WO2020030008A1 - 一种传输信号的方法和装置 - Google Patents

一种传输信号的方法和装置 Download PDF

Info

Publication number
WO2020030008A1
WO2020030008A1 PCT/CN2019/099641 CN2019099641W WO2020030008A1 WO 2020030008 A1 WO2020030008 A1 WO 2020030008A1 CN 2019099641 W CN2019099641 W CN 2019099641W WO 2020030008 A1 WO2020030008 A1 WO 2020030008A1
Authority
WO
WIPO (PCT)
Prior art keywords
access
sss
signal
pss
lbt process
Prior art date
Application number
PCT/CN2019/099641
Other languages
English (en)
French (fr)
Inventor
王俊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020030008A1 publication Critical patent/WO2020030008A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for transmitting signals.
  • MBB mobile broadband
  • LTE long-term evolution
  • NR new radio
  • unlicensed spectrum Compared to the exclusive characteristics of licensed spectrum, unlicensed spectrum has the nature of sharing, that is, as long as access points that meet certain regulations can use this spectrum to receive and send data, in order to make each access node have better coexistence.
  • LBT listen-before-talk
  • the channel access mechanism of listen-before-talk (LBT) is adopted, which means that before any network node sends data, it needs to monitor the channel to be sent (energy detection). Data can only be sent when the channel is in the IDLE state, otherwise monitoring needs to continue.
  • LTE-LTE long-term evolution
  • DRS discovery reference signal
  • the network device first performs LBT before sending DRS. If the LBT fails, it will directly discard the DRS that cannot be sent. This will cause the initial access terminal device to search the cell for too long. It may cause the terminal device to become complicated when it measures neighbor cells.
  • the present application provides a method and an apparatus for transmitting signals, so as to avoid that a terminal device searches for a cell for too long.
  • a method for transmitting a signal includes: a network device listens to a channel according to a first LBT process and a second LBT process; after the first LBT process fails and the first When the second LBT process is successful, the network device sends an access signal to the terminal device on the channel.
  • the network device is configured to send an LBT process after listening twice before sending an access signal, and sends an access signal to a terminal device when the first LBT process fails and the second LBT process succeeds. It helps to avoid the time process of the terminal equipment searching for the cell, and also helps to reduce the complexity of the measurement of neighboring cells by the terminal equipment.
  • the first LBT process fails, and it can also be understood that the first LBT process is unsuccessful.
  • the failure of the first LBT process may include that during the first LBT process of the network device, the first LBT process has not completed the listening process of the idle channel, that is, the channel transmission authority has not yet been obtained by feedback; or During the LBT process, it was found that the first LBT process could not continue and failed.
  • the network device when the first LBT process is successful, sends an access signal to the terminal device on the channel, and the access signal includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast.
  • the access signal includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast.
  • Channel PBCH a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast.
  • the energy threshold value in the first LBT process is the first energy threshold value
  • the energy threshold value in the second LBT process is the first Two energy thresholds
  • the first energy threshold is less than the second energy threshold
  • the network device determining that the first LBT process fails and the second LBT process succeeds includes: the network device determines that an energy detection value of the channel is greater than or equal to the first energy threshold value and less than the first energy threshold value. The second energy threshold.
  • the length of the contention time window in the first LBT process is greater than the length of the contention time window in the second LBT.
  • the contention time window in the first LBT process is N time units
  • the contention time window in the second LBT process is M time units
  • N and M are positive integers.
  • the network device Determining that the first LBT process fails and the second LBT process succeeds includes: the network device determines that the energy detection value of the channel is not less than the third energy threshold value within N time units, and the energy threshold value of the channel Is greater than the fourth energy threshold in M time units, wherein the threshold corresponding to the first LBT process is the third energy threshold and the energy threshold corresponding to the second LBT process is the fourth Energy threshold.
  • the first LBT process is LBTCAT4, and the second LBT process is LBTCAT2.
  • a time length corresponding to the time-frequency resource of the access signal is less than or equal to the first time length.
  • the access signal is composed of a primary synchronization signal PSS and / or a secondary synchronization signal SSS.
  • the PSS and the SSS are frequency division multiplexed, or the PSS and the SSS are time division multiplexed.
  • the PSS and the SSS are time-multiplexed, and the symbols occupied by the PSS and the SSS are adjacent.
  • the access signal includes PSS, SSS, and PBCH, and a subcarrier interval of the access signal is greater than or equal to a first subcarrier interval.
  • the PSS and the SSS adopt a frequency division multiplexing manner.
  • a method for transmitting a signal proposes a new format of an access signal.
  • the time length corresponding to the time-frequency resource of the access signal in this format is longer than the time-frequency resource corresponding to the existing access signal.
  • the small length of time helps with less interference with other systems.
  • the access signal includes only SSS.
  • a method for transmitting a signal includes: a network device determines that the number of access signals to be sent is K; and the network device performs channel processing according to a first LBT process and a second LBT process. Listen; when the first LBT process fails and the second LBT process succeeds, select L access signals from the K access signals and send them to the terminal device, where K and L are positive integers and K is greater than L.
  • the first LBT process fails, and it can also be understood that the first LBT process is unsuccessful.
  • the failure of the first LBT process may include that during the first LBT process of the network device, the first LBT process has not completed the listening process of the idle channel, that is, the channel transmission permission has not yet been obtained by feedback; During the LBT process, it was found that the first LBT process could not continue and failed.
  • the network device when the first LBT process is successful, the network device sends the K access signals to the terminal device.
  • the network device is configured to send the LBT process before listening and sending twice when sending multiple access signals.
  • the network device sends multiple The part of the access signal helps to avoid the time process of the terminal device searching for the cell, and also helps to reduce the complexity of the measurement of the neighboring cell by the terminal device.
  • a method for transmitting a signal includes: a network device listens to a channel according to a third listen-before-transmit LBT process; and when the third LBT process fails, the network device reports to a terminal An access signal is sent, and the time length corresponding to the time-frequency resource of the access signal is less than or equal to the first time length.
  • the access signal is composed of a primary synchronization signal PSS and / or a secondary synchronization signal SSS.
  • the PSS and the SSS are frequency division multiplexed, or the PSS and the SSS are time division multiplexed.
  • the PSS and the SSS are time-multiplexed, and the symbols occupied by the PSS and the SSS are adjacent.
  • the access signal includes PSS, SSS, and PBCH, and a subcarrier interval of the access signal is greater than or equal to a first subcarrier interval.
  • the PSS and the SSS adopt a frequency division multiplexing manner.
  • a method for transmitting a signal proposes a new format of an access signal.
  • the time length corresponding to the time-frequency resource of the access signal in this format is longer than the time-frequency resource corresponding to the existing access signal.
  • the small length of time helps with less interference with other systems.
  • the access signal includes only SSS.
  • a method for transmitting a signal includes: a network device listens to a channel according to a fourth LBT process of listening first and then sending; when the fourth LBT process fails, the network device The relationship between the number of signals and the first value sends at least one access signal to the terminal device on the channel.
  • the network device sends at least one access signal to the terminal device according to the relationship between the number of access signals and the first value, including: When the number of incoming signals is greater than or equal to the first value, the network device sends the at least one access signal to the terminal device, and a time length corresponding to a time-frequency resource of each access signal in the at least one access signal is less than Or equal to the first time length.
  • the each access signal is composed of a PSS and / or an SSS.
  • the PSS and the SSS are frequency division multiplexed, or the PSS and the SSS are time division multiplexed.
  • the PSS and the SSS are time-division multiplexed, and the symbols occupied by the PSS and the SSS are adjacent.
  • the each access signal includes PSS, SSS, and PBCH, and a subcarrier interval of each access signal is greater than or equal to a first subcarrier interval.
  • the PSS and the SSS adopt a frequency division multiplexing manner.
  • the access signal includes only SSS.
  • the network device sends at least one access signal to the terminal device according to the relationship between the number of access signals and the first value, including: When the number of incoming signals is less than the first value, the at least one access signal is sent to the terminal device, and a time length corresponding to a time-frequency resource of each access signal in the at least one access signal is greater than or equal to a second time length .
  • the access signal includes PSS, SSS, and PBCH.
  • a method for transmitting a signal includes: a network device determines a fifth LBT process according to a relationship between the number of access signals to be sent and a second value; the network device according to the fifth LBT Process, monitoring the channel, and when the fifth LBT process is successful, the network device sends at least one access signal to the terminal device on the channel.
  • each of the at least one access signal includes a PSS, an SSS, and a PBCH.
  • the fifth LBT process is LBTCAT4 or LBTCAT2.
  • the fifth LBT process is LBTCAT4.
  • the network device when the fifth LBT process fails, the network device sends a part of the at least one access signal on the channel to the terminal device.
  • the network device when the fifth LBT process fails, sends at least one access signal to the terminal device on the channel, and the time domain of each access signal in the at least one access signal The time length corresponding to the resource is less than or equal to the first time length.
  • a method for transmitting a channel includes: a network device determines a length of a contention time window in a sixth LBT process according to the number of access signals to be transmitted; and the network device according to the sixth In the LBT process, the channel is monitored. When the sixth LBT process is successful, the network device sends at least one access signal to the terminal device on the channel.
  • the network device when the sixth LBT process fails, the network device sends a part of the at least one access signal to the terminal device on the channel.
  • the network device when the sixth LBT process fails, sends at least one access signal to the terminal device on the channel, and the time domain of each access signal in the at least one access signal The time length corresponding to the resource is less than or equal to the first time length.
  • a method for transmitting a signal includes: a terminal device receives an access signal sent by a network device; and the terminal device determines a format of the access signal according to a demodulation reference signal in a physical broadcast channel PBCH. ; Or, the terminal device determines the format of the access signal according to the time domain position of the secondary synchronization signal SSS, and the access signal includes the SSS; or, the terminal device determines the access signal according to the frequency domain position of the secondary synchronization signal SSS.
  • the format of the incoming signal, the access signal includes the SSS; or, the terminal device determines the format of the access signal according to the subcarrier interval of the access signal.
  • a time length corresponding to the time-frequency resource of the access signal is less than or equal to the first time length.
  • the access signal is composed of a primary synchronization signal PSS and / or a secondary synchronization signal SSS.
  • the PSS and the SSS are frequency division multiplexed, or the PSS and the SSS are time division multiplexed.
  • the PSS and the SSS are time division multiplexed, and the symbols occupied by the PSS and the SSS are adjacent.
  • the access signal includes PSS, SSS, and PBCH, and a subcarrier interval of the access signal is greater than or equal to a first subcarrier interval.
  • the PSS and the SSS adopt a frequency division multiplexing manner.
  • a method for transmitting a signal proposes a new format of an access signal.
  • the time length corresponding to the time-frequency resource of the access signal in this format is longer than the time-frequency resource corresponding to the existing access signal.
  • the small length of time helps with less interference with other systems.
  • the access signal includes only SSS.
  • a device for transmitting a signal for performing the methods in the first to sixth aspects or any possible implementation manners of the foregoing.
  • the apparatus for transmitting a signal may include a unit for performing the method in the first aspect to the sixth aspect or any possible implementation manner thereof.
  • a device for transmitting a signal is provided to execute the method in the seventh aspect or any possible implementation manner thereof.
  • the apparatus for transmitting signals may include a unit for performing a method in the seventh aspect or any possible implementation manner thereof.
  • a device for transmitting signals may be a network device designed in the foregoing method or a chip provided in the network device.
  • the apparatus includes: a processor, coupled to the memory, and configured to execute instructions in the memory to implement the method performed by the network device in the first to sixth aspects and any possible implementation manners of the foregoing.
  • the device further includes a memory.
  • the apparatus further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input / output interface.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a device for transmitting signals may be a terminal device designed in the foregoing method, or a chip provided in the terminal device.
  • the apparatus includes: a processor, coupled to the memory, and configured to execute instructions in the memory to implement the method performed by the terminal device in the seventh aspect and any one of possible implementation manners.
  • the device further includes a memory.
  • the apparatus further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input / output interface.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a program for executing the methods provided in the first to seventh aspects when executed by a processor.
  • a program product includes program code, and the program code is executed by a communication unit, a processing unit or a transceiver, and a processor of a device (for example, a network device or a terminal device) At this time, the apparatus is caused to execute any one of the above-mentioned first to seventh aspects and possible implementations thereof.
  • a computer-readable medium stores a program that causes a device (for example, a network device or a terminal device) to execute the first to seventh aspects described above and a possibility thereof. Method of any of the embodiments.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a network architecture according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another network architecture according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a structure and transmission of an SSB according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an access signal mechanism provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • FIG. 13 is another schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 14 is another schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 15 is another schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 16 is another schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 17 is another schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 18 is another schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 19 is another schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 20 is another schematic flowchart of a signal transmission method according to an embodiment of the present application.
  • FIG. 21 is a schematic block diagram of a signal transmission apparatus according to an embodiment of the present application.
  • FIG. 22 is a schematic block diagram of another apparatus for transmitting signals according to an embodiment of the present application.
  • FIG. 23 is a schematic block diagram of another apparatus for transmitting signals according to an embodiment of the present application.
  • FIG. 24 is a schematic block diagram of another signal transmission apparatus according to an embodiment of the present application.
  • FIG. 25 is a schematic block diagram of another apparatus for transmitting signals according to an embodiment of the present application.
  • FIG. 26 is a schematic block diagram of another apparatus for transmitting signals according to an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Global Interoperability for Microwave Access
  • the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • Terminal equipment can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), and wireless communications Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or public land mobile network (PLMN) in future evolution Terminal equipment and the like are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • PLMN public land mobile network
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a Global System for Mobile Communication (GSM) system or a Code Division Multiple Access (CDMA) system.
  • the base station (Base Transceiver Station (BTS)) can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evoled) in an LTE system.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • the base station can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolved base station (evoled) in an LTE system.
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • evoled evolved base station
  • NodeB can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, in-vehicle device, wearable device, and future
  • CRAN cloud radio access network
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network is not limited in the embodiments of the present application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, such as a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • This application layer contains applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the application can be run to provide the program according to the embodiment of the application.
  • the communication may be performed by using the method described above.
  • the method execution subject provided in the embodiments of the present application may be a terminal device or a network device, or a function module in the terminal device or the network device that can call a program and execute the program.
  • various aspects or features of the application may be implemented as a method, apparatus, or article of manufacture using standard programming and / or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CD), digital versatile discs (DVD) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and / or other machine-readable media used to store information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and / or carrying instruction (s) and / or data.
  • FIG. 1 is a schematic diagram of a communication system 100 according to an embodiment of the present application.
  • a terminal device 130 accesses a wireless network to obtain services of an external network (such as the Internet) through the wireless network, or through a wireless network Communicate with other terminal devices.
  • the wireless network includes a RAN 110 and a core network (CN) 120.
  • the RAN 110 is used to connect the terminal device 130 to the wireless network
  • the CN 120 is used to manage the terminal device and provide a gateway for communication with the external network.
  • the signal transmission method provided in this application may be applicable to a wireless communication system, for example, the wireless communication system 100 shown in FIG. 1.
  • a wireless communication connection between two communication devices in the wireless communication system and one communication device of the two communication devices may correspond to the terminal device 130 shown in FIG. 1.
  • the communication device may be the terminal device 130 shown in FIG. 1. It may also be a chip configured in the terminal device 130; the other communication device of the two communication devices may correspond to the RAN110 shown in FIG. 1, for example, it may be the RAN110 shown in FIG. 1, or it may be configured in Chip in RAN110.
  • the network architecture described in the embodiments of the present application is to facilitate the reader to clearly understand the technical solutions in the embodiments of the present application, and does not constitute a limitation on the technical solutions provided in the embodiments of the present application. Those of ordinary skill in the art may know that, With the emergence of new service scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 2 is a schematic diagram of a network architecture according to an embodiment of the present application.
  • the network architecture includes a CN device and a RAN device.
  • the RAN device includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or multiple nodes.
  • the radio frequency device can be implemented independently from the baseband device, or it can be integrated with the baseband device in the same physical device. , Or part of the remote part is integrated with the baseband device.
  • an eNB as a RAN device includes a baseband device and a radio frequency device.
  • the radio frequency device can be remotely arranged relative to the baseband device, such as a remote radio unit (RRU) remotely arranged relative to the BBU. .
  • RRU remote radio unit
  • the control plane protocol layer structure may include a radio resource control (RRC) layer, a packet data convergence layer protocol (PDCP) layer, a radio link control (RLC) layer, and a media interface. Functions of the protocol layer such as the access control (MAC) layer and the physical layer.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • RLC radio link control
  • Functions of the protocol layer such as the access control (MAC) layer and the physical layer.
  • the user plane protocol layer structure can include the functions of the protocol layers such as the PDCP layer, the RLC layer, the MAC layer, and the physical layer; in one implementation, the PDCP layer can also include a service data adaptation (SDAP) layer .
  • SDAP service data adaptation
  • a RAN device can implement the functions of the protocol layers such as radio resource control, packet data convergence layer protocol, radio link control, and media access control by one node; or the functions of these protocol layers can be implemented by multiple nodes; for example, in a In this evolved structure, a RAN device may include a CU and a DU, and multiple DUs may be centrally controlled by a CU. As shown in Figure 2, CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the PDCP layer and above are set in the CU, and the functions of the protocol layers below PDCP, such as the RLC layer and the MAC layer are set in the DU.
  • This division of the protocol layer is only an example. It can also be divided at other protocol layers, for example, at the RLC layer.
  • the functions of the RLC layer and above are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU.
  • it is divided in a certain protocol layer, for example, setting some functions of the RLC layer and functions of the protocol layer above the RLC layer in the CU, and setting the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer in the DU.
  • it can also be divided in other ways, for example, by delay, and the function that needs to meet the delay requirement in processing time is set in the DU, and the function that does not need to meet the delay requirement is set in the CU.
  • the radio frequency device can be remote, not placed in the DU, or integrated in the DU, or part of the remote can be integrated in the DU, without any restrictions here.
  • FIG. 3 shows a schematic diagram of another network architecture provided by an embodiment of the present application.
  • the control plane (CP) and user plane (UP) of the CU can also be It is separated and implemented by different entities, which are a control plane CU entity (CU-CP entity) and a user plane CU entity (CU-UP entity).
  • CU-CP entity control plane CU entity
  • CU-UP entity user plane CU entity
  • the signaling generated by the CU can be sent to the terminal through the DU, or the signaling generated by the terminal can be sent to the CU after being received through the DU.
  • the DU can directly transmit to the terminal or the CU through protocol layer encapsulation without parsing the signaling.
  • the CU is divided into network equipment on the RAN side.
  • the CU may also be divided into network equipment on the CN side, which is not limited herein.
  • the devices in the following embodiments of the present application may be located in a terminal or a network device according to the functions they implement.
  • the network device may be a CU node, or a DU node, or a network device including a CU node and a DU node.
  • the architecture of the CU and DU is not limited to 5G, NR, and gNB, and can also be applied to a scenario where an LTE base station is divided into CU and DU.
  • the protocol layer does not include an SDAP layer.
  • LBT listen-before-talk LBT
  • the network device or terminal device needs to listen to the channel before sending information, and can only occupy the channel to send information after listening to the channel being idle.
  • a sending node (including a network device or a terminal device) detects that the channel is idle before the resources it wants to occupy is called LBT interception success, otherwise it is called LBT interception failure.
  • LBT interception success the maximum length of time that it can continuously send information
  • MCOT maximum channel occupancy time
  • the LBT listening type may include multiple types, one of which is a random fallback clear channel assessment (CCA).
  • CCA random fallback clear channel assessment
  • the random fallback CCA is also referred to as type 1 channel access.
  • the sending device randomly generates a backoff counter, decrements the backoff counter by one when it detects that the channel is idle, and accesses the channel after completing the countdown of the backoff counter.
  • the specific flow of CCA random rollback is: the sending device generates a rollback counter N uniformly and randomly between 0 and the initial contention window (CW), and uses a CCA slot (for example, the duration is 9us) Perform channel listening for granularity. If the channel is detected to be idle during the listening time slot, the back-off counter N is decremented by one.
  • the back-off counter is suspended, that is, The back-off counter N remains unchanged during the busy time of the channel, and it is not counted down again until the channel is detected to be idle.
  • the back-off counter is reset to zero, the channel is considered to be successful and the sending device can immediately occupy the channel to send information.
  • the sending device can also wait for a period of time without sending information immediately after the back-off counter is reset to zero. After the waiting period ends, it listens for an additional time slot before the time when the information needs to be sent. If the channel is detected to be idle within the time slot, the channel is considered successful or LBT is successful, and the information can be sent immediately.
  • the sending device includes a terminal device or a network device. After the CCA of the network device successfully performs a random rollback, the corresponding MCOT is DL MCOT. After the CCA of the terminal device successfully performs random rollback, the corresponding MCOT is UL MCOT.
  • CW is also called CW size (contention window size, CWS).
  • Single-slot CCA is also known as Type 2 channel access or One-shot CCA or 25us CCA.
  • the process is: the sending device executes a fixed listening slot length (for example, the length of the listening slot (Fixed to 25us) CCA listening in a single time slot. If the channel is detected to be free in the single time slot, the channel is considered successful or LBT is successful, and the sending device can immediately access the channel; if it is detected in the single time slot, If the channel is busy, the channel listening fails or LBT fails.
  • the sending device gives up sending information and can wait for the next opportunity to perform channel listening using a single slot to access the channel before performing the next single slot CCA listening. .
  • channel idle There are two types of channel states: channel idle and channel busy.
  • the criteria for judging the channel state is: the wireless communication device (base station device or terminal device) compares the power received on the channel in the listening time slot with the CCA-energy detection threshold (CCA-ED), if it is higher than the threshold , The status is channel busy, and if it is below the threshold, the status is channel idle.
  • CCA-ED CCA-energy detection threshold
  • CAT4 LBT with random back-off with variable size of contention window.
  • LBT CAT1 can be understood as directly sending information without performing the LBT process, or it can also be understood as the value of the energy detection threshold being infinite.
