information in the measurement gap.
  • the UE After the UE determines the first cell group, the UE selects a component carrier (CC) radio frequency channel from the second cell group for measuring the frequency to be measured, and configures the members of the second cell group based on the measurement configuration information Carrier measurement gap. Determine the starting position of the measurement gap according to the formula in S101. In the measurement gap, the UE stops transmitting and receiving signals with the base station on the second cell group, and switches the radio frequency path corresponding to the component carrier to the frequency to be measured to measure the frequency to be measured. The signal quality of the frequency point. The signal quality can be any one or any combination of at least two of RSRP, RSRQ, and SINR. When the report condition described in the report configuration in the measurement configuration information is satisfied, the UE sends a measurement report including the measurement result to the base station.
  • CC component carrier
  • the base station performs uplink and downlink signal transmission and reception with the UE according to the processing capability information of the UE.
  • the base station uses the resources allocated for the UE to transmit and receive signals with the UE according to the processing capability information of the UE.
  • the base station may instruct the UE to pass the first cell group in the measurement gap, send data on the PUSCH, and receive data on the PDSCH, so that the base station and the UE can not interrupt signal transmission and reception on the first cell group in the measurement gap.
  • the first cell group includes MCG and SCG, it indicates that the UE does not need to measure the gap when measuring the frequency to be measured.
  • the UE and the base station can both send and receive signals in the primary cell combined with the secondary cell group.
  • the base station stops transmitting and receiving signals with the UE on the second cell group.
  • the resource allocated to the UE may be the resource configured by the base station for the UE when the UE accesses the base station; it may also be the resource indicated by the downlink control information (DCI) sent by the base station in the measurement gap.
  • DCI downlink control information
  • the resources configured by the base station for the UE include, but are not limited to, time-frequency resources of a Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • the resources configured by the base station for the UE when the UE accesses the base station may include reference signals, for example, uplink sounding reference signal (Sounding Reference Signal, SRS), demodulation reference signal (Demodulation Reference Signal, DMRS), and cell reference signal (Cell Reference Signal). Reference Signal, CRS) etc.
  • SRS Sounding Reference Signal
  • DMRS demodulation Reference Signal
  • Cell Reference Signal Cell Reference Signal
  • SRS is used for uplink channel estimation, MCS and uplink frequency selective scheduling are selected.
  • DMRS is used in LTE for the related demodulation of Physical Uplink Shared Channel (PUSCH) and Physical Uplink Control Channel (PUCCH).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • CRS is used for downlink channel quality measurement, such as RSRP; and for downlink channel estimation.
  • the base station uses the PDCCH scheduling information allocated by the base station to the UE when the UE accesses the base station, sends PDSCH information to the UE, and receives PUSCH information sent by the UE according to the PDCCH scheduling information.
  • S107 may include: in the measurement gap, the base station receives the UE transmission through the physical uplink shared channel PUSCH on the first cell group. And send the second signal to the UE through the physical downlink shared channel PDSCH.
  • the base station may send PDCCH information to the UE through the first cell group in the measurement gap, and the PDCCH information carries PDSCH scheduling information and PUSCH scheduling information.
  • the base station stops scheduling the UE on the second cell group in the measurement gap, so that the UE uses one of the radio frequency channels in the second cell group to measure the frequency to be measured.
  • the base station can receive the SRS sent by the UE according to the SRS configuration in the measurement gap, and perform channel estimation according to the SRS.
  • both the UE and the base station can determine the first cell group that supports signal transmission and reception in the measurement gap, so that neither the base station nor the UE need to inform each other of the determined first cell group.
  • the UE can transmit and receive uplink and downlink signals with the base station in both the primary cell group and the secondary cell group.
  • the UE and the base station do not interrupt the uplink and downlink signal transmission and reception in the first cell group, one of the radio frequency channels in the second cell group of the UE is switched to the frequency to be measured, and the frequency to be measured is measured. Since in the measurement gap, the signal transmission and reception is not interrupted on the first cell group, the data transmission rate of a single UE on the first cell group can be increased.
  • FIG. 7 is an interaction diagram of a method for transmitting and receiving signals in a measurement time slot according to another embodiment of the present application.
  • the base station determines the processing capability information of the UE according to the frequency to be measured and the UE capability, it can indicate the processing capability of the UE in the measurement configuration information in S102; the UE can directly obtain the processing capability information of the UE from the measurement configuration information , The processing capability information of the UE is no longer determined according to the frequency to be measured in the measurement configuration information and the UE capability. That is, in the embodiment corresponding to FIG. 7, the UE does not need to perform S104 in FIG. 6, and the UE can save a part of computing resources.
  • the base station may indicate the processing capability of the UE through other information except the measurement configuration information, which is not limited here.
  • the first cell group indication transmissionInGapInd may be added to the measurement configuration information on the basis of existing information elements in the protocol.
  • the cell measGapConfig is optional.
  • the measurement configuration does not include this cell, that is, the base station does not configure the measurement gap, so the base station and the terminal can always use MCG and SCG. Keep up and down signal transmission and reception.
  • the measurement configuration includes the information element measGapConfig, and the information element measGapConfig includes the information element transmissionInGapInd, indicating whether MCG or SCG is the first cell group.
  • transmissionInGapInd when transmissionInGapInd is set to mn, it means that uplink and downlink signal transmission and reception can be performed on the primary cell group in the measurement gap, but the uplink and downlink signal transmission and reception cannot be performed on the secondary cell group; when it is set to sn, it means that the measurement gap can be performed on the secondary cell group in the measurement gap. The uplink and downlink signal transmission and reception cannot be performed on the primary cell group. If the base station determines that the first cell group includes neither MCG nor SCG, the measurement configuration includes the cell measGapConfig, but the cell measGapConfig does not include the cell transmissionInGapInd.
  • the cell transmissionInGapInd is optional. If the cell transmissionInGapInd is not included, it means that the first cell group includes neither MCG nor SCG; when set to mn, it means that the first cell group is SCG; when it is set to sn, it means that the first cell group is SCG .
  • FIG. 8 is an interaction diagram of a method for transmitting and receiving signals in a measurement time slot according to another embodiment of the present application.
  • the base station does not need to determine the processing capability information of the UE before sending the measurement configuration information (that is, there is no need to perform S101).
  • the UE can The processing capability information is sent to the base station.
  • the processing capability information of the UE is carried in the radio resource control RRC signaling or the media intervention control layer control cell MAC CE.
  • the RRC signaling may be RRCConnectionReconfigurationComplete, UE auxiliary information signaling, or other RRC signaling, which is not limited here.
  • the UE when the UE executes S105 to send confirmation information for identifying the received measurement configuration information to the base station, the UE can send the processing capability information of the UE together with the confirmation information to the base station, which can save signaling overhead.
  • the UE may also send a separate piece of information to the base station to inform the UE of the processing capability information. In this way, compared with "sending the processing capability information of the UE together with the confirmation information to the base station", there is an extra piece of signaling used to carry the processing capability information of the UE, which increases the signaling overhead.
  • the processing capability information of the UE is carried in the RRC signaling.
  • transmissionInGapInd can take the following forms:
  • transmissionInGapInd When transmissionInGapInd is set to all, it means that there is no need to measure the gap; when it is set to none, it means that neither the primary cell group nor the secondary cell group in the measurement gap can send and receive uplink and downlink signals; when it is set to mn, it means that the measurement gap is on the primary cell group. Uplink and downlink signals can be sent and received, but not on the secondary cell group; when set to sn, it means that uplink and downlink signals can be sent and received on the secondary cell group in the measurement gap, and the primary cell group cannot be sent and received on the primary cell group.
  • the UE respectively sends confirmation information for identifying the received measurement configuration information and processing capability information of the UE to the base station.
  • it may also include: the UE sending the processing capability information of the UE to the base station, and the processing capability information of the UE is used to instruct the base station to keep the information in the measurement gap.
  • the UE performs signal transmission and reception.
  • the base station receives the processing capability information of the UE.
  • the processing capability information of the UE is carried in UE auxiliary information signaling.
  • the UE sends the RRC signaling RRCConnectionReconfigurationComplete to the base station to inform the base station to confirm receipt of the measurement configuration information.
  • the UE may send UE assistance information signaling carrying the processing capability information of the UE to the base station.
  • the above-mentioned transmissionInGapInd information element can be carried by UE assistance information UEAssistanceInformation signaling.
  • the processing capability information of the UE is carried in a media intervention control layer control cell MAC CE.
  • the UE can control the cell (Medium Access Control Control Element, MAC CE) through the media intervention control layer, for example, Transmission Indication MAC CE.
  • Transmission In Gap Indication MAC CE occupies 8 bits.
  • Transmission In Gap Indication MAC CE with a value of 0 means that the gap is not required to be measured; a value of 1 means that neither the primary cell group nor the secondary cell group in the measurement gap can perform uplink and downlink signal transmission; a value of 2 means that the primary cell group in the measurement gap can be used For uplink and downlink signal transmission and reception, uplink and downlink signal transmission and reception cannot be performed on the secondary cell group; a value of 3 means that uplink and downlink signal transmission and reception can be performed on the secondary cell group in the measurement gap, and uplink and downlink signal transmission and reception cannot be performed on the primary cell group.
  • the UE informs the base station to confirm receipt of measurement configuration information through RRC signaling
  • the RRC signaling reaches the MAC
  • it adds a header and MAC CE signaling to the RRC signaling and transmits the processed signaling to the physical layer. After passing the physical layer, it is sent to the base station.
  • the UE can determine the processing capability information of the UE based on the radio frequency capabilities supported by the UE and the frequency to be measured, and report the processing capability information to the base station.
  • the base station and the UE can determine the processing based on the UE.
  • the processing capability information determined and reported by the UE based on its actual UE capabilities is more accurate than the UE processing capability information determined by the base station based on the UE capabilities reported by the UE, that is, it can determine more accurately and comprehensively.
  • the first cell group can increase the possible scenarios of supporting uplink and downlink signal transmission and reception in the measurement gap, thereby further improving the uplink and downlink rate of the UE.
  • FIG. 9 shows a structural block diagram of a signal transmitting and receiving apparatus provided in an embodiment of the present application. The parts related to the embodiments of the present application are shown. In this embodiment, the units included in the device for transmitting and receiving signals are used to execute the steps performed by the UE in the embodiments corresponding to FIGS. 5, 7, and 8. For details, please refer to the relevant descriptions in FIGS. 5, 7, and 8. Go into details.
  • the signal receiving and sending device 9 may include:
  • the obtaining unit 910 is configured to obtain measurement configuration information sent by the base station under dual connectivity, where the measurement configuration information includes the frequency point to be measured and configuration information of the measurement gap;
  • the transmission unit 920 is configured to transmit and receive signals with the base station according to the processing capability information of the UE in the measurement gap, and the processing capability information is used to identify the first cell group in which the UE can transmit and receive signals in the measurement gap.
  • the processing capability information is determined according to the frequency to be measured and the UE capability, and the UE capability is used to identify the frequency band combination supported by the UE.
  • the UE capability may be a radio frequency capability of the UE, and the UE capability is a combination of frequency bands supported by the UE.
  • the processing capability information of the UE is determined by the UE according to the frequency to be measured and the UE capability.
  • the processing capability information is sent to the UE after the base station determines the frequency to be measured and the UE capability reported by the UE.
  • the transmission unit 920 is specifically configured to: in the measurement gap, send the first signal to the base station through the physical uplink shared channel PUSCH on the first cell group, and receive the received signal through the physical downlink shared channel PDSCH.
  • the second signal sent by the base station is specifically configured to: in the measurement gap, send the first signal to the base station through the physical uplink shared channel PUSCH on the first cell group, and receive the received signal through the physical downlink shared channel PDSCH.
  • the second signal sent by the base station.
  • the first cell group includes a primary cell group (Master Cell Group, MCG) and/or a secondary cell group (Secondary Cell Group, SCG).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the first cell group includes MCG and SCG.
  • the first cell group is an MCG.
  • the first cell group is an SCG.
  • the signal transceiving apparatus when the first cell includes MCG or SCG, the signal transceiving apparatus further includes:
  • the measuring unit is configured to, after the acquiring unit acquires the measurement configuration information sent by the base station, select at least one component carrier from the second cell group, and measure the frequency point to be measured according to the measurement configuration information in the measurement gap.
  • the measurement configuration information is sent by the base station after determining the processing capability information of the UE according to the frequency to be measured and the UE capability reported by the UE.
  • the signal transceiving device further includes:
  • the sending unit is configured to send confirmation information for identifying that the measurement configuration information has been received to the base station before the transmission unit performs signal transmission and reception with the base station according to the processing capability information.
  • the signal transceiving device further includes:
  • a determining unit configured to determine the processing capability information according to the frequency point to be measured and the UE capability
  • the sending unit is further configured to: after the determining unit determines the processing capability information, before the transmission unit communicates with the base station according to the processing capability information, send the processing capability information of the UE to the The base station, the processing capability information of the UE is used to indicate that the base station can transmit and receive signals with the UE in the measurement gap.
  • the processing capability information of the UE is carried in the radio resource control RRC signaling or the media intervention control layer control cell MAC CE.
  • the processing capability information of the UE is carried in the RRC signaling.
  • the processing capability information of the UE is carried in UE auxiliary information signaling.
  • the processing capability information of the UE is carried in a media intervention control layer control cell MAC CE.
  • the UE may report the processing capability information of the UE in various forms.
  • the signal receiving and sending device 9 may be a UE, or a chip in the UE, or a functional module integrated in the UE.
  • the chip or the functional module may be located in the control center (for example, the console) of the UE, and control the UE to implement the method for transmitting and receiving signals in the measurement time slot provided by this application.
  • FIG. 10 shows a structural block diagram of a signal transmitting and receiving device provided by another embodiment of the present application.
  • the units included in the signal-receiving device are used to execute the steps performed by the base station in the embodiments corresponding to FIGS. 5, 7, and 8.
  • the signal transceiving device 10 may include:
  • the sending unit 1010 is configured to send measurement configuration information to the UE under dual connectivity, where the measurement configuration information includes the configuration information of the frequency point to be measured and the measurement time slot gap;
  • the transmission unit 1020 is configured to transmit and receive signals with the UE according to the processing capability information of the UE in the measurement gap, and the processing capability information of the UE is used to identify the first cell group in which the UE can transmit data in the measurement gap
  • the processing capability information of the UE is determined according to the frequency to be measured and the UE capability, and the UE capability is used to identify a frequency band combination supported by the UE.
  • the transmission unit is specifically configured to: in the measurement gap, receive the first signal sent by the UE through the physical uplink shared channel PUSCH on the first cell group, and send the first signal through the physical downlink shared channel PDSCH. Two signals to the UE.
  • the first cell group includes a primary cell group MCG and/or a secondary cell group SCG.
  • the signal transceiving apparatus when the first cell includes MCG or SCG, the signal transceiving apparatus further includes:
  • the control unit is configured to, after the sending unit sends the measurement configuration information to the UE, further comprising: stopping signal transmission and reception with the UE on the second cell group.
  • the signal transceiving device further includes:
  • the receiving unit is configured to receive a confirmation message sent by the UE for identifying that the measurement configuration information has been received before the transmission unit performs signal transmission and reception with the UE according to the processing capability information of the UE.
  • the signal transceiving device further includes:
  • the determining unit is configured to determine the processing capability of the UE according to the frequency to be measured and the UE capability reported by the UE before the transmission unit performs signal transmission and reception with the UE according to the processing capability information of the UE information. It can be understood that the UE capability is the frequency band combination supported by the UE reported by the UE.
  • the measurement configuration information further includes UE processing capability indication information, and the UE processing capability indication information is used by the UE to determine the processing capability information of the UE.
  • the receiving unit is further configured to receive the processing capability information of the UE sent by the UE before the transmission unit performs signal transmission and reception with the UE according to the processing capability information of the UE.
  • the first cell group includes MCG and SCG.
  • the first cell group includes MCG.
  • the first cell group is an SCG.
  • the processing capability information is carried in the RRC signaling.
  • the processing capability information of the UE is carried in UE auxiliary information signaling.
  • the processing capability information of the UE is carried in a media intervention control layer control cell MAC CE.
  • the signal receiving and sending device 10 may be a base station, or a chip in the base station, or a functional module integrated in the base station.
  • the chip or the functional module may be located in the control center (for example, console) of the base station to control the base station to implement the method for transmitting and receiving signals in the measurement time slot provided by this application.
  • FIG. 11 is a schematic structural diagram of a network element device provided by an embodiment of this application.
  • the network element device 11 of this embodiment includes: at least one processor 1110 (only one is shown in FIG. 11), a processor, a memory 1120, and a memory 1120 that is stored in the memory 1120 and can be stored in the at least one processor 1110.
  • a computer program 1121 running on the processor 1110.
  • the processor 1110 executes the computer program 1121, the steps in any of the above-mentioned method embodiments for transmitting and receiving signals in a measurement time slot are implemented.
  • the processor 1110 calls the computer program 1121 stored in the memory 1120 to make the UE execute the steps performed by the UE in the embodiments corresponding to FIGS. 5, 7 and 8.
  • the processor 1110 calls the computer program 1121 stored in the memory 1120 to make the base station execute the steps performed by the base station in the embodiments corresponding to FIGS. 5, 7 and 8.
  • FIG. 11 is only an example of the network element device 11, and does not constitute a limitation on the network element device 11. It may include more or less components than shown in the figure, or a combination of certain components, or different components. The components of, for example, can also include input and output devices, network access devices, and so on.
  • the so-called processor 1110 may be a central processing unit (Central Processing Unit, CPU), and the processor 1110 may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (Application Specific Integrated Circuits). , ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 1120 may be an internal storage unit of the network element device 11 in some embodiments, such as a hard disk or a memory of the network element device 11. In other embodiments, the memory 1120 may also be an external storage device of the network element device 11, for example, a plug-in hard disk or a smart memory card (Smart Media Card, SMC) equipped on the network element device 11. Secure Digital (SD) card, Flash Card, etc. Further, the memory 1120 may also include both an internal storage unit of the network element device 11 and an external storage device.
  • the memory 1120 is used to store an operating system, an application program, a boot loader (Boot Loader), data, and other programs, such as the program code of the computer program. The memory 1120 can also be used to temporarily store data that has been output or will be output.
  • An embodiment of the present application also provides a network device, which includes: at least one processor, a memory, and a computer program stored in the memory and running on the at least one processor, and the processor executes The computer program implements the steps in any of the foregoing method embodiments.
  • the embodiments of the present application also provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps in each of the foregoing method embodiments can be realized.
  • the embodiments of the present application provide a computer program product.
  • the steps in the foregoing method embodiments can be realized when the mobile terminal is executed.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer program can be stored in a computer-readable storage medium. When executed by the processor, the steps of the foregoing method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may at least include: any entity or device capable of carrying computer program code to the photographing device/terminal device, recording medium, computer memory, read-only memory (ROM), random access memory (Random Access Memory, RAM), electric carrier signal, telecommunications signal and software distribution medium.
  • ROM read-only memory
  • RAM random access memory
  • electric carrier signal telecommunications signal and software distribution medium.
  • U disk mobile hard disk, floppy disk or CD-ROM, etc.
  • computer-readable media cannot be electrical carrier signals and telecommunication signals.
  • the disclosed apparatus/network equipment and method may be implemented in other ways.
  • the device/network device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units.
  • components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请适用于通信技术领域,提供了在测量时隙内收发信号的方法、网元设备以及可读存储介质,该方法包括:在双连接下,用户设备UE获取基站下发的测量配置,并确定可在测量gap内进行信号收发的第一小区组;在测量gap内,在第一小区组上与基站进行信号收发;在第二小区组上进行异频或异系统测量,第二小区组为在测量gap内无法进行信号收发的小区组。由于在测量gap内,基站和UE在第一小区组上仍然可以进行信号收发,可充分利用UE在测量gap内支持信号收发的射频通路进行信号收发,因此,本申请实施例可有效提高UE的上下行速率。

