WO2020186533A1 - 无线链路监测方法、设备和存储介质 - Google Patents

无线链路监测方法、设备和存储介质 Download PDF

Info

Publication number
WO2020186533A1
WO2020186533A1 PCT/CN2019/079146 CN2019079146W WO2020186533A1 WO 2020186533 A1 WO2020186533 A1 WO 2020186533A1 CN 2019079146 W CN2019079146 W CN 2019079146W WO 2020186533 A1 WO2020186533 A1 WO 2020186533A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
rlm
resource
target
terminal device
Prior art date
Application number
PCT/CN2019/079146
Other languages
English (en)
French (fr)
Inventor
吴作敏
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/079146 priority Critical patent/WO2020186533A1/zh
Priority to CN201980094373.0A priority patent/CN113615237A/zh
Publication of WO2020186533A1 publication Critical patent/WO2020186533A1/zh
Priority to US17/476,968 priority patent/US20220053349A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a wireless link monitoring method, device, and storage medium.
  • base stations and terminal devices communicate on wireless carriers. After the wireless connection is established, the physical layer of the terminal device needs to periodically monitor the quality of the wireless link.
  • the terminal device periodically measures the quality of the reference signal on the licensed spectrum to monitor the wireless link.
  • the wireless link is determined to be in an out-of-sync (OOS) state, and the physical layer will report to the higher layers of the terminal equipment (such as radio resource control (Radio Resource Control)).
  • Radio Resource Control Radio Resource Control
  • RRC Resource Control
  • the wireless link When the measured quality of the reference signal is higher than another threshold, it is determined that the wireless link is in a synchronization (in-sync, IS) state, and the physical layer will send a synchronization (IS) indication to the upper layer (RRC layer) of the terminal device.
  • IS synchronization
  • the radio link monitoring (RLM) mechanism is also used to detect the quality of the downlink wireless link.
  • RLM radio link monitoring
  • BWP bandwidth parts
  • LBT Listen Before Talk
  • the embodiments of the application provide a wireless link monitoring method, device, and storage medium, which can reduce the impact on the wireless link monitoring result when the network device cannot send the target RLM-RS through some subbands, and improve the wireless link monitoring performance. accuracy.
  • an embodiment of the present application provides a wireless link monitoring method, including:
  • an embodiment of the present application provides a wireless link monitoring method, including:
  • the out-of-synchronization evaluation period it is evaluated whether the downlink radio link quality on the configured radio link monitoring reference signal RLM-RS resource is lower than the out-of-synchronization threshold.
  • the RLM-RS resource is used to transmit the RLM-RS.
  • the out-of-synchronization threshold corresponds to a physical downlink control channel PDCCH transmission parameter, and the PDCCH transmission parameter includes a first energy ratio, where:
  • the first energy ratio includes the ratio of the energy of the resource element RE of the PDCCH to the energy of the RE of the RLM-RS; and/or,
  • the first energy ratio includes the ratio of the energy of the RE of the demodulation reference signal DMRS of the PDCCH to the energy of the RE of the RLM-RS.
  • an embodiment of the present application provides a terminal device, including:
  • a determining module configured to determine a BWP of the bandwidth to be monitored, where the BWP to be monitored includes multiple subbands;
  • the processing module is configured to perform radio link monitoring on the BWP to be monitored according to the target radio link monitoring reference signal RLM-RS resource on at least one of the multiple subbands, and the target RLM-RS resource Used to transmit the target RLM-RS.
  • an embodiment of the present application provides a terminal device, including:
  • the processing module is used to evaluate whether the downlink radio link quality on the configured radio link monitoring reference signal RLM-RS resource is lower than the out-of-synchronization threshold in the out-of-synchronization evaluation period, and the RLM-RS resource is used to transmit RLM -RS, the out-of-synchronization threshold corresponds to a physical downlink control channel PDCCH transmission parameter, and the PDCCH transmission parameter includes a first energy ratio, where:
  • the first energy ratio includes the ratio of the energy of the resource element RE of the PDCCH to the energy of the RE of the RLM-RS; and/or,
  • the first energy ratio includes the ratio of the energy of the RE of the demodulation reference signal DMRS of the PDCCH to the energy of the RE of the RLM-RS.
  • an embodiment of the present application provides a terminal device, including:
  • Processor memory, and interface for communication with network equipment
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the wireless link monitoring method according to the first aspect or the wireless link monitoring method according to the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium having computer-executable instructions stored in the computer-readable storage medium.
  • the computer-executable instructions are executed by a processor, the The wireless link monitoring method described above or the wireless link monitoring method described in the second aspect.
  • an embodiment of the present application provides a program, when the program is executed by a processor, it is used to execute the radio link monitoring method according to any one of the first aspect or any one of the second aspect Wireless link monitoring method.
  • the foregoing processor may be a chip.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the wireless link monitoring method according to any one of the first aspect or the wireless link monitoring method according to any one of the second aspect. Link monitoring method.
  • an embodiment of the present application provides a chip including: a processing module and a communication interface, and the processing module can execute the wireless link monitoring method described in any one of the first aspect or as described in any one of the second aspect. The wireless link monitoring method described.
  • the chip further includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the first
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the first
  • the wireless link monitoring method according to any one of the aspects or the wireless link monitoring method according to any one of the second aspects.
  • the wireless link monitoring method, device, and storage medium provided in the embodiments of the present application determine the BWP to be monitored, and then perform the BWP to be monitored based on the target RLM-RS resource on at least one of the multiple subbands of the BWP to be monitored.
  • the wireless link monitoring can reduce the impact on the wireless link monitoring result when the network device cannot send the target RLM-RS through some subbands, and improve the accuracy of the wireless link monitoring.
  • Figure 1 is a schematic diagram of a network device sending data to a terminal device via BWP0;
  • FIG. 2 is a schematic diagram of a communication system applied in an embodiment of this application
  • FIG. 3 is a flowchart of an implementation of the wireless link monitoring method provided by this application.
  • Figure 4a is a schematic diagram of BWP neutron bands
  • Figure 4b is a schematic diagram of the subband of the transmission target RLM-RS
  • Fig. 4c is another schematic diagram of the subband of the transmission target RLM-RS;
  • Figure 4d is another schematic diagram of a subband
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a terminal device provided by this application.
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a terminal device provided by this application.
  • FIG. 7 is a schematic structural diagram of Embodiment 3 of a terminal device provided by this application.
  • the bandwidth part refers to a part of the channel bandwidth, which can also be called “carrier bandwidth part", "operating bandwidth” or transmission bandwidth.
  • the name and abbreviation of the bandwidth part are not specifically limited.
  • the BWP can be a continuous or discontinuous resource in the frequency domain.
  • a bandwidth part contains K continuous or non-contiguous subcarriers; or, a bandwidth part is a frequency domain resource where N non-overlapping continuous or non-contiguous resource blocks (Resource Block) are located; or, a bandwidth part is M Frequency domain resources where two non-overlapping contiguous or non-contiguous resource block groups (Resource Block Group, RBG) are located, and one RBG includes P contiguous RBs.
  • a bandwidth part may also include Q listen before talk (LBT) subbands, where K, N, M, P, and Q are all integers greater than zero.
  • LBT listen before talk
  • LBT listen before talk
  • the terminal device can be configured with multiple BWPs and only one BWP can be activated.
  • the activated BWP includes multiple LBT subbands
  • the network device can According to the channel sensing result of the LBT subband, the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) transmission is performed through part or all of the LBT subbands included in the activated BWP.
  • Figure 1 is a schematic diagram of a network device sending data to a terminal device through BWP0. As shown in Figure 1, the BWP0 configured by the network device for the terminal device includes two LBT subbands, the first subband and the second subband.
  • the network device can schedule The first subband and the second subband transmit the PDSCH to the terminal device.
  • the first subband LBT succeeds, that is, it is in an idle state
  • the second subband LBT fails, that is, it is in a busy state. Therefore, the network device can pass the first subband included in BWP0.
  • the subband transmits the PDSCH to the terminal device. In the case of network equipment transmitting the PDSCH through some subbands, how to effectively monitor the quality of the downlink radio link is a problem that needs to be solved at present.
  • this solution proposes a radio link monitoring method, by determining the BWP to be monitored, and then according to the target radio link monitoring-reference signal (Radio link monitoring-Reference signal) on at least one of the multiple subbands of the BWP to be monitored.
  • Signal, RLM-RS Radio link monitoring-Reference signal
  • RLM-RS Radio link monitoring-Reference signal
  • the wireless link monitoring can reduce the impact on the wireless link monitoring result when the network device cannot send the reference signal through some subbands, and improve the accuracy of the wireless link monitoring.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR NR system evolution system
  • LTE on unlicensed frequency bands LTE-based access to unlicensed spectrum, LTE-U
  • NR NR-based access to unlicensed spectrum, NR-U
  • UMTS Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • next-generation communication systems 5G communication systems, and future evolutionary communications System or other communication systems
  • WiMAX Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • FIG. 2 is a schematic diagram of a communication system applied in an embodiment of this application.
  • the communication system may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 2 exemplarily shows one network device and two terminal devices.
  • the communication system may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application is implemented The example does not limit this.
  • the communication system may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here;
  • the communication device may also include other devices in the communication system, such as other network entities such as network controllers and mobility management entities, which are not limited in the embodiment of the present application.
  • the method of the embodiment of the present application can be applied to communication of unlicensed spectrum, and can also be applied to other communication scenarios, such as a communication scenario of licensed spectrum.
  • Unlicensed spectrum is the spectrum that can be used for radio equipment communication divided by the country and region. This spectrum can be considered as a shared spectrum, that is, the communication equipment in different communication systems can meet the regulatory requirements set by the country or region on the spectrum. Using this spectrum, it is not necessary to apply for a proprietary spectrum authorization from the government.
  • LBT Listen Before Talk
  • communication devices can follow the principle of Listen Before Talk (LBT) when communicating on unlicensed spectrum, that is, Before the communication device transmits signals on the channels of the unlicensed spectrum, it needs to perform channel listening (or called channel detection) first.
  • LBT Listen Before Talk
  • the communication device can transmit signals; if the communication device is in If the result of channel sensing on the unlicensed spectrum is that the channel is busy, signal transmission cannot be performed.
  • the bandwidth of the LBT is 20 MHz, or an integer multiple of 20 MHz.
  • the wireless link monitoring method provided in this application includes: a terminal device determines a BWP to be monitored, the BWP to be monitored includes multiple subbands, and then the terminal device treats the target RLM-RS resource according to the target RLM-RS resource on at least one of the multiple subbands.
  • the monitoring BWP performs wireless link monitoring, where the target RLM-RS resource is used to transmit the target RLM-RS. Since the terminal device can monitor the BWP to be monitored based on the RLM-RS resource on at least one of the multiple subbands, it can reduce the impact on the wireless link monitoring result when the network device cannot send reference signals through some subbands , Improve the accuracy of wireless link monitoring.
  • FIG. 3 is a flow chart of an implementation of the wireless link monitoring method provided by this application. As shown in FIG. 3, the method includes some or all of the following steps:
  • S101 Determine a BWP to be monitored, and the BWP to be monitored includes multiple subbands.
  • the terminal device when the terminal device monitors the wireless link, it first needs to determine the BWP to be monitored.
  • the BWP to be monitored may be the activated BWP of the terminal device on the special cell, or the BWP to be monitored may be the initial BWP of the terminal device on the special cell.
  • the special cell includes the primary cell of the terminal device, or the special cell may include the primary cell in the primary cell group of the terminal device, or the special cell includes the primary cell in the secondary cell group of the terminal device.
  • the initial BWP includes the initial downlink BWP, and the terminal device can complete the initial access process through the initial downlink BWP.
  • the BWP to be monitored includes multiple subbands.
  • the subbands can be LBT subbands when the network device performs LBT. That is to say, when the network device sends a reference signal to the terminal device through the LBT subband, it needs to listen to the subband first. State, if the subband is in the idle state, the network device can send the reference signal to the terminal device through the idle subband.
  • the subband may also be a subband determined according to other methods, which is not limited in this application.
  • the size of the subband may be 20 MHz, or an integer multiple of 20 MHz.
  • the activated BWP of the terminal device on the special cell includes multiple subbands
  • the initial BWP of the terminal device on the special cell includes one subband. Therefore, the terminal device determines that the BWP to be monitored on the special cell is the initial BWP. This is mainly because when the active BWP of the terminal device includes at least two subbands in the frequency domain, since the initial BWP only includes one subband, the radio link monitoring RLM can be restricted from being performed on the initial BWP, thereby reducing the number of subbands in the RLM process. The effect on RLM results when some subbands in the frequency domain cannot be transmitted.
  • S102 Perform radio link monitoring on the BWP to be monitored according to the target RLM-RS resource on at least one of the multiple subbands, and the target RLM-RS resource is used to transmit the target RLM-RS.
  • the network device In this step, there may be subbands in a busy state among multiple subbands, and the network device will not be able to transmit RLM-RS through the target RLM-RS resources on these busy subbands.
  • the terminal equipment In order to reduce the impact on the monitoring results of wireless link monitoring due to the fact that network equipment cannot transmit RLM-RS through some subbands, the terminal equipment needs to determine at least one subband from multiple subbands, so that it can be based on at least one subband. With the target RLM-RS resource, the BWP to be monitored is monitored for wireless link.
  • At least one of the above-mentioned multiple sub-bands may include a sub-band in which the target RLM-RS is transmitted among the multiple sub-bands.
  • performing radio link monitoring on the BWP to be monitored includes: during the out-of-synchronization evaluation period, evaluating whether the estimated downlink radio link quality on the target RLM-RS resource is lower than the out-of-synchronization threshold; And/or, during the synchronization evaluation period, evaluate whether the downlink radio link quality estimated on the target RLM-RS resource is higher than the synchronization threshold.
  • the radio link monitoring of the BWP to be monitored may also include other evaluation indicators, such as evaluating whether the target RLM-RS on the target RLM-RS resource is transmitted or not, which is not limited in this application.
  • At least one subband is included in one evaluation period, and the subband in which the target RLM-RS is actually transmitted among the multiple subbands.
  • the target RLM-RS resource since the target RLM-RS resource can appear periodically, in an evaluation period, the target RLM-RS resource may appear multiple times. Therefore, it is necessary to independently determine whether the network device passes or not for each target RLM-RS resource.
  • the target RLM-RS resource transmits the target RLM-RS.
  • an evaluation cycle may be a synchronous evaluation cycle, an out-of-synchronization evaluation cycle, or an evaluation cycle of other indicators, which is not limited in this application.
  • the terminal device may be configured with one or more target RLM-RS resources to perform downlink radio link quality evaluation.
  • the terminal device is configured with multiple target RLM-RS resources to perform downlink radio link quality assessment, for each target RLM-RS resource, the solution in this application can be adopted.