  • LBT CAT1 is an LBT-free process because some countries and regions do not mandate the implementation of the LBT mechanism on unlicensed spectrum.
  • CCA Uses fixed-length frames, including channel occupation time and idle time.
  • CCA is performed before data transmission. If the channel is idle, data transmission is performed during the subsequent channel occupation time, otherwise the signal cannot be transmitted during the entire frame period. The length of time it takes to determine whether the signal is idle before sending data is determined.
  • T drs 25us time
  • T f 16 us
  • T sl 9 us.
  • the two time periods included in 25us indicate that energy detection needs to be performed for two times. If both periods are idle (the detected energy is less than a certain threshold), then 25us is considered idle.
  • the LBT CAT2 here is the same as the one-shot CCA process. It uses a fixed length of time to listen and does not need to perform random rollbacks. It is collectively called LBT CAT2.
  • X Thresh_max is calculated by formula (1):
  • X Thresh_max is calculated by formula (2):
  • the current transmission signal includes a physical downlink shared channel (physical downlink shared channel, PDSCH) , physical downlink control channel (physical downlink control channel, PDCCH) or the channel state information reference signal (channel state information reference, CSI- RS) one or more of them;
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • CSI- RS channel state information reference signal
  • T A 5dB, when only including the access signal, but not including one or more of PDSCH, PDCCH, or CSI-RS;
  • P TX is the maximum transmit power on a carrier of the network equipment
  • T max (dBm) 10 ⁇ log10 (3.16228 ⁇ 10 -8 (mW / MHz) ⁇ BWMHz (MHz)).
  • the contention window has a fixed length, and an extended CCA (ECCA) is used.
  • ECCA extended CCA
  • the sender After detecting that the channel is occupied or reaches the maximum transmission time, the sender enters the contention time window. Different from the fixed-length contention time window, the sender can change the length of the contention time window.
  • LBT CAT4 is similar to the type 1 channel access process described above, and both need to randomly generate fallback windows. In this article, it is called LBTCAT4.
  • the length of the contention time window can be set to 10 slots. If the energy detection values detected in the consecutive 10 slots are less than the energy threshold, the LBT is considered successful.
  • T mcot, p represents the length of time allowed to send a signal after LBT is successful.
  • step (3) Perform channel detection on the next slot length. If the channel detection is idle, proceed to step (4), otherwise proceed to step (5).
  • step (5) Continue to perform a channel detection with a duration of T d until it is detected that all slots in T d are idle, then proceed to step (4); otherwise continue to step (5).
  • Synchronous signal broadcast channel block (synchronous signal / PBCH block, SS / PBCH block)
  • the frequency domain positions of the primary synchronization signal (PSS), secondary synchronization signal (SSS), and physical broadcast channel (PBCH) block are different from those in the NR.
  • SSB SS / PBCH block can also be called SSB.
  • SSB is a kind of reference signal in radio resource management (RRM) measurement in NR. It includes synchronization signal / physical broadcast channel.
  • RRM radio resource management
  • One SSB is composed of master synchronization signal and slave synchronization signal , A physical broadcast channel (physical broadcast channel, PBCH) and a demodulation reference signal (demodulation reference signal, DMRS) required to demodulate the PBCH.
  • PSS is mainly used for coarse synchronization
  • SSS is used for fine synchronization and SSB-based measurement
  • PBCH is used for broadcasting cell-level system information
  • DMRS can be used for SSB-based measurement in addition to PBCH demodulation.
  • PSS / SSS signal synchronization, cell identification (cell ID) identification and SSB signal capability detection (for example, signal to interference plus noise ratio (SINR) of the measurement object) calculation, received signal strength indication (received (signal strength indicator (RSSI), reference signal receiving power (RSRP) calculation or reference signal receiving quality (RSRQ) calculation, etc.).
  • SINR signal to interference plus noise ratio
  • RSSI received signal strength indicator
  • RSRP reference signal receiving power
  • RSSQ reference signal receiving quality
  • PBCH Read cell configuration information to prepare for cell camping and initial access.
  • Initial access phase 1 The terminal device searches for PSS / SSS, performs signal synchronization, cell ID identification, cell signal quality detection, and the like.
  • Initial access phase 2 Read the PBCH, perform PBCH demodulation and decoding, and read cell resident related parameters.
  • Mobility measurement / radio link detection read PSS / SSS, and perform cell / beam signal measurement (idle state does not require solution of PBCH, connection state is to be determined, mainly to prepare for handover).
  • Beam management Read PSS / SSS and perform RSRP measurement.
  • PBCH signal is not required in all scenarios.
  • FIG. 4 shows a structure and transmission diagram of an SSB provided in an embodiment of the present application.
  • the SSB in the NR includes a PSS, an SSS, and a PBCH.
  • the SSB in FIG. 4 is referred to as an access signal of format 1.
  • the cycle of SSB transmission in NR The SSB is sent periodically and repeatedly. This will facilitate the cell search during the initial access of the terminal device, and will facilitate the mobility measurement of the terminal device.
  • the sending cycle of the SSB is sent to the terminal device in the broadcast channel, and its cycle value can be 5ms, 10ms, 20ms, 40ms, 80ms, or 160ms.
  • DRS Discovery reference signal
  • DRS may include all signals in the SSB signal. In this application, DRS may not include all signals in the SSB signal.
  • DRS Downlink Reference Signal
  • 5G 5G systems, DRS-like signals are also required, including SSB signals, or including SSB and remaining minimum system information (RMSI) for access point discovery.
  • RMSI remaining minimum system information
  • FIG. 5 shows a schematic flowchart of a signal transmission method 200 according to an embodiment of the present application. As shown in FIG. 5, the method 200 includes:
  • the network device listens to the channel according to the first LBT process and the second LBT process.
  • a network device before sending an access signal, can configure two channel access processes, the first channel access process corresponds to the first LBT process, and the second channel access process corresponds to the second LBT. Process, the network device listens to the channel according to the first LBT process and the second LBT process.
  • first LBT process and the second LBT process in the embodiments of the present application may be performed simultaneously or in series, which is not limited in this application.
  • the network device determines that the first LBT process fails and the second LBT process succeeds.
  • the network device determines that the first LBT process fails and the second LBT process succeeds during the channel listening process.
  • the first LBT process fails, and it can also be understood that the first LBT process is unsuccessful.
  • the failure of the first LBT process may include that during the first LBT process of the network device, the first LBT process has not completed the listening process of the idle channel, that is, the channel transmission permission has not yet been obtained by feedback; During the LBT process, it was found that the first LBT process could not continue and failed.
  • the energy threshold value in the first LBT process is a first energy threshold value
  • the energy threshold value in the second LBT process is a second energy threshold value
  • the first energy threshold value is less than The second energy threshold
  • the first LBT process is LBTCAT2
  • the second LBT process is a newly designed LBT process.
  • the energy threshold value in the newly designed LBT process is higher than the energy threshold value of the first LBT process by an offset, so that the second LBT process has easier channel monitoring than the first LBT process.
  • the determination method can be:
  • T format2 5dB
  • X r T max +10 dB
  • X ' Thresh_max is calculated by formula (4):
  • T A 10dB
  • the current transmission signal includes one or more of PDSCH, PDCCH, or CSI-RS
  • T A 5dB, when the current transmission signal includes only the access signal of format 1, but does not include one or more of PDSCH, PDCCH, or CSI-RS;
  • P TX is the maximum transmit power on a carrier of the network equipment
  • T max (dBm) 10 ⁇ log10 (3.16228 ⁇ 10 -8 (mW / MHz) ⁇ BWMHz (MHz)).
  • T format2 may be 5 dB, 3 dB or 10 dB, and may also be other values, which are not limited in the embodiment of the present application.
  • the network device determining that the first LBT process fails and the second LBT process succeeds includes:
  • the network device determines that the energy detection value of the channel is greater than or equal to the first energy threshold value and less than the second energy threshold value.
  • the network device determines that the first LBT process has failed. And the second LBT process is successful.
  • the first LBT process and the second LBT process may be the same as or different from the existing LBT process, and the threshold values in the first LBT process and the second LBT process are determined.
  • the method is not limited to the above method, and may also be determined by other methods, which is not limited in this application.
  • the length of the contention time window in the first LBT process is greater than the length of the contention time window in the second LBT process.
  • the length of the contention time window in the first LBT process is N time units
  • the length of the contention time window in the second LBT process is M time units
  • N and M are positive integers
  • the network device determines the The first LBT process fails and the second LBT process succeeds, including:
  • the network device determines that the energy detection value of the channel is not less than or equal to the third energy threshold within N time units, and the energy threshold value of the channel is less than or equal to the fourth energy threshold within M time units
  • the threshold value corresponding to the first LBT process is the third energy threshold value
  • the energy threshold value corresponding to the second LBT process is the fourth energy threshold value
  • the third energy threshold is equal to the fourth energy threshold.
  • the first LBT process is LBT CAT4
  • the second LBT process is LBT CAT2
  • LBT CAT2 is one-short.
  • the LBT The energy thresholds of CAT4 and the LBT CAT2 are both -72dBm, then the network equipment failed to detect the energy detection value of the channel for 13 timeslots less than -72dBm, and its detection capability at the time of LBT CAT2 Both are less than -72dBm.
  • the network device can determine that the LBT CAT4 fails and the LBT CAT2 succeeds.
  • the first LBT process is LBT CAT4
  • the second LBT process is LBT CAT4
  • the energy thresholds of the two LBT processes are -72 dBm.
  • the network device fails to detect the energy detection value of the channel. To 63 time slots with energy values less than -72 dBm, and being able to detect 15 time slots with energy values less than -72 dBm, the network device can determine that the first LBT process fails and the second LBT succeeds.
  • first LBT process in the embodiments of the present application can be understood as a relatively “difficult” LBT process
  • second LBT process can be understood as a relatively “easy” LBT process
  • the actual standard process may need to generate a random number N, so the number N that is actually detected below the energy threshold is not necessarily the value of CW, but from a probability perspective In other words, the larger CW is, the larger N is.
  • the value of N is equal to CW.
  • the network device sends a first access signal to the terminal device on the channel, and the terminal device receives the first access signal sent by the network device on the channel.
  • the network device After determining that the first LBT process fails and the second LBT process succeeds, the network device sends the first access signal to a terminal device.
  • the first access signal in the embodiment of the present application is a discovery reference signal DRS.
  • the first access signal includes at least a synchronization signal broadcast channel block SSB.
  • the first access signal includes one or more access signals.
  • the time length corresponding to the time-frequency resource of the first access signal is shorter than the first time length.
  • the first time length in the embodiment of the present application may be related to the subcarrier interval of the current system.
  • the average time length corresponding to each symbol is 71.4us.
  • the time length can be 285.6us (that is, 71.4us ⁇ 4); for another example, when the subcarrier interval of the current system is 30KHz, the average time length corresponding to each symbol is 35.7us, and the first time length can be 142.8us (that is, 35.7us ⁇ 4).
  • the subcarrier interval of the current system is 15KHz
  • 14 symbols are included in a slot, and the time length corresponding to some symbols in the 14 symbols may be greater than 71.4us, and the time length corresponding to some symbols may be Less than 71.4us
  • the average time length of these 14 symbols can be 71.4us.
  • the time length corresponding to one symbol is 71.4us for description.
  • the time length corresponding to the time-frequency resource of the first access signal is less than the first time length. It can also be understood that the number of symbols occupied by the first access signal is less than four.
  • the network device may send the first access signal to a terminal device, and a format of the first access signal may include However, it is not limited to the seven formats shown in FIGS. 6 to 12 below.
  • the first access signal includes only a PSS and an SSS, and the PSS and the SSS are time-multiplexed.
  • FIG. 6 is a schematic structural diagram of an access signal according to an embodiment of the present application. As shown in FIG. 6, the access signal includes only PSS and SSS. Compared to FIG. 4, the positions of the PSS and SSS do not occur. The change is just to remove the PBCH in the original access signal.
  • FIG. 7 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • the access signal includes only PSS and SSS.
  • the symbol positions of the PSS and SSS are relative to each other.
  • TDM time division multiplexing
  • the time length corresponding to the time-frequency resource of the access signal shown in FIG. 6 and FIG. 7 is 142.8us (that is, 71.4us ⁇ 2), which is less than the first time.
  • the length is 285.6us.
  • the first access signal includes only a PSS and an SSS, and the PSS and the SSS are frequency division multiplexed.
  • FIG. 8 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • the access signal includes only PSS and SSS.
  • PSS and SSS use frequency division multiplexing.
  • Use frequency division multiplexing, FDM).
  • the time length corresponding to the time-frequency resource of the access signal shown in FIG. 8 is 71.4 us, which is less than the first time length of 285.6 us.
  • the number of symbols occupied by the access signal shown in FIG. 8 is one (less than four).
  • the subcarrier interval of the first access signal is greater than or equal to the first subcarrier interval.
  • the candidate subcarrier interval in the system is: 15KHz, 30Khz, 60Khz, 120KHz, 240KHz, 480Khz
  • the first access The subcarrier interval of the signal can be selected as one of: 30Khz, 60Khz, 120KHz, 240KHz, 480Khz, 960KHz.
  • the subcarrier interval of the current system is 15KHz, and the subcarrier interval of the first access signal may be 30KHz or 60KHz; or, the subcarrier interval of the current system is 30KHz, and the subcarrier interval of the first access signal may be 60KHz or 120KHz.
  • FIG. 9 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • the access signal includes PSS, SSS, and PBCH.
  • SSS carrier spacing
  • the PSS occupies one symbol.
  • the subcarrier interval is 15KHz
  • the length of time to send the PSS on this symbol is 71.4us.
  • the PSS in the access signal shown in FIG. 9 can occupy one symbol.
  • its subcarrier interval can be expanded to 30KHz
  • the length of time to send PSS on this symbol is 35.7us
  • the time length corresponding to a single symbol is halved, so the time corresponding to the time-frequency resource of the access signal shown in Figure 9
  • the length is 142.8us (35.7us ⁇ 4), which is shorter than the first time length of 285.6us.
  • FIG. 10 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • the access signal includes PSS, SSS, and PBCH.
  • PSS and SSS use FDM.
  • PBCH1 and PBCH2 use the FDM mode, which also halves the length of time occupied by the access signal of FIG. 9.
  • the time length corresponding to the time-frequency resource of the access signal shown in FIG. 10 is 142.8us (71.4us ⁇ 2), which is less than the first time length of 285.6us.
  • the number of symbols occupied by the access signal shown in FIG. 10 is two (less than four).
  • the first access signal includes only SSS or only PSS.
  • FIG. 11 is a schematic structural diagram of another access signal according to an embodiment of the present application. As shown in FIG. 11, the access signal includes only SSS.
  • the time length corresponding to the time-frequency resource of the access signal shown in FIG. 11 is 71.4 us, which is less than the first time length of 285.6 us.
  • the number of symbols occupied by the access signal shown in FIG. 11 is one (less than four).
  • FIG. 12 is a schematic structural diagram of another access signal according to an embodiment of the present application.
  • the access signal includes PSS, SSS, and PBCH. 4.
  • the SSS is added on the basis of the access signal shown in Figure 4, and the new SSS and PSS adopt the FDM method.
  • the network device handles the signal transmission simply, that is, for the signal containing the PSS, it is not necessary to readjust the data format based on the result of the LBT.
  • the format of the SSB in FIG. 4 may be referred to as Format 1, and the format of the access signal shown in FIG. 6 to FIG. 12 is referred to as Format 2.
  • Format 2 is changed on the basis of Format 1. The purpose is to reduce the time length corresponding to the time domain resources of the access signal.
  • the network device sends the SSB as shown in Figure 6 to Figure 12, it helps to reduce interference to other systems.
  • the access signal of format 2 in the embodiment of the present application is not limited to the formats of FIG. 7 to FIG. 12 and may be other formats, as long as it is other access that can achieve the effect of the access signal of format 2
  • the format of the signal should be considered to be within the protection scope of the embodiments of the present application.
  • the network device determines that the first LBT fails and the second LBT succeeds, the network device sends L accesses to the terminal device
  • K and L are positive integers and K is greater than L, that is, the network device selects L access signals from the K access signals and sends them to the terminal device.
  • the network device may send a second access signal to the terminal device, and the second access signal may be an access signal as shown in FIG. 4 .
  • the network device may send the K access signals to the terminal device.
  • S240 The terminal device determines a format of the first access signal.
  • the terminal device when the terminal device receives the first access signal, it first determines the format of the first access signal, and the terminal device performs PBCH reception, or SSS reception, or SSS and PBCH reception according to the format.
  • the format parsing process can include the following 2 steps:
  • the access signal is as shown in FIG. 6, because the PSS / SSS are the same, the difference is that the SBCH of the SSB of format 1 exists and the PBCH of the SSB of format 2 does not exist.
  • the access signal is as shown in FIG. 7, since the PSS is the same, the difference is that the time domain position of the SSS in the SSB of format 1 and the SSB of format 2 are different, and its detection point is to detect the time domain position of the SSS.
  • the access signal is as shown in FIG. 8, since the PSS is the same, the difference is that the frequency domain position of the SSS is different, and its detection point is to detect the frequency domain position of the SSS.
  • the difference point is that the subcarrier interval of the access signal is different, and the detection point is to detect the time length of the symbols occupied by the PSS, thereby deriving the subcarrier interval of the PSS.
  • the difference point is that the frequency domain position of the SSS is different, and its detection point is to perform SSS frequency domain position detection.
  • the detection point is to detect the SSS first, and then detect whether the PSS exists or whether the DMRS of the PBCH exists.
  • the difference point is that an SSS is added to the time domain resource corresponding to the PSS, and the detection point is to detect the PSS time domain position.
  • the access signals of format 2 listed in the embodiments of the present application include, but are not limited to, the seven structures in FIGS. 6 to 12 above.
  • the actual sending end may select one of the above seven structures to perform.
  • the terminal device can know in advance that the network device will use the access signal in format 1 or one of the above-mentioned access signals to send, for example, the format of the access signal that the network device and the terminal device agree to send and receive In the format 1 or the format 2 shown in FIG. 8, after receiving the access signal, the terminal device may perform the following steps to detect the format of the access signal:
  • Step 1 Perform PSS symbol sequence detection. If a PSS symbol sequence is detected, go to step 2.
  • Step 2 Detect the SSS symbol sequence at a predetermined position
  • the sender If the SSS is detected one symbol at an interval from the corresponding symbol position of the PSS, the sender is considered to have sent it according to format 1, and then performs subsequent processing (such as performing SSS signal quality calculations, and when receiving PBCH, perform PBCH reception Tune).
  • the sender is considered to be transmitting according to Format 2, and only the signal quality of the SSS is calculated.
  • the transmitting end when the channel is busy, the transmitting end sends an access signal of format 2 to help reduce interference to other systems, and also helps to ensure the timely PSS / SSS in the system. send.
  • the method 200 further includes:
  • the network device sends instruction information to the terminal device, and the instruction information is used to indicate the access signal transmission power of the format 2.
  • the capability of the terminal device to detect the access signal of the format 2 is increased.
  • the transmission of the access signal of the format 2 is increased.
  • the power can be different from the transmission power of the access signal in format 1.
  • the offset is -3dB, 0dB, 3dB.
  • the application scenario can be: When there is only access equipment of the same system in the current coverage area, the offset can be positive. Value, that is, the transmission power is larger, to ensure that the terminal device can measure the signal more easily.
  • the offset is 0 or negative, that is, the transmission power is smaller, which reduces the impact on other System interference.
  • the relevant transmission power information can be notified by a broadcast signal.
  • the transmission power of the format 2 access signal may also be predefined by the protocol.
  • the terminal device detects that the format of the access signal is the format 2 access signal, it may The transmission power of the format 2 predefined by the protocol detects the access signal.
  • FIG. 13 shows another schematic flowchart of a signal transmission method 200 according to an embodiment of the present application. As shown in FIG. 13, the method 200 includes:
  • the sender configures two channel access processes for sending access signals.
  • the two channel access processes correspond to two types of LBT detection.
  • the LBT of channel access process 1 is the first LBT process, and the LBT of channel access process 2 For the second LBT process.
  • the sending end may be a network device.
  • S222 Determine whether the first LBT process is successful. If the first LBT process is successful, perform S231. If the first LBT process fails, proceed to S223.
  • the method for transmitting signals in the embodiments of the present application flexibly configures the process of two channel accesses, which prevents the sender from giving up sending an access signal after one channel is unsuccessful, thereby helping Avoid excessive time for the terminal device to search the cell.
  • FIG. 14 shows another schematic flowchart of a signal transmission method 200 according to an embodiment of the present application. As shown in FIG. 14, the method 200 includes:
  • the sending end determines that the number of access signals to be sent is K, and K is a positive integer;
  • the sender configures two channel access processes for sending access signals.
  • the two channel access processes correspond to two types of LBT detection.
  • the LBT of channel access process 1 is the first LBT process and the LBT of channel access process 2 For the second LBT process.
  • S225 Determine whether the first LBT process is successful. If the first LBT process is successful, perform S234; if the first LBT process fails, proceed to S226.
  • S226 Determine whether the second LBT process is successful. If the second LBT process is successful, proceed to S235; if the second LBT process fails, proceed to S236.
  • S236 End sending the access signal.
  • the format of the K access signals may be format 1 or format 2 or part of format 1 and format 2, which is not limited in this application.
  • FIG. 15 shows another schematic flowchart of a signal transmission method 300 according to an embodiment of the present application. As shown in FIG. 15, the method 300 includes:
  • S310 The network device listens to the channel according to the third LBT process.
  • the third LBT process is LBT CAT4 or LBT CAT2.
  • the type of the third LBT process is not limited in the transmission method 300 in the embodiment of the present application, and may be an existing LBT process or a newly designed LBT process, which is not limited in the embodiment of the present application. .
  • the network device sends a third access signal to the terminal device on the channel, and the terminal device receives the third access signal sent by the network device on the channel.
  • the time length corresponding to the time-frequency resource of the third access signal is less than or equal to the first time length.
  • the third access signal is a discovery reference signal DRS.
  • the third access signal includes at least SSB.
  • the format of the SSB in the third access signal may be as shown in FIG. 6 to FIG. 12.
  • the format of the SSB in the third access signal may be as shown in FIG. 6 to FIG. 12.
  • the third access signal includes one or more access signals.
  • the terminal device determines a format of the third access signal.
  • S340 is similar to S240 in method 200, and for the sake of brevity, details are not described herein.
  • the network device may send the access signal of the format 1 to the terminal device.
  • FIG. 16 shows another schematic flowchart of a signal transmission method 300 according to an embodiment of the present application. As shown in FIG. 16, the method 300 includes:
  • the transmitting end configures a channel access process, and the channel access process corresponds to a third LBT process.
  • the sending end may be a network device.
  • the sending end is configured with one channel access process. It can also be understood that the sending end is configured with two channel access processes, where one channel access process may correspond to the third LBT process and the other channel The access process corresponds to LBT CAT1 (no LBT process).
  • S312 Determine whether the third LBT process is successful. If the third LBT process is successful, perform S321. If the third LBT fails, proceed to S322.
  • FIG. 17 shows another schematic flowchart of a signal transmission method 400 according to an embodiment of the present application. As shown in FIG. 17, the method 400 includes:
  • the network device listens to the channel according to the fourth LBT process.
  • the fourth LBT process is LBT CAT4 or LBT CAT2.
  • the transmission method 400 in the embodiment of the present application does not limit the type of the fourth LBT process, and may be an existing LBT process or a newly designed LBT process, which is not limited in the embodiment of the present application. .
  • the network device determines that the fourth LBT process fails.
  • the network device sends at least one access signal to the terminal device according to the relationship between the number of access signals and the first value, and the terminal device receives the at least one access signal.
  • the network device sending at least one access signal to the terminal device according to the relationship between the number of access signals and the first value includes:
  • At least a part of the at least one access signal is an access signal of format 2.
  • the at least one access signal is a plurality of access signals
  • padding is not performed between every two adjacent access signals in the plurality of access signals.
  • the network device sending at least one access signal to the terminal device according to the relationship between the number of access signals and the first value includes:
  • the at least one access signal is sent to the terminal device, and a time length corresponding to a time-frequency resource of each access signal in the at least one access signal is greater than or equal to The second length of time.
  • the second time length is equal to the first time length.
  • At least a part of the at least one access signal is an access signal of format 1.
  • the terminal device performs format analysis on the at least one access signal.
  • the network device may send the at least one access signal to the terminal device, and each of the at least one access signal is In the access signal of the format 1, optionally, if the at least one access signal is a plurality of access signals, padding is performed between every two adjacent access signals in the plurality of access signals.
  • FIG. 18 illustrates another schematic flowchart of a signal transmission method 400 according to an embodiment of the present application. As shown in FIG. 18, the method 400 includes:
  • the sending end configures a channel access process for sending an access signal.
  • the sending end may be a network device.
  • the sending end configures a channel access process for sending an access signal corresponding to one LBT
  • the LBT may be LBTCAT4 or LBTCAT2.
  • S411 Perform a fourth LBT process of the channel access process
  • S412. Determine whether the fourth LBT process is successful. If the fourth LBT process is successful, perform S431; otherwise, perform S421.
  • S421. Determine the relationship between the number of access signals and the first value. If the number of access signals is greater than or equal to the first value, proceed to S432; if it is less than the first value, proceed to S433.
  • the transmitting end sends at least one access signal, and at least a part of the at least one access signal is an access signal of format 1.
  • padding bits are added between the plurality of access signals sent in S431.
  • the transmitting end sends at least one access signal, and at least a part of the at least one access signal is an access signal of format 2;
  • the transmitting end sends at least one access signal, and at least a part of the at least one access signal is an access signal of format 1.
  • the at least one access signal is multiple access signals
  • no padding is performed between the multiple access signals sent in S431.
  • the sending end may send at least one access signal according to the relationship between the number of access signals and the first value, which helps to prevent the terminal device from searching the cell for too long. .
  • FIG. 19 shows another schematic flowchart of a signal transmission method 500 according to an embodiment of the present application. As shown in FIG. 19, the method 500 includes:
  • the fifth LBT process is LBTCAT4.
  • the network device when the second value is 8, and the number of access signals to be sent by the network device is 10, the network device is configured with LBT CAT4 to monitor the channel.
  • the fifth LBT process is LBTCAT2.
  • the network device is configured with LBT CAT2 to monitor the channel.
  • the fifth LBT process determined by the network device according to the relationship between the number of access signals to be sent and the second value in the embodiments of the present application may also be other LBT processes.
  • a newly designed LBT process is configured (for example, the energy threshold in the newly designed LBT process is higher than the energy threshold in LBTCAT2); when the network device determines that the When the number of sent access signals is less than the second value, configure LBT CAT2 to monitor the channel.
  • the network device sends at least one access signal to the terminal device on the channel, and the terminal device receives the at least one access signal sent by the network device on the channel.
  • each of the at least one access signal includes PSS, SSS, and PBCH.
  • the network device determines the fifth LBT process according to the relationship between the number of access signals to be sent and the second value, and then listens to the channel according to the fifth LBT process. If the fifth LBT process is successful , The network device sends the at least one access signal to the terminal device.
  • the number of access signals to be sent by the network device is ten. If the fifth LBT process is successful, the network device sends the ten access signals to the terminal device.
  • the network device determines that the number of access signals to be sent is 6. If the fifth LBT process is successful, the network device sends 6 access signals to the terminal device.
  • the terminal device determines a format of the at least one access signal.
  • S540 is similar to S240 in method 200. For the sake of brevity, details are not described herein.
  • the network device may not send the at least one access signal to the terminal device.
  • the network device may select a part of the access signals to be sent for transmission.
  • the number of access signals to be transmitted is 10. If the fifth LBT process fails, the network device may select 4 of the 10 access signals for transmission.
  • the network device may send the at least one access signal to the terminal device, and at least part of the at least one access signal is an access signal of format 2. .
  • FIG. 20 shows another schematic flowchart of a signal transmission method 600 according to an embodiment of the present application. As shown in FIG. 20, the method 600 includes:
  • the network device determines the length of the contention time window in the sixth LBT process according to the number of the access signals to be sent.
  • the method 600 further includes:
  • the network device determines the sixth LBT process according to the number of access signals to be sent and a third value.
  • the network device determines that the sixth LBT process is similar to S510 in the foregoing method 500, and for the sake of brevity, no further details are provided herein.
  • the length of the contention time window in the sixth LBT process may be related to the number of the access signals to be sent.
  • the corresponding competition window time is shorter, and the corresponding relationship may be a one-to-one correspondence or a segmented correspondence.
  • the access signals to be transmitted are When the number of signals is 1 to M 1 , the corresponding CW value is CW 1.
  • the access signal to be sent is M 1 +1 to M 2 , the corresponding CW value is CW 2 .
  • Table 2 shows the relationship between the number of access signals to be transmitted and the length of the contention time window.
  • the length of the contention time window is also related to the subcarrier interval of the system.
  • the number of the same access signal to be sent is at different subcarrier intervals, and the length of the corresponding time window may be different.
  • Table 3 shows the relationship between the number of access signals to be transmitted and the contention time window length.
  • the network device determines that the length of the contention time window is 6 slots.
  • the sixth LBT process in the embodiment of the present application may be an existing LBT process or a newly designed LBT process, which is not limited in this application.
  • determination of the sixth LBT process may refer to the above method 500, or may be other determination methods, which is not limited in this application.
  • the network device sends at least one access signal to the terminal device on the channel, and the terminal device receives the at least one access signal sent by the network device on the channel;
  • the terminal device determines a format of the at least one access signal.
  • S620-S640 is similar to S520-S540 in method 500, and for the sake of brevity, it will not be repeated here.
  • the method for transmitting a signal further includes:
  • the network device determines that the information to be sent includes an access signal and at least one of PDSCH, PDCCH, and CSI-RS.
  • the format of the access signal is format 1.
  • the network device is configured with a channel access process (optionally, the corresponding LBT is LBTCAT4);
  • the network device sends the information to be sent; if LBT fails, the network device does not send the information to be sent.
  • padding is performed between the access signals to prevent channel loss.
  • the method for transmitting a signal further includes:
  • the network device determines that the information to be sent includes only an access signal
  • the network device is configured with a channel access process (optionally, the corresponding LBT is LBTCAT2);
  • the network device sends the access signal; or,
  • the network device can handle the following two methods:
  • the method for transmitting a signal further includes:
  • the network device determines that the information to be sent includes only DRS
  • the network device is configured with two channel access processes (corresponding to two LBT processes);
  • the network device sends an access signal, and the access signal is sent according to format 1;
  • the network device performs the second LBT
  • the network device sends an access signal, and the access signal is sent according to format 2;
  • the network device does not send the access signal.
  • the signal transmission method according to the embodiment of the present application has been described in detail above with reference to FIG. 1 to FIG. 20.
  • the signal transmission device, network device, and terminal device according to the embodiment of the present application are described in detail with reference to FIGS. 21 to 28.
  • the technical features described in the examples are also applicable to the following device embodiments.
  • FIG. 21 shows a schematic block diagram of a signal transmission apparatus 700 according to an embodiment of the present application.
  • the signal transmission apparatus 700 includes:
  • a processing unit 710 configured to listen to the channel according to the first LBT process and the second LBT process
  • the transceiver unit 720 is configured to send an access signal to the terminal device on the channel when the first LBT process fails and the second LBT process succeeds.
  • the energy threshold value in the first LBT process is a first energy threshold value
  • the energy threshold value in the second LBT process is a second energy threshold value
  • the first energy threshold value is less than The second energy threshold
  • the length of the contention time window in the first LBT process is greater than the length of the contention time window in the second LBT.
  • the time length corresponding to the time-frequency resource of the access signal is less than or equal to the first time length.
  • the access signal is composed of a primary synchronization signal PSS and / or a secondary synchronization signal SSS.
  • the PSS and the SSS are frequency division multiplexed, or the PSS and the SSS are time division multiplexed.
  • the PSS and the SSS are time division multiplexed, and the symbols occupied by the PSS and the SSS are adjacent.
  • the apparatus 700 for transmitting a signal may correspond to a network device in the method 200 for transmitting a signal according to the embodiment of the present application.
  • the apparatus 700 for transmitting a signal may include a network device for executing the method 200 for transmitting a signal in FIG. 5.
  • Module (or unit) of the method are respectively to implement a corresponding process of the method 200 in FIG. 5.
  • the specific process of each module (or unit) performing the above-mentioned corresponding steps has been described in detail in the method 200, and for the sake of brevity, it will not be repeated here.
  • the apparatus 700 for transmitting signals may be a network device, and may also be a chip or a functional unit in the network device.
  • FIG. 22 shows a schematic block diagram of another apparatus 800 for transmitting signals according to an embodiment of the present application.
  • the apparatus 800 for transmitting signals includes:
  • a processing unit 810 configured to listen to the channel according to the third LBT process
  • the transceiver unit 820 is configured to send an access signal to the terminal device on the channel when the third LBT process fails, and the time length corresponding to the time-frequency resource of the access signal is less than or equal to the first time length.
  • the time length corresponding to the time-frequency resource of the access signal is less than or equal to the first time length.
  • the access signal is composed of a primary synchronization signal PSS and / or a secondary synchronization signal SSS.
  • the PSS and the SSS are frequency division multiplexed, or the PSS and the SSS are time division multiplexed.
  • the PSS and the SSS are time division multiplexed, and the symbols occupied by the PSS and the SSS are adjacent.
  • the apparatus 800 for transmitting a signal may correspond to a network device in the method 300 for transmitting a signal according to the embodiment of the present application.
  • the apparatus 800 for transmitting a signal may include a network device for executing the method 300 for transmitting a signal in FIG. 15.
  • Module (or unit) of the method are respectively to implement a corresponding process of the method 300 in FIG. 15.
  • the specific process of each module (or unit) executing the corresponding steps has been described in detail in the method 300, and for the sake of brevity, it will not be repeated here.
  • the apparatus 800 for transmitting signals may be a network device, and may also be a chip or a functional unit in the network device.
  • FIG. 23 shows a schematic block diagram of another apparatus 900 for transmitting signals according to an embodiment of the present application.
  • the apparatus 900 for transmitting signals includes:
  • a processing unit 910 configured to monitor a channel according to a fourth LBT process
  • the processing unit 910 is configured to control the transceiver unit 920 to send at least one access signal to the terminal device according to the relationship between the number of access signals and the first value when the fourth LBT process fails.
  • the processing unit 910 is specifically configured to: when the number of the access signals is greater than or equal to the first value, control the transceiver unit 920 to send the at least one access signal to the terminal device, and the at least one access signal
  • the time length corresponding to the time-frequency resource of each access signal in the incoming signal is less than or equal to the first time length.
  • the processing unit 910 is specifically configured to: when the number of access signals is less than a first value, control the transceiver unit 920 to send the at least one access signal to the terminal device, and the at least one access signal
  • the time length corresponding to the time-frequency resource of each access signal is greater than or equal to the second time length.
  • the apparatus 900 for transmitting signals may correspond to the network device in the method 400 for transmitting signals in the embodiment of the present application.
  • the apparatus 900 for transmitting signals may include a network device for executing the method 400 for transmitting signals in FIG. 17.
  • Module (or unit) of the method are respectively to implement a corresponding process of the method 400 in FIG. 17.
  • the specific process of each module (or unit) performing the above-mentioned corresponding steps has been described in detail in the method 400, and for the sake of brevity, it will not be repeated here.
  • the apparatus 900 for transmitting signals may be a network device, and may also be a chip or a functional unit in the network device.
  • FIG. 24 shows a schematic block diagram of another apparatus 1000 for transmitting signals according to an embodiment of the present application.
  • the apparatus 1000 for transmitting signals includes:
  • a processing unit 1010 configured to determine a fifth LBT process according to the relationship between the number of access signals to be sent and the second value
  • the processing unit 1010 is further configured to listen to the channel according to the fifth LBT process
  • the transceiver unit 1020 is configured to send at least one access signal to the terminal device when the fifth LBT process succeeds.
  • the apparatus 1000 for transmitting signals may correspond to a network device in the method 500 for transmitting signals in the embodiment of the present application.
  • the apparatus 1000 for transmitting signals may include a network device for executing the method 500 for transmitting signals in FIG. 19.
  • Module (or unit) of the method are respectively to implement a corresponding process of the method 500 in FIG. 19.
  • the specific process of each module (or unit) performing the above corresponding steps has been described in detail in the method 500. For the sake of brevity, it will not be repeated here.
  • the apparatus 1000 for transmitting signals may be a network device, and may also be a chip or a functional unit in the network device.
  • FIG. 25 shows a schematic block diagram of another apparatus 1100 for transmitting signals according to an embodiment of the present application.
  • the apparatus 1100 for transmitting signals includes:
  • a processing unit 1110 configured to determine the length of the contention time window in the sixth LBT process according to the relationship between the number of access signals to be sent and the third value;
  • the processing unit 1110 is further configured to listen to the channel according to the sixth LBT process
  • the transceiver unit 1120 is configured to send at least one access signal to the terminal device when the sixth LBT process succeeds.
  • the signal transmission device 1100 may correspond to the network device in the method 600 for transmitting a signal according to the embodiment of the present application.
  • the signal transmission device 1100 may include a network device for executing the method 600 for transmitting a signal in FIG. 20.
  • Module (or unit) of the method are respectively to implement a corresponding process of the method 600 in FIG. 20.
  • the specific process of each module (or unit) performing the above-mentioned corresponding steps has been described in detail in the method 600, and for the sake of brevity, it will not be repeated here.
  • the signal transmission device 1100 may be a network device, and may also be a chip or a functional unit in the network device.
  • FIG. 26 shows a schematic block diagram of another apparatus 1200 for transmitting signals according to an embodiment of the present application.
  • the apparatus 1200 for transmitting signals includes:
  • the transceiver unit 1210 is configured to receive an access signal sent by a network device
  • a processing unit 1220 configured to determine a format of the access signal according to a demodulation reference signal in a physical broadcast channel PBCH; or
  • a processing unit 1220 configured to determine a format of the access signal according to a time domain position of the secondary synchronization signal SSS, where the access signal includes the SSS; or,
  • a processing unit 1220 configured to determine a format of the access signal according to a frequency domain position of the secondary synchronization signal SSS, where the access signal includes the SSS; or,
  • the format of the access signal is determined according to the subcarrier interval of the access signal.
  • the time length corresponding to the time-frequency resource of the access signal is less than or equal to the first time length.
  • the access signal is composed of a primary synchronization signal PSS and / or a secondary synchronization signal SSS.
  • the PSS and the SSS are frequency division multiplexed, or the PSS and the SSS are time division multiplexed.
  • the PSS and the SSS are time division multiplexed, and the symbols occupied by the PSS and the SSS are adjacent.
  • the signal transmission device 1200 may correspond to the terminal device in the method 200 to method 600 for transmitting signals in the embodiments of the present application.
  • the signal transmission device 1200 may include a device for executing FIG. 5, FIG. 15, FIG. 17, A module (or unit) of the method executed by the terminal device of the method 200 to method 600 in FIG. 19 or FIG.
  • each module (or unit) in the device 1200 and the other operations and / or functions described above are respectively to implement the corresponding processes of the method 200 to the method 600 in FIG. 5, FIG. 15, FIG. 17, FIG. 19, or FIG. 20.
  • the specific process of each module (or unit) performing the above-mentioned corresponding steps has been described in detail in the method 200 to the method 600, and for the sake of brevity, it will not be repeated here.
  • the signal transmission device 1200 may be a terminal device, and may also be a chip or a functional unit in the terminal device.
  • the division of the unit (or module) in the above device is only a division of logical functions. In actual implementation, it may be integrated into a physical entity in whole or in part, or it may be physically separated. And the units (or modules) in the device can all be implemented by software through the processing element calls; they can also be all implemented by hardware; some units (or modules) can also be implemented by software through the processing element calls, some units (Or module) is implemented in the form of hardware.
  • the module (or unit) in any of the above devices may be one or more integrated circuits configured to implement the above method, such as one or more application specific integrated circuits (ASICs), Or, one or more microprocessors (digital DSPs), or one or more field programmable gate arrays (FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASICs application specific integrated circuits
  • DSPs digital DSPs
  • FPGAs field programmable gate arrays
  • the unit (or module) in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processing that can call a program Device.
  • these modules (or units) can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the transceiver unit is an interface circuit of the device, which is used to receive signals from other devices and can also be used to send signals to other devices.
  • the transceiver unit is an interface circuit used by the chip to receive signals from other chips or devices, or may be an interface circuit of the device used to send signals to other devices.
  • the transceiver unit may be an interface circuit that the chip uses to send signals to other chips or devices.
  • FIG. 27 is a schematic structural diagram of a network device according to an embodiment of the present application. It is used to implement the operation of the network device in the above embodiments.
  • the network device includes an antenna 1301, a radio frequency device 1302, and a baseband device 1303.
  • the antenna 1301 is connected to the radio frequency device 1302.
  • the radio frequency device 1302 receives the information sent by the terminal device through the antenna 1301, and sends the information sent by the terminal device to the baseband device 1303 for processing.
  • the baseband device 1303 processes the information of the terminal device and sends it to the radio frequency device 1302.
  • the radio frequency device 1302 processes the information of the terminal device and sends it to the terminal device via the antenna 1301.
  • the baseband device 1303 may include one or more processing elements 13031, for example, including a main control CPU and other integrated circuits.
  • the baseband device 1303 may further include a storage element 13032 and an interface 13033.
  • the storage element 13032 is used to store programs and data; the interface 13033 is used to exchange information with the radio frequency device 1302, and the interface is, for example, a common public wireless interface (common public radio interface). , CPRI).
  • the above device for a network device may be located in the baseband device 1303.
  • the above device for a network device may be a chip on the baseband device 1303.
  • the chip includes at least one processing element and an interface circuit, and the processing element is used to execute the above network.
  • the device executes each step of any method, and the interface circuit is used to communicate with other devices.
  • the unit that the network device implements each step in the above method may be implemented in the form of a processing element scheduler.
  • an apparatus for a network device includes a processing element and a storage element, and the processing element calls a program stored by the storage element to The method performed by the network device in the foregoing method embodiment is performed.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit that the network device implements each step in the above method may be configured as one or more processing elements, which are disposed on the baseband device.
  • the processing element here may be an integrated circuit, for example: an Or multiple ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • a unit that implements each step in the above method of a network device may be integrated together and implemented in the form of a system on a chip.
  • the baseband device includes the SOC chip to implement the above method.
  • FIG. 28 is a schematic structural diagram of a terminal device according to an embodiment of the present application. It may be the terminal device in the above embodiment, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal includes: an antenna 1410, a radio frequency device 1420, and a signal processing portion 1430.
  • the antenna 1410 is connected to the radio frequency device 1420.
  • the radio frequency device 1420 receives the information sent by the network device through the antenna 1410, and sends the information sent by the network device to the signal processing section 1430 for processing.
  • the signal processing section 1430 processes the information of the terminal device and sends it to the radio frequency device 1420.
  • the radio frequency device 1420 processes the information of the terminal device and sends it to the network device via the antenna 1410.
  • the signal processing section 1430 may include a modulation and demodulation subsystem to implement processing of each communication protocol layer of the data; it may also include a central processing subsystem to implement processing of the terminal device operating system and the application layer; Including other subsystems, such as multimedia subsystem, peripheral subsystem, etc. Among them, the multimedia subsystem is used to control the terminal camera, screen display, etc., and the peripheral subsystem is used to achieve connection with other devices.
  • the modem subsystem can be a separately set chip.
  • the above device for a terminal device may be located in the modulation and demodulation subsystem.
  • the modem subsystem may include one or more processing elements 1431, for example, including a main control CPU and other integrated circuits.
  • the modulation and demodulation subsystem may further include a storage element 1432 and an interface circuit 1433.
  • the storage element 1432 is used to store data and programs, but the program used to execute the method performed by the terminal device in the above method may not be stored in the storage element 1432, but stored in a memory other than the modem subsystem. When used, the modem subsystem is loaded and used.
  • the interface circuit 1433 is used to communicate with other subsystems.
  • the above device for a terminal device may be located in a modulation and demodulation subsystem.
  • the modulation and demodulation subsystem may be implemented by a chip.
  • the chip includes at least one processing element and an interface circuit.
  • the processing element is configured to execute any one of the above terminal devices.
  • Each step of the method, the interface circuit is used to communicate with other devices.
  • a unit of the terminal device that implements each step in the above method may be implemented in the form of a processing element scheduler.
  • a device for a terminal device includes a processing element and a storage element, and the processing element calls a program stored by the storage element to The method performed by the terminal device in the foregoing method embodiments is performed.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element to the on-chip storage element to call and execute the method executed by the terminal device in the foregoing method embodiments.
  • the unit that implements each step in the above method of the terminal device may be configured as one or more processing elements, which are disposed on the modulation and demodulation subsystem, and the processing elements herein may be integrated circuits.
  • the processing elements herein may be integrated circuits.
  • the unit of the terminal device that implements each step in the above method may be integrated together and implemented in the form of a system on a chip.
  • the SOC chip is used to implement the above method.
  • An embodiment of the present application further provides a communication system, where the communication system includes the foregoing terminal device and the foregoing network device.
  • the foregoing method embodiments in the embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the aforementioned processor may be a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic devices, a discrete gate or transistor logic device, or a discrete hardware component.
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the storage element in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • an embodiment or “an embodiment” mentioned in the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application.
  • the appearances of "in one embodiment” or “in an embodiment” appearing throughout the specification are not necessarily referring to the same embodiment.
  • the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It should be understood that, in the various embodiments of the present application, the size of the sequence numbers of the above processes does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” are often used interchangeably herein.
  • the term “and / or” in this document is only a kind of association relationship describing related objects, which means that there can be three kinds of relationships, for example, A and / or B can mean: A exists alone, A and B exist simultaneously, and exists alone B these three cases.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.
  • first and “second” appearing in this application are only for distinguishing different objects, and “first” and “second” themselves do not limit the actual order or function of the objects they modify.
  • the expressions "exemplary”, “example”, “for example”, “optional design” or “a design” appearing in this application are only used to represent examples, illustrations or illustrations. Any embodiment or design described as “exemplary”, “example”, “for example”, “optional design”, or “one design” in this application should not be interpreted as being inferior to other embodiments or The design scheme is more preferred or more advantageous. Rather, these words are used to present related concepts in a concrete way.
  • the network architecture and service scenarios described in the embodiments of the present application are for the convenience of the reader to clearly understand the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • all or part of the implementation may be implemented by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product may include one or more computer instructions.
  • the computer When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions according to the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic disk), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic disk
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信号的方法和装置,该传输信号的方法包括:网络设备配置两次信道接入过程,两次信道接入过程分别对应第一先听后发LBT过程和第二LBT过程,在第一LBT过程失败且第二LBT过程成功时,网络设备向终端设备发送接入信号。本申请实施例的传输信号的方法,有助于避免终端设备搜索小区的时间过长。