Description

在测量时隙内收发信号的方法、网元设备及可读存储介质
本申请要求于2020年1月16日提交国家知识产权局、申请号为202010046566.3、申请名称为“在测量时隙内收发信号的方法、网元设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,尤其涉及一种在测量时隙内收发信号的方法、网元设备及可读存储介质。
背景技术
随着移动通信技术的发展,第5代移动技术新空口(New Radio,NR)粉墨登场。NR具有非独立组网(Non-Standalone,NSA)和独立组网(Standalone,SA)两种组网模式。
NSA使用多制式双连接(Multi-Radio Dual Connectivity,MR-DC)技术,提供一种网络从长期演进(Long Term Evolution,LTE)向NR平滑过渡的方式,也就是说,NSA的核心网使用4G核心网,可以基于现有的4G核心网进行5G网络的部署,这样加速了NR技术商用。SA的核心网是5G核心网(NR Core,NC),部署成功更高。
在NSA组网模式下,终端需要同时接入4G网络和5G网络。终端如果支持MR-DC,终端需要具有两个通信制式(4G和5G)的独立的射频通路(或收发机),从而保证终端能够同时在两个制式的网络上接收数据和发送数据。
在MR-DC下,用户设备(User Equipment,UE)在当前服务小区的信号质量较差时,需要及时切换到另一个信号较好的邻区上,以获得无线网络持续不断的服务。UE从当前服务小区对应的基站切换至邻区基站之前,根据网络小区的布置情况,需要进行同频、异频和/或异系统测量。
根据UE能力不同,UE能够支持需要时隙gap的测量(gap-assisted measurement),或无需gap的测量(non-gap-assisted measurement)。如果UE仅支持需要gap的测量,当测量被触发时,基站给UE配置测量gap。在测量gap内,基站和UE停止相互信号收发,UE接收邻区信号完成测量。因此在测量gap内,基站和UE停止数据收发,导致UE的上下行速率下降。
发明内容
本申请实施例提供了一种在测量时隙内收发信号的方法、网元设备及可读存储介质,可以解决在进行需要gap的测量时,UE的上下行速率下降问题。
第一方面,本申请实施例提供了一种在测量时隙内收发信号的方法,应用于用户设备UE,所述在测量时隙内收发信号的方法包括:
在双连接下,获取基站发送的测量配置信息,所述测量配置信息包括待测频点以 及测量时隙gap的配置信息;
在测量gap内,根据所述UE的处理能力信息与所述基站进行信号收发,所述处理能力信息用于标识UE在测量gap内可收发信号的第一小区组,所述处理能力信息是根据所述待测频点以及UE能力确定的,所述UE能力用于标识所述UE支持的频带组合。
应理解,所述UE能力可以为所述UE的射频能力,所述UE能力为所述UE支持的频带组合。
其中,测量gap的配置信息可以包括:测量时隙重复周期(Measurement Gap Repetition Period,MGRP)、测量时隙长度(Measurement Gap Length,MGL)以及时隙偏移量(gap Offset)。MGRP可以为40毫秒(ms),MGL最大为6ms。
UE可根据MGRP配置测量gap的周期,根据MGL配置测量gap的长度,根据MGRP、MGL以及gap Offset,可确定测量gap的起始位置在满足以下条件的系统帧号(System Frame Number,SFN)和子帧(subframe)上:
SFN mod T=FLOOR(gapOffset/10);
subframe=gapOffset mod 10;
T=MGRP/10。
其中,FLOOR(gapOffset/10)表示对gapOffset/10向下取整,取不大于gapOffset/10的最大整数。gapOffset mod 10表示对gapOffset、10进行取模运算。
可以理解的是,UE的处理能力信息可以由UE确定,也可以由基站确定后发送至UE。
在本申请实施例中,UE在测量gap外,在主小区组和辅小区组均可以与基站进行信号收发。在测量gap内,UE与基站在第一小区组可以不中断信号收发,可以继续传输数据,UE可以将第二小区组中的至少一个射频通路切换到待测频点,对待测频点进行测量。由于在测量gap内,在第一小区组上可以不中断信号收发,可以提高UE的上下行速率。
在第一方面的一种可能的实现方式中,所述UE的处理能力信息由所述UE根据所述待测频点以及UE能力确定。
例如,基站和UE都可以根据待测频点以及UE能力确定UE的处理能力信息,这样基站和UE都不需要将UE的处理能力信息相互告知对方。
当UE的处理能力信息由UE确定时,UE可以将UE的处理能力信息发送至基站,这样基站就不需要确定UE的处理能力信息。
当UE的处理能力信息由基站确定时,基站可以将UE的处理能力信息发送至UE,UE可以直接获取到UE的处理能力信息,不需要根据待测频点以及UE能力确定UE的处理能力信息,UE可以节省一部分计算资源。
例如,基站根据UE能力和待测频点确定UE的处理能力信息,通过测量配置信息将UE的处理能力信息发送至UE。
在第一方面的一种可能的实现方式中,所述根据所述UE的处理能力信息与所述基站进行信号收发,包括:在测量gap内,在所述第一小区组上通过物理上行共享信道PUSCH发送第一信号至所述基站,以及通过物理下行共享信道PDSCH接收所述基 站发送的第二信号。
在第一方面的一种可能的实现方式中,所述第一小区组包括主小区组(Master Cell Group,MCG)和/或辅小区组(Secondary Cell Group,SCG)。应理解,MCG为主节点(主基站)对应的小区组,SCG为辅节点(辅基站)对应的小区组。
在第一方面的一种可能的实现方式中,当所述UE支持由主频带组合、辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG和SCG。主频带组合为主节点(UE接入的主基站)上的频带组合,辅频带组合为辅节点(UE接入的辅基站)上的频带组合。
在第一方面的一种可能的实现方式中,当所述UE支持由主频带组合以及所述待测频点组成的频带组合时,所述第一小区组为MCG。
在第一方面的一种可能的实现方式中,当所述UE支持由辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组为SCG。
在第一方面的一种可能的实现方式中,当所述第一小区包括MCG或SCG时,所述获取基站发送的测量配置信息之后,还包括:
从第二小区组中选择至少一个成员载波的射频通路,在测量gap内根据所述测量配置信息对所述待测频点进行测量。
在第一方面的一种可能的实现方式中,在所述获取基站发送的测量配置信息之后,所述根据所述UE的处理能力信息与所述基站进行信号收发之前,还包括:发送用于标识已收到所述测量配置信息的确认信息至所述基站。
在第一方面的一种可能的实现方式中,所述根据所述UE的处理能力信息与所述基站进行信号收发之前,还包括:
发送所述UE的处理能力信息至所述基站。所述UE的处理能力信息用于指示所述基站在测量gap内保持与所述UE进行信号收发。
UE的处理能力信息承载于无线资源控制RRC信令或媒体介入控制层控制信元MAC CE中。RRC信令可以是RRCConnectionReconfigurationComplete,也可以是UE辅助信息信令。
在本实施例中,UE可以基于UE支持的射频能力以及待测频点确定UE的处理能力信息,并将处理能力信息上报给基站,基站与UE可以基于UE确定的处理能力信息进行信号收发。由于UE上报的UE能力中所支持的频带组合受市场需求的影响,并不能完全反应UE的射频能力,也就是说,UE上报的支持的频带组合有可能是UE实际支持的频带组合中的一部分,因此,UE根据自身实际的UE能力确定并上报的处理能力信息,与基站根据UE上报的UE能力确定出的UE的处理能力信息相比,更准确,即能够更准确、更全面地确定出第一小区组,从而可增加在测量gap内支持的频点组合的可能场景,进而能够进一步提高UE的上下行速率。
在第一方面的一种可能的实现方式中,为了节省信令开销,当所述确认信息通过无线资源控制RRC信令发送时,所述UE的处理能力信息承载于所述RRC信令中。
在第一方面的一种可能的实现方式中,所述UE的处理能力信息承载于UE辅助信息信令中。
在第一方面的一种可能的实现方式中,所述UE的处理能力信息承载于媒体介入 控制层控制信元MAC CE中。
在本实施例中,UE可以通过多种形式上报UE的处理能力信息。
第二方面,本申请实施例提供了一种在测量时隙内收发信号的方法,应用于基站,所述在测量时隙内收发信号的方法包括:
在双连接下,发送测量配置信息至UE,所述测量配置信息包括待测频点以及测量gap的配置信息;
在测量gap内,根据所述UE的处理能力信息与所述UE进行信号收发,所述UE的处理能力信息用于标识UE在测量gap内可收发信号的第一小区组,所述UE的处理能力信息是根据所述待测频点以及UE能力确定的,所述UE能力用于标识所述UE支持的频带组合。
可以理解的是,UE的处理能力信息可以由UE确定,也可以由基站确定。
例如,基站和UE都可以根据待测频点以及UE能力确定UE的处理能力信息,这样基站和UE都不需要将UE的处理能力信息相互告知对方。
再例如,UE可以将UE的处理能力信息发送至基站,这样基站就不需要确定UE的处理能力信息。
再例如,基站可以将UE的处理能力信息发送至UE,UE可以直接获取到UE的处理能力信息,不需要根据待测频点以及UE能力确定UE的处理能力信息,UE可以节省一部分计算资源。示例性地,基站根据UE能力和待测频点确定UE的处理能力信息,通过测量配置信息将UE的处理能力信息发送至UE。
在本申请实施例中,在测量gap外,基站在主小区组和辅小区组均可以与UE进行信号收发。在测量gap内,UE与基站在第一小区组可以不中断信号收发,基站在第二小区组停止调度UE,UE在第二小区组中的至少一个射频通路切换到待测频点,对待测频点进行测量。由于在测量gap内,在第一小区组上不中断信号收发,可以提高UE在第一小区组的上下行速率,提高UE的数据传输速率。
在第二方面的一种可能的实现方式中,所述根据所述UE的处理能力信息与所述UE进行信号收发,包括:在测量gap内,在所述第一小区组上通过物理上行共享信道PUSCH接收所述UE发送的数据,以及通过物理下行共享信道PDSCH发送数据至所述UE。
在第二方面的一种可能的实现方式中,所述第一小区组包括主小区组MCG和/或辅小区组SCG。
在第二方面的一种可能的实现方式中,当所述第一小区包括MCG或SCG时,所述发送测量配置信息至UE之后,还包括:在测量gap内,在第二小区组上停止与所述UE进行信号收发。
在第二方面的一种可能的实现方式中,所述根据所述UE的处理能力信息与所述UE进行信号收发之前,还包括:接收所述UE发送的用于标识已收到所述测量配置信息的确认消息。
在第二方面的一种可能的实现方式中,所述根据所述UE的处理能力信息与所述UE进行信号收发之前,还包括:
根据所述待测频点以及所述UE上报的UE能力,确定所述UE的处理能力信息。
可以理解的是,UE能力为UE上报的UE支持的频带组合。
在第二方面的一种可能的实现方式中,基站在确定UE的处理能力信息之后,还可以将UE的处理能力信息发送至UE,UE就不需要再确定UE的处理能力信息。例如,基站可以将UE的处理能力信息承载于测量配置信息中。即,测量配置信息还包括UE处理能力信息。
在第二方面的一种可能的实现方式中,所述根据所述UE的处理能力信息与所述UE进行信号收发之前,还包括:接收所述UE发送的所述UE的处理能力信息。
在第二方面的一种可能的实现方式中,当所述UE支持由主频带组合、辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG和SCG。
在第二方面的一种可能的实现方式中,当所述UE支持由主频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG。
在第二方面的一种可能的实现方式中,当所述UE支持由辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组为SCG。
在第二方面的一种可能的实现方式中,当所述确认消息通过无线资源控制RRC信令发送时,所述处理能力信息承载于所述RRC信令中。
在第二方面的一种可能的实现方式中,所述UE的处理能力信息承载于UE辅助信息信令中。
在第二方面的一种可能的实现方式中,所述UE的处理能力信息承载于媒体介入控制层控制信元MAC CE中。
第三方面,本申请实施例提供了一种收发信号装置,该收发信号装置可以为用户设备UE,包括:
获取单元,用于在双连接下,获取基站发送的测量配置信息,所述测量配置信息包括待测频点以及测量gap的配置信息;
传输单元,用于在测量gap内,根据所述UE的处理能力信息与所述基站进行信号收发,所述处理能力信息用于标识UE在测量gap内可收发信号的第一小区组,所述处理能力信息是根据所述待测频点以及UE能力确定的,所述UE能力用于标识所述UE支持的频带组合。
应理解,所述UE能力可以为所述UE的射频能力,所述UE能力为所述UE支持的频带组合。
本申请实施例的有益效果与第一方面的在测量时隙内收发信号的方法的有益效果相同,具体请参阅第一方面中的相关描述,此处不赘述。
在第三方面的一种可能的实现方式中,所述UE的处理能力信息由所述UE根据所述待测频点以及UE能力确定。
在第三方面的一种可能的实现方式中,所述处理能力信息由所述基站根据所述待测频点以及UE上报的UE能力确定后发送至所述UE。
在第三方面的一种可能的实现方式中,所述传输单元具体用于:在测量gap内,在所述第一小区组上通过物理上行共享信道PUSCH发送第一信号至所述基站,以及通过物理下行共享信道PDSCH接收所述基站发送的第二信号。
在第三方面的一种可能的实现方式中,所述第一小区组包括主小区组(Master Cell  Group,MCG)和/或辅小区组(Secondary Cell Group,SCG)。应理解,MCG为主节点(主基站)对应的小区组,SCG为辅节点(辅基站)对应的小区组。
在第三方面的一种可能的实现方式中,当所述UE支持由主频带组合、辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG和SCG。
在第三方面的一种可能的实现方式中,当所述UE支持由主频带组合以及所述待测频点组成的频带组合时,所述第一小区组为MCG。
在第三方面的一种可能的实现方式中,当所述UE支持由辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组为SCG。
在第三方面的一种可能的实现方式中,当所述第一小区包括MCG或SCG时,所述收发信号装置还包括:
测量单元,用于所述获取单元获取到基站发送的测量配置信息之后,从第二小区组中选择至少一个成员载波,在测量gap内根据所述测量配置信息对所述待测频点进行测量。
在第三方面的一种可能的实现方式中,所述收发信号装置还包括:
发送单元,用于在所述传输单元根据所述处理能力信息与所述基站进行信号收发之前,发送用于标识已收到所述测量配置信息的确认信息至所述基站。
在第三方面的一种可能的实现方式中,所述收发信号装置还包括:
确定单元,用于根据所述待测频点以及UE能力确定所述处理能力信息;
