WO2021062832A1 - 一种波束失败检测方法及装置 - Google Patents

一种波束失败检测方法及装置 Download PDF

Info

Publication number
WO2021062832A1
WO2021062832A1 PCT/CN2019/109761 CN2019109761W WO2021062832A1 WO 2021062832 A1 WO2021062832 A1 WO 2021062832A1 CN 2019109761 W CN2019109761 W CN 2019109761W WO 2021062832 A1 WO2021062832 A1 WO 2021062832A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
cell
information
failure detection
cells
Prior art date
Application number
PCT/CN2019/109761
Other languages
English (en)
French (fr)
Inventor
张荻
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980098092.2A priority Critical patent/CN114041321A/zh
Priority to PCT/CN2019/109761 priority patent/WO2021062832A1/zh
Publication of WO2021062832A1 publication Critical patent/WO2021062832A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a beam failure detection method and device.
  • the fifth generation (5G) mobile communication system came into being, and the 5G mobile communication system It is called the new radio access technology (NR) system.
  • NR new radio access technology
  • a signal transmission mechanism based on beamforming technology is introduced, that is, the signal transmission power is increased by increasing the antenna gain, so as to compensate for the wireless signal path between the network equipment and the terminal equipment in the process of transmitting wireless signals in the high frequency band. loss.
  • the wireless signal may be blocked and cannot continue to be transmitted.
  • the terminal device can measure the communication quality of the beam failure detection reference signal (BFDRS) configured by the network device to determine whether a link failure occurs.
  • BDRS beam failure detection reference signal
  • network equipment can configure multiple cells (such as primary cell and/or secondary cell) and beam failure detection parameters for each cell for terminal equipment.
  • the beam failure detection parameters include BFDRS, beam failure detection timer, and maximum beam failure cases. frequency.
  • the terminal device performs beam failure detection for each cell independently according to the beam failure detection parameters. At this time, the terminal device needs to detect multiple beam failure detection reference signals, and also needs to maintain multiple beam failure detection timers and beam failure detection counters.
  • the implementation complexity of terminal equipment is relatively high.
  • the terminal device determines that the time when the beam failure occurs in each cell is different, it may cause frequent transmission of beam failure recovery request information (BFRQ), thereby causing a waste of resources.
  • BFRQ beam failure recovery request information
  • the present application provides a beam failure detection method and device, which solves the problems of high complexity of beam failure detection for each cell alone, and frequent transmission of beam failure recovery request information and resource waste.
  • this application provides a beam failure detection method, which can be applied to terminal equipment, or the method can be applied to a communication device that can support terminal equipment to implement the method.
  • the communication device includes a chip system, and the method includes : Determine the first cell group, and perform beam failure detection on the first cell group according to the first parameter of the first cell group.
  • the first cell group includes N cells, and N is an integer greater than or equal to 2. It should be understood that at least two of the N cells are associated with the same spatial related parameter information. It can also be understood that each of the N cells is associated with the same spatial related parameter information.
  • the beam failure detection method since cells with the same beam direction are grouped into a group, beam failure detection can be performed on all cells in the cell group through a beam failure recovery process, thereby effectively reducing terminal equipment
  • the spatial related parameter information may refer to the TCI state
  • the terminal device may determine the first cell group according to the TCI state.
  • the terminal device may determine the cells with the same TCI state of the control resource set as the first cell group.
  • the terminal device may determine at least two cells that are the same as the TCI state of the at least one control resource set as the first cell group.
  • Specific implementation manners in which at least two cells in the first cell group have the same TCI status as at least one TCI include the following:
  • Manner 1 The terminal device determines at least two cells with the same TCI state as the first cell group. It should be understood that at least two of the N cells are associated with the same TCI state.
  • Manner 2 The terminal device determines any two cells associated with the same TCI state as the first cell group. It should be understood that any two cells in the N cells are associated with the same TCI state.
  • Manner 3 The terminal device determines all cells associated with the same TCI state as the first cell group. It should be understood that any two cells in the N cells are associated with the same TCI state.
  • the terminal device may determine one or more cells associated with the same spatial related parameter information as the first cell group. It should be understood that each of the N cells is associated with the same spatial related parameter information.
  • the specific implementation manners for associating each cell in the first cell group with the same space-related parameter information include the following:
  • the terminal device may determine cells with the same TCI state set as the first cell group. It should be understood that the TCI state sets of any two cells in the first cell group are the same. Any TCI state set is a set of TCI states of all control resource sets of the corresponding cell.
  • the terminal device may determine at least one cell with the same TCI state as the first cell group. All cells in the first cell group have at least one identical TCI state.
  • the at least one identical TCI state is the TCI state of at least one control resource set of the corresponding cell.
  • the terminal device may determine a cell having at least one control resource set with the same TCI state as the first cell group.
  • Each cell in the first cell group includes at least one control resource set, where all TCI states in the at least one control resource set included in all cells are the same.
  • the spatial related parameter information may refer to QCL information
  • the terminal device may determine the first cell group according to the QCL information.
  • the terminal device may determine a cell with the same QCL information of the control resource set as the first cell group.
  • the QCL information may be type D QCL information or type A QCL information.
  • the terminal device may determine at least two cells with the same QCL information as the at least one control resource set as the first cell group.
  • the specific implementation manners in which at least two cells in the first cell group have the same QCL information as the at least one QCL include the following:
  • Manner 1 The terminal device determines at least two cells with the same QCL information as the first cell group. It should be understood that at least two of the N cells are associated with the same QCL information.
  • Manner 2 The terminal device determines any two cells associated with the same QCL information as the first cell group. It should be understood that any two cells among the N cells are associated with the same QCL information.
  • Manner 3 The terminal device determines all cells associated with the same QCL information as the first cell group. It should be understood that any two cells among the N cells are associated with the same QCL information.
  • the terminal device may determine one or more cells associated with the same space-related parameter information as the first cell group. It should be understood that each of the N cells is associated with the same spatial related parameter information.
  • the specific implementation manners for associating each cell in the first cell group with the same space-related parameter information include the following:
  • the terminal device may determine the cells with the same QCL information set as the first cell group. It should be understood that the QCL information sets of any two cells in the first cell group are the same. Any set of QCL information is a set of QCL information of all control resource sets of the corresponding cell.
  • the terminal device may determine a cell with at least one same QCL information as the first cell group. At least one piece of the same QCL information exists in all cells in the first cell group.
  • the at least one identical QCL information is QCL information of at least one control resource set of the corresponding cell.
  • the terminal device may determine a cell having at least one same control resource set as the first cell group.
  • Each cell in the first cell group includes at least one control resource set, where all QCL information in the at least one control resource set included in all cells is the same.
  • the terminal device may determine the first parameter according to the subcarrier interval.
  • the first parameter is a beam failure detection parameter of the cell with the largest subcarrier spacing in the first cell group.
  • the terminal device may determine the first parameter according to the cell identity.
  • the first parameter is a beam failure detection parameter of the cell with the smallest cell identity in the first cell group.
  • the terminal device may determine the first parameter according to the maximum number of beam failure cases.
  • the first parameter is the beam failure detection parameter of the cell with the smallest number of beam failure cases.
  • the terminal device may determine the first parameter according to a beam failure detection timer.
  • the first parameter is the beam failure detection parameter of the cell with the smallest beam failure detection timer.
  • the terminal device may determine the first parameter according to an indication manner of the beam failure detection reference signal resource.
  • the first parameter is an implicitly indicated beam failure detection parameter of a cell where the reference signal resource for beam failure detection is located.
  • the terminal device may determine the first parameter according to the period of the beam failure detection reference signal resource.
  • the first parameter is the beam failure detection parameter of the cell where the beam failure detection reference signal resource of the minimum period is located, and the transmission configuration indication state corresponding to the beam failure detection reference signal resource of the minimum period is the same transmission configuration indication state of N cells.
  • the quasi co-location information corresponding to the beam failure detection reference signal resource of the minimum period is the same quasi co-location information of the N cells.
  • the terminal device may determine the first reference according to the beam failure case indication period.
  • the first parameter is a beam failure detection parameter of a cell with the smallest beam failure case indication period.
  • the terminal device may determine the first parameter according to the transmission configuration indication state of the control resource set.
  • the first parameter is the beam failure detection parameter of the cell with the smallest number of states indicating the transmission configuration of the control resource set in the N cells.
  • the terminal device may determine the first parameter according to the quasi co-location information of the control resource set.
  • the first parameter is the beam failure detection parameter of the cell with the smallest number of quasi co-location information in the control resource set among the N cells.
  • the beam failure detection parameters include at least one of a beam failure detection reference signal resource, a maximum number of beam failure cases, a beam failure detection timer, and a beam failure case indication period.
  • the N cells in the first cell group share one beam failure detection timer and one beam failure detection counter.
  • the method further includes: determining that the beam of the first cell group fails; sending beam failure recovery request information, the beam failure recovery request information includes at least one of the following: a cell in the first cell group And at least one reference signal resource information, and the at least one reference signal resource information is used to restore the link of at least one cell in the first cell group.
  • the present application provides a beam failure detection method, which can be applied to network equipment, or the method can be applied to a communication device that can support network equipment to implement the method.
  • the communication device includes a chip system, and the method includes : Determine the first cell group, at least two of the N cells are associated with the same space-related parameter information, and N is an integer greater than or equal to 2; receiving beam failure recovery request information, the beam failure recovery request information includes at least one of the following One: identification information and at least one reference signal resource information of a cell in the first cell group, and the at least one reference signal resource information is used to restore the link of at least one cell in the first cell group.
  • the beam failure detection method since cells with the same beam direction are grouped into a group, beam failure detection can be performed on all cells in the cell group through a beam failure recovery process, thereby effectively reducing terminal equipment
  • the spatial related parameter information may refer to the TCI state
  • the terminal device may determine the first cell group according to the TCI state.
  • the terminal device may determine the cells with the same TCI state of the control resource set as the first cell group.
  • the terminal device may determine at least two cells that are the same as the TCI state of the at least one control resource set as the first cell group.
  • Specific implementation manners in which at least two cells in the first cell group have the same TCI status as at least one TCI include the following:
  • Manner 1 The terminal device determines at least two cells with the same TCI state as the first cell group. It should be understood that at least two of the N cells are associated with the same TCI state.
  • Manner 2 The terminal device determines any two cells associated with the same TCI state as the first cell group. It should be understood that any two cells in the N cells are associated with the same TCI state.
  • Manner 3 The terminal device determines any two cells associated with the same TCI state as the first cell group. It should be understood that any two cells among the N cells are associated with the same TCI state.
  • the terminal device may determine each cell associated with the same spatial related parameter information as the first cell group. It should be understood that each of the N cells is associated with the same spatial related parameter information.
  • the specific implementation manners for associating each cell in the first cell group with the same space-related parameter information include the following:
  • the terminal device may determine cells with the same TCI state set as the first cell group. It should be understood that the TCI state sets of any two cells in the first cell group are the same. Any TCI state set is a set of TCI states of all control resource sets of the corresponding cell.
  • the terminal device may determine at least one cell with the same TCI state as the first cell group. All cells in the first cell group have at least one identical TCI state.
  • the at least one identical TCI state is the TCI state of at least one control resource set of the corresponding cell.
  • the terminal device may determine a cell having at least one same control resource set as the first cell group.
  • Each cell in the first cell group includes at least one control resource set, where all TCI states in the at least one control resource set included in all cells are the same.
  • the spatial related parameter information may refer to QCL information
  • the terminal device may determine the first cell group according to the QCL information.
  • the terminal device may determine a cell with the same QCL information of the control resource set as the first cell group.
  • the QCL information may be type D QCL information or type A QCL information.
  • the terminal device may determine at least two cells with the same QCL information as the at least one control resource set as the first cell group.
  • the specific implementation manners where at least two cells in the first cell group have the same QCL information as at least one includes the following:
  • Manner 1 The terminal device determines at least two cells with the same QCL information as the first cell group. It should be understood that at least two of the N cells are associated with the same QCL information.
  • Manner 2 The terminal device determines any two cells associated with the same QCL information as the first cell group. It should be understood that any two cells among the N cells are associated with the same QCL information.
  • Manner 3 The terminal device determines any two cells associated with the same QCL information as the first cell group. It should be understood that any two cells among the N cells are associated with the same QCL information.
  • the terminal device may determine each cell associated with the same spatial related parameter information as the first cell group. It should be understood that each of the N cells is associated with the same spatial related parameter information.
  • the specific implementation manners for associating each cell in the first cell group with the same space-related parameter information include the following:
  • the terminal device may determine the cells with the same QCL information set as the first cell group. It should be understood that the QCL information sets of any two cells in the first cell group are the same. Any set of QCL information is a set of QCL information of all control resource sets of the corresponding cell.
  • the terminal device may determine a cell with at least one same QCL information as the first cell group. At least one piece of the same QCL information exists in all cells in the first cell group.
  • the at least one identical QCL information is QCL information of at least one control resource set of the corresponding cell.
  • the terminal device may determine a cell having at least one same control resource set as the first cell group.
  • Each cell in the first cell group includes at least one control resource set, where all QCL information in the at least one control resource set included in all cells is the same.
  • the embodiments of the present application also provide a communication device, and the beneficial effects can be referred to the description of the first aspect and will not be repeated here.
  • the communication device has the function of realizing the behavior in the method example of the first aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit.
  • the processing unit is configured to determine the first cell group, and perform beam failure detection on the first cell group according to the first parameter of the first cell group.
  • the first cell group includes N cells, and N is an integer greater than or equal to 2.
  • the transceiver unit is configured to send beam failure recovery request information, where the beam failure recovery request information includes at least one of the following: identification information of a cell in the first cell group and at least one reference signal resource information, at least one reference signal
  • the resource information is used to restore the link of at least one cell in the first cell group.
  • the embodiments of the present application also provide a communication device, and the beneficial effects can be referred to the description of the second aspect and will not be repeated here.
  • the communication device has the function of realizing the behavior in the method example of the second aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit and a processing unit.
  • the processing unit is configured to determine the first cell group.
  • the transceiver unit is configured to receive beam failure recovery request information, where the beam failure recovery request information includes at least one of the following: identification information of a cell in the first cell group and at least one reference signal resource information, at least one reference signal
  • the resource information is used to restore the link of at least one cell in the first cell group.
  • a communication device may be the terminal device in the foregoing method embodiment, or a chip set in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the terminal device in the foregoing method embodiment.
  • a communication device may be the network device in the foregoing method embodiment, or a chip set in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the network device in the foregoing method embodiment.
  • a computer program product includes: computer program code, which when the computer program code is running, causes the methods executed by the terminal device in the above aspects to be executed.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method executed by the network device in the above aspects is executed.
  • the present application provides a chip system, which includes a processor, configured to implement the functions of the terminal device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system, which includes a processor, and is configured to implement the functions of the network device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the terminal device in the above aspects is implemented.
  • this application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the network device in the above aspects is implemented.