  • different target RLM-RS resources may correspond to different beam directions.
  • different target RLM-RS resources may correspond to the same beam direction.
  • At least one subband in the multiple subbands may include a first subband, and the first subband is a subband with the smallest index value among the subbands of the transmission target RLM-RS among the multiple subbands.
  • the first subband is the subband with the smallest index value among the subbands in which the target RLM-RS is actually transmitted in one evaluation period.
  • the BWP0 to be monitored activated by the terminal device includes 4 subbands, which are subband 0, subband 1, subband 2, and subband 3.
  • the target RLM-RS resource configured by the network device for the BWP0 is located on each of the 4 subbands. In an evaluation period, if the network device only obtains the channel usage rights of part of the subband, that is, the network device can only send the target RLM-RS to the terminal device through the part of the subband.
  • the network device sends the target RLM-RS to the terminal device through the target RLM-RS resources on subband 0, subband 1, and subband 2, then the first subband is subband 0.
  • the BWP0 to be monitored activated by the terminal device includes 4 subbands, which are subband 0, subband 1, subband 2, and subband 3.
  • the target RLM-RS resource configured by the network device for the BWP0 is located on each of the 4 subbands. In an evaluation period, the target RLM-RS resource appears S times in the time domain.
  • At least one subband of the foregoing multiple subbands may include a second subband, and the second subband is a subband with the largest index value among the subbands of the transmission target RLM-RS among the multiple subbands.
  • the second subband is the subband with the largest index value among the subbands in which the target RLM-RS is actually transmitted in one evaluation period.
  • the BWP0 to be monitored activated by the terminal device includes 4 subbands, which are subband 0, subband 1, subband 2, and subband 3.
  • the target RLM-RS resource configured by the network device for the BWP0 is located on each of the 4 subbands. In an evaluation period, if the network device only obtains the channel usage rights of part of the subband, that is, the network device can only send the target RLM-RS to the terminal device through the part of the subband.
  • the network device sends the target RLM-RS to the terminal device through the target RLM-RS resources on subband 0, subband 1, and subband 2, then the second subband is subband 2.
  • the BWP0 to be monitored activated by the terminal device includes 4 subbands, which are subband 0, subband 1, subband 2, and subband 3.
  • the target RLM-RS resource configured by the network device for the BWP0 is located on each of the 4 subbands. In an evaluation period, the target RLM-RS resource appears S times in the time domain.
  • the network device only obtains the channel usage rights of part of the subband .
  • the network device can only send the target RLM-RS to the terminal device through some subbands at this moment.
  • the network device sends the target RLM-RS to the terminal device through the target RLM-RS resources on subband 0, subband 1, and subband 2, then the second subband at this moment is subband 2.
  • each time the target RLM-RS resource appears may correspond to a second subband, and within an evaluation period, the second subbands corresponding to different times may be different.
  • the network device and the terminal device may be negotiated or agreed upon by agreement, for example, the network device sends instruction information to the terminal device to notify the terminal device to send the target RLM-RS on the first subband or the second subband.
  • the terminal device determines the subband for transmitting the target RLM-RS in multiple subbands, or the terminal device determines the RLM-RS resource for transmitting the target RLM-RS in multiple subbands, specifically, it may include the following two methods:
  • the subband for transmitting the target RLM-RS in the multiple subbands is determined by the terminal device according to the instruction information sent by the network device, and the instruction information is used to determine the subband where the target RLM-RS is actually transmitted in the multiple subbands .
  • the subbands where the target RLM-RS transmission is actually performed may be allocated RLM-RS resources in the multiple subbands, and the subbands of the target RLM-RS are transmitted on the allocated RLM-RS resources.
  • the network device after the network device determines the subbands in the multiple subbands that can be used for signal transmission by means of interception, it can send instruction information to the terminal device, and the instruction information is used to indicate the actual signal transmission in the multiple subbands.
  • the subband For the terminal device, it receives the instruction information sent by the network device, and according to the instruction information, can determine the sub-band that the network device actually performs signal transmission within a period of time. If the RLM-RS resource belongs to the period of time, then the terminal device At least one subband in which the target RLM-RS transmission is actually performed can be determined from the multiple subbands.
  • the BWP to be monitored includes subband 0, subband 1, subband 2, and subband 3, if the network device determines that subband 0, subband 1, and subband 2 are idle after listening, then The network device will send instruction information to the terminal device so that the terminal device can determine through the instruction information that subband 0, subband 1, and subband 2 are subbands for actual signal transmission in the first time period. If the target RLM-RS resources configured by the network device on subband 0, subband 1, and subband 2 are within the first time period, then the network device can transmit the target RLM-RS through subband 0, subband 1, and subband 2. , The terminal device can determine that subband 0, subband 1, and subband 2 are subbands that actually perform target RLM-RS transmission among the multiple subbands.
  • the subband of the target RLM-RS transmission among the multiple subbands is determined by the terminal device according to the blind detection of the reference signal.
  • the terminal device receives the reference signal through the target RLM-RS resource on the multiple subbands, and according to the reception result, determines the subband for transmitting the target RLM-RS from the multiple subbands.
  • the reception result may include that the terminal device receives the reference signal on a certain subband, or the terminal device does not receive the reference signal on this subband. If the terminal device receives the reference signal on a certain subband, the subband can be determined as the subband where the target RLM-RS is transmitted; otherwise, the subband is the subband where the target RLM-RS is not transmitted. Based on this, the terminal device can determine the subband of the transmission target RLM-RS from the multiple subbands through the blind detection of the reference signal (or the presence of the reference signal).
  • the network device may configure RLM-RS resources for the BWP to be monitored, where at least one subband in the BWP to be monitored is configured with RLM-RS resources.
  • the terminal device receives the reference signal through the target RLM-RS resource on the subband, and performs correlation peak detection on the received reference signal and the locally preset reference signal sequence. If the detection result is greater than the preset Threshold, the terminal device determines that the reference signal is received on the subband; otherwise, the terminal device considers that the reference signal is not received on the subband.
  • the aforementioned reference signal may be the target RLM-RS.
  • it may also be other reference signals, for example, it may be a demodulation reference signal (DeModulation Reference Signal, DMRS).
  • DMRS DeModulation Reference Signal
  • the specific form of the reference signal is not limited in the embodiment of the present application.
  • the terminal device receives the DMRS sent by the network device for demodulating the PDCCH, and based on the blind detection of the DMRS of the PDCCH, can determine the subband that the network device actually performs signal transmission within a period of time. If the RLM-RS If the resources belong to this period of time, the terminal device can determine from the multiple subbands at least one subband that actually performs the target RLM-RS transmission.
  • the target RLM-RS resource includes the RLM-RS resource for transmitting the target RLM-RS.
  • the subband that the network device actually performs signal transmission within a period of time may include: the subband occupied by the network device during the period of time; the RLM-RS resource of the transmission target RLM-RS , May include: RLM-RS resources on subbands and symbols occupied by network equipment in the target RLM-RS resource; RLM-RS resources that have not transmitted the target RLM-RS, may include: network equipment in the target RLM-RS resource RLM-RS resources on unoccupied subbands or unoccupied symbols; resources for network equipment to obtain channel usage rights can include: subbands and symbol resources occupied by network equipment; resources for network equipment not to obtain channel usage rights , Can include: resources on subbands or symbols that are not occupied by the network device.
  • the target RLM-RS resource on at least one subband includes the RLM-RS resource that actually transmits the target RLM-RS.
  • At least one subband of the aforementioned multiple subbands may include each subband of the multiple subbands.
  • the at least one subband may include each subband of the plurality of subbands.
  • the terminal device will perform radio link monitoring on the BWP to be monitored based on the target RLM-RS resource on each subband.
  • At least one subband of the multiple subbands may include a third subband, and the third subband is a preset subband in the multiple subbands.
  • the at least one subband may be a preset subband among multiple subbands.
  • the third subband may be a subband that includes the same frequency domain resources as the initial BWP, or the subband with the smallest index value among the multiple subbands, or the subband with the largest index value among the multiple subbands.
  • the BWP to be monitored of the terminal device includes subbands 0, 1, 2, and 3, and the initial BWP of the terminal device includes subband 2, so the third subband is subband 2.
  • the target RLM-RS resource includes the RLM-RS resource for transmitting the target RLM-RS, and /Or, the target RLM-RS resource includes the RLM-RS resource for which the target RLM-RS is not transmitted.
  • the network device transmits the target RLM-RS through the target RLM-RS resource on each subband, this When the target RLM-RS resource on at least one subband is the RLM-RS resource of the transmission target RLM-RS; for another example, if some subbands are in the idle state, some subbands are in the busy state, and the network device passes through the idle state.
  • the target RLM-RS resource on the subband of the state transmits the target RLM-RS.
  • the target RLM-RS resource on at least one subband includes the RLM-RS resource on the idle subband that transmits the target RLM-RS, and /Or, the RLM-RS resource of the target RLM-RS is not transmitted on the busy subband; for another example, if each subband is in a busy state and the network device does not transmit the target RLM through the target RLM-RS resource on any subband -RS.
  • the target RLM-RS resource on at least one subband includes the RLM-RS resource for which the target RLM-RS is not transmitted.
  • the target RLM-RS resource on at least one subband is the RLM-RS resource of the transmission target RLM-RS; if there are some third subbands in idle state, some third subbands are in busy state, and the network The device transmits the target RLM-RS through the target RLM-RS resource on the third subband in the idle state.
  • the target RLM-RS resource on at least one subband includes transmitting the target on the idle third subband.
  • the RLM-RS resource of RLM-RS, and/or, the RLM-RS resource of the target RLM-RS is not transmitted on the busy third subband; if the third subband is busy and the network device does not pass any
  • the target RLM-RS resources on the three subbands transmit the target RLM-RS.
  • the target RLM-RS resources on at least one subband include the RLM-RS resources for which the target RLM-RS is not transmitted.
  • the terminal device can determine whether the target RLM-RS resource is the RLM-RS resource for transmitting the target RLM-RS or is not transmitted based on the blind detection of the target RLM-RS on the target RLM-RS resource The RLM-RS resource of the target RLM-RS.
  • the terminal device receives the target RLM-RS through the target RLM-RS resource on at least one subband, and if the target RLM-RS is received on a certain target RLM-RS resource, the target RLM-RS resource can be determined RLM-RS resource for the transmission target RLM-RS. If the target RLM-RS is not received on a certain target RLM-RS resource, the target RLM-RS resource may be determined as the RLM-RS resource for which the target RLM-RS is not transmitted.
  • the terminal device performs radio link monitoring on the BWP to be monitored based on the target RLM-RS resource on at least one of the multiple subbands, which may be based on the target RLM-RS on one of the multiple subbands.
  • the BWP to be monitored is monitored for the radio link, or, according to the target RLM-RS resources on at least two of the multiple subbands, the BWP to be monitored is monitored for the radio link.
  • the radio link monitoring of the BWP to be monitored may include the following process: during the out-of-synchronization assessment period, the target RLM-RS on at least one subband is evaluated. Whether the downlink radio link quality estimated on the RS resource is lower than the out-of-synchronization threshold; and/or, in the synchronization evaluation period, evaluate whether the downlink radio link quality estimated on the target RLM-RS resource on at least one subband is higher than Synchronization threshold.
  • the terminal device may only evaluate whether the downlink radio link quality estimated on the target RLM-RS resource on at least one subband is lower than the out-of-synchronization threshold during the out-of-synchronization evaluation period, or it may only evaluate in the synchronization evaluation period Whether the estimated downlink radio link quality on the target RLM-RS resource on at least one subband is higher than the synchronization threshold, and the estimated downlink quality on the target RLM-RS resource on at least one subband can also be evaluated during the out-of-synchronization evaluation period Whether the wireless link quality is lower than the out-of-synchronization threshold, and during the synchronization evaluation period, evaluate whether the downlink wireless link quality estimated on the target RLM-RS resource on at least one subband is higher than the synchronization threshold.
  • the synchronization threshold and the out-of-synchronization threshold respectively correspond to different block error rate (BLER) values.
  • BLER block error rate
  • the BLER value corresponding to the synchronization threshold or the out-of-synchronization threshold is configured by the network device.
  • the synchronization threshold or the out-of-synchronization threshold is obtained under the assumption of certain PDCCH transmission parameters.
  • the BLER value and SINR value corresponding to the synchronization threshold can be obtained under a certain PDCCH transmission parameter assumption.
  • the BLER value and the SINR value corresponding to the out-of-synchronization threshold can be obtained under certain PDCCH transmission parameter assumptions.
  • the synchronization thresholds or out-of-synchronization thresholds corresponding to the different RSs are independently determined.
  • the CSI-RS resources correspond to the first synchronization threshold or the first out-of-synchronization threshold.
  • the RLM-RS resources include SSB resources
  • the SSB resources correspond to the second synchronization threshold or the second synchronization threshold. Out of step threshold.
  • the terminal device may use the target RLM-RS on all subbands to which the target RLM-RS is transmitted.
  • the RS resource estimates whether the quality of the downlink wireless link is lower than the out-of-synchronization threshold, so that the BWP to be monitored is monitored for the wireless link.
  • the terminal device may receive the target RLM-RS through the target RLM-RS resource on at least one subband to estimate the downlink radio link quality.
  • the terminal device performing wireless link monitoring of the BWP to be monitored during the evaluation period may include the following implementation manners. It is assumed that in the evaluation period, the target RLM-RS resource used to monitor the quality of the radio link includes the target RLM-RS resource configured to appear at least once in each subband of the at least one subband, where the target RLM-RS The resources include RLM-RS resources of the transmission target RLM-RS and/or RLM-RS resources of the non-transmission target RLM-RS.
  • the terminal device obtains the corresponding signal to interference plus noise ratio based on the target RLM-RS resource used to monitor the quality of the radio link that appears at least once on each subband in the at least one subband.
  • Ratio; SINR SINR
  • SINR block error rate
  • the terminal device obtains the corresponding signal to interference plus noise ratio based on the target RLM-RS resource used to monitor the quality of the radio link that appears at least once on each subband in the at least one subband.
  • Ratio; SINR SINR
  • the SINR and the preset out-of-synchronization threshold determine whether the block error rate (BLER) corresponding to the signal transmitted on the target RLM-RS resource is lower than the out-of-synchronization threshold, or, According to the SINR and the preset synchronization threshold, determine whether the BLER corresponding to the signal transmitted on the target RLM-RS resource is higher than the synchronization threshold, thereby determining the radio link quality corresponding to the target RLM-RS resource, and then determining the entire waiting Monitor the B