Description

一种传输信号的方法和装置
本申请要求于2018年8月8日提交中国专利局、申请号为201810898257.1、申请名称为“一种传输信号的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输信号的方法和装置。
背景技术
随着移动带宽(mobile broadband,MBB)业务的发展,用户对无线网络带宽和吞吐率的需求越来越大。为了更好地利用免授权频谱资源,为用户提供更高的业务速率和更好的用户体验,在长期演进(long term evolution,LTE)和新空口(new radio,NR)系统中引入非授权(un-licensed)频谱。
相对于授权频谱的独占特性,非授权频谱具有共享的性质,即只要符合一定法规的接入点,都可以使用该频谱进行数据的接收和发送,为了使得各个接入节点有较好的共存,LTE、NR引入非授权频谱后,采用先听后发(listen before talk,LBT)的信道接入机制,也就是说任何网络节点在发送数据之前,需要对待发送的信道进行监听(能量检测),只有信道处于空闲(IDLE)态时才能够进行数据发送,否则需要继续监听。
第四代移动通信技术(4G)的Release 13中引入授权辅助接入的长期演进(licensed-assisted access using long term evolution,LAA-LTE)技术,LTE-LAA中网络设备发送的数据包括发现参考信号(discovery reference signal,DRS),网络设备在发送DRS前首先进行LBT,若LBT失败则会直接舍弃掉不能发送的DRS,这会造成初始接入的终端设备搜索小区的时间过长,同时也会可能导致终端设备做邻小区测量时变得复杂。
发明内容
有鉴于此,本申请提供一种传输信号的方法和装置,以期避免终端设备搜索小区的时间过长。
第一方面,提供了一种传输信号的方法,该方法包括:网络设备根据第一先听后发LBT过程和第二LBT过程,对信道进行侦听;在该第一LBT过程失败且该第二LBT过程成功时,该网络设备在该信道上,向终端设备发送接入信号。
本申请实施例的传输信号的方法,网络设备在发送接入信号时配置两次先听后发LBT过程,在第一LBT过程失败且第二LBT过程成功时向终端设备发送接入信号,有助于避免终端设备搜索小区的时间过程,同时也有助于降低终端设备做邻小区测量的复杂度。
应理解,本申请实施例中,第一LBT过程失败,也可以理解为第一LBT过程未成功。其中,第一LBT过程失败可以包括网络设备在进行第一LBT过程中,第一LBT过程没 有完成空闲信道的侦听过程,即还未能反馈获取信道发送权限;或者,网络设备在进行第一LBT过程中,发现第一LBT过程进行不下去而失败。
在一些可能的实现方式中,在该第一LBT过程成功时,该网络设备在该信道上向该终端设备发送接入信号,该接入信号包括主同步信号PSS、辅同步信号SSS和物理广播信道PBCH。
结合第一方面,在第一方面的某些可能的实现方式中,该第一LBT过程中的能量门限值为第一能量门限值,该第二LBT过程中的能量门限值为第二能量门限值,该第一能量门限值小于该第二能量门限值。
在一些可能的实现方式中,该网络设备确定该第一LBT过程失败且第二LBT过程成功,包括:该网络设备确定该信道的能量检测值大于或者等于该第一能量门限值且小于该第二能量门限值。
结合第一方面,在第一方面的某些可能的实现方式中,该第一LBT过程中竞争时间窗口的长度大于该第二LBT中竞争时间窗口的长度。
在一些可能的实现方式中,该第一LBT过程中的竞争时间窗口为N个时间单元,该第二LBT过程中的竞争时间窗口为M个时间单元,N和M为正整数,该网络设备确定该第一LBT过程失败且该第二LBT过程成功,包括:该网络设备确定该信道的能量检测值未在N个时间单元内小于第三能量门限值,且该信道的能量门限值在M个时间单元内大于第四能量门限值,其中,该第一LBT过程对应的门限值为该第三能量门限值,该第二LBT过程对应的能量门限值为该第四能量门限值。
在一些可能的实现方式中,该第一LBT过程为LBT CAT4,该第二LBT过程为LBT CAT2。
结合第一方面,在第一方面的某些可能的实现方式中,该接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
结合第一方面,在第一方面的某些可能的实现方式中,该接入信号由主同步信号PSS和/或辅同步信号SSS组成。
结合第一方面,在第一方面的某些可能的实现方式中,该PSS和该SSS频分复用,或者,该PSS和该SSS时分复用。
结合第一方面,在第一方面的某些可能的实现方式中,该PSS和该SSS时分复用,且该PSS和该SSS所占的符号相邻。
在一些可能的实现方式中,该接入信号包括PSS、SSS和PBCH,且该接入信号的子载波间隔大于或者等于第一子载波间隔。
在一些可能的实现方式中,该PSS和该SSS采用频分复用的方式。
本申请实施例的传输信号的方法中提出了一种新的接入信号的格式,这种格式的接入信号的时频资源对应的时间长度较现有的接入信号的时频资源对应的时间长度小,有助于与较少对其他系统的干扰。
在一些可能的实现方式中,该接入信号仅包括SSS。
第二方面,提供了一种传输信号的方法,该方法包括:网络设备确定待发送的接入信号的个数为K个;该网络设备根据第一LBT过程和第二LBT过程,对信道进行侦听;在该第一LBT过程失败且该第二LBT过程成功时,从该K个接入信号中选择L个接入信号 发送给终端设备,其中,K和L均为正整数且K大于L。
应理解,本申请实施例中,第一LBT过程失败,也可以理解为第一LBT过程未成功。其中,第一LBT过程失败可以包括网络设备在进行第一LBT过程中,第一LBT过程没有完成空闲信道的侦听过程,即还未能反馈获取信道发送权限;或者,网络设备在进行第一LBT过程中,发现第一LBT过程进行不下去而失败。
结合第二方面,在第二方面的某些可能的实现方式中,在该第一LBT过程成功时,该网络设备将该K个接入信号都发送给该终端设备。
本申请实施例中的传输信号的方法,网络设备在发送多个接入信号时配置两次先听后发LBT过程,在第一LBT过程失败且第二LBT过程成功时向终端设备发送多个接入信号中的部分,有助于避免终端设备搜索小区的时间过程,同时也有助于降低终端设备做邻小区测量的复杂度。
第三方面,提供了一种传输信号的方法,该方法包括:网络设备根据第三先听后发LBT过程,对信道进行侦听;在该第三LBT过程失败时,该网络设备向终端设备发送接入信号,该接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
结合第三方面,在第三方面的某些可能的实现方式中,该接入信号由主同步信号PSS和/或辅同步信号SSS组成。
结合第三方面,在第三方面的某些可能的实现方式中,该PSS和该SSS频分复用,或者,该PSS和该SSS时分复用。
结合第三方面,在第三方面的某些可能的实现方式中,该PSS和该SSS时分复用,且该PSS和该SSS所占的符号相邻。
在一些可能的实现方式中,该接入信号包括PSS、SSS和PBCH,且该接入信号的子载波间隔大于或者等于第一子载波间隔。
在一些可能的实现方式中,该PSS和该SSS采用频分复用的方式。
本申请实施例的传输信号的方法中提出了一种新的接入信号的格式,这种格式的接入信号的时频资源对应的时间长度较现有的接入信号的时频资源对应的时间长度小,有助于与较少对其他系统的干扰。
在一些可能的实现方式中,该接入信号仅包括SSS。
第四方面,提供了一种传输信号的方法,该方法包括:网络设备根据第四先听后发LBT过程,对信道进行侦听;在该第四LBT过程失败时,该网络设备根据接入信号的个数与第一数值的关系,在该信道上向终端设备发送至少一个接入信号。
结合第四方面,在第四方面的某些可能的实现方式中,该网络设备根据接入信号的个数与第一数值的关系,向终端设备发送至少一个接入信号,包括:在该接入信号的个数大于或者等于该第一数值时,该网络设备向该终端设备发送该至少一个接入信号,该至少一个接入信号中每个接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
在一些可能的实现方式中,该每个接入信号由PSS和/或SSS组成。
在一些可能的实现方式中,该PSS和该SSS频分复用,或者,该PSS和该SSS时分复用。
在一些可能的实现方式中,该PSS和该SSS时分复用,且该PSS和该SSS所占的符号相邻。
在一些可能的实现方式中,该每个接入信号包括PSS、SSS和PBCH,且该每个接入信号的子载波间隔大于或者等于第一子载波间隔。
在一些可能的实现方式中,该PSS和该SSS采用频分复用的方式。
在一些可能的实现方式中,该接入信号仅包括SSS。
结合第四方面,在第四方面的某些可能的实现方式中,该网络设备根据接入信号的个数与第一数值的关系,向终端设备发送至少一个接入信号,包括:在该接入信号的个数小于第一数值时,向该终端设备发送该至少一个接入信号,该至少一个接入信号中每个接入信号的时频资源对应的时间长度大于或者等于第二时间长度。
在一些可能的实现方式中,该接入信号包括PSS、SSS和PBCH。
第五方面,提供了一种传输信号的方法,该方法包括:网络设备根据待发送的接入信号的个数和第二数值的关系,确定第五LBT过程;该网络设备根据该第五LBT过程,对信道进行侦听,在该第五LBT过程成功时,该网络设备在该信道上向终端设备发送至少一个接入信号。
在一些可能的实现方式中,该至少一个接入信号中每个接入信号包括PSS、SSS和PBCH。
结合第五方面,在第五方面的某些可能的实现方式中,该第五LBT过程为LBT CAT4或者LBT CAT2。
在一些可能的实现方式中,当该待发送的接入信号的个数大于或者等于该第二数值时,确定该第五LBT过程为LBT CAT4。
在一些可能的实现方式中,当该待发送的接入信号的个数小于该第二数值时,确定该第五LBT过程为LBT CAT2。
在一些可能的实现方式中,在该第五LBT过程失败时,该网络设备在该信道上向该终端设备发送该至少一个接入信号中的部分。
在一些可能的实现方式中,在该第五LBT过程失败时,该网络设备在该信道上向该终端设备发送至少一个接入信号,该至少一个接入信号中每个接入信号的时域资源对应的时间长度小于或者等于第一时间长度。
第六方面,提供了一种传输信道的方法,该方法包括:网络设备根据该待发送的接入信号的个数,确定第六LBT过程中竞争时间窗口的长度;该网络设备根据该第六LBT过程,对信道进行侦听,在该第六LBT过程成功时,该网络设备在该信道上向终端设备发送至少一个接入信号。
结合第六方面,在第六方面的某些可能的实现方式中,该待发送的接入信号的个数越少,该第六LBT过程中竞争时间窗口的长度越短。
在一些可能的实现方式中,在该第六LBT过程失败时,该网络设备在该信道上向该终端设备发送该至少一个接入信号中的部分。
在一些可能的实现方式中,在该第六LBT过程失败时,该网络设备在该信道上向该终端设备发送至少一个接入信号,该至少一个接入信号中每个接入信号的时域资源对应的时间长度小于或者等于第一时间长度。
第七方面,提供了一种传输信号的方法,该方法包括:终端设备接收网络设备发送的接入信号;该终端设备根据物理广播信道PBCH中的解调参考信号,确定该接入信号的格 式;或者,该终端设备根据辅同步信号SSS的时域位置,确定该接入信号的格式,该接入信号包括该SSS;或者,该终端设备根据辅同步信号SSS的频域位置,确定该接入信号的格式,该接入信号包括该SSS;或者,该终端设备根据该接入信号的子载波间隔,确定该接入信号的格式。
结合第七方面,在第七方面的某些可能的实现方式中,该接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
结合第七方面,在第七方面的某些可能的实现方式中,该接入信号由主同步信号PSS和/或辅同步信号SSS组成。
结合第七方面,在第七方面的某些可能的实现方式中,该PSS和该SSS频分复用,或者,该PSS和该SSS时分复用。
结合第七方面,在第七方面的某些可能的实现方式中,该PSS和该SSS时分复用,且该PSS和该SSS所占的符号相邻。
在一些可能的实现方式中,该接入信号包括PSS、SSS和PBCH,且该接入信号的子载波间隔大于或者等于第一子载波间隔。
在一些可能的实现方式中,该PSS和该SSS采用频分复用的方式。
本申请实施例的传输信号的方法中提出了一种新的接入信号的格式,这种格式的接入信号的时频资源对应的时间长度较现有的接入信号的时频资源对应的时间长度小,有助于与较少对其他系统的干扰。
在一些可能的实现方式中,该接入信号仅包括SSS。
第八方面,提供了一种传输信号的装置,用于执行上述第一方面至第六方面或其任一可能的实现方式中的方法。具体地,该传输信号的装置可以包括用于执行第一方面至第六方面或其任一可能的实现方式中的方法的单元。
第九方面,提供了一种传输信号的装置,用于执行上述第七方面或其任一可能的实现方式中的方法。具体地,该传输信号的装置可以包括用于执行第七方面或其任一可能的实现方式中的方法的单元。
第十方面,提供一种传输信号的装置,该装置可以为上述方法设计中的网络设备或者为设置在网络设备中的芯片。该装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面至第六方面及其任意一种可能的实现方式中网络设备所执行的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
当该装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。
当该装置为配置于网络设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十一方面,提供了一种传输信号的装置,该装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该装置包括:处理器,与存储器耦合,可用于执行存储器中的指令,以实现上述第七方面及其任意一种可能的实现方式中终端设备所执行的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
当该装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
当该装置为配置于终端设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第十二方面,提供了一种程序,该程序在被处理器执行时,用于执行第一方面至第七方面提供的方法。
第十三方面,提供了一种程序产品,所述程序产品包括:程序代码,当所述程序代码被装置(例如,网络设备或者终端设备)的通信单元、处理单元或收发器、处理器运行时,使得该装置执行上述第一方面至第七方面及其可能的实施方式中的任一方法。
第十四方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序,所述程序使得装置(例如,网络设备或者终端设备)执行上述第一方面至第七方面及其可能的实施方式中的任一方法。
附图说明
图1是本申请实施例涉及的通信系统的示意图。
图2是本申请实施例提供的一种网络架构的示意图。
图3是本申请实施例提供的另一种网络架构的示意图。
图4是本申请实施例提供的一种SSB的结构和传输示意图。
图5是本申请实施例提供的一种传输信号的方法的示意性流程图。
图6是本申请实施例提供的一种接入信号的机构示意图。
图7是本申请实施例提供的另一种接入信号的结构示意图。
图8是本申请实施例提供的另一种接入信号的结构示意图。
图9是本申请实施例提供的另一种接入信号的结构示意图。
图10是本申请实施例提供的另一种接入信号的结构示意图。
图11是本申请实施例提供的另一种接入信号的结构示意图。
图12是本申请实施例提供的另一种接入信号的结构示意图。
图13是本申请实施例提供的一种传输信号的方法的另一示意性流程图。
图14是本申请实施例提供的一种传输信号的方法的另一示意性流程图。
图15是本申请实施例提供的一种传输信号的方法的另一示意性流程图。
图16是本申请实施例提供的一种传输信号的方法的另一示意性流程图。
图17是本申请实施例提供的一种传输信号的方法的另一示意性流程图。
图18是本申请实施例提供的一种传输信号的方法的另一示意性流程图。
图19是本申请实施例提供的一种传输信号的方法的另一示意性流程图。
图20是本申请实施例提供的一种传输信号的方法的另一示意性流程图。
图21是本申请实施例提供的一种传输信号的装置的示意性框图。
图22是本申请实施例提供的另一种传输信号的装置的示意性框图。
图23是本申请实施例提供的另一种传输信号的装置的示意性框图。
图24是本申请实施例提供的另一种传输信号的装置的示意性框图。
图25是本申请实施例提供的另一种传输信号的装置的示意性框图。
图26是本申请实施例提供的另一种传输信号的装置的示意性框图。
图27是本申请实施例提供的一种网络设备的结构示意图。
图28是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技 术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请实施例提供的一种通信系统100的示意图,如图1所示,终端设备130接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端设备通信。该无线网络包括RAN110和核心网(CN)120,其中RAN110用于将终端设备130接入到无线网络,CN120用于对终端设备进行管理并提供与外网通信的网关。
应理解,本申请提供的传输信号方法可适用于无线通信系统,例如,图1中所示的无线通信系统100。处于无线通信系统中的两个通信装置间具有无线通信连接,该两个通信装置中的一个通信装置可对应于图1中所示的终端设备130,例如,可以为图1中的终端设备130,也可以为配置于终端设备130中的芯片;该两个通信装置中的另一个通信装置可对应于图1中所示的RAN110,例如,可以为图1中的RAN110,也可以为配置于RAN110中的芯片。
以下,不失一般性,以终端设备与网络设备之间的交互过程为例详细说明本申请实施例。可以理解,处于无线通信系统中的任意一个终端设备可以基于相同的方法与具有无线通信连接的一个或多个网络设备通信。本申请对此不做限定。
本申请实施例描述的网络架构是为了便于读者清楚理解本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图2是本申请实施例提供的一种网络架构的示意图,如图2所示,该网络架构包括CN设备和RAN设备。其中RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以与基带装置集成在同一个物理装置中,或者部分拉远部分与基带装置集成。例如,在LTE通信系统中,作为RAN设备的eNB包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)相对于BBU拉远布置。
RAN设备和终端之间的通信遵循一定的协议层结构。例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
RAN设备可以由一个节点实现无线资源控制、分组数据汇聚层协议、无线链路控制、和媒体接入控制等协议层的功能;或者可以由多个节点实现这些协议层的功能;例如,在 一种演进结构中,RAN设备可以包括CU和DU,多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
请继续参考图3,图3示出了本申请实施例提供的另一种网络架构的示意图,相对于图2所示的架构,还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端,或者终端产生的信令可以通过DU接收后发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给终端或CU。在以上实施例中CU划分为RAN侧的网络设备,此外,也可以将CU划分为CN侧的网络设备,在此不做限制。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端或者网络设备。当采用以上CU-DU的结构时,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的网络设备。
本申请实施例中CU和DU的架构不限于5G NR gNB,还可以应用在LTE基站划分为CU和DU的场景。可选的,当为LTE基站时,所述协议层不包含SDAP层。
下面,在介绍本申请实施例之前,首先对本申请实施例涉及的技术术语进行简单介绍。
1、LBT
为了实现在非授权频谱上满足和不同运营商的网络设备、终端设备,以及Wi-Fi等异系统无线节点的友好共存,工作在非授权频谱上的LTE系统采用先听后发(listen before talk,LBT)信道接入机制,其中LBT也称之为信道侦听。网络设备或终端设备在发送信息之前需要对信道进行侦听,侦听到信道空闲后才能占用信道发送信息。发送节点(包括网络设备或终端设备)在想要占用的资源之前侦听到信道空闲称之为LBT侦听成功,反之称之为LBT侦听失败。发送节点在占用信道后,可以连续发送信息的最大时间长度为最大信道占用时间(maximum channel occupancy time,MCOT),持续占用信道达到该长度后需要释放信道,重新执行LBT后才能再次接入。
LBT侦听类型可以包括多种,其中的一种为随机回退空闲信道评测(clear channel assessment,CCA)。其中随机回退CCA也称为第一类信道侦听(type 1 channel access)。在随机回退CCA中,发送设备随机生成一个回退计数器,在侦听到信道空闲时将回退计数器减一,并在完成回退计数器倒数后接入信道。随机回退CCA的具体流程是:发送设备在0~初始竞争窗口(contention window,CW)之间均匀随机生成一个回退计数器N,并且以侦听时隙(CCA slot)(例如时长为9us)为粒度进行信道侦听,如果侦听时隙内检测到信 道空闲,则将回退计数器N减一,反之,如果侦听时隙内检测到信道忙碌,则将回退计数器挂起,即,回退计数器N在信道忙碌时间内保持不变,直到检测到信道空闲时,才重新对回退计数器进行倒数。当回退计数器归零时,则认为信道侦听成功,发送设备可以立即占用该信道发送信息。另外,发送设备也可以在回退计数器归零后,不立即发送信息而自行等待一段时间,等待结束后,在需要发送信息的时刻之前再在一个额外的时隙侦听一次,若该额外的时隙内侦听到信道空闲则认为信道侦听成功或LBT成功,可以立即发送信息。若在该信息的起始时刻之前未完成回退计数器归零,或者该额外的侦听时隙为忙碌,则称信道侦听失败或LBT失败。其中,发送设备包括终端设备或网络设备。网络设备通过执行随机回退的CCA成功后对应的MCOT为DL MCOT。终端设备通过执行随机回退的CCA成功后对应的MCOT为UL MCOT。CW也称之为CW大小(contention window size,CWS)。
另一种LBT类型为单时隙CCA。单时隙CCA也称为也称之为Type 2 channel access或单次(One shot)CCA或25us CCA,其流程是:发送设备执行一个侦听时隙长度固定(例如该侦听时隙的长度固定为25us)的单时隙的CCA侦听,如果该单时隙内检测到信道空闲,则认为信道侦听成功或LBT成功,发送设备可以立即接入信道;如果该单时隙内检测到信道忙碌,则称信道侦听失败或LBT失败,发送设备放弃发送信息,可以等待下一个可以使用单时隙执行信道侦听从而接入信道的机会之前再执行下一次的单时隙CCA侦听。
信道状态包括两种:信道空闲、信道忙碌。信道状态的判断准则为:无线通信设备(基站设备或终端设备)将侦听时隙内的接收到信道上的功率与能量检测门限(CCA-energy detection,CCA-ED)比较,如果高于门限,则状态为信道忙碌,如果低于门限,则状态为信道空闲。
2、LBT的类型
目前协议中规定的LBT有四种类型:
CAT1:No LBT;
CAT2:LBT without random back-off;
CAT3:LBT with random back-off with fixed size of contention window;
CAT4:LBT with random back-off with variable size of contention window。
应理解,LBT CAT1可以理解为不用进行LBT过程而直接发送信息,或者,还可以理解为能量检测门限值为无穷大的一个数值。
下面对上述几种LBT类型进行简单介绍。
LBT CAT1
LBT CAT1为无LBT过程,因为有的国家和地区并不强制要求在非授权频谱上实施LBT机制。
LBT CAT2
采用固定时长的帧,包括信道占用时间和空闲时间。在要进行数据传输之前进行CCA,如果信道空闲,则在随后的信道占用时间进行数据传输,否则在整个帧周期内都无法传输信号。发送端发送数据前确定信号是否空闲的时间长度是确定的。
例如,当前传输的接入信号周期小于1ms时,只要网络设备侦听T drs=25us时间为空闲态,网络设备就可以发送接入信号。其中T drs=25us,包括T f=16us和T sl=9us。
应理解,25us包括的2个时间段,表示需要做两个时间的能量检测。如果两个时间段都是空闲(检测到的能量小于一定的门限),才认为25us空闲。
这里的LBT CAT2和单次(One shot)CCA过程相同,采用固定时间长度的侦听,不需要做随机回退,统称为LBT CAT2。
能量检测门确定过程
当网络设备检测的能量小于或者等于X Thresh_max,则认为该时间段内信道为空闲X Thresh_max计算方式:
如果能够确保没有其它系统共享此频谱(如通过某一地域),则由公式(1)计算X Thresh_max
Figure PCTCN2019099641-appb-000001
其中,X r如果定义了某特定地域定义的需求,则定义的最大能力检测门限就是对应的数值。如果没有定义,则X r=T max+10dB
否则,由公式(2)计算X Thresh_max
Figure PCTCN2019099641-appb-000002