所述发送单元还用于:在所述确定单元确定所述处理能力信息之后,在所述传输单元根据所述处理能力信息与所述基站进行之前,发送所述UE的处理能力信息至所述基站,所述UE的处理能力信息用于指示所述基站在测量gap内可以与所述UE进行信号收发。
在第三方面的一种可能的实现方式中,为了节省信令开销,当所述确认信息通过无线资源控制RRC信令发送时,所述UE的处理能力信息承载于所述RRC信令中。
在第三方面的一种可能的实现方式中,所述UE的处理能力信息承载于UE辅助信息信令中。
在第三方面的一种可能的实现方式中,所述UE的处理能力信息承载于媒体介入控制层控制信元MAC CE中。
在本实施例中,UE可以通过多种形式上报UE的处理能力信息。
第四方面,本申请实施例提供了一种收发信号装置,该收发信号装置可以是基站,所述收发信号装置包括:
发送单元,用于在双连接下,发送测量配置信息至UE,所述测量配置信息包括待测频点以及测量gap的配置信息;
传输单元,用于在测量gap内,根据所述UE的处理能力信息与所述UE进行信号收发,所述UE的处理能力信息用于标识UE在测量gap内可收发信号的第一小区组,所述UE的处理能力信息是根据所述待测频点以及UE能力确定的,所述UE能力用于标识所述UE支持的频带组合。
本申请实施例的有益效果与第二方面的在测量时隙内收发信号的方法的有益效果相同,具体请参阅第二方面中的相关描述,此处不赘述。
在第四方面的一种可能的实现方式中,所述传输单元具体用于:在测量gap内,在所述第一小区组上通过物理上行共享信道PUSCH接收所述UE发送的第一信号,以及通过物理下行共享信道PDSCH发送第二信号至所述UE。
在第四方面的一种可能的实现方式中,所述第一小区组包括主小区组MCG和/或辅小区组SCG。
在第四方面的一种可能的实现方式中,当所述第一小区包括MCG或SCG时,所述收发信号装置还包括:
控制单元,用于在所述发送单元发送测量配置信息至UE之后,还包括:在测量gap内,在第二小区组上停止与所述UE进行信号收发。
在第四方面的一种可能的实现方式中,所述收发信号装置还包括:
接收单元,用于在所述传输单元根据所述UE的处理能力信息与所述UE进行信号收发之前,接收所述UE发送的用于标识已收到所述测量配置信息的确认消息。
在第四方面的一种可能的实现方式中,所述收发信号装置还包括:
确定单元,用于在所述传输单元根据所述UE的处理能力信息与所述UE进行信号收发之前,根据所述待测频点以及所述UE上报的UE能力,确定所述UE的处理能力信息。可以理解的是,UE能力为UE上报的UE支持的频带组合。
在第四方面的一种可能的实现方式中,所述测量配置信息还包括UE的处理能力信息。
在第四方面的一种可能的实现方式中,所述接收单元还用于:在所述传输单元根据所述UE的处理能力信息与所述UE进行信号收发之前,接收所述UE发送的所述UE的处理能力信息。
在第四方面的一种可能的实现方式中,当所述UE支持由主频带组合、辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG和SCG。
在第四方面的一种可能的实现方式中,当所述UE支持由主频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG。
在第四方面的一种可能的实现方式中,当所述UE支持由辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组为SCG。
在第四方面的一种可能的实现方式中,当所述确认消息通过无线资源控制RRC信令发送时,所述处理能力信息承载于所述RRC信令中。
在第四方面的一种可能的实现方式中,所述UE的处理能力信息承载于UE辅助信息信令中。
在第四方面的一种可能的实现方式中,所述UE的处理能力信息承载于媒体介入控制层控制信元MAC CE中。
第五方面,本申请实施例提供了一种网元设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时使所述网元设备执行上述第一方面的任一种可能的实现方式的在测量时隙内收发信号的方法,或者执行上述第二方面的任一种可能的实现方式的在测量时隙内收发信号的方法。
第六方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储 介质存储有计算机程序,所述计算机程序被处理器执行时使得所述网元设备执行上述第一方面的任一种可能的实现方式的在测量时隙内收发信号的方法,或者执行上述第二方面的任一种可能的实现方式的在测量时隙内收发信号的方法。
第七方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在网元设备上运行时,使得所述网元设备执行上述第一方面的任一种可能的实现方式的在测量时隙内收发信号的方法,或者执行上述第二方面的任一种可能的实现方式的在测量时隙内收发信号的方法。
可以理解的是,上述第二方面至第五方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
本申请实施例与现有技术相比存在的有益效果是:在双连接下,在测量gap内,采用在测量gap内不支持信号收发的小区组进行异频测量或异系统测量。在测量gap内支持信号收发的小区组,在测量gap内可以继续进行信号收发,可以提高小区组的上下行速率,提高UE的上下行速率。
附图说明
图1是本申请一实施例提供的一种EN-DC网络结构的示意图;
图2是本申请一实施例提供的一种NGEN-DC网络结构的示意图;
图3本申请实一施例提供的一种NE-DC网络结构的示意图;
图4是本申请一实施例提供的一种系统架构实例的示意图;
图5是本申请一实施例提供的一种在测量时隙内收发信号的方法的交互图;
图6是本申请一实施例提供的一种测量时隙的示意图;
图7是本申请另一实施例提供的一种在测量时隙内收发信号的方法的交互图;
图8是本申请再一实施例提供的一种在测量时隙内收发信号的方法的交互图;
图9是本申请一实施例提供的一种收发信号装置的结构示意图;
图10是本申请一实施例提供的一种收发信号装置的结构示意图;
图11是本申请实施例提供的网元设备的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地, 短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
随着移动技术的发展,双连接技术(Dual Connectivity,MR-DC)逐渐发展为包含多制式的多制式双连接(Multi-Radio Dual Connectivity,MR-DC)技术。目前,NSA就使用MR-DC技术,提供一种网络从长期演进(Long Term Evolution,LTE)向NR平滑过渡的方式,加速了NR技术商用部署。
MR-DC主要包括EN-DC(E-UTRA-NR Dual Connectivity,E-UTRA-NR双连接)、NGEN-DC(NG-RAN E-UTRA-NR Dual Connectivity,NG-RAN E-UTRA-NR双连接)以及NE-DC(NR-E-UTRA Dual Connectivity,NR-E-UTRA双连接)3种形式。NSA网络使用EN-DC技术。
请一并参阅图1~3,图1是本申请实施例提供的一种EN-DC网络结构的示意图,图2是本申请实施例提供的一种NGEN-DC网络结构的示意图,图3本申请实施例提供的一种NE-DC网络结构的示意图。
如图1所示,网络使用LTE的分组核心网(Evolved Packet Core,EPC)、LTE的接入网和NR的接入网。UE同时和eNodeB(4G基站)和gNodeB(5G基站)连接,并以eNodeB为主节点,gNodeB为辅节点。这种方式下,控制面信令主要通过LTE到达UE,NR主要提供用户面的数据传输,同时运营商不必部署NR核心网(NR Core,NC)。
如图2所示,网络使用NR核心网NC、LTE的接入网和NR的接入网。UE同时和eNodeB和gNodeB连接,仍以eNodeB为主节点,gNodeB为辅节点。这种方式,控制面信令还是主要通过LTE到达UE,NR主要提供用户面的数据传输。运营商需要部署NR核心网NC。
如图3所示,网络使用NR核心网NC,LTE的接入网和NR的接入网。UE同时和eNodeB和gNodeB连接,以gNodeB为主节点,eNodeB为辅节点。这种方式,控制面信令主要通过NR到达UE,LTE主要提供用户面的数据传输。运营商需要部署NR核心网NC。
UE如果支持MR-DC,那么UE需要具有两个制式(4G和5G)的独立的射频通路,才能够保证在两个制式上同时接收数据和发送数据。但是由于不同制式,不同的频带(band)可能需要具有不同物理特性的射频通路,而受限于UE成本,一般UE 无法支持所有的频带组合。以EN-DC为例,假设UE拥有一个LTE B3的射频通路和一个NR n78的射频通路,则UE能支持LTE B3+NR n78的频带组合,但不支持LTE B3+LTE B3+NR n78的频带组合(这里两个LTE B3是带内非连续的),因为没有两个LTE B3的射频通道,能够使UE在两个LTE B3上同时收发数据。其中,UE通过UE能力上报告知基站UE支持的频带组合。
在MR-DC下,UE也需要实施移动性管理。当UE所在的主小区组(Master Cell Group,MCG)的主小区(SpCell of a Master Cell Group,PCell)的信号质量较差时,UE需要根据基站下发的测量配置信息分别测量服务小区和邻区的信号质量,并将测量结果上报给基站;基站基于测量结果指示UE从所在的主小区组的主小区切换到另一个信号较好的邻区上,以获得无线网络持续不断的网络服务。具体通过以下方式实现:
请一并参阅图4,图4是本申请一实施例提供的一种系统架构实例的示意图。图4中,小区1为主节点上的小区,例如EN-DC下的LTE锚点小区;小区2为辅节点上的小区,如EN-DC下的NR小区;小区3为小区1或小区2的异频邻区或异系统邻区。小区1和小区2的覆盖范围相同,小区3的覆盖范围与小区1/小区2的覆盖范围不同。当UE驻留在小区1上时,基站下发添加辅小区组信令至UE,以使得UE通过添加辅节点流程,将小区2添加为辅小区组的主小区(Primary Cell of Secondary Cell Group,PSCell),从而使UE工作在MR-DC下。
一般情况下,在MR-DC下,UE处于RRC连接态,UE上报UE能力,以告知基站UE支持的频带组合(4G频段+5G频段)。基站根据UE当前所在的服务小区(如小区1)以及UE支持的频带组合,通过无线资源控制(Radio Resource Control,RRC)信令RRCConnectionReconfiguration下发针对服务小区的测量配置信息给UE。UE发送RRC信令RRCConnectionReconfigurationComplete至基站,以告知基站确认收到测量配置信息。UE基于针对服务小区的测量配置信息,持续不断地测量服务小区的信号质量。当服务小区的信号质量满足测量配置信息中的测量上报条件时,通过RRC信令MeasurementReport上报基站服务小区的测量结果。基站根据该测量结果判断是否需要发起邻区测量。比如当UE所在的当前PCell的信号质量较差,判定UE已处在小区边缘,需要发起邻区测量寻找信号质量好的邻区作为切换的目标小区。其中,当待测频点和当前服务小区频点同制式且同频点时,称为同频测量。当待测频点和当前服务小区频点同制式但频点不同时,称为异频测量。当待测频点和当前服务小区频点不同制式时,称为异系统测量。
基站在确认需要发起邻区测量时,通过RRC信令下发针对邻区的测量配置信息给UE,以使得UE根据针对邻区的测量配置信息,不断测量服务小区和邻区的信号质量。当满足测量上报条件时,UE上报基站服务小区和邻区的测量结果。基站根据该测量结果做出是否向邻区发起切换的决策。例如,当服务小区的信号质量低于第一阈值,并且邻区的信号质量高于第二阈值,第二阈值大于第一阈值时,基站指示UE从当前服务小区切换至该邻区。例如,如图4中,当UE移动到小区1或小区2的边缘时,基站发起异频测量或异系统测量,测量结果将作为UE向小区3切换的依据。
其中,服务小区或邻区的信号质量可以是以下一种或至少两种的任意组合:参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference  Signal Receiving Quality,RSRQ)以及信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
由于按照现有协议,在MR-DC下,对服务小区同频率范围(Frequency Range,FR)的异频邻区或异系统邻区的测量都需要测量gap,因此,针对异频邻区或异系统邻区的测量配置信息中包括测量gap配置信息,测量gap配置信息用于配置测量gap。
按照现有协议,对于基于同步信号和PBCH块(Synchronization Signal and PBCH block,SSB)的NR同频测量,如果当前UE的NR服务小区的激活的带宽部分(BandWidth Part,BWP)不是初始BWP(Initial BWP),并且激活的BWP内不包含该待测的同频SSB,则基站需要配置测量gap。为讨论描述方便,本申请中此类同频测量也归为异频测量。
鉴于现有协议,在MR-DC下,对服务小区同频率范围的异频邻区或异系统邻区的测量都需要测量gap,现有技术提供了一种配置测量时隙的方法。基站启动异频测量和/或异系统测量时,直接为UE配置测量gap,即针对服务小区同频率范围的异频邻区或异系统邻区的测量配置信息中,均包含测量gap配置信息。测量gap对主节点对应的主小区组(Master Cell Group,MCG)和辅节点的辅小区组(Secondary Cell Group,SCG)均有效。UE在测量gap的起始位置切换到邻区,以测量邻区的信号质量。在测量gap内,基站停止对UE进行调度,UE在MCG和SCG上均停止数据收发,浪费了时频资源,导致导致用户速率下降。
例如,假设UE支持LTE B1+LTE B3+NR n78的频带组合,说明UE具有B1、B3和n78独立的射频通路,能同时在B1、B3和n78上收发数据。如果UE工作在LTE B1+NR n78的EN-DC组合下,发起B3频点的异频测量,按照目前协议,基站仍然需要配置gap。射频通路的工作状态如下表:
射频通路 测量gap外的工作状态 测量gap内的工作状态
LTE B1的射频通路 B1服务小区 不工作
LTE B3的射频通路 不工作 B3邻区
NR n78的射频通路 n78服务小区 不工作
可见在测量gap内,LTE B1和NR n78的射频通路都处于不工作状态,而实际UE能够支持在LTE B1和NR n78的频带组合上收发数据。实际网络中一般使用的测量gap周期为40ms,gap长度为6ms,也即每40ms中UE有6ms不能收发数据。如果将这6ms利用上,则在频分双工(Frequency Division Duplexing,FDD)模式下,上下行速率可提高6/40=15%。
针对上述问题,提供了另一种配置测量时隙的方法。UE通过UE能力上报或基站通过RRC信令,指示UE在当前的服务小区下进行异频测量或异系统测量是否需要测量gap。基站在启动异频测量或异系统测量时,可以根据UE能力确定是否配置测量gap。当UE支持不需要测量gap的测量时,基站不需要为UE配置测量gap,即测量配置信息中,不包含测量gap配置信息。当UE不支持不需要测量gap的测量时,基站为UE配置测量gap。