  • the SINR corresponding to the preset out-of-synchronization threshold may be determined, and whether the SINR corresponding to the target RLM-RS resource (or the signal transmitted on the target RLM-RS resource) is greater than the SINR corresponding to the out-of-synchronization threshold , If the SINR corresponding to the target RLM-RS resource is higher than the SINR corresponding to the out-of-synchronization threshold, it can be determined that the BLER corresponding to the target RLM-RS resource is lower than the out-of-synchronization threshold; otherwise, if the target RLM-RS resource corresponds to If the SINR is lower than the SINR corresponding to the out-of-synchronization threshold, it can be determined that the BLER corresponding to the target RLM-RS resource is higher than the out-of-synchronization threshold.
  • the target RLM-RS can be determined The BLER corresponding to the resource is lower than the synchronization threshold.
  • the evaluation period can be an out-of-step evaluation period or a synchronized evaluation period, or an evaluation period of other indicators.
  • the terminal device assessing the wireless link quality in the assessment period may include at least one of the following four situations.
  • the target RLM-RS resource used to monitor the quality of the radio link includes the target RLM-RS resource configured to appear at least once in each subband of the at least one subband, where the target The RLM-RS resource includes the RLM-RS resource of the transmission target RLM-RS and/or the RLM-RS resource of the non-transmission target RLM-RS.
  • each of the target RLM-RS resources that are configured to appear at least once in each of the at least one subband in each evaluation period may correspond to one SINR, According to the one SINR, a judgment result can be obtained. Therefore, in each evaluation period, each occurrence of the target RLM-RS resource corresponds to a judgment result.
  • the target RLM-RS resource that is configured to appear at least once may correspond to one SINR (for example, for the target RLM-RS that appears multiple times)
  • the signal detection on the RS resource is averaged or filtered), that is, each subband in the at least one subband corresponds to one SINR, and a judgment result can be obtained according to the one SINR. Therefore, in each evaluation period, the target RLM-RS resource on each subband corresponds to a judgment result.
  • the target RLM-RS resource is configured to appear S times.
  • the at least One subband may correspond to one SINR (for example, signal detection on the target RLM-RS resource on each of the at least one subband is averaged or filtered), and a judgment result can be obtained according to the one SINR. Therefore, in each evaluation period, each time the target RLM-RS resource appears corresponds to a judgment result, and the evaluation period includes S judgment results.
  • all target RLM-RS resources in the at least one subband can correspond to one SINR (for example, detecting signals on target RLM-RS resources that appear multiple times in each subband) Perform averaging or filtering).
  • One SINR corresponding to each RLM-RS resource can obtain a judgment result according to the one SINR. Therefore, the evaluation period includes one judgment result.
  • the terminal device does not average or filter the signal detection on the RLM-RS resource of the target RLM-RS transmission and the RLM-RS resource of the target RLM-RS not transmitted.
  • the judgment result includes: evaluating whether the downlink radio link quality estimated on the target RLM-RS resource on at least one subband is lower than the out-of-synchronization threshold during the out-of-synchronization evaluation period, or, In the synchronization evaluation period, it is evaluated whether the estimated downlink radio link quality on the target RLM-RS resource on at least one subband is higher than the synchronization threshold.
  • each target RLM-RS resource in the above scheme it will be judged whether the estimated downlink radio link quality is lower than the out-of-synchronization threshold.
  • multiple target RLMs may appear.
  • -Multiple judgment results of RS resources, and multiple judgment results of one target RLM-RS resource may occur.
  • the physical layer of the terminal device will report the out-of-synchronization indication to the higher layer.
  • the physical layer of the terminal device will report the synchronization indication to the higher layer.
  • Figure 4a is a schematic diagram of the subband and target RLM-RS resource configuration in the BWP
  • Figure 4b is a schematic diagram of the subband transmitting the target RLM-RS.
  • the BWP to be monitored activated by the terminal device includes 4 subbands, namely subband 0, subband 1, subband 2, and subband 3.
  • the RLM-RS resource configured by the network device for the BWP0 of the terminal device is located on each of the four subbands.
  • the network device in the evaluation period, if the network device only obtains the channel usage rights of part of the subband, that is, the network device can only send the target RLM-RS to the terminal device through the part of the subband.
  • the network device will only send the target RLM-RS on part of the RLM-RS resources in the configured RLM-RS resources.
  • the terminal device will estimate the downlink radio link quality according to the target RLM-RS resource on the subband of the target RLM-RS transmission. For example: the network device only sends the target RLM-RS on the target RLM-RS resources configured on subband 1, subband 2 and subband 3. Then, the terminal device will also send the target RLM-RS according to subband 1, subband 2 and subband 3. Target RLM-RS resource, estimate the downlink radio link quality. Or, the terminal device will estimate the downlink radio link quality according to the target RLM-RS resource of the transmission target RLM-RS.
  • the terminal device will be based on the RLM-RS resources that appear for the first and second times (counting from 0) on subband 1, the RLM-RS resources on subband 2, and the second and third times on subband 3.
  • the RLM-RS resources that appear estimate the quality of the downlink radio link.
  • the terminal device can evaluate whether the downlink radio link quality is lower than the out-of-synchronization threshold according to the above-mentioned target RLM-RS resource, or if the evaluation period is a synchronization evaluation period, the terminal device can Evaluate whether the quality of the downlink radio link is higher than the synchronization threshold according to the above-mentioned target RLM-RS resource.
  • the BLER corresponding to the aforementioned out-of-synchronization threshold is 10%, and the BLER corresponding to the synchronization threshold may be 2%.
  • the terminal device is based on the target RLM-RS resource on the subband where the target RLM-RS is actually transmitted in the multiple subbands, or according to the target RLM-RS resource on the subband where the target RLM-RS is actually transmitted in the multiple subbands,
  • To estimate the quality of the downlink wireless link and determine whether the quality of the downlink wireless link is lower than the out-of-synchronization threshold or higher than the synchronization threshold, so as to monitor the wireless link of the BWP to be monitored, which can reduce the failure of network equipment to pass the BWP central
  • the effect on the wireless link monitoring result can improve the accuracy of the wireless link monitoring.
  • the terminal device may monitor the wireless link of the BWP to be monitored through the target RLM-RS resource on the first subband, the second subband, or the third subband. For example, the terminal device may receive the target RLM-RS through the target RLM-RS resource on the first subband, the second subband, or the third subband, and obtain the information on the first subband, the second subband, or the third subband.
  • the SINR corresponding to the target RLM-RS, and the SINR corresponding to the target RLM-RS on the first subband, the second subband or the third subband and the preset evaluation threshold are used to determine the first subband and the second subband.
  • FIG. 4c is another schematic diagram of the subband of the transmission target RLM-RS.
  • the BWP0 to be monitored activated by the terminal device includes 4 subbands, namely subband 0, subband 1, and subband. 2 and subband 3.
  • the RLM-RS resource configured by the network device for the BWP0 of the terminal device is located on each of the four subbands.
  • the network device In the evaluation period, if the network device only obtains the channel usage rights of part of the subband, that is, the network device can only send the reference signal to the terminal device through the part of the subband. Therefore, the network device will only send the target RLM-RS on part of the RLM-RS resources in the configured RLM-RS resources.
  • the network device sends the target RLM-RS to the terminal device as shown in Figure 4b.
  • the terminal device may estimate the downlink radio link quality according to the target RLM-RS resource on the first subband, where the first subband is the subband with the smallest index value among the multiple subbands in which the target RLM-RS is transmitted.
  • the terminal device may also estimate the downlink radio link quality according to the target RLM-RS resource on the second subband or the third subband, where the second subband is the subband that transmits the target RLM-RS in the multiple subbands.
  • the subband with the largest index value in the band, and the third subband is a preset subband among the multiple subbands.
  • the first subband, the second subband, or the third subband is determined according to the RLM-RS resource that occurs each time in the evaluation period.
  • the first subband corresponding to the 0th RLM-RS resource in the evaluation period is subband 2
  • the first subband corresponding to the first RLM-RS resource is subband 1.
  • the first subband corresponding to the RLM-RS resource appearing for the second time is subband 1
  • the first subband corresponding to the RLM-RS resource appearing for the third time is subband 2.
  • the terminal equipment can estimate the downlink radio link quality based on the 0th and 3rd occurrences of RLM-RS resources on subband 2 and the 1st and 2nd occurrences of RLM-RS resources on subband 1. .
  • the terminal device can evaluate whether the downlink radio link quality is lower than the out-of-synchronization threshold according to the above-mentioned target RLM-RS resource, or if the evaluation period is a synchronization evaluation period, the terminal device can Evaluate whether the quality of the downlink radio link is higher than the synchronization threshold according to the above-mentioned target RLM-RS resource.
  • the BLER corresponding to the aforementioned out-of-synchronization threshold is 10%, and the BLER corresponding to the synchronization threshold may be 2%.
  • the terminal equipment estimates whether the downlink radio link quality is lower than the out-of-synchronization threshold according to the target RLM-RS resources on the first subband, the second subband or the third subband, or judges whether it is higher than the synchronization threshold, Furthermore, monitoring the wireless link of the BWP to be monitored can reduce the impact on the wireless link monitoring result when the network device cannot send the target RLM-RS through some subbands in the BWP, thereby improving the accuracy of wireless link monitoring.
  • the terminal device performs radio link monitoring on the BWP to be monitored according to the target RLM-RS resource on at least one subband of the multiple subbands, or independently monitors for each subband.
  • the terminal device performs radio link monitoring on the BWP to be monitored according to the target RLM-RS resource on at least one subband of the multiple subbands, or independently monitors for each subband.
  • the estimated downlink radio on each subband on the target RLM-RS resource on each subband is evaluated.
  • the link quality is lower than the out-of-synchronization threshold; and/or, for one sub-band (for example, each sub-band) in at least one sub-band, evaluate the target RLM-RS resource estimation on each sub-band during the synchronization evaluation period Whether the quality of the downlink radio link on each subband is higher than the synchronization threshold.
  • the terminal device may only evaluate whether the downlink radio link quality on each subband estimated on the target RLM-RS resource on each subband is low during the out-of-synchronization evaluation period.
  • the out-of-synchronization threshold it is also possible to evaluate whether the downlink radio link quality on each sub-band estimated on the target RLM-RS resource on each sub-band is higher than the synchronization threshold during the synchronization evaluation period.
  • evaluate whether the estimated downlink radio link quality on each subband on the target RLM-RS resource on each subband is lower than the out-of-synchronization threshold, and during the synchronization evaluation period, evaluate the target RLM-RS on each subband. Whether the downlink radio link quality on each subband estimated on the RS resource is higher than the synchronization threshold.
  • the terminal device assessing the wireless link quality during the assessment period may include at least one of the following two situations.
  • the target RLM-RS resource used to monitor the quality of the radio link includes the target RLM-RS resource configured to appear at least once in each subband of the at least one subband, where the target The RLM-RS resource includes the RLM-RS resource of the transmission target RLM-RS and/or the RLM-RS resource of the non-transmission target RLM-RS.
  • each of the target RLM-RS resources that are configured to appear at least once in each of the at least one subband in each evaluation period may correspond to one SINR, According to the one SINR, a judgment result can be obtained. Therefore, in each evaluation period, each occurrence of the target RLM-RS resource corresponds to a judgment result.
  • the target RLM-RS resource that is configured to appear at least once may correspond to one SINR (for example, for the target RLM-RS that appears multiple times)
  • the signal detection on the RS resource is averaged or filtered), that is, each subband in the at least one subband corresponds to one SINR, and a judgment result can be obtained according to the one SINR. Therefore, in each evaluation period, the target RLM-RS resource on each subband corresponds to a judgment result.
  • the terminal device does not average or filter the signal detection on the RLM-RS resource of the target RLM-RS transmission and the RLM-RS resource of the target RLM-RS not transmitted.
  • the judgment result includes: evaluating whether the downlink radio link quality estimated on the target RLM-RS resource on one subband in at least one subband is lower than the out-of-synchronization evaluation period. Threshold, or, during the synchronization evaluation period, evaluate whether the estimated downlink radio link quality on the target RLM-RS resource on one subband in at least one subband is higher than the synchronization threshold.
  • the physical layer of the terminal device will report the synchronization indication of the subband to the higher layer .
  • the terminal device will receive the target RLM-RS through the target RLM-RS resource on each of the multiple subbands. If the target RLM-RS is received on a certain subband, it will The target RLM-RS determines the downlink radio link quality on this subband. For example, the corresponding SINR and the preset out-of-synchronization threshold can be determined by the received target RLM-RS, and it can be determined whether the BLER corresponding to the target RLM-RS is lower than the out-of-synchronization threshold, or it can be determined by the received target RLM-RS. The RS determines the corresponding SINR and the preset synchronization threshold, and determines whether the BLER corresponding to the target RLM-RS is higher than the synchronization threshold.
  • the target RLM-RS is not received on a certain subband, or the uplink (UL) channel detection (such as LBT) on a certain subband continues to fail, That is, when the subband is in a busy state, the terminal device can determine that the subband is in a radio link failure (Radio link failure; RLF) state, or in other words, the physical layer of the terminal device will report this to the upper layer of the terminal device.
  • RLF radio link failure
  • each subband can be monitored independently, and each subband can be monitored according to whether the target RLM-RS is received on each subband as a monitoring indicator, and after it is determined that the target RLM-RS can be received, Furthermore, according to the SINR corresponding to the target RLM-RS and the preset out-of-synchronization threshold or synchronization threshold, it is determined whether the BLER corresponding to the target RLM-RS is lower than the out-of-synchronization threshold or whether it is higher than the out-of-synchronization threshold. Band monitoring results.
  • Figure 4d is another schematic diagram of subbands.
  • the BWP0 to be monitored activated by the terminal device includes 4 subbands, namely subband 0, subband 1, subband 2, and subband 3.
  • the sub-bands that the network device can transmit target RLM-RS include sub-band 1, sub-band 2 and sub-band 3.
  • the network device obtains the target RLM-RS resource transmission target of the channel usage right through sub-band 1, sub-band 2 and sub-band 3. RLM-RS.
  • the terminal device receives the target RLM-RS on the four subbands.
  • the terminal device can receive the target RLM-RS on subband 1, subband 2 and subband 3, the terminal device will respectively According to the target RLM-RS on each subband, it is determined whether the BLER corresponding to the target RLM-RS of each subband is lower than the out-of-synchronization threshold or higher than the synchronization threshold, so as to obtain the monitoring result of each subband.
  • the terminal device did not receive the target RLM-RS on subband 0, or found that the LBT of subband 0 was in a state of continuous failure during the listening process before uplink transmission on subband 0 , The terminal device can consider that the wireless link on subband 0 has failed.
  • the terminal device independently monitors each subband and reports the monitoring result of each subband to the terminal device, so that the upper layer of the terminal device can learn the channel state of each subband more accurately.
  • the target RLM-RS resource used to monitor the quality of the radio link includes the RLM-RS resource of the target RLM-RS transmission and the RLM-RS resource of the target RLM-RS not transmitted.
  • the terminal equipment measures the downlink radio link quality on a certain RLM-RS resource, it is uncertain whether the downlink radio link quality on the RLM-RS resource is poor.
  • the network device does not perform RLM-RS transmission or the actual downlink radio link quality is poor, it is not necessary to distinguish whether there is a target RLM-RS transmission on the target RLM-RS resource.
