WO2017054207A1 - 一种无线接入方法、ue和基站 - Google Patents

一种无线接入方法、ue和基站 Download PDF

Info

Publication number
WO2017054207A1
WO2017054207A1 PCT/CN2015/091333 CN2015091333W WO2017054207A1 WO 2017054207 A1 WO2017054207 A1 WO 2017054207A1 CN 2015091333 W CN2015091333 W CN 2015091333W WO 2017054207 A1 WO2017054207 A1 WO 2017054207A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
sent
resource
spatial
Prior art date
Application number
PCT/CN2015/091333
Other languages
English (en)
French (fr)
Inventor
贺传峰
曲秉玉
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15905119.2A priority Critical patent/EP3349522B1/en
Priority to CN201580077514.XA priority patent/CN107409387B/zh
Priority to PCT/CN2015/091333 priority patent/WO2017054207A1/zh
Priority to ES15905119T priority patent/ES2900736T3/es
Publication of WO2017054207A1 publication Critical patent/WO2017054207A1/zh
Priority to US15/938,955 priority patent/US20180219596A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a radio access method, a UE, and a base station.
  • the beam formed by each antenna port is a wide beam as shown in Figure 1. Therefore, users of the entire cell can be covered.
  • the broadcast channel, system messages, paging, etc. can be transmitted through a wide beam. Coverage.
  • Massive MIMO antennas can reach many, even hundreds, of which the width of the formed beam is narrow while forming a large antenna gain.
  • a narrow beam cannot cover all users in the cell.
  • the beam formed in Figure 2 The user equipment (UE) can only be covered by the user equipment (UE).
  • the UE2 cannot be covered by the beam. Therefore, one beam cannot cover all the user equipments in the cell, and the user equipment cannot access the network in time.
  • the embodiments of the present invention provide a radio access method, a base station, and a UE, which are used to at least solve the problem that a user equipment in a narrow beam transmission timely accesses a network.
  • a wireless access method including:
  • the base station sends N first signal sets, where a first signal set is sent in each first spatial resource, and the M first signal sets in the N first signal sets are a second signal set, and the M Each of the signal sets in the second signal set includes indication information;
  • the indication information is used to indicate that the system message is sent in M second space resources Sending, or the indication information is used to indicate that the M first spatial resource that sends the second signal set is a valid space resource, where M and N are positive integers, and M is less than or equal to N;
  • the base station sends M system messages on the M second spatial resources, where the M system messages are used to indicate that the user equipment UE accesses the network.
  • the method before the sending, by the base station, the N first signal sets, the method includes:
  • the base station determines M first spatial resources of the M first signal sets according to a preset rule.
  • the method before the sending, by the base station, the N first signal sets, the method includes:
  • the base station sends N third signal sets to the UE, where the third signal set is sent on each of the first spatial resources;
  • the base station receives Z response signals sent by the UE, each response signal includes indication information of a spatial resource for transmitting the third signal set, where Z is a positive integer, and Z is less than or equal to N;
  • the base station sends M fourth signal sets according to the Z response signals, where the fourth signal set is sent on each of the second spatial resources;
  • the base station determines the M second spatial resources according to the Z response signals.
  • the system message includes a system Information block SIB1.
  • the first signal set A first synchronization signal and/or a first broadcast signal is included.
  • the first The broadcast signal includes information carried by the physical broadcast control channel PBCH;
  • the information carried by the PBCH includes an indication information field, and is used to instruct the base station to send a system message by using the second space resource.
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the information carried by the PBCH is scrambled by a first scrambling code, and the information carried by the PBCH is scrambled by the first scrambling code to indicate that the system message is sent in the second space resource.
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the cyclic redundancy check code CRC of the information carried by the PBCH is a first mask, and the first mask is used to indicate that the system message is sent in the second space resource.
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH; and a cyclic redundancy check code CRC of information carried by the PBCH is adopted
  • PBCH physical broadcast control channel
  • CRC cyclic redundancy check code
  • the first synchronization signal includes a primary synchronization signal PSS and/or a secondary synchronization signal SSS;
  • the PSS is a first sequence, and the PSS is a first sequence used to indicate that the system message is sent in the second space resource;
  • the SSS is a second sequence, and the SSS is a second sequence used to indicate that the system message is sent in the second space resource.
  • a wireless access method including:
  • the user equipment UE receives the M second signal sets sent by the base station, where the M second signal sets are the M first signal sets in the N first signal sets sent by the base station, and are first in each The spatial resource sends a first signal set, and each of the M second signal sets includes indication information;
  • the indication information is used to indicate that the system message is sent in the M second spatial resources, or the indication information is used to indicate that the M first spatial resource that sends the second signal set is a valid space resource.
  • M and N are positive integers, M is less than or equal to N;
  • the UE receives a system message on the second spatial resource according to the indication information, to access the network according to the system message.
  • the method before the user equipment UE receives the M second signal sets, the method further includes:
  • the UE feeds back a response signal to the base station according to the received third signal set, where the response signal includes indication information of a spatial resource that sends the third signal set.
  • the system message comprises a system information block SIB1.
  • the first signal set includes a first synchronization signal And/or the first broadcast signal.
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the information carried by the PBCH includes an indication information field, configured to indicate that the system message is sent in the second space resource.
  • the first broadcast signal includes a physical broadcast control channel PBCH.
  • the information carried by the PBCH is scrambled by a first scrambling code, and the information carried by the PBCH is scrambled by the first scrambling code to indicate that the system message is sent in the second space resource.
  • the first broadcast signal includes information that is carried by a physical broadcast control channel PBCH, and information that is carried by the PBCH
  • the cyclic redundancy check code CRC is a first mask, and the first mask is used to indicate that the system message is sent in the second space resource.
  • the first broadcast signal includes information that is carried by a physical broadcast control channel PBCH, and information that is carried by the PBCH
  • the cyclic redundancy check code CRC is calculated by using a first calculation manner, and the CRC is calculated by using a first calculation manner to indicate that the system message is sent in the second space resource.
  • the first synchronization signal includes a primary synchronization signal PSS and/or a secondary synchronization signal SSS;
  • the PSS is a first sequence, and the PSS is a first sequence used to indicate that the system message is sent in the second space resource;
  • the SSS is a second sequence, and the SSS is a second sequence used to indicate that the system message is sent in the second space resource.
  • a wireless access method including:
  • the base station sends L first signal sets, where a first signal set is sent in each first spatial resource, where the L first signal sets are L first of the N first spatial resources of the base station. Sent by space resources;
  • the base station sends M second signal sets, where each second space resource is sent Sending a second signal set, where M and L are positive integers, L is less than or equal to N, and the sum of L and M is N.
  • the N first signal sets of the N first spatial resources are configured at N different time-frequency resource locations;
  • the transmitting, by the base station, the L first signal sets includes:
  • the base station sends the first signal set on the time-frequency resource locations corresponding to the L first signal sets by using the L first spatial resources.
  • the method before the base station sends the L first signal sets, the method further includes:
  • the base station determines the L first spatial resources according to a preset rule.
  • the method further includes:
  • the base station determines, according to a response signal that the user equipment UE feeds back to the L first signal sets, and a response signal that is fed back to the M second signal sets, to send the first time of the first signal set in a next time period.
  • a spatial resource and a second spatial resource that transmits the second set of signals.
  • the base station is configured to respond to the feedback signals of the L first signal sets by the user equipment UE, and The response signals fed back by the M second signal sets determine that the first spatial resource that sends the first signal set and the second spatial resource that sends the second signal set in the next cycle include:
  • each response signal includes first indication information of the first spatial resource that sends the first signal set, where P is a positive integer, 1 ⁇ P ⁇ L;
  • the base station receives Y response signals fed back by the UE to the M second signal sets, and each response signal includes second indication information of the second spatial resource that sends the second signal set, where Y is a positive integer, 1 ⁇ Y ⁇ M;
  • the base station sends L1 first signal sets in the L′ first spatial resources according to the P response signals and the Y response signals, where the first spatial resource corresponding to the L′ first signal sets is The first spatial resource indicated by the first indication information and the spatial resource other than the second spatial resource indicated by the second indication information, L′ is a positive integer, L′ is greater than or equal to 1 and less than or equal to N;
  • the base station transmits M' second signal sets on M' second spatial resources, where M' is a positive integer, and the sum of L' and M' is N.
  • a wireless access method including:
  • the user equipment UE receives the L first signal sets sent by the base station, where a first signal set is sent in each first spatial resource, where the L first signal sets are the base stations in the N first spatial resources. L first space resources are sent;
  • the N first signal sets of the N first spatial resources are configured at N different time-frequency resource locations;
  • Receiving, by the UE, the L first signal sets sent by the base station includes:
  • the method further includes:
  • the UE feeds back a second response signal to the base station according to the received second signal set, where the second response signal includes indication information of a second spatial resource that sends the second signal set.
  • a base station including a processor, a memory, and a transceiver,
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the base station is configured to complete Any of the methods of the first aspect and all possible implementations of the first aspect.
  • a user equipment including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the base station is configured to complete Any of the methods of the second aspect and all possible implementations of the second aspect.
  • a base station including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the base station is configured to complete Any of the methods of the third aspect and all possible implementations of the third aspect.
  • a user equipment including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the base station is configured to complete Any of the methods of the fourth aspect and all possible implementations of the fourth aspect.
  • An embodiment of the present invention provides a radio access method, a base station, and a UE, by transmitting a first signal set on a plurality of resources, so that a UE under narrow beam transmission can establish synchronization with a base station in time;
  • Concentration contains instructions, instructions
  • the information is used to indicate that the base station sends the system message to the second space resource or the M space resource is a valid space resource, which can reduce the delay of the UE acquiring the system message, thereby reducing the access delay of the UE;
  • the partial signal resource in all the spatial resources sends the first signal set and the second signal set is sent on the remaining spatial resources, which can save the overhead of the outer ring beam scanning.
  • FIG. 1 is a schematic diagram of a base station coverage in a low frequency scenario in the prior art
  • FIG. 2 is a schematic diagram of a coverage of a base station according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a dual ring beam access process according to an embodiment of the present disclosure
  • FIG. 4 is a timing diagram of an outer ring beam signal and an inner ring beam signal according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a flow of a wireless access method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a structure of an outer ring beam signal subframe according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a subframe of an inner ring beam signal according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a flow of a wireless access method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a subframe of an inner ring beam signal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a flow of a wireless access method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the 3rd generation partnership project (English: 3rd generation partnership project, 3GPP) is a project dedicated to the development of wireless communication networks. Generally, a 3GPP related organization is referred to as a 3GPP organization.
  • a wireless communication network is a network that provides wireless communication functions.
  • the wireless communication network may use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (English: time) Division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division Multiple Carrier (English: Single Carrier FDMA, SC-FDMA for short), Carrier Sense Multiple Access with Collision Avoidance (English: Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • Single carrier frequency division Multiple Carrier English: Single Carrier FDMA, SC-FDMA for short
  • Carrier Sense Multiple Access with Collision Avoidance English: Carrier Sense Multiple Access with Collision Avoidance
  • a typical 2G network includes a global system for mobile communications/general packet radio service (GSM) network or a general packet radio service (GPRS) network.
  • GSM global system for mobile communications/general packet radio service
  • GPRS general packet radio service
  • a typical 3G network is used.
  • the network includes a universal mobile telecommunications system (UMTS) network, a typical 4G network.
  • the network includes a long term evolution (English: long term evolution, LTE for short) network.
  • the UMTS network may also be referred to as a universal terrestrial radio access network (UTRAN).
  • the LTE network may also be referred to as an evolved universal terrestrial radio access network (English: evolved universal terrestrial) Radio access network, referred to as E-UTRAN.
  • a cellular communication network can be divided into a cellular communication network and a wireless local area network (English: wireless local area networks, WLAN for short), wherein the cellular communication network is dominated by scheduling, and the WLAN is dominant.
  • the aforementioned 2G, 3G and 4G networks are all cellular communication networks. It should be understood by those skilled in the art that as the technology advances, the technical solutions provided by the embodiments of the present invention are equally applicable to other wireless communication networks, such as 4.5G or 5G networks, or other non-cellular communication networks. For the sake of brevity, embodiments of the present invention sometimes refer to a wireless communication network as a network.
  • User equipment (English: user equipment, abbreviated as UE) is a terminal device, which can be a mobile terminal device or a non-mobile terminal device. The device is mainly used to receive or send business data. User equipment can be distributed in the network. User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees. Upper computer, cordless phone, wireless local loop station, etc. The user equipment can communicate with one or more core networks via a radio access network (RAN) (access portion of the wireless communication network), such as exchanging voice and/or data with the radio access network.
  • RAN radio access network
  • a base station (English: base station, BS for short) device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functions.
  • a device that provides a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and a device that provides a base station function in a 3G network.
  • BTS base transceiver station
  • BSC base station controller
  • the device providing the base station function in the 4G network includes the evolved Node B (English: evolved NodeB, eNB for short) In the WLAN,
  • the device that provides the function of the base station is an access point (English: Access Point, AP for short).
  • the frame structure is a structure in which the time resource (time domain) of the signal transmission is divided.
  • the time unit in the frame structure generally used has a radio frame, a subframe and a time slot in descending order.
  • the specific length of time corresponding to each time unit can be determined according to specific protocol requirements.
  • a frame structure in LTE as an example: a radio frame has a length of 10 ms and contains 10 subframes, each subframe has a length of 1 ms, and each subframe further includes two slots, each time The slot is 0.5 ms.
  • the symbol is the smallest unit of the signal.
  • each Orthogonal Frequency Division Multiplexing (OFDM) subcarrier corresponds to one OFDM symbol.
  • the length of one OFDM symbol (the time taken) is 1/subcarrier spacing.
  • the time occupied by one OFDM symbol is the sum of the length of the OFDM symbol and the length of the Cyclic Prefix (CP).
  • Frame number The number of each radio frame. Take the LTE network as an example. The frame number in LTE is from 0-1023, and then renumbered from 0.
  • Resource includes at least one of a time resource, a frequency resource, a code resource, and a space resource.
  • Time resource A resource whose signal is measured by time, for example, the signal occupies 2 OFDM symbols in time, or 1 subframe, or 3 radio frames.
  • the time resource may include an absolute time resource and a relative time resource, such as at least one of a radio frame number, a relative position of the subframe in the radio frame, and a relative position of the symbol in the subframe.
  • the time resources are usually described as fixed or variable and are described for relative time resources. Generally, when the time resources are the same, the absolute time resources may be the same, or the relative time resources may be the same.
  • Frequency resource The resource occupied by the signal is measured by frequency. For example, the signal occupies 10 MHz in frequency. In an OFDM system, the number of subcarriers is usually used to describe the occupied frequency resource.
  • Time-frequency resource A resource whose signal is occupied by time and frequency. For example, the signal occupies 2 OFDM symbols in time and occupies 10 MHz on the frequency.
  • Code resource A resource whose signal is occupied by a code, such as a spreading code in WCDMA, or a sequence resource used by a signal is also called a code resource.
  • a code resource such as a spreading code in WCDMA, or a sequence resource used by a signal.
  • the sequence used by the synchronization signal is also called a code resource.
  • a sequence is a type of code resource.
  • Space resources resources occupied by signals are measured by beams.
  • beams with different directions can be transmitted in parallel on the same time-frequency resource.
  • System information broadcast can be simply referred to as system information, mainly provides the main information of the accessed network, so as to establish a wireless connection with the UE, so that the UE obtains sufficient access information, public configuration of cell selection and reselection. parameter.
  • System messages in LTE are divided into multiple system information blocks (SIBs), one of which is called a master information block (MIB).
  • MIB master information block
  • the MIB is also called a broadcast signal, and other SIBs are called system messages.
  • the LTE system information broadcast and the 3G system information broadcast are functionally identical, but there is still a big difference in scheduling and specific information content.
  • the MIB usually includes a limited number of the most important and most commonly used transmission parameters.
  • Other SIBs usually include cell radio configuration, cell reselection information, neighbor list, home eNB identifier, earthquake tsunami warning (ETWS) or public. Notification information such as alarm (CMAS), multimedia multicast (MBMS) control information and other parameters.
  • CMAS alarm
  • the word "exemplary” is used to mean an example, an illustration, or a description. Any embodiment or design described as “example” in this application should not be construed as preferred or advantageous over other embodiments or designs. Rather, the term use examples is intended to present concepts in a concrete manner.
  • information, signal, message, and channel may sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the difference is not emphasized. “of”, “corresponding (relevant)” and “corresponding” can sometimes be mixed Use, it should be pointed out that when the difference is not emphasized, the meaning to be expressed is the same.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the embodiment of the present invention can be applied to both a time division multiplexing scenario and a frequency division multiplexing scenario.
  • the embodiment of the present invention is described in the context of a 4G network in a wireless communication network. It should be noted that the solution in the embodiment of the present invention may also be applied to other wireless communication networks, and the corresponding names may also be used in other wireless communication networks. Replace the name of the corresponding function.
  • the initial access procedure of the UE is: the base station sends a synchronization signal, the UE obtains the timing synchronization and the cell ID according to the synchronization signal, and the UE obtains the location of the common reference signal (CRS) according to the cell ID, and The reference signal received power (RSRP) is measured, and then the cell primary selection is performed, and the cell is camped on the primary selected cell, and then the broadcast channel and the system message are detected according to the CRS, and the system message of the cell is obtained.
  • the UE initiates a call or is paged
  • the UE initiates a random access, and an RRC connection is established between the UE and the base station.
  • the design of the synchronization signal, the broadcast channel, or the system message in the initial access process of the UE does not match the scenario of the narrow beam, some user equipments in the cell cannot be covered, and the user equipment cannot access the network in time.
  • a radio access method In the embodiment of the present invention, a radio access method, a base station, and a user equipment are provided, which can be applied to a scenario of a narrow beam.
  • "Access" in the embodiments of the present invention can be understood as an initial process of establishing communication in a broad sense.
  • the downlink communication between the base station and the UE passes through the narrow beam
  • the information of the beam can be used to link the uplink and downlink communications, and the information of the beam can be carried by the uplink signal or the downlink signal, where the carrying information including the beam identification information or the beam identifier can pass the used time resource and frequency. Carrying at least one of a resource and a code resource.
  • the information required for the base station to transmit the radio access of the UE is divided into two times (referred to as double-beam beam access in this embodiment), and the first time is called the outer ring beam in this embodiment. Scanning, the second time is called inner ring beam scanning.
  • Each inner ring beam has its corresponding outer ring beam, and the correspondence here may mean that the coverage range is substantially the same (for example, the main lobe of the beam is uniformly covered or the range correlation is high).
  • the beam width of the outer ring beam and the beam width of the corresponding inner ring beam may be the same or different, and the beam direction of the outer ring beam and the beam direction of the corresponding inner ring beam may be the same or different.
  • the outer ring beam may be the same as the inner ring beam, or different (small or large). For example, there are 8 outer ring beams, and the 8 outer rings are the inner ring. Beam, or, there are 8 outer ring beams, and there are 4 inner ring beams, and each of the outer ring beams corresponds to one inner ring beam.
  • the corresponding relationship between the outer ring beam and the inner ring beam may be set according to actual needs, and may be one-to-many, many-to-one, or many-to-many, and is not limited herein.