  • FIG. 1 is a flowchart of a beam failure recovery process provided by an embodiment
  • FIG. 2 is a schematic diagram of beam failure detection provided by an embodiment
  • FIG. 3 is a schematic diagram of beam failure detection provided by an embodiment
  • FIG. 4 is a schematic diagram of beam failure detection provided by an embodiment
  • FIG. 5 is a schematic diagram of the architecture of a communication system provided by an embodiment
  • FIG. 6 is a schematic diagram of the architecture of a communication system provided by an embodiment
  • FIG. 7 is a schematic structural diagram of a communication system provided by an embodiment
  • FIG. 8 is a flowchart of a beam failure detection method provided by an embodiment
  • FIG. 9 is a schematic diagram of cell grouping provided by an embodiment
  • FIG. 10 is a schematic diagram of cell grouping provided by an embodiment
  • FIG. 11 is a schematic diagram of cell grouping provided by an embodiment
  • FIG. 12 is a schematic diagram of cell grouping provided by an embodiment
  • FIG. 13 is a schematic diagram of cell grouping provided by an embodiment
  • FIG. 14 is a schematic diagram of cell grouping provided by an embodiment
  • FIG. 15 is a schematic diagram of cell grouping provided by an embodiment
  • FIG. 16 is a schematic diagram of cell grouping provided by an embodiment
  • Figure 17 is a schematic diagram of cell grouping provided by an embodiment
  • Figure 18 is a schematic diagram of cell grouping provided by an embodiment
  • FIG. 19 is a schematic diagram of the composition of a communication device provided by an embodiment
  • FIG. 20 is a schematic diagram of the composition of a communication device provided by an embodiment.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • Control resource set (CORESET)
  • the network device can configure one or more resource sets for the terminal device to send a physical downlink control channel (PDCCH).
  • the network device can send a control channel to the terminal device on any control resource set corresponding to the terminal device.
  • the network device also needs to notify the terminal device of other associated configurations of the control resource set, such as a search space set.
  • the control resource set in this application may be a CORESET or control region defined by the 5G mobile communication system or an enhanced-physical downlink control channel (ePDCCH) set.
  • the time-frequency position occupied by the PDCCH can be referred to as the downlink control region.
  • the PDCCH In Long Term Evolution (LTE), the PDCCH is always located in the first m (m may be 1, 2, 3, and 4) symbols in a subframe. It should be noted that the positions of E-PDCCH and R-PDCCH in LTE are not in the first m symbols.
  • the downlink control area can be flexibly configured by radio resource control (Radio Resource Control, RRC) signaling through the control resource set and search space set:
  • RRC Radio Resource Control
  • the control resource set can be configured with PDCCH or control channel element (control channel element, CCE) frequency domain position, time domain continuous symbol number and other information;
  • the search space set can be configured with PDCCH detection period and offset, starting symbol in a time slot and other information.
  • the search space set can be configured with a PDCCH cycle as 1 time slot, and the time domain start symbol is symbol 0, then the terminal device can detect the PDCCH at the start position of each time slot.
  • the spatial-related parameter information may be quasi-collocation (QCL) information, or may be spatial-related information (spatial relation).
  • QCL information is used to indicate the spatial correlation parameters (also called spatial correlation characteristics) of downlink signals (such as PDCCH/PDSCH/CSI-RS/DMRS/TRS), and spatial correlation information is used to indicate uplink signals (such as PUCCH).
  • /PUSCH/SRS/DMRS spatial correlation parameters can also be referred to as spatial correlation characteristics).
  • Quasi-co-location can also be called quasi-co-location or co-location.
  • QCL information may also be referred to as QCL hypothesis information.
  • the QCL information is used to assist in describing the terminal equipment receiving beamforming information and the receiving process.
  • QCL information can be used to indicate the QCL relationship between two reference signals, where the target reference signal can generally be a demodulation reference signal (DMRS), a channel state information reference signal (CSI-RS) ), etc., and the reference signal or source reference signal to be quoted may generally be CSI-RS, synchronous signal broadcast channel block (synchronous signal/PBCH block, SSB), sounding reference signal (sounding reference signal, SRS), etc.
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • TRS tracking reference signal
  • the target reference signal may generally be a downlink signal.
  • the signals corresponding to the antenna ports with the QCL relationship may have the same or similar spatial characteristic parameters (or called parameters), or the spatial characteristic parameters (or called parameters) of an antenna port may be used to determine the relationship with the antenna
  • the spatial characteristic parameter (or called the parameter) difference is smaller than a certain threshold.
  • the space-related information is used to assist in describing the beamforming information on the transmitting side of the terminal device and the transmission process.
  • the spatial correlation information is used to indicate the spatial transmission parameter relationship between two reference signals.
  • the target reference signal can generally be DMRS, SRS, etc.
  • the reference signal or source reference signal referred to can generally be CSI-RS, SRS, SSB etc. It should be understood that the target reference signal may generally be an uplink signal.
  • the spatial characteristic parameters of two reference signals or channels satisfying the QCL relationship are the same (or similar or similar), so that the spatial characteristic parameters of the target reference signal can be inferred based on the source reference signal resource index.
  • the spatial characteristics of the two reference signals or channels that satisfy the spatial correlation information are the same (or similar or similar), so that the spatial characteristics of the target reference signal can be inferred based on the source reference signal resource index parameter.
  • the spatial characteristic parameters include one or more of the following parameters:
  • Angle of incidence AoA
  • dominant (dominant) incidence angle AoA average incidence angle
  • power angular spectrum PAS
  • exit angle angle of departure, AoD
  • main exit angle Average exit angle, power angle spectrum of exit angle
  • terminal device transmit beamforming terminal device receive beamforming, spatial channel correlation, network device transmit beamforming, network device receive beamforming, average channel gain, average channel delay (average delay), delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (doppler shift), spatial reception parameters (spatial Rx parameters), etc.
  • the above-mentioned angle may be decomposition values of different dimensions, or a combination of decomposition values of different dimensions.
  • the antenna ports may be antenna ports with different antenna port numbers, and/or antenna ports with the same antenna port number for information transmission or reception in different time and/or frequency and/or code domain resources, and/or Different antenna port numbers are used to transmit or receive information in different time and/or frequency and/or code domain resources.
  • These spatial characteristic parameters describe the spatial channel characteristics between the antenna ports of the source reference signal and the target reference signal, and help the terminal device to complete the receiving-side beamforming or receiving process according to the QCL information. It should be understood that the terminal device can receive the target reference signal according to the receiving beam information of the source reference signal indicated by the QCL information; these spatial characteristic parameters also help the terminal device to complete the beamforming or transmission process at the transmitting side according to the spatial related information. It should be understood that the terminal device may transmit the target reference signal according to the transmit beam information of the source reference signal indicated by the spatial related information.
  • the network equipment may indicate the demodulation reference signal of the PDCCH or the physical downlink shared channel (physical downlink shared channel, PDSCH) and the terminal equipment
  • the reference signal may be a CSI-RS.
  • each reported CSI-RS resource index corresponds to a transmit and receive beam pair established during the previous measurement based on the CSI-RS resource. It should be understood that the receiving beam information of the two reference signals or channels that satisfy the QCL relationship is the same, and the terminal device can infer the receiving beam information of receiving the PDCCH or PDSCH according to the reference signal resource index.
  • Network equipment can configure one or more types of QCL for terminal equipment at the same time, such as QCL type A+D, C+D:
  • QCL types A Doppler shift, Doppler spread, average delay, delay spread
  • the QCL relationship refers to the QCL relationship of type D
  • it can be considered as an airspace QCL.
  • the antenna port satisfies the spatial QCL relationship, it can be the QCL relationship between the downlink signal port and the downlink signal port, or the QCL relationship between the uplink signal port and the uplink signal port (referred to as spatial relation above), which can be two
  • the two signals have the same AOA or AOD, which is used to indicate that they have the same receiving beam or transmitting beam.
  • the AOA and AOD of the two signals may have a corresponding relationship, or the AOD and AOA of the two signals may have a corresponding relationship, that is, the beam can be used Reciprocity
  • the uplink transmit beam is determined according to the downlink receive beam
  • the downlink receive beam is determined according to the uplink transmit beam.
  • the two antenna ports are spatial QCL, it can mean that the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are spatial QCL, it can mean that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the signal transmitted on the port with the spatial QCL relationship may also have a corresponding beam, and the corresponding beam may include at least one of the following: the same receiving beam, the same transmitting beam, and the transmitting beam corresponding to the receiving beam (corresponding to the reciprocity Scene), the receiving beam corresponding to the transmitting beam (corresponding to the scene with reciprocity).
  • the signal transmitted on the port with the spatial QCL relationship can also be understood as using the same spatial filter to receive or transmit the signal.
  • the spatial filter may be at least one of the following: precoding, weight of the antenna port, phase deflection of the antenna port, and amplitude gain of the antenna port.
  • the signal transmitted on the port with the spatial QCL relationship can also be understood as having a corresponding beam pair link (BPL), and the corresponding BPL includes at least one of the following: the same downlink BPL, the same uplink BPL, and the downlink BPL The corresponding uplink BPL, the downlink BPL corresponding to the uplink BPL.
  • BPL beam pair link
  • the spatial reception parameter (ie, QCL of type D) can be understood as a parameter for indicating the direction information of the reception beam.
  • scenario applicable to the QCL hypothesis in this application may also be two reference signals, or an association relationship between transmission objects.
  • TCI Transmission configuration indicator
  • TCI is used to indicate the QCL information of a signal or channel.
  • the channel can be PDCCH/CORESET or PDSCH.
  • the signal can be CSI-RS, DMRS, TRS or PTRS, etc.
  • TCI information means that the reference signal included in the TCI satisfies the QCL relationship with the channel or signal. It is mainly used to indicate that when a signal or channel is received, its spatial characteristic parameters and other information are the same as the spatial characteristic parameters of the reference signal included in the TCI. Similar, similar.
  • a TCI state can be configured with one or more reference signals that are referenced, and the associated QCL type (QCL type).
  • QCL types can be divided into four categories: A, B, C, and D, which are different combinations or choices of ⁇ Doppler shift, Doppler spread, average delay, delay spread, and spatial Rx parameter ⁇ .
  • the TCI status includes QCL information, or the TCI status is used to indicate QCL information.
  • Synchronous signal broadcast channel block (synchronous signal/physical broadcast channel (physical broadcast channel, PBCH) block, SS/PBCH block)
  • the SS/PBCH block can also be called SSB.
  • the SSB includes at least one of a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS), and a PBCH. It is mainly used for cell search, cell synchronization, and signals that carry broadcast information.
  • a component carrier can also be called a component carrier, a component carrier, or a component carrier.
  • Each carrier in multi-carrier aggregation can be called "CC", and each carrier is composed of one or more physical resource blocks (PRB), and each carrier can have its own corresponding physical downlink control channel ( physical downlink control channel, PDCCH), scheduling the physical downlink shared channel (PDSCH) of each CC; or, some carriers do not have PDCCH, at this time, the carrier can be cross-carrier scheduling, that is, the PDCCH scheduling of one CC The PDSCH of another CC.
  • the terminal device can receive data on multiple CCs.
  • Carrier aggregation may refer to the aggregation of multiple continuous or non-continuous unit carriers into a larger bandwidth.
  • the primary cell/primary serving cell (primary cell/primary serving cell, PCell) is the cell where the CA UE resides. Generally, only the PCell has a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the secondary primary cell (Primary Secondary Cell, PSCell) is a special secondary cell on the secondary base station (secondary eNodeB, SeNB) that the primary base station (master eNodeB, MeNB) configures to the DC UE through RRC connection signaling.
  • a secondary cell refers to a cell configured to terminal equipment of CA through RRC connection signaling. It works on SCC (secondary carrier) and can provide more radio resources for terminal equipment of CA.
  • the SCell can have only downlink or both uplink and downlink.
  • SpCell For dual connectivity (DC) scenarios, SpCell refers to the PCell of the primary cell group (MCG) or the PSCell of the secondary cell group (SCG); otherwise, As in the CA scenario, SpCell refers to PCell.
  • MCG primary cell group
  • SCG secondary cell group
  • MCG/SCG refers to the primary cell group where the cell serving the terminal equipment in the primary base station is located.
  • a group of serving cells associated with the MeNB includes a PCell and one or more SCells.
  • SCG means that the group of the cell serving the UE in the secondary base station is the secondary cell group. In the dual link mode, it includes PSCells and zero or more SCells.
  • the MeNB is the base station to which the cell where the DC terminal equipment resides.
  • SeNB is another base station configured by MeNB to DC UE through RRC connection signaling.
  • the beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology can be specifically a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam can include one or more antenna ports for transmitting data channels, control channels, and sounding signals.
  • a transmit beam can refer to the distribution of signal strength formed in different directions in space after a signal is emitted by an antenna.
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space. It is understandable that one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the beam can be divided into the transmitting beam and the receiving beam of the network device, and the transmitting beam and the receiving beam of the terminal device.
  • the transmitting beam of the network device is used to describe the beamforming information on the transmitting side of the network device
  • the receiving beam of the base station is used to describe the beamforming information on the receiving side of the network device
  • the transmitting beam of the terminal device is used to describe the beamforming information on the transmitting side of the terminal device.
  • the receive beam is used to describe the beamforming information on the receiving side of the terminal device. That is, beams are used to describe beamforming information.
  • the beam may correspond to time resources and/or space resources and/or frequency domain resources.
  • the beam may also correspond to a reference signal resource (for example, a reference signal resource for beamforming), or beamforming information.
  • a reference signal resource for example, a reference signal resource for beamforming
  • the beam may also correspond to the information associated with the reference signal resource of the network device, where the reference signal may be a channel state information reference signal (CSI-RS), SSB, and demodulation reference signal (demodulation reference signal).
  • CSI-RS channel state information reference signal
  • SSB SSB
  • demodulation reference signal demodulation reference signal
  • signal DMRS
  • phase tracking signal phase tracking reference signal
  • PTRS phase tracking reference signal
  • TRS tracking reference signal
  • the information associated with the reference signal resource can be a reference signal resource identifier, or QCL information (especially type D QCL) etc.
  • the reference signal resource identifier corresponds to a transceiver beam pair established during the previous measurement based on the reference signal resource, and the terminal can infer beam information through the reference signal resource index.
  • the beam may also correspond to a spatial filter (spatial filter or spatial domain filter) and a spatial domain transmission filter (spatial domain transmission filter).
  • a spatial filter spatial filter or spatial domain filter
  • a spatial domain transmission filter spatial domain transmission filter
  • the receive beam can be equivalent to a spatial transmission filter, a spatial transmission filter, a spatial receive filter, and a spatial receive filter
  • the transmit beam can be equivalent to a spatial filter, a spatial transmission filter, a spatial transmit filter, and a spatial transmit filter.
  • the information of spatial related parameters can be equivalent to a spatial filter (spatial dimain transmission/receive filter).