  • the BWP0 to be monitored activated by the terminal device includes 4 subbands, namely subband 0, subband 1, subband 2, and subband 3.
  • the sub-bands that the network device can transmit target RLM-RS include sub-band 1, sub-band 2 and sub-band 3.
  • the network device obtains the target RLM-RS resource transmission target of the channel usage right through sub-band 1, sub-band 2 and sub-band 3. RLM-RS.
  • the terminal device monitors the radio link on the BWP0, it will use all the configured target RLM-RS resources in the out-of-synchronization assessment period, that is, the RLM-RS resources that have not transmitted the target RLM-RS and the target RLM-RS that has actually been transmitted.
  • the RLM-RS resource is used to evaluate the quality of the radio link. Among them, the terminal device can evaluate whether the downlink radio link quality is lower than the out-of-synchronization threshold according to all the target RLM-RS resources mentioned above.
  • the BLER corresponding to the aforementioned out-of-synchronization threshold is 10%.
  • the terminal device performs radio link monitoring on the BWP to be monitored according to the target RLM-RS resource on at least one subband of the multiple subbands, and may also evaluate the BWP on the at least one subband during the first evaluation period. Whether the estimated downlink radio link quality on the target RLM-RS resource is lower than the first threshold; and/or, for each subband in at least one subband, in the first evaluation period, evaluate the target RLM on each subband -Whether the downlink radio link quality on each subband estimated on the RS resource is lower than a first threshold, where the first threshold is different from the out-of-synchronization threshold.
  • the terminal device may evaluate whether the estimated downlink radio link quality on the target RLM-RS resource on at least one subband is lower than the first threshold only in the first evaluation period, or it may only be in the first evaluation period, For each subband in at least one subband, evaluate whether the downlink radio link quality on each subband estimated on the target RLM-RS resource on each subband is lower than the first threshold, and it can also be in the first evaluation period , Evaluate whether the estimated downlink radio link quality on the target RLM-RS resource on at least one subband is lower than the first threshold, and in the first evaluation period, for each subband in at least one subband, evaluate each subband Whether the estimated downlink radio link quality on each subband on the target RLM-RS resource on the band is lower than the first threshold.
  • the first evaluation period may be a period different from the synchronization evaluation period and the out-of-synchronization evaluation period, may also be the same period as the synchronization evaluation period, or may be the same period as the out-of-synchronization evaluation period.
  • the terminal device evaluates whether the downlink radio link quality estimated on the target RLM-RS resource on at least one subband is lower than a first threshold, and/or, for at least one subband In each sub-band, in the first evaluation period, the method of evaluating whether the estimated downlink radio link quality on each sub-band on the target RLM-RS resource on each sub-band is lower than the first threshold is similar to the above-mentioned embodiments The judgment method in is similar and will not be repeated here.
  • the BLER corresponding to the out-of-synchronization threshold can be set to a value different from 10% in the prior art in this embodiment.
  • the BLER corresponding to out-of-synchronization may be set to a value not equal to 2% and not equal to 10%.
  • the BLER corresponding to out-of-step can be set to a value greater than 10%.
  • the target RLM-RS resource may be a resource in the first RLM-RS resource, and the first RLM-RS resource is the RLM-RS configured on the BWP to be monitored. RS resources.
  • the network device may configure a first RLM-RS resource for the BWP to be monitored, and the first RLM-RS resource is located on each of the multiple subbands of the BWP to be monitored, that is, the multiple subbands of the BWP to be monitored.
  • the target RLM-RS resource configured on each subband in the band is a part of the resources located on the subband in the first RLM-RS resource.
  • the network device configures the first RLM-RS resource for the BWP to be monitored. Since the target RLM-RS resource is the RLM-RS resource on at least one of the multiple subbands of the BWP to be monitored, the target RLM-RS The RS resource may be part of the first RLM-RS resource, or all of the first RLM-RS resource, or in other words, the target RLM-RS resource may be the first RLM-RS resource located in the multiple sub-resources. Resources on at least one sub-band in the band.
  • an RLM-RS resource is configured on each of the multiple subbands, and the target RLM-RS resource includes the RLM-RS resource configured on at least one subband.
  • RLM-RS resources are configured on each of the multiple subbands, and the RLM-RS resources include CSI-RS resources.
  • the CSI-RS resources configured on each of the multiple subbands may be the same CSI-RS resource, or may be different CSI-RS resources.
  • RLM-RS resources are configured on each of the multiple subbands, and the RLM-RS resources include SSB resources.
  • RLM-RS resources can be configured on each of the multiple subbands of the BWP to be monitored, and the target RLM-RS resource will include the RLM-RS resource configured on at least one subband. In a possible implementation manner, the target RLM-RS resource will include the RLM-RS resource configured on each subband.
  • the target RLM-RS resources include Channel State Information Reference Signal (CSI-RS) resources and/or Synchronization Signal Block (Synchronization Signal/PBCH Block, SSB) resources.
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronization Signal Block
  • the network device when the target RLM-RS resource includes CSI-RS resources, the network device will transmit the CSI-RS through the CSI-RS resources on the subband; when the target RLM-RS resource includes SSB resources, the network device will transmit the CSI-RS through The SSB resources on the subband transmit SSB; when the target RLM-RS resources include CSI-RS resources and SSB resources, the network equipment will transmit CSI-RS through the CSI-RS resources on the subband respectively, and pass the SSB resources transmit SSB.
  • the wireless link monitoring method determines the BWP to be monitored, and then performs wireless link monitoring on the BWP to be monitored based on the target RLM-RS resource on at least one of the multiple subbands of the BWP to be monitored. Therefore, the influence on the wireless link monitoring result when the network device cannot send the target RLM-RS through some subbands can be reduced, and the accuracy of the wireless link monitoring can be improved.
  • the PDCCH transmission parameters include a first energy ratio, where the first energy ratio includes the ratio of the energy of the resource element (RE) of the PDCCH and the energy of the RE of the RLM-RS; and/or, An energy ratio includes the ratio of the energy of the RE of the DMRS of the PDCCH and the energy of the RE of the RLM-RS.
  • the first energy ratio includes the ratio of the energy of the resource element (RE) of the PDCCH and the energy of the RE of the RLM-RS
  • An energy ratio includes the ratio of the energy of the RE of the DMRS of the PDCCH and the energy of the RE of the RLM-RS.
  • the above-mentioned first energy ratio is 0 dB, that is, the energy of the RE of the PDCCH and the RE of the RLM-RS
  • the ratio between the energies is assumed to be 0 dB, and/or the ratio between the RE energy of the DMRS of the PDCCH and the RE energy of the RLM-RS is also assumed to be 0 dB.
  • the BLER corresponding to the out-of-synchronization threshold is greater than 10%.
  • the value of the BLER corresponding to the out-of-synchronization threshold may be 20%.
  • the value of the BLER corresponding to the out-of-synchronization threshold is determined according to simulation. That is to say, if the terminal device does not have the parameters of the out-of- synchronization threshold that can be obtained by the network device configuration, the BLER out and BLER in corresponding to the out-of- synchronization threshold Q out and the synchronization threshold Q in can be obtained through the configuration shown in Table 1. In Table 1, as an example and not a limitation, the value of the out-of-synchronization threshold is 20%.
  • RLM-RS resources include CSI-RS resources and/or SSB resources.
  • the network device when the RLM-RS resource includes a CSI-RS resource, the network device will transmit the CSI-RS through the CSI-RS resource on the subband; when the target RLM-RS resource includes the SSB resource, the network device will transmit the CSI-RS through the subband.
  • the SSB resources on the band transmit SSB; when the target RLM-RS resources include CSI-RS resources and SSB resources, the network equipment will transmit the CSI-RS through the CSI-RS resources on the sub-band and pass the SSB on the sub-band. Resource transmission SSB.
  • the radio link monitoring method evaluates whether the downlink radio link quality on the configured radio link monitoring reference signal RLM-RS resource is lower than the out-of-synchronization threshold during the out-of-synchronization evaluation period, and the RLM- The RS resource is used to transmit RLM-RS, and the out-of-synchronization threshold corresponds to the physical downlink control channel PDCCH transmission parameter, and the PDCCH transmission parameter includes the first energy ratio.
  • the first energy ratio is 0dB, which can make the setting of the out-of-synchronization threshold more reasonable, thereby improving the accuracy of wireless link monitoring.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a terminal device provided by this application. As shown in FIG. 5, the terminal device 100 includes:
  • the determining module 11 is configured to determine the bandwidth part BWP to be monitored, where the BWP to be monitored includes multiple subbands;
  • the processing module 12 is configured to perform radio link monitoring on the BWP to be monitored according to the target radio link monitoring reference signal RLM-RS resource on at least one of the multiple subbands, and the target RLM-RS The resource is used to transmit the target RLM-RS.
  • the terminal device provided in this embodiment is used to implement the technical solutions on the terminal device side in any of the foregoing method embodiments. Its implementation principles and technical effects are similar.
  • the BWP to be monitored is monitored for the radio link, which can reduce the impact on the radio link monitoring result when the network device cannot send the target RLM-RS through some subbands, and improve the wireless Accuracy of link monitoring.
  • the at least one subband includes a subband for transmitting the target RLM-RS among the multiple subbands; or,
  • the at least one subband includes a first subband, and the first subband is the subband with the smallest index value among the subbands in which the target RLM-RS is transmitted; or,
  • the at least one subband includes a second subband, and the second subband is a subband with the largest index value among the subbands in which the target RLM-RS is transmitted.
  • the subband for transmitting the target RLM-RS in the multiple subbands is determined by the terminal device according to instruction information sent by the network device, and the instruction information is used to determine that the target RLM-RS is actually performed in the multiple subbands.
  • -Subband for RS transmission is used to determine that the target RLM-RS is actually performed in the multiple subbands.
  • the subband for transmitting the target RLM-RS among the multiple subbands is determined by the terminal device according to a manner of blind detection of a reference signal.
  • the at least one subband includes each subband of the multiple subbands; or,
  • the at least one subband includes a third subband, and the third subband is a preset subband in the plurality of subbands.
  • the third subband is a subband that includes the same frequency domain resources as the initial BWP; or,
  • the third subband is the subband with the smallest index value among the multiple subbands.
  • the third subband is the subband with the largest index value among the multiple subbands.
  • the target RLM-RS resource includes the RLM-RS resource for transmitting the target RLM-RS.
  • the target RLM-RS resource includes the RLM-RS resource for transmitting the target RLM-RS, and/or the target RLM-RS resource includes the RLM-RS resource for not transmitting the target RLM-RS .
  • processing module 12 is further configured to:
  • the target RLM-RS resource is the RLM-RS resource for transmitting the target RLM-RS, or the target RLM is not transmitted -RS RLM-RS resources.
  • processing module 12 is specifically configured to:
  • the out-of-synchronization evaluation period evaluate whether the estimated downlink radio link quality on the target RLM-RS resource on the at least one subband is lower than the out-of-synchronization threshold; and/or,
  • the synchronization evaluation period it is evaluated whether the downlink radio link quality estimated on the target RLM-RS resource on the at least one subband is higher than the synchronization threshold.
  • processing module 12 is specifically configured to:
  • each subband in the at least one subband in a synchronization evaluation period, evaluate whether the downlink radio link quality on each subband estimated on the target RLM-RS resource on each subband is higher than Synchronization threshold.
  • processing module 12 is specifically configured to:
  • the first evaluation period evaluate whether the estimated downlink radio link quality on the target RLM-RS resource on the at least one subband is lower than a first threshold; and/or,
  • the block error rate BLER corresponding to the first threshold is greater than 10%.
  • the target RLM-RS resource is a resource in a first RLM-RS resource
  • the first RLM-RS resource is an RLM-RS resource configured on the BWP to be monitored.
  • an RLM-RS resource is configured on each of the multiple subbands, and the target RLM-RS resource includes the RLM-RS resource configured on the at least one subband.
  • the target RLM-RS resources include channel state information reference signal CSI-RS resources and/or synchronization signal block SSB resources.
  • the terminal device provided by any of the foregoing implementation manners is used to implement the technical solution on the terminal device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a terminal device provided by this application. As shown in FIG. 6, the terminal device 200 includes:
  • the processing module 21 is configured to evaluate whether the downlink radio link quality on the configured radio link monitoring reference signal RLM-RS resource is lower than the out-of-synchronization threshold in the out-of-synchronization evaluation period, and the RLM-RS resource is used for transmission RLM-RS, the out-of-synchronization threshold corresponds to a physical downlink control channel PDCCH transmission parameter, and the PDCCH transmission parameter includes a first energy ratio, where:
  • the first energy ratio includes the ratio of the energy of the resource element RE of the PDCCH to the energy of the RE of the RLM-RS; and/or,
  • the first energy ratio includes the ratio of the energy of the RE of the demodulation reference signal DMRS of the PDCCH to the energy of the RE of the RLM-RS.
  • the first energy ratio is 0dB.
  • the block error rate BLER corresponding to the out-of-synchronization threshold is greater than 10%.
  • the RLM-RS resource includes channel state information reference signal CSI-RS resource and/or synchronization signal block SSB resource.
  • the terminal device provided by any of the foregoing implementation manners is used to implement the technical solution on the terminal device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 7 is a schematic structural diagram of Embodiment 3 of a terminal device provided by this application. As shown in FIG. 7, the terminal device 300 includes:
  • the memory 312 stores computer execution instructions
  • the processor 311 executes the computer-executable instructions stored in the memory, so that the processor 311 executes the technical solution on the terminal device side in any of the foregoing method embodiments.
  • FIG. 7 is a simple design of a terminal device.
  • the embodiment of the present application does not limit the number of processors and memories in the terminal device.
  • FIG. 7 only uses 1 as an example for illustration.
  • the memory, the processor, and the interface may be connected by a bus.
  • the memory may be integrated inside the processor.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer-executable instruction, when the computer-executable instruction is executed by a processor, it is used to implement the terminal in any of the foregoing method embodiments The technical solution of the equipment.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution of the terminal device in any of the foregoing method embodiments.
  • the foregoing processor may be a chip.
  • the embodiment of the present application also provides a computer program product, including program instructions, which are used to implement the technical solution of the terminal device in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the terminal device side in any of the foregoing method embodiments.
  • the chip further includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces.
  • the indirect coupling or communication connection of the modules may be in electrical, mechanical or other forms.
  • the processor may be a central processing unit (English: Central Processing Unit, abbreviated as: CPU), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, referred to as DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, referred to as ASIC), etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. The steps of the method disclosed in this application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • All or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps including the foregoing method embodiments; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory, abbreviated as: ROM), RAM, flash memory, hard disk, Solid state drives, magnetic tapes (English: magnetic tape), floppy disks (English: floppy disk), optical discs (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线链路监测方法、设备和存储介质,该方法包括:确定待监测带宽部分BWP,该待监测BWP包括多个子带;根据该多个子带中的至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,目标RLM-RS资源用于传输目标RLM-RS。本申请实施例提供的无线链路监测方法、设备和存储介质,可以减少由于网络设备不能通过部分子带发送目标RLM-RS时对无线链路监测结果的影响,提高了无线链路监测的准确性。