其中,如果UE具有多套独立的射频通路,能够支持在服务小区上收发数据的同时在异频邻区或异系统邻区上接收信号,那么UE支持不需要测量gap的测量。比如, 当UE支持LTE B1+LTE B3+NR n78的频带组合时,UE可指示基站在LTE B1+NR n78的EN-DC组合下,测量LTE B3的异频频点可以不需要gap。
如果UE具有多套独立的射频通路,但在服务小区上收发数据的同时无法在异频邻区或异系统邻区上接收信号,那么UE不支持不需要测量gap的测量。
这种配置测量时隙的方法,基站在不需要为UE配置测量gap时,可避免因UE在测量gap内无法进行数据收发而降低UE速率的情况。但是,当UE不支持不需要测量gap的测量时,一旦配置测量gap,测量gap对MCG和SCG均有效。在测量gap内,基站停止对UE进行调度,UE在MCG和SCG上均停止数据收发。这样一来,UE支持数据收发的射频通路也可能处于空闲状态,无法在测量gap内传输数据,无法有效提高UE速率。
例如,假设UE只有一条LTE B3的射频通路,同时具有一条NR n78的射频通路,那么,UE支持LTE B3+NR n78的频带组合,但不支持LTE B3+LTE B3+NR n78的频带组合(两个LTE B3为带内非连续),那么如果UE工作在LTE B3+NR n78的EN-DC下,LTE侧发起对LTE B3异频频点的测量,则需要测量gap。此时,射频通路的工作状态如下表所示:
射频通路 测量gap外的工作状态 测量gap内的工作状态
LTE B3的射频通路 B3服务小区 B3邻区
NR n78的射频通路 n78服务小区 不工作
在测量gap内,尽管LTE上需要测量gap,使LTE B3的射频通路调至B3的异频频点上,但NR n78的射频通路处于空闲状态,NR n78的射频通路实际上仍可以用于在n78服务小区上进行收发数据。这种情况下,因在测量gap内没有有效利用NR n78的射频通路进行数据收发,导致无法提高NR小区上的上下行速率。
又如,假设UE支持LTE B3+NR n78的频带组合,也支持LTE B41+NR n78的频带组合,但由于LTE B3和LTE B41的射频通路上无法同时独立工作,UE不支持LTE B3+LTE B41+NR n78的频带组合,那么当UE工作在LTE B3+NR n78的EN-DC组合下发起对LTE B41的异频测量时,需要测量gap。此时,射频通路的工作状态如下表:
射频通路 测量gap外的工作状态 测量gap内的工作状态
LTE B3/B41的射频通路 B3服务小区 B41邻区
NR n78的射频通路 n78服务小区 不工作
在测量gap内,NR n78的射频通路也处于空闲状态,也可用于n78服务小区上收发数据。这种情况也存在:因在测量gap内没有有效利用NR n78的射频通路进行数据收发,而导致无法提高NR小区上的UE速率的问题。
再如,假设UE支持LTE B3+NR n78的频带组合,但不支持LTE B3+NR n78+NR n78的频带组合(因为UE只有一个NR n78的射频通路),那么当UE工作在LTE B3+NR n78的EN-DC组合下,发起对n78的异频测量时,需要测量gap。此时,射频通路的工作状态如下表:
射频通路 测量gap外的工作状态 测量gap内的工作状态
LTE B3的射频通路 B3服务小区 不工作
NR n78的射频通路 n78服务小区 n78异频邻区
在测量gap内,LTE B3的射频通路也处于空闲状态,也可用于LTE B3服务小区上收发数据。这种情况也存在:因在测量gap内没有有效利用LTE B3的射频通路进行数据收发,而导致无法提高LTE小区上的UE速率的问题。
为了解决上述问题,本申请提供了一种在测量时隙内收发信号的方法。该在测量时隙内收发信号的方法主要应用于MR-DC下进行异频测量和/或异系统测量。考虑到本方案与现有协议的兼容性,在双连接下,沿用现有的下发测量配置流程以及上报测量结果的流程,对测量gap的有效作用范围进行改进。相对于现有技术中配置的测量gap对MCG和SCG均有效,本方案中,在MR-DC下进行异频和/或异系统测量,需要测量gap时,测量gap只对在测量gap内不支持信号收发的小区组有效。具体如下:
在双连接下,基站按现有协议下发测量配置,UE获取基站下发的测量配置信息,在测量gap内,UE根据UE的处理能力信息与基站进行信号收发,处理能力信息用于标识UE在测量gap内可收发信号的第一小区组。
本申请实施例,基站下发的测量配置信息中的测量gap只对在测量gap内无法进行信号收发的第二小区组有效,在测量gap内,基站和UE在第二小区组上停止信号收发,利用第二小区组的部分射频通路进行测量,基站和UE在第一小区组上仍然可以进行信号收发,以充分利用UE在测量gap内支持信号收发的射频通路进行信号收发,可有效提高UE的上下行速率。其中,信号收发包括发送或接收信令、数据等。
在不需要为UE配置测量gap(即第一小区组包括主小区组和辅小区组)时,基站下发的测量配置信息中的测量gap对两个小区组均无效,以使得在测量gap内,基站和UE在两个小区组上仍然可以进行信号收发,UE利用多余的射频通道进行测量。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的在测量时隙内收发信号的方法的具体实现方式作进一步地详细描述。
在本申请中,UE的处理能力信息可以由UE确定,也可以由基站确定。
例如,如图5所示,基站和UE都可以根据待测频点以及UE能力确定UE的处理能力信息,这样基站和UE都不需要将UE的处理能力信息相互告知对方。
再例如,如图7所示,基站在确定UE的处理能力信息之后,可以将UE的处理能力信息发送至UE,UE可以直接获取到UE的处理能力信息,不需要根据待测频点以及UE能力确定UE的处理能力信息,UE可以节省一部分计算资源。示例性地,基站根据UE能力和待测频点确定UE的处理能力信息,通过测量配置信息将UE的处理能力信息发送至UE。
再例如,如图8所示,UE在根据待测频点以及UE能力确定UE的处理能力信息之后,可以将UE的处理能力信息发送至基站,这样基站就不需要确定UE的处理能力信息。
下面将分别介绍图5、图7、图8对应的实施例的具体实现过程。
请参阅图5,图5是本申请一实施例提供的一种在测量时隙内收发信号的方法的交互图。基站和UE都可以根据待测频点以及UE能力确定UE的处理能力信息。该在测量时隙内收发信号的方法主要应用于MR-DC下进行异频和/或异系统测量。在MR-DC下,UE同时连接eNodeB和gNodeB,从而能够同时接入LTE网络和NR网络。 在一种网络结构中,可以将eNodeB作为主节点,gNodeB作为辅节点。在另一种网络结构中,可以将gNodeB作为主节点,eNodeB作为辅节点。主节点用于管理主小区组MCG,辅节点用于管理辅小区组SCG。MCG包括一个主小区(Primary Cell,PCell)或额外包括一个或多个辅小区(Secondary Cell,SCell)。SCG包括一个主辅助小区(Primary Secondary Cell,PSCell)或额外包括一个或多个辅小区。本实施例中的在测量时隙内收发信号的方法包括以下步骤:
S101、基站根据待测频点以及UE上报的UE能力,确定所述UE的处理能力信息,所述处理能力信息用于标识UE在测量gap内可收发信号的第一小区组,所述UE能力用于标识所述UE支持的频带组合。
UE包括但不限于手机、平板电脑、笔记本电脑、上网本、个人数字助理(personal digital assistant,PDA)等可接入无线网的终端。基站指的是某运营商对应的基站。
基站确认UE当前所在的服务小区的信号质量较差,UE已处在小区边缘时,基站根据小区列表,查询服务小区对应的邻区,并确定邻区对应的待测频点,以发起异频邻区测量和/或异系统邻区测量。信号质量可以通过参考信号接收功率RSRP、参考信号接收质量RSRQ、信号与干扰加噪声比SINR中的任一个或至少两个来衡量。
基站获取UE上报的UE能力,UE可以在UE接入基站,基站查询UE能力时,将UE能力上报至基站。UE也可以在切换到新小区,基站查询UE能力时,将UE能力上报至基站。
其中,UE能力可以用于标识UE支持的频带组合。UE能力可以为UE支持的频带组合,例如,UE能力标识:UE支持LTE B3+NR n78的频带组合,LTE B41+NR n78的频带组合。
UE能力也可以为UE的射频能力。UE的射频能力是指UE具有的射频通路。UE可以根据UE的射频能力确定UE支持的频带组合。UE支持的频带组合包括主节点支持的主频带组合以及辅节点支持的辅频带组合。UE可以根据UE支持的频带组合或UE的射频能力,确定UE支持的频带组合。例如,UE具有一个LTE的射频通路和一个NR n78射频通路。LTE的射频通路供LTE B3和LTE B41共用。也就是说,LTE B3和LTE B41无法同时独立工作。UE支持LTE B3+NR n78的频带组合,LTE B41+NR n78的频带组合。
基站可以根据待测频点以及UE能力,判断UE在对待测频点进行测量时,是否需要测量gap。当不需要测量gap时,第一小区组包括MCG和SCG。当需要测量gap时,进一步确定在测量gap内可收发信号的第一小区组;根据确定结果得到UE的处理能力信息。
处理能力信息用于标识UE在测量gap内可收发信号的第一小区组。第一小区组包括MCG和/或SCG。当第一小区组包括MCG和SCG时,标识UE对待测频点进行测量时,不需要测量gap;当第一小区组包括MCG或SCG时,标识UE对待测频点进行测量时,需要测量gap。第二小区组中的至少一个成员载波(Component Carrier,CC)对应的射频通路用于在测量gap内对待测频点进行测量。当第一小区组为MCG时,第二小区组为SCG;当第一小区组为SCG时,第二小区组为MCG。
进一步地,当UE能力标识,UE支持由主频带组合、辅频带组合以及待测频点组 成的频带组合时,第一小区组包括MCG和SCG。主频带组合为主节点上的频带组合,辅频带组合为辅节点上的频带组合。
进一步地,当UE支持由主频带组合以及待测频点组成的频带组合时,第一小区组为MCG。
进一步地,当UE支持由辅频带组合以及待测频点组成的频带组合时,第一小区组为SCG。
进一步地,基站根据待测频点以及UE能力,判断UE在对待测频点进行测量时,是否需要测量gap的方法可以具体为:
基站根据待测频点以及UE支持的频带组合,判断UE是否支持由主频带组合、辅频带组合以及待测频点组成的第一频带组合。如果UE支持第一频带组合,那么UE在对待测频点进行测量时,不需要测量gap。此时,第一小区组包括MCG和SCG。如果UE不支持第一频带组合,那么UE在对待测频点进行测量时,需要测量gap。此时第一小区组为MCG或SCG。
如果基站确认UE在对待测频点进行测量时需要测量gap,那么继续判断UE是否支持由主频带组合以及待测频点组成的第二频带组合,UE是否支持由辅频带组合以及待测频点组成的第三频带组合。如果基站确认UE支持第二频带组合,但不支持第三频带组合,那么第一小区组为MCG。如果UE不支持第二频带组合,但支持第三频带组合,那么第一小区组为SCG。
例如,假设在MR-DC下,UE当前配置的频带组合为BC1+BC2,BC1为主节点上的频带组合,BC2为辅节点上的频带组合,待测频点为fi,0<i<=N;
如果对任意的i,0<i<=N,UE支持BC1+BC2+fi的频带组合,那么,UE在对待测频点进行测量时,不需要测量gap,基站不需要配置测量gap。
如果存在任意的一个i,0<i<=N,UE不支持BC1+BC2+fi的频带组合,那么,UE在对待测频点进行测量时,需要测量gap,基站需要配置测量gap。此时,需要继续判断UE是否支持BC1+fi的频带组合、BC2+fi的频带组合。
如果对任意i,0<i<=N,UE都支持BC1+fi的频带组合,且存在任意的一个j,0<j<=N,UE不支持BC2+fj的频带组合,那么基站在测量gap内在主小区组上进行上下行信号接收和发送,UE可以在主小区组上进行上下行信号的发送和接收;第一小区组为MCG。
如果对任意i,0<i<=N,UE都支持BC2+fi的频带组合,且存在任意的一个j,0<j<=N,UE不支持BC1+fj的频带组合,那么基站在测量gap内在辅节点小区上进行上下行信号接收和发送,UE在辅节点小区上进行上下行信号的发送和接收;第一小区组为SCG。
如果存在任意一个i,0<i<=N,UE不支持BC1+fi的频带组合,并且存在任意一个j,0<j<=N终端不支持BC2+fj的频带组合,那么基站在测量gap内在主小区组和辅小区组上都不进行上下行信号接收和发送,UE在主小区组和辅小区组上都不进行上下行信号发送和接收。
比如,UE支持LTE B3+NR n78的频带组合,也支持LTE B41+NR n78的频带组合,但由于LTE B3和LTE B41的射频通路上无法同时独立工作,UE不支持LTE B3+LTE B41+NR n78的频带组合,那么当UE工作在LTE B3+NR n78的EN-DC组合下发起对LTE B41的异频测量时,需要测量gap。由于主频带组合为主节点上的频带 组合,辅频带组合为辅节点上的频带组合,此时,主频带组合为:LTE B3,辅频带组合为:NR n78。由于UE的LTE B3和LTE B41的射频通路上无法同时独立工作,因此,UE不支持LTE B3+LTE B41的频带组合。也就是说,此时UE不支持由主频带组合+待测频点组成的频带组合,且支持由辅频带组合+待测频点组成的频带组合,UE在对LTE B41的异频测量时,第一小区组为辅小区组SCG,第二小区组为MCG。在测量gap内,UE通过LTE B41的射频通路或者LTE B3的射频通路进行异频测量;UE和基站在NR n78、上保持正常的上下行信号收发。
进一步地,UE能力可以用于标识UE在不同频带组合下对不同频带的测量,是否需要测量gap的能力。
UE根据待测频点以及UE能力,判断UE在对待测频点进行测量时,是否需要测量gap的方法可以具体为:
根据待测频点以及UE在不同频带组合下对不同频带的测量是否需要测量gap的能力,判断在由主频带组合、辅频带组合组成的第一频带组合下对待测频点的测量,UE是否支持无需测量gap。如果支持,那么UE在对待测频点进行测量时,不需要测量gap。此时,第一小区组包括MCG和SCG。如果UE不支持,那么UE在对待测频点进行测量时,需要测量gap。此时第一小区组为MCG或SCG。
如果基站确认UE在对待测频点进行测量时需要测量gap,那么继续判断在主频带组合下对待测频点的测量UE是否支持无需测量gap,以及在辅频带组合下对待测频点的测量UE是否支持无需测量gap。如果在主频带组合下对待测频点的测量UE支持无需测量gap,但在辅频带组合下对待测频点的测量UE不支持无需测量gap,那么第一小区组为MCG。如果在主频带组合下对待测频点的测量UE不支持无需测量gap,但在辅频带组合下对待测频点的测量UE支持无需测量gap,那么第一小区组为SCG。
例如,假设在MR-DC下,UE当前配置的频带组合为BC1+BC2,BC1为主节点上的频带组合,BC2为辅节点上的频带组合,待测频点为fi,0<i<=N,N为待测频点的数目;
如果对任意的i,0<i<=N,UE支持在BC1+BC2下对fi的测量无需测量gap,那么,UE在对待测频点进行测量时,不需要测量gap,基站不需要配置测量gap。
如果存在任意的一个i,0<i<=N,UE不支持在BC1+BC2下对fi的测量无需测量gap,那么,UE在对待测频点进行测量时,需要测量gap,基站需要配置测量gap。此时,需要继续判断UE是否支持在BC1下对fi的测量无需测量gap、在BC2下对fi的测量无需测量gap。