  • the spatial filter generally includes a spatial transmission filter and/or a spatial reception filter.
  • the spatial filter can also be called a spatial transmission filter, a spatial reception filter, a spatial transmission filter, a spatial transmission filter, and so on.
  • the receiving beam on the terminal device side and the transmitting beam on the network device side may be downlink spatial filters
  • the transmitting beam on the terminal device side and the receiving beam on the network device side may be uplink spatial filters.
  • the antenna port may also be abbreviated as a port.
  • the transmitting antenna recognized by the receiving device, or the transmitting antenna that can be distinguished in space.
  • One antenna port can be configured for each virtual antenna, each virtual antenna can be a weighted combination of multiple physical antennas, and each antenna port can correspond to a reference signal port.
  • the network device may configure one or more downlink/uplink bandwidth regions for the terminal device.
  • the BWP may be composed of continuous PRBs in the frequency domain, and the BWP is a subset of the bandwidth of the terminal device.
  • the minimum granularity of the BWP in the frequency domain is 1 PRB.
  • the system may configure one or more bandwidth regions for the terminal device, and the multiple bandwidth regions may overlap in the frequency domain.
  • a terminal device may have only one activated BWP at a time, and the terminal device can only receive data/reference signals or send data/reference signals on the activated BWP (active BWP).
  • a specific BWP may also be a bandwidth set on a specific frequency, or a set composed of multiple RBs.
  • Reference signal configured for detecting beam failure and restoring beam failure
  • the network device In order to detect beam failure, the network device needs to indicate to the terminal device a reference signal resource for beam failure detection (also referred to as a link failure detection reference signal resource).
  • the beam failure detection reference signal resource can have the following possible indication methods.
  • the network device can display to the terminal device the configuration of the beam failure detection reference signal resource set (beam failure detection RS set) (for example, beam failure detection RS resourceconfig or beam failure detection RS or failure detection resources) (also called beam failure detection RS set). Failure detection reference signal resource collection).
  • the network equipment configuration beam failure detection reference signal resource set may be indicated by one or more of RRC, MAC-CE, and DCI signaling.
  • the reference signal for beam failure detection can also be indicated in an implicit manner.
  • the reference signal resource associated in the TCI (such as type-D QCL) indicating the PDCCH is used as the reference signal resource for beam failure detection, and the reference signal resource is The DMRS with the PDCCH is a reference signal resource that satisfies the QCL relationship, and is a periodic reference signal resource.
  • the terminal device may detect the beam failure according to the beam failure detection reference signal resource set; when the network device does not display the configuration for beam failure detection When the reference signal resource is set, the terminal device may fail to detect the beam according to the reference signal resource indicated in the above implicit manner.
  • the RS in the beam failure detection reference signal resource set and the demodulation reference signal of the downlink physical control channel PDCCH satisfy the QCL relationship or use the same TCI state as the PDCCH, when the channel quality information of some or all of the reference signals in the set (for example, reference signal receiving power (reference signal receiving power, RSRP), channel quality indicator (channel quality indicator, CQI), block error ratio (block error ratio, BLER), signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), signal-to-noise ratio (signal noise ratio, SNR, etc.) is lower than a predetermined threshold, it is determined that the beam has failed.
  • reference signal receiving power reference signal receiving power
  • RSRP channel quality indicator
  • CQI channel quality indicator
  • block error ratio block error ratio
  • SINR signal to interference plus noise ratio
  • SINR signal-to-noise ratio
  • the lower than the predetermined threshold may be N consecutive times lower than the predetermined threshold or N times lower than the predetermined threshold within a certain period of time.
  • the predetermined threshold may be referred to as a beam failure detection threshold, and may also be referred to as a beam failure threshold. It should be understood that as long as the threshold used for beam failure detection can be the predetermined threshold, the name of the predetermined threshold is not limited in this application.
  • the beam failure detection threshold may be configured by the network device, or may be the same threshold as the radio link failure OOS (out of sync) threshold.
  • the beam failure detection threshold when the network device is configured with a beam failure detection threshold, the beam failure detection threshold is used to detect beam failure; when the network device is not configured with a beam failure detection threshold, the wireless link out-of-synchronization threshold can be used as the beam failure detection threshold detection The beam failed.
  • the beam failure detection reference signal may be used for the terminal to detect the channel quality of a certain transmission beam of the network device, and the transmission beam is a beam used when the network device communicates with the terminal.
  • the network device can also indicate to the terminal device the reference signal resource set used to restore the link between the terminal device and the network device (candidate beam RS list or candidate beam RS identification resource or beam failure candidate beam resource or candidate beam identification RS Or candidate beam list) (also referred to as a candidate reference signal resource set or a beam failure recovery reference signal resource set).
  • the terminal device needs to select the reference signal resource whose channel quality information (such as one or more of the following RSRP, RSRQ, CQI, SINR, etc.) is higher than the predetermined threshold from the set of candidate reference signal resources to restore the communication link road.
  • the candidate beam identification RS is used by the terminal device to initiate a link reconfiguration reference signal set after the terminal device determines that the transmission beam of the network device has a beam failure.
  • the network device may display the reference signal resource set configured for beam failure recovery to the terminal device.
  • the network equipment configuration beam failure detection reference signal resource set may be indicated by one or more of RRC, MAC-CE, and DCI signaling.
  • the reference signal resource set used for beam failure recovery can also be a certain default reference signal resource set, (for example, the reference signal resource set used for beam management BM, or the reference signal resource set used for RRM measurement, all or part of it A set of reference signal resources composed of SSB, or a set of reference signal resources multiplexed with other functions).
  • the reference signal resource set used for beam management may be a reference signal resource set whose repetition is marked as "off” (it may also be a reference signal resource set whose repetition is marked as "on”).
  • the reference signal is identified in the reference signal resource set; when the network device is not configured with a candidate reference signal resource set, the reference signal is identified in the default reference signal resource set signal.
  • the identified reference signal can be used to recover beam failure.
  • the channel quality of the identified reference signal is greater than a preset threshold.
  • the above-mentioned predetermined threshold used for identifying the reference signal of the recovery link may be configured by the network device, or may also be a predefined threshold.
  • the threshold used for mobility measurement is used by default.
  • the predetermined threshold may be referred to as the beam failure recovery threshold, and may also be referred to as the link recovery threshold. It should be understood that any threshold used for beam failure recovery can be the predetermined threshold, and the present invention does not limit the name of the predetermined threshold.
  • the names of the reference signal resource set used for beam failure detection and the reference signal resource set used to restore the link between the terminal device and the network device may also have other names. This is not specifically limited.
  • beam failure may also be referred to as beam failure, link failure, link failure, communication failure, communication failure, communication link failure, communication link failure, and so on.
  • the communication failure may mean that the signal quality of the reference signal used for beam failure detection of the PDCCH is less than or equal to a preset threshold.
  • beam failure recovery can also be referred to as restoring the communication between the network device and the terminal device, beam failure recovery, beam failure recovery, beam recovery, link failure recovery, link failure recovery, link recovery, communication failure recovery , Communication failure recovery, communication link failure recovery, communication link failure recovery, communication recovery, link reconfiguration, etc.
  • beam failure recovery request (BFRQ) information may also be referred to as beam failure recovery request information, beam recovery request information, link failure recovery request information, link failure recovery request information, link Recovery request information, communication failure recovery request information, communication failure recovery request information, communication recovery request information, communication link failure recovery request information, communication link failure recovery request information, link reconfiguration request information , Reconfiguration request information, etc.
  • the communication failure recovery request may refer to sending a signal on the resource used to carry the communication failure recovery request.
  • the beam failure recovery response information may be simply referred to as the beam failure recovery response.
  • Beam failure recovery response information can also be called beam failure recovery response information, beam failure response information, beam failure response information, beam recovery response, link failure recovery response information, link failure recovery response information, link failure response information, chain Path failure response information, link recovery response information, communication failure recovery response information, communication failure recovery response information, communication failure response information, communication failure response information, communication failure response information, communication recovery response information, communication link failure recovery response information, communication link failure Recovery response information, communication link failure response information, communication link failure response information, communication link response information, link reconfiguration response information, reconfiguration response information, etc.
  • the communication failure recovery response information may be referred to as response information for short.
  • the beam failure recovery response information may refer to the reception of a cyclic redundancy check (CRC) on the control resource set and/or search space set used to send the beam failure recovery response.
  • CRC cyclic redundancy check
  • DCI downlink control information
  • C-RNTI cell radio network temporary identifier
  • the beam failure recovery response information can also be the DCI scrambled by other information (such as the BFR-RNTI scrambled DCI)
  • the beam failure recovery response information may also be data scheduled by the foregoing DCI
  • the beam failure recovery response information may also be one of the following information: DCI scrambled by the cell radio network temporary identifier C-RNTI, modulation and coding method, DCI scrambled by the cell-specific wireless network temporary identifier MCS-C-RNTI, dedicated search
  • the downlink control information DCI in the space, the DCI scrambled by the RNTI of the private wireless network temporary identifier, the DCI scrambled by the RA-RNTI of the random access wireless network temporary identifier, the DCI containing the preset state value, and the DCI containing the transmission configuration indication TCI information ,
  • the embodiment of the present application does not limit this. It should be understood that the DCI indicating the newly transmitted data and the DCI scheduling bearer beam failure request information resources have the same hybrid automatic repeat request (HARQ) process identifier. Optionally, the two DCI's new data indicator (new date indicator, NDI) is different). It should be understood that after the terminal device receives the beam failure recovery response information, it considers that the beam failure recovery is successful. It should be understood that after the beam failure recovery is successful, the terminal device may no longer send the beam failure recovery request information, it may also stop or reset the beam failure detection counter, it may also stop or reset the beam failure detection timer, and it may also stop or stop or reset the beam failure detection counter. The beam failure recovery counter is reset, and the beam failure recovery timer can also be stopped or reset.
  • HARQ hybrid automatic repeat request
  • the beam recovery failure can be understood as the terminal device no longer sending the beam failure recovery request information, it can also be understood as stopping the beam failure recovery timer (or called clock) timing, or it can be understood as stopping the beam failure recovery Counter counts, etc.
  • cell can be understood as “serving cell” and “carrier”.
  • the cell includes at least one of a downlink carrier, an uplink (UL) carrier, and an uplink supplementary (SUL) carrier.
  • a cell may include a downlink carrier and an uplink carrier; or a cell may include a downlink carrier and an uplink supplementary carrier; or a cell may include a downlink carrier, an uplink carrier, and an uplink supplementary carrier.
  • the carrier frequency of the uplink supplementary carrier is lower than that of the uplink carrier to improve uplink coverage.
  • the uplink carrier and the downlink carrier have different carrier frequencies; in the TDD system, the uplink carrier and the downlink carrier have the same carrier frequency.
  • the uplink resource is on the uplink carrier; the downlink resource is on the downlink carrier.
  • the uplink carrier may be a normal uplink carrier, or may be a supplementary uplink (SUL) carrier.
  • SUL supplementary uplink
  • the time unit may be one or more radio frames, one or more subframes, one or more time slots, and one or more mini slots defined in the LTE or 5G NR system.
  • One or more orthogonal frequency division multiplexing (OFDM) symbols, etc. may also be a time window formed by multiple frames or subframes, such as a system information (SI) window.
  • SI system information
  • the smallest time scheduling unit is a transmission time interval (TTI) with a time length of 1 ms.
  • TTI transmission time interval
  • 5G supports not only the time-domain scheduling granularity of the time unit level, but also the time-domain scheduling granularity of the micro-time unit, as well as meeting the delay requirements of different services.
  • the time unit is mainly used for eMBB services
  • the micro time unit is mainly used for URLLC services.
  • the above-mentioned time unit and micro-time unit are general terms.
  • a specific example can be that the time unit can be called a time slot, and the micro-time unit can be called a mini-slot or non-slot (non-slot).
  • the first time unit mentioned in this application may refer to a time slot or a mini time slot.
  • a time slot may include, for example, 14 time domain symbols, and a mini-slot may include less than 14, such as 2, 3, 4, 5, 6, or 7, etc.; or, for example, a time slot may include There are 7 time-domain symbols.
  • the number of time-domain symbols included in a mini-slot is less than 7, such as 2 or 4, and the specific value is not limited.
  • the time domain symbols here may be OFDM symbols.
  • the corresponding time length is 0.5 ms; for a time slot with a sub-carrier spacing of 60 kHz, the corresponding time The length is shortened to 0.125ms.
  • the beam failure case counter may also be referred to as a beam failure case indication counter, and may also be referred to as a beam failure detection counter.
  • the reference signal information may include the reference signal resource index and/or the channel quality of the reference signal.
  • channel quality may include one or more of the following: reference signal receiving power (RSRP), signal to interference plus noise ratio (SINR), reference signal receiving quality (reference signal) Receiving quality, RSRQ), channel quality indication (CQI), or signal-to-noise ratio (signal noise ratio, SNR), etc.
  • RSRP reference signal receiving power
  • SINR signal to interference plus noise ratio
  • RSRQ reference signal receiving quality
  • CQI channel quality indication
  • SNR signal-to-noise ratio
  • Communication systems usually use different types of reference signals: one type of reference signal is used to estimate the channel, so that the received signal containing control information or data can be coherently demodulated; the other type is used to measure the channel state or channel quality to achieve Scheduling of terminal equipment.
  • the terminal equipment obtains the channel state information CSI based on the channel quality measurement of the CSI-RS.
  • the CSI includes at least one of a rank indicator (Rank Indicator, RI), a precoding indicator (Precoding Matrix Indicator, PMI), and a channel quality indicator (Channel Quality Indicator, CQI).
  • RI rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • modern communication systems usually use multi-antenna technology to increase system capacity and coverage or improve user experience.
  • Another advantage of using high-frequency bands is that the size of multi-antenna configurations can be greatly reduced, thereby facilitating site location. Acquire and deploy more antennas.
  • the high-frequency frequency band will cause greater path loss, especially the influence of factors such as the atmosphere and vegetation further aggravate the loss of wireless propagation.
  • the beamformed signals may include broadcast signals, synchronization signals, and cell-specific reference signals.
  • the direction of the shaped beam corresponding to the transmitted signal may no longer match the position of the user after the movement, so that the received signal is frequently interrupted.
  • a channel quality measurement and result report based on beamforming technology is introduced.
  • the measurement of the channel quality may be based on a synchronization signal or a cell-specific reference signal after beamforming. Compared with cell handover, user handover between different shaped beams is more dynamic and frequent, so a dynamic measurement reporting mechanism is needed.
  • the report of the channel quality result of the shaped beam may also be sent by the terminal device to the network device through PUCCH or PUSCH.
  • the terminal device selects the better N beams by measuring multiple beams sent by the network device, and reports the better N beam measurement information to the network device.
  • the beam measurement information mainly includes reference signal resource index and reference signal quality information.