Description

无线链路监测方法、设备和存储介质 技术领域
本发明实施例涉及通信技术,尤其涉及一种无线链路监测方法、设备和存储介质。
背景技术
在移动通信中,基站与终端设备在无线载波上进行通信。在建立无线连接后,终端设备的物理层需要周期性的监测无线链路的质量。
目前,对于授权频谱,在具体的无线链路监测过程中,终端设备周期性的通过测量授权频谱上的参考信号的质量来实现对无线链路的监测。当测量的参考信号的质量低于预设门限时,则认定该无线链路处于失步(out-of-sync,OOS)状态,则物理层会向终端设备的高层(如无线资源控制(Radio Resource Control,RRC)层)发送失步(OOS)指示。当测量的参考信号的质量高于另一门限则认定该无线链路处于同步(in-sync,IS)状态,则物理层会向终端设备的高层(RRC层)发送同步(IS)指示。
在第五代的蜂窝移动通信(5th generation mobile networks,5G)中,同样会使用无线链路监测(Radio link monitoring,RLM)机制来检测下行无线链路的质量。由于5G通信系统将带宽划分为多个带宽部分(bandwidth part,BWP),对于非授权频谱,BWP又可以包括多个先听后说(Listen Before Talk,LBT)子带,当网络设备仅通过部分子带传输了参考信号时,如何有效的对下行无线链路质量进行监测,是目前亟待解决的技术问题。
发明内容
本申请实施例提供一种无线链路监测方法、设备和存储介质,可以减少由于网络设备不能通过部分子带发送目标RLM-RS时对无线链路监测结果的影响,提高了无线链路监测的准确性。
第一方面,本申请实施例提供一种无线链路监测方法,包括:
确定待监测带宽部分BWP,所述待监测BWP包括多个子带;
根据所述多个子带中的至少一个子带上的目标无线链路监测参考信号RLM-RS资源,对所述待监测BWP进行无线链路监测,所述目标RLM-RS资源用于传输目标RLM-RS。
第二方面,本申请实施例提供一种无线链路监测方法,包括:
在失步评估周期内,评估被配置的无线链路监测参考信号RLM-RS资源上的下行无线链路质量是否低于失步门限,所述RLM-RS资源用于传输RLM-RS,所述失步门限对应物理下行控制信道PDCCH传输参数,所述PDCCH传输参数包括第一能量比值,其中,
所述第一能量比值包括所述PDCCH的资源单元RE的能量和所述RLM-RS的RE的能量的比值;和/或,
所述第一能量比值包括所述PDCCH的解调参考信号DMRS的RE的能量和所述RLM-RS的RE的能量的比值。
第三方面,本申请实施例提供一种终端设备,包括:
确定模块,用于确定待监测带宽部分BWP,所述待监测BWP包括多个子带;
处理模块,用于根据所述多个子带中的至少一个子带上的目标无线链路监测参考信号RLM-RS资源,对所述待监测BWP进行无线链路监测,所述目标RLM-RS资源用于传输目标RLM-RS。
第四方面,本申请实施例提供一种终端设备,包括:
处理模块,用于在失步评估周期内,评估被配置的无线链路监测参考信号RLM-RS资源上的下行无线链路质量是否低于失步门限,所述RLM-RS资源用于传输RLM-RS,所述失步门限对应物理下行控制信道PDCCH传输参数,所述PDCCH传输参数包括第一能量比值,其中,
所述第一能量比值包括所述PDCCH的资源单元RE的能量和所述RLM-RS的RE的能量的比值;和/或,
所述第一能量比值包括所述PDCCH的解调参考信号DMRS的RE的能量和所述RLM-RS的RE的能量的比值。
第五方面,本申请实施例提供一种终端设备,包括:
处理器、存储器、与网络设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面所述的无线链路监测方法或如第二方面所述的无线链路监测方法。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第一方面所述的无线链路监测方法或如第二方面所述的无线链路监测方法。
第七方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如上第一方面任一项所述的无线链路监测方法或如第二方面任一项所述的无线链路监测方法。
可选地,上述处理器可以为芯片。
第八方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现第一方面任一项所述的无线链路监测方法或如第二方面任一项所述的无线链路监测方法。
第九方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第一方面任一项所述的无线链路监测方法或如第二方面任一项所述的无线链路监测方法。
可选地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第一方面任一项所述的无线链路监测方法或如第二方面任一项所述的无线链路监测方法。
本申请实施例提供的无线链路监测方法、设备和存储介质,通过确定待监测BWP,然后根据待监测BWP的多个子带中的至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,从而可以减少由于网络设备不能通过部分子带发送目标RLM-RS时对无线链路监测结果的影响,提高了无线链路监测的准确性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为网络设备通过BWP0向终端设备发送数据的示意图;
图2为本申请实施例所应用的一种通信系统的示意图;
图3为本申请提供的无线链路监测方法的一种实现流程图;
图4a为BWP中子带的示意图;
图4b为传输目标RLM-RS的子带的一示意图;
图4c为传输目标RLM-RS的子带的另一示意图;
图4d为子带的另一示意图;
图5为本申请提供的终端设备实施例一的结构示意图;
图6为本申请提供的终端设备实施例二的结构示意图;
图7为本申请提供的终端设备实施例三的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)带宽部分(bandwidth part,BWP),是指信道带宽中的一部分,也可以叫做“载波带宽部分(carrier bandwidth part)”、“工作带宽(operating bandwidth)”或者传输带宽,本申请实施例中不对带宽部分的名称以及简称进行具体限定。BWP可以为频域上一段连续或非连续的资源。例如,一个带宽部分包含连续或非连续的K个子载波;或者,一个带宽部分为N个不重叠的连续或非连续的资源块(Resource Block)所在的频域资源;或者,一个带宽部分为M个不重叠的连续或非连续的资源块组(Resource Block Group,RBG)所在的频域资源,一个RBG包括P个连续的RB。另外,对于非授权频谱,一个带宽部分还可以包括Q个先听后说(Listen Before Talk,LBT)子带,其中,K、N、M、P和Q均为大于0的整数。
2)非授权频谱,通信设备需要遵循“先听后说(LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupancy Time,MCOT);为了避免在非授权频谱的信道上传输的信号的功率太大,影响该信道上的其他重要信号,例如雷达信号等的传输,通信设备使用非授权频谱的信道进行信号传输时需要遵循信号发射功率不超过最大发射功率和最大发射功率谱密度的限制。
在5G非授权频谱上,在系统载波带宽大于20MHz的宽带传输的场景下,终端设备可以被配置多个BWP且只激活一个BWP,当该激活的BWP包括多个LBT子带时,网络设备可以根据LBT子带的信道侦听结果,通过该激活的BWP包括的部分或全部LBT子带进行物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的传输。图1为网络设备通过BWP0向终端设备发送数据的示意图,如图1所示,网络设备给终端设备配置的BWP0包括第一子带和第二子带两个LBT子带,网络设备可以通过调度第一子带和第二子带向终端设备传输PDSCH。然而,在每个LBT子带进行信道侦听时,第一子带LBT成功,也即处于空闲状态,第二子带LBT失败,也即处于忙碌状态,因此网络设备可以通过BWP0包括的第一子带向终端设备传输PDSCH。对于网络设备通过部分子带传输PDSCH的情况,如何有效的对下行无线链路质量进行监测,是目前需要解决的问题。
因此,本方案提出一种无线链路监测方法,通过确定待监测BWP,然后根据待监测BWP的多个子带中的至少一个子带上的目标无线链路监测-参考信号(Radio link monitoring-Reference Signal,RLM-RS)资源,对待监测BWP进行无线链路监测,其中,目标RLM-RS资源用于传输目标RLM-RS,由于根据至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,从而可以减少由于网络设备不能通过部分子带发送参考信号时对无线链路监测结果的影响,提高了无线链路监测的准确性。
下面对本申请提供的无线链路监测方法进行说明。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统、5G通信系统、未来演进的通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
示例性的,图2为本申请实施例所应用的一种通信系统的示意图。如图2所示,如图2所示。该通信系统可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设 备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图2示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图2示出的通信系统为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例的方法可以应用于非授权频谱的通信中,也可以应用于其它通信场景中,如授权频谱的通信场景。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱可以被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,可以不向政府申请专有的频谱授权。为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,通信设备在非授权频谱上进行通信时,可以遵循先听后说(Listen Before Talk,LBT)的原则,即,通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听(或称为信道检测),只有当信道侦听结果为信道空闲时,通信设备才能进行信号发送;如果通信设备在非授权频谱的上进行信道侦听的结果为信道忙,则不能进行信号发送。可选地,LBT的带宽是20MHz,或为20MHz的整数倍。
本申请提供的无线链路监测方法包括:终端设备确定待监测BWP,该待监测BWP包括多个子带,然后终端设备再根据多个子带中的至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,其中,目标RLM-RS资源用于传输目标RLM-RS。由于终端设备可以根据多个子带中的至少一个子带上的RLM-RS资源,对待监测BWP进行监测,从而可以减少由于网络设备不能通过部分子 带发送参考信号时对无线链路监测结果的影响,提高了无线链路监测的准确性。
下面通过几个实施例,介绍终端设备根据多个子带中的至少一个子带上的RLM-RS资源,对待监测BWP进行无线链路监测的具体实现。
图3为本申请提供的无线链路监测方法的一种实现流程图,如图3所示,该方法包括以下步骤中的部分或全部:
S101:确定待监测BWP,该待监测BWP包括多个子带。
在本步骤中,终端设备在对无线链路进行监测时,首先需要确定待监测BWP。示例性的,该待监测BWP可以是终端设备在特殊小区上的激活BWP,或者,该待监测BWP可以是终端设备在特殊小区上的初始BWP。其中,特殊小区包括终端设备的主小区,或者特殊小区可以包括终端设备的主小区组中的主小区,或者,特殊小区包括终端设备的辅小区组中的主小区。
需要说明的是,初始BWP包括初始下行BWP,终端设备可以通过该初始下行BWP完成初始接入过程。
另外,待监测BWP包括多个子带,该子带可以为网络设备进行LBT时的LBT子带,也就是说,网络设备通过LBT子带向终端设备发送参考信号时,需要先侦听子带的状态,若子带处于空闲状态时,网络设备才能通过空闲的子带向终端设备发送参考信号。当然该子带也可以为根据其他方式确定的子带,本申请对此并不限定。
作为示例而非限定,子带的大小可以为20MHz,或为20MHz的整数倍。
可选地,终端设备在特殊小区上的激活BWP包括多个子带,终端设备在该特殊小区上的初始BWP包括一个子带,因此,终端设备确定该特殊小区上的待监测BWP为初始BWP。这主要是因为,当终端设备的激活BWP在频域上包括至少两个子带时,由于初始BWP只包括一个子带,可以限制无线链路监测RLM在初始BWP上进行,从而在RLM过程中减少频域部分子带不能发送时对RLM结果的影响。
S102:根据多个子带中的至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,目标RLM-RS资源用于传输目标RLM-RS。
在本步骤中,多个子带中可能会存在处于忙碌状态的子带,那么网络设备将不能通过这些处于忙碌状态的子带上的目标RLM-RS资源传输RLM-RS。为了减少由于网络设备不能通过部分子带传输RLM-RS,而对无线链路监测的监测结果带来的影响,终端设备需要从多个子带中确定出至少一个子带,从而可以根据至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测。
可选地,上述的多个子带中的至少一个子带可以包括多个子带中传输目标RLM-RS的子带。
可选地,在本申请实施例中,对待监测BWP进行无线链路监测,包括:在失步评估周期内,评估目标RLM-RS资源上估计的下行无线链路质量是否低于失步门限;和/或,在同步评估周期内,评估目标RLM-RS资源上估计的下行无线链路质量是否高于同步门限。需要说明的是,对待监测BWP进行无线链路监测还可以包括其他的评估指标,例如评估目标RLM-RS资源上的目标RLM-RS是否传输等,本申请对此并不限定。
作为示例而非限定,在本方案中,至少一个子带包括在一个评估周期内,多个子带中实际传输了目标RLM-RS的子带。其中,由于目标RLM-RS资源可以是周期出现的,在一个评估周期内,目标RLM-RS资源可能会出现多次,因此,需要针对每个目标RLM-RS资源,独立的判断网络设备是否通过目标RLM-RS资源传输了目标RLM-RS。
应理解,一个评估周期可以是同步评估周期,也可以是失步评估周期,还可以是其他指标的评估周期,本申请对此并不限定。
应理解,在本申请实施例中的方案是针对一个目标RLM-RS资源来进行说明的。在实际应用时,终端设备可能被配置一个或多个目标RLM-RS资源来进行下行无线链路质量评估。当终端设备被配置多个目标RLM-RS资源来进行下行无线链路质量评估时,对于每个目标RLM-RS资源,均可以采用本申请中的方案。
可选地,当终端设备被配置多个目标RLM-RS资源来进行下行无线链路质量评估时,不同的目标RLM-RS资源可以对应不同的波束方向。
可选地,当终端设备被配置多个目标RLM-RS资源来进行下行无线链路质量评估时,不同的目标RLM-RS资源可以对应相同的波束方向。
可选地,上述的多个子带中的至少一个子带可以包括第一子带,该第一子带是多个子带中传输目标RLM-RS的子带中索引值最小的子带。
作为示例而非限定,在本方案中,第一子带为在一个评估周期内,多个子带中实际传输了目标 RLM-RS的子带中索引值最小的子带。例如:终端设备激活的待监测BWP0包括4个子带,分别为子带0、子带1、子带2和子带3。网络设备为BWP0配置的目标RLM-RS资源位于该4个子带中的每个子带上。在一个评估周期内,若网络设备只获得了部分子带的信道使用权,也即网络设备只能通过部分子带向终端设备发送目标RLM-RS。假设网络设备通过子带0、子带1和子带2上的目标RLM-RS资源向终端设备发送目标RLM-RS,那么第一子带即为子带0。又例如:终端设备激活的待监测BWP0包括4个子带,分别为子带0、子带1、子带2和子带3。网络设备为BWP0配置的目标RLM-RS资源位于该4个子带中的每个子带上,在一个评估周期内,目标RLM-RS资源在时域上出现S次。其中,在一个评估周期内,目标RLM-RS资源第i次(i=0、1、2,。。。,S-1)出现的时刻,若网络设备只获得了部分子带的信道使用权,那么网络设备在该时刻只能通过部分子带向终端设备发送目标RLM-RS。假设在该时刻网络设备通过子带0、子带1和子带2上的目标RLM-RS资源向终端设备发送目标RLM-RS,那么在该时刻第一子带即为子带0。或者说,目标RLM-RS资源每次出现的时刻都可以对应一个第一子带,一个评估周期内,不同时刻对应的第一子带可以不同。
可选地,上述的多个子带中的至少一个子带可以包括第二子带,该第二子带是多个子带中传输目标RLM-RS的子带中索引值最大的子带。
作为示例而非限定,在本方案中,第二子带为在一个评估周期内,多个子带中实际传输了目标RLM-RS的子带中索引值最大的子带。例如:终端设备激活的待监测BWP0包括4个子带,分别为子带0、子带1、子带2和子带3。网络设备为BWP0配置的目标RLM-RS资源位于该4个子带中的每个子带上。在一个评估周期内,若网络设备只获得了部分子带的信道使用权,也即网络设备只能通过部分子带向终端设备发送目标RLM-RS。假设网络设备通过子带0、子带1和子带2上的目标RLM-RS资源向终端设备发送目标RLM-RS,那么第二子带即为子带2。又例如:终端设备激活的待监测BWP0包括4个子带,分别为子带0、子带1、子带2和子带3。网络设备为BWP0配置的目标RLM-RS资源位于该4个子带中的每个子带上,在一个评估周期内,目标RLM-RS资源在时域上出现S次。其中,在一个评估周期内,目标RLM-RS资源第i次(i=0、1、2,。。。,S-1)出现的时刻,若网络设备只获得了部分子带的信道使用权,那么网络设备在该时刻只能通过部分子带向终端设备发送目标RLM-RS。假设在该时刻网络设备通过子带0、子带1和子带2上的目标RLM-RS资源向终端设备发送目标RLM-RS,那么在该时刻第二子带即为子带2。或者说,目标RLM-RS资源每次出现的时刻都可以对应一个第二子带,一个评估周期内,不同时刻对应的第二子带可以不同。
另外,网络设备和终端设备可以通过协商或协议约定的方式,例如网络设备向终端设备发送指示信息,以通知终端设备在第一子带还是第二子带上发送目标RLM-RS。
可选地,终端设备确定多个子带中传输目标RLM-RS的子带,或者,终端设备确定多个子带中传输目标RLM-RS的RLM-RS资源,具体可以包括以下两种方式:
第一种方式,多个子带中传输目标RLM-RS的子带是终端设备根据网络设备发送的指示信息确定的,该指示信息用于确定多个子带中实际进行目标RLM-RS传输的子带。
该多个子带中实际进行目标RLM-RS传输的子带,可以为该多个子带中,分配了RLM-RS资源,并且在该分配的RLM-RS资源上传输目标RLM-RS的子带。
作为示例而非限定,网络设备通过侦听的方式确定出多个子带中可以进行信号传输的子带后,可以向终端设备发送指示信息,该指示信息用于指示多个子带中实际进行信号传输的子带。对于终端设备来说,则接收网络设备发送的指示信息,并根据该指示信息,可以确定一段时间内网络设备实际进行信号传输的子带,如果RLM-RS资源属于该段时间内,那么终端设备可以从多个子带中确定至少一个实际进行了目标RLM-RS传输的子带。
举例来说,若待监测BWP中包括子带0、子带1、子带2和子带3,若网络设备经过侦听后,确定出子带0、子带1和子带2处于空闲状态,则网络设备会向终端设备发送指示信息,以使终端设备可以通过指示信息可以确定出子带0、子带1和子带2在第一时间段内为实际进行信号传输的子带。如果网络设备在子带0、子带1和子带2上配置的目标RLM-RS资源位于该第一时间段内,那么网络设备可以通过子带0、子带1和子带2传输目标RLM-RS,终端设备可以确定子带0、子带1和子带2为多个子带中实际进行目标RLM-RS传输的子带。
第二种方式,多个子带中传输目标RLM-RS的子带是终端设备根据参考信号盲检测的方式确定的。
作为示例而非限定,终端设备通过多个子带上的目标RLM-RS资源接收参考信号,并根据接收结果,从多个子带中确定传输目标RLM-RS的子带。
在该方案的具体实现中,针对多个子带中的每个子带来说,接收结果可以包括终端设备在某个子带上接收到了参考信号,或者终端设备在该子带上没有接收到参考信号。若终端设备在某个子带上接 收到了参考信号,则可以将该子带确定为传输了目标RLM-RS的子带,否则,该子带为未传输目标RLM-RS的子带。基于此,终端设备将可以通过参考信号盲检测(或者说,参考信号的存在性检测)的方式从多个子带中确定出传输目标RLM-RS的子带。