其中,T A=10dB,当前传输信号包括物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)或者信道状态信息参考信号(channel state information reference,CSI-RS)中的一种或者多种时;
T A=5dB,当仅仅包括接入信号,但不包括PDSCH、PDCCH或者CSI-RS中的一种或者多种时;
P H=23dBm;
P TX是网络设备的某一载波上的最大发射功率;
T max(dBm)=10·log10(3.16228·10 -8(mW/MHz)·BWMHz(MHz))。
LBT CAT3(采用固定长度竞争时间窗口的随机退避LBT)
采用不固定帧周期的帧结构,以负载变化为依据的模式。竞争窗口长度固定,采用的是扩展CCA(extended CCA,ECCA),在检测到信道空闲时,数据传输可以立即开始,否则就要进入竞争时间窗口,即固定数目的ECCA窗口。
LBT CAT4(采用非固定长度竞争时间窗口的随机退避LBT)
在检测到信道被占用或者到达最大传输时间之后,发送端进入竞争时间窗口。与采用固定长度竞争时间窗口不同的是,发送端可以改变竞争时间窗口的长度。
LBT CAT4和上述的type 1channel access过程类似,均需要做回退窗口的随机产生。这本文中统成为LBT CAT4。
例如,LBT CAT4的接入过程中可以设置竞争时间窗口的长度为10个时隙(slot), 若该连续的10个slot内检测的能量检测值均小于能量门限值,则认为LBT成功。
以下介绍一个具体的LBT CAT4过程:
defer阶段(时间长度为T d=25us):发送端等待16us,然后判断1个9us的时隙(slot)时长,如果该slot为空闲,则完成defer阶段,进入下面的步骤:(1)对计数器(counter)进行赋初值N,其中N是在0至CW p之间产生的随机数值。
例如,CW p的取值可以参见下表:
表1信道接入等级类别
Figure PCTCN2019099641-appb-000003
应理解,T mcot,p表示LBT成功后允许发送信号的时间长度。
例如,当信道接入过程的优先级类别为1时,发送端可以随机从3至7中选择一个数作为N,例如,N=6,即该发送端确定LBT过程中竞争时间窗口长度为6个时隙(slot)。
(2)如果N大于0,将计数器减一,即设置N=N-1。
(3)对下一个时隙长度进行信道检测,如果信道检测为空闲,则进行步骤(4),否则进行步骤(5)。
(4)如果N=0,则停止(即完成LBT过程);否则,进行步骤(2)。
(5)继续进行一个时长为T d的信道检测,直到检测出T d内所有的时隙(slot)为空闲,则进行步骤(4);否则继续步骤(5)。
其中,步骤(5)中的T d长度包括长度T f=16us的时长和m p个连续时隙(slot)时长(T sl=9us)。
3、同步信号广播信道块(synchronous signal/PBCH block,SS/PBCH block)
LTE中,主同步信号(primary synchronization signal,PSS)与辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)块的频域位置与NR中不同。
SS/PBCH block还可以称为SSB,SSB为NR中无线资源管理(radio resource management,RRM)测量中的一种参考信号,包含同步信号/物理广播信道,一个SSB由主同步信号、从同步信号,物理广播信道(physical broadcast channel,PBCH)以及为了解调PBCH所需的解调参考信号(demodulation reference signal,DMRS)构成。其中,PSS主要用于粗同步,SSS用于精同步以及基于SSB的测量,PBCH用于广播小区级别的系统信息,而DMRS除了用于PBCH的解调外,也可以用于基于SSB的测量。
终端设备读取SSB的作用:
PSS/SSS:信号同步、小区标识(cell ID)识别和SSB信号的能力检测(例如,测量对象的信号与干扰加噪比(signal to interference plus noise ratio,SINR)计算、接收信号强度指示(received signal strength indicator,RSSI)、参考信号接收功率(reference signal receiving power,RSRP)计算或者参考信号接收质量(reference signal receiving quality,RSRQ)计算等)。
PBCH:读取小区配置信息,为小区驻留和初始接入做准备。
可能会用到SSB信息的场景包括但不限于以下几种场景:
初始接入阶段1:终端设备搜索PSS/SSS,进行信号同步和小区标识(cell ID)识别、小区信号质量检测等。
初始接入阶段2:读取PBCH,进行PBCH解调和译码,读取小区驻留相关参数。
移动性测量/无线链路(radio link)检测:读取PSS/SSS,进行小区/beam信号测量(空闲(IDLE)态不需要解PBCH,连接态待定,主要是为了切换做准备)。
波束(beam)管理:读取PSS/SSS,进行RSRP测量。
应理解,不是所有的场景中都需要使用到PBCH信号。
图4示出了本申请实施例提供的一种SSB的结构和传输示意图,NR中的SSB包括PSS、SSS和PBCH。
应理解,以下在介绍本申请实施例的技术方案时,将图4中的SSB称为格式1的接入信号。
NR中SSB发送的周期:SSB的发送是周期性重复发送,这样会有利于终端设备初始接入时进行小区搜索,同时有利于终端设备进行移动性测量。SSB的发送周期是在广播信道中发送给终端设备的,其周期数值可以为5ms、10ms、20ms、40ms、80ms或者160ms。
一个小区可能会发送多个SSB:当发送多个SSB时,每个SSB可以理解为1个方向的区域覆盖,其中当处于低频(FR1)时,最多发送SSB的个数为L=4/8个;当处于高频时(FR2),做多SSB的个数为L=64个,且多个SSB的发送需要在一个5ms的时间内发送完毕。通常低频和高频是相对而言的,也可以以某一特定频率为分界,例如6GHz。
4、DRS
发现参考信号(discovery reference signal,DRS)是可以让终端设备发现发送节点的信号,DRS可以包括SSB信号中的全部信号,本申请中,DRS可以不包括SSB信号中的全部信号。
DRS信号的名称是在4G中命名的,在5G系统中,同样需要类似DRS的信号,包括SSB信号,或者包括SSB和剩余最小系统信息(remaining minimum system information,RMSI),用来接入点发现另外一个接入点,或者提供接入点的移动性测量,该信号的名称还没有确定,在这里统一叫做DRS或者接入信号(access signal)。
图5示出了本申请实施例提供的一种传输信号的方法200的示意性流程图,如图5所示,该方法200包括:
S210,该网络设备根据第一先听后发LBT过程和第二LBT过程,对信道进行侦听。
具体而言,网络设备在发送接入信号(access signal)之前,可以配置两次信道接入过程,第一次信道接入过程对应第一LBT过程,第二次信道接入过程对应第二LBT过程, 该网络设备根据第一LBT过程和第二LBT过程,对信道进行侦听。
应理解,本申请实施例中的第一LBT过程和第二LBT过程可以是同时进行的,也可以是串行进行的,本申请对此并不作任何限定。
S220,该网络设备确定该第一LBT过程失败且该第二LBT过程成功。
具体而言,该网络设备在进行信道侦听的过程中确定第一LBT过程失败且第二LBT过程成功。
应理解,本申请实施例中,第一LBT过程失败,也可以理解为第一LBT过程未成功。其中,第一LBT过程失败可以包括网络设备在进行第一LBT过程中,第一LBT过程没有完成空闲信道的侦听过程,即还未能反馈获取信道发送权限;或者,网络设备在进行第一LBT过程中,发现第一LBT过程进行不下去而失败。
可选地,该第一LBT过程中的能量门限值为第一能量门限值,该第二LBT过程中的能量门限值为第二能量门限值,该第一能量门限值小于该第二能量门限值。
可选地,该第一LBT过程为LBT CAT2,该第二LBT过程为新设计的LBT过程。
可选地,该新设计的LBT过程中能量门限值,相比第一LBT过程的能量门限值高一个偏移量,以便第二LBT过程相比第一LBT过程,信道侦听更容易,例如,确定方式可以为:
如果能够确保没有其它系统共享此频谱(如通过某一地域),则由公式(3)计算X’ Thresh_max
Figure PCTCN2019099641-appb-000004
其中,T format2=5dB,X r如果定义了某特定地域定义的需求,则定义的最大能力检测门限就是对应的数值。如果没有定义,则X r=T max+10dB。
否则,由公式(4)计算X' Thresh_max
Figure PCTCN2019099641-appb-000005
其中,T A=10dB,当前传输信号包括PDSCH、PDCCH或者CSI-RS中的一种或者多种时;
T A=5dB,当前传输信号仅仅包括格式1的接入信号,但不包括PDSCH、PDCCH或者CSI-RS中的一种或者多种时;
P H=23dBm;
P TX是网络设备的某一载波上的最大发射功率;
T max(dBm)=10·log10(3.16228·10 -8(mW/MHz)·BWMHz(MHz))。
应理解,本申请实施例中,T format2可以为5dB,也可以为3dB或者10dB,还可以为其他数值,本申请实施例对此并不作任何限定。
可选地,该网络设备确定该第一LBT过程失败且第二LBT过程成功,包括:
该网络设备确定该信道的能量检测值大于或者等于该第一能量门限值且小于该第二能量门限值。
例如,该网络设备对该信道进行能量检测的结果为-70dBm,该第一能量门限值为-72dBm,该第二能量门限值为-68dBm,则该网络设备确定该第一LBT过程失败且该第二LBT过程成功。
应理解,本申请实施例中,该第一LBT过程和该第二LBT过程可以和现有的LBT过程相同也可以不同,且该第一LBT过程和该第二LBT过程中门限值的确定方式也不限于以上的方式,还可以是通过其他方式的确定的,本申请对此并不作任何限定。
可选地,该第一LBT过程中竞争时间窗口的长度大于该第二LBT过程中竞争时间窗口的长度。
可选地,该第一LBT过程中竞争时间窗口的长度为N个时间单元,该第二LBT过程中竞争时间窗口的长度为M个时间单元,N和M为正整数,该网络设备确定该第一LBT过程失败且该第二LBT过程成功,包括:
该网络设备确定该信道的能量检测值未在N个时间单元内小于或者等于第三能量门限值,且该信道的能量门限值在M个时间单元内小于或者等于第四能量门限值,其中,该第一LBT过程对应的门限值为该第三能量门限值,该第二LBT过程对应的能量门限值为该第四能量门限值。
可选地,该第三能量门限值等于该第四能量门限值。
例如,该第一LBT过程为LBT CAT4,该第二LBT过程为LBT CAT2,LBT CAT4中的竞争时间窗口的长度为CW=13个时隙(slot),LBT CAT2是One-short的,该LBT CAT4和该LBT CAT2中的能量门限值均为-72dBm,则该网络设备在确定信道的能量检测值未能检测出13个时隙小于-72dBm,且在LBT CAT2的时间上,其检测能力均为小于-72dBm,该网络设备可以确定该LBT CAT4失败且LBT CAT2成功。
再例如,该第一LBT过程为LBT CAT4,该第二LBT过程为LBT CAT4,第一LBT过程的竞争时间窗口的长度CW=63个时隙(slot),第二LBT过程中的竞争时间窗口的长度为CW=15个时隙(slot),该两个LBT过程的能量门限值均为-72dBm,则在一定的时间段内,该网络设备在确定信道的能量检测值中未能检测到63个能量值小于-72dBm的时隙,且能够检测出15个能量值小于-72dBm的时隙,该网络设备可以确定该第一LBT过程失败且第二LBT成功。
应理解,本申请实施例中的第一LBT过程可以理解为一次比较“难”的LBT过程,该第二LBT过程可以理解为一次比较“容易”的LBT过程。
需要说明的是,上述LBT CAT4的竞争时间窗口CW参数,实际标准过程可能需要进行随机数N的产生过程,因此实际检测低于能量门限的个数N不一定为CW的数值,但从概率上讲,CW越大,N越大,为了方便描述,此处以N等于CW的数值进行描述。
S230,该网络设备在该信道上,向终端设备发送第一接入信号,该终端设备在该信道上,接收该网络设备发送的该第一接入信号。
具体而言,该网络设备在确定该第一LBT过程失败且该第二LBT过程成功后,向终端设备发送该第一接入信号。
可选地,本申请实施例中的第一接入信号为发现参考信号DRS。
可选地,该第一接入信号至少包括同步信号广播信道块SSB。
应理解,该第一接入信号中包括一个或者多个接入信号。
可选地,该第一接入信号的时频资源对应的时间长度小于第一时间长度。
应理解,本申请实施例中的第一时间长度可以与当前系统的子载波间隔相关,例如,当前系统的子载波间隔为15KHz时,每个符号对应的平均时间长度为71.4us,该第一时间长度可以为285.6us(即71.4us×4);又例如,当前系统的子载波间隔为30KHz时,每个符号对应的平均时间长度为35.7us,该第一时间长度可以为142.8us(即35.7us×4)。
还应理解,当前系统的子载波间隔为15KHz时,1个时隙(slot)内包括14个符号,这14个符号中部分符号对应的时间长度可能大于71.4us,部分符号对应的时间长度可能小于71.4us,这14个符号的平均时间长度可以为71.4us,本申请实施例中,为了方便描述,以一个符号对应的时间长度为71.4us进行说明。
还应理解,某些情况下,该第一接入信号的时频资源对应的时间长度小于第一时间长度还可以理解为该第一接入信号所占的符号个数小于4。
具体而言,在该网络设备在确定该第一LBT过程失败且该第二LBT过程成功后,该网络设备可以向终端设备发送该第一接入信号,该第一接入信号的格式可以包括但不限于以下图6至图12中的7种格式。
可选地,该第一接入信号仅包括PSS和SSS,且该PSS和该SSS时分复用。
图6示出了本申请实施例提供的一种接入信号的结构示意图,如图6所示,该接入信号仅包括PSS和SSS,相比于图4,PSS和SSS的位置并没有发生变化,只是将原来接入信号中的PBCH去掉。
图7示出了本申请实施例提供的另一种接入信号的结构示意图,如图7所示,该接入信号仅包括PSS和SSS,相比于图4,PSS和SSS的符号位置相邻,并且将原来接入信号中的PBCH去掉。
应理解,图6和图7中的接入信号中PSS和SSS采用时分复用(time division multiplexing,TDM)。
还应理解,在当前系统的子载波间隔为15KHz时,图6和图7所示的接入信号的时频资源对应的时间长度为142.8us(即71.4us×2),小于该第一时间长度285.6us。
还应理解,图6和图7所示的接入信号所占的符号个数为2个(小于4个)。
可选地,该第一接入信号仅包括PSS和SSS,且该PSS和该SSS频分复用。
图8示出了本申请实施例提供的另一种接入信号的结构示意图,如图8所示,该接入信号仅包括PSS和SSS,相比于图4,PSS和SSS采用频分复用(frequency division multiplexing,FDM)的方式。
应理解,在当前系统的子载波间隔为15KHz时,图8所示的接入信号的时频资源对应的时间长度为71.4us,小于该第一时间长度285.6us。
还应理解,图8所示的接入信号所占的符号个数为1个(小于4个)。
可选地,该第一接入信号的子载波间隔大于或者等于第一子载波间隔,比如系统中候选的子载波间隔为:15KHz,30Khz,60Khz,120KHz,240KHz,480Khz时,第一接入信号的子载波间隔可以选择为:30Khz,60Khz,120KHz,240KHz,480Khz,960KHz中的一种。
例如,当前系统的子载波间隔为15KHz,该第一接入信号的子载波间隔可以为30KHz或者60KHz;或者,当前系统的子载波间隔为30KHz,该第一接入信号的子载波间隔可以为60KHz或者120KHz。
图9示出了本申请实施例提供的另一种接入信号的结构示意图,如图9所示,该接入信号包括PSS、SSS和PBCH,相比于图4,将接入信号的子载波间隔(subcarrier spacing,SCS)扩大,即SSB所占的带宽增加,单个符号的时间长度减少。
例如,对于图4所示的SSB,PSS占用一个符号,当子载波间隔为15KHz时,在该符号上发送PSS的时间长度为71.4us,图9所示的接入信号中PSS可以占用一个符号,但是其子载波间隔可以扩大为30KHz,在该符号上发送PSS的时间长度为35.7us,其单个符号对应的时间长度减半,所以图9所示的接入信号的时频资源对应的时间长度为142.8us(35.7us×4),小于该第一时间长度285.6us。
还应理解,在当前系统的子载波间隔为15KHz时,图9所示的接入信号所占的符号个数为4个,但是每个符号对应的时间长度减半。
图10示出了本申请实施例提供的另一种接入信号的结构示意图,如图10所示,该接入信号包括PSS、SSS和PBCH,相比于图4,PSS和SSS采用FDM的方式,PBCH1和PBCH2采用FDM的方式,这样也使得图9的接入信号占用的时间长度减半。
应理解,在当前系统的子载波间隔为15KHz时,图10所示的接入信号的时频资源对应的时间长度为142.8us(71.4us×2),小于该第一时间长度285.6us。
还应理解,图10所示的接入信号所占的符号个数为2个(小于4个)。
可选地,该第一接入信号仅包括SSS或仅包括PSS。
图11示出了本申请实施例提供的另一种接入信号的结构示意图,如图11所示,该接入信号仅包括SSS。
应理解,在当前系统的子载波间隔为15KHz时,图11所示的接入信号的时频资源对应的时间长度为71.4us,小于该第一时间长度285.6us。
还应理解,图11所示的接入信号所占的符号个数为1个(小于4个)。
图12示出了本申请实施例提供的另一种接入信号的结构示意图,如图12所示,为了简化网络设备的复杂度,该接入信号包括PSS、SSS和PBCH,相比于图4,在图4所示的接入信号的基础上新增了SSS,新增的SSS和PSS采用FDM方式。
对于图12所示的接入信号的结构,网络设备发送信号时处理简单,即对于含有PSS的信号,不用依据LBT的结果,去重新调整数据格式。
本申请实施例中,可以将图4中的SSB的格式称为格式1,图6至图12所示的接入信号的格式称为格式2,格式2在格式1的基础上进行了改变,其目的是使得接入信号的时域资源对应的时间长度减少,当网络设备按照格式2发送如图6至图12的SSB时,有助于减少对其他系统的干扰。
应理解,本申请实施例中格式2的接入信号并不限定于图6至图12这7中格式,还可以是其他格式,只要是可以达到格式2的接入信号的效果的其他接入信号的格式,都应当认为是属于本申请实施例的保护范围之内。
可选地,若待发送的接入信号的个数为K个,在该网络设备确定该第一LBT失败且该第二LBT成功的情况下,该网络设备向该终端设备发送L个接入信号,K和L为正整 数且K大于L,也就是说,该网络设备从该K个接入信号中选择出L个接入信号,发送给该终端设备。
应理解,本申请实施例中,若该第一LBT过程成功,则该网络设备可以向该终端设备发送第二接入信号,该第二接入信号可以为如图4所示的接入信号。
还应理解,若待发送的接入信号的个数为K个,若该第一LBT成功,则该网络设备可以向该终端设备发送该K个接入信号。
S240,终端设备确定该第一接入信号的格式。
具体而言,当该终端设备接收到该第一接入信号后,首先确定该第一接入信号的格式,该终端设备依据格式进行PBCH接收,或者SSS接收,或者SSS和PBCH的接收。
格式解析的过程可以包括以下2个步骤:
(1)确定格式1的接入信号和格式2的接入信号的差异起始点。
可选地,若接入信号如图6所示,由于PSS/SSS相同,差异点是格式1的SSB存在PBCH,格式2的SSB不存在PBCH,其检测点是做PBCH的DMRS存在性检测。
可选地,若接入信号如图7所示,由于PSS相同,差异点是格式1的SSB和格式2的SSB中SSS的时域位置不同,其检测点是做SSS时域位置的检测。
可选地,若接入信号如图8所示,由于PSS相同,差异点是SSS的频域位置不同,其检测点是做SSS频域位置的检测。
可选地,若接入信号如图9所示,差异点是接入信号的子载波间隔不同,检测点是进行PSS所占符号的时间长度检测,从而推导出PSS的子载波间隔。
可选地,若接入信号如图10所示,差异点是SSS的频域位置不同,其检测点是做SSS频域位置检测。
可选地,若接入信号如图11所示,由于格式2的接入信号只包括SSS,检测点是先检测SSS,然后检测PSS是否存在或者检测PBCH的DMRS是否存在。
可选地,若接入信号如图12所示,差异点是在PSS对应的时域资源上新增了SSS,检测点是做PSS时域位置检测。
(2)利用差异点,确定网络设备发送的接入信号的格式。
应理解,本申请实施例中列举的格式2的接入信号包括但不限于以上图6至12中的7种结构,实际发送端在发送过程中,可以从上述7种结构中选择一种进行发送,终端设备可以提前获知网络设备会采用格式1的接入信号或者上述格式2中的接入信号中的一种进行发送,例如,网络设备和终端设备约定发送和接收的接入信号的格式为格式1或者图8所示的格式2,则终端设备在接收到该接入信号后,可以进行以下步骤检测该接入信号的格式:
步骤1:进行PSS符号序列检测,如果检测到PSS符号序列则执行步骤2;
步骤2:在预定的位置上进行SSS符号序列的检测;
如果在PSS对应符号位置上间隔一个符号上检测到SSS,则认为发送端是按照格式1发送的,并进行后续处理(如进行SSS的信号质量计算,当需要接收PBCH时,进行PBCH接收的解调)。
如果在PSS对应符号的相同符号上检测到SSS,则认为发送端是按照格式2发送的,只计算SSS的信号质量。
本申请实施例的传输信号的方法,在信道较忙时,发送端通过发送格式2的接入信号,有助于减少对其他系统的干扰,同时也有助于保证本系统中PSS/SSS的及时发送。
可选地,在该网络设备确定该第一LBT过程失败且该第二LBT过程成功之后,该方法200还包括:
该网络设备向该终端设别发送指示信息,该指示信息用于指示该格式2的接入信号发送功率。
具体而言,为了有利于该格式2的接入信号的发送,增加终端设备检测该格式2的接入信号的能力,相比于格式1的接入信号,该格式2的接入信号的发射功率可以和格式1的接入信号的发射功率不同,比如偏移offset为-3dB,0dB,3dB,应用场景可以是:当前覆盖区域内只有同系统的接入设备时,偏移量可以为正的数值,即发送功率大一些,保证终端设备更容易测量到该信号,当前无法保证区域内只有同系统的接入数值时,偏移量为0或者负数,即发送功率小一些,减少对其它系统的干扰。相关的发射功率的信息可以由广播信号通知。
应理解,本申请实施例中该格式2的接入信号的发射功率还可以由协议预定义,例如,该终端设备在检测到该接入信号的格式为格式2的接入信号时,可以根据协议预定义的格式2的发射功率对接入信号进行检测。
一个实施例中,图13示出了本申请实施例提供的一种传输信号的方法200的另一示意性流程图,如图13所示,该方法200包括:
S211,发送端配置两次发送接入信号的信道接入过程,该两次信道接入过程对应两种LBT检测,信道接入过程1的LBT为第一LBT过程,信道接入过程2的LBT为第二LBT过程。
应理解,本申请实施例中,发送端可以为网络设备。
S221,进行信道接入过程1和信道接入过程2的LBT;
S222,判断第一LBT过程是否成功,若第一LBT过程成功,则进行S231,若第一LBT过程失败,则进行S223。
S223,判断第二LBT过程是否成功,若第二LBT过程成功,则进行S232;若该第二LBT过程失败,则进行S233。
S231,发送第二接入信号,该第二接入信号为格式1的接入信号;
S232,发送第一接入信号,该第一接入信号为格式2的接入信号;
S233,结束发送接入信号。
本申请实施例的传输信号的方法,相比于现有技术,灵活配置了两次信道接入的过程,避免了发送端在一个信道接入不成功后放弃发送接入信号,从而有助于避免终端设备搜索小区的时间过长。
一个实施例中,图14示出了本申请实施例提供的一种传输信号的方法200的另一示意性流程图,如图14所示,该方法200包括:
S201,发送端确定待发送的接入信号的个数为K个,K为正整数;
S212,发送端配置两次发送接入信号的信道接入过程,该两次信道接入过程对应两种LBT检测,信道接入过程1的LBT为第一LBT过程,信道接入过程2的LBT为第二LBT过程。
S224,进行信道接入过程1和信道接入过程2的LBT;
S225,判断第一LBT过程是否成功,若第一LBT过程成功,则进行S234,若第一LBT过程失败,则进行S226。
S226,判断第二LBT过程是否成功,若第二LBT过程成功,则进行S235;若该第二LBT过程失败,则进行S236。
S234,发送该K个接入信号;
S235,从该K个接入信号中选择L个进行发送,L为正整数;
S236,结束发送接入信号。
应理解,该K个接入信号的格式可以都为格式1,也可以都为格式2,还可以是一部分为格式1另一部分为格式2,本申请对此并不作任何限定。
图15示出了本申请实施例提供的一种传输信号的方法300的另一示意性流程图,如图15所示,该方法300包括:
S310,网络设备根据第三先听后发LBT过程,对信道进行侦听。
可选地,该第三LBT过程为LBT CAT4或者LBT CAT2。
应理解,本申请实施例的传输方法300中并不限定该第三LBT过程的类型,可以是现有的LBT过程,也可以是新设计的LBT过程,本申请实施例对此并不作任何限定。
S320,确定该第三LBT过程失败;
S330,该网络设备在该信道上,向终端设备发送第三接入信号,该终端设备在该信道上接收该网络设备发送的该第三接入信号。
可选地,该第三接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
应理解,该第一时间长度的确定与上述方法200中的确定方式相同,为了简洁,在此不加赘述。可选地,该第三接入信号为发现参考信号DRS。
可选地,该第三接入信号中至少包括SSB。