  • the reference signal quality information can be reference signal received power (L1-reference signal received power, L1-RSRP), reference signal signal to interference plus noise ratio (L1-signal to interference plus noise ratio, L1-SINR), reference signal signal At least one of the channel quality information of the reference signal, such as the signal to interference plus noise ratio (SINR) or the channel quality indication (CQI) of the reference signal.
  • both the network equipment’s transmitting beam and the terminal’s receiving beam may change dynamically.
  • the terminal equipment may determine the better receiving beam based on the received signal.
  • the information of the multiple receiving beams is fed back to the network device, and the network device can instruct the terminal device to receive the beam by sending beam indication information to the terminal device.
  • the terminal device adopts beamforming in the analog domain, the terminal device can accurately determine the terminal receiving beam based on the beam indication information sent by the network device, thereby saving the beam scanning time of the terminal device and achieving the effect of power saving.
  • the network device can indicate the reception parameters adopted by the terminal device by configuring the QCL information of the PDCCH.
  • the method for configuring the QCL information of the PDCCH is as follows: RRC configures K candidate QCL information of the PDCCH, such as K TCI states; MAC-CE indicates the QCL information of the PDCCH (when K>1).
  • the protocol stipulates that the terminal equipment can assume that the DMRS of PDCCH and PDSCH and the SSB determined during initial access are QCL before the network equipment does not send RRC and MAC-CE.
  • the terminal device may measure the communication quality of the reference signal of the beam failure detection configured by the network device to determine whether a beam failure occurs.
  • Fig. 1 shows a schematic flowchart of a beam failure recovery process in the prior art. As shown in Fig. 1, the beam failure recovery process includes:
  • the terminal device measures the reference signal resource set for beam failure detection, and determines that the beam between the terminal device and the network device fails.
  • the terminal device when the terminal device determines that the channel quality information of all or some of the reference signals in the beam failure detection reference signal or the beam failure detection reference signal resource set is less than or equal to the link failure detection threshold, the terminal device may It is determined that the beam between the terminal device and the network device has failed. Specifically, there can be the following steps:
  • the terminal device measures the channel quality of the reference signal in the beam failure detection reference signal resource set (also referred to as "signal quality").
  • the reference signal in the beam failure detection reference signal resource set may be referred to as q0.
  • the physical (PHY) layer of the terminal device will report to the media access control (MAC) layer Indication of beam failure case.
  • the reporting period of the beam failure case is a period for the physical (PHY) layer to report the beam failure case indication information to the media access control (media access control, MAC) layer.
  • PHY physical
  • MAC media access control
  • the reference signal resource in q0 and the CORESET/PDCCH of the SCell configuring the reference signal satisfy the QCL relationship (the beam failure detection reference signal resource and CORESET may have a one-to-one relationship, or a many-to-one relationship, or It is a one-to-many relationship).
  • the DMRS of the reference signal and the PDCCH in the beam failure detection reference signal resource set meets a quasi co-location (QCL) relationship or has the same TCI state as the PDCCH.
  • QCL quasi co-location
  • the terminal device determines that the current SCell has beam failure.
  • N is configured by a beam failure detection parameter (which may be a beamFailureInstanceMaxCount parameter configured by RRC signaling or MAC-CE signaling).
  • a beam failure detection parameter which may be a beamFailureInstanceMaxCount parameter configured by RRC signaling or MAC-CE signaling.
  • the beam failure detection timer in the beam failure detection parameters (which can be the beamFailureDetectionTimer parameter configured by RRC signaling or MAC-CE signaling).
  • the reporting period of the beam failure case is the period of the reference signal with the smallest period in q0 and the largest value in 2ms.
  • the length of the beam failure detection timer is an integer multiple of the reporting period of the beam failure case.
  • the terminal device maintains a beam failure event counter (referred to as BFI-COUNTER for short), and the initial value of the beam failure event counter is 0. If the MAC layer of the terminal device receives the beam failure instance indication sent by the PHY layer, the terminal device will start or restart the beam failure detection timer, and increase the BFI-COUNTER by one. When the BFI-COUNTER count value is greater than or equal to N, it is determined that the SCell has beam failure.
  • BFI-COUNTER a beam failure event counter
  • the beam failure detection timer expires, or high-level signaling reconfigures any of the beam failure detection parameters, set the BFI-COUNTER to 0. If the beam failure is restored successfully, the BFI-COUNTER is also set to 0, and the beam failure detection timer is stopped.
  • the beam failure detection parameters include beam failure detection resources (beam failure Detection Resources or Radio Link Monitoring RS), the maximum number of beam failure instances (beam Failure Instance Max Count) N, and the beam failure detection timer (beamFailure Detection Timer) (or called beam The duration of the failed detection timer).
  • beam failure detection resources beam failure Detection Resources or Radio Link Monitoring RS
  • maximum number of beam failure instances beam Failure Instance Max Count
  • beam failure detection timer beam Failure Detection Timer
  • beam failure detection timer beam Failure detection timer
  • q0 is a set of reference signal resources used for beam failure detection of a cell.
  • the reference signal resources in q0 include CSI-RS1 (period is 5ms) and SSB1 (period is 5ms), then the beam failure instance (BFI) indication interval (or called the beam failure instance reporting period) Equal to 5ms.
  • the reference signal resource set used for beam failure detection may be referred to as a beam failure detection reference signal resource (BFD RS) set for short.
  • BFD RS beam failure detection reference signal resource
  • the BFD RS set can be a reference signal resource set for beam failure detection configured through the RRC signaling or MAC-CE signaling of the network device, or it can be a reference indicated by the type D QCL information in the TCI state of CORESET
  • the signal resource is obtained implicitly (that is, the reference signal resource indicated by the type D QCL information in the TCI state of the CORESET is used as the beam detection reference signal resource, and optionally the TCI state is the activated TCI state of the CORESET).
  • the network device can configure the maximum number of beam failure cases (for example, the maximum number of beam failure cases is 3) and the beam failure detection timer through RRC signaling or MAC CE signaling.
  • the beam failure detection timer is an integer multiple of the reporting period of the beam failure case (for example, the beam failure detection timer is equal to the reporting period of the beam failure case).
  • the terminal device maintains a beam failure detection timer (BFD timer) and a beam failure case indicator counter (BFI counter). When the BFI counter is greater than or equal to the maximum number of beam failure cases, it is determined that a cell has a beam failure.
  • beam failure cases are reported by the physical layer (PHY) of the terminal device to the media access control (MAC) layer of the terminal device.
  • Fig. 3 shows another schematic diagram of beam failure detection.
  • q0 is a set of reference signal resources used for beam failure detection of a cell.
  • the reference signal resource in q0 includes CSI-RS1 (period is 5ms) and SSB1 (period is 10ms); the BFI indication interval is equal to 5ms.
  • the network device can configure the maximum number of beam failure cases through RRC signaling or MAC CE signaling (for example, the maximum number of beam failure cases is 3), beam failure detection timer, the beam failure detection timer is an integer of the reporting period of beam failure cases Times (for example, the beam failure detection timer is equal to the reporting period of beam failure cases).
  • one BFI interval may include all beam failure detection reference signals (such as 10 ms to 15 ms), and another BFI interval may include only part of the beam failure detection reference signals (such as 15 ms to 20 ms).
  • FIG. 4 shows a schematic diagram of beam failure detection.
  • the beam failure detection timer is equal to twice the reporting period of the beam failure case (that is, the beam failure timer has a duration of 10ms), and the beam failure timer (BFD timer) of the MAC layer is receiving Start or restart after BFI. If BFI is received in 5ms, the BFD timer will be restarted, and the BFI counter will be incremented by 1. If the BFI is received during the operation of the BFD timer (between 5ms and 15ms), the BFI counter will be incremented by 1, that is, the BFD counter value will be 2 at 15ms; the UE will be 2 at 20ms. The MAC has received the BFI again, and the value of the BFI counter is 3. At this time, the terminal device determines that a beam failure has occurred in the cell.
  • the beam failure detection timer is equal to the reporting period of beam failure cases (that is, the beam failure timer has a duration of 5ms), and the beam failure timer (BFD timer) of the MAC layer is started after receiving the BFI Or restart. If the BFI is received in 5ms, the BFD timer will be restarted, and the BFI counter will be incremented by 1. If no BFI is received during the operation period of the BFD timer (between 5ms and 10ms), and the BFD timer has timed out, the BFI counter will be cleared to 0; at 15ms, the UE MAC will receive the BFI. The BFD timer restarts, and the BFI counter increases by 1.
  • the BFI counter increases by 1, and the value is 2; when the UE MAC receives the BFI again at 25 ms, the BFI counter increases by 1, the value is 3, and the terminal device determines A beam failure occurred in this cell.
  • the MAC layer of the terminal device can increase the BFI counter by 1 if it receives the BFI during the operation period of the beam failure detection timer. If the BFI is not received during the operation period of the beam failure detection timer, reset/clear the BFI counter (that is, the beam fails) Reset/clear the BFI counter when the detection timer expires). Therefore, for beam failure timers with different values (or different durations), the counting method of the BFI coutner is slightly different.
  • the difference between (a) in FIG. 4 and (b) in FIG. 4 is that the beam failure detection timer in (a) in FIG. 4 is equal to twice the reporting period of beam failure cases.
  • the beam failure detection timer in (b) in Figure 4 is equal to the reporting period of beam failure cases. Therefore, for the same channel conditions and different beam failure detection timer values, there will be a counting method for the BFI counter, such as two The value of the BFI counter in the figure is different at some moments.
  • the manner in which the terminal device determines that the link between the terminal device and the network device on a certain carrier fails is not limited to the above examples, and may also be determined by other judgment methods, and this application does not do anything about this. limited.
  • the terminal device determines that the beam with the network device on a certain carrier fails, it can be understood that the terminal device determines that the link with the network device on a certain carrier fails.
  • the terminal device recognizes the new link.
  • the terminal device can measure the reference signal in a certain reference signal resource set, and identify the reference signal used to restore the link between the terminal device and the network device.
  • the channel quality of the reference signal used to restore the link between the terminal device and the network device needs to be greater than or equal to the link failure recovery threshold.
  • the reference signal may be referred to as the first reference signal or new beam for short.
  • the first reference signal may be one reference signal or may also be multiple reference signals.
  • the multiple reference signals can be used to restore the link of the carrier. Each of the multiple reference signals may be used to recover the carrier on which the reference signal is configured. Alternatively, the multiple reference signals may be used to restore the component carriers on which the multiple reference signals are configured.
  • the terminal device can identify reference signals in a candidate reference signal resource set (candidate beam identification RS set).
  • the terminal device can restore the link based on the reference signal.
  • the channel quality of the identified reference signal is greater than or equal to a beam failure recovery threshold.
  • the process of a terminal device identifying a reference signal can be understood as the terminal device determining a reference signal with a channel quality greater than or equal to the beam failure recovery threshold (can be referred to as new identified beam or new beam) in the candidate reference signal resource set; the determination process here can be It is determined by measuring the channel quality information of the candidate reference signal resource set.
  • the terminal device cannot identify a reference signal (new identified beam) whose channel quality is greater than or equal to the beam failure recovery threshold. In another possible situation, the terminal device does not perform step S102.
  • the network device configures or instructs the PUSCH resource for the terminal device.
  • the terminal device receives the configuration or the information indicating the PUSCH resource sent by the network device.
  • the PUSCH resource configured by the network device for the terminal device is referred to as the second resource for short.
  • the specific indication mode of the second resource may have one or more of the following modes:
  • the terminal device sends the first request information to request the second resource.
  • the second resource may be the PUSCH resource indicated by the network device through the uplink grant (or DCI).
  • the uplink grant (or DCI) may be DCI in which the CRC is scrambled by C-RNTI/MCS-C-RNTI.
  • the first request information indicates the link failure event, which is carried on the PUCCH resource or the PRACH resource.
  • the first request information may be used to request uplink resources, which is carried on PUCCH resources or PRACH resources.
  • the first request information may also be referred to as scheduling request information.
  • the terminal device sending the first request information may be executed after step S101 and executed before step S104.
  • the terminal device sends the first request information.
  • the first request information may also be referred to as scheduling request information or the first request information and the scheduling request information use the same format.
  • the first request information may be used to request a resource for carrying the second request information (referred to as the second resource for short).
  • the second resource may be indicated or activated by the response information of the first request information.
  • the network device may also send response information of the first request information.
  • the response information of the first request information may be used to indicate the second resource allocated for the terminal, that is, the network device allocates resources for the terminal.
  • the second resource may be an aperiodic resource (or called a dynamic resource).
  • the network device determines whether to allocate the second resource according to whether there is a cell with a beam failure in the current network (indicated by the first request information), If the network device receives the first request information, it can learn that there are cells in the current network that have beam failures, and the network device can dynamically allocate second resources so that the terminal device can further report which cells have beam failures, and/or, Report the new link information of the cell where the beam failed to be restored. Since the beam failure event is an emergency event, this method does not need to reserve periodic resources for sending the beam failure recovery request information in advance, and can effectively save resource overhead.
  • the response information of the first request information can also be used to activate a second resource, that is, a second resource originally allocated for the terminal.
  • the activation is triggered by the response information of the first request information.
  • the second resource is semi-persistent or periodic.
  • the second resource can be a semi-static resource or a static resource (such as PUSCH, PUCCH, or physical random access channel) activated by the response information of the first request information or the DCI signaling after the first request information. (physical random access channel, PRACH)).
  • the network device determines whether to activate the second resource according to whether there is a cell with a link failure in the current network (indicated by the first request information), and if the network device receives the first request information, it can learn about the current network There are cells in which beam failure occurs, and the network device activates the second resource, so that the terminal device can further report which cells have beam failure, and/or report new link information of the cell where the link failed to be restored.
  • the second resource may be configured by higher layer signaling or system information, or may be a preset resource.
  • the second resource may be configured by the network device for the terminal, and sent to the terminal through high-level signaling or system information.
  • the second resource may also be pre-appointed by the network device and the terminal device, or set in advance by the terminal, which is not limited in this application.
  • the second resource may also be a resource that has an association relationship with a resource used to carry the first request information.
  • the second resource may have a mapping relationship with the resource used to carry the first request information, so that the terminal can determine the second resource when it learns the resource used to carry the first request information.
  • the association between the resource used to carry the first request information and the second resource may be configured by system information such as master information block (MIB) or system information block (SIB), or It is configured by radio resource control (radio resource control, RRC) or media access control (media access control, MAC)-control element (CE) signaling.
  • the system information or signaling may be sent before sending the first request information.
  • the configuration of the resource used to carry the first request information and the second resource may also be configured through the foregoing system information or signaling. This method can no longer send the second request information through the resource allocated by the response information of the first request information, but directly send the second request information on the second resource, which can effectively reduce the beam recovery time delay and improve the beam recovery speed.
  • the network device can configure multiple resources for the terminal device to transmit the first request information, and configure multiple resources for the terminal device to transmit the second request information, and the terminal device can use the multiple resources for transmitting the second request information.