如果对任意i,0<i<=N,UE都支持在BC1下对fi的测量无需测量gap,且存在任意的一个j,0<j<=N,UE不支持在BC2对fj的测量无需测量gap,那么基站在测量gap内在主小区组上进行上下行信号接收和发送,UE可以在主小区组上进行上下行信号的发送和接收;第一小区组为MCG。
如果存在任意的一个i,0<i<=N,UE不支持在BC1下对fi的测量无需测量gap,且如果对任意j,0<j<=N,UE都支持在BC2下对fj的测量无需测量gap,那么基站在测量gap内在辅节点小区上进行上下行信号接收和发送,UE在辅节点小区上进行上下行信号的发送和接收;第一小区组为SCG。
如果存在任意一个i,0<i<=N,UE不支持在BC1下对fi的测量无需测量gap,也存在任意一个j,0<j<=N不支持在BC2下对fj的测量无需测量gap,那么基站在测量gap内在主小区组和辅小区组上都不进行上下行信号接收和发送,UE在主小区组和辅小区组上都不进行上下行信号发送和接收。
S102、在双连接下,基站发送测量配置信息至UE,所述测量配置信息包括待测频点以及测量gap的配置信息。
双连接,通常是指MR-DC。基站在发起异频测量和/或异系统测量时,向UE发送测量配置信息。
在一种可能的实现方式中,基站可以通过RRC信令RRCConnectionReconfiguration下发测量配置信息给UE。
测量配置信息可以包括测量对象的信息、测量gap配置信息,还可以包括:上报配置信息、测量标识以及测量量配置信息。测量对象的信息用于标识UE需要执行同频测量、异频测量或异系统测量。当测量对象的信息中的待测频点和当前服务小区频点同制式且同频点时,UE需要执行同频测量。当待测频点和当前服务小区频点同制式但频点不同时,UE需要执行异频测量。当待测频点和当前服务小区频点不同制式时,UE需要执行异系统测量。
考虑到本方案与现有协议的兼容性,在MR-DC下进行异频测量和/或异系统测量时,沿用现有协议下发测量配置信息,测量配置信息中包含测量gap。本方案对测量gap的有效作用范围进行了改进,相对于现有技术中配置的测量gap对MCG和SCG均有效,本方案中,在MR-DC下进行异频测量和/或异系统测量,且需要测量gap时,测量gap只对在测量gap内不支持数据收发的小区组有效,在测量gap内支持数据收发的小区组可以进行信号收发。
其中,测量对象的信息可以包括:待测频点的制式和频点以及该频点上的小区列表等信息。待测频点的制式和频点可以和当前服务小区的制式、频点相同,也可以不同。测量对象可以为多个,每一个测量对象都有一个ID标识。
上报配置信息可以包括:上报准则,上报准则用于描述上报测量结果的方式,即按周期上报或事件触发上报。如果是事件触发上报,触发条件可以是上报的测量量低于或超过预设阈值。测量量包括但不限于以下一种或至少两种的任意组合:RSRP、RSRQ以及SINR等。测量配置信息中可以包含多个上报配置信息,每一个上报配置信息都有一个ID标识。
测量标识:将一个测量对象和一个上报配置信息通过各自的ID标识关联起来,即确定每个测量对象的上报配置信息。
测量量配置信息:描述了测量量的滤波参数。
测量gap配置信息主要包括3个参数:测量时隙重复周期(Measurement Gap Repetition Period,MGRP)、测量时隙长度(Measurement Gap Length,MGL)以及时隙偏移量(gap Offset)。MGRP可以为40毫秒(ms),MGL最大为6ms。测量时隙重复周期、测量时隙长度以及时隙偏移量之间的关系请参阅图6,图6是本申请实施例提供的一种测量时隙的示意图。如图6所示,gap Offset用于指示测量gap的开始子帧在测量gap周期中的偏移。
S103、UE在双连接下,获取所述基站发送的测量配置信息。
在双连接下,UE处于RRC连接态,UE获取基站发送的测量配置信息。
当基站通过RRC信令RRCConnectionReconfiguration下发测量配置信息时,UE接收到RRC信令时,对RRC信令进行解析,获取RRC信令中的测量配置信息。
UE可根据MGRP配置测量gap的周期,根据MGL配置测量gap的长度,根据MGRP、MGL以及gap Offset,可确定测量gap的起始位置在满足以下条件的系统帧号(System Frame Number,SFN)和子帧(subframe)上:
SFN mod T=FLOOR(gapOffset/10);
subframe=gapOffset mod 10;
T=MGRP/10。
其中,FLOOR(gapOffset/10)表示对gapOffset/10向下取整,取不大于gapOffset/10的最大整数。gapOffset mod 10表示对gapOffset、10进行取模运算。
S104、UE根据所述待测频点以及UE能力确定所述UE的处理能力信息,所述UE能力用于标识所述UE支持的频带组合,所述处理能力信息用于标识UE在测量gap内可收发信号的第一小区组。
UE确定UE的处理能力信息的方法,与S101中基站根据待测频点以及UE能力确定UE的处理能力信息的方法相同,具体请参阅S101中的相关描述,此处不赘述。
第一小区组包括MCG和/或SCG。当第一小区组包括MCG和SCG时,标识UE对待测频点进行测量时,不需要测量gap;当第一小区组包括MCG或SCG时,标识UE对待测频点进行测量时,需要测量gap。第二小区组中的其中部分成员载波CC对应的射频通路用于在测量gap内对待测频点进行测量。当第一小区组为MCG时,第二小区组为SCG;当第一小区组为SCG时,第二小区组为MCG。
进一步地,当UE支持由主频带组合、辅频带组合以及待测频点组成的频带组合时,第一小区组包括MCG和SCG。主频带组合为主节点上的频带组合,辅频带组合为辅节点上的频带组合。
进一步地,当UE支持由主频带组合以及待测频点组成的频带组合时,第一小区组为MCG。
进一步地,当UE支持由辅频带组合以及待测频点组成的频带组合时,第一小区组为SCG。
S105:UE发送用于标识已收到所述测量配置信息的确认消息至所述基站。
UE在获取到基站发送的测量配置信息时,向基站发送确认信息,该确认消息用于告知基站UE已收到基站下发的测量配置信息。
UE发送RRC信令RRCConnectionReconfigurationComplete至基站,以告知基站确认收到测量配置信息。
可以理解的是,S105可以在S103之后执行,也可以在S104之后执行。当UE需要通过RRC信令RRCConnectionReconfigurationComplete发送处理能力信息至基站时,S105在S104之后执行。
S106、在测量gap内,UE根据所述UE的处理能力信息与所述基站进行信号收发。
UE利用基站为UE分配的资源,根据UE的处理能力信息与基站进行信号收发, 以使得在测量gap内,UE和基站不中断信号收发。在测量gap内,UE与基站可以在第一小区组进行信号收发。信号包括但不限于基站和UE在通信过程中涉及到的信令、信息(例如,指示信息、调度信息)、参考信号以及数据等。
基站为UE分配的资源可以是UE接入基站时,基站为UE所配置的资源,如PDCCH的时频资源,SRS或CSI-RS时频资源等;也可以是基站在测量gap内发送的DCI所指示的资源。DCI可以携带PDSCH的调度信息以及PUSCH的调度信息。PDSCH的调度信息用于指示UE在PDSCH接收数据;PUSCH的调度信息用于指示UE在PUSCH发送数据。
例如,UE根据PDCCH的调度信息,通过第一小区组接收PDSCH信息,以及发送PUSCH信息。该PDCCH的调度信息可以是基站在测量gap内发送的,也可以是UE在测量gap开始前发送的。
在一种可能的实现方式中,为了提高第一小区组上UE的传输速率,S106可以具体为:在测量gap内,UE在所述第一小区组上通过物理上行共享信道PUSCH发送第一信号至所述基站,以及通过物理下行共享信道PDSCH接收所述基站发送的第二信号。
可以理解的是,第一信号以及第二信号可以是待传输的信令,也可以是除信令之外的其他待传输的数据,此处不做限制。
例如,UE接收基站在测量gap内发送的PDCCH信息,从中获取PDSCH的调度信息以及PUSCH的调度信息。在测量gap内,UE在第一小区组上,根据PDSCH的调度信息在PDSCH接收数据,根据PUSCH的调度信息在PUSCH发送数据。
可以理解的是,当基站在测量gap内通过DCI指示基站为UE分配的资源时,UE获取基站发送的DCI,并获取DCI携带的PDSCH的调度信息以及PUSCH的调度信息。
UE在测量gap内可接收基站发送的CRS、同步信号和PBCH块(Synchronization Signal and PBCH block,SSB)、或信道状态信息参考信号(Channel-state information reference signal,CSI-RS),基于CRS/SSB/CSI-RS进行下行信道质量测量。其中,在LTE中,UE可接收基站CRS;在NR中,UE可接收SSB或CSI-RS。PBCH为物理广播信道(Physical Broadcast Channel)。
UE在测量gap内还可以根据SRS的配置信息发送SRS,以使基站在接收到SRS时,进行信道测量和估计。
可以理解的是,当第一小区包括MCG或SCG时,UE需要配置测量gap对待测频点进行测量。在S104或S105之后,还可以包括:UE从第二小区组中选择部分成员载波的射频通道,在测量gap内根据所述测量配置信息对所述待测频点进行测量。
UE在确定第一小区组之后,UE从第二小区组中选择一个用于测量待测频点的成员载波(Component Carrier,CC)的射频通道,并基于测量配置信息配置第二小区组的成员载波的测量gap。按照S101中的公式确定测量gap的起始位置,在测量gap内UE在第二小区组上停止与基站进行信号收发,将该成员载波对应的射频通路切换至待测频点,以测量待测频点的信号质量。信号质量可以是RSRP、RSRQ以及SINR中的任一个或至少两个的任意组合。在满足测量配置信息中的上报配置所描述的上报条件时,UE发送包括测量结果的测量报告至基站。
S107、在测量gap内,基站根据所述UE的处理能力信息与所述UE进行上下行信号收发。
基站利用为UE分配的资源,根据UE的处理能力信息与UE进行信号收发。基站可以指示UE在测量gap内通过第一小区组,在PUSCH上发送数据,在PDSCH上接收数据,以使得在测量gap内,在第一小区组上基站和UE可以不中断信号收发。当第一小区组包括MCG和SCG时,标识UE在对待测频点进行测量时不需要测量gap,在测量gap内,UE和基站在主小区组合辅小区组都可以进行信号收发。
可以理解的是,在测量gap内,基站在第二小区组上停止与UE进行信号收发。
为UE分配的资源可以是UE接入基站时,基站为UE所配置的资源;也可以是基站在测量gap内发送的下行控制信息(Downlink Control Information,DCI)所指示的资源。
UE接入基站时,基站为UE所配置的资源包括但不限于:物理下行控制信道(Physical Downlink Control Channel,PDCCH)的时频资源。
其中,UE接入基站时基站为UE所配置的资源可包括参考信号,例如,上行探测参考信号(Sounding Reference Signal,SRS)、解调参考信号(Demodulation Reference Signal,DMRS)、小区参考信号(Cell Reference Signal,CRS)等。
SRS用于上行信道估计,选择MCS和上行频率选择性调度。
DMRS在LTE中用于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)和物理上行链路控制信道(Physical Uplink Control Channel,PUCCH),的相关解调。
CRS用于下行信道质量测量,例如RSRP;以及用于下行信道估计。
例如,基站利用基站在UE接入基站时,为UE分配的PDCCH的调度信息,发送PDSCH信息至UE,以及接收UE根据PDCCH的调度信息发送的PUSCH信息。
在一种可能的实现方式中,当测量配置信息包括测量gap的配置信息时,S107可以包括:基站在测量gap内,在所述第一小区组上通过物理上行共享信道PUSCH接收所述UE发送的第一信号,以及通过物理下行共享信道PDSCH发送第二信号至所述UE。
例如,基站可以在测量gap内通过第一小区组发送PDCCH信息至UE,PDCCH信息携带PDSCH的调度信息以及PUSCH的调度信息。基站在测量gap内停止在第二小区组上调度UE,以使UE利用第二小区组中的其中一个射频通路对待测频点进行测量。
基站可以接收UE在测量gap内根据SRS配置发送的SRS,并根据SRS进行信道估计。
在本申请实施例中,UE和基站都可以确定在测量gap内支持信号收发的第一小区组,这样基站和UE都不需要将确定出的第一小区组告知对方。UE在测量gap外,在主小区组和辅小区组均可以与基站进行上下行信号收发。在测量gap内,UE与基站在第一小区组不中断上下行信号收发,UE的第二小区组中的其中一个射频通路切换到待测频点,对待测频点进行测量。由于在测量gap内,在第一小区组上不中断信号收发,可以提高第一小区组上单个UE的数据传输速率。
当测量gap的周期MGRP为40ms,测量gap的长度MGL为6ms时,在现有技术 中每40ms中有6ms不能收发数据。本实施例中,在FDD模式下,可以在第一小区组利用这6ms进行数据收发,第一小区上该UE的上下行速率可提高6/40=15%。
请参阅图7,图7是本申请另一实施例提供的一种在测量时隙内收发信号的方法的交互图。基于图7,基站根据待测频点以及UE能力确定UE的处理能力信息之后,可以在S102中的测量配置信息中指示UE的处理能力;UE可以从测量配置信息中直接获取UE的处理能力信息,不再根据测量配置信息中的待测频点以及UE能力确定UE的处理能力信息。也即,在图7对应的实施例中UE不需要执行图6中的S104,UE可以节省一部分计算资源。可以理解的是,在其他实施例中,基站可以通过除测量配置信息之外的其他信息指示UE的处理能力,此处不做限制。
可选地,在S102中的测量配置信息中指示UE的处理能力时,可以在协议已有信元的基础上,在测量配置信息中增加了第一小区组指示transmissionInGapInd。
测量配置信息的一种可实现的形式如下:
Figure PCTCN2020125511-appb-000001
其中,信元measGapConfig为可选的。当基站根据待测频点以及UE能力确定的第一小区组同时包括MCG和SCG时,测量配置中不包含该信元,即基站不配置测量gap,因此基站和终端在MCG和SCG上能始终保持上下行信号收发。当基站确定第一小区组包括MCG或SCG两者之一时,测量配置中包含信元measGapConfig,同时在信元measGapConfig中包含信元transmissionInGapInd,指示是MCG还是SCG为第一小区组。例如,当transmissionInGapInd设置为mn时,表示测量gap内主小区组上可以进行上下行信号收发,辅小区组上不能进行上下行信号收发;设置为sn时,表示测量gap内辅小区组上可以进行上下行信号收发,主小区组上不能进行上下行信号收发。如果基站确定第一小区组既不包括MCG,也不包括SCG时,测量配置中包含信元measGapConfig,但信元measGapConfig中不包含信元transmissionInGapInd。