具体的,作为一个示例,网络设备可以为待监测BWP配置RLM-RS资源,其中,待监测BWP中存在至少一个子带被配置有RLM-RS资源。对于每个子带来说,终端设备通过该子带上的目标RLM-RS资源接收参考信号,并将接收到的参考信号和本地预设的参考信号序列做相关峰检测,若检测结果大于预设阈值,则终端设备确定在该子带上接收到了参考信号,否则,终端设备认为在该子带上没有接收到参考信号。
示例性的,上述的参考信号可以为目标RLM-RS。当然,也可以为其他参考信号,例如可以是解调参考信号(DeModulation Reference Signal,DMRS),对于参考信号的具体形式,本申请实施例在此不做限制。
作为示例而非限定,终端设备接收网络设备发送的用于解调PDCCH的DMRS,并根据该PDCCH的DMRS的盲检测,可以确定一段时间内网络设备实际进行信号传输的子带,如果RLM-RS资源属于该段时间内,那么终端设备可以从多个子带中确定至少一个实际进行了目标RLM-RS传输的子带。
可以理解的是,在上述各方案中,目标RLM-RS资源包括传输目标RLM-RS的RLM-RS资源。
应理解,在本申请实施例中,一段时间内网络设备实际进行信号传输的子带,可以包括:在该段时间内,该网络设备占用的子带;传输目标RLM-RS的RLM-RS资源,可以包括:该目标RLM-RS资源中网络设备占用的子带和符号上的RLM-RS资源;未传输目标RLM-RS的RLM-RS资源,可以包括:该目标RLM-RS资源中网络设备没有占用的子带或没有占用的符号上的RLM-RS资源;网络设备获得信道使用权的资源,可以包括:网络设备占用的子带和符号上的资源;网络设备没有获得信道使用权的资源,可以包括:网络设备没有占用的子带或没有占用的符号上的资源。
具体地,无论至少一个子带包括多个子带中传输目标RLM-RS的子带,或者是包括第一子带,还是包括第二子带,至少一个子带均为实际传输了目标RLM-RS的子带,因此,至少一个子带上的目标RLM-RS资源,包括实际传输了目标RLM-RS的RLM-RS资源。
可选地,上述的多个子带中的至少一个子带可以包括多个子带中的每个子带。
具体地,至少一个子带可以包括多个子带中的每个子带。在这种方案中,终端设备将根据每个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测。
可选地,上述的多个子带中的至少一个子带可以包括第三子带,该第三子带是该多个子带中预设的子带。
具体地,至少一个子带可以是多个子带中预设的子带。示例性的,第三子带可以是与初始BWP包括相同频域资源的子带,也可以是多个子带中索引值最小的子带,还可以是多个子带中索引值最大的子带。例如,终端设备的待监测BWP包括子带0、1、2、3,终端设备的初始BWP包括子带2,那么第三子带为子带2。
可以理解的是,在至少一个子带包括多个子带中的每个子带,或者至少一个子带包括第三子带时,目标RLM-RS资源包括传输目标RLM-RS的RLM-RS资源,和/或,目标RLM-RS资源包括未传输目标RLM-RS的RLM-RS资源。
例如,在至少一个子带包括多个子带中的每个子带时,若每个子带都处于空闲状态,且网络设备通过每个子带上的目标RLM-RS资源均传输了目标RLM-RS,此时,至少一个子带上的目标RLM-RS资源为传输目标RLM-RS的RLM-RS资源;又例如,若存在部分子带处于空闲状态,部分子带处于忙碌状态,且网络设备通过处于空闲状态的子带上的目标RLM-RS资源传输了目标RLM-RS,此时,至少一个子带上的目标RLM-RS资源包括空闲子带上传输了目标RLM-RS的RLM-RS资源,和/或,忙碌子带上未传输目标RLM-RS的RLM-RS资源;又例如,若每个子带都处于忙碌状态,且网络设备未通过任何一个子带上的目标RLM-RS资源传输目标RLM-RS,此时,至少一个子带上的目标RLM-RS资源包括未传输目标RLM-RS的RLM-RS资源。
另外,在至少一个子带包括多个子带中预设的第三子带时,若第三子带处于空闲状态,且网络设备通过第三子带上的目标RLM-RS资源传输了目标RLM-RS,此时,至少一个子带上的目标RLM-RS资源为传输目标RLM-RS的RLM-RS资源;若存在部分第三子带处于空闲状态,部分第三子带处于忙碌状态,且网络设备通过处于空闲状态的第三子带上的目标RLM-RS资源传输了目标RLM-RS,此时,至少一个子带上的目标RLM-RS资源包括在空闲的第三子带上传输了目标RLM-RS的RLM-RS资源,和/或,在忙碌的第三子带上未传输目标RLM-RS的RLM-RS资源;若第三子带处于忙碌状态,且网络设备未通过任何一个第三子带上的目标RLM-RS资源传输目标RLM-RS,此时,至少一个子带上的目 标RLM-RS资源包括未传输目标RLM-RS的RLM-RS资源。
在一种可能的实现方式中,终端设备可以根据目标RLM-RS资源上的目标RLM-RS的盲检测,确定目标RLM-RS资源是传输目标RLM-RS的RLM-RS资源,或者是未传输目标RLM-RS的RLM-RS资源。
具体地,终端设备通过至少一个子带上的目标RLM-RS资源接收目标RLM-RS,若在某个目标RLM-RS资源上接收到了目标RLM-RS,则可以将该目标RLM-RS资源确定为传输目标RLM-RS的RLM-RS资源。若在某个目标RLM-RS资源上未接收到目标RLM-RS,则可以将该目标RLM-RS资源确定为未传输目标RLM-RS的RLM-RS资源。
可选地,终端设备根据多个子带中的至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,可以是根据多个子带中的一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,或者,也可以是根据多个子带中的至少两个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测。当然,还可以是根据多个子带中的每个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测。
在根据多个子带中的至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,可以包括如下过程:在失步评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于失步门限;和/或,在同步评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否高于同步门限。
其中,终端设备可以仅在失步评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于失步门限,也可以仅在同步评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否高于同步门限,还可以在失步评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于失步门限,并且在同步评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否高于同步门限。
可选地,同步门限和失步门限分别对应不同的块误码率(block error rate;BLER)值。可选地,同步门限或失步门限对应的BLER值是网络设备配置的。可选地,同步门限或失步门限是以一定PDCCH传输参数假设下得到的。可选地,一定PDCCH传输参数假设下可以得到同步门限对应的BLER值和SINR值。可选地,一定PDCCH传输参数假设下可以得到失步门限对应的BLER值和SINR值。
可选地,当RLM-RS资源包括不同的RS时,不同RS对应的同步门限或失步门限是独立确定的。例如,当RLM-RS资源包括CSI-RS资源时,CSI-RS资源对应第一同步门限或第一失步门限,当RLM-RS资源包括SSB资源时,SSB资源对应第二同步门限或第二失步门限。
可选地,在至少一个子带包括多个子带中传输目标RLM-RS的子带时,在失步评估周期内,终端设备可以根据所有传输了目标RLM-RS的子带上的目标RLM-RS资源估计下行无线链路质量是否低于失步门限,从而对待监测BWP进行无线链路监测。其中,终端设备可以通过至少一个子带上的目标RLM-RS资源接收目标RLM-RS,以估计下行无线链路质量。
作为示例而非限定,终端设备在评估周期内对待监测BWP进行无线链路监测可以包括如下实现方式。假设在评估周期内,用于监测无线链路质量的目标RLM-RS资源包括该至少一个子带中的每个子带上被配置出现至少一次的目标RLM-RS资源,其中,该目标RLM-RS资源包括传输目标RLM-RS的RLM-RS资源和/或未传输目标RLM-RS的RLM-RS资源。
作为示例而非限定,终端设备根据该至少一个子带中每个子带上出现至少一次的用于监测无线链路质量的目标RLM-RS资源,得到对应的信干噪比(Signal to Interference plus Noise Ratio;SINR),并根据该SINR和预设的失步门限,确定该目标RLM-RS资源上传输的信号对应的块误码率(block error rate;BLER)是否低于失步门限,或,根据该SINR和预设的同步门限,确定该目标RLM-RS资源上传输的信号对应的BLER是否高于同步门限,从而确定该目标RLM-RS资源对应的无线链路质量,继而确定出整个待监测BWP的无线链路监测结果。示例性的,可以确定预设的失步门限对应的SINR,并确定该目标RLM-RS资源(或该目标RLM-RS资源上传输的信号)对应的SINR,是否大于该失步门限对应的SINR,若该目标RLM-RS资源对应的SINR高于该失步门限对应的SINR,则可确定该目标RLM-RS资源对应的BLER低于该失步门限;反之,若该目标RLM-RS资源对应的SINR低于该失步门限对应的SINR,则可确定该目标RLM-RS资源对应的BLER高于该失步门限。还可以确定预设的同步门限对应的SINR,并确定该目标RLM-RS资源对应的SINR,是否低于该同步门限对应的SINR,若该目标RLM-RS资源对应的SINR低于该同步门限对应的SINR,则可确定该目标RLM-RS资源对应的BLER高于该同步门限;反之,若该目标RLM-RS资源对应的SINR高于该同步门限对应的SINR,则可确定该目标RLM-RS资源对应的BLER低于该同步门限。
其中,评估周期可以为失步评估周期或者同步评估周期,也可以为其他指标的评估周期。
作为示例而非限定,终端设备在评估周期内评估无线链路质量,可以包括下述四种情况中的至少一种。同样地,假设在评估周期内,用于监测无线链路质量的目标RLM-RS资源包括该至少一个子带中的每个子带上被配置出现至少一次的目标RLM-RS资源,其中,该目标RLM-RS资源包括传输目标RLM-RS的RLM-RS资源和/或未传输目标RLM-RS的RLM-RS资源。
在第一种情况中,每个评估周期内,该至少一个子带中的每个子带上被配置出现至少一次的目标RLM-RS资源中每次出现的目标RLM-RS资源可对应一个SINR,根据该一个SINR可得到一个判断结果。因此,每个评估周期内,每次出现的目标RLM-RS资源对应一个判断结果。
在第二种情况下,每个评估周期内,该至少一个子带中的每个子带上,被配置出现至少一次的目标RLM-RS资源可对应一个SINR(例如对多次出现的目标RLM-RS资源上的信号检测进行平均或滤波),即该至少一个子带中的每个子带对应一个SINR,根据该一个SINR可得到一个判断结果。因此,每个评估周期内,每个子带上的目标RLM-RS资源对应一个判断结果。
在第三种情况下,每个评估周期内,该至少一个子带中的每个子带上,目标RLM-RS资源被配置出现S次,对于每次出现目标RLM-RS资源的时刻,该至少一个子带可对应一个SINR(例如该至少一个子带中的每个子带上的目标RLM-RS资源上的信号检测进行平均或滤波),根据该一个SINR可得到一个判断结果。因此,每个评估周期内,每次出现目标RLM-RS资源的时刻对应一个判断结果,评估周期内包括S个判断结果。
在第四种情况下,每个评估周期内,该至少一个子带中的所有目标RLM-RS资源可对应一个SINR(例如对每个子带上多次出现的目标RLM-RS资源上的信号检测进行平均或滤波),该每个RLM-RS资源对应的一个SINR,根据该一个SINR可得到一个判断结果,因此,评估周期内包括一个判断结果。
可选地,在上述对多次出现的目标RLM-RS资源上的信号检测进行平均或滤波的过程中,对传输目标RLM-RS的多个RLM-RS资源上的信号检测进行平均或滤波,和/或,对未传输目标RLM-RS的多个RLM-RS资源上的信号检测进行平均或滤波。可选地,终端设备不对传输目标RLM-RS的RLM-RS资源上的信号检测和未传输目标RLM-RS的RLM-RS资源进行平均或滤波。
应理解,在上述几种情况中,判断结果包括:在失步评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于失步门限,或者,在同步评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否高于同步门限。
需要进行说明的是,上述方案中针对每个目标RLM-RS资源,均会判断估计的下行无线链路质量是否低于失步门限,在整个失步评估周期内,可能会出现多个目标RLM-RS资源的多个判断结果,也可能出现一个目标RLM-RS资源的多个判断结果(例如上述第一种情况、第二种情况和第三种情况)。可选地,在失步评估周期内,当所有的判断结果均为下行无线链路质量低于失步门限时,终端设备的物理层将会向高层上报失步指示。
需要进行说明的是,上述方案中针对每个目标RLM-RS资源,均会判断估计的下行无线链路质量是否高于同步门限,在整个同步评估周期内,可能会出现多个目标RLM-RS资源的多个判断结果,也可能出现一个目标RLM-RS资源的多个判断结果(例如上述第一种情况、第二种情况和第三种情况)。可选地,在同步评估周期内,只要存在判断结果为下行无线链路质量高于同步门限,终端设备的物理层将会向高层上报同步指示。
举例来说,图4a为BWP中子带和目标RLM-RS资源配置的示意图,图4b为传输目标RLM-RS的子带的一示意图,如图4a所示,终端设备激活的待监测BWP0包括4个子带,分别为子带0、子带1、子带2和子带3。网络设备为该终端设备的BWP0配置的RLM-RS资源位于该4个子带中的每个子带上。如图4b所示,在评估周期内,若网络设备只获得了部分子带的信道使用权,也即网络设备只能通过部分子带向终端设备发送目标RLM-RS。因此,网络设备将只在配置的RLM-RS资源中的部分RLM-RS资源上发送目标RLM-RS。终端设备将根据传输目标RLM-RS的子带上的目标RLM-RS资源估计下行无线链路质量。例如:网络设备只在子带1、子带2和子带3上配置的目标RLM-RS资源上发送目标RLM-RS,那么,终端设备也将根据子带1、子带2和子带3上的目标RLM-RS资源,估计下行无线链路质量。或者,终端设备将根据传输目标RLM-RS的目标RLM-RS资源估计下行无线链路质量。例如,终端设备将根据子带1上第1次和第2次(从0计数)出现的RLM-RS资源、子带2上的RLM-RS资源、子带3上第2次和第3次出现的RLM-RS资源,估计下行无线链路质量。
其中,若该评估周期为失步评估周期,终端设备可以根据上述的目标RLM-RS资源评估下行无线链路质量是否低于失步门限,或者,若该评估周期为同步评估周期,终端设备可以根据上述的目标RLM-RS资源评估下行无线链路质量是否高于同步门限。
示例性的,上述的失步门限对应的BLER为10%,同步门限对应的BLER可以为2%。
在上述方案中,终端设备根据多个子带中实际传输了目标RLM-RS的子带上的目标RLM-RS资源,或者根据多个子带中实际传输了目标RLM-RS的目标RLM-RS资源,来估计下行无线链路质量,并判断该下行无线链路质量是否低于失步门限或者是否高于同步门限,从而对待监测BWP进行无线链路的监测,可以减少由于网络设备不能通过BWP中部分子带发送目标RLM-RS时,对无线链路监测结果的影响,从而可以提高无线链路监测的准确性。
在一种实现方式中,终端设备可以通过第一子带、第二子带或者第三子带上的目标RLM-RS资源对待监测BWP进行无线链路的监测。例如,终端设备可以通过第一子带、第二子带或者第三子带上的目标RLM-RS资源接收目标RLM-RS,得到第一子带、第二子带或者第三子带上的目标RLM-RS对应的SINR,并根据该第一子带、第二子带或者第三子带上的目标RLM-RS对应的SINR和预设的评估门限,确定出第一子带、第二子带或者第三子带对应的无线链路质量,从而对待监测BWP进行无线链路监测。
举例来说,图4c为传输目标RLM-RS的子带的另一示意图,如图4c所示,终端设备激活的待监测BWP0包括4个子带,分别为子带0、子带1、子带2和子带3。网络设备为该终端设备的BWP0配置的RLM-RS资源位于该4个子带中的每个子带上。在评估周期内,若网络设备只获得了部分子带的信道使用权,也即网络设备只能通过部分子带向终端设备发送参考信号。因此,网络设备将只在配置的RLM-RS资源中的部分RLM-RS资源上发送目标RLM-RS,例如网络设备向终端设备发送目标RLM-RS的情况如图4b所示。作为示例,终端设备可以根据第一子带上的目标RLM-RS资源估计下行无线链路质量,其中,第一子带为多个子带中传输目标RLM-RS的子带中索引值最小的子带,如图4c所示。可选地,终端设备还可以根据第二子带或第三子带上的目标RLM-RS资源估计下行无线链路质量,其中,第二子带为多个子带中传输目标RLM-RS的子带中索引值最大的子带,第三子带是多个子带中预设的子带。
或者,第一子带、第二子带或第三子带是根据评估周期内每次出现的RLM-RS资源确定的。例如,在图4c中,评估周期内第0次出现的RLM-RS资源对应的第一子带是子带2,第1次出现的RLM-RS资源对应的第一子带是子带1,第2次出现的RLM-RS资源对应的第一子带是子带1,第3次出现的RLM-RS资源对应的第一子带是子带2。相应地,终端设备可以根据子带2上第0次和第3次出现的RLM-RS资源,以及子带1上第1次和第2次出现的RLM-RS资源,估计下行无线链路质量。
其中,若该评估周期为失步评估周期,终端设备可以根据上述的目标RLM-RS资源评估下行无线链路质量是否低于失步门限,或者,若该评估周期为同步评估周期,终端设备可以根据上述的目标RLM-RS资源评估下行无线链路质量是否高于同步门限。
示例性的,上述的失步门限对应的BLER为10%,同步门限对应的BLER可以为2%。
在上述方案中,终端设备根据第一子带、第二子带或者第三子带上的目标RLM-RS资源估计下行无线链路质量是否低于失步门限,或者判断是否高于同步门限,进而对待监测BWP进行无线链路的监测,可以减少由于网络设备不能通过BWP中部分子带发送目标RLM-RS时,对无线链路监测结果的影响,从而可以提高无线链路监测的准确性。
可选地,终端设备根据多个子带中的至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,还可以是针对每个子带独立的进行监测。在本方案中,针对至少一个子带中的一个子带(例如每个子带),在失步评估周期内,评估每个子带上的目标RLM-RS资源上估计的每个子带上的下行无线链路质量是否低于失步门限;和/或,针对至少一个子带中的一个子带(例如每个子带),在同步评估周期内,评估每个子带上的目标RLM-RS资源上估计的每个子带上的下行无线链路质量是否高于同步门限。
其中,针对至少一个子带中的每个子带,终端设备可以仅在失步评估周期内,评估每个子带上的目标RLM-RS资源上估计的每个子带上的下行无线链路质量是否低于失步门限,也可以仅在同步评估周期内,评估每个子带上的目标RLM-RS资源上估计的每个子带上的下行无线链路质量是否高于同步门限,还可以在失步评估周期内,评估每个子带上的目标RLM-RS资源上估计的每个子带上的下行无线链路质量是否低于失步门限,并且在同步评估周期内,评估每个子带上的目标RLM-RS资源上估计的每个子带上的下行无线链路质量是否高于同步门限。
作为示例而非限定,终端设备在评估周期内评估无线链路质量,可以包括下述两种情况中的至少一种。同样地,假设在评估周期内,用于监测无线链路质量的目标RLM-RS资源包括该至少一个子带中的每个子带上被配置出现至少一次的目标RLM-RS资源,其中,该目标RLM-RS资源包括传输目标RLM-RS的RLM-RS资源和/或未传输目标RLM-RS的RLM-RS资源。
在第一种情况中,每个评估周期内,该至少一个子带中的每个子带上被配置出现至少一次的目标RLM-RS资源中每次出现的目标RLM-RS资源可对应一个SINR,根据该一个SINR可得到一个判断结果。因此,每个评估周期内,每次出现的目标RLM-RS资源对应一个判断结果。