  • One or more resources are selected from a resource for requesting information to send the first request information, and one or more resources for transmitting the second request information may also be selected as the second resource.
  • the plurality of resources for transmitting the first request information and the plurality of resources for transmitting the second request information may be configured by the aforementioned system information such as MIB or SIB, or configured by signaling such as RRC or MAC-CE. .
  • the second resource may also be a resource associated with the first request information.
  • the network device can be configured through system information such as MIB or SIB, or through RRC or MAC-CE signaling, multiple resources for sending the first request information and multiple resources for sending the second request information, And the association relationship between the plurality of resources used to send the first request information and the plurality of resources used to send the second request information, the terminal may select one of the plurality of resources used to transmit the first request information to send the first request Information, one can also be selected as the second resource from a plurality of resources used to transmit the second request information.
  • Each resource used for transmitting the first request information may be associated with one or more second resources, and each resource used for transmitting the first request information may be associated with a different size of the second resource.
  • the terminal device sends the first request information on the second resource associated with the resource that sent the first request information.
  • the second resource may be a PUSCH resource or may be a PUCCH resource.
  • the second request information of the embodiment may be MAC-CE indicating cell information of the cell where the beam failed.
  • the response information of the first request information may be DCI information.
  • the second request information may include the identification information of the beam-failed cell and/or the reference signal information of the restored beam-failed cell.
  • the cell information of the beam-failed cell may include the identification information of the beam-failed cell and/or the reference signal information of the restored beam-failed cell.
  • the reference signal information of the cell where the beam recovery failed may be the index of the reference signal resource, and/or the channel quality information of the reference signal resource (such as one or more of the following RSRP, SINR, RSRQ, CQI, etc.).
  • the second resource may also be the PUSCH resource directly indicated by the network device through the uplink grant (or DCI).
  • the uplink grant (or DCI) may be DCI in which the CRC is scrambled by C-RNTI/MCS-C-RNTI.
  • the second resource may be a resource dynamically allocated by a network device. This method does not need to reserve periodic resources in advance, and can effectively save resource overhead.
  • the second resource may be a semi-persistent or periodic resource activated by the network device through RRC, MAC-CE, or DCI.
  • the second resource may be a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), or a physical random access channel (PRACH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • the second resource may be configured by configuration information or be a preset resource.
  • the second resource may be configured by the network device for the terminal, and sent to the terminal through high-level signaling or system information.
  • the second resource may also be pre-appointed by the network device and the terminal device, or set in advance by the terminal, which is not limited in this application.
  • the configuration information can be configured by system information such as master information block (MIB) or system information block (system information block, SIB), or by radio resource control (RRC) or media access Control (media access control, MAC)-control element (CE) signaling configuration.
  • system information such as master information block (MIB) or system information block (system information block, SIB), or by radio resource control (RRC) or media access Control (media access control, MAC)-control element (CE) signaling configuration.
  • RRC radio resource control
  • CE media access Control
  • the configuration information may be configured by configured grant.
  • the second resource may be a PUSCH resource associated with PRACH or PUCCH.
  • the second resource may be the PUSCH resource in 2step PRACH.
  • the network device configures PRACH resources and PUSCH resources that have an association relationship, and the PUSCH resources do not require DCI indication.
  • the terminal device selects a PRACH resource to initiate a random access process, and sends other information (such as UE ID, etc.) on the PUSCH resource associated with the PRACH resource.
  • the PRACH resource or PUCCH resource is a resource that carries the first request information. The first request information is as described in Mode 1, and will not be repeated here.
  • the configuration information indicating the second resource by the network device may be sent in advance, and the configuration information may be sent by the network device to the terminal device before the terminal device determines that the beam fails, then the terminal device After the beam failure is found, the beam failure recovery request information is directly sent on the resource without waiting for the network device to allocate the PUSCH resource.
  • the terminal device sends beam failure recovery request information to the network device.
  • the beam failure recovery request information is associated with the reference signal (new identified beam or new beam) whose channel quality identified in S102 is greater than or equal to the beam failure recovery threshold, and the terminal device can indicate the new identified beam or the new beam in an implicit manner.
  • the reference signal resource is notified to the network device.
  • the terminal device may display and report the resource index or resource identifier of the newly identified reference signal to the network device.
  • the network device configures the association relationship between multiple uplink resources for sending BFRQ information and multiple candidate reference signal resources in advance, and the terminal device implicitly indicates the newly identified reference signal resource by selecting the uplink resource for sending BFRQ.
  • the terminal device may also report at least one of the new beam (new beam) information, the cell identifier of the beam failure, and the like through one or more beam failure recovery request information. It can also be understood that the BFRQ indicates one or more of the new beam information, the cell identifier of the beam failure, and the beam failure event.
  • the terminal device can send a BFRQ to the network device, and through the network device, the beam failure between the terminal device and the network device can be restored, or the terminal device can send a BFRQ to another network device. BFRQ, restoring the beam failure between the terminal device and the network device through the other network device.
  • the BFRQ information of the PCell in the NR can be reported through PRACH resources.
  • the base station configures one or more PRACH resources, and configures each PRACH resource to be associated with a reference signal, and the reference signal is a reference signal used to recover the link failure.
  • the reference signal may be a reference signal in a candidate reference signal resource set configured by the base station.
  • the terminal device confirms that the beam fails, recognizes the new beam, and selects the PRACH resource associated with the new beam to send a signal. In this way, the terminal device can implicitly indicate the new beam information.
  • the uplink resource set configured by the network device for the first cell and used to send the beam failure request information of the first cell is called the first uplink resource set.
  • the number of physical random access channel (PRACH) resources included in the first uplink resource set is equal to the number of downlink reference signals in the candidate reference signal resource set of the first cell, that is, one PRACH resource and one The downlink reference signal is associated.
  • the terminal device identifies the reference signal that is greater than or equal to the beam failure recovery threshold in the candidate reference signal resource set, and sends the beam failure recovery request information on the PRACH resource associated with the reference signal.
  • the transmission beam when the terminal device sends information on a PRACH resource is the transmission beam corresponding to the reception beam of the downlink reference signal associated with the PRACH resource, that is, the terminal device can use the The transmitting beam corresponding to the receiving beam sends information on the PRACH resource.
  • a PRACH resource is associated with a downlink reference signal and an uplink reference signal, and the terminal device can be based on the determined downlink reference signal. The associated PRACH resource, and then the uplink reference signal associated with the PRACH resource is determined, so that the transmission beam of the uplink reference signal is used to send information on the PRACH resource.
  • the BFRQ information of the SCell in the NR can be reported in one step.
  • the BFRQ information can be carried on the PUSCH resource; it can also be carried on the PUCCH resource; where the BFRQ information can indicate the identity of the cell where the beam failed, and/or new beam information.
  • BFRQ information can also be reported in two steps, BFRQ1+BFRQ2.
  • BFRQ1 can be carried on PUCCH resources or PRACH resources
  • BFRQ2 can be carried on PUSCH resources or PUCCH resources.
  • BFRQ1 indicates the beam failure event
  • BFRQ2 indicates the cell identity and/or new beam information of the beam failure.
  • BFRQ1 indicates the beam failure event and/or the cell identifier of the beam failure
  • BFRQ2 indicates new beam information.
  • the above-mentioned BFRQ information is carried on the PUSCH resource, which can be understood as reporting the BFRQ information through the MAC-CE.
  • the media access control (MAC) layer of the terminal device maintains a beam failure recovery timer (beam failure recovery timer) and a beam failure recovery counter (beam failure recovery counter).
  • the beam failure recovery timer is used to control the entire beam failure recovery time
  • the beam failure recovery counter is used to limit the number of times the terminal device sends beam failure recovery request information.
  • the beam failure recovery counter reaches the maximum value, the terminal device considers that the beam failure recovery is unsuccessful and stops the beam failure recovery process.
  • the recovery time of the recovery timer and the count value of the recovery counter may be configured by the network device, or may be preset values.
  • the network device receives the beam failure recovery request information sent by the terminal device.
  • the network device may also send a beam failure recovery response to the terminal device, and the terminal device receives the beam failure recovery response, that is, S107 and S108 are executed.
  • the terminal device can detect the C-RNTI scrambled or MCS-C-RNTI scrambled DCI in the control resource set (CORESET) and the search space set (search space set) as the BFRR.
  • CORESET control resource set
  • search space set search space set
  • the CORESET and/or search space set may be a dedicated CORESET and/or search space set configured by the network device for the terminal device, which is used for the network device to send the beam failure recovery request information after the terminal device sends a link failure request The downlink control resource of the response information.
  • the time sequence of S101 and S102 in the beam failure recovery process is not limited, and it may be S102 before S101, S101 before S102, or S102 and S101 simultaneously. It should also be understood that S107 and S108 are optional steps.
  • network equipment can configure multiple cells (such as primary cell and/or secondary cell) and beam failure detection parameters for each cell for terminal equipment.
  • the beam failure detection parameters include BFDRS, beam failure detection timer, and maximum beam failure cases. frequency.
  • the terminal device can also report the maximum number of beam failure recovery (BFR) cells that it supports to the network device.
  • BFR beam failure recovery
  • the terminal device performs beam failure detection for each cell independently according to the beam failure detection parameters.
  • the terminal device needs to detect multiple beam failure detection reference signal resources, and also needs to maintain multiple beam failure detection timers and beam failure detection counters.
  • the implementation complexity for terminal equipment is relatively high.
  • the terminal device determines that the time when the beam failure occurs in each cell is different, it may cause frequent transmission of beam failure recovery request (BFRQ) information, thereby causing a waste of resources.
  • BFRQ beam failure recovery request
  • the embodiment of the present application provides a beam failure detection method.
  • the method includes: first, grouping multiple cells according to spatial related parameter information, and for any cell group, then according to the beam failure detection parameters of the cell group Perform beam failure detection on the cell group, and the beam failure detection parameters of the cell group can be determined according to the beam failure detection parameters of the cells included in the cell group. Therefore, because the cells with the same beam direction are grouped into a group, beam failure detection can be performed on all cells in the cell group through a beam failure recovery process, thereby effectively reducing the beam failure detection of multiple cells by the terminal device.
  • the beam failure recovery request information of multiple cells is sent through one MAC-CE, which effectively saves the resource overhead of sending beam failure recovery request information.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE LTE system
  • FDD frequency division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G mobile communication system described in this application includes a non-standalone (NSA) 5G mobile communication system and/or a standalone (SA) 5G mobile communication system .
  • the technical solution provided in this application can also be applied to future communication systems, such as the sixth-generation mobile communication system.
  • the communication system may also be a PLMN network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, an IoT network or other networks.
  • D2D device-to-device
  • M2M machine-to-machine
  • Fig. 5 is a schematic diagram of the architecture of a communication system applied by an embodiment of the present application.
  • the communication system 500 includes a network device 510 and a terminal device 520.
  • the terminal device 520 is connected to the network device 510 in a wireless manner.
  • FIG. 5 is only a schematic diagram.
  • the communication system may also include other equipment, such as core network equipment, wireless relay equipment, and wireless backhaul equipment, which are not shown in FIG. 5.
  • the core network equipment and the network equipment can be separate and different physical equipment, or they can integrate the functions of the core network equipment and the logical functions of the network equipment on the same physical equipment, or it can be a physical equipment that integrates part of the core network.
  • the terminal device can be a fixed location, or it can be movable.
  • the embodiment of the present application does not limit the number of terminal equipment, core network equipment, radio access network equipment, and terminal equipment included in the communication system.
  • the communication system 500 is in a single carrier scenario or a carrier aggregation (CA) scenario.
  • the communication system 500 includes a network device 510 and a terminal device 520.
  • the network device 510 and the terminal device 520 communicate through a wireless network.
  • the terminal device 520 After detecting that the link between the network device 510 and the terminal device 520 fails, the terminal device 520 sends a BFRQ to the network device 510.
  • the network device 510 sends a beam failure recovery response (BFRR) or reconfigures the link to the terminal device 520.
  • BFRR beam failure recovery response
  • the network device 510 in FIG. 5 may include one or more cells.
  • the first cell can assist the second cell in link recovery.
  • the terminal device can be The BFRQ information is sent to the network device on the uplink resource belonging to the first cell, and the terminal device may receive the BFRR information sent by the network device on the downlink resource belonging to the second cell.
  • the terminal device 520 When the transmission direction of the communication system 500 is uplink transmission, the terminal device 520 is the sending end and the network device 510 is the receiving end. When the transmission direction of the communication system 500 is downlink transmission, the network device 510 is the sending end and the terminal device 520 is the receiving end. end.
  • Fig. 6 is a communication system 600 applicable to the present application.
  • the communication system 600 is in a scenario of dual connectivity (DC) or coordinated multipoint transmission/reception (CoMP).
  • the communication system 600 includes a network device 610, a network device 620, and a terminal device 630.
  • the network device 610 is a network device when the terminal device 630 initially accesses, and is responsible for RRC communication with the terminal device 630.
  • the network device 620 is added during RRC reconfiguration to provide additional wireless resources.
  • the terminal device 630 configured with carrier aggregation is connected to the network device 610 and the network device 620.
  • the link between the network device 610 and the terminal device 630 may be referred to as the first link, and the link between the network device 620 and the terminal device 630 The link can be called the second link.
  • the terminal device 630 can be used for transmitting BFRQ in the uplink.
  • the resource sends a BFRQ to the network device 610 or the network device 620, and after receiving the BFRQ, the network device 610 or the network device 620 sends a BFRR to the terminal device 630.
  • the terminal device 630 can restore the second link through the network device 610.
  • the above-mentioned communication system applicable to this application is only an example, and the communication system applicable to this application is not limited to this.
  • the number of network equipment and terminal equipment included in the communication system may also be other numbers, or a single base station or multiple carriers may be used.
  • the technical solutions in the embodiments of the present application may be applicable to situations where the primary cell (Pcell) is high frequency or low frequency, and the secondary cell (Scell) is high frequency or low frequency.
  • Pcell primary cell
  • Scell secondary cell
  • the uplink resources of Pcells can be used to assist Scells in restoring the link.
  • low frequency and high frequency are relative terms, but also can be divided by a certain frequency, such as 6GHz.
  • the technical solutions of the embodiments of the present application can also be applied to coordinated multipoint transmission/reception (CoMP) scenarios, where one TRP assists another TRP to restore the link.
  • the CoMP can be one or more scenarios of non-coherent joint transmission (NCJT), coherent joint transmission (CJT), and joint transmission (JT).
  • NCJT non-coherent joint transmission
  • CJT coherent joint transmission
  • JT joint transmission
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal equipment can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., which are not limited in the embodiment of the present application.
  • PLMN public land mobile network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to pass items through communication technology. Connect with the network to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the IOT technology can achieve massive connections, deep coverage, and power saving of the terminal through, for example, narrowband NB technology.
  • the terminal device may also be a terminal device in the Internet of Vehicles system.
  • the terminal equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves. , To transmit uplink data to network equipment.