信元transmissionInGapInd为可选的。如果信元transmissionInGapInd没有被包含,表示第一小区组既不包括MCG,也不包括SCG;当设置为mn时,表示第一小区组为SCG;当设置为sn时,表示第一小区组为SCG。
请参阅图8,图8是本申请再一实施例提供的一种在测量时隙内收发信号的方法的交互图。基于图8,基站在发送测量配置信息之前,不需要确定UE的处理能力信息 (即不需要执行S101),UE在根据待测频点以及UE能力确定UE的处理能力信息之后,可以将UE的处理能力信息发送至基站。UE的处理能力信息承载于无线资源控制RRC信令或媒体介入控制层控制信元MAC CE中。RRC信令可以是RRCConnectionReconfigurationComplete,也可以是UE辅助信息信令,还可以是其他RRC信令,此处不做限制。
在图8中,当UE执行S105发送用于标识已收到测量配置信息的确认信息至基站时,UE可以将UE的处理能力信息与确认信息一起发送至基站,这样可以节省信令开销。当然,UE也可以单独发送一条信息给基站,告知UE的处理能力信息。这种方式,与“将UE的处理能力信息与确认信息一起发送至基站”相比,多了一条用于承载UE的处理能力信息的信令,增加了信令开销。
在一种可能的实现方式中,当所述确认信息通过无线资源控制RRC信令发送时,所述UE的处理能力信息承载于所述RRC信令中。
例如,当UE发送RRC信令RRCConnectionReconfigurationComplete至基站,以告知基站确认收到测量配置信息时,UE的处理能力信息可以承载于该RRC信令RRCReconfigurationComplete中的信元transmissionInGapInd。transmissionInGapInd可采用如下形式:
transmissionInGapInd ENUMERATED{all,none,mn,sn}
当transmissionInGapInd设置为all时,表示不需要测量gap;设置为none时,表示测量gap内主小区组和辅小区组都不能进行上下行信号收发;设置为mn时,表示测量gap内主小区组上可以进行上下行信号收发,辅小区组上不能进行上下行信号收发;设置为sn时,表示测量gap内辅小区组上可以进行上下行信号收发,主小区组上不能进行上下行信号收发。
在一种可能的实现方式中,UE分别向基站发送用于标识已收到测量配置信息的确认信息、UE的处理能力信息。此时,在S103之后,并且在S104之前,还可以包括:UE发送所述UE的处理能力信息至所述基站,所述UE的处理能力信息用于指示所述基站在测量gap内保持与所述UE进行信号收发。基站接收所述UE的处理能力信息。
可选地,UE的处理能力信息承载于UE辅助信息信令中。
例如,UE发送RRC信令RRCConnectionReconfigurationComplete至基站,以告知基站确认收到测量配置信息。UE可以发送承载有UE的处理能力信息的UE辅助信息信令至基站。比如,可以通过UE辅助信息UEAssistanceInformation信令承载上述transmissionInGapInd信元。
可选地,所述UE的处理能力信息承载于媒体介入控制层控制信元MAC CE中。
UE可以通过媒体介入控制层控制信元(Medium Access Control Control Element,MAC CE),例如,Transmission In Gap Indication MAC CE。其中,Transmission In Gap Indication MAC CE占用8比特(bit)。Transmission In Gap Indication MAC CE的数值为0表示不需要测量gap;数值为1表示测量gap内主小区组和辅小区组都不能进行上下行信号收发;数值为2表示测量gap内主小区组上可以进行上下行信号收发,辅小区组上不能进行上下行信号收发;数值为3表示测量gap内辅小区组上可以进行上下行信号收发,主小区组上不能进行上下行信号收发。
具体的,UE通过RRC信令告知基站确认收到测量配置信息时,该RRC信令达到MAC时,为该RRC信令添加包头以及MAC CE信令,将处理后的信令传输至物理层,在经过物理层发送至基站。
在本申请实施例中,UE可以基于UE支持的射频能力以及待测频点确定UE的处理能力信息,并将处理能力信息上报给基站,在测量gap内,基站与UE可以基于UE确定的处理能力信息进行信号收发。由于UE上报的UE能力中所支持的频带组合受市场需求的影响,并不能完全反应UE的射频能力,也就是说,UE上报的支持的频带组合有可能只是UE实际支持的频带组合中的一部分,因此,UE根据自身实际的UE能力确定并上报的处理能力信息,与基站根据UE上报的UE能力确定出的UE的处理能力信息相比,更准确,即能够更准确、更全面地确定出第一小区组,从而可增加在测量gap内支持上下行信号收发的可能场景,进而能够进一步提高UE的上下行速率。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
对应于上文实施例所述的在测量时隙内收发信号的方法中UE执行的各步骤,图9示出了本申请一实施例提供的收发信号装置的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。本实施例中,收发信号装置包括的各单元用于执行图5、7、8对应的实施例中的UE执行的各步骤,具体请参阅图5、7、8中的相关描述,此处不赘述。收发信号装置9可以包括:
获取单元910,用于在双连接下,获取基站发送的测量配置信息,所述测量配置信息包括待测频点以及测量gap的配置信息;
传输单元920,用于在测量gap内,根据所述UE的处理能力信息与所述基站进行信号收发,所述处理能力信息用于标识UE在测量gap内可收发信号的第一小区组,所述处理能力信息是根据所述待测频点以及UE能力确定的,所述UE能力用于标识所述UE支持的频带组合。
应理解,所述UE能力可以为所述UE的射频能力,所述UE能力为所述UE支持的频带组合。
可选地,所述UE的处理能力信息由所述UE根据所述待测频点以及UE能力确定。
可选地,所述处理能力信息由所述基站根据所述待测频点以及UE上报的UE能力确定后发送至所述UE。
可选地,所述传输单元920具体用于:在测量gap内,在所述第一小区组上通过物理上行共享信道PUSCH发送第一信号至所述基站,以及通过物理下行共享信道PDSCH接收所述基站发送的第二信号。
可选地,所述第一小区组包括主小区组(Master Cell Group,MCG)和/或辅小区组(Secondary Cell Group,SCG)。应理解,MCG为主节点(主基站)对应的小区组,SCG为辅节点(辅基站)对应的小区组。
可选地,当所述UE支持由主频带组合、辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG和SCG。
可选地,当所述UE支持由主频带组合以及所述待测频点组成的频带组合时,所 述第一小区组为MCG。
可选地,当所述UE支持由辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组为SCG。
可选地,当所述第一小区包括MCG或SCG时,所述收发信号装置还包括:
测量单元,用于所述获取单元获取基站发送的测量配置信息之后,从第二小区组中选择至少一个成员载波,在测量gap内根据所述测量配置信息对所述待测频点进行测量。
可选地,所述测量配置信息由所述基站在根据所述待测频点以及所述UE上报的UE能力确定所述UE的处理能力信息后发送。
可选地,所述收发信号装置还包括:
发送单元,用于在所述传输单元根据所述处理能力信息与所述基站进行信号收发之前,发送用于标识已收到所述测量配置信息的确认信息至所述基站。
可选地,所述收发信号装置还包括:
确定单元,用于根据所述待测频点以及UE能力确定所述处理能力信息;
所述发送单元还用于:在所述确定单元确定所述处理能力信息之后,在所述传输单元根据所述处理能力信息与所述基站进行之前,发送所述UE的处理能力信息至所述基站,所述UE的处理能力信息用于指示所述基站在测量gap内可以与所述UE进行信号收发。
UE的处理能力信息承载于无线资源控制RRC信令或媒体介入控制层控制信元MAC CE中。
可选地,为了节省信令开销,当所述确认信息通过无线资源控制RRC信令发送时,所述UE的处理能力信息承载于所述RRC信令中。
可选地,所述UE的处理能力信息承载于UE辅助信息信令中。
可选地,所述UE的处理能力信息承载于媒体介入控制层控制信元MAC CE中。
在本实施例中,UE可以通过多种形式上报UE的处理能力信息。
在本实施例中,该收发信号装置9可以是UE,或者是UE中的芯片,或者是集成在UE中的功能模块。其中,该芯片或者该功能模块可以位于UE的控制中心(例如,控制台),控制UE实现本申请提供的在测量时隙内收发信号的方法。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请的在测量时隙内收发信号的方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见在测量时隙内收发信号的方法的实施例部分,此处不再赘述。
对应于上文实施例所述的在测量时隙内收发信号的方法中基站执行的各步骤,图10示出了本申请另一实施例提供的收发信号装置的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。本实施例中,收发信号装置包括的各单元用于执行图5、7、8对应的实施例中的基站执行的各步骤,具体请参阅图5、7、8中的相关描述,此处不赘述。收发信号装置10可以包括:
发送单元1010,用于在双连接下,发送测量配置信息至UE,所述测量配置信息包括待测频点以及测量时隙gap的配置信息;
传输单元1020,用于在测量gap内,根据所述UE的处理能力信息与所述UE进 行信号收发,所述UE的处理能力信息用于标识UE在测量gap内可传输数据的第一小区组,所述UE的处理能力信息是根据所述待测频点以及UE能力确定的,所述UE能力用于标识所述UE支持的频带组合。
可选地,所述传输单元具体用于:在测量gap内,在所述第一小区组上通过物理上行共享信道PUSCH接收所述UE发送的第一信号,以及通过物理下行共享信道PDSCH发送第二信号至所述UE。
可选地,所述第一小区组包括主小区组MCG和/或辅小区组SCG。
可选地,当所述第一小区包括MCG或SCG时,所述收发信号装置还包括:
控制单元,用于在所述发送单元发送测量配置信息至UE之后,还包括:在第二小区组上停止与所述UE进行信号收发。
可选地,所述收发信号装置还包括:
接收单元,用于在所述传输单元根据所述UE的处理能力信息与所述UE进行信号收发之前,接收所述UE发送的用于标识已收到所述测量配置信息的确认消息。
可选地,所述收发信号装置还包括:
确定单元,用于在所述传输单元根据所述UE的处理能力信息与所述UE进行信号收发之前,根据所述待测频点以及所述UE上报的UE能力,确定所述UE的处理能力信息。可以理解的是,UE能力为UE上报的UE支持的频带组合。
所述测量配置信息还包括UE处理能力指示信息,所述UE处理能力指示信息用于所述UE确定所述UE的处理能力信息。
可选地,所述接收单元还用于:在所述传输单元根据所述UE的处理能力信息与所述UE进行信号收发之前,接收所述UE发送的所述UE的处理能力信息。
可选地,当所述UE支持由主频带组合、辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG和SCG。
可选地,当所述UE支持由主频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG。
可选地,当所述UE支持由辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组为SCG。
可选地,当所述确认消息通过无线资源控制RRC信令发送时,所述处理能力信息承载于所述RRC信令中。
可选地,所述UE的处理能力信息承载于UE辅助信息信令中。
可选地,所述UE的处理能力信息承载于媒体介入控制层控制信元MAC CE中。
在本实施例中,该收发信号装置10可以是基站,或者是基站中的芯片,或者是集成在基站中的功能模块。其中,该芯片或者该功能模块可以位于基站的控制中心(例如,控制台),控制基站实现本申请提供的在测量时隙内收发信号的方法。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请的在测量时隙内收发信号的方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见在测量时隙内收发信号的方法的实施例部分,此处不再赘述。
请参阅图11,图11为本申请一实施例提供的网元设备的结构示意图。如图11所示,该实施例的网元设备11包括:至少一个处理器1110(图11中仅示出一个)处理 器、存储器1120以及存储在所述存储器1120中并可在所述至少一个处理器1110上运行的计算机程序1121,所述处理器1110执行所述计算机程序1121时实现上述任意各个在测量时隙内收发信号的方法实施例中的步骤。
其中,当网元设备为UE时,处理器1110调用存储器1120存储的计算机程序1121时使UE执行图5、7、8对应的实施例中UE所执行的步骤。
其中,当网元设备为基站时,处理器1110调用存储器1120存储的计算机程序1121时使基站执行图5、7、8对应的实施例中基站所执行的步骤。
本领域技术人员可以理解,图11仅仅是网元设备11的举例,并不构成对网元设备11的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器1110可以是中央处理单元(Central Processing Unit,CPU),该处理器1110还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器1120在一些实施例中可以是所述网元设备11的内部存储单元,例如网元设备11的硬盘或内存。所述存储器1120在另一些实施例中也可以是所述网元设备11的外部存储设备,例如所述网元设备11上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器1120还可以既包括所述网元设备11的内部存储单元也包括外部存储设备。所述存储器1120用于存储操作系统、应用程序、引导装载程序(Boot Loader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器1120还可以用于暂时地存储已经输出或者将要输出的数据。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种网络设备,该网络设备包括:至少一个处理器、存储器以及存储在所述存储器中并可在所述至少一个处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任意各个方法实施例中的步骤。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述各个方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (23)