可选地,该第三接入信号中SSB的格式可以如图6至图12所示,为了简洁,在此不加赘述。
可选地,该第三接入信号包括一个或者多个接入信号。
S340,该终端设备确定该第三接入信号的格式。
应理解,S340与方法200中S240类似,为了简洁,在此不加赘述。
还应理解,本申请实施例中,若S320中该第三LBT过程成功,则该网络设备可以向该终端设备发送该格式1的接入信号。
图16示出了本申请实施例提供的一种传输信号的方法300的另一示意性流程图,如图16所示,该方法300包括:
S301,发送端配置一次信道接入过程,该信道接入过程对应第三LBT过程。
应理解,本申请实施例中,发送端可以为网络设备。
还应理解,本申请实施例中,该发送端配置一个信道接入过程还可以理解为该发送端配置两次信道接入过程,其中一次信道接入过程可以对应第三LBT过程,另一次信道接入过程对应LBT CAT1(无LBT过程)。
S311,进行该信道接入过程对应的该第三LBT过程;
S312,判断该第三LBT过程是否成功,若该第三LBT过程成功,则进行S321,若该 第三LBT失败,则进行S322。
S321,发送第二接入信号,该第二接入信号为格式1的接入信号;
S322,发送第一接入信号,该第一接入信号为格式2的接入信号。
图17示出了本申请实施例提供的一种传输信号的方法400的另一示意性流程图,如图17所示,该方法400包括:
S410,网络设备根据第四先听后发LBT过程,对信道进行侦听。
可选地,该第四LBT过程为LBT CAT4或者LBT CAT2。
应理解,本申请实施例的传输方法400中并不限定该第四LBT过程的类型,可以是现有的LBT过程,也可以是新设计的LBT过程,本申请实施例对此并不作任何限定。
S420,该网络设备确定该第四LBT过程失败;
S430,该网络设备根据接入信号的个数与第一数值的关系,向终端设备发送至少一个接入信号,该终端设备接收该至少一个接入信号。
可选地,该网络设备根据接入信号的个数与第一数值的关系,向终端设备发送至少一个接入信号,包括:
在该接入信号的个数大于或者等于所述第一数值时,向该终端设备发送所述至少一个接入信号,该至少一个接入信号中每个接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
可选地,该至少一个接入信号中的至少部分接入信号为格式2的接入信号。
可选地,若该至少一个接入信号为多个接入信号,该多个接入信号中每两个相邻的接入信号之间不进行填充(padding)。
可选地,该网络设备根据接入信号的个数与第一数值的关系,向终端设备发送至少一个接入信号,包括:
在该接入信号的个数小于第一数值时,向该终端设备发送所述至少一个接入信号,该至少一个接入信号中每个接入信号的时频资源对应的时间长度大于或者等于第二时间长度。
可选地,该第二时间长度等于该第一时间长度。
可选地,该至少一个接入信号中的至少部分接入信号为格式1的接入信号。
S440,终端设备对该至少一个接入信号进行格式解析。
应理解,S440与上述方法200中的S240过程类似,为了简洁,在此不加赘述。
还应理解,本申请实施例中,若S420中该第四LBT过程成功,则该网络设备可以向该终端设备发送该至少一个接入信号,该至少一个接入信号中每个接入信号为格式1的接入信号,可选地,若该至少一个接入信号为多个接入信号,该多个接入信号中每两个相邻的接入信号之间进行填充(padding)。
一个实施例中,图18示出了本申请实施例提供的一种传输信号的方法400的另一示意性流程图,如图18所示,该方法400包括:
S401,发送端配置一种发送接入信号的信道接入过程。
应理解,本申请实施例中,发送端可以为网络设备。
还应理解,发送端配置一种发送接入信号的信道接入过程对应一次LBT,该LBT可以为LBT CAT4或者LBT CAT2。
S411,进行该信道接入过程的第四LBT过程;
S412,确定该第四LBT过程是否成功,若该第四LBT过程成功,则进行S431;否则,进行S421。
S421,确定接入信号的个数与第一数值的关系,若接入信号的个数大于或者等于第一数值,则进行S432;若小于该第一数值,则进行S433。
S431,发送端发送至少一个接入信号,该至少一个接入信号中至少部分接入信号为格式1的接入信号。
可选地,在该至少一个接入信号为多个接入信号时,S431中发送的多个接入信号之间添加填充(padding)比特。
S432,发送端发送至少一个接入信号,该至少一个接入信号中至少部分接入信号为格式2的接入信号;
S433,发送端发送至少一个接入信号,该至少一个接入信号中至少部分接入信号为格式1的接入信号。
可选地,在该至少一个接入信号为多个接入信号时,S431中发送的多个接入信号之间不进行填充(padding)。
本申请实施例的传输信号的方法,在LBT失败后,发送端可以根据接入信号的个数与第一数值的关系发送至少一个接入信号,有助于避免终端设备搜索小区的时间过长。
图19示出了本申请实施例的一种传输信号的方法500的另一示意性流程图,如图19所示,该方法500包括:
S510,根据待发送的接入信号的个数和第二数值的关系,确定第五LBT过程。
可选地,当该待发送的接入信号的个数大于或者等于该第二数值时,确定该第五LBT过程为LBT CAT4。
例如,当该第二数值为8时,该网络设备待发送的接入信号的个数为10个,则该网络设备配置LBT CAT4对信道进行侦听。
可选地,当该待发送的接入信号的个数小于该第二数值时,确定该第五LBT过程为LBT CAT2。
例如,当该第二数值为8时,该网络设备待发送的接入信号的个数为6个,则该网络设备配置LBT CAT2对信道进行侦听。
应理解,本申请实施例中网络设备根据待发送的接入信号的个数和第二数值的关系,确定的该第五LBT过程还可以为其他LBT过程,例如,当网络设备确定待发送的接入信号的个数大于该第二数值时,配置新设计的LBT过程(例如,该新设计的LBT过程中能量门限值高于LBT CAT2中的能量门限值);当网络设备确定待发送的接入信号的个数小于该第二数值时,配置LBT CAT2对信道进行侦听。
S520,根据该第五LBT过程,对信道进行侦听;
S530,在该第五LBT过程成功时,该网络设备在该信道上,向终端设备发送至少一个接入信号,该终端设备在该信道上,接收该网络设备发送的该至少一个接入信号。
可选地,该至少一个接入信号中每个接入信号包括PSS、SSS和PBCH。
具体而言,该网络设备通过待发送的接入信号的个数和第二数值的关系确定该第五LBT过程后,根据该第五LBT过程对信道进行侦听,若该第五LBT过程成功,则该网络 设备向该终端设备发送该至少一个接入信号。
例如,该网络设备待发送的接入信号的个数为10个,若该第五LBT过程成功,则该网络设备向该终端设备发送该10个接入信号。
又例如,该网络设备确定待发送的接入信号的个数为6个,若该第五LBT过程成功,则该网络设备向该终端设备发送6个接入信号。
S540,该终端设备确定该至少一个接入信号的格式。
应理解,S540和方法200中S240类似,为了简洁,在此不加赘述。
还应理解,本申请实施例中,S530中若该第五LBT过程失败,则该网络设备可以不向该终端设备发送该至少一个接入信号。
还应理解,S530中若该第五LBT过程失败,该网络设备可以从待发送的接入信号中选择一部分进行发送。
例如,待发送的接入信号的个数为10个,若该第五LBT过程失败,则该网络设备可以从该10个接入信号中选择4个进行发送。
还应理解,S530中若该第五LBT过程失败,该网络设备可以向该终端设备发送该至少一个接入信号,该至少一个接入信号中的至少部分接入信号为格式2的接入信号。
图20示出了本申请实施例的一种传输信号的方法600的另一示意性流程图,如图20所示,该方法600包括:
S610,网络设备根据该待发送的接入信号的个数,确定该第六LBT过程中竞争时间窗口的长度。可选地,该确定该第六LBT过程中竞争时间窗口的长度之前,该方法600还包括:
该网络设备根据该待发送的接入信号的个数和第三数值,确定该第六LBT过程。
应理解,该网络设备确定该第六LBT过程与上述方法500中S510类似,为了简洁,在此不加赘述。
具体而言,该第六LBT过程中竞争时间窗口的长度可以与该待发送的接入信号的个数相关联。
例如,当待发送的接入信号的个数越少,其对应的竞争窗口时间越短,其对应关系可以是一一对应关系,也可以是分段对应关系,例如,当待发送的接入信号个数为1至M 1时,对应的CW数值为CW 1,当发送的接入信号为M 1+1至M 2时,对应的CW的数值为CW 2
例如,表2示出了一种待发送的接入信号的个数与竞争时间窗口长度的关系。
表2待发送的接入信号的个数与竞争时间窗口长度的关系
待发送的接入信号的个数 竞争时间窗口的长度
1至M 1 CW 1
M 1+1至M 2 CW 2
…… ……
M n-1+1至M n CW n
应理解,竞争时间窗口的长度还和系统的子载波间隔相关联,相同的待发送接入信号的个数在不同的子载波间隔下,对应的时间窗口的长度可以不同。
例如,表3示出了另一种待发送的接入信号的个数与竞争时间窗口长度的关系。
表3待发送的接入信号的个数与竞争时间窗口长度的关系
Figure PCTCN2019099641-appb-000006
例如,当该待发送的接入信号的个数为10个,当前系统的子载波间隔为15KHz时,该网络设备确定竞争时间窗口的长度为6个时隙(slot)。
应理解,以上表格仅仅是示意性的,具体的待发送的接入信号的个数、子载波间隔与竞争时间窗口的对应关系并不限于以上举例,还可以为其他对应关系,本申请实施例对此并不作任何限定。
还应理解,本申请实施例的第六LBT过程可以为现有的LBT过程,也可以是新设计的LBT过程,本申请对此并不做限定。
还应理解,该第六LBT过程的确定可以参照上述方法500,也可以是其他确定方式,本申请对此并不作任何限定。
S620,根据该第六LBT过程,对信道进行侦听;
S630,在该第六LBT过程成功时,该网络设备在该信道上,向终端设备发送至少一个接入信号,该终端设备在该信道上,接收该网络设备发送的该至少一个接入信号;
S640,该终端设备确定该至少一个接入信号的格式。
应理解,S620-S640与方法500中S520-S540类似,为了简洁,在此不加赘述。
一个实施例中,该传输信号的方法还包括:
该网络设备确定待发送的信息包括接入信号以及PDSCH、PDCCH、CSI-RS中的至少一种,该接入信号的格式为格式1;
该网络设备配置一次信道接入过程(可选地,对应的LBT为LBT CAT4);
若LBT成功,则该网络设备发送该待发送的信息;若LBT失败,则该网络设备不发送该待发送的信息。
可选地,若接入信号之间没有数据,则接入信号之间进行填充(padding),以防止信道丢失。
一个实施例中,该传输信号的方法还包括:
该网络设备确定待发送的信息仅包括接入信号;
该网络设备配置一次信道接入过程(可选地,对应的LBT为LBT CAT2);
若LBT成功,则该网络设备发送该接入信号;或者,
若LBT失败,则该网络设备可以有以下两种处理方式:
(1)不发送该接入信号,且继续进行信道侦听;
(2)判断待发送的接入信号的个数,如果接入信号的个数大于或者等于第一数值,则按照格式2的接入信号发送;如果接入信号的个数小于或者等于第二数值,则按照格式1的接入信号发送。
一个实施例中,该传输信号的方法还包括:
该网络设备确定待发送的信息仅包括DRS;
该网络设备配置两次信道接入过程(对应两次LBT过程);
若第一次LBT成功,则该网络设备发送接入信号,该接入信号按照格式1发送;
若第一次LBT失败,则该网络设备进行第二次LBT;
若第二次LBT成功,则该网络设备发送接入信号,该接入信号按照格式2发送;
若第二次LBT失败,则该网络设备不发送该接入信号。
以上结合图1至图20,详细得描述了本申请实施例的传输信号的方法,下面结合图21至图28,详细描述本申请实施例的传输信号的装置、网络设备和终端设备,方法实施例中所描述的技术特征同样适用于以下装置实施例。
图21示出了本申请实施例提供的一种传输信号的装置700的示意性框图,如图21所示,该传输信号的装置700包括:
处理单元710,用于根据第一先听后发LBT过程和第二LBT过程,对信道进行侦听;
收发单元720,用于在该第一LBT过程失败且该第二LBT过程成功时,在该信道上,向终端设备发送接入信号。
可选地,该第一LBT过程中的能量门限值为第一能量门限值,该第二LBT过程中的能量门限值为第二能量门限值,该第一能量门限值小于该第二能量门限值。
可选地,该第一LBT过程中竞争时间窗口的长度大于该第二LBT中竞争时间窗口的长度。
可选地,该接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
可选地,该接入信号由主同步信号PSS和/或辅同步信号SSS组成。
可选地,该PSS和该SSS频分复用,或者,该PSS和该SSS时分复用。
可选地,该PSS和该SSS时分复用,且该PSS和该SSS所占的符号相邻。
具体地,该传输信号的装置700可对应于本申请实施例的传输信号的方法200中的网络设备,该传输信号的装置700可以包括用于执行图5中传输信号的方法200的网络设备执行的方法的模块(或者单元)。并且,该装置700中的各模块(或者单元)和上述其他操作和/或功能分别是为了实现图5中方法200的相应流程。各模块(或者单元)执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
应理解,该传输信号的装置700可以为网络设备,也可以为网络设备中的芯片或者功能单元。
图22示出了本申请实施例提供的另一种传输信号的装置800的示意性框图,如图22所示,该传输信号的装置800包括:
处理单元810,用于根据第三先听后发LBT过程,对信道进行侦听;
收发单元820,用于在该第三LBT过程失败时,在该信道上,向终端设备发送接入信号,该接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
可选地,该接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
可选地,该接入信号由主同步信号PSS和/或辅同步信号SSS组成。
可选地,该PSS和该SSS频分复用,或者,该PSS和该SSS时分复用。
可选地,该PSS和该SSS时分复用,且该PSS和该SSS所占的符号相邻。
具体地,该传输信号的装置800可对应于本申请实施例的传输信号的方法300中的网络设备,该传输信号的装置800可以包括用于执行图15中传输信号的方法300的网络设备执行的方法的模块(或者单元)。并且,该装置800中的各模块(或者单元)和上述其他操作和/或功能分别是为了实现图15中方法300的相应流程。各模块(或者单元)执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
应理解,该传输信号的装置800可以为网络设备,也可以为网络设备中的芯片或者功能单元。
图23示出了本申请实施例提供的另一种传输信号的装置900的示意性框图,如图23所示,该传输信号的装置900包括:
处理单元910,用于根据第四先听后发LBT过程,对信道进行侦听;
处理单元910,用于在该第四LBT过程失败时,根据接入信号的个数与第一数值的关系,控制收发单元920向终端设备发送至少一个接入信号。
可选地,该处理单元910具体用于:在该接入信号的个数大于或者等于该第一数值时,控制该收发单元920向该终端设备发送该至少一个接入信号,该至少一个接入信号中每个接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
可选地,该处理单元910具体用于:该根据接入信号的个数小于第一数值时,控制该收发单元920向该终端设备发送该至少一个接入信号,该至少一个接入信号中每个接入信号的时频资源对应的时间长度大于或者等于第二时间长度。
具体地,该传输信号的装置900可对应于本申请实施例的传输信号的方法400中的网络设备,该传输信号的装置900可以包括用于执行图17中传输信号的方法400的网络设备执行的方法的模块(或者单元)。并且,该装置900中的各模块(或者单元)和上述其他操作和/或功能分别是为了实现图17中方法400的相应流程。各模块(或者单元)执行上述相应步骤的具体过程在方法400中已经详细说明,为了简洁,在此不再赘述。
应理解,该传输信号的装置900可以为网络设备,也可以为网络设备中的芯片或者功能单元。
图24示出了本申请实施例提供的另一种传输信号的装置1000的示意性框图,如图24所示,该传输信号的装置1000包括:
处理单元1010,用于根据待发送的接入信号的个数和第二数值的关系,确定第五LBT过程;
处理单元1010,还用于根据该第五LBT过程,对信道进行侦听;
收发单元1020,用于在该第五LBT过程成功时,向终端设备发送至少一个接入信号。
具体地,该传输信号的装置1000可对应于本申请实施例的传输信号的方法500中的网络设备,该传输信号的装置1000可以包括用于执行图19中传输信号的方法500的网络设备执行的方法的模块(或者单元)。并且,该装置1000中的各模块(或者单元)和上述其他操作和/或功能分别是为了实现图19中方法500的相应流程。各模块(或者单元)执行上述相应步骤的具体过程在方法500中已经详细说明,为了简洁,在此不再赘述。
应理解,该传输信号的装置1000可以为网络设备,也可以为网络设备中的芯片或者功能单元。
图25示出了本申请实施例提供的另一种传输信号的装置1100的示意性框图,如图 25所示,该传输信号的装置1100包括:
处理单元1110,用于根据待发送的接入信号的个数和第三数值的关系,确定第六LBT过程中竞争时间窗口的长度;
处理单元1110,还用于根据该第六LBT过程,对信道进行侦听;
收发单元1120,用于在该第六LBT过程成功时,向终端设备发送至少一个接入信号。
具体地,该传输信号的装置1100可对应于本申请实施例的传输信号的方法600中的网络设备,该传输信号的装置1100可以包括用于执行图20中传输信号的方法600的网络设备执行的方法的模块(或者单元)。并且,该装置1100中的各模块(或者单元)和上述其他操作和/或功能分别是为了实现图20中方法600的相应流程。各模块(或者单元)执行上述相应步骤的具体过程在方法600中已经详细说明,为了简洁,在此不再赘述。
应理解,该传输信号的装置1100可以为网络设备,也可以为网络设备中的芯片或者功能单元。
图26示出了本申请实施例提供的另一种传输信号的装置1200的示意性框图,如图26所示,该传输信号的装置1200包括:
收发单元1210,用于接收网络设备发送的接入信号;
处理单元1220,用于根据物理广播信道PBCH中的解调参考信号,确定该接入信号的格式;或者,
处理单元1220,用于根据辅同步信号SSS的时域位置,确定该接入信号的格式,该接入信号包括该SSS;或者,
处理单元1220,用于根据辅同步信号SSS的频域位置,确定该接入信号的格式,该接入信号包括该SSS;或者,
根据该接入信号的子载波间隔,确定该接入信号的格式。
可选地,该接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
可选地,该接入信号由主同步信号PSS和/或辅同步信号SSS组成。
可选地,该PSS和该SSS频分复用,或者,该PSS和该SSS时分复用。
可选地,该PSS和该SSS时分复用,且该PSS和该SSS所占的符号相邻。
具体地,该传输信号的装置1200可对应于本申请实施例的传输信号的方法200至方法600中的终端设备,该传输信号的装置1200可以包括用于执行图5、图15、图17、图19或图20中传输信号的方法200至方法600的终端设备执行的方法的模块(或者单元)。并且,该装置1200中的各模块(或者单元)和上述其他操作和/或功能分别是为了实现图5、图15、图17、图19或图20中方法200至方法600的相应流程。各模块(或者单元)执行上述相应步骤的具体过程在方法200至方法600中已经详细说明,为了简洁,在此不再赘述。
应理解,该传输信号的装置1200可以为终端设备,也可以为终端设备中的芯片或者功能单元。
应理解,以上装置中单元(或者模块)的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元(或者模块)可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元(或者模块)以软件通过处理元件调用的形式实现,部分单元(或者模块)以 硬件的形式实现。
在一个例子中,以上任一装置中的模块(或者单元)可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元(或者模块)可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些模块(或者单元)可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于收发单元(或者模块)是一种该装置的接口电路,用于从其它装置接收信号,也可以用于向其他装置发送信号。例如,当该装置以芯片的方式实现时,该收发单元是该芯片用于从其它芯片或装置接收信号的接口电路,也可以是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该收发单元可以是该芯片用于向其它芯片或装置发送信号的接口电路。
图27是本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图27所示,该网络设备包括:天线1301、射频装置1302、基带装置1303。天线1301与射频装置1302连接。在上行方向上,射频装置1302通过天线1301接收终端设备发送的信息,将终端设备发送的信息发送给基带装置1303进行处理。在下行方向上,基带装置1303对终端设备的信息进行处理,并发送给射频装置1302,射频装置1302对终端设备的信息进行处理后经过天线1301发送给终端设备。
基带装置1303可以包括一个或多个处理元件13031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1303还可以包括存储元件13032和接口13033,存储元件13032用于存储程序和数据;接口13033用于与射频装置1302交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1303,例如,以上用于网络设备的装置可以为基带装置1303上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。
图28示出了本申请实施例提供的一种终端设备的结构示意图。其可以为以上实施例中的终端设备,用于实现以上实施例中终端设备的操作。如图28所示,该终端包括:天 线1410、射频装置1420、信号处理部分1430。天线1410与射频装置1420连接。在下行方向上,射频装置1420通过天线1410接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1430进行处理。在上行方向上,信号处理部分1430对终端设备的信息进行处理,并发送给射频装置1420,射频装置1420对终端设备的信息进行处理后经过天线1410发送给网络设备。
信号处理部分1430可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选的,以上用于终端设备的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件1431,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1432和接口电路1433。存储元件1432用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件1432中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1433用于与其它子系统通信。以上用于终端设备的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统的形式实现,该SOC芯片,用于实现以上方法。
本申请实施例还提供了一种通信系统,该通信系统包括:上述终端设备和上述网络设备。
在本申请实施例中,应注意,本申请实施例上述的方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完 成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储元件可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,说明书中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的术语“第一”、“第二”等仅是为了区分不同的对象,“第一”、“第二”本身并不对其修饰的对象的实际顺序或功能进行限定。本申请中出现的“示例性的”,“示例”,“例如”,“可选的设计”或者“一种设计”等表述,仅用于表示举例子、例证或说明。本申请中被描述为“示例性的”,“示例”,“例如”,“可选的设计”或者“一种设计”的任何实施例或设计方案都不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用这些词旨在以具体方式呈现相关概念。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
本申请实施例描述的网络架构以及业务场景是为了便于读者清楚理解本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的 技术问题,同样适用。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品可以包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁盘)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (52)