在第二种情况下,每个评估周期内,该至少一个子带中的每个子带上,被配置出现至少一次的目标RLM-RS资源可对应一个SINR(例如对多次出现的目标RLM-RS资源上的信号检测进行平均或滤波),即该至少一个子带中的每个子带对应一个SINR,根据该一个SINR可得到一个判断结果。因此,每个评估周期内,每个子带上的目标RLM-RS资源对应一个判断结果。
可选地,在上述对多次出现的目标RLM-RS资源上的信号检测进行平均或滤波的过程中,对传输目标RLM-RS的多个RLM-RS资源上的信号检测进行平均或滤波,和/或,对未传输目标RLM-RS的多个RLM-RS资源上的信号检测进行平均或滤波。可选地,终端设备不对传输目标RLM-RS的RLM-RS资源上的信号检测和未传输目标RLM-RS的RLM-RS资源进行平均或滤波。
应理解,在上述两种情况中,判断结果包括:在失步评估周期内,评估至少一个子带中一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于失步门限,或者,在同步评估周期内,评估至少一个子带中一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否高于同步门限。
需要进行说明的是,上述方案中针对每个目标RLM-RS资源,均会判断估计的下行无线链路质量是否低于失步门限,在整个失步评估周期内至少一个子带中的一个子带上,可能会出现多个目标RLM-RS资源的多个判断结果,也可能出现一个目标RLM-RS资源的多个判断结果(例如上述第一种情况)。可选地,在失步评估周期内至少一个子带中某子带上,当所有的判断结果均为下行无线链路质量低于失步门限时,终端设备的物理层将会向高层上报该子带的失步指示。
需要进行说明的是,上述方案中针对每个目标RLM-RS资源,均会判断估计的下行无线链路质量是否高于同步门限,在整个同步评估周期内至少一个子带中的一个子带上,可能会出现多个目标RLM-RS资源的多个判断结果,也可能出现一个目标RLM-RS资源的多个判断结果(例如上述第一种情况)。可选地,在同步评估周期内至少一个子带中某子带上,只要存在判断结果为下行无线链路质量高于同步门限,终端设备的物理层将会向高层上报该子带的同步指示。
可选地,在本方案中,终端设备会在多个子带的每个子带上通过目标RLM-RS资源接收目标RLM-RS,若在某个子带上接收到目标RLM-RS,则根据接收到的目标RLM-RS确定该子带上的下行无线链路质量。例如,可以通过接收到的目标RLM-RS确定对应的SINR以及预设的失步门限,确定出该目标RLM-RS对应的BLER是否低于失步门限,或者,可以通过接收到的目标RLM-RS确定对应的SINR以及预设的同步门限,确定出该目标RLM-RS对应的BLER是否高于同步门限。可选地,若在某一时间段内,在某个子带上没有接收到目标RLM-RS,或者在某个子带上的上行链路(uplink;UL)的信道检测(例如LBT)持续失败,也即该子带处于忙碌状态时,则终端设备可以确定该子带处于无线链路失败(Radio link failure;RLF)的状态,或者说,终端设备的物理层将会向终端设备的高层上报该子带对应的失步指示。
可选地,可以针对每个子带独立的进行监测,并且根据是否在每个子带上接收到目标RLM-RS作为监测指标,对每个子带进行监测,在确定能够接收到目标RLM-RS后,再进一步地根据目标RLM-RS对应的SINR以及预设的失步门限或同步门限,确定该目标RLM-RS对应的BLER是否低于失步门限,或者是否高于失步门限,从而得到该子带的监测结果。
例如:图4d为子带的另一示意图,如图4d所示,终端设备激活的待监测BWP0包括4个子带,分别为子带0、子带1、子带2和子带3。网络设备能够进行目标RLM-RS传输的子带包括子带1、子带2和子带3,网络设备通过子带1、子带2和子带3上获得信道使用权的目标RLM-RS资源发送目标RLM-RS。对应的,终端设备在四个子带上接收目标RLM-RS,在预设时间段内,若终端设备可以在子带1、子带2和子带3上接收到目标RLM-RS,终端设备将分别根据各个子带上的目标RLM-RS,确定每个子带的目标RLM-RS对应的BLER是否低于失步门限,或者是否高于同步门限,从而得到每个子带的监测结果。另外,在预设时间段内,终端设备在子带0上没有接收到目标RLM-RS,或者在子带0上进行上行传输前的侦听过程中发现子带0的LBT处于持续失败的状态,则终端设备将可以认为子带0上的无线链路失败。
在上述方案中,终端设备通过对每个子带独立进行监测,并向终端设备上报每个子带的监测结果,可以使终端设备的高层更准确的获知每个子带上的信道状态。
可选地,在失步评估周期内,用于监测无线链路质量的目标RLM-RS资源包括传输目标RLM-RS的RLM-RS资源和未传输目标RLM-RS的RLM-RS资源。这主要是因为,在失步评估周期内,当终端设备测量得到某个RLM-RS资源上的下行无线链路质量差时,由于不确定该RLM-RS资源上的下行无 线链路质量差是因为网络设备没有进行RLM-RS发送还是真正的下行无线链路质量差,因此可以不区分该目标RLM-RS资源上是否有目标RLM-RS发送。
例如:如图4d所示,终端设备激活的待监测BWP0包括4个子带,分别为子带0、子带1、子带2和子带3。网络设备能够进行目标RLM-RS传输的子带包括子带1、子带2和子带3,网络设备通过子带1、子带2和子带3上获得信道使用权的目标RLM-RS资源发送目标RLM-RS。终端设备在进行BWP0上的无线链路监测时,将该失步评估周期内所有配置的目标RLM-RS资源,即包括未传输目标RLM-RS的RLM-RS资源和实际传输了目标RLM-RS的RLM-RS资源,用于进行无线链路质量的评估。其中,终端设备可以根据上述所有的目标RLM-RS资源评估下行无线链路质量是否低于失步门限。
示例性的,上述的失步门限对应的BLER为10%。
可选地,终端设备根据多个子带中的至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,还可以是在第一评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于第一门限;和/或,针对至少一个子带中的每个子带,在第一评估周期内,评估每个子带上的目标RLM-RS资源上估计的每个子带上的下行无线链路质量是否低于第一门限,其中,该第一门限不同于失步门限。
其中,终端设备可以仅在第一评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于第一门限,也可以仅在第一评估周期内,针对至少一个子带中的每个子带,评估每个子带上的目标RLM-RS资源上估计的每个子带上的下行无线链路质量是否低于第一门限,还可以在第一评估周期内,评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于第一门限,并且在第一评估周期内,针对至少一个子带中的每个子带,评估每个子带上的目标RLM-RS资源上估计的每个子带上的下行无线链路质量是否低于第一门限。
具体地,第一评估周期可以是不同于同步评估周期和失步评估周期的周期,也可以是与同步评估周期相同的周期,还可以是与失步评估周期相同的周期。
其中,终端设备在第一评估周期内,终端设备评估至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于第一门限,和/或,针对至少一个子带中的每个子带,在第一评估周期内,评估每个子带上的目标RLM-RS资源上估计的每个子带上的下行无线链路质量是否低于第一门限的方式,与上述各实施例中的判断方式类似,此处不再赘述。
另外,在终端设备在根据每个子带上的目标RLM-RS资源估计无线链路质量时,由于BWP的子带中可能会包括无法接收目标RLM-RS的子带,因此,对无线链路的监测结果会存在影响。为了解决这一问题,本实施例中可以将失步门限对应的BLER设置为与现有技术中10%不同的值。在一种实现方式中,可以将失步对应的BLER设置为不等于2%,且不等于10%的值。作为示例而非限定,可以将失步对应的BLER设置为大于10%的值。
在本方案中,由于根据第一门限对无线链路质量进行监测,因此可以有效的防止RLF的误报。
可选地,通过上述各实施例的描述可知,可选地,目标RLM-RS资源可以是第一RLM-RS资源中的资源,该第一RLM-RS资源是待监测BWP上配置的RLM-RS资源。
可选地,网络设备会为待监测BWP配置第一RLM-RS资源,该第一RLM-RS资源位于该待监测BWP的多个子带中的每个子带上,即该待监测BWP的多个子带中的每个子带上被配置的目标RLM-RS资源为该第一RLM-RS资源中位于该子带上的部分资源。
具体地,网络设备为待监测BWP配置第一RLM-RS资源,由于目标RLM-RS资源是在待监测BWP的多个子带中的至少一个子带上的RLM-RS资源,因此,目标RLM-RS资源可以是第一RLM-RS资源中的部分资源,也可以是第一RLM-RS资源中的全部资源,或者说,目标RLM-RS资源可以是第一RLM-RS资源中位于该多个子带中的至少一个子带上的资源。
可选地,在多个子带中的每个子带上均配置有RLM-RS资源,目标RLM-RS资源包括至少一个子带上配置的RLM-RS资源。
可选地,在多个子带中的每个子带上均配置有RLM-RS资源,该RLM-RS资源包括CSI-RS资源。进一步可选地,在多个子带中的每个子带上配置的CSI-RS资源可以是相同的CSI-RS资源,也可以是不同的CSI-RS资源。
可选地,在多个子带中的每个子带上均配置有RLM-RS资源,该RLM-RS资源包括SSB资源。
具体地,在待监测BWP的多个子带中的每个子带上,可以均配置RLM-RS资源,那么目标RLM-RS资源将包括至少一个子带上配置的RLM-RS资源。在一种可能的实现方式中,目标RLM-RS资源将包括每个子带上配置的RLM-RS资源。
在本申请实施例中,目标RLM-RS资源包括信道状态信息参考信号(Channel State Information  Reference Signal,CSI-RS)资源和/或同步信号块(Synchronization Signal/PBCH Block,SSB)资源。
具体地,在目标RLM-RS资源包括CSI-RS资源时,网络设备将会通过子带上的CSI-RS资源传输CSI-RS;在目标RLM-RS资源包括SSB资源时,网络设备将会通过子带上的SSB资源传输SSB;在目标RLM-RS资源包括CSI-RS资源和SSB资源时,网络设备将会分别通过子带上的CSI-RS资源传输CSI-RS,并通过子带上的SSB资源传输SSB。
本申请实施例提供的无线链路监测方法,通过确定待监测BWP,然后根据待监测BWP的多个子带中的至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,从而可以减少由于网络设备不能通过部分子带发送目标RLM-RS时对无线链路监测结果的影响,提高了无线链路监测的准确性。
下面,将对失步评估周期内,对下行无线链路质量是否低于失步门限,以及在非授权频谱下的失步门限的限定进行进一步介绍。
在失步评估周期内,评估被配置的RLM-RS资源上的下行无线链路质量是否低于失步门限,其中,该RLM-RS资源用于传输RLM-RS,该失步门限对应物理下行控制信道PDCCH传输参数,PDCCH传输参数包括第一能量比值,其中,第一能量比值包括PDCCH的资源单元(resource element,RE)的能量和RLM-RS的RE的能量的比值;和/或,第一能量比值包括PDCCH的DMRS的RE的能量和RLM-RS的RE的能量的比值。
应理解,为了避免在非授权频谱的信道上传输的信号的功率太大,影响该信道上的其他重要信号,例如雷达信号等的传输,通信设备使用非授权频谱的信道进行信号传输时需要遵循信号发射功率不超过最大发射功率和最大发射功率谱密度的限制。因此,对于失步门限对应的PDCCH传输参数假设中,考虑非授权频谱上的PDCCH的功率增强(power boosting)不合理,即PDCCH的RE的能量和RLM-RS的RE能量之间的比值假设为4dB,PDCCH的DMRS的RE能量和RLM-RS的RE能量之间的比值假设为4dB的是不合理的。
在本实施例中,在非授权频谱上的RLM过程中,对于失步门限对应的PDCCH传输参数假设中,上述的第一能量比值为0dB,也即PDCCH的RE的能量和RLM-RS的RE能量之间的比值假设为0dB,和/或,PDCCH的DMRS的RE能量和RLM-RS的RE能量之间的比值假设也为0dB。
可选地,失步门限对应的BLER大于10%。示例性的,该失步门限对应的BLER的取值可以为20%。可选地,失步门限对应的BLER的取值是根据仿真确定的。也就是说,如果终端设备没有被网络设备配置可以获得的失步门限的参数,那么可以通过表1所示的配置获得失步门限Q out和同步门限Q in分别对应的BLER out和BLER in。在表1中,作为示例而非限定,失步门限的取值为20%。
表1
配置 BLER out BLER in
0 20% 2%
其中,RLM-RS资源包括CSI-RS资源和/或SSB资源。
具体地,在RLM-RS资源包括CSI-RS资源时,网络设备将会通过子带上的CSI-RS资源传输CSI-RS;在目标RLM-RS资源包括SSB资源时,网络设备将会通过子带上的SSB资源传输SSB;在目标RLM-RS资源包括CSI-RS资源和SSB资源时,网络设备将会分别通过子带上的CSI-RS资源传输CSI-RS,并通过子带上的SSB资源传输SSB。
本申请实施例提供的无线链路监测方法,在失步评估周期内,评估被配置的无线链路监测参考信号RLM-RS资源上的下行无线链路质量是否低于失步门限,该RLM-RS资源用于传输RLM-RS,失步门限对应物理下行控制信道PDCCH传输参数,该PDCCH传输参数包括第一能量比值。其中,第一能量比值为0dB,由此可以使得失步门限的设置更加合理,从而提高了无线链路监测的准确性。
图5为本申请提供的终端设备实施例一的结构示意图,如图5所示,该终端设备100包括:
确定模块11,用于确定待监测带宽部分BWP,所述待监测BWP包括多个子带;
处理模块12,用于根据所述多个子带中的至少一个子带上的目标无线链路监测参考信号RLM-RS资源,对所述待监测BWP进行无线链路监测,所述目标RLM-RS资源用于传输目标RLM-RS。
本实施例提供的终端设备,用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,通过确定待监测BWP,然后根据待监测BWP的多个子带中的至少一个子带上的目标RLM-RS资源,对待监测BWP进行无线链路监测,从而可以减少由于网络设备不能通过部分子带发送目标RLM-RS时对无线链路监测结果的影响,提高了无线链路监测的准确性。
可选的,所述至少一个子带包括所述多个子带中传输所述目标RLM-RS的子带;或,
所述至少一个子带包括第一子带,所述第一子带是所述多个子带中传输所述目标RLM-RS的子带中索引值最小的子带;或,
所述至少一个子带包括第二子带,所述第二子带是所述多个子带中传输所述目标RLM-RS的子带中索引值最大的子带。
可选的,所述多个子带中传输所述目标RLM-RS的子带是终端设备根据网络设备发送的指示信息确定的,所述指示信息用于确定所述多个子带中实际进行目标RLM-RS传输的子带。
可选的,所述多个子带中传输所述目标RLM-RS的子带是所述终端设备根据参考信号盲检测的方式确定的。
可选的,所述至少一个子带包括所述多个子带中的每个子带;或,
所述至少一个子带包括第三子带,所述第三子带是所述多个子带中预设的子带。
可选的,所述第三子带是与初始BWP包括相同频域资源的子带;或,
所述第三子带是所述多个子带中索引值最小的子带;或,
所述第三子带是所述多个子带中索引值最大的子带。
可选的,所述目标RLM-RS资源包括传输所述目标RLM-RS的RLM-RS资源。
可选的,所述目标RLM-RS资源包括传输所述目标RLM-RS的RLM-RS资源,和/或,所述目标RLM-RS资源包括未传输所述目标RLM-RS的RLM-RS资源。
在上述图5所示的实施例的基础上,所述处理模块12,还用于:
根据所述目标RLM-RS资源上的所述目标RLM-RS的盲检测,确定所述目标RLM-RS资源是传输所述目标RLM-RS的RLM-RS资源,或者是未传输所述目标RLM-RS的RLM-RS资源。
可选地,所述处理模块12具体用于:
在失步评估周期内,评估所述至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于失步门限;和/或,
在同步评估周期内,评估所述至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否高于同步门限。
可选地,所述处理模块12具体用于:
针对所述至少一个子带中的每个子带,在失步评估周期内,评估所述每个子带上的目标RLM-RS资源上估计的所述每个子带上的下行无线链路质量是否低于失步门限;和/或,
针对所述至少一个子带中的每个子带,在同步评估周期内,评估所述每个子带上的目标RLM-RS资源上估计的所述每个子带上的下行无线链路质量是否高于同步门限。
可选地,所述处理模块12,具体用于:
在第一评估周期内,评估所述至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于第一门限;和/或,
针对所述至少一个子带中的每个子带,在所述第一评估周期内,评估所述每个子带上的目标RLM-RS资源上估计的所述每个子带上的下行无线链路质量是否低于所述第一门限,其中,所述第一门限不同于失步门限。
可选的,所述第一门限对应的块误码率BLER大于10%。
可选的,所述目标RLM-RS资源是第一RLM-RS资源中的资源,所述第一RLM-RS资源是所述待监测BWP上配置的RLM-RS资源。
可选的,所述多个子带中的每个子带上均配置有RLM-RS资源,所述目标RLM-RS资源包括所述至少一个子带上配置的RLM-RS资源。
可选的,所述目标RLM-RS资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源。
上述任一实现方式提供的终端设备,用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图6为本申请提供的终端设备实施例二的结构示意图,如图6所示,该终端设备200包括:
处理模块21,用于在失步评估周期内,评估被配置的无线链路监测参考信号RLM-RS资源上的下行无线链路质量是否低于失步门限,所述RLM-RS资源用于传输RLM-RS,所述失步门限对应物理下行控制信道PDCCH传输参数,所述PDCCH传输参数包括第一能量比值,其中,
所述第一能量比值包括所述PDCCH的资源单元RE的能量和所述RLM-RS的RE的能量的比值;和/或,
所述第一能量比值包括所述PDCCH的解调参考信号DMRS的RE的能量和所述RLM-RS的RE 的能量的比值。
可选的,所述第一能量比值为0dB。
可选的,所述失步门限对应的块误码率BLER大于10%。
可选的,所述RLM-RS资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源。
上述任一实现方式提供的终端设备,用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图7为本申请提供的终端设备实施例三的结构示意图,如图7所示,该终端设备300包括:
处理器311、存储器312、与网络设备进行通信的接口313;
所述存储器312存储计算机执行指令;
所述处理器311执行所述存储器存储的计算机执行指令,使得所述处理器311执行前述任一方法实施例中终端设备侧的技术方案。
图7为终端设备的一种简单设计,本申请实施例不限制终端设备中处理器和存储器的个数,图7仅以个数为1作为示例说明。
在上述图7所示的终端设备的一种具体实现中,存储器、处理器以及接口之间可以通过总线连接,可选的,存储器可以集成在处理器内部。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中终端设备的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中终端设备的技术方案。
可选地,上述处理器可以为芯片。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中终端设备的技术方案。
本申请实施例还提供一种芯片,包括:处理模块与通信接口,该处理模块能执行前述任一方法实施例中终端设备侧的技术方案。
可选地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中终端设备侧的技术方案。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述终端设备和网络设备的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,简称:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。