  1. 一种在测量时隙内收发信号的方法,其特征在于,应用于用户设备UE,所述方法包括:
    在双连接下,获取基站发送的测量配置信息,所述测量配置信息包括待测频点以及测量时隙gap的配置信息;
    在测量gap内,根据所述UE的处理能力信息与所述基站进行信号收发,所述处理能力信息用于标识UE在测量gap内可收发信号的第一小区组,所述处理能力信息是根据所述待测频点以及UE能力确定的,所述UE能力用于标识所述UE支持的频带组合。
  2. 如权利要求1所述的方法,其特征在于,所述处理能力信息由所述UE确定。
  3. 如权利要求1所述的方法,其特征在于,所述处理能力信息由所述基站确定后发送至所述UE。
  4. 如权利要求3所述的方法,其特征在于,所述测量配置信息还包括所述处理能力信息。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述根据所述UE的处理能力信息与所述基站进行信号收发,包括:
    在测量gap内,在所述第一小区组上通过物理上行共享信道PUSCH发送第一信号至所述基站,以及通过物理下行共享信道PDSCH接收所述基站发送的第二信号。
  6. 如权利要求1-5任一项所述的方法,其特征在于,当所述UE支持由主频带组合、辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG和SCG。
  7. 如权利要求1-5任一项所述的方法,其特征在于,当所述UE支持由主频带组合以及所述待测频点组成的频带组合时,所述第一小区组为MCG。
  8. 如权利要求1-5任一项所述的方法,其特征在于,当所述UE支持由辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组为SCG。
  9. 如权利要求1-5、7-8任一项所述的方法,其特征在于,当所述第一小区包括MCG或SCG时,所述获取基站发送的测量配置信息之后,还包括:
    从第二小区组中选择至少一个成员载波,在测量gap内根据所述测量配置信息对所述待测频点进行测量。
  10. 如权利要求2所述的方法,其特征在于,所述根据所述UE的处理能力信息与所述基站进行信号收发之前,还包括:
    发送所述处理能力信息至所述基站。
  11. 如权利要求10所述的方法,其特征在于,所述UE的处理能力信息承载于无线资源控制RRC信令或媒体介入控制层控制信元MAC CE中。
  12. 一种在测量时隙内收发信号的方法,其特征在于,应用于基站,所述方法包括:
    在双连接下,发送测量配置信息至UE,所述测量配置信息包括待测频点以及测量gap的配置信息;
    在测量gap内,根据所述UE的处理能力信息与所述UE进行信号收发,所述处理 能力信息用于标识UE在测量gap内可收发信号的第一小区组,所述处理能力信息是根据所述待测频点以及UE能力确定的,所述UE能力用于标识所述UE支持的频带组合。
  13. 如权利要求12所述的方法,其特征在于,所述根据所述UE的处理能力信息与所述UE进行信号收发,包括:
    在所述第一小区组上,通过物理上行共享信道PUSCH接收所述UE发送的第一信号,以及通过物理下行共享信道PDSCH发送第二信号至所述UE。
  14. 如权利要求13所述的方法,其特征在于,当所述第一小区组包括MCG或SCG时,所述发送测量配置信息至UE之后,还包括:
    在测量gap内,在第二小区组上停止与所述UE进行信号收发。
  15. 如权利要求12-14任一项所述的方法,其特征在于,所述根据所述UE的处理能力信息与所述UE进行信号收发之前,还包括:
    根据所述待测频点以及所述UE上报的UE能力,确定所述UE的处理能力信息。
  16. 如权利要求15所述的方法,其特征在于,所述测量配置信息还包括UE处理能力信息。
  17. 如权利要求12或15所述的方法,其特征在于,所述根据所述UE的处理能力信息与所述UE进行信号收发之前,还包括:
    接收所述UE发送的所述UE的处理能力信息。
  18. 如权利要求15所述的方法,其特征在于,当所述UE支持由主频带组合、辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG和SCG。
  19. 如权利要求15所述的方法,其特征在于,当所述UE支持由主频带组合以及所述待测频点组成的频带组合时,所述第一小区组包括MCG。
  20. 如权利要求15所述的方法,其特征在于,当所述UE支持由辅频带组合以及所述待测频点组成的频带组合时,所述第一小区组为SCG。
  21. 一种网元设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时使得所述网元设备执行如权利要求1至11任一项所述的在测量时隙内收发信号的方法,或如权利要求12至20任一项所述的在测量时隙内收发信号的方法。
  22. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时使得网元设备执行如权利要求1至11任一项所述的在测量时隙内收发信号的方法,或如权利要求12至20任一项所述的在测量时隙内收发信号的方法。
  23. 一种计算机程序产品,其特征在于,当所述计算机程序产品在网元设备上运行时,所述网元设备执行如权利要求1至11任一项所述的在测量时隙内收发信号的方法,或如权利要求12至20任一项所述的在测量时隙内收发信号的方法。
PCT/CN2020/125511 2020-01-16 2020-10-30 在测量时隙内收发信号的方法、网元设备及可读存储介质 WO2021143283A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20913357.8A EP4080963A4 (en) 2020-01-16 2020-10-30 Method for performing signal transmission and reception in measurement gap, network element device, and readable storage medium
US17/758,939 US20230055487A1 (en) 2020-01-16 2020-10-30 Method for Signal Reception and Transmission In Measurement Gap, Network Element Device, and Readable Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010046566.3A CN113141652B (zh) 2020-01-16 2020-01-16 在测量时隙内收发信号的方法、网元设备及可读存储介质
CN202010046566.3 2020-01-16