  • the corresponding inner ring beam and the outer ring beam have the same beam width and the same direction; or the corresponding inner ring beam and the outer ring beam have the same beam width, but the inner ring beam has a beam direction that is smaller than the outer ring beam.
  • the phase difference within a certain threshold can be defined according to actual needs, such as 10 degrees or 20 degrees; or, the corresponding inner ring beam and outer ring beam beam direction are the same or the phase has a certain threshold deviation, the beam width of the inner ring beam is more The beam width of the outer ring beam is large or small.
  • An inner ring beam may correspond to more than one outer ring beam, or an outer ring beam may correspond to more than one inner ring beam.
  • the outer ring beam scanning is used for cell discovery, and the UE may perform full cell scanning according to the period of the outer ring beam to detect synchronization and common channels related to the outer ring beam. For example, taking a total of eight broadcast beams in a 40 ms period as an example, eight broadcast beams are transmitted once every 40 ms, and each beam carries a synchronization channel and a PBCH for UE detection and MIB acquisition, and the UE detects based on the detection. The channel under the beam, feedback the corresponding beam Information to the base station.
  • the inner loop beam scan is based on the outer loop beam scan.
  • the base station Based on the beam information fed back by the UE, the base station scans only the sector beam of the UE, and transmits the synchronization and the common channel, so that the dual-ring beam access method is high.
  • different users can serve the users in the cell in time division for the user service in the cell.
  • Each channel needs to broadcast a common channel such as a broadcast channel and a synchronization channel to all users in the cell, so that the cell
  • the users within the network get synchronized and necessary system messages to access the cell.
  • the base station since the base station only needs to transmit the synchronization and common channels of part of the beam during the inner ring scanning, the system overhead can be reduced, and interference to other beams can be reduced, and the base station energy consumption is saved.
  • the base station sends the discovery signals of all beams according to the outer ring beam scanning period
  • the purpose of the outer ring beam scanning is to perform a comprehensive spatial scanning of the coverage of the cell, and the base station can achieve the purpose of full scanning by transmitting the outer ring beam signal in each beam.
  • the discovery signal can be, for example, a synchronization signal and a broadcast signal.
  • the synchronization signal may be a Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS), and the broadcast signal may be, for example, a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the UE detects the discovery signal to obtain the physical cell ID (PCI) and the beam ID, and feeds back the beam ID through the uplink channel associated with the outer ring beam.
  • PCI physical cell ID
  • the UE determines the cell and beam to which it belongs according to the discovery signal.
  • the base station acquires the physical cell PCI and beam ID through the synchronization signal, or can also obtain the beam ID through the broadcast signal.
  • the purpose of the feedback beam ID is to let the base station know which beams the inner loop beam scan should perform, that is, to know which beam location exists in the UE, to determine the inner loop beam of the inner loop beam scan, and the base station does not need to know the specific information of the UE.
  • the base station initiates inner loop beam scanning according to feedback of the UE.
  • the base station may determine the pair according to the outer ring beam information fed back by one or more UEs.
  • the inner loop beam is determined, or the corresponding inner loop beam is determined according to the information of the inner loop beam fed back by the UE.
  • the inner loop beam may be determined according to the correspondence between the outer loop beam and the inner loop beam.
  • the signal transmitted in the inner loop beam scan is called the inner loop beam signal
  • the signal sent in the outer loop bean scan is called the outer loop beam signal
  • the base station can correctly receive the feedback from the base station.
  • the base station sends out the outer loop beam signal of each beam to include at least the synchronization signal. If the time of the inner loop beam scan and the outer loop beam scan are synchronized, the synchronization signal may not be included in the inner loop beam signal. However, in order to improve the performance of the synchronization, even if the inner loop beam scan and the outer loop beam scan time are synchronized, the inner loop beam signal may also include a synchronization signal.
  • the collection of the outer loop beam signal and the inner loop beam signal may include all signals required by the UE for wireless access (referred to as a signal set for access), such as a synchronization signal PSS, a broadcast signal SSS, and a system message SIB/MIB. And measuring pilot signals, etc., to complete UE wireless access.
  • a signal set for access such as a synchronization signal PSS, a broadcast signal SSS, and a system message SIB/MIB.
  • pilot signals etc., to complete UE wireless access.
  • how these signals are allocated in the outer loop beam signal and the inner loop beam signal may be determined according to the actual situation, and will be described in detail later in the embodiment of the present invention, but is not limited to the scheme of the embodiment.
  • the UE initiates a random access procedure, and establishes an RRC connection with the base station.
  • the UE obtains the Physical Random Access Channel (PRACH) configuration information by receiving the inner loop bean signal reading system message, and then accesses the RRC connection state through the random access procedure.
  • PRACH Physical Random Access Channel
  • the base station includes N antennas corresponding to N beams, and the base station sends a first signal set on the outer ring beam, and sends a fifth signal set on the inner ring beam.
  • the collection of the first signal set and the fifth signal set may include all signals required by the UE for wireless access (referred to as a signal set for access), such as synchronization signals, broadcast signals, system messages, and measurement pilot signals. Etc., to complete the UE wireless access.
  • the synchronization signal is used to achieve synchronization of at least one of time and frequency; measurement
  • the pilot signal is used for channel estimation, and is used for radio resource management (RRM) measurement;
  • RRM radio resource management
  • the broadcast signal is used to broadcast some of the most important and most commonly used transmission parameters, and the system message is used to send some system configuration information.
  • the first signal set may include a synchronization signal (PSS and SSS) and/or a PBCH channel.
  • PSS and SSS synchronization signal
  • PBCH PBCH
  • the distinction is made between the outer ring beam signal and the inner ring beam signal.
  • the synchronization signal in the first signal set (which may be referred to as a first synchronization signal or an outer ring synchronization signal) and the synchronization signal in the fifth signal set (may be The fifth synchronization signal, or the inner loop synchronization signal, may be designed to be different, and the difference may include, for example, different sequences, and the symbol intervals of the primary synchronization signal (PSS) and the secondary synchronization signal (SSS) included in the synchronization signal are different, and the synchronization is performed.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the size of the time resource occupied by the signal is different, and the size of the frequency resource occupied by the synchronization signal is different, so that the UE can determine whether the outer ring scanning process or the inner ring scanning process is performed according to the detected synchronization signal. Then determine if you want to feedback the response signal. If it is determined that it is the synchronization signal of the outer loop, the UE feeds back the response signal, and if it is the synchronization signal of the inner loop, the UE does not feedback the response signal.
  • the distinguishing between the outer loop beam signal and the inner loop beam signal may also be implemented in other manners, and the first synchronization signal and the fifth synchronization signal are designed to be the same.
  • the base station includes multiple antennas for transmitting beams in different directions, that is, including N first spatial resources.
  • the base station sends a first signal set on the N first spatial resources for performing time-sharing scanning on the entire cell.
  • one radio frame is 2 ms, and each radio frame transmits 4 outer ring beam signals, and each radio frame includes 10 subframes (0.2 ms each). Each subframe can support the transmission of 4 beams.
  • a cell needs to traverse 12 beams to reach the coverage of all users.
  • the second subframe in the first radio frame sends the outer ring beam signal with B0-B3, and the second subframe in the second radio frame uses B4.
  • -B7 sends the outer ring beam signal, then scanning for 12 beams requires three radio frames.
  • the beam transmitting the inner loop beam signal In order to reduce the system overhead, the outer ring beam signal can transmit the PSS/SSS and MIB of all beams, but does not transmit the SIB, and waits until the beam for transmitting the inner ring beam signal is determined, and only transmits the signal for transmitting the inner ring beam.
  • the PSS/SSS, MIB and SIB of the beam due to the large amount of information of the SIB, the overhead of the system message and the synchronization channel is much reduced compared to the outer ring beam scanning, but the UE needs to wait until the inner ring beam scans to receive the SIB, ie, the detection
  • the synchronization channel of the ring beam, the PBCH, and the corresponding system information (SI) thereby using the Random Access Channel (RACH) resource indicated in the SI to initiate access, establishing an RRC connection with the cell, and accessing extend.
  • RACH Random Access Channel
  • the base station may determine, according to a preset rule, M first spatial resources (outer ring beams) that send the M second signal sets (outer ring beam signals) including the indication information, where M and N are A positive integer, M is less than or equal to N.
  • the base station may randomly select, in the first signal set sent by the partial beam, indication information, to indicate that the base station sends the system message or the M first spaces by using the M second spatial resources (the inner ring beam) Resources are effective space resources.
  • the base station may uniformly select the partial beam to send the second signal set that includes the indication information, and is used to indicate that the base station sends the system message or the M first spatial resources by using the M second spatial resources (the inner ring beam) For effective space resources.
  • the uniform selection may include: uniformly selecting according to the spatial distribution of the first spatial resource, or selecting according to the number interval of the first spatial resource, or other rules, which are not limited in this application.
  • the base station may carry the indication information in the first signal set sent on the valid beam fed back by the UE in the previous period.
  • the UE can receive the system message on the second spatial resource according to the indication information, without detecting the synchronization channel, the PBCH, and the system message of the inner ring beam. For quick access to the network.
  • FIG. 5 a wireless access method provided by an embodiment of the present invention is shown in FIG. 5, The method includes:
  • the base station sends N first signal sets, where a first signal set is sent in each first spatial resource, and the M first signal sets in the N first signal sets are a second signal set, and M second Each signal set in the signal set contains indication information.
  • the indication information is used to indicate that the system message is sent in the M second spatial resources, or the indication information is used to indicate that the M first spatial resources of the second signal set are valid space resources, where M and N are positive integers. M is less than or equal to N.
  • the base station may determine, according to a preset rule, the M first spaces that send the M first signal sets that include the indication information.
  • Resources That is, the base station may specify the M first signal sets on the M first spatial resources as the second signal set to send indication information, and represent the M first spatial resources as effective space resources, so as to be valid only Sending a system message on the spatial resource; or instructing the UE base station to specify that the system message is sent on the M second spatial resources, and the UE may directly receive the system message from the specified second spatial resource according to the indication information, so as to quickly access the network.
  • the base station sends M system messages on the M second spatial resources, where the M system messages are used to indicate that the user equipment UE accesses the network.
  • the system message includes a system information block SIB1.
  • the first signal set includes a first synchronization signal and/or a first broadcast signal.
  • the base station may indicate, by using the information in the PBCH, whether the beam has an SIB transmission or a valid beam, and the UE may receive the SIB1 and the other SIB according to the indication information.
  • the specific indication manner may include:
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the information carried by the PBCH includes an indication information field, and is used to instruct the base station to send a system message by using the second space resource.
  • the PBCH carries a 1-bit information indication. Since the PBCH currently carries 14 bits The information is used to indicate the downlink system bandwidth, the system frame number, and the Physical Hybrid ARQ Indicator Channel (PHICH) configuration. In addition, there are 10 bits of idle bits. After adding 1 bit of indication information, the PBCH carries 15 bits. Useful information and 9-bit idle bits.
  • PHICH Physical Hybrid ARQ Indicator Channel
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the information carried by the PBCH is scrambled by the first scrambling code, and the information carried by the PBCH is scrambled by the first scrambling code to indicate that the base station sends a system message by using the second space resource.
  • the information carried by the PBCH may be unchanged, and the UE is implicitly notified by using different scrambling codes to notify the UE whether the beam has an SIB transmission.
  • the scrambling code defined for PBCH scrambling includes scrambling code 1 and scrambling code 2.
  • the correct information is detected by scrambling code 1, ie, Cyclic Redundancy Check (CRC). If the verification is correct, the beam is considered to have no SIB transmission.
  • the correct information is detected by the scrambling code 2
  • the beam is considered to have an SIB transmission.
  • the first broadcast signal includes information carried by a physical broadcast control channel (PBCH); a cyclic redundancy check code CRC of the information carried by the PBCH is a first mask, where the first mask is used to indicate The base station sends a system message through the second space resource.
  • PBCH physical broadcast control channel
  • CRC cyclic redundancy check code
  • the information carried by the PBCH is unchanged, and the mask added by the CRC is different, and the UE is implicitly notified whether the beam has an SIB transmission.
  • the mask for defining the mask for the CRC of the PBCH includes mask 1 and mask 2.
  • the UE detects the CRC check by mask 1 when the UE blindly checks the OBCH it is considered that the beam has no SIB transmission. If the code 2 detects that the CRC check is correct, it is considered that the beam has an SIB transmission.
  • the first broadcast signal includes information carried by a physical broadcast control channel (PBCH); the cyclic redundancy check code CRC of the information carried by the PBCH is calculated by using a first calculation manner, and the CRC adopts a first calculation manner. The calculation is used to instruct the base station to send a system message by using the second space resource.
  • PBCH physical broadcast control channel
  • CRC cyclic redundancy check code
  • the information carried by the PBCH is unchanged, and the CRC is calculated by different CRC calculation methods to obtain different CRCs, which implicitly inform the UE whether the beam has an SIB transmission.
  • the UE obtains the CRC according to different CRC calculation methods and checks the data of the received PBCH bearer.
  • the calculation method for defining the CRC for the PBCH includes mode 1 and mode 2, and the CRC calculation mode is adopted when the UE blindly detects the PBCH. 1 and calculation mode 2 performs CRC calculation on the received information, and compares it with the received CRC. If the CRC check is correctly detected by the calculation mode 1, the beam is considered to have no SIB transmission, and if the CRC check is correctly detected by the calculation mode 2 , then the beam is considered to have SIB transmission.
  • the first synchronization signal includes a primary synchronization signal PSS and/or a secondary synchronization signal SSS, and may also indicate whether there is an SIB transmission or a valid beam by a sequence difference of PSS/SSS.
  • the PSS is a first sequence, and the PSS is a first sequence used to instruct the base station to send a system message by using a second space resource;
  • the SSS is a second sequence, and the SSS is a second sequence used to instruct the base station to send a system message by using a second space resource.
  • the PSS/SSS adopts different sequences, implicitly notifying the UE whether the beam has SIB transmission, and the UE detects the PSS/SSS according to different sequences.
  • the PSS/SSS can be used to respectively use sequence 1 and sequence 2, if When the UE detects the PSS/SSS using sequence 1, it considers that the beam has no SIB transmission. If the UE detects the PSS/SSS using sequence 2, it considers that the beam has SIB transmission.
  • the base station may carry the indication information in the first signal set sent on the valid beam fed back by the UE in the previous period.
  • the method includes:
  • the base station sends N third signal sets to the UE, where a third signal set is sent on each first spatial resource; that is, N third signal sets are sent on the N outer ring beams, the third signal
  • the set includes PSS/SSS and MIB;
  • the base station receives Z response signals sent by the UE, each response signal includes indication information of a spatial resource for transmitting the third signal set, where Z is a positive integer, and Z is less than or equal to N; that is, the Z response signals represent the corresponding Z
  • the UE exists in the effective beam;
  • the base station sends M fourth signal sets according to the Z response signals, where a fourth signal set is sent on each second spatial resource; that is, the base station sends the fourth signal set on the M valid beams of the UE,
  • the fourth signal set includes the PSS/SSS, the MIB, and the SIB of the corresponding valid beam, and the UE accesses the network according to the SIB;
  • the base station may determine that the first signal set of the M beams may include indication information, because the Z response signals indicate that the corresponding beam is a valid beam;
  • the base station sends N first signal sets, where a first signal set is sent in each first spatial resource, and the M first signal sets in the N first signal sets are the second signal set, and the M second signal sets
  • Each of the signal sets includes indication information, the indication information is used to indicate that the system message is sent in the M second spatial resources, or the indication information is used to indicate that the M sends the second signal set
  • a space resource is an effective space resource, where M and N are positive integers, and M is less than or equal to N; that is, when the base station transmits the first signal set, the M first signal sets in the N first signal sets are transmitted.
  • Add indication information to indicate that the corresponding beam is a valid beam or that the beam has an SIB transmission;
  • the base station sends M system messages on the M second spatial resources, where the M system messages are used to indicate that the user equipment UE accesses the network. That is, the base station sends the SIBs on the M effective beams, so that the UE can directly determine the SIBs on the beam according to the indication information, thereby acquiring the SIB access network.
  • an embodiment of the present invention provides a radio access method, in which a base station transmits N first signal sets, where a first signal set is transmitted in each first spatial resource, and M first in the N first signal sets.
  • the signal set is a second signal set, and each of the M second signal sets includes indication information, where the indication information is used to indicate that the system message is sent in the M second spatial resources, or the indication information is used to indicate that the M
  • the first spatial resource of the signal set is a valid space resource, where M and N are positive integers, and M is less than or equal to
  • the base station sends M system messages on the M second spatial resources, where the M system messages are used to indicate that the user equipment UE accesses the network, so that by transmitting the first signal set on multiple resources, the narrow beam can be made.
  • the UEs that are transmitted are synchronized with the base station in time, and the indication information is used to indicate that the base station sends the system message, which not only enables the UE to access the network in time, but also makes the system message transmission more efficient, saves the second space resource, and avoids The interference generated by the system message is sent on the invalid second space resource.
  • the embodiment of the present invention provides a wireless access method, including:
  • the M second signal sets sent by the base station receives, by the UE, the M second signal sets sent by the base station, where the M second signal sets are the M first signal sets in the N first signal sets sent by the base station, and in each first space resource Transmitting a first signal set, each of the M second signal sets including indication information;
  • the indication information is used to indicate that the system message is sent in the M second spatial resources, or the indication information is used to indicate that the M first spatial resource that sends the second signal set is a valid space resource.
  • M and N are positive integers, and M is less than or equal to N.
  • the UE receives a system message on the second spatial resource according to the indication information, to access the network according to the system message. That is, when the UE identifies the first signal set with the indication information, the system message may be directly received on the second spatial resource according to the indication information, so as to establish an RRC connection with the network according to the system message.
  • the first signal set includes, for indicating that the base station sends system messages or M messages on the M second spatial resources.
  • the first spatial resource is an effective space resource, which not only makes the system message transmission more efficient, but also saves the second space resource, and enables the UE to access the network according to the system message in time, without detecting the second space resource, and avoiding The interference generated by the system message is sent on the invalid second space resource.
  • the method further includes:
  • the UE feeds back a response signal to the base station according to the received third signal set, where the response signal includes indication information of a spatial resource that sends the third signal set.
  • the indication information in the second signal set received by the UE may be determined according to the interaction between the base station and the UE, and after receiving the third signal set sent by the base station on the first spatial resource, the UE feeds back a response signal to the base station, and the base station Obtaining that the UE exists in the first spatial resource that receives the response signal, and sends a system message on the spatial resource indicated by the indication information included in the feedback signal, and then performing the step: when the UE receives the M second signal sets, the base station is The first spatial resource indicated by the indication information in the third signal set sends the second signal set, that is, the effective first spatial resource indicated by the indication information indicated by the base station, that is, the second spatial resource transmission system message.
  • the system message includes a system information block, SIB1, for the UE to initiate an access according to the RACH resource indicated in the system message, and establish an RRC connection with the cell.
  • SIB1 system information block
  • the first set of signals includes a first synchronization signal and/or a first broadcast signal.
  • the indication information included in the first signal set may be carried in the following manner.
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the information carried by the PBCH includes an indication information field, and is used to instruct the base station to send a system message by using the second space resource.
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the information carried by the PBCH is scrambled by the first scrambling code, and the information carried by the PBCH is scrambled by the first scrambling code to indicate that the base station sends a system message by using the second space resource.
  • the first broadcast signal includes a physical broadcast control channel PBCH bearer.