  • the network device in the embodiment of the application may be a device used to communicate with terminal devices.
  • the network device may be a global system for mobile communications (GSM) system or code division multiple access (CDMA)
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base transceiver station (BTS) in the LTE system can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station (evolved) in the LTE system.
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • evolved evolved base station
  • NodeB, eNB, or eNodeB it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and the future
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • the network device in the embodiment of the present application may be a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal to the wireless network.
  • RAN nodes are: base station, next-generation base station gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), home base station, baseband unit (BBU) , Or the access point (AP) in the WiFi system.
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • CU centralized unit
  • DU distributed unit
  • FIG. 7 is an example diagram of a communication system provided by an embodiment of this application. As shown in Figure 7, the base station and the terminal equipment 1 to the terminal equipment 6 form a communication system. In this communication system, the terminal equipment 1-terminal equipment 6 can send uplink data to the base station, and the base station receives the uplink data sent by the terminal equipment 1-terminal equipment 6.
  • the base station may also send downlink data to terminal equipment 1-terminal equipment 6, and terminal equipment 1-terminal equipment 6 receive the downlink data.
  • the terminal device 4 to the terminal device 6 may also form a communication system.
  • the terminal device 5 can receive the uplink information sent by the terminal device 4 or the terminal device 6 and the downlink information sent by the terminal device 5 to the terminal device 4 or the terminal device 6.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • the network equipment and the terminal equipment can communicate through a licensed spectrum, or communicate through an unlicensed spectrum, or communicate through a licensed spectrum and an unlicensed spectrum at the same time.
  • Network equipment and terminal equipment can communicate through a frequency spectrum below 6 GHz (gigahertz, GHz), communicate through a frequency spectrum above 6 GHz, and communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • the time-domain symbols may be orthogonal frequency division multiplexing (OFDM) symbols, or single carrier-frequency division multiplexing (SC-FDM) symbols. symbol. Unless otherwise specified, the symbols in the embodiments of the present application refer to time-domain symbols.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single carrier-frequency division multiplexing
  • PDSCH, PDCCH, and PUSCH are just examples of downlink data channels, downlink control channels, and uplink data channels.
  • data channels and control channels may be used as examples.
  • FIG. 8 is a flowchart of a beam failure detection method provided by an embodiment of the application. As shown in Figure 8, the method may include:
  • the terminal device determines the first cell group.
  • the terminal device determining the first cell group can be understood as the terminal device determining the first cell group according to spatial related parameter information.
  • spatial related parameter information in this application can be replaced with “spatial related parameter”, “spatial information” or “spatial parameter information”.
  • the terminal device may divide M cells according to space-related parameter information to determine at least one cell group, where M is an integer greater than or equal to 2.
  • the first cell group may refer to any cell group among the divided cell groups. This embodiment takes the first cell group as an example for description.
  • the first cell group may include N cells, where N is an integer greater than or equal to 2.
  • the M cells may be all the cells configured by the network equipment to the terminal equipment; or, the M cells may be all the secondary cells configured by the network equipment to the terminal equipment; or, the M cells may be all the cells indicated to the terminal equipment by the network equipment.
  • Cells that require beam failure detection and/or beam failure recovery; or, M cells are all secondary cells that need to be beam failure detection and/or beam failure recovery indicated by the network device to the terminal device; or, M cells are the network The device configures all cells with beam failure detection parameters or beam failure recovery parameters for the terminal device; or, M cells are all secondary cells for which the network device configures the beam failure detection parameters or beam failure recovery parameters for the terminal device.
  • the N cells may include a primary cell and a secondary cell.
  • the N cells may include only secondary cells. It should be understood that “including only secondary cells” means “including secondary cells but not primary cells”.
  • the first cell group according to the spatial related parameter information
  • at least two of the N cells are associated with the same spatial related parameter information.
  • any two cells in the N cells are associated with the same spatial related parameter information.
  • each of the N cells is associated with the same spatial related parameter information.
  • the spatial related parameter information may refer to QCL information
  • the terminal device may determine the first cell group according to the QCL information.
  • the QCL information may be type D QCL information.
  • the QCL information may be Type A QCL information.
  • the QCL information may be Type D and Type A QCL information.
  • the two cells are divided into a cell group.
  • the QCL information of the control resource set of each cell in a cell group is the same.
  • the control resource set of a cell may refer to the control resource set on all bandwidth parts (Bandwidth parts, BWP) of a cell.
  • BWP Bandwidth parts
  • the control resource set of a cell may refer to the control resource set on the activated BWP of a cell.
  • the QCL information of the control resource set of a cell means that the terminal device detects the PDCCH (or DCI) on the control resource set of the cell according to the QCL information.
  • the cell is called the target cell
  • the PDCCH on the control resource set is called the target signal
  • the QCL information indicates a source reference signal resource
  • the terminal device uses the same or similar spatial parameters as the source reference signal resource to receive or decode Adjust the target signal on the target cell.
  • the same QCL information may mean that the QCL information indicated by the transmission indication status is the same.
  • the QCL information may include reference signal resource index and QCL type.
  • the QCL information may also include one or more of the cell index and the BWP identifier.
  • the cell index indicates the cell where the reference signal resource corresponding to the reference signal resource index is located, and the BWP identifier indicates the location of the BWP of the cell.
  • the reference signal resource indicated by the QCL information is on the target cell by default.
  • the same QCL information may mean that the reference signal resource indexes included in the QCL information are the same.
  • the same QCL information can also mean that the cell index is the same, the BWP identifier is the same, and the QCL type is the same.
  • the QCL information is the same, which may mean that the frequency domain positions of the reference signal resources indicated by the QCL information are the same.
  • the QCL information is the same, which may mean that the reference signal resources indicated by the QCL information are the same.
  • the same reference signal resource may mean that the reference signal resource index is the same, the cell where the reference signal resource is located is the same, and the BWP is the same.
  • the terminal device may determine a cell with the same QCL information of the control resource set as the first cell group. It should be understood that the manner in which the terminal device determines the first cell group may be one of the following manners.
  • the terminal device may determine at least two cells with the same QCL information as the at least one control resource set as the first cell group.
  • the first cell group includes N cells, and N is an integer greater than or equal to 2.
  • Manner 1 The terminal device determines at least two cells with the same QCL information as the first cell group. In other words, at least two of the N cells are associated with the same QCL information.
  • CC#x-CORESET#a-QCL ⁇ #b For the convenience of description, use CC#x-CORESET#a-QCL ⁇ #b to indicate the configuration relationship.
  • CC#x includes CORESET#a, and the QCL information of CORESET#a is QCL information #b. That is to say, there is a CORESET marked a on the CC marked x, and the QCL information corresponding to the CORESET marked a is the TCI state marked b.
  • the network equipment is configured for the terminal equipment CC#1, CC#2, and CC#3, all the CORESETs contained in these three CCs and their corresponding QCL information are configured as follows.
  • the network device is configured to the terminal devices CC#1, CC#2, and CC#3, and all the CORESETs contained in these three CCs and their corresponding QCL information are configured as follows.
  • CC#1 has one CORESET#1, CORESET#2, and CORESET#3.
  • the QCL information of CORESET#1 is QCL information #1
  • the QCL information of CORESET#2 is QCL information #2
  • the QCL information of CORESET#3 is QCL information #3.
  • CC#2 has CORESET#5.
  • the QCL information of CORESET#5 is QCL information #1.
  • CC#3 has CORESET#6.
  • the QCL information of CORESET#6 is QCL information#2.
  • CC1 #1, CC#2 and CC#3 are grouped together.
  • Manner 2 The terminal device determines any two cells with the same QCL information as the first cell group. In other words, any two cells among the N cells are associated with the same QCL information.
  • the network device is configured to the terminal devices CC#1, CC#2, and CC#3, and all the CORESETs contained in these three CCs and their corresponding QCL information are configured as follows.
  • CC#1 has a CORESET#1 and CORESET#2.
  • the QCL information of CORESET#1 is QCL information #1
  • the QCL information of CORESET#2 is QCL information #2
  • CC#2 has CORESET#5 and CORESET#6.
  • the QCL information of CORESET#5 is QCL information #2
  • the QCL information of CORESET#6 is QCL information #3.
  • CC#3 has CORESET#3 and CORESET#7.
  • the QCL information of CORESET#3 is QCL information #1
  • the QCL information of CORESET#7 is QCL information #3.
  • QCL information #2 of CC#1 and QCL information #2 of CC#2 indicate the same QCL information
  • QCL information #1 of CC#1 and QCL information #1 of CC#3 indicate the same QCL information
  • the CC QCL information #3 of #2 and QCL information #3 of CC#3 indicate the same QCL information, so CC1#1, CC#2, and CC#3 are grouped together.
  • Manner 3 The terminal device determines all cells with the same QCL information as the first cell group. In other words, each of the N cells is associated with the same QCL information.
  • the network device is configured to the terminal devices CC#1, CC#2, and CC#3, and all the CORESETs contained in these three CCs and their corresponding QCL information are configured as follows.
  • CC#1 has a CORESET#1 and CORESET#2.
  • the QCL information of CORESET#1 is QCL information #1
  • the QCL information of CORESET#2 is QCL information #2.
  • CC#2 has CORESET#5 and CORESET#6.
  • the QCL information of CORESET#5 is QCL information #2
  • the QCL information of CORESET#6 is QCL information #3.
  • CC#3 has CORESET#3 and CORESET#7.
  • the QCL information of CORESET#3 is QCL information #1
  • the QCL information of CORESET#7 is QCL information #3.
  • QCL information #2 of CC#1 and QCL information #2 of CC#2 indicate the same QCL information
  • QCL information #1 of CC#1 and QCL information #1 of CC#3 indicate the same QCL information.
  • the QCL information #3 of CC#2 and QCL information #3 of CC#3 indicate the same QCL information.
  • the QCL of any two CCs can be the same, there is no space-related parameter information in each cell. Exist, therefore, CC1#1, CC#2, CC#3 cannot be grouped together. Only two of the CCs can be divided into a cell group, and the other CC is a cell group by itself. Optionally, at this time, it can be grouped from small to large according to the CC index. For example, CC#1 and CC#2 are all associated with QCL information #2 to form group #1, and CC#3 is not associated with QCL information #2 to form group # 2.
  • the terminal device may determine one or more cells associated with the same spatial related parameter information as the first cell group. It should be understood that each of the N cells is associated with the same spatial related parameter information. The specific implementation manner of associating each cell in the first cell group with the same space-related parameter information will be described in detail below.
  • the terminal device may determine the cells with the same QCL information set as the first cell group.
  • the QCL information sets of any two cells in the first cell group are the same.
  • any QCL information set is a set of QCL information of all control resource sets of the corresponding cell.
  • the QCL information sets of all cells in the first cell group are the same.
  • any QCL information set is a set of QCL information of all control resource sets of the corresponding cell.
  • CC#x-CORESET#a-QCL ⁇ #b For the convenience of description, use CC#x-CORESET#a-QCL ⁇ #b to indicate the configuration relationship.
  • CC#x includes CORESET#a, and the QCL information of CORESET#a is QCL information #b. That is to say, there is a CORESET marked a on the CC marked x, and the QCL information corresponding to the CORESET marked a is the TCI state marked b.
  • the network equipment is configured for the terminal equipment CC#1, CC#2, and CC#3, all the CORESETs contained in these three CCs and their corresponding QCL information are configured as follows.
  • the network device is configured to the terminal devices CC#1 and CC#2, and all CORESETs contained in these two CCs and their corresponding QCL information are configured as follows.
  • CC#1 has a CORESET#1, the QCL information of CORESET#1 is QCL information #1; CC#2 has CORESET#2, and the QCL information of CORESET#2 is QCL Message #2.
  • QCL information #1 and QCL information #2 indicate the same QCL information, then CC1#1 and CC#2 are grouped together.
  • CC#1 has a CORESET#1, the QCL information of CORESET#1 is QCL information #1 and QCL information #2; CC#2 has CORESET#2, The QCL information of CORESET#2 is QCL information #1 and QCL information #2.
  • CC1 #1 and CC#2 are grouped together.
  • the network device is configured to the terminal devices CC#1, CC#2, and CC#3, and all the CORESETs contained in these three CCs and their corresponding QCL information are configured as follows.
  • CC#1 has CORESET#1 and CORESET2, the QCL information of CORESET#1 is QCL information #1, and the QCL information of CORESET#2 is QCL information #2.
  • CC#2 has CORESET#3 and CORESET4, the QCL information of CORESET#3 is QCL information #1, and the QCL information of CORESET#4 is QCL information #2.
  • CC#3 has CORESET#5, CORESET6 and CORESET7, the QCL information of CORESET#5 is QCL information #1, the QCL information of CORESET#6 is QCL information #2, and the QCL information of CORESET#7 is QCL information #3 .
  • QCL information #1 indicates the same QCL information, which is different from other QCL information
  • CC#1’s QCL information #2, CC# QCL information #2 of 2 and QCL information #2 of CC#3 indicate the same QCL information and different from other QCL information
  • QCL information #3 of CC#3 is different from other QCL information. Since the QCL information of CC1#1 and CC#2 are completely the same, and the QCL information #3 of CC#3 is different from other CCs, CC#1 and CC#2 are grouped into one group, and CC#3 is another group.
  • the terminal device may determine a cell with at least one same QCL information as the first cell group. In other words, at least one piece of the same QCL information exists in all cells in the first cell group.
  • the at least one identical QCL information is QCL information of at least one control resource set of the corresponding cell.
  • the existence of at least one identical QCL information in all cells in the first cell group means that there is at least one identical QCL information among cells in the first cell group.
  • At least one piece of QCL information of the control resource set of each cell in the first cell group is completely the same.
  • One cell can be configured with at least one control resource set, and one control resource set can include at least one piece of QCL information.
  • the QCL information corresponding to one CORESET of one cell is the same as the QCL information corresponding to one CORESET of another cell.
  • the network device is configured to the terminal devices CC#1 and CC#2, and all the CORESETs contained in these two CCs and their corresponding QCL information configurations are shown in Figure 14. If the QCL information indicated by QCL information #1 of CC#1 and QCL information #1 of CC#2 are the same, and the QCL information indicated by QCL information #2 of CC#1 and QCL information #3 of CC#2 are not the same. Since QCL information #1 of CC#1 and QCL information #1 of CC#2 indicate the same QCL information, CC#1 and CC#2 can be grouped together.
  • the network device is configured to the terminal devices CC#1, CC#2, and CC#3, and all the CORESETs contained in these three CCs and their corresponding QCL information configurations are shown in Figure 15. If CC#1’s QCL information #1, CC#2’s QCL information #1, CC#3’s QCL information #1 indicates the same QCL information, which is different from other QCL information; CC#1’s QCL information #2, CC# QCL information #2 of 2 and QCL information #2 of CC#3 indicate the same QCL information and different from other QCL information; QCL information #3 of CC#3 is different from other QCL information.