  1. 一种传输信号的方法,其特征在于,包括:
    根据第一先听后发LBT过程和第二LBT过程,对信道进行侦听;
    在所述第一LBT过程失败且所述第二LBT过程成功时,在所述信道上向终端设备发送接入信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一LBT过程中的能量门限值为第一能量门限值,所述第二LBT过程中的能量门限值为第二能量门限值,所述第一能量门限值小于所述第二能量门限值。
  3. 根据权利要求1所述的方法,其特征在于,所述第一LBT过程中竞争时间窗口的长度大于所述第二LBT中竞争时间窗口的长度。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
  5. 根据权利要求4所述的方法,其特征在于,所述接入信号由主同步信号PSS和/或辅同步信号SSS组成。
  6. 根据权利要求5所述的方法,其特征在于,所述PSS和所述SSS频分复用,或者,所述PSS和所述SSS时分复用。
  7. 根据权利要求5所述的方法,其特征在于,所述PSS和所述SSS时分复用,且所述PSS和所述SSS所占的符号相邻。
  8. 一种传输信号的方法,其特征在于,包括:
    根据第三先听后发LBT过程,对信道进行侦听;
    在所述第三LBT过程失败时,在所述信道上向终端设备发送接入信号,所述接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
  9. 根据权利要求8所述的方法,其特征在于,所述接入信号由主同步信号PSS和/或辅同步信号SSS组成。
  10. 根据权利要求9所述的方法,其特征在于,所述PSS和所述SSS频分复用,或者,所述PSS和所述SSS时分复用。
  11. 根据权利要求9所述的方法,其特征在于,所述PSS和所述SSS时分复用,且所述PSS和所述SSS所占的符号相邻。
  12. 一种传输信号的方法,其特征在于,包括:
    接收网络设备发送的接入信号;
    根据物理广播信道PBCH中的解调参考信号,确定所述接入信号的格式;或者,
    根据辅同步信号SSS的时域或频域位置,确定所述接入信号的格式,所述接入信号包括所述SSS;或者,
    根据所述接入信号的子载波间隔,确定所述接入信号的格式。
  13. 根据权利要求12所述的方法,其特征在于,所述接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
  14. 根据权利要求12或13所述的方法,其特征在于,所述接入信号由主同步信号 PSS和/或辅同步信号SSS组成。
  15. 根据权利要求14所述的方法,其特征在于,所述PSS和所述SSS频分复用,或者,所述PSS和所述SSS时分复用。
  16. 根据权利要求14所述的方法,其特征在于,所述PSS和所述SSS时分复用,且所述PSS和所述SSS所占的符号相邻。
  17. 一种传输信号的装置,其特征在于,包括:
    处理单元,用于根据第一先听后发LBT过程和第二LBT过程,对信道进行侦听;
    收发单元,用于在所述第一LBT过程失败且所述第二LBT过程成功时,在所述信道上向终端设备发送接入信号。
  18. 根据权利要求17所述的装置,其特征在于,所述第一LBT过程中的能量门限值为第一能量门限值,所述第二LBT过程中的能量门限值为第二能量门限值,所述第一能量门限值小于所述第二能量门限值。
  19. 根据权利要求17所述的装置,其特征在于,所述第一LBT过程中竞争时间窗口的长度大于所述第二LBT中竞争时间窗口的长度。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,所述接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
  21. 根据权利要求20所述的装置,其特征在于,所述接入信号由主同步信号PSS和/或辅同步信号SSS组成。
  22. 根据权利要求21所述的装置,其特征在于,所述PSS和所述SSS频分复用,或者,所述PSS和所述SSS时分复用。
  23. 根据权利要求21所述的装置,其特征在于,所述PSS和所述SSS时分复用,且所述PSS和所述SSS所占的符号相邻。
  24. 一种传输信号的装置,其特征在于,包括:
    处理单元,用于根据第三先听后发LBT过程,对信道进行侦听;
    收发单元,用于在所述第三LBT过程失败时,在所述信道上向终端设备发送接入信号,所述接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
  25. 根据权利要求24所述的装置,其特征在于,所述接入信号由主同步信号PSS和/或辅同步信号SSS组成。
  26. 根据权利要求25所述的装置,其特征在于,所述PSS和所述SSS频分复用,或者,所述PSS和所述SSS时分复用。
  27. 根据权利要求25所述的装置,其特征在于,所述PSS和所述SSS时分复用,且所述PSS和所述SSS所占的符号相邻。
  28. 一种传输信号的装置,其特征在于,包括:
    收发单元,用于接收网络设备发送的接入信号;
    处理单元,用于根据物理广播信道PBCH中的解调参考信号,确定所述接入信号的格式;或者,
    根据辅同步信号SSS的时域或频域位置,确定所述接入信号的格式,所述接入信号包括所述SSS;或者,
    根据所述接入信号的子载波间隔,确定所述接入信号的格式。
  29. 根据权利要求28所述的装置,其特征在于,所述接入信号的时频资源对应的时间长度小于或者等于第一时间长度。
  30. 根据权利要求28或29所述的装置,其特征在于,所述接入信号由主同步信号PSS和/或辅同步信号SSS组成。
  31. 根据权利要求30所述的装置,其特征在于,所述PSS和所述SSS频分复用,或者,所述PSS和所述SSS时分复用。
  32. 根据权利要求30所述的装置,其特征在于,所述PSS和所述SSS时分复用,且所述PSS和所述SSS所占的符号相邻。
  33. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述至少一个处理器用于执行如权利要求1-11中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述至少一个处理器用于执行如权利要求12-16中任一项所述的方法。
  35. 一种终端设备,其特征在于,包括如权利要求28-32中任一项所述的装置,或者,包括如权利要求34所述的装置。
  36. 一种可读存储介质,用于存储指令,当所述指令被执行时,使如权利要求1至16中任一项所述的方法被实现。
  37. 一种传输信号的方法,其特征在于,包括:
    根据第一先听后发LBT过程和第二LBT过程,对信道进行侦听;
    在所述第一LBT过程失败且所述第二LBT过程成功时,向终端设备发送L个接入信号,所述L个接入信号为K个接入信号中的部分,其中,K和L均为正整数。
  38. 根据权利要求37所述的方法,其特征在于,所述接入信号包括主同步信号PSS、辅同步信号SSS和物理广播信道PBCH中的一个或者多个。
  39. 一种传输信号的方法,其特征在于,包括:
    根据待发送的接入信号的个数,确定第一先听后发LBT过程中竞争时间窗口的长度;
    根据所述第一LBT过程,对信道进行侦听;
    在所述第一LBT过程成功时,在所述信道上向终端设备发送所述接入信号。
  40. 根据权利要求39所述的方法,其特征在于,所述接入信号的个数与所述接入信号的子载波间隔SCS相关联。
  41. 根据权利要求39或40所述的方法,其特征在于,所述接入信号包括主同步信号PSS、辅同步信号SSS和物理广播信道PBCH中的一个或者多个。
  42. 一种传输信号的方法,其特征在于,包括:
    根据待发送的接入信号的个数和第一数值的关系,确定第一先听后发LBT过程;
    根据所述第一LBT过程,对信道进行侦听;
    在所述第一LBT过程成功时,在所述信道上向所述终端设备发送所述接入信号。
  43. 根据权利要求42所述的方法,其特征在于,所述接入信号包括PSS、SSS和PBCH中的一个或者多个。
  44. 一种传输信号的装置,其特征在于,包括:
    处理单元,用于根据第一先听后发LBT过程和第二LBT过程,对信道进行侦听;
    收发单元,用于在所述第一LBT过程失败且所述第二LBT过程成功时,向终端设备 发送L个接入信号,所述L个接入信号为K个接入信号中的部分,其中,K和L均为正整数。
  45. 根据权利要求44所述的装置,其特征在于,所述接入信号包括主同步信号PSS、辅同步信号SSS和物理广播信道PBCH中的一个或者多个。
  46. 一种传输信号的装置,其特征在于,包括:
    处理单元,用于根据待发送的接入信号的个数,确定第一先听后发LBT过程中竞争时间窗口的长度;
    所述处理单元,还用于根据所述第一LBT过程,对信道进行侦听;
    收发单元,用于在所述第一LBT过程成功时,在所述信道上向终端设备发送所述接入信号。
  47. 根据权利要求46所述的装置,其特征在于,所述接入信号的个数与所述接入信号的子载波间隔SCS相关联。
  48. 根据权利要求46或47所述的装置,其特征在于,所述接入信号包括主同步信号PSS、辅同步信号SSS和物理广播信道PBCH中的一个或者多个。
  49. 一种传输信号的装置,其特征在于,包括:
    处理单元,用于根据待发送的接入信号的个数和第一数值的关系,确定第一先听后发LBT过程;
    所述处理单元还用于根据所述第一LBT过程,对信道进行侦听;
    收发单元,用于在所述第一LBT过程成功时,在所述信道上向所述终端设备发送所述接入信号。
  50. 根据权利要求49所述的装置,其特征在于,所述接入信号包括PSS、SSS和PBCH中的一个或者多个。
  51. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述至少一个处理器用于执行如权利要求37-43中任一项所述的方法。
  52. 一种可读存储介质,用于存储指令,当所述指令被执行时,使得如权利要求37-43中任一项所述的方法被实现。
PCT/CN2019/099641 2018-08-08 2019-08-07 一种传输信号的方法和装置 WO2020030008A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810898257.1A CN110831225A (zh) 2018-08-08 2018-08-08 一种传输信号的方法和装置
CN201810898257.1 2018-08-08