  • the information indicates that the cyclic redundancy check code CRC of the information carried by the PBCH is a first mask, and the first mask is used to instruct the base station to send a system message by using the second space resource.
  • the first broadcast signal includes information carried by a physical broadcast control channel (PBCH); the cyclic redundancy check code CRC of the information carried by the PBCH is calculated by using a first calculation manner, and the CRC adopts a first calculation manner. The calculation is used to instruct the base station to send a system message by using the second space resource.
  • PBCH physical broadcast control channel
  • CRC cyclic redundancy check code
  • the first synchronization signal includes a primary synchronization signal PSS and/or a secondary synchronization signal SSS;
  • the PSS is a first sequence, and the PSS is a first sequence used to instruct the base station to send a system message by using a second space resource;
  • the SSS is a second sequence, and the SSS is a second sequence used to instruct the base station to send a system message by using a second space resource.
  • the embodiment of the present invention provides a radio access method, where the UE receives M second signal sets sent by the base station, where the M second signal sets are M first signals in the N first signal sets sent by the base station. And transmitting, in each of the first spatial resources, a first signal set, each of the M second signal sets including indication information, such that by receiving the first signal set sent by the base station on the plurality of resources, The UE may establish synchronization with the base station in time, and indicate that the base station sends the M system messages or the M first spatial resources to the effective space resources through the M second spatial resources by using the indication information in the second signal set, so that the UE can be timely after the synchronization. Access to the base station.
  • the inner ring beam scanning substrate of the double ring includes all the beams, and basically all the beams need to send synchronization signals, broadcast signals, and System messages, etc., have a large system overhead, and the outer loop and the inner loop are used to transmit signals and the beam of the message is highly overlapped, and part of the signals carried on the same beam have duplicate parts, which brings greater overhead.
  • the discovery sub-frame scanned by the outer ring beam carries the PSS/SSS and PBCH channels of all beams.
  • each two symbols in the discovery sub-frame carries a beam PSS/SSS and PBCH channels, and different beams.
  • the synchronization subframe scanned by the inner ring beam carries the PSS/SSS and PBCH channels of the effective beam.
  • One bearer mode is shown in FIG. 7.
  • the channel of the effective beam carries the last two downlink symbols of the inner loop synchronization subframe, each of which The ring synchronization subframe carries only one beam of PSS/SSS and PBCH channels.
  • the embodiment of the present invention provides a radio access method, as shown in FIG. include:
  • the base station sends L first signal sets, where a first signal set is sent in each first spatial resource, where the L first signal sets are L of the N first spatial resources of the base station.
  • the first space resource is sent;
  • the N first signal sets of the N first spatial resources are configured in N different time-frequency resource locations; the transmitting, by the base station, the L first signal sets may include: the base station adopting the L first spatial resources, Transmitting the first signal set at a time-frequency resource location corresponding to the L first signal sets.
  • the base station sends M second signal sets, where a second signal set is sent in each second spatial resource, where M and L are positive integers, L is less than or equal to N, and the sum of L and M Is N.
  • the first signal set by transmitting the first signal set on multiple resources, more UEs can be synchronized with the base station in time, and further, L firsts are sent on the L first spatial resources of the N first spatial resources.
  • a signal set sending a first signal set in each first spatial resource, and then transmitting a second signal set on the remaining M second spatial resources in the N, and transmitting a second in each second spatial resource.
  • the signal set so that there are more UEs in the cell, and the number of effective beams requires almost all beams to transmit synchronization signals, broadcast signals, and system messages during the outer ring beam scanning and the inner ring beam scanning, that is, for the first signal set and the first
  • the two signal sets include almost the same signal content.
  • the outer loop beam scan does not need to send all beam signals
  • the second signal set is sent on the remaining beam of the outer loop beam scan that does not send the first signal set, which can save the first space resource of the outer loop beam scan.
  • the first signal set may include PSS/SSS and PBCH
  • the second signal set may include PSS/SSS, PBCH, and SIB.
  • the method further includes:
  • the base station determines the L first spatial resources according to a preset rule.
  • the L first first spatial resources may be randomly selected to send the first signal set.
  • the base station may determine to first transmit the first signal set on the L beams in the N according to a preset rule, and then in the remaining M.
  • the second signal set is sent on the beam.
  • the method may further include:
  • the base station determines, according to the response signal fed back by the UE to the L first signal sets, and the response signal fed back to the M second signal sets, the first spatial resource of the first signal set and the second signal set of the second time set are sent in the next time period. Two space resources.
  • the base station receives P response signals that the UE feeds back to the L first signal sets, where each response signal includes first indication information of the first spatial resource that sends the first signal set, where P is a positive integer, 1 ⁇ P ⁇ L;
  • the base station receives Y response signals fed back by the UE to the M second signal sets, and each response signal includes second indication information of the second spatial resource that sends the second signal set, where Y is a positive integer, 1 ⁇ Y ⁇ M ;
  • the base station sends L1 first signal sets in the L′ first spatial resources according to the P response signals and the Y response signals, where the first spatial resource corresponding to the L′ first signal sets is the first indication information.
  • the indicated first spatial resource and the spatial resource other than the second spatial resource indicated by the second indication information, L′ is a positive integer, L′ is greater than or equal to 1 and less than or equal to N;
  • the base station sends M′ second signals on the M′ second spatial resources of the first cell.
  • M' is a positive integer and the sum of L' and M' is N.
  • the base station determines that the first spatial resource scanned by the outer ring beam can be determined according to the previous time period, for example, the user of the previous period, and then the second space resource scanned by the inner ring beam is used for the outer ring. The remaining beam outside the beam scanned by the beam. This is because the UE under different beams during one-cycle beam scanning or between two periodic scanning changes, for example, the UE under one beam moves to the coverage of another beam.
  • the PSS/SSS and PBCH of the beam will no longer appear in the discovery subframe of the next outer loop beam scan. Only the sync subframe scanned in the inner loop beam appears. Due to the PSS/SSS and PBCH of the same beam, the outer ring beam scanning and the inner ring beam scanning are different for the UE to obtain the synchronization and the MIB. The UE receives the synchronization subframe of the outer ring of the same beam or the synchronization subframe of the inner ring.
  • Both PSS/SSS and PBCH can obtain synchronization and MIB, and based on the detected channel feedback beam information under the beam to the base station. In this way, not only the first signal set can be sent on multiple resources, but also more UEs can establish synchronization with the base station in time, and the system overhead of PSS/SSS and PBCH scanned by the outer ring beam can be saved.
  • the determined non-effective beam does not need to carry the SIB when scanning the outer ring beam, and only carries the SIB on the effective beam.
  • the double ring will degenerate into a single ring, and when part of the beam is turned on, it is a double ring.
  • B0 to B3, B0 and B2 are valid beams, then in the outer ring beam scanning, the channels of B0 and B2 do not appear, and the UEs belonging to B0 and B2 detect the B0 scanned by the inner ring beam. Get synchronization with P2 and PBCH.
  • B0 ⁇ B11 are all effective beams, only the inner ring beam scanning is left, the outer ring beam scanning does not exist, the double ring degenerates into a single ring, and the UE directly receives the inner ring beam scan to obtain the corresponding beam PSS. /SSS, PBCH and SIB, based on the detected beam
  • the next channel feedback beam information to the base station.
  • the first signal set is sent on multiple resources, so that different beam time divisions serve the users in the cell, and common channels such as a broadcast channel and a synchronization channel under each beam cover all the cells in the cell.
  • the user enables the users in the cell to obtain synchronization and system messages, so that more UEs can establish synchronization with the base station in time, access the cell, and further, pass L first among all the first spatial resources of the first cell.
  • the first signal set above the spatial resource and the second signal set in the remaining M second spatial resources can save the system overhead of the outer loop beam scanning PSS/SSS and PBCH.
  • the embodiment of the present invention provides a radio access method, as shown in FIG. 10, including:
  • the user equipment UE receives the L first signal sets sent by the base station, where a first signal set is sent in each first spatial resource, where the L first signal sets are the base stations in the N first spaces.
  • the L first spatial resources in the resource are sent;
  • the UE receives M second signal sets of the base station, where a second signal set is sent in each second space resource, where M and L are positive integers, L is less than or equal to N, and L The sum with M is N.
  • the N first signal sets of the N first spatial resources are configured at N different time-frequency resource locations;
  • Receiving, by the UE, the L first signal sets sent by the base station includes:
  • the method may further include:
  • the UE Transmitting, by the UE, the first response signal to the base station according to the received first signal set, where the first response signal includes indication information of the first spatial resource that sends the first signal set;
  • the UE feeds back a second response message to the base station according to the received second signal set.
  • the second response signal includes indication information of a second spatial resource that sends the second signal set.
  • the first signal set is sent on multiple resources, so that different beam time divisions serve the users in the cell, and common channels such as a broadcast channel and a synchronization channel under each beam cover all the cells in the cell.
  • the user enables the users in the cell to obtain synchronization and system messages, so that more UEs can establish synchronization with the base station in time, access the cell, and further, pass L first among all the first spatial resources of the first cell.
  • the first signal set above the spatial resource and the second signal set in the remaining M second spatial resources can save the system overhead of the outer loop beam scanning PSS/SSS and PBCH.
  • the embodiment of the present invention further provides a base station 11 including a processor 110, a memory 120, a system bus 130, a receiver 140, and a transmitter 150.
  • the memory 120 is configured to store instructions for executing the instructions stored by the memory 120 to control the receiver 140 to receive signals and to control the transmitter 150 to transmit signals to complete the steps in the wireless access method.
  • the receiver 140 and the transmitter 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the step may include at least: the base station sends the N first signal sets, where the first signal set is sent in each of the first spatial resources, and the M first signal sets in the N first signal sets are the second signal set.
  • Each of the M second signal sets includes indication information; the indication information is used to indicate that the system message is sent in M second spatial resources, or the indication information is used to indicate the M Transmitting the first spatial resource of the second signal set to a valid space resource, where M and N are positive integers, and M is less than or equal to N;
  • the base station sends M system messages on the M second spatial resources, where the M system messages are used to indicate that the user equipment UE accesses the network.
  • the step before the sending, by the base station, the N first signal sets, the step further includes:
  • the step may further include:
  • the base station sends N third signal sets to the UE, where the third signal set is sent on each of the first spatial resources;
  • the base station receives Z response signals sent by the UE, each response signal includes indication information of a spatial resource for transmitting the third signal set, where Z is a positive integer, and Z is less than or equal to N;
  • the base station sends M fourth signal sets according to the Z response signals, where the fourth signal set is sent on each of the second spatial resources;
  • the base station determines the M second spatial resources according to the Z response signals.
  • the system message includes a system information block SIB1.
  • the first set of signals includes a first synchronization signal and/or a first broadcast signal.
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the information carried by the PBCH includes an indication information field, and is used to instruct the base station to send a system message by using the second space resource.
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the information carried by the PBCH is scrambled by the first scrambling code, and the information carried by the PBCH is scrambled by the first scrambling code to indicate that the base station sends a system message by using the second space resource.
  • the first broadcast signal includes information carried by a physical broadcast control channel (PBCH); and a cyclic redundancy check code CRC of the information carried by the PBCH is a first mask.
  • the first mask is used to instruct the base station to send a system message by using a second space resource.
  • the first broadcast signal includes information carried by a physical broadcast control channel (PBCH); the cyclic redundancy check code CRC of the information carried by the PBCH is calculated by using a first calculation manner, and the CRC adopts a first calculation manner. The calculation is used to instruct the base station to send a system message by using the second space resource.
  • PBCH physical broadcast control channel
  • CRC cyclic redundancy check code
  • the first synchronization signal includes a primary synchronization signal PSS and/or a secondary synchronization signal SSS;
  • the PSS is a first sequence, and the PSS is a first sequence used to instruct the base station to send a system message by using a second space resource;
  • the SSS is a second sequence, and the SSS is a second sequence used to instruct the base station to send a system message by using a second space resource.
  • the functions of the receiver 140 and the transmitter 150 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 110 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the user equipment 12 includes a processor 210, a memory 220, a system bus 230, a receiver 240, and a transmitter 250, as shown in FIG.
  • the processor 210, the memory 220, the receiver 240, and the transmitter 250 are connected by a system bus 230 for storing instructions for executing instructions stored in the memory 220 to control the receiver 240 to receive.
  • the signal is controlled, and the transmitter 250 is controlled to transmit a signal to complete the steps in the above wireless access method.
  • the receiver 240 and the transmitter 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the step may include at least: the user equipment UE receives the M second letters sent by the base station a set of numbers, wherein the M second signal sets are M first signal sets in the N first signal sets sent by the base station, and a first signal set is sent in each first spatial resource, Each of the M second signal sets includes indication information;
  • the indication information is used to indicate that the system message is sent in the M second spatial resources, or the indication information is used to indicate that the M first spatial resource that sends the second signal set is a valid space resource.
  • M and N are positive integers, and M is less than or equal to N.
  • the UE receives a system message on the second spatial resource according to the indication information, to access the network according to the system message.
  • the step may further include:
  • the UE feeds back a response signal to the base station according to the received third signal set, where the response signal includes indication information of a spatial resource that sends the third signal set.
  • the system message includes a system information block SIB1.
  • the first set of signals includes a first synchronization signal and/or a first broadcast signal.
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the information carried by the PBCH includes an indication information field, and is used to instruct the base station to send a system message by using the second space resource.
  • the first broadcast signal includes information carried by a physical broadcast control channel PBCH;
  • the information carried by the PBCH is scrambled by the first scrambling code, and the information carried by the PBCH is scrambled by the first scrambling code to indicate that the base station sends a system message by using the second space resource.
  • the first broadcast signal includes a physical broadcast control channel PBCH bearer.
  • the information indicates that the cyclic redundancy check code CRC of the information carried by the PBCH is a first mask, and the first mask is used to instruct the base station to send a system message by using the second space resource.
  • the first broadcast signal includes information carried by a physical broadcast control channel (PBCH); the cyclic redundancy check code CRC of the information carried by the PBCH is calculated by using a first calculation manner, and the CRC adopts a first calculation manner. The calculation is used to instruct the base station to send a system message by using the second space resource.
  • PBCH physical broadcast control channel
  • CRC cyclic redundancy check code
  • the first synchronization signal includes a primary synchronization signal PSS and/or a secondary synchronization signal SSS;
  • the PSS is a first sequence, and the PSS is a first sequence used to instruct the base station to send a system message by using a second space resource;
  • the SSS is a second sequence, and the SSS is a second sequence used to instruct the base station to send a system message by using a second space resource.
  • the functions of the receiver 240 and the transmitter 250 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 210 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the embodiment of the present invention further provides a base station 13 including a processor 310, a memory 320, a system bus 330, a receiver 340, and a transmitter 350.
  • the processor 310, the memory 320, the receiver 340 and the transmitter 350 are connected by a system bus 330 for storing instructions for executing instructions stored by the memory 320 to control the receiver 340 to receive.
  • the signal is transmitted, and the transmitter 350 is controlled to transmit a signal to complete the steps in the above wireless access method.
  • the receiver 340 and the transmitter 350 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the step may include at least: transmitting L first signal sets, where a first signal set is sent in each first spatial resource, where the L first signal sets are in the N first spatial resources of the base station L first spatial resources are sent;
  • the base station sends M second signal sets, where a second signal set is sent in each second spatial resource, where M and L are positive integers, L is less than or equal to N, and the sum of L and M is N .
  • the N first signal sets of the N first spatial resources are configured at N different time-frequency resource locations;
  • Step: the sending, by the base station, the L first signal sets may include:
  • the base station sends the first signal set on the time-frequency resource locations corresponding to the L first signal sets by using the L first spatial resources.
  • the step further includes:
  • the base station determines the L first spatial resources according to a preset rule.
  • the method further includes:
  • the base station determines, according to a response signal that the user equipment UE feeds back to the L first signal sets, and a response signal that is fed back to the M second signal sets, to send the first time of the first signal set in a next time period.
  • a spatial resource and a second spatial resource that transmits the second set of signals.
  • the base station determines, according to a response signal that the user equipment UE feeds back to the L first signal sets, and a response signal that is fed back to the M second signal sets, to send the first signal set in a next cycle.
  • the first spatial resource and the second spatial resource that sends the second signal set include:
  • the base station receives P response signals that the UE feeds back to the L first signal sets, and each response signal includes first indication information of the first spatial resource that sends the first signal set, where P is a positive integer, 1 ⁇ P ⁇ L;
  • the base station receives Y response signals fed back by the UE to the M second signal sets, and each response signal includes second indication information of the second spatial resource that sends the second signal set, where Y is a positive integer, 1 ⁇ Y ⁇ M;
  • the base station sends L1 first signal sets in the L′ first spatial resources according to the P response signals and the Y response signals, where the first spatial resource corresponding to the L′ first signal sets is The first spatial resource indicated by the first indication information and the spatial resource other than the second spatial resource indicated by the second indication information, L′ is a positive integer, L′ is greater than or equal to 1 and less than or equal to N;
  • the base station sends M' second signal sets in M' second spatial resources, where M' is a positive integer, and the sum of L' and M' is N.
  • the functions of the receiver 340 and the transmitter 350 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 310 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the embodiment of the present invention further provides a user equipment 14, which includes a processor 410, a memory 420, a system bus 430, a receiver 440, and a transmitter 450.
  • the processor 410, the memory 420, the receiver 440, and the transmitter 450 are connected by a system bus 430 for storing instructions for executing instructions stored in the memory 420 to control the receiver 440 to receive.
  • the signal is transmitted, and the transmitter 450 is controlled to transmit a signal to complete the steps in the above wireless access method.
  • the receiver 440 and the transmitter 450 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the step may include: the UE receiving the L first signal sets sent by the base station, where the first signal set is sent in each first space resource, where the L first signal sets are The L first spatial resources in the spatial resource are sent;
  • the N first signal sets of the N first spatial resources are configured at N different time-frequency resource locations;
  • the L first signal sets sent by the UE to the L first spatial resources of the N first spatial resources of the first cell by the UE include:
  • it may also include:
  • the UE Transmitting, by the UE, the first response signal to the base station according to the received first signal set, where the first response signal includes indication information of the first spatial resource that sends the first signal set;
  • the UE feeds back a second response signal to the base station according to the received second signal set, where the second response signal includes indication information of a second spatial resource that sends the second signal set.
  • the embodiment of the present invention further provides a communication system, including the foregoing base station and one or more UEs.
  • the processor 110 or 210 or 310 or 410 may be a central processing unit ("CPU"), which may also be other general-purpose processors, digital signal processing. (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 120 or 220 or 320 or 420 can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the system bus 130 or 230 or 330 or 430 may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for the sake of clarity, the various buses are labeled as system buses in the figure.
  • the steps of the above method may be completed by an integrated logic circuit of hardware in the processor 110 or 210 or 310 or 410 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit may be integrated into one processing unit, or each unit may be physically included separately. Two or more units are integrated in one unit.
  • the above units may be implemented in the form of hardware or in the form of hardware plus software functional units.
  • All or part of the steps of implementing the foregoing method embodiments may be performed by hardware related to the program instructions.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes the steps of the foregoing method embodiments;
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. medium.