  • the QCL information #2 of CC#1 and QCL information #2 of CC#2 are the same.
  • the QCL information indicated by QCL information #2 of CC#3 is the same, so CC#1, CC#2, and CC#3 are grouped into one group.
  • the network device is configured to the terminal devices CC#1, CC#2, and CC#3, and all the CORESETs contained in these three CCs and their corresponding QCL information configurations are shown in Figure 16.
  • CC#1 has CORESET#1, and the QCL information of CORESET#1 is QCL information #1.
  • CC#2 has CORESET#2, and the QCL information of CORESET#2 is QCL information #1 and QCL information #3.
  • CC#3 has CORESET#3, and the QCL information of CORESET#3 is QCL information #2 and QCL information #3.
  • QCL information #1 of CC#1 and QCL information #1 of CC#2 indicate the same QCL information, which is different from other QCL information;
  • QCL information #3 of CC#2 indicates the same QCL information, which is different from other QCL information;
  • the QCL information #2 and QCL information #3 of CC#3 are different from other QCL information. Since the QCL information #1 of CC1#1 and CC#2 are exactly the same, CC#1 and CC#2 are grouped into one group. Since CC#3 does not include QCL information #1, CC#3 cannot be grouped with CC#1 and CC#2.
  • the terminal device may determine a cell having at least one control resource set with the same TCI state as the first cell group.
  • each cell in the first cell group includes at least one control resource set, where all QCL information in the at least one control resource set included in all cells is the same.
  • there is at least one control resource set group in the first cell group wherein any control resource set group in the at least one control resource set group includes at least one control resource set group of each cell in the first cell group
  • the control resource set, and the QCL information of all control resource sets included in any control resource set group is the same.
  • the QCL information of at least one control resource set of each cell in the first cell group is the same.
  • One cell can be configured with at least one control resource set, and one control resource set can include at least one piece of QCL information. If the QCL information of the control resource set of one cell is the same as the QCL information of the control resource set of another cell, the two cells are divided into a cell group.
  • the network device is configured to the terminal devices CC#1, CC#2, and CC#3, and all the CORESETs contained in these three CCs and their corresponding QCL information configurations are shown in Figure 17.
  • CC#1 has CORESET#1
  • the QCL information of CORESET#1 is QCL information #1 and QCL information #2.
  • CC#2 has CORESET#2 and CORESET3, the QCL information of CORESET#2 is QCL information #1 and QCL information #2, and the QCL information of CORESET#3 is QCL information #3.
  • CC#3 has CORESET#4, CORESET5 and CORESET6, the QCL information of CORESET#4 is QCL information #1 and QCL information #2, the QCL information of CORESET#5 is QCL information #2, and the QCL information of CORESET#6 It is QCL information #3.
  • QCL information #1 indicates the same QCL information, which is different from other QCL information
  • CC#1’s QCL information #2, CC# QCL information #2 of 2 and QCL information #2 of CC#3 indicate the same QCL information, which is different from other QCL information
  • QCL information #3 of CC#2 is different from other QCL information
  • QCL information #3 of CC#3 It is different from other QCL information. Since the QCL information of CORESET#1, CORESET#2, and CORESET#4 corresponding to CC1#1, CC#2, and CC#3 are exactly the same, CC#1, CC#2, and CC#3 are grouped together.
  • the network device is configured to the terminal devices CC#1, CC#2, and CC#3, and all the CORESETs contained in these three CCs and their corresponding QCL information configurations are shown in Figure 18.
  • CC#1 has CORESET#1, and the QCL information of CORESET#1 is QCL information #1 and QCL information #1.
  • CC#2 has CORESET#2 and CORESET3, the QCL information of CORESET#2 is QCL information #1 and QCL information #2, and the QCL information of CORESET#3 is QCL information #3.
  • CC#3 has CORESET#4, CORESET5 and CORESET6, the QCL information of CORESET#4 is QCL information #1, the QCL information of CORESET#5 is QCL information #2, and the QCL information of CORESET#6 is QCL information #3 .
  • QCL information #1 indicates the same QCL information, which is different from other QCL information
  • CC#1’s QCL information #2, CC# QCL information #2 of 2 and QCL information #2 of CC#3 indicate the same QCL information, which is different from other QCL information
  • QCL information #3 of CC#2 is different from other QCL information
  • QCL information #3 of CC#3 It is different from other QCL information. Since the QCL information of CORESET#1 and CORESET#2 corresponding to CC1#1 and CC#2 are exactly the same, CC#1 and CC#2 are grouped into one group.
  • CC#3 cannot be the same as CC#1 and CC#1.
  • CC#2 is divided into one group.
  • the spatial related parameter information may be a TCI state
  • the terminal device may determine the first cell group according to the TCI state.
  • the two cells are divided into a cell group.
  • the transmission configuration indication state of the control resource set of each cell in a cell group is the same.
  • the control resource set of a cell may refer to the control resource set on all bandwidth parts (Bandwidth parts, BWP) of a cell.
  • BWP Bandwidth parts
  • the control resource set of a cell may refer to the control resource set on the activated BWP of a cell.
  • the TCI state of the control resource set of a cell means that the terminal device detects the PDCCH (or called DCI) on the control resource set of the cell according to the TCI state.
  • the cell is called the target cell
  • the PDCCH on the control resource set is called the target signal
  • the TCI state indicates a source reference signal resource.
  • the terminal device uses the same or similar spatial parameters as the source reference signal resource to receive or decode Adjust the target signal on the target cell.
  • the same TCI state may mean that the QCL information indicated by the TCI state is the same.
  • the QCL information may include reference signal resource index and QCL type.
  • the QCL information may also include one or more of the cell index and the BWP identifier.
  • the cell index indicates the cell where the reference signal resource corresponding to the reference signal resource index is located, and the BWP identifier indicates the location of the BWP of the cell.
  • the reference signal resource indicated by the QCL information is on the target cell by default.
  • At least two of the N cells are associated with the same TCI state.
  • any two cells among the N cells are associated with the same TCI state.
  • each of the N cells is associated with the same TCI state.
  • the TCI state sets of any two cells in the first cell group are the same.
  • Any TCI state set is a set of TCI states of all control resource sets of the corresponding cell.
  • all cells in the first cell group have at least one same TCI state.
  • At least one identical TCI state is the TCI state of at least one control resource set of the corresponding cell.
  • each cell in the first cell group includes at least one control resource set, where all TCI states in the at least one control resource set included in all cells are the same.
  • there is at least one control resource set group in the first cell group wherein any control resource set group in the at least one control resource set group includes at least one control resource set group of each cell in the first cell group The control resource set, and the TCI state of all control resource sets included in any control resource set group is the same.
  • TCI state can be replaced with QCL information, and the specific explanation can be a parameter of the above description of the QCL information, and will not be repeated.
  • control resource set in each embodiment of the present application can be replaced with BFD RS, and the specific explanation can be a parameter of the above description of the QCL information, and will not be repeated.
  • S802 The terminal device performs beam failure detection on the first cell group according to the first parameter of the first cell group.
  • the first parameter of the first cell group is a beam failure detection parameter of the first cell group.
  • the terminal device may determine the first parameter of the first cell group according to the beam failure detection parameters of the cells in the first cell group.
  • the beam failure detection parameters include at least one of a beam failure detection reference signal resource, a maximum number of beam failure cases, a beam failure detection timer, and a beam failure case indication period.
  • the first parameter may refer to at least one of a beam failure detection reference signal resource, a maximum number of beam failure cases, a beam failure detection timer, and a beam failure case indication period.
  • beam failure detection for the first cell group according to the first parameter may also be described as “beam failure detection for the first cell group according to the first parameter”.
  • Rule 1 The terminal device can determine the first parameter according to the subcarrier interval.
  • the terminal device may determine the first parameter according to the maximum value of the subcarrier spacing. It should be understood that the terminal device determines the beam failure detection parameter of the cell with the largest subcarrier interval in the first cell group as the first parameter.
  • the first parameter is the beam failure detection parameter of the cell with the largest subcarrier spacing in the first cell group.
  • the first parameter includes at least one of a beam failure detection reference signal resource, a maximum number of beam failure cases, a beam failure detection timer, and a beam failure case indication period.
  • Determining the beam failure detection parameter of the cell with the largest subcarrier spacing in the first cell group as the first parameter may be understood to include one or more of the following:
  • the beam failure detection reference signal resource of the cell with the largest subcarrier spacing is determined as the beam failure detection reference signal resource of the first cell group.
  • the maximum number of beam failure cases of the cell with the largest subcarrier spacing is determined as the maximum number of beam failure cases of the first cell group.
  • the beam failure detection timer of the cell with the largest subcarrier interval is determined as the beam failure detection timer of the first cell group.
  • the beam failure case indication period of the cell with the largest subcarrier spacing is determined as the beam failure case indication period of the first cell group.
  • Rule 2 The terminal device can determine the first parameter according to the cell identity.
  • the terminal device may determine the first parameter according to the minimum value of the cell identity. It should be understood that the terminal device determines the beam failure detection parameter of the cell with the smallest cell identity among all the cells in the first cell group as the first parameter.
  • the first parameter is the beam failure detection parameter of the cell with the smallest cell identity in the first cell group.
  • the first parameter includes at least one of a beam failure detection reference signal resource, a maximum number of beam failure cases, a beam failure detection timer, and a beam failure case indication period.
  • the beam failure detection parameter of the cell with the smallest cell identifier among all the cells in the first cell group is the first parameter, which may be understood to include one or more of the following:
  • the beam failure detection reference signal resource of the cell with the smallest cell identity is determined as the beam failure detection reference signal resource of the first cell group.
  • the maximum number of beam failure cases of the cell with the smallest cell identity is determined as the maximum number of beam failure cases of the first cell group.
  • the beam failure detection timer of the cell with the smallest cell identity is determined as the beam failure detection timer of the first cell group.
  • the beam failure case indication period of the cell with the smallest cell identity is determined as the beam failure case indication period of the first cell group.
  • Rule 3 The terminal device can determine the first parameter according to the maximum number of beam failure cases.
  • the terminal device may determine the first parameter according to the minimum value of the maximum number of beam failure cases. It should be understood that the terminal device determines the beam failure detection parameter of the cell with the smallest maximum number of beam failure cases among all the cells in the first cell group as the first parameter.
  • the first parameter may be a beam failure detection parameter of the cell with the maximum number of beam failure cases and the minimum value. It should be understood that the value of the maximum number of beam failure cases of the first cell group is the minimum value of the maximum number of beam failure cases of all cells in the first cell group.
  • the first parameter may further include at least one of a beam failure detection reference signal resource, a beam failure detection timer, and a beam failure case indication period.
  • the beam failure detection parameter of the cell with the smallest number of beam failure cases among all the cells in the first cell group is regarded as the first parameter, which may be understood to include one or more of the following contents:
  • the beam failure detection reference signal resource of the cell with the smallest number of beam failure cases is determined as the beam failure detection reference signal resource of the first cell group.
  • the beam failure detection timer of the cell with the smallest number of beam failure cases is determined as the beam failure detection timer of the first cell group.
  • the beam failure case indication period of the cell with the smallest number of beam failure cases is determined as the beam failure case indication period of the first cell group.
  • the terminal device may determine the first parameter according to the beam failure detection timer.
  • the terminal device may determine the first parameter according to the minimum value of the beam failure detection timer. It should be understood that the terminal device determines the beam failure detection parameter of the cell with the smallest beam failure detection timer among all the cells in the first cell group as the first parameter.
  • the first parameter is the beam failure detection parameter of the cell with the minimum value of the beam failure detection timer. It should be understood that the value of the beam failure detection timer of the first cell group is the minimum value of the beam failure detection timers in all cells of the first cell group.
  • the first parameter may further include at least one of a beam failure detection reference signal resource, a maximum number of beam failure cases, and a beam failure case indication period.
  • the terminal device sets the beam failure detection parameter of the cell with the smallest beam failure detection timer among all the cells in the first cell group as the first parameter, which may be understood as including one or more of the following content:
  • the beam failure detection reference signal resource of the cell with the smallest beam failure detection timer is determined as the beam failure detection reference signal resource of the first cell group.
  • the maximum number of beam failure cases of the cell with the smallest beam failure detection timer is determined as the maximum number of beam failure cases of the first cell group.
  • the beam failure case indication period of the cell with the smallest beam failure detection timer is determined as the beam failure case indication period of the first cell group.
  • the terminal device may determine the first parameter according to the indication mode of the beam failure detection reference signal resource.
  • the terminal device may determine the first parameter according to the implicitly indicated beam failure detection reference signal resource. It should be understood that the terminal device determines the beam failure detection parameters of the cells of the implicitly indicated beam failure detection reference signal resource among all the cells in the first cell group as the first parameter.
  • the first parameter is the implicitly indicated beam failure detection parameter of the cell of the beam failure detection reference signal resource. It should be understood that the beam failure detection reference signal resource of the first cell group is an implicitly indicated beam failure detection reference signal resource in all cells of the first cell group.
  • the so-called implicit indication may refer to the reference signal resource associated in the TCI (such as type-D QCL) indicating the PDCCH as the reference signal resource for beam failure detection.
  • the reference signal resource is the reference signal resource that satisfies the QCL relationship with the DMRS of the PDCCH , And is a periodic reference signal resource.
  • the first parameter includes at least one of a maximum number of beam failure cases, a beam failure detection timer, and a beam failure case indication period.
  • the beam failure detection parameter of the cell of the beam failure detection reference signal resource implicitly indicated in all cells in the first cell group is the first parameter, which may be understood to include one or more of the following content:
  • the maximum number of beam failure cases of the cell where the beam failure detection reference signal resource is implicitly indicated is determined as the maximum number of beam failure cases of the first cell group.
  • the beam failure detection timer of the cell where the implicitly indicated beam failure detection reference signal resource is located is determined as the beam failure detection timer of the first cell group.
  • the beam failure case indication period of the cell where the implicitly indicated beam failure detection reference signal resource is located is determined as the beam failure case indication period of the first cell group.
  • the terminal device may determine the first parameter according to the period of the beam failure detection reference signal resource.
  • the terminal device may determine the first parameter according to the minimum value of the period of the beam failure detection reference signal resource. It should be understood that the terminal device may determine the beam failure detection parameter of the cell with the smallest period of the beam failure detection reference signal resource in the first cell group as the first parameter.
  • the first parameter is the beam failure detection parameter of the cell with the smallest period of the beam failure detection reference signal resource in the first cell group.
  • all cells in the first cell group include at least one identical transmission configuration indication state.
  • the beam failure detection reference signal resource with the same transmission configuration indication state the beam failure detection reference signal resource with the smallest period is selected, and the beam failure detection parameter of the cell that configures the beam failure detection reference signal resource with the minimum period is determined to be The first parameter.
  • all cells in the first cell group include at least one same type D quasi co-location information.