Claims (42)

  1. 一种无线链路监测方法,其特征在于,包括:
    确定待监测带宽部分BWP,所述待监测BWP包括多个子带;
    根据所述多个子带中的至少一个子带上的目标无线链路监测参考信号RLM-RS资源,对所述待监测BWP进行无线链路监测,所述目标RLM-RS资源用于传输目标RLM-RS。
  2. 根据权利要求1所述的方法,其特征在于,
    所述至少一个子带包括所述多个子带中传输所述目标RLM-RS的子带;或,
    所述至少一个子带包括第一子带,所述第一子带是所述多个子带中传输所述目标RLM-RS的子带中索引值最小的子带;或,
    所述至少一个子带包括第二子带,所述第二子带是所述多个子带中传输所述目标RLM-RS的子带中索引值最大的子带。
  3. 根据权利要求2所述的方法,其特征在于,所述多个子带中传输所述目标RLM-RS的子带是终端设备根据网络设备发送的指示信息确定的,所述指示信息用于确定所述多个子带中进行目标RLM-RS传输的子带。
  4. 根据权利要求2所述的方法,其特征在于,所述多个子带中传输所述目标RLM-RS的子带是终端设备根据参考信号盲检测的方式确定的。
  5. 根据权利要求1所述的方法,其特征在于,所述至少一个子带包括所述多个子带中的每个子带;或,
    所述至少一个子带包括第三子带,所述第三子带是所述多个子带中预设的子带。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第三子带是与初始BWP包括相同频域资源的子带;或,
    所述第三子带是所述多个子带中索引值最小的子带;或,
    所述第三子带是所述多个子带中索引值最大的子带。
  7. 根据权利要求2至4中任一项所述的方法,其特征在于,所述目标RLM-RS资源包括传输所述目标RLM-RS的RLM-RS资源。
  8. 根据权利要求5或6所述的方法,其特征在于,所述目标RLM-RS资源包括传输所述目标RLM-RS的RLM-RS资源,和/或,所述目标RLM-RS资源包括未传输所述目标RLM-RS的RLM-RS资源。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    根据所述目标RLM-RS资源上的所述目标RLM-RS的盲检测,确定所述目标RLM-RS资源是传输所述目标RLM-RS的RLM-RS资源,或者是未传输所述目标RLM-RS的RLM-RS资源。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述根据所述多个子带中的至少一个子带上的目标RLM-RS资源,对所述待监测BWP进行无线链路监测,包括:
    在失步评估周期内,评估所述至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于失步门限;和/或,
    在同步评估周期内,评估所述至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否高于同步门限。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述根据所述多个子带中的至少一个子带上的目标RLM-RS资源,对所述待监测BWP进行无线链路监测,包括:
    针对所述至少一个子带中的每个子带,在失步评估周期内,评估所述每个子带上的目标RLM-RS资源上估计的所述每个子带上的下行无线链路质量是否低于失步门限;和/或,
    针对所述至少一个子带中的每个子带,在同步评估周期内,评估所述每个子带上的目标RLM-RS资源上估计的所述每个子带上的下行无线链路质量是否高于同步门限。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述根据所述多个子带中的至少一个子带上的目标RLM-RS资源,对所述待监测BWP进行无线链路监测,包括:
    在第一评估周期内,评估所述至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于第一门限;和/或,
    针对所述至少一个子带中的每个子带,在所述第一评估周期内,评估所述每个子带上的目标RLM-RS资源上估计的所述每个子带上的下行无线链路质量是否低于所述第一门限,其中,所述第一门限不同于失步门限。
  13. 根据权利要求12所述的方法,其特征在于,所述第一门限对应的块误码率BLER大于10%。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述目标RLM-RS资源是第一RLM-RS资源中的资源,所述第一RLM-RS资源是所述待监测BWP上配置的RLM-RS资源。
  15. 根据权利要求1至13中任一项所述的方法,其特征在于,所述多个子带中的每个子带上均配置有RLM-RS资源,所述目标RLM-RS资源包括所述至少一个子带上配置的RLM-RS资源。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述目标RLM-RS资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源。
  17. 一种无线链路监测方法,其特征在于,包括:
    在失步评估周期内,评估被配置的无线链路监测参考信号RLM-RS资源上的下行无线链路质量是否低于失步门限,所述RLM-RS资源用于传输RLM-RS,所述失步门限对应物理下行控制信道PDCCH传输参数,所述PDCCH传输参数包括第一能量比值,其中,
    所述第一能量比值包括所述PDCCH的资源单元RE的能量和所述RLM-RS的RE的能量的比值;和/或,
    所述第一能量比值包括所述PDCCH的解调参考信号DMRS的RE的能量和所述RLM-RS的RE的能量的比值。
  18. 根据权利要求17所述的方法,其特征在于,所述第一能量比值为0dB。
  19. 根据权利要求17或18所述的方法,其特征在于,所述失步门限对应的块误码率BLER大于10%。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述RLM-RS资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源。
  21. 一种终端设备,其特征在于,包括:确定模块,用于确定待监测带宽部分BWP,所述待监测BWP包括多个子带;
    处理模块,用于根据所述多个子带中的至少一个子带上的目标无线链路监测参考信号RLM-RS资源,对所述待监测BWP进行无线链路监测,所述目标RLM-RS资源用于传输目标RLM-RS。
  22. 根据权利要求21所述的终端设备,其特征在于,
    所述至少一个子带包括所述多个子带中传输所述目标RLM-RS的子带;或,
    所述至少一个子带包括第一子带,所述第一子带是所述多个子带中传输所述目标RLM-RS的子带中索引值最小的子带;或,
    所述至少一个子带包括第二子带,所述第二子带是所述多个子带中传输所述目标RLM-RS的子带中索引值最大的子带。
  23. 根据权利要求22所述的终端设备,其特征在于,所述多个子带中传输所述目标RLM-RS的子带是终端设备根据网络设备发送的指示信息确定的,所述指示信息用于确定所述多个子带中进行目标RLM-RS传输的子带。
  24. 根据权利要求22所述的终端设备,其特征在于,所述多个子带中传输所述目标RLM-RS的子带是所述终端设备根据参考信号盲检测的方式确定的。
  25. 根据权利要求21所述的终端设备,其特征在于,所述至少一个子带包括所述多个子带中的每个子带;或,
    所述至少一个子带包括第三子带,所述第三子带是所述多个子带中预设的子带。
  26. 根据权利要求25所述的终端设备,其特征在于,
    所述第三子带是与初始BWP包括相同频域资源的子带;或,
    所述第三子带是所述多个子带中索引值最小的子带;或,
    所述第三子带是所述多个子带中索引值最大的子带。
  27. 根据权利要求22至24中任一项所述的终端设备,其特征在于,所述目标RLM-RS资源包括传输所述目标RLM-RS的RLM-RS资源。
  28. 根据权利要求25或26所述的终端设备,其特征在于,所述目标RLM-RS资源包括传输所述目标RLM-RS的RLM-RS资源,和/或,所述目标RLM-RS资源包括未传输所述目标RLM-RS的RLM-RS资源。
  29. 根据权利要求28所述的终端设备,其特征在于,所述处理模块,还用于:
    根据所述目标RLM-RS资源上的所述目标RLM-RS的盲检测,确定所述目标RLM-RS资源是传输所述目标RLM-RS的RLM-RS资源,或者是未传输所述目标RLM-RS的RLM-RS资源。
  30. 根据权利要求21至29中任一项所述的终端设备,其特征在于,所述处理模块,具体用于:
    在失步评估周期内,评估所述至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于失步门限;和/或,
    在同步评估周期内,评估所述至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否高于同步门限。
  31. 根据权利要求21至30中任一项所述的终端设备,其特征在于,所述处理模块,具体用于:
    针对所述至少一个子带中的每个子带,在失步评估周期内,评估所述每个子带上的目标RLM-RS资源上估计的所述每个子带上的下行无线链路质量是否低于失步门限;和/或,
    针对所述至少一个子带中的每个子带,在同步评估周期内,评估所述每个子带上的目标RLM-RS资源上估计的所述每个子带上的下行无线链路质量是否高于同步门限。
  32. 根据权利要求21至31中任一项所述的终端设备,其特征在于,所述处理模块,具体用于:
    在第一评估周期内,评估所述至少一个子带上的目标RLM-RS资源上估计的下行无线链路质量是否低于第一门限;和/或,
    针对所述至少一个子带中的每个子带,在所述第一评估周期内,评估所述每个子带上的目标RLM-RS资源上估计的所述每个子带上的下行无线链路质量是否低于所述第一门限,其中,所述第一门限不同于失步门限。
  33. 根据权利要求32所述的终端设备,其特征在于,所述第一门限对应的块误码率BLER大于10%。
  34. 根据权利要求21至33中任一项所述的终端设备,其特征在于,所述目标RLM-RS资源是第一RLM-RS资源中的资源,所述第一RLM-RS资源是所述待监测BWP上配置的RLM-RS资源。
  35. 根据权利要求21至33中任一项所述的终端设备,其特征在于,所述多个子带中的每个子带上均配置有RLM-RS资源,所述目标RLM-RS资源包括所述至少一个子带上配置的RLM-RS资源。
  36. 根据权利要求21至35中任一项所述的终端设备,其特征在于,所述目标RLM-RS资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源。
  37. 一种终端设备,其特征在于,包括:
    处理模块,用于在失步评估周期内,评估被配置的无线链路监测参考信号RLM-RS资源上的下行无线链路质量是否低于失步门限,所述RLM-RS资源用于传输RLM-RS,所述失步门限对应物理下行控制信道PDCCH传输参数,所述PDCCH传输参数包括第一能量比值,其中,
    所述第一能量比值包括所述PDCCH的资源单元RE的能量和所述RLM-RS的RE的能量的比值;和/或,
    所述第一能量比值包括所述PDCCH的解调参考信号DMRS的RE的能量和所述RLM-RS的RE的能量的比值。
  38. 根据权利要求37所述的终端设备,其特征在于,所述第一能量比值为0dB。
  39. 根据权利要求37或38所述的终端设备,其特征在于,所述失步门限对应的块误码率BLER大于10%。
  40. 根据权利要求37至39中任一项所述的终端设备,其特征在于,所述RLM-RS资源包括信道状态信息参考信号CSI-RS资源和/或同步信号块SSB资源。
  41. 一种终端设备,其特征在于,包括:
    处理器、存储器、与网络设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至16任一项所述的无线链路监测方法或如权利要求17至20任一项所述的无线链路监测方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至16任一项所述的无线链路监测方法或如权利要求17至20任一项所述的无线链路监测方法。
PCT/CN2019/079146 2019-03-21 2019-03-21 无线链路监测方法、设备和存储介质 WO2020186533A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/079146 WO2020186533A1 (zh) 2019-03-21 2019-03-21 无线链路监测方法、设备和存储介质
CN201980094373.0A CN113615237A (zh) 2019-03-21 2019-03-21 无线链路监测方法、设备和存储介质
US17/476,968 US20220053349A1 (en) 2019-03-21 2021-09-16 Radio link monitoring method, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079146 WO2020186533A1 (zh) 2019-03-21 2019-03-21 无线链路监测方法、设备和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/476,968 Continuation US20220053349A1 (en) 2019-03-21 2021-09-16 Radio link monitoring method, device and storage medium

Publications (1)

Publication Number Publication Date
WO2020186533A1 true WO2020186533A1 (zh) 2020-09-24

Family

ID=72519447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079146 WO2020186533A1 (zh) 2019-03-21 2019-03-21 无线链路监测方法、设备和存储介质

Country Status (3)

Country Link
US (1) US20220053349A1 (zh)
CN (1) CN113615237A (zh)
WO (1) WO2020186533A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600773A (zh) * 2020-12-18 2021-04-02 展讯通信(上海)有限公司 信道估计方法及装置、计算机可读存储介质、终端

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11405813B2 (en) * 2019-08-16 2022-08-02 Mediatek Inc. Radio link monitoring (RLM) procedures in new radio unlicensed bands (NR-U)
US20220030593A1 (en) * 2020-07-24 2022-01-27 Qualcomm Incorporated Communicating across a wideband using sub-bands

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084544A1 (en) * 2016-11-03 2018-05-11 Samsung Electronics Co., Ltd. Apparatus and method to support ultra-wide bandwidth in fifth generation (5g) new radio
WO2018084571A1 (en) * 2016-11-01 2018-05-11 Lg Electronics Inc. Method and apparatus for configuring subband aggregation in nr carrier in wireless communication system
CN109391953A (zh) * 2017-08-07 2019-02-26 维沃移动通信有限公司 一种无线链路监测的方法及终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3681053A4 (en) * 2017-09-08 2021-03-24 Ntt Docomo, Inc. USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE
JP7160835B2 (ja) * 2017-12-04 2022-10-25 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
EP3753193B1 (en) * 2018-02-16 2024-01-03 Lenovo (Singapore) Pte. Ltd. Resources corresponding to bandwidth parts
US11956822B2 (en) * 2018-06-19 2024-04-09 Interdigital Patent Holdings, Inc. Radio link monitoring in shared spectrum
US11706803B2 (en) * 2018-08-07 2023-07-18 Lg Electronics Inc. Method for transmitting and receiving reference signal for radio link monitoring in unlicensed band and device therefor
US11019659B2 (en) * 2018-11-01 2021-05-25 Ofinno, Llc Radio link monitoring for unlicensed carriers in a radio system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084571A1 (en) * 2016-11-01 2018-05-11 Lg Electronics Inc. Method and apparatus for configuring subband aggregation in nr carrier in wireless communication system
WO2018084544A1 (en) * 2016-11-03 2018-05-11 Samsung Electronics Co., Ltd. Apparatus and method to support ultra-wide bandwidth in fifth generation (5g) new radio
CN109391953A (zh) * 2017-08-07 2019-02-26 维沃移动通信有限公司 一种无线链路监测的方法及终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "BWP Impact to RLM Configuration", 3GPP DRAFT; R2-1805381, 20 April 2018 (2018-04-20), Sanya, China, pages 1 - 4, XP051415012 *
NOKIA; NOKIA SHANGHAI BELL: "Discussion on PDCCH Parameters for NR RLM", 3GPP DRAFT; R4-1713106, 1 December 2017 (2017-12-01), Reno, US, pages 1 - 4, XP051374600 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600773A (zh) * 2020-12-18 2021-04-02 展讯通信(上海)有限公司 信道估计方法及装置、计算机可读存储介质、终端
WO2022127489A1 (zh) * 2020-12-18 2022-06-23 展讯通信(上海)有限公司 信道估计方法及装置、计算机可读存储介质、终端
CN112600773B (zh) * 2020-12-18 2023-01-10 展讯通信(上海)有限公司 信道估计方法及装置、计算机可读存储介质、终端

Also Published As

Publication number Publication date
CN113615237A (zh) 2021-11-05
US20220053349A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
US11812298B2 (en) Apparatus and method for performing measurement report considering in-device coexistence interference
EP2915362B1 (en) Methods and devices related to interference mitigated effective measurements
EP3029875B1 (en) Method and device for interference control
WO2018127001A1 (zh) 干扰消除方法及装置
US11206658B2 (en) CRS bandwidth signaling
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
US20220053349A1 (en) Radio link monitoring method, device and storage medium
GB2498932A (en) Distributed carrier aggregation on unlicensed bands
US11805519B2 (en) Method for determining transmission bandwidth, device and storage medium
EP3595348B1 (en) Method for determining cooperative cell, and network device
US20210105077A1 (en) Wireless link monitoring method, terminal device, and network device
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2021062832A1 (zh) 一种波束失败检测方法及装置
WO2020186534A1 (zh) 无线通信的方法、终端设备和网络设备
TW202013918A (zh) 一種訊號傳輸方法及裝置、終端、網路設備
WO2018201936A1 (zh) 发送信息的方法、接收信息的方法、网络设备和终端设备
US9357554B2 (en) Method and apparatus for coexistence of multiple operating entity systems
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
CN110603846A (zh) 一种调度系统信息块的方法及装置
CN116391329A (zh) 针对单个端口的多准共置关系
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021143283A1 (zh) 在测量时隙内收发信号的方法、网元设备及可读存储介质
US20230029974A1 (en) Bandwidth (bw) adaptation for power saving
US20210092774A1 (en) Radio Link Monitoring Method and Terminal Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920582

Country of ref document: EP

Kind code of ref document: A1