Abstract

本发明提供一种无线接入方法、用户设备(UE)和基站,涉及通信领域,用于至少解决在窄波束发射下的用户设备及时接入网络的问题。该方法包括如下步骤:基站发送N个第一信号集,其中,在每个第一空间资源发送一个第一信号集,N个第一信号集中的M个第一信号集为第二信号集,M个第二信号集中的每一个信号集包含指示信息;指示信息用于指示系统消息在M个第二空间资源发送,或指示信息用于指示M个发送第二信号集的第一空间资源为有效空间资源,其中,M和N为正整数,M小于或等于N;基站在M个第二空间资源上发送M个系统消息,M个系统消息用于指示UE接入网络。本发明用于实现窄波束情况下第二无线网络设备的及时接入。

Description

一种无线接入方法、UE和基站 技术领域
本发明涉及通信技术领域,尤其涉及一种无线接入方法、UE和基站。
背景技术
低频的场景下,每个天线端口形成的波束是如图1所示的宽波束,因此可以覆盖整个小区的用户,其广播信道,系统消息,寻呼等可以通过宽波束进行发射可以达到很好的覆盖。但是高频的场景下,路径损耗增大,需要利用大规模多输入多输出(massive MIMO)的波束成形(beam forming)技术形成很高的天线增益来弥补路径损耗。Massive MIMO的天线会达到很多,甚至上百根,在形成大的天线增益的同时,形成的波束的宽度很窄,一个窄波束无法覆盖到小区中的所有用户,例如图2中,形成的波束只能覆盖到用户设备(User Equipment,UE)1,UE2无法被波束覆盖,因此一个波束无法覆盖到小区中的所有用户设备,致使用户设备无法及时的接入网络。
如何解决在窄波束发射下的用户设备及时接入网络是亟待解决的一个问题。
发明内容
本发明实施例提供了一种无线接入方法、基站和UE,用于至少解决在窄波束发射下的用户设备及时接入网络的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种无线接入方法,包括:
基站发送N个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述N个第一信号集中的M个第一信号集为第二信号集,所述M个第二信号集中的每一个信号集包含指示信息;
所述指示信息用于指示所述系统消息在M个第二空间资源发 送,或所述指示信息用于指示所述M个发送所述第二信号集的第一空间资源为有效空间资源,其中,M和N为正整数,M小于或等于N;
所述基站在所述M个第二空间资源上发送M个系统消息,所述M个系统消息用于指示用户设备UE接入网络。
结合第一方面,在第一方面的第一种可能实现的方式中,在所述基站发送N个第一信号集前,包括:
基站按照预设规则确定所述M个第一信号集的M个第一空间资源。
结合第一方面,在第一方面的第二种可能实现的方式中,在所述基站发送N个第一信号集前,包括:
所述基站向所述UE发送N个第三信号集,其中,在所述每个第一空间资源上发送一个所述第三信号集;
所述基站接收所述UE发送的Z个响应信号,每个响应信号包含发送所述第三信号集的空间资源的指示信息,Z为正整数,Z小于或等于N;
所述基站根据所述Z个响应信号发送M个第四信号集,其中,在每个所述第二空间资源上发送一个所述第四信号集;
所述基站根据所述Z个响应信号确定所述M个第二空间资源。
结合第一方面或第一方面的第一种可能实现的方式或第二种可能实现的方式中的任一种,在第一方面的第三种可能实现的方式中,所述系统消息包括系统信息块SIB1。
结合第一方面或第一方面的第一种可能实现的方式至第三种可能实现的方式中的任一种,在第一方面的第四种可能实现的方式中,所述第一信号集包括第一同步信号和/或第一广播信号。
结合第一方面的第四种可能实现的方式中的任一种,所述第一 广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息包括指示信息域,用于指示所述基站通过第二空间资源发送系统消息。
结合第一方面的第四种可能实现的方式中的任一种,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息通过第一扰码加扰,所述PBCH承载的信息通过第一扰码加扰用于指示所述系统消息在所述第二空间资源发送。
结合第一方面的第四种可能实现的方式中的任一种,在第一方面的第七种可能实现的方式中,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC为第一掩码,所述第一掩码用于指示所述系统消息在所述第二空间资源发送。
结合第一方面的第四种可能实现的方式中的任一种,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC采用第一计算方式计算得到,所述CRC采用第一计算方式计算得到用于指示所述系统消息在所述第二空间资源发送。
结合第一方面的第四种可能实现的方式中的任一种,所述第一同步信号包括主同步信号PSS和/或辅同步信号SSS;
所述PSS为第一序列,所述PSS为第一序列用于指示所述系统消息在所述第二空间资源发送;
所述SSS为第二序列,所述SSS为第二序列用于指示所述系统消息在所述第二空间资源发送。
第二方面,提供一种无线接入方法,包括:
用户设备UE接收基站发送的M个第二信号集,其中,所述M个第二信号集为所述基站发送的N个第一信号集中的M个第一信号集,且在每个第一空间资源发送一个第一信号集,所述M个第二信号集中的每一个信号集包含指示信息;
其中,所述指示信息用于指示所述系统消息在M个第二空间资源发送,或所述指示信息用于指示所述M个发送所述第二信号集的第一空间资源为有效空间资源,M和N为正整数,M小于或等于N;
所述UE根据所述指示信息在第二空间资源上接收系统消息,以根据所述系统消息接入网络。
结合第二方面,在第二方面的第一种可能实现的方式中,在用户设备UE接收M个第二信号集之前,该方法还包括:
所述UE接收所述基站发送的第三信号集,其中,在所述每个第一空间资源上发送一个所述第三信号集;
所述UE根据接收到的第三信号集,向所述基站反馈响应信号,所述响应信号包含发送所述第三信号集的空间资源的指示信息。
结合第二方面或第二方面的第一种可能实现的方式,在第二方面的第二种可能实现的方式中,所述系统消息包括系统信息块SIB1。
结合第二方面或第二方面的第一种可能实现的方式或第二种可能实现的方式,在第二方面的第三种可能实现的方式中,所述第一信号集包括第一同步信号和/或第一广播信号。
结合第二方面的第三种可能实现的方式,在第二方面的第四种可能实现的方式中,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息包括指示信息域,用于指示所述系统消息在所述第二空间资源发送。
结合第二方面的第三种可能实现的方式,在第二方面的第五种可能实现的方式中,所述第一广播信号包括物理广播控制信道PBCH 承载的信息;
所述PBCH承载的信息通过第一扰码加扰,所述PBCH承载的信息通过第一扰码加扰用于指示所述系统消息在所述第二空间资源发送。
结合第二方面的第三种可能实现的方式,在第二方面的第六种可能实现的方式中,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC为第一掩码,所述第一掩码用于指示所述系统消息在所述第二空间资源发送。
结合第二方面的第三种可能实现的方式,在第二方面的第七种可能实现的方式中,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC采用第一计算方式计算得到,所述CRC采用第一计算方式计算得到用于指示所述系统消息在所述第二空间资源发送。
结合第二方面的第三种可能实现的方式,在第二方面的第八种可能实现的方式中,所述第一同步信号包括主同步信号PSS和/或辅同步信号SSS;
所述PSS为第一序列,所述PSS为第一序列用于指示所述系统消息在所述第二空间资源发送;
所述SSS为第二序列,所述SSS为第二序列用于指示所述系统消息在所述第二空间资源发送。
第三方面,提供一种无线接入方法,包括:
基站发送L个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述L个第一信号集是所述基站在N个第一空间资源中的L个第一空间资源发送的;
所述基站发送M个第二信号集,其中,在每个第二空间资源发 送一个第二信号集,其中,M和L为正整数,L小于或等于N,且L与M之和为N。
结合第三方面,在第三方面的第一种可能实现的方式中,所述N个第一空间资源的N个第一信号集配置在N个不同的时频资源位置;
所述基站发送L个第一信号集包括:
所述基站通过所述L个第一空间资源,在所述L个第一信号集对应的时频资源位置上发送所述第一信号集。
结合第三方面或第三方面的第一种可能实现的方式,在第三方面的第二种可能实现的方式中,在基站在发送L个第一信号集之前,所述方法还包括:
基站按照预设规则确定所述L个第一空间资源。
结合第三方面或第三方面的第一种可能实现的方式或第二种可能实现的方式,在第三方面的第三种可能实现的方式中,所述方法还包括:
所述基站根据用户设备UE对所述L个第一信号集反馈的响应信号,和对所述M个第二信号集反馈的响应信号确定下一时间段发送所述第一信号集的第一空间资源和发送所述第二信号集的第二空间资源。
结合第三方面的第三种可能实现的方式,在第三方面的第四种可能实现的方式中,所述基站根据用户设备UE对所述L个第一信号集反馈的响应信号,和对所述M个第二信号集反馈的响应信号确定下一周期发送所述第一信号集的第一空间资源和发送所述第二信号集的第二空间资源包括:
所述基站接收所述UE对L个第一信号集反馈的P个响应信号,每个响应信号包含发送所述第一信号集的第一空间资源的第一指示信息,P为正整数,1≤P≤L;
所述基站接收所述UE对M个第二信号集反馈的Y个响应信号,每个响应信号包含发送所述第二信号集的第二空间资源的第二指示信息,Y为正整数,1≤Y≤M;
所述基站根据所述P个响应信号和所述Y个响应信号在L′个第一空间资源发送L′个第一信号集,所述L′个第一信号集对应的第一空间资源为所述第一指示信息指示的第一空间资源和所述第二指示信息指示的第二空间资源以外的空间资源,L′为正整数,L′大于或等于1且小于或等于N;
所述基站在M′个第二空间资源上发送M′个第二信号集,其中,M′为正整数,所述L′与M′之和为N。
第四方面,提供一种无线接入方法,包括:
用户设备UE接收基站发送的L个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述L个第一信号集是所述基站在N个第一空间资源中的L个第一空间资源发送的;
所述UE接收所述基站的M个第二信号集,其中,在每个第二空间资源发送一个第二信号集,其中,M和L为正整数,L小于或等于N,且L与M之和为N。
结合第四方面,在第四方面的第一种可能实现的方式中,所述N个第一空间资源的N个第一信号集配置在N个不同的时频资源位置;
所述UE接收基站发送的L个第一信号集包括:
所述UE接收所述基站通过所述L个第一空间资源,在所述L个第一信号集对应的时频资源上发送的所述第一信号集。
结合第四方面或第四方面的第一种可能实现的方式,在第四方面的第二种可能实现的方式中,所述方法还包括:
所述UE根据接收到的第一信号集向所述基站反馈第一响应信号,所述第一响应信号包含发送所述第一信号集的第一空间资源的 指示信息;
所述UE根据接收到的第二信号集向所述基站反馈第二响应信号,所述第二响应信号包含发送所述第二信号集的第二空间资源的指示信息。
第五方面,提供一种基站,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述基站用于完成如第一方面及第一方面的所有可能的实现方式的任意一种方法。
第六方面,提供一种用户设备,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述基站用于完成如第二方面及第二方面的所有可能的实现方式的任意一种方法。
第七方面,提供一种基站,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述基站用于完成如第三方面及第三方面的所有可能的实现方式的任意一种方法。
第八方面,提供一种用户设备,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述基站用于完成如第四方面及第四方面的所有可能的实现方式的任意一种方法。
本发明实施例提供一种无线接入方法、基站和UE,通过在多个资源上发送第一信号集,可以使得在窄波束发射下的UE及时和基站建立同步;通过在其中部分第一信号集中包含指示信息,指示信 息用于指示所述基站通个第二空间资源发送系统消息或所述M个第一空间资源为有效空间资源,能够减少UE获取系统消息的时延,从而减少UE的接入时延;通过在所有空间资源中的部分空间资源发送第一信号集,并在剩余的空间资源上发送第二信号集,能够节省外环beam扫描的系统开销。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中低频场景下的一种基站覆盖示意图;
图2为本发明实施例提供的一种基站覆盖的示意图;
图3为本发明实施例提供的一种双环beam接入流程的示意图;
图4为本发明实施例提供的一种外环beam信号和内环beam信号的时序示意图;
图5为本发明实施例提供的一种无线接入方法流程的示意图;
图6为本发明实施例提供的一种外环beam信号子帧结构的示意图;
图7为本发明实施例提供的一种内环beam信号的子帧结构示意图;
图8为本发明实施例提供的一种无线接入方法流程的示意图;
图9为本发明实施例提供的一种内环beam信号的子帧结构示意图;
图10为本发明实施例提供的一种无线接入方法流程的示意图;
图11为本发明实施例提供的一种基站的结构示意图;
图12为本发明实施例提供的一种用户设备的结构示意图;
图13为本发明实施例提供的一种基站的结构示意图;
图14为本发明实施例提供的一种用户设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了便于理解,示例的给出了部分与本发明相关概念的说明以供参考。如下所示:
第三代合作伙伴计划(英文:3rd generation partnership project,简称3GPP)是一个致力于发展无线通信网络的项目。通常,将3GPP相关的机构称为3GPP机构。
无线通信网络,是一种提供无线通信功能的网络。无线通信网络可以采用不同的通信技术,例如码分多址(英文:code division multiple access,简称CDMA)、宽带码分多址(wideband code division multiple access,简称WCDMA)、时分多址(英文:time division multiple access,简称:TDMA)、频分多址(英文:frequency division multiple access,简称FDMA)、正交频分多址(英文:orthogonal frequency-division multiple access,简称:OFDMA)、单载波频分多址(英文:single Carrier FDMA,简称:SC-FDMA)、载波侦听多路访问/冲突避免(英文:Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络或者4G网络。典型的2G网络包括全球移动通信系统(英文:global system for mobile communications/general packet radio service,简称:GSM)网络或者通用分组无线业务(英文:general packet radio service,简称:GPRS)网络,典型的3G网络包括通用移动通信系统(英文:universal mobile telecommunications system,简称:UMTS)网络,典型的4G 网络包括长期演进(英文:long term evolution,简称:LTE)网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(英文:universal terrestrial radio access network,简称:UTRAN),LTE网络有时也可以称为演进型通用陆地无线接入网(英文:evolved universal terrestrial radio access network,简称:E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(英文:wireless local area networks,简称:WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G和4G网络,均为蜂窝通信网络。本领域技术人员应知,随着技术的发展本发明实施例提供的技术方案同样可以应用于其他的无线通信网络,例如4.5G或者5G网络,或其他非蜂窝通信网络。为了简洁,本发明实施例有时会将无线通信网络简称为网络。
用户设备(英文:user equipment,简称:UE)是一种终端设备,可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该用户设备可以经无线接入网(radio access network,简称:RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
基站(英文:base station,简称:BS)设备,也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(英文:base transceiver station,简称:BTS)和基站控制器(英文:base station controller,简称:BSC),3G网络中提供基站功能的设备包括节点B(英文简称:NodeB)和无线网络控制器(英文:radio network controller,简称:RNC),在4G网络中提供基站功能的设备包括演进的节点B(英文:evolved NodeB,简称:eNB),在WLAN中, 提供基站功能的设备为接入点(英文:Access Point,简称:AP)。
帧结构,无线帧,子帧,符号,时隙:
帧结构是对信号传输的时间资源(时域)进行划分所展现的结构,在无线通信中,通常所用的帧结构中的时间单位从大到小依次有无线帧,子帧和时隙。具体的每个时间单位对应的时间长度可以根据具体的协议要求而制定。以LTE中的一种帧结构为例:一个无线帧(radio frame)长度为10ms,包含10个子帧(subframe),每个子帧长度为1ms,每个子帧进一步包含两个时隙,每个时隙(slot)0.5ms。符号(symbol)是信号的最小单位。以LTE网络为例,每个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)子载波对应一个OFDM符号。不考虑符号间的保护间隔时,一个OFDM符号长度(所占的时间)为1/子载波间隔。考虑符号间的保护间隔时,一个OFDM符号所占的时间为OFDM符号长度与循环前缀(Cyclic Prefix,CP)长度之和。
帧号:每个无线帧的编号,以LTE网络为例,LTE中帧的编号是从0-1023,然后再重新从0开始编号。