Publications (1)

Publication Number Publication Date
WO2021143283A1 true WO2021143283A1 (zh) 2021-07-22

Family

ID=76808250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125511 WO2021143283A1 (zh) 2020-01-16 2020-10-30 在测量时隙内收发信号的方法、网元设备及可读存储介质

Country Status (4)

Country Link
US (1) US20230055487A1 (zh)
EP (1) EP4080963A4 (zh)
CN (1) CN113141652B (zh)
WO (1) WO2021143283A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810929A (zh) * 2017-05-05 2018-11-13 北京展讯高科通信技术有限公司 双连接下测量间隙的配置方法及系统
CN109151884A (zh) * 2017-06-16 2019-01-04 中国移动通信有限公司研究院 一种测量配置方法、终端和基站
CN109474989A (zh) * 2017-09-07 2019-03-15 展讯通信(上海)有限公司 双连接下的测量间隙协调方法及装置、存储介质、用户设备、基站
US20190098489A1 (en) * 2017-09-28 2019-03-28 Qualcomm Incorporated Dual connectivity reporting of a change in user equipment measurement capability

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188330A1 (en) * 2013-05-20 2014-11-27 Nokia Corporation Preventing interrupts on active cell operation
US20150327104A1 (en) * 2014-05-08 2015-11-12 Candy Yiu Systems, methods, and devices for configuring measurement gaps for dual connectivity
US10667189B2 (en) * 2015-12-22 2020-05-26 Lg Electronics Inc. Method and device for transmitting and receiving data in wireless communication system
CN107690163A (zh) * 2016-08-03 2018-02-13 中兴通讯股份有限公司 小区切换方法及装置
WO2018144927A1 (en) * 2017-02-03 2018-08-09 Intel IP Corporation Network controlled small gap configuration
CN109803304A (zh) * 2017-11-16 2019-05-24 维沃移动通信有限公司 测量间隔的指示方法和设备
CA3082743A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget L M Ericsson (Publ) Measurement gap configuration in dual connectivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810929A (zh) * 2017-05-05 2018-11-13 北京展讯高科通信技术有限公司 双连接下测量间隙的配置方法及系统
CN109151884A (zh) * 2017-06-16 2019-01-04 中国移动通信有限公司研究院 一种测量配置方法、终端和基站
CN109474989A (zh) * 2017-09-07 2019-03-15 展讯通信(上海)有限公司 双连接下的测量间隙协调方法及装置、存储介质、用户设备、基站
US20190098489A1 (en) * 2017-09-28 2019-03-28 Qualcomm Incorporated Dual connectivity reporting of a change in user equipment measurement capability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4080963A4

Also Published As

Publication number Publication date
US20230055487A1 (en) 2023-02-23
EP4080963A1 (en) 2022-10-26
CN113141652A (zh) 2021-07-20
CN113141652B (zh) 2022-12-30
EP4080963A4 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
CN112584425B (zh) 一种测量能力上报的网络系统、电子设备及芯片系统
WO2020147615A1 (zh) 波束失败恢复方法、终端及基站
CN105830493B (zh) 用于在允许载波聚合的网络中进行载波信道选择的系统和方法
WO2022083583A1 (zh) 小区切换方法、终端、基站、装置和存储介质
WO2020125121A1 (en) Method and device operating in unlicensed spectrum
US10779232B1 (en) Measurement for fast cell access
EP3432678B1 (en) Device and method of configuring a secondary node and reporting in dual connectivity
US20220394575A1 (en) Measurement Configuration Method and Apparatus
US11902840B2 (en) Time domain resource configuration method and access network device
WO2021104039A1 (zh) 一种测量配置方法及装置
US10560979B2 (en) Measurement result reporting method, method for counting by timer, apparatus, and user equipment
WO2020156364A1 (zh) 测量方法和通信装置
WO2022002016A1 (zh) 一种邻区测量方法及其装置
WO2022078115A1 (zh) 功率确定方法、装置、终端及网络侧设备
WO2020186533A1 (zh) 无线链路监测方法、设备和存储介质
EP4247046A1 (en) Communication method and apparatus
EP3813287A1 (en) Wireless link monitoring method, terminal device, and network device
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
WO2020088189A1 (en) Method and apparatus for lbt option selection for wideband operation
JP6342520B2 (ja) 優先順位付けされるセル識別及び測定方法
WO2020030008A1 (zh) 一种传输信号的方法和装置
WO2021143283A1 (zh) 在测量时隙内收发信号的方法、网元设备及可读存储介质
US20230337278A1 (en) Method and Apparatus for Channel Occupancy Measurement
CN114208262B (zh) 载波测量方法和装置
CN111050383B (zh) 信号传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020913357

Country of ref document: EP

Effective date: 20220719

NENP Non-entry into the national phase

Ref country code: DE