  • the at least one beam failure detection reference signal resource of the same type D quasi co-location information select the beam failure detection reference signal resource of the minimum period, and configure the beam failure detection of the cell of the beam failure detection reference signal resource of the minimum period.
  • the parameter is determined as the first parameter.
  • each cell may have one or more CORESETs, each CORESET corresponds to a TCI state, and each TCI state indicates a type D QCL information to the COREST.
  • BFD RS and CORESET may satisfy a one-to-one correspondence relationship.
  • BFD RS and TCI state or type D QCL satisfy a one-to-one correspondence relationship.
  • the BFD RS and the TCI state satisfy a one-to-one correspondence.
  • BFD RS and typeD QCL satisfy a one-to-one correspondence.
  • Use the TCI state or typeD QCL corresponding to the BFD RS to receive the BFD RS.
  • the beam failure case indication period maximum ⁇ minimum BFD RS period of the same TCI, 2ms ⁇ .
  • the beam failure case can be reported when the BFD RS of the same TCI in the beam failure case indication period is less than the beam failure threshold.
  • the beam failure case indication period maximum ⁇ minimum BFD RS period of the same QCL information, 2ms ⁇ .
  • the beam failure case can be reported.
  • the beam failure detection reference signal resources of the first cell group may be beam failure detection reference signal resources corresponding to the same transmission configuration indication state or corresponding to the same QCL information in all cells of the first cell group.
  • the beam failure case indication cycle of the first cell group may be the smallest of the cycle of beam failure detection reference signal resources corresponding to the same transmission configuration indication state or corresponding to the same QCL information in all cells of the first cell group. value.
  • the beam failure case indication cycle of the first cell group may be the minimum value of the cycle of beam failure detection reference signal resources corresponding to the same transmission configuration indication state or corresponding to the same QCL information in all cells of the first cell group And the maximum value in 2ms.
  • the first parameter may further include at least one of the maximum number of beam failure cases, a beam failure detection timer, and a beam failure case indication period.
  • Determining the beam failure detection parameter of the cell with the smallest period of the beam failure detection reference signal resource in the first cell group as the first parameter may be understood to include one or more of the following content:
  • the maximum number of beam failure cases of the cell with the smallest period of the beam failure detection reference signal resource is determined as the maximum number of beam failure cases of the first cell group.
  • the beam failure detection timer of the cell with the smallest period of the beam failure detection reference signal resource is determined as the beam failure detection timer of the first cell group.
  • the type D QCL of the CORESET of CC#1 indicates the reference signal RS#1, and the BFD RS is RS#2 (the period is 5 ms).
  • the type D QCL of the CORESET of CC#2 indicates the reference signal RS#1, and the BFD RS is RS#3 (the period is 10ms).
  • the BFD RSs corresponding to the same QCL information are RS#2 and RS#3.
  • the terminal device may determine the first reference according to the indication period of the beam failure case.
  • the terminal device may determine the first parameter according to the minimum value of the beam failure case indication period. It should be understood that the terminal device determines the beam failure detection parameter of the cell with the smallest beam failure case indication period in the first cell group as the first parameter.
  • the first parameter is the beam failure detection parameter of the cell with the smallest beam failure case indication period.
  • the beam failure case indication cycle of the first cell group is the smallest beam failure case indication cycle among all the cells in the first cell group.
  • the beam failure case indication period of the first cell group may be determined according to beam failure detection reference signal resources with the same transmission configuration indication status in all cells in the first cell group.
  • the beam failure case indication period of the first cell group may be determined according to beam failure detection reference signal resources with the same quasi co-location information in all cells in the first cell group.
  • the indication period of the beam failure case may be determined according to the minimum period of the beam failure detection reference signal resource.
  • the beam failure case indication period may be the maximum value in ⁇ the minimum period of the beam failure detection reference signal resource, 2ms ⁇ .
  • the value of the beam failure case indication period of the first cell group may be the minimum value of the beam failure case indication period in all cells of the first cell group.
  • the value of the beam failure case indication period of the first cell group may be the maximum value of ⁇ the minimum value of the beam failure case indication period in all cells of the first cell group, 2ms ⁇ .
  • the first parameter may further include at least one of a beam failure detection reference signal resource, a maximum number of beam failure cases, and a beam failure detection timer.
  • Determining the beam failure detection parameter of the cell with the smallest beam failure case indication period in the first cell group as the first parameter may be understood to include one or more of the following:
  • the beam failure detection reference signal resource of the cell with the smallest beam failure case indication period is determined as the beam failure detection reference signal resource of the first cell group.
  • the maximum number of beam failure cases of the cell with the smallest beam failure case indication period is determined as the maximum number of beam failure cases of the first cell group.
  • the beam failure detection timer of the cell with the smallest beam failure case indication period is determined as the beam failure detection timer of the first cell group.
  • Rule 8 The terminal device may determine the first parameter according to the transmission configuration indication state of the control resource set.
  • the terminal device may determine the first parameter according to the minimum transmission configuration indication state set of the control resource set. It should be understood that the terminal device determines the beam failure detection parameter of the cell of the smallest set of transmission configuration indication states of the control resource set in the first cell group as the first parameter.
  • the first parameter is a beam failure detection parameter of a cell whose transmission configuration indication state is the smallest set of control resource sets in the first cell group.
  • one TCI state set of a cell is a set of TCI states of all control resource sets of the corresponding cell, and the beam failure detection parameter of the cell with the smallest TCI state set in the first cell group is determined as the first parameter.
  • the first parameter includes at least one of a beam failure detection reference signal resource, a maximum number of beam failure cases, a beam failure detection timer, and a beam failure case indication period.
  • Determining the beam failure detection parameter of the cell with the smallest TCI state set in the first cell group as the first parameter may be understood to include one or more of the following:
  • the beam failure detection reference signal resource of the cell with the smallest TCI state set in the first cell group is determined as the beam failure detection reference signal resource of the first cell group.
  • the maximum number of beam failure cases of the cell with the smallest TCI state set in the first cell group is determined as the maximum number of beam failure cases of the first cell group.
  • the beam failure detection timer of the cell with the smallest TCI state set in the first cell group is determined as the beam failure detection timer of the first cell group.
  • the beam failure case indication period of the cell with the smallest TCI state set in the first cell group is determined as the beam failure case indication period of the first cell group.
  • the terminal device may determine the first parameter according to the quasi co-location information of the control resource set.
  • the terminal device may determine the first parameter according to the minimum quasi co-location information set of the control resource set. It should be understood that the terminal device determines the beam failure detection parameter of the cell of the smallest set of quasi co-location information of the control resource set in the first cell group as the first parameter.
  • the first parameter is the beam failure detection parameter of the cell of the smallest set of quasi co-location information of the control resource set in the first cell group.
  • the first parameter includes at least one of a beam failure detection reference signal resource, a maximum number of beam failure cases, a beam failure detection timer, and a beam failure case indication period.
  • a set of quasi co-location information of a cell is the set of quasi co-location information of all control resource sets of the corresponding cell, and the beam failure detection parameter of the cell with the smallest set of quasi co-location information in the first cell group is determined as the first cell group.
  • Determining the beam failure detection parameter of the cell with the minimum value of the quasi co-location information of the control resource set in the first cell group as the first parameter may be understood to include one or more of the following:
  • the beam failure detection reference signal resource of the cell with the smallest quasi co-location information set in the first cell group is determined as the beam failure detection reference signal resource of the first cell group.
  • the maximum number of beam failure cases of the cell with the smallest set of quasi co-location information in the first cell group is determined as the maximum number of beam failure cases of the first cell group.
  • the beam failure detection timer of the cell with the smallest quasi co-location information set in the first cell group is determined as the beam failure detection timer of the first cell group.
  • the beam failure case indication period of the cell with the smallest quasi co-location information set in the first cell group is determined as the beam failure case indication period of the first cell group.
  • the type D quasi co-location information of the control resource set of CC#1 indicates the reference signals RS#1 and RS#2, the BFD RS corresponding to RS#1 is BFD RS#3, and the BFD RS corresponding to RS#2 is BFD RS#4.
  • the type D quasi co-location information of the control resource set of CC#2 indicates the reference signal RS#1, and the BFD RS corresponding to RS#1 is RS#5. Since the QCL information set of CC#2 only includes one smaller than the QCL information set of CC#1, the first parameter is the beam failure detection parameter of CC2.
  • the terminal device may determine all beam failure detection parameters of the first cell group according to the foregoing rules, or determine part of the beam failure detection parameters of the first cell group. For example: at least one of the beam failure detection reference signal resource, the maximum number of beam failure cases, the beam failure detection timer, and the beam failure case indication period.
  • the above-mentioned multiple rules for determining the first parameter can be used in combination or individually, which is not limited in this application.
  • rule one and rule two can be used in combination.
  • the beam failure detection parameter is used as the first parameter of the first cell.
  • the beam failure detection parameter may include beam failure detection reference signal resource, maximum number of beam failure cases, beam failure detection timer, and beam failure case indication period. section.
  • the beam failure detection reference signal resource of the cell with the smallest cell identity is determined as the beam failure detection reference signal resource of the first cell group.
  • the maximum number of beam failure cases of the cell with the smallest cell identity is determined as the maximum number of beam failure cases of the first cell group.
  • the beam failure detection timer of the cell with the smallest cell identity is determined as the beam failure detection timer of the first cell group.
  • the beam failure case indication period of the cell with the smallest cell identity is determined as the beam failure case indication period of the first cell group.
  • the beam failure detection parameter of the cell with the largest subcarrier spacing is used as the first parameter of the first cell.
  • the beam failure detection parameters of other cells are invalid.
  • rule one and rule three can be used in combination. For example, if the terminal device selects the cell with the largest subcarrier spacing between more than two, the terminal device can select the beam failure detection parameter of the cell with the largest number of beam failure cases from the cell with the largest spacing between the two or more subcarriers. As the first parameter.
  • rule one and rule four can be used in combination. For example, if the terminal device selects the cell with the largest subcarrier spacing between more than two, the terminal device can select the beam failure detection parameter of the cell with the smallest beam failure detection timer from the cells with the largest subcarrier spacing. Is the first parameter.
  • any two or any three of Rule 1 to Rule 9 can be used in combination or any number of them can be used in combination.
  • it is necessary to define which rule is preferentially used that is, which rule is preferentially used to select resources).
  • the priority of rule one is greater than the priority of at least one of the following rules: rule two to rule nine. For example: Rule 1 to Rule 9 exist, then Rule 1 has the highest priority.
  • the priority of rule two is greater than the priority of rule three to rule nine; or the priority of rule two is greater than the priority of any one of rule three to rule nine.
  • the priority of Rule 4 to Rule 9 may refer to the above method to set the priority level of the rule.
  • the terminal device may first select a resource according to a rule with a higher priority, and when the resource has multiple resources, select a resource from the multiple resources according to a rule with the second highest priority, and so on.
  • the terminal device determines the maximum number of beam failure cases of the first cell group according to rule three, that is, the maximum number of beam failure cases of the first cell group is the value of the maximum number of beam failure cases of all cells in the first cell group The minimum value, and the beam failure detection timer of the first cell group is determined according to Rule 4.
  • the value of the beam failure detection timer of the first cell group is the smallest of the beam failure detection timers among all the cells of the first cell group Value, and the beam failure detection reference signal resource of the first cell group is determined according to Rule 5.
  • the beam failure detection reference signal resource of the first cell group is the beam failure detection reference signal implicitly indicated in all cells of the first cell group Resource, and determine the beam failure case indication cycle of the first cell group according to Rule 7, the beam failure case indication cycle of the first cell group is the smallest beam failure case indication cycle of all cells in the first cell group and the maximum of 2ms value.
  • the terminal device and the network device may pre-define or pre-configure rule one to rule nine, and the terminal device or network device selects at least one rule from rule one to rule nine to determine the first parameter.
  • the terminal device and the network device may pre-define or pre-configure at least one rule from Rule 1 to Rule 9, and the terminal device or the network device determines the first parameter according to the stored rule.
  • This application does not determine the specific method for determining the first reference, of course, there may be other methods for determining the first parameter.
  • S803 After the terminal device determines the first parameter of the first cell group, and performs beam failure detection on the first cell group according to the first parameter of the first cell group, S803 may be performed.
  • the terminal device determines that the beam of the first cell group fails.
  • N cells in the first cell group may share a beam failure detection timer and a beam failure detection counter.
  • a beam failure detection timer For the specific beam failure detection method, please refer to the description of S101 above, and will not be repeated.
  • S804 The terminal device sends beam failure recovery request information to the network device.
  • the beam failure recovery request information may be used to indicate the cell information of the beam failure cell.
  • the terminal device may carry the beam failure recovery request information on the MAC-CE and send it to the network device.
  • the beam failure recovery request information includes at least one of the following: identification information of a cell in the first cell group and at least one reference signal resource information, and the at least one reference signal resource information is used to recover the first cell group.
  • the reference signal resource information may be a reference signal resource index used to restore a beam-failed cell, or there is no information identifying a reference signal resource used to restore a beam-failed cell.
  • the at least one reference signal resource information may also be referred to as the reference signal resource information of the cell where the beam failed to be restored.
  • the reference signal resource information of the restored beam failed cell may be the reference signal resource index of the restored beam failed cell, or the reference signal resource index of the restored beam failed cell and the reference signal resource index.
  • the channel quality information may also be the indication information of the reference signal resource of the cell where the beam recovery failed to be identified.
  • the reference signal resource of the cell where the beam recovery fails may be a CSI-RS resource, or may be an SSB resource.
  • the channel quality information of the reference signal resource may be one or more of RSRP, SINR, RSRQ, and CQI.
  • the terminal device recognizes the reference signal resource used to recover the beam failure of the cell, and can report the beam failure reference signal resource index corresponding to the cell.
  • N cells correspond to N reference signal resource information.
  • the terminal equipment reports the identification information of one cell and the reference signal resource information of the N cells.
  • the identification information of the cell is the identification of the cell or the index of the cell. This cell is the cell where the beam fails.
  • the identification information of the cell may be indication information of the identification of the beam failure cell.
  • a bitmap is used to indicate whether beam failure occurs in the cell. For example, there are a total of K cells that require beam failure detection or beam failure recovery, then K bits can be used to represent K cells, and the different value of each bit indicates that the corresponding cell has beam failure and no beam failure.
  • the i-th bit corresponds to the i-th cell. When the i-th bit is 1, it means that the i-th cell has a beam failure; when the i-th bit is 0, it means that the i-th cell does not have a beam. failure.
  • the identification information of a cell may be the cell to which the first parameter belongs.
  • the identification information of a cell may be the identification information of the cell with the smallest identification in the first cell group.
  • identification information of a cell may be replaced with "identification information of a cell group”.
  • the terminal device may select the first resource from the second resource to send the link failure recovery request information according to the foregoing method.
  • the terminal device can select the network device configuration in S104 or instruct one PUSCH resource in the PUSCH to send N repeated BFRQs (also referred to as N identical BFRQ MAC-CEs).
  