资源:包括时间资源、频率资源、码资源和空间资源中的至少一项。
时间资源:信号所占用的资源以时间为度量的资源,例如信号在时间上占用2个OFDM符号,或者1个子帧,或者3个无线帧。时间资源可以包括绝对的时间资源和相对的时间资源,如无线帧号、子帧在无线帧中的相对位置和符号在子帧中的相对位置中的至少一种。通常描述时间资源为固定的或可变的,都是针对相对的时间资源来描述的。通常描述时间资源为相同的,则可以是绝对的时间资源相同,也可以是相对的时间资源相同。
频率资源:信号所占用的资源以频率为度量的资源,例如信号在频率上占用10MHz,在OFDM系统中,通常采用子载波个数来描述所占用的频率资源。
时频资源:信号所占用的资源以时间和频率为度量的资源,例如信号在时间上占用2个OFDM符号,频率上占用10MHz。
码资源:信号所占用的资源以码为度量的资源,例如WCDMA中的扩频码,或者信号采用的序列资源也称为码资源。例如同步信号采用的序列。序列,即为码资源的一种。
空间资源:信号所占用的资源以波束为度量的资源,对于多输入多输出(multiple input multiple output,MIMO)传输,信号采用不同方向的波束可以在相同的时频资源上并行传输。
系统信息广播(system information broadcast):可以简称为系统信息,主要提供了所接入网络的主要信息,以便与UE建立无线连接,使得UE获得足够的接入信息,小区选择、重选的公共配置参数。LTE中的系统消息分为多个系统消息块(system information block,SIB),其中一个称作主广播块(master information block,MIB),该MIB也称为广播信号,其他SIB称为系统消息。LTE系统信息广播与3G的系统信息广播从功能上是完全一致的,但是在调度和具体的信息内容上还是有很大的不同。其中MIB通常包括有限个最重要,最常用的传输参数,其他SIB则通常包括小区无线配置、小区重选信息、邻区列表、家庭基站标识(home eNB identifier),地震海啸预警(ETWS)或公共报警(CMAS)等通知信息,多媒体多播(MBMS)控制信息等参数。
另外,在本发明实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本发明实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混 用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例既可以应用于时分复用的场景,也可以适用于频分复用的场景。
本发明实施例依托无线通信网络中4G网络的场景进行说明,应当指出的是,本发明实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
在现有的LTE中,UE的初始接入流程为:基站发送同步信号,UE根据同步信号获得定时同步以及小区ID,UE根据小区ID获得公共导频(common reference signal,CRS)的位置,并且进行参考信号接收功率(reference signal received power,RSRP)的测量,进而进行小区初选,驻留在初选的小区,然后根据CRS进行广播信道和系统消息的检测,获得小区的系统消息。在UE发起主叫或被寻呼时,UE发起随机接入,UE和基站之间建立RRC连接。
由于上述UE的初始接入流程中的同步信号、广播信道或系统消息的设计与窄波束的场景不匹配,导致小区内的部分用户设备无法被覆盖到,这些用户设备无法及时的接入网络。
在本发明实施例中给出了无线接入方法、基站和用户设备,可以适用于窄波束的场景。本发明实施例中的“接入”可以理解为广义的建立通信的初始过程。
在本发明实施例中由于基站和UE之间的下行通信通过窄波束 进行,通过波束的信息可以将上行和下行通信联系起来,波束的信息可以通过上行信号或下行信号携带,这里的携带包括波束标识信息或波束标识的对应信息,可以通过所使用的时间资源、频率资源和码资源中的至少一种进行携带。
本实施例中基站发送UE无线接入所需的信息分为两次下发(在本实施例中称为双环波束(beam)接入),第一次在本实施例中称为外环beam扫描,第二次称为内环beam扫描。每个内环beam有其对应的外环beam,这里的对应可以指覆盖的范围大体相同(比如beam的主瓣覆盖一致,或范围相关度较高)。外环beam的波束宽度和对应的内环beam的波束宽度可以相同也可以不同,外环beam的波束方向和对应的内环beam的波束方向可以一致也可以不同。在对空间进行划分的划分颗粒度上,外环beam可以和内环beam的相同,或是,不同(小或者大),比如,外环beam有8个,这8个外环beam就是内环beam,或者,外环beam有8个,而内环beam有4个,每2个外环beam对应一个内环beam。具体的外环beam和内环beam的对应关系可以根据实际需要进行设定,可以是一对多,多对一,或者,多对多,在此不予限定。示例的,对应的内环beam和外环beam波束宽度相同且方向一致;或者,对应的内环beam和外环beam波束宽度相同,但内环beam的波束方向较外环beam的波束方向有在一定门限内的相差,门限可以根据实际需要定义,如10度或20度;或者,对应的内环beam和外环beam波束方向相同或相位有一定门限内的偏差,内环beam的波束宽度较外环beam的波束宽度大,或者小。一个内环beam可以对应多于一个外环beam,或者,一个外环beam对应多于一个内环beam。
其中,外环beam扫描用于小区发现,UE可按照外环beam的周期进行全小区扫描,检测外环beam相关的同步和公共信道。例如,以40ms为周期、共8个广播波束为例,每40ms将8个广播波束分时发送一遍,每个波束承载同步信道和PBCH,用于UE的检测和MIB的获取,UE基于检测到的beam下的信道,反馈相应的beam 信息给基站。内环beam扫描在外环beam扫描的基础上,基站基于UE反馈的beam信息,仅向存在UE的波束(sector beam)进行扫描,发送同步和公共信道,这样通过双环波束接入方法,在高频多波束发送的场景下,为了小区内的用户服务,不同的波束可分时为小区内的用户服务,各个波束下需要广播信道、同步信道等公共信道覆盖到小区所有的用户,以使小区内的用户获得同步和必要的系统消息,从而接入小区。且由于基站在内环扫描时仅需要发送部分beam的同步和公共信道,可以减少系统开销,并减少对其他beam的干扰,同时节省了基站能耗。
具体的接入流程可以如图3所示为:
a、基站按照外环beam扫描周期发送所有beam的发现信号;
外环beam扫描的目的在于对小区的覆盖进行全面的空间上的扫描,基站可以通过在每个beam均发送外环beam信号达到全面扫描的目的。发现(discovery)信号例如可以为同步信号和广播信号。同步信号可为主同步信号(Primary Synchronization Signal,PSS)/辅同步信号(Secondary Synchronization Signal,SSS),广播信号例如可为物理广播信道(Physical Broadcast Channel,PBCH)
b、UE检测发现信号获取物理小区ID(Physical Cell ID,PCI)和beam ID,并通过与外环beam关联的上行信道反馈beam ID。
对于存在UE的beam,UE会根据发现信号确定自身所属的小区和beam。例如基站通过同步信号获取物理小区PCI和beam ID,或者也可通过广播信号获取beam ID。
反馈beam ID的目的在于让基站知道内环beam扫描应该在哪些beam进行,即知道哪个beam位置存在UE,用以确定内环beam扫描的内环beam,基站不需要知道UE的具体信息。
c、基站根据UE的反馈发起内环beam扫描
基站可以根据一个或多个UE所反馈的外环beam信息确定其对 应的内环beam,或者,根据UE所反馈的内环beam的信息确定对应的内环beam,具体地,可以根据外环beam和内环beam的对应关系进行确定。
在内环beam扫描中发送的信号称为内环beam信号,外环bean扫描中发送的信号称为外环beam信号。
为了b步骤中UE发出的反馈可以被基站正确的接收,在a步骤中,基站发出每个beam的外环beam信号至少包括同步信号。若内环beam扫描和外环beam扫描的时间是同步的,则内环beam信号中可以不包括同步信号。但是为了提高同步的性能,即使内环beam扫描和外环beam扫描的时间是同步的,内环beam信号中也可以包括同步信号。
外环beam信号和内环beam信号的合集可以包括UE进行无线接入所需的所有信号(简称为用于接入的信号集),比如,同步信号PSS,广播信号SSS,系统消息SIB/MIB和测量导频信号等,以完成UE无线接入。具体这些信号是如何分配在外环beam信号和内环beam信号中,可以依据实际情况而定,将在本发明实施例后续中予以详述,但并不作为本实施例方案的限定。
d、UE发起随机接入过程,和基站建立起RRC连接。
UE通过接收内环bean信号读取系统消息,获取物理随机接入信道(Physical Random Access Channel,PRACH)配置信息,进而通过随机接入过程接入,进入RRC连接态。
其中,所述基站包括的N个天线对应N个波束,基站在外环beam上发送第一信号集,在内环beam上发送第五信号集。第一信号集和第五信号集的合集可以包括UE进行无线接入所需的所有信号(称为用于接入的信号集),比如,同步信号,广播信号,系统消息和测量导频信号等,以完成UE无线接入。
其中,同步信号用于实现时间和频率中至少一项的同步;测量 导频信号用于进行信道估计,进而用于无线资源管理(radio resource management,RRM)测量;广播信号用于广播一些最重要最常用的传输参数,系统消息用于发送一些系统配置信息。
其中,所述第一信号集可以包括有同步信号(PSS和SSS)和/或PBCH信道。
比如涉及外环beam信号和内环beam信号的区分,可选的,第一信号集中的同步信号(可称为第一同步信号,或外环同步信号)和第五信号集中的同步信号(可称为第五同步信号,或内环同步信号)可以设计为不同,不同可以包括比如序列不同,同步信号中所包括的主同步信号(PSS)和辅同步信号(SSS)的符号间隔不同,同步信号所占的时间资源的大小不同,同步信号所占的频率资源的大小不同等中的至少一种,这样UE可以根据检测的同步信号的不同来确定是外环扫描过程还是内环扫描过程,进而确定要不要反馈响应信号。如果判断是外环的同步信号,则UE反馈响应信号,如果是内环的同步信号,则UE不进行反馈所述响应信号。可选的,外环beam信号和内环beam信号的区分方式也可以通过其他方式实现,而将第一同步信号和第五同步信号设计为相同。
在窄波束场景下为了能够覆盖整个小区,基站包括有多个天线,用于向不同的方向发射波束,即包括有N个第一空间资源。
基站在N个第一空间资源上发送第一信号集,用于对整个小区进行分时扫描。
示例的,如图4所示,一个无线帧为2ms,每个无线帧发送4个外环beam信号,每个无线帧包括10个子帧(每个0.2ms)。每个子帧可以支持4个beam的发送。假设一个小区需要遍历12个beam才可以达到所有用户的覆盖,第一个无线帧内的第二个子帧以B0-B3发送外环beam信号,第二个无线帧内的第二子帧以B4-B7发送外环beam信号,则扫描12个beam需要三个无线帧。
其中,在小区内UE较少的情况下,发送内环beam信号的beam 数量少,为了减少系统开销,外环beam信号可以发送所有beam的PSS/SSS和MIB,但是不发送SIB,等到用于发送内环beam信号的beam确定后,只发送用于发送内环beam信号的beam的PSS/SSS、MIB和SIB,由于SIB的信息量较大,系统消息和同步信道的开销相比外环beam扫描减少很多,但是UE需要等到内环beam扫描才能接收SIB,即检测内环beam的同步信道、PBCH和相应的系统消息(System information,SI),从而使用SI中指示的随机接入信道(Random Access Channel,RACH)资源发起接入,与小区建立RRC连接,接入时延长。
为了利于UE能够及时接入网络,基站可按照预设规则确定发送包含指示信息的M个第二信号集(外环beam信号)的M个第一空间资源(外环beam),M和N为正整数,M小于或等于N。
可选的,基站可以随机选择在部分波束发送的第一信号集中包含指示信息,用于指示所述基站通过M个第二空间资源(内环beam)发送系统消息或所述M个第一空间资源为有效空间资源。
可选的,基站可以均匀选取部分波束发送包含指示信息的第二信号集,用于指示所述基站通过M个第二空间资源(内环beam)发送系统消息或所述M个第一空间资源为有效空间资源。这里的均匀选取可以包括:根据第一空间资源在空间上的分布均匀选取,或者根据第一空间资源的编号间隔选取等,也也可以为其它规则,本申请不做限定。
可选的,基站可以在上一周期UE反馈的有效beam上发送的第一信号集中携带指示信息。
这样,在基站通过M个第二空间资源上发送M个系统消息后,UE可以根据指示信息在第二空间资源上接收系统消息,不需要通过检测内环beam的同步信道、PBCH和系统消息,以用于快速接入网络。
具体的,本发明实施例提供的一种无线接入方法,如图5所示, 该方法包括:
501、基站发送N个第一信号集,其中,在每个第一空间资源发送一个第一信号集,N个第一信号集中的M个第一信号集为第二信号集,M个第二信号集中的每一个信号集包含指示信息。
所述指示信息用于指示系统消息在M个第二空间资源发送,或指示信息用于指示M个发送第二信号集的第一空间资源为有效空间资源,其中,M和N为正整数,M小于或等于N。
示例性的,在基站在第一小区的N个第一空间资源上发送N个第一信号之前,基站可以按照预设规则确定发送包含指示信息的M个第一信号集的M个第一空间资源。也就是说,基站可指定其中的M个第一空间资源上的M个第一信号集为第二信号集来发送指示信息,表征该M个第一空间资源为有效空间资源,以便只在有效空间资源上发送系统消息;或者指示给UE基站指定系统消息在M个第二空间资源上发送,UE便可根据指示信息直接从指定的第二空间资源上接收系统消息,以便快速接入网络。
502、所述基站在M个第二空间资源上发送M个系统消息,M个系统消息用于指示用户设备UE接入网络。
其中,所述系统消息包括系统信息块SIB1。
其中,所述第一信号集包括第一同步信号和/或第一广播信号。
示例性的,基站可以通过PBCH中的信息指示给UE该beam是否有SIB发送或者是否为有效beam,UE可根据指示信息接收SIB1以及其它SIB,具体的指示方式可以包括:
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息包括指示信息域,用于指示所述基站通过第二空间资源发送系统消息。
例如,PBCH承载1bit信息指示。由于PBCH目前承载14比特 信息,用于指示下行系统带宽、系统帧号、物理混合自动重传指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)配置,另外还有10比特空闲比特,增加1比特指示信息后,PBCH承载15比特有用信息和9比特空闲比特。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息通过第一扰码加扰,所述PBCH承载的信息通过第一扰码加扰用于指示所述基站通过第二空间资源发送系统消息。
示例性地,PBCH承载的信息可不变,通过采用不同的扰码加扰,隐含的通知UE该beam是否有SIB发送。例如,定义用于PBCH加扰的扰码包括扰码1和扰码2,当UE盲检PBCH时通过扰码1检测到了正确的信息,即循环冗余校验码(Cyclic Redundancy Check,CRC)校验正确,则认为该beam没有SIB发送,当通过扰码2检测到了正确的信息,则认为该beam有SIB发送。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC为第一掩码,所述第一掩码用于指示所述基站通过第二空间资源发送系统消息。
示例性地,PBCH承载的信息不变,通过CRC上加的掩码不同,隐含的通知UE该beam是否有SIB发送。例如,定义用于PBCH的CRC的加掩的掩码包括掩码1和掩码2,当UE盲检OBCH时通过掩码1检测CRC校验正确,则认为该beam没有SIB发送,当通过掩码2检测CRC校验正确,则认为该beam有SIB发送。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC采用第一计算方式计算得到,所述CRC采用第一计算方式计算得到用于指示所述基站通过第二空间资源发送系统消息。
示例性的,PBCH承载的信息不变,通过不同的CRC计算方式计算CRC,得到不同的CRC,隐含的通知UE该beam是否有SIB发送。UE根据不同的CRC计算方式得到CRC并对接收到的PBCH承载的数据进行校验,例如,定义用于PBCH的CRC的计算方式包括方式1和方式2,当UE盲检PBCH时通过CRC计算方式1和计算方式2对接收信息进行CRC计算,并与接收到的CRC进行比较,如果通过计算方式1检测CRC校验正确,则认为该beam没有SIB发送,如果通过计算方式2检测CRC校验正确,则认为该beam有SIB发送。
可选的,所述第一同步信号包括主同步信号PSS和/或辅同步信号SSS,还可以通过PSS/SSS的序列不同指示是否有SIB发送或是否为有效beam。
所述PSS为第一序列,所述PSS为第一序列用于指示所述基站通过第二空间资源发送系统消息;
所述SSS为第二序列,所述SSS为第二序列用于指示所述基站通过第二空间资源发送系统消息。
示例性的,PSS/SSS采用的序列不同,隐含的通知UE该beam是否有SIB发送,UE根据不同的序列检测PSS/SSS,例如,定义PSS/SSS分别可以使用序列1和序列2,如果UE通过检测到采用序列1的PSS/SSS,则认为该beam没有SIB发送,如果UE通过检测到采用序列2的PSS/SSS,则认为该beam有SIB发送。
作为另一种实施方式,基站可以在上一周期UE反馈的有效beam上发送的第一信号集中携带指示信息。具体的,该方法包括:
所述基站向UE发送N个第三信号集,其中,在每个第一空间资源上发送一个第三信号集;即在N个外环beam上发送N个第三信号集,该第三信号集包括PSS/SSS和MIB等;
所述基站接收UE发送的Z个响应信号,每个响应信号包含发送第三信号集的空间资源的指示信息,Z为正整数,Z小于或等于N;即该Z个响应信号表征相应的Z个有效beam中存在UE;
所述基站根据Z个响应信号发送M个第四信号集,其中,在每个第二空间资源上发送一个第四信号集;即基站在存在UE的M个有效beam上发送第四信号集,第四信号集包括相应的有效beam的PSS/SSS、MIB和SIB,UE便根据SIB接入网络;
所述基站根据Z个响应信号确定M个第二空间资源;由于Z个响应信号表征其相应的beam为有效beam,基站可确定可在其中的M个beam的第一信号集中包括指示信息;
基站发送N个第一信号集,其中,在每个第一空间资源发送一个第一信号集,N个第一信号集中的M个第一信号集为第二信号集,M个第二信号集中的每一个信号集包含指示信息,所述指示信息用于指示所述系统消息在M个第二空间资源发送,或所述指示信息用于指示所述M个发送所述第二信号集的第一空间资源为有效空间资源,其中,M和N为正整数,M小于或等于N;也即基站在此次发送第一信号集时,在N个第一信号集中的M个第一信号集中添加指示信息,以指示相应的beam为有效beam或者该beam有SIB发送;