Publications (1)

Publication Number Publication Date
WO2020030008A1 true WO2020030008A1 (zh) 2020-02-13

Family

ID=69414540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099641 WO2020030008A1 (zh) 2018-08-08 2019-08-07 一种传输信号的方法和装置

Country Status (2)

Country Link
CN (1) CN110831225A (zh)
WO (1) WO2020030008A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498122A (zh) * 2020-03-19 2021-10-12 华为技术有限公司 通信方法和通信装置
WO2022099644A1 (zh) * 2020-11-13 2022-05-19 北京小米移动软件有限公司 一种数据传输方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559882A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 一种授权协助接入设备竞争接入参数配置的方法及装置
CN107409419A (zh) * 2015-02-24 2017-11-28 高通股份有限公司 针对包括未许可频谱的独立式基于竞争的通信的增强型prach
CN107948951A (zh) * 2017-11-29 2018-04-20 北京佰才邦技术有限公司 基于增强机器类通信的通信方法、接入设备、计算机存储介质
CN108270804A (zh) * 2016-12-30 2018-07-10 上海诺基亚贝尔股份有限公司 用于信号的复制的传输的通信方法和通信设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388780B2 (ja) * 2014-03-19 2018-09-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10893427B2 (en) * 2015-09-25 2021-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Communication terminal, radio network node and methods therein
CN106559795B (zh) * 2015-09-25 2022-07-29 中兴通讯股份有限公司 一种确定lbt模式的方法、装置和实现lbt模式切换的方法
CN106982111B (zh) * 2016-01-18 2020-11-03 中兴通讯股份有限公司 上行控制信息uci的上报方法及装置
CN106992804A (zh) * 2016-01-20 2017-07-28 中兴通讯股份有限公司 一种探测参考信号的发送方法和装置
CN107548070B (zh) * 2016-06-27 2023-10-27 中兴通讯股份有限公司 数据传输方法、装置及系统
CN108092930B (zh) * 2016-11-17 2024-01-16 华为技术有限公司 一种通信的方法及终端设备
US10681738B2 (en) * 2016-12-16 2020-06-09 Ofinno, Llc Random access in a wireless device and wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107409419A (zh) * 2015-02-24 2017-11-28 高通股份有限公司 针对包括未许可频谱的独立式基于竞争的通信的增强型prach
CN106559882A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 一种授权协助接入设备竞争接入参数配置的方法及装置
CN108270804A (zh) * 2016-12-30 2018-07-10 上海诺基亚贝尔股份有限公司 用于信号的复制的传输的通信方法和通信设备
CN107948951A (zh) * 2017-11-29 2018-04-20 北京佰才邦技术有限公司 基于增强机器类通信的通信方法、接入设备、计算机存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPREADTRUM COMMUNICATIONS: "Discussion on SS/PBCH block in NR-U operation", 3GPP TSG RAN WG1 MEETING #92BIS R1-1804218, 6 April 2018 (2018-04-06), XP051413167 *

Also Published As

Publication number Publication date
CN110831225A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
US20220070918A1 (en) Communication Method And Device
EP3605932B1 (en) Beam management methods, terminal device, network device and computer program
US20210250883A1 (en) Method and device for transmitting ssb in an unlicensed spectrum
WO2017054207A1 (zh) 一种无线接入方法、ue和基站
US20200137703A1 (en) Synchronization method and apparatus
US11134514B2 (en) Random access method, network device, and terminal device
US11510225B2 (en) Methods, terminal device and base station for physical downlink control channel monitoring
CN113271683A (zh) 一种基于ue能力进行通信的方法和ue及网络侧设备
US11804995B2 (en) Data sending method, terminal device, and non-transitory computer-readable storage medium
US20220353921A1 (en) Communication method and apparatus
US20220264638A1 (en) Systems and methods of enhanced random access procedure
KR20210002691A (ko) 전력 결정 방법 및 디바이스
TW202021390A (zh) 無線通訊的方法、終端設備和網路設備
US20220225407A1 (en) Methods, ue and network node for handling a bandwidth part configuration
WO2020030008A1 (zh) 一种传输信号的方法和装置
WO2020258051A1 (zh) 小区接入的方法和设备
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
EP4138475A1 (en) Method, apparatus and system for determining resource
CN108702691B (zh) 一种发送通信消息的方法和装置
CN114651496A (zh) 一种通信方法及装置
US11758495B2 (en) Signal transmission method and apparatus and computer storage medium
US11937276B1 (en) Method and device for sidelink communication
US12041638B2 (en) Method and device for sidelink communication
WO2023197847A1 (zh) 通信方法和装置
WO2024031259A1 (en) Wireless communication method, wireless terminal and wireless network node thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846518

Country of ref document: EP

Kind code of ref document: A1