所述基站在M个第二空间资源上发送M个系统消息,所述M个系统消息用于指示用户设备UE接入网络。即基站在M个有效beam上分别发送SIB,这样UE便可直接根据指示信息确定该beam上有SIB,从而获取SIB接入网络。
因此,本发明实施例提供一种无线接入方法,基站发送N个第一信号集,其中,在每个第一空间资源发送一个第一信号集,N个第一信号集中的M个第一信号集为第二信号集,M个第二信号集中的每一个信号集包含指示信息,指示信息用于指示系统消息在M个第二空间资源发送,或指示信息用于指示M个发送第二信号集的第一空间资源为有效空间资源,其中,M和N为正整数,M小于或等 于N,基站在M个第二空间资源上发送M个系统消息,M个系统消息用于指示用户设备UE接入网络,这样,通过在多个资源上发送第一信号集,可以使得窄波束发射下的较多的UE及时和基站建立同步,且通过指示信息指示基站发送系统消息,不仅可以使得UE及时接入网络,还可使得系统消息的发送更有效,节约了第二空间资源,避免了在无效的第二空间资源上发送系统消息产生的干扰。
相应的,对于UE来说,为了要及时接入网络,本发明实施例提供一种无线接入方法,包括:
UE接收基站发送的M个第二信号集,其中,所述M个第二信号集为所述基站发送的N个第一信号集中的M个第一信号集,且在每个第一空间资源发送一个第一信号集,所述M个第二信号集中的每一个信号集包含指示信息;
其中,所述指示信息用于指示所述系统消息在M个第二空间资源发送,或所述指示信息用于指示所述M个发送所述第二信号集的第一空间资源为有效空间资源,M和N为正整数,M小于或等于N。
所述UE根据所述指示信息在第二空间资源上接收系统消息,以根据所述系统消息接入网络。即在UE识别出带有指示信息的第一信号集时,可直接根据指示信息在第二空间资源上接收系统消息,以便根据系统消息与网络建立RRC连接。
这样,通过在多个资源上发送第一信号集,可以使得较多的UE及时和基站建立同步,该第一信号集中包括用于指示基站在M个第二空间资源上发送系统消息或者M个第一空间资源为有效空间资源,这样不仅使得系统消息的发送更有效,节约了第二空间资源,还使得UE能够根据系统消息及时接入网络,不需要检测第二空间资源,也避免了在无效的第二空间资源上发送系统消息产生的干扰。
可选的,在用户设备UE接收M个第二信号集之前,该方法还包括:
所述UE接收所述基站发送的第三信号集,其中,在所述每个第一空间资源上发送一个所述第三信号集;
所述UE根据接收到的第三信号集,向所述基站反馈响应信号,所述响应信号包含发送所述第三信号集的空间资源的指示信息。
也即UE接收到的第二信号集中的指示信息可根据基站与UE之间的交互确定,在UE接收到基站在第一空间资源上发送的第三信号集后,向基站反馈响应信号,基站便获知在收到响应信号的第一空间资源存在UE,要在该反馈信号包含的指示信息指示的空间资源上发送系统消息,于是在执行步骤:UE接收M个第二信号集时,基站是根据第三信号集中的指示信息指示的第一空间资源发送第二信号集,即指示基站通过指示信息指示的有效第一空间资源,即第二空间资源发送系统消息。
其中,系统消息包括系统信息块SIB1,用于UE根据该系统消息中指示的RACH资源发起接入,与小区建立RRC连接。
所述第一信号集包括第一同步信号和/或第一广播信号。
上述第一信号集中包含的指示信息可通过以下方式携带,其具体实现方式可参见上述实施例,此处不再赘述。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息包括指示信息域,用于指示所述基站通过所述第二空间资源发送系统消息。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息通过第一扰码加扰,所述PBCH承载的信息通过第一扰码加扰用于指示所述基站通过第二空间资源发送系统消息。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载 的信息;所述PBCH承载的信息的循环冗余校验码CRC为第一掩码,所述第一掩码用于指示所述基站通过第二空间资源发送系统消息。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC采用第一计算方式计算得到,所述CRC采用第一计算方式计算得到用于指示所述基站通过第二空间资源发送系统消息。
可选的,所述第一同步信号包括主同步信号PSS和/或辅同步信号SSS;
所述PSS为第一序列,所述PSS为第一序列用于指示所述基站通过第二空间资源发送系统消息;
所述SSS为第二序列,所述SSS为第二序列用于指示所述基站通过第二空间资源发送系统消息。
因此,本发明实施例提供一种无线接入方法,UE接收基站发送的M个第二信号集,其中,M个第二信号集为基站发送的N个第一信号集中的M个第一信号集,且在每个第一空间资源发送一个第一信号集,M个第二信号集中的每一个信号集包含指示信息,这样通过接收基站在多个资源上发送的第一信号集,可以使得UE可以及时和基站建立同步,通过第二信号集中的指示信息指示基站通过M个第二空间资源上发送M个系统消息或M个第一空间资源为有效空间资源,可以使得UE在同步后及时接入基站。
对于小区内UE较多,使得有效第一空间资源(内环beam)的数量也多,双环的内环beam扫描基板包含了所有的beam,且基本所有的beam都需要发送同步信号、广播信号和系统消息等,系统开销大,而且,外环和内环用于发送信号和消息的beam高度重叠,在相同的beam上承载的部分信号有重复的部分,带来更大的额外开销。
具体地,外环beam扫描的discovery子帧承载所有beam的PSS/SSS、PBCH信道,如图6所示,discovery子帧中每两个符号承载一个beam的PSS/SSS和PBCH信道,并且不同beam的符号之间存在beam切换点。内环beam扫描的同步子帧承载有效beam的PSS/SSS和PBCH信道,一种承载方式如图7所示,有效beam的信道承载在内环同步子帧的最后两个下行符号,每个内环同步子帧只承载一个beam的PSS/SSS和PBCH信道。
因此,在解决在窄波束发射下的用户设备及时接入网络这一问题的同时,为了减少外环beam扫描的系统开销,本发明实施例提供一种无线接入方法,如图8所示,包括:
801、基站发送L个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述L个第一信号集是所述基站在N个第一空间资源中的L个第一空间资源发送的;
其中,N个第一空间资源的N个第一信号集配置在N个不同的时频资源位置;所述基站发送L个第一信号集可以包括:基站通过所述L个第一空间资源,在所述L个第一信号集对应的时频资源位置上发送所述第一信号集。
802、所述基站发送M个第二信号集,其中,在每个第二空间资源发送一个第二信号集,其中,M和L为正整数,L小于或等于N,且L与M之和为N。
这样,通过在多个资源上发送第一信号集,可以使得较多的UE可以及时和基站建立同步,进一步的,在N个第一空间资源的L个第一空间资源上发送L个第一信号集,在每一个第一空间资源发送一个第一信号集,而后,再在N个中剩余的M个第二空间资源上发送第二信号集,在每个第二空间资源发送一个第二信号集,这样对于小区内UE较多,有效beam数量多需要几乎所有beam都在外环beam扫描和内环beam扫描时发送同步信号、广播信号和系统消息等,即对于第一信号集和第二信号集包括的信号内容几乎相同的情 况来说,外环beam扫描不需要发送所有beam的信号,并将在外环beam扫描未发送第一信号集的剩余beam上发送第二信号集,可以节约外环beam扫描的第一空间资源的系统开销。
其中,第一信号集可包括PSS/SSS和PBCH,第二信号集可包括PSS/SSS、PBCH和SIB。
可选的,在基站在发送L个第一信号集之前,该方法还包括:
基站按照预设规则确定所述L个第一空间资源。例如可以随机选取L个第一空间资源发送第一信号集。
也即,在外环beam扫描和内环beam扫描几乎会包括所有beam的情况下,基站可按照预设规则确定先在N个中的L个beam上发送第一信号集,再在剩余的M个beam上发送第二信号集。
可选的,该方法还可以包括:
基站根据UE对L个第一信号集反馈的响应信号,和对M个第二信号集反馈的响应信号确定下一时间段发送第一信号集的第一空间资源和发送第二信号集的第二空间资源。
具体地,基站接收UE对L个第一信号集反馈的P个响应信号,每个响应信号包含发送第一信号集的第一空间资源的第一指示信息,P为正整数,1≤P≤L;
基站接收UE对M个第二信号集反馈的Y个响应信号,每个响应信号包含发送所述第二信号集的第二空间资源的第二指示信息,Y为正整数,1≤Y≤M;
基站根据P个响应信号和所述Y个响应信号在L′个第一空间资源发送L′个第一信号集,L′个第一信号集对应的第一空间资源为所述第一指示信息指示的第一空间资源和所述第二指示信息指示的第二空间资源以外的空间资源,L′为正整数,L′大于或等于1且小于或等于N;
基站在第一小区的M′个第二空间资源上发送M′个第二信号 集,其中,M′为正整数,L′与M′之和为N。
也就是说,基站确定外环beam扫描的第一空间资源可根据上一时间段,例如上一周期的用户相应确定,进而内环beam扫描的第二空间资源即为N个中用于外环beam扫描的beam以外的剩余beam。这是由于在一个周期的beam扫描过程中或者两次周期扫描之间不同的beam下的UE会发生变化,例如一个beam下的UE移动至另一beam的覆盖范围内。
也即,为了减少外环的系统开销,当某个beam在外环beam扫描周期内为有效beam,则该beam的PSS/SSS和PBCH不会再出现在下一外环beam扫描的discovery子帧,而只出现在内环beam扫描的同步子帧。由于同一beam的PSS/SSS和PBCH,外环beam扫描和内环beam扫描对于UE获得同步和MIB来说没有不同,UE接收到同一beam的外环的discovery子帧或内环的同步子帧承载的PSS/SSS和PBCH,都可以获得同步和MIB,同时基于检测到的该beam下的信道反馈beam信息给基站。这样不仅可在多个资源上发送第一信号集,可以使得较多的UE可以及时和基站建立同步,还可节省外环beam扫描的PSS/SSS和PBCH的系统开销。
可以理解的是,为了节省系统开销,确定的非有效beam在外环beam扫描时也可以不需要承载SIB,只在有效beam上承载SIB。
需要说明的是,当所有的beam都开启或者都关闭,即都用于发送信号集或都不发送信号集,双环就会退化成单环,当部分beam开启,就为双环。
如图9所示,在B0~B3中,B0和B2为有效beam,那么在外环beam扫描中,就不出现B0和B2的信道,属于B0和B2的UE通过检测内环beam扫描的B0和B2获得同步和PBCH。极端情况下,当B0~B11都为有效beam,那就只剩下内环beam扫描,外环beam扫描就不存在了,双环退化成单环,UE直接接收内环beam扫描获得相应beam的PSS/SSS、PBCH和SIB,同时基于检测到的该beam 下的信道,反馈beam信息给基站。
因此,本发明实施例通过在多个资源上发送第一信号集,使得不同波束分时为小区内的用户服务,并在各个波束下的广播信道、同步信道等公共信道覆盖到小区内所有的用户,使得小区内的用户获得同步和系统消息,从而使得较多的UE可及时和基站建立同步,接入小区,进一步的,通过在第一小区的所有第一空间资源中的L个第一空间资源上方第一信号集,并在剩余的M个第二空间资源发送第二信号集,可节省外环beam扫描的PSS/SSS和PBCH的系统开销。
相应地,对于UE侧来说,本发明实施例提供一种无线接入方法,如图10所示,包括:
101、用户设备UE接收基站发送的L个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述L个第一信号集是所述基站在N个第一空间资源中的L个第一空间资源发送的;
102、所述UE接收所述基站的M个第二信号集,其中,在每个第二空间资源发送一个第二信号集,其中,M和L为正整数,L小于或等于N,且L与M之和为N。
其中,所述N个第一空间资源的N个第一信号集配置在N个不同的时频资源位置;
所述UE接收基站发送的L个第一信号集包括:
所述UE接收所述基站通过所述L个第一空间资源,在所述L个第一信号集对应的时频资源上发送的所述第一信号集。
可选的,该方法还可以包括:
所述UE根据接收到的第一信号集向所述基站反馈第一响应信号,所述第一响应信号包含发送所述第一信号集的第一空间资源的指示信息;
所述UE根据接收到的第二信号集向所述基站反馈第二响应信 号,所述第二响应信号包含发送所述第二信号集的第二空间资源的指示信息。
本发明实施例中UE的具体实现方式可参见上述图8所示的具体说明,此处不再赘述。
因此,本发明实施例通过在多个资源上发送第一信号集,使得不同波束分时为小区内的用户服务,并在各个波束下的广播信道、同步信道等公共信道覆盖到小区内所有的用户,使得小区内的用户获得同步和系统消息,从而使得较多的UE可及时和基站建立同步,接入小区,进一步的,通过在第一小区的所有第一空间资源中的L个第一空间资源上方第一信号集,并在剩余的M个第二空间资源发送第二信号集,可节省外环beam扫描的PSS/SSS和PBCH的系统开销。
根据本发明实施例提供的方法,如图11所示,本发明实施例还提供一种基站11,包括处理器110、存储器120、系统总线130、接收器140和发送器150。该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以控制接收器140接收信号,并控制发送器150发送信号,完成上述无线接入方法中的步骤。其中,接收器140和发送器150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
步骤至少可以包括:基站发送N个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述N个第一信号集中的M个第一信号集为第二信号集,所述M个第二信号集中的每一个信号集包含指示信息;所述指示信息用于指示所述系统消息在M个第二空间资源发送,或所述指示信息用于指示所述M个发送所述第二信号集的第一空间资源为有效空间资源,其中,M和N为正整数,M小于或等于N;
所述基站在所述M个第二空间资源上发送M个系统消息,所述M个系统消息用于指示用户设备UE接入网络。
可选的,在所述基站发送N个第一信号集之前,该步骤还包括:
基站按照预设规则确定发送包含指示信息的所述M个第一信号集的M个第一空间资源。
可选的,在所述基站在发送N个第一信号集之前,该步骤还可以包括:
所述基站向所述UE发送N个第三信号集,其中,在所述每个第一空间资源上发送一个所述第三信号集;
所述基站接收所述UE发送的Z个响应信号,每个响应信号包含发送所述第三信号集的空间资源的指示信息,Z为正整数,Z小于或等于N;
所述基站根据所述Z个响应信号发送M个第四信号集,其中,在每个所述第二空间资源上发送一个所述第四信号集;
所述基站根据所述Z个响应信号确定所述M个第二空间资源。
其中,述系统消息包括系统信息块SIB1。
所述第一信号集包括第一同步信号和/或第一广播信号。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息包括指示信息域,用于指示所述基站通过第二空间资源发送系统消息。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息通过第一扰码加扰,所述PBCH承载的信息通过第一扰码加扰用于指示所述基站通过第二空间资源发送系统消息。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC为第一掩码, 所述第一掩码用于指示所述基站通过第二空间资源发送系统消息。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC采用第一计算方式计算得到,所述CRC采用第一计算方式计算得到用于指示所述基站通过第二空间资源发送系统消息。
可选的,所述第一同步信号包括主同步信号PSS和/或辅同步信号SSS;
所述PSS为第一序列,所述PSS为第一序列用于指示所述基站通过第二空间资源发送系统消息;
所述SSS为第二序列,所述SSS为第二序列用于指示所述基站通过第二空间资源发送系统消息。
作为一种实现方式,接收器140和发送器150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
基站所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本发明实施例提供的方法,如图12所示,本发明实施例还提供一种用户设备12,包括处理器210、存储器220、系统总线230、接收器240和发送器250。其中,处理器210、存储器220、接收器240和发送器250通过系统总线230相连,该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以控制接收器240接收信号,并控制发送器250发送信号,完成上述无线接入方法中的步骤。其中,接收器240和发送器250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
步骤至少可以包括:用户设备UE接收基站发送的M个第二信 号集,其中,所述M个第二信号集为所述基站发送的N个第一信号集中的M个第一信号集,且在每个第一空间资源发送一个第一信号集,所述M个第二信号集中的每一个信号集包含指示信息;
其中,所述指示信息用于指示所述系统消息在M个第二空间资源发送,或所述指示信息用于指示所述M个发送所述第二信号集的第一空间资源为有效空间资源,M和N为正整数,M小于或等于N。
所述UE根据所述指示信息在第二空间资源上接收系统消息,以根据所述系统消息接入网络。
可选的,在用户设备UE接收M个第二信号集之前,该步骤还可以包括:
所述UE接收所述基站发送的第三信号集,其中,在所述每个第一空间资源上发送一个所述第三信号集;
所述UE根据接收到的第三信号集,向所述基站反馈响应信号,所述响应信号包含发送所述第三信号集的空间资源的指示信息。
其中,所述系统消息包括系统信息块SIB1。
所述第一信号集包括第一同步信号和/或第一广播信号。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息包括指示信息域,用于指示所述基站通过所述第二空间资源发送系统消息。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
所述PBCH承载的信息通过第一扰码加扰,所述PBCH承载的信息通过第一扰码加扰用于指示所述基站通过第二空间资源发送系统消息。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载 的信息;所述PBCH承载的信息的循环冗余校验码CRC为第一掩码,所述第一掩码用于指示所述基站通过第二空间资源发送系统消息。
可选的,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC采用第一计算方式计算得到,所述CRC采用第一计算方式计算得到用于指示所述基站通过第二空间资源发送系统消息。
可选的,所述第一同步信号包括主同步信号PSS和/或辅同步信号SSS;
所述PSS为第一序列,所述PSS为第一序列用于指示所述基站通过第二空间资源发送系统消息;
所述SSS为第二序列,所述SSS为第二序列用于指示所述基站通过第二空间资源发送系统消息。
作为一种实现方式,接收器240和发送器250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
用户设备所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本发明实施例提供的方法,如图13所示,本发明实施例还提供一种基站13,包括处理器310、存储器320、系统总线330、接收器340和发送器350。其中,处理器310、存储器320、接收器340和发送器350通过系统总线330相连,该存储器320用于存储指令,该处理器310用于执行该存储器320存储的指令,以控制接收器340接收信号,并控制发送器350发送信号,完成上述无线接入方法中的步骤。其中,接收器340和发送器350可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
步骤至少可以包括:发送L个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述L个第一信号集是所述基站在N个第一空间资源中的L个第一空间资源发送的;
所述基站发送M个第二信号集,其中,在每个第二空间资源发送一个第二信号集,其中,M和L为正整数,L小于或等于N,且L与M之和为N。
其中,在所述N个第一空间资源的N个第一信号集配置在N个不同的时频资源位置;
步骤:所述基站发送L个第一信号集可以包括:
所述基站通过所述L个第一空间资源,在所述L个第一信号集对应的时频资源位置上发送所述第一信号集。
可选的,在基站在第一小区的N个第一空间资源中的L个第一空间资源发送L个第一信号集之前,该步骤还包括:
基站按照预设规则确定所述L个第一空间资源。
可选的,所述方法还包括:
所述基站根据用户设备UE对所述L个第一信号集反馈的响应信号,和对所述M个第二信号集反馈的响应信号确定下一时间段发送所述第一信号集的第一空间资源和发送所述第二信号集的第二空间资源。
可选的,所述基站根据用户设备UE对所述L个第一信号集反馈的响应信号,和对所述M个第二信号集反馈的响应信号确定下一周期发送所述第一信号集的第一空间资源和发送所述第二信号集的第二空间资源包括:
所述基站接收UE对L个第一信号集反馈的P个响应信号,每个响应信号包含发送所述第一信号集的第一空间资源的第一指示信息,P为正整数,1≤P≤L;
所述基站接收UE对M个第二信号集反馈的Y个响应信号,每个响应信号包含发送所述第二信号集的第二空间资源的第二指示信息,Y为正整数,1≤Y≤M;
所述基站根据所述P个响应信号和所述Y个响应信号在L′个第一空间资源发送L′个第一信号集,所述L′个第一信号集对应的第一空间资源为所述第一指示信息指示的第一空间资源和所述第二指示信息指示的第二空间资源以外的空间资源,L′为正整数,L′大于或等于1且小于或等于N;
所述基站在M′个第二空间资源发送M′个第二信号集,其中,M′为正整数,所述L′与M′之和为N。
作为一种实现方式,接收器340和发送器350的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器310可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
基站所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本发明实施例提供的方法,如图14所示,本发明实施例还提供一种用户设备14,包括处理器410、存储器420、系统总线430、接收器440和发送器450。其中,处理器410、存储器420、接收器440和发送器450通过系统总线430相连,该存储器420用于存储指令,该处理器410用于执行该存储器420存储的指令,以控制接收器440接收信号,并控制发送器450发送信号,完成上述无线接入方法中的步骤。其中,接收器440和发送器450可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
步骤至少可以包括:UE接收基站发送的L个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述L个第一信号集是所述基站在N个第一空间资源中的L个第一空间资源发送的;
所述UE接收所述基站的M个第二信号集,其中,在每个第二空间资源发送一个第二信号集,其中,M和L为正整数,L小于或等于N,且L与M之和为N。
其中,所述N个第一空间资源的N个第一信号集配置在N个不同的时频资源位置;
所述UE接收基站在所述第一小区的N个第一空间资源中的L个第一空间资源发送的L个第一信号集包括:
所述UE接收所述基站通过所述L个第一空间资源,在所述L个第一信号集对应的时频资源上发送的所述第一信号集。
可选的,还可以包括:
UE根据接收到的第一信号集向所述基站反馈第一响应信号,所述第一响应信号包含发送所述第一信号集的第一空间资源的指示信息;
所述UE根据接收到的第二信号集向所述基站反馈第二响应信号,所述第二响应信号包含发送所述第二信号集的第二空间资源的指示信息。
UE所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本发明实施例提供的方法,本发明实施例还提供一种通信系统,其包括前述的基站和一个或多于一个UE。
应理解,在本发明实施例中,处理器110或210或310或410可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器120或220或320或420可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该系统总线130或230或330或430除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为系统总线。
在实现过程中,上述方法的各步骤可以通过处理器110或210或310或410中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的终端的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本发明各个实施例中的设备和系统中,各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可 以两个或两个以上单元集成在一个单元中。且上述的各单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种无线接入方法,其特征在于,包括:
    基站发送N个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述N个第一信号集中的M个第一信号集为第二信号集,所述M个第二信号集中的每一个信号集包含指示信息;
    所述指示信息用于指示所述系统消息在M个第二空间资源发送,或所述指示信息用于指示所述M个发送所述第二信号集的第一空间资源为有效空间资源,其中,M和N为正整数,M小于或等于N;
    所述基站在所述M个第二空间资源上发送M个系统消息,所述M个系统消息用于指示用户设备UE接入网络。
  2. 根据权利要求1所述的方法,其特征在于,在所述基站发送N个第一信号集前,包括:
    基站按照预设规则确定所述M个第一信号集的M个第一空间资源。
  3. 根据权利要求1所述的方法,其特征在于,在所述基站发送N个第一信号集前,包括:
    所述基站向所述UE发送N个第三信号集,其中,在所述每个第一空间资源上发送一个所述第三信号集;
    所述基站接收所述UE发送的Z个响应信号,每个响应信号包含发送所述第三信号集的空间资源的指示信息,Z为正整数,Z小于或等于N;
    所述基站根据所述Z个响应信号发送M个第四信号集,其中,在每个所述第二空间资源上发送一个所述第四信号集;
    所述基站根据所述Z个响应信号确定所述M个第二空间资源。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述系统消息包括系统信息块SIB1。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一信号集包括第一同步信号和/或第一广播信号。
  6. 根据权利要求5所述的方法,其特征在于,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
    所述PBCH承载的信息包括指示信息域,用于指示所述系统消息在所述第二空间资源发送。
  7. 根据权利要求5所述的方法,其特征在于,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
    所述PBCH承载的信息通过第一扰码加扰,所述PBCH承载的信息通过第一扰码加扰用于指示所述系统消息在所述第二空间资源发送。
  8. 根据权利要求5所述的方法,其特征在于,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC为第一掩码,所述第一掩码用于指示所述系统消息在所述第二空间资源发送。
  9. 根据权利要求5所述的方法,其特征在于,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC采用第一计算方式计算得到,所述CRC采用第一计算方式计算得到用于指示所述系统消息在所述第二空间资源发送。
  10. 根据权利要求5所述的方法,其特征在于,所述第一同步信号包括主同步信号PSS和/或辅同步信号SSS;
    所述PSS为第一序列,所述PSS为第一序列用于指示所述系统消息在所述第二空间资源发送;
    所述SSS为第二序列,所述SSS为第二序列用于指示所述系统消息在所述第二空间资源发送。
  11. 一种无线接入方法,其特征在于,该方法包括:
    用户设备UE接收基站发送的M个第二信号集,其中,所述M个第二信号集为所述基站发送的N个第一信号集中的M个第一信号集,且在每个第一空间资源发送一个第一信号集,所述M个第二信号集中的每一个信号集包含指示信息;
    其中,所述指示信息用于指示所述系统消息在M个第二空间资源发送,或所述指示信息用于指示所述M个发送所述第二信号集的第一空间资源为有效空间资源,M和N为正整数,M小于或等于N;
    所述UE根据所述指示信息在第二空间资源上接收系统消息,以根据所述系统消息接入网络。
  12. 根据权利要求11所述的方法,其特征在于,在用户设备UE接收 M个第二信号集之前,该方法还包括:
    所述UE接收所述基站发送的第三信号集,其中,在所述每个第一空间资源上发送一个所述第三信号集;
    所述UE根据接收到的第三信号集,向所述基站反馈响应信号,所述响应信号包含发送所述第三信号集的空间资源的指示信息。
  13. 根据权利要求11或12所述的方法,其特征在于,所述系统消息包括系统信息块SIB1。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述第一信号集包括第一同步信号和/或第一广播信号。
  15. 根据权利要求14所述的方法,其特征在于,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
    所述PBCH承载的信息包括指示信息域,用于指示所述系统消息在所述第二空间资源发送。
  16. 根据权利要求14所述的方法,其特征在于,所述第一广播信号包括物理广播控制信道PBCH承载的信息;
    所述PBCH承载的信息通过第一扰码加扰,所述PBCH承载的信息通过第一扰码加扰用于指示所述系统消息在所述第二空间资源发送。
  17. 根据权利要求14所述的方法,其特征在于,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC为第一掩码,所述第一掩码用于指示所述系统消息在所述第二空间资源发送。
  18. 根据权利要求14所述的方法,其特征在于,所述第一广播信号包括物理广播控制信道PBCH承载的信息;所述PBCH承载的信息的循环冗余校验码CRC采用第一计算方式计算得到,所述CRC采用第一计算方式计算得到用于指示所述系统消息在所述第二空间资源发送。
  19. 根据权利要求14所述的方法,其特征在于,所述第一同步信号包括主同步信号PSS和/或辅同步信号SSS;
    所述PSS为第一序列,所述PSS为第一序列用于指示所述系统消息在所述第二空间资源发送;
    所述SSS为第二序列,所述SSS为第二序列用于指示所述系统消息在所述第二空间资源发送。
  20. 一种无线接入方法,其特征在于,包括:
    基站发送L个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述L个第一信号集是所述基站在N个第一空间资源中的L个第一空间资源发送的;
    所述基站发送M个第二信号集,其中,在每个第二空间资源发送一个第二信号集,其中,M和L为正整数,L小于或等于N,且L与M之和为N。
  21. 根据权利要求20所述的方法,其特征在于,所述N个第一空间资源的N个第一信号集配置在N个不同的时频资源位置;
    所述基站发送L个第一信号集包括:
    所述基站通过所述L个第一空间资源,在所述L个第一信号集对应的时频资源位置上发送所述第一信号集。
  22. 根据权利要求20或21所述的方法,其特征在于,在基站在发送L个第一信号集之前,所述方法还包括:
    基站按照预设规则确定所述L个第一空间资源。
  23. 根据权利要求20-22任一项所述的方法,其特征在于,所述方法还包括:
    所述基站根据用户设备UE对所述L个第一信号集反馈的响应信号,和对所述M个第二信号集反馈的响应信号确定下一时间段发送所述第一信号集的第一空间资源和发送所述第二信号集的第二空间资源。
  24. 根据权利要求23所述的方法,其特征在于,所述基站根据用户设备UE对所述L个第一信号集反馈的响应信号,和对所述M个第二信号集反馈的响应信号确定下一周期发送所述第一信号集的第一空间资源和发送所述第二信号集的第二空间资源包括:
    所述基站接收所述UE对L个第一信号集反馈的P个响应信号,每个响应信号包含发送所述第一信号集的第一空间资源的第一指示信息,P为正整数,1≤P≤L;
    所述基站接收所述UE对M个第二信号集反馈的Y个响应信号,每个 响应信号包含发送所述第二信号集的第二空间资源的第二指示信息,Y为正整数,1≤Y≤M;
    所述基站根据所述P个响应信号和所述Y个响应信号在L′个第一空间资源发送L′个第一信号集,所述L′个第一信号集对应的第一空间资源为所述第一指示信息指示的第一空间资源和所述第二指示信息指示的第二空间资源以外的空间资源,L′为正整数,L′大于或等于1且小于或等于N;
    所述基站在M′个第二空间资源上发送M′个第二信号集,其中,M′为正整数,所述L′与M′之和为N。
  25. 一种无线接入方法,其特征在于,包括:
    用户设备UE接收基站发送的L个第一信号集,其中,在每个第一空间资源发送一个第一信号集,所述L个第一信号集是所述基站在N个第一空间资源中的L个第一空间资源发送的;
    所述UE接收所述基站的M个第二信号集,其中,在每个第二空间资源发送一个第二信号集,其中,M和L为正整数,L小于或等于N,且L与M之和为N。
  26. 根据权利要求25所述的方法,其特征在于,所述N个第一空间资源的N个第一信号集配置在N个不同的时频资源位置;
    所述UE接收基站发送的L个第一信号集包括:
    所述UE接收所述基站通过所述L个第一空间资源,在所述L个第一信号集对应的时频资源上发送的所述第一信号集。
  27. 根据权利要求25或26所述的方法,其特征在于,所述方法还包括:
    所述UE根据接收到的第一信号集向所述基站反馈第一响应信号,所述第一响应信号包含发送所述第一信号集的第一空间资源的指示信息;
    所述UE根据接收到的第二信号集向所述基站反馈第二响应信号,所述第二响应信号包含发送所述第二信号集的第二空间资源的指示信息。
  28. 一种基站,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储 的指令时,所述基站用于完成如权利要求1-10任意一项所述的方法。
  29. 一种用户设备UE,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述基站用于完成如权利要求11-19任意一项所述的方法。
  30. 一种基站,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述基站用于完成如权利要求20-24任意一项所述的方法。
  31. 一种用户设备UE,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述基站用于完成如权利要求25-27任意一项所述的方法。
PCT/CN2015/091333 2015-09-30 2015-09-30 一种无线接入方法、ue和基站 WO2017054207A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15905119.2A EP3349522B1 (en) 2015-09-30 2015-09-30 Radio access method, ue, and base station
CN201580077514.XA CN107409387B (zh) 2015-09-30 2015-09-30 一种无线接入方法、ue和基站
PCT/CN2015/091333 WO2017054207A1 (zh) 2015-09-30 2015-09-30 一种无线接入方法、ue和基站
ES15905119T ES2900736T3 (es) 2015-09-30 2015-09-30 Método de acceso por radio, UE y estación base
US15/938,955 US20180219596A1 (en) 2015-09-30 2018-03-28 Radio access method, ue, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/091333 WO2017054207A1 (zh) 2015-09-30 2015-09-30 一种无线接入方法、ue和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/938,955 Continuation US20180219596A1 (en) 2015-09-30 2018-03-28 Radio access method, ue, and base station

Publications (1)

Publication Number Publication Date
WO2017054207A1 true WO2017054207A1 (zh) 2017-04-06

Family

ID=58422639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091333 WO2017054207A1 (zh) 2015-09-30 2015-09-30 一种无线接入方法、ue和基站

Country Status (5)

Country Link
US (1) US20180219596A1 (zh)
EP (1) EP3349522B1 (zh)
CN (1) CN107409387B (zh)
ES (1) ES2900736T3 (zh)
WO (1) WO2017054207A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637884A4 (en) * 2017-05-04 2020-08-26 Huawei Technologies Co., Ltd. SIGNAL EMISSION PROCESS AND DEVICE
US11115985B2 (en) 2017-05-04 2021-09-07 Huawei Technologies Co., Ltd. PBCH transmission method and apparatus
US11626947B2 (en) 2017-09-30 2023-04-11 Huawei Technologies Co., Ltd. Communication method and communications device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017063661A1 (en) * 2015-10-12 2017-04-20 Nokia Solutions And Networks Oy Discovery signal transmission in cellular system
CN106998569B (zh) * 2016-01-26 2020-06-16 华为技术有限公司 一种通信方法、装置和可读存储介质
CN109155995B (zh) * 2016-08-12 2020-12-04 华为技术有限公司 一种资源指示方法及相关设备
CN107734596B (zh) * 2016-08-12 2023-06-16 华为技术有限公司 一种物理广播信道发送和接收方法及装置
CN109936430B (zh) * 2017-12-18 2024-04-12 华为技术有限公司 一种信号发送、接收方法及设备
CN111294816B (zh) * 2018-12-06 2023-05-05 中国移动通信有限公司研究院 广播信号发送方法及网络设备
CN111796260B (zh) * 2019-08-12 2023-09-12 维沃移动通信有限公司 一种测距方法及设备
US11924862B2 (en) * 2021-04-21 2024-03-05 Qualcomm Incorporated SSB, coreset, SIB signal block for initial access information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040229563A1 (en) * 2003-02-14 2004-11-18 Kabushiki Kaisha Toshiba Communication network for indoor environment
CN102316466A (zh) * 2010-06-30 2012-01-11 中兴通讯股份有限公司 WiMAX系统的频率重用方法及WiMAX系统的基站
US20130029685A1 (en) * 2011-07-26 2013-01-31 Mehran Moshfeghi Distributed method and system for determining the position of a mobile device using long-range signals and calibrating the position using short-range signals
CN104641569A (zh) * 2012-07-27 2015-05-20 诺基亚通信公司(芬兰) 用于无线网络中的快速反馈和响应处置的方法、设备、计算机程序产品、计算机可读介质和系统
CN104718712A (zh) * 2012-08-17 2015-06-17 三星电子株式会社 用于在使用波束赋型的系统中进行系统接入的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9380582B2 (en) * 2012-04-16 2016-06-28 Samsung Electronics Co., Ltd. Methods and apparatus for flexible beam communications in random access in system with large number of antennas
JP5395229B1 (ja) * 2012-07-20 2014-01-22 株式会社Nttドコモ 移動通信方法
US9635644B2 (en) * 2012-08-10 2017-04-25 Qualcomm Incorporated Downlink coverage enhancements
US9461727B2 (en) * 2013-09-05 2016-10-04 Intel Corporation Adaptive sectorization of a spational region for parallel multi-user transmissions
JP6293354B2 (ja) * 2014-03-19 2018-03-14 インターデイジタル パテント ホールディングス インコーポレイテッド 非ceモードおよびカバレッジ拡張(ce)モードにおけるワイヤレス送信/受信ユニット(wtru)のためのシステム情報ブロック(sib)獲得のための方法および装置
US9693173B2 (en) * 2014-09-05 2017-06-27 Intel Corporation Generating, broadcasting and receiving system information blocks
CN106575996B (zh) * 2014-09-25 2019-10-15 英特尔Ip公司 通过减小的带宽传输针对机器型通信(mtc)用户设备的通用控制消息

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040229563A1 (en) * 2003-02-14 2004-11-18 Kabushiki Kaisha Toshiba Communication network for indoor environment
CN102316466A (zh) * 2010-06-30 2012-01-11 中兴通讯股份有限公司 WiMAX系统的频率重用方法及WiMAX系统的基站
US20130029685A1 (en) * 2011-07-26 2013-01-31 Mehran Moshfeghi Distributed method and system for determining the position of a mobile device using long-range signals and calibrating the position using short-range signals
CN104641569A (zh) * 2012-07-27 2015-05-20 诺基亚通信公司(芬兰) 用于无线网络中的快速反馈和响应处置的方法、设备、计算机程序产品、计算机可读介质和系统
CN104718712A (zh) * 2012-08-17 2015-06-17 三星电子株式会社 用于在使用波束赋型的系统中进行系统接入的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3349522A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637884A4 (en) * 2017-05-04 2020-08-26 Huawei Technologies Co., Ltd. SIGNAL EMISSION PROCESS AND DEVICE
US11115985B2 (en) 2017-05-04 2021-09-07 Huawei Technologies Co., Ltd. PBCH transmission method and apparatus
US11350378B2 (en) 2017-05-04 2022-05-31 Huawei Technologies Co., Ltd. Signal transmission method and apparatus
US11626947B2 (en) 2017-09-30 2023-04-11 Huawei Technologies Co., Ltd. Communication method and communications device

Also Published As

Publication number Publication date
ES2900736T3 (es) 2022-03-18
EP3349522A4 (en) 2019-01-02
CN107409387A (zh) 2017-11-28
EP3349522B1 (en) 2021-09-22
CN107409387B (zh) 2020-10-09
US20180219596A1 (en) 2018-08-02
EP3349522A1 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
WO2017054207A1 (zh) 一种无线接入方法、ue和基站
CN108282862B (zh) 一种寻呼方法和装置
EP2850857B1 (en) Device discovery of second user equipments in a second network for d2d communication
CN110493851B (zh) 一种无线接入方法、装置、通信系统和终端
JP7008700B2 (ja) 通信ネットワークにおけるネットワークノード、無線デバイス、およびその中における方法
US9717087B2 (en) Techniques for transmitting data over an unlicensed radio frequency spectrum band in accordance with an agreement between operators
CN108781419B (zh) 系统消息处理方法及网络设备、用户终端
US20220061105A1 (en) Random access method and device
CN112335305B (zh) 下行信号的监听和发送方法、参数配置方法以及装置
US11765743B2 (en) Downlink channel receiving method and terminal device
CN108476491B (zh) 一种无线通信方法、设备及系统
EP3813406B1 (en) Method for configuring measurement information, terminal device, and network device
WO2018127150A1 (zh) 一种多扇区化天线及通信系统
CN114616867B (zh) 必要系统信息获取失败时的处理方法及装置
CN113329425B (zh) 一种信息配置方法及装置、终端
CN117813883A (zh) 收发信号的方法、装置和通信系统
WO2023010368A1 (zh) 收发信号的方法、装置和通信系统
WO2024031671A1 (en) Indication of synchronization signal block type for devices with reduced capabilities
KR20230150871A (ko) 측정 방법 및 장치
KR20240052758A (ko) 신호를 송수신하기 위한 방법 및 장치, 및 통신 시스템
WO2020067988A1 (en) Radio network node, user equipment (ue) and methods performed in a wireless communication network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015905119

Country of ref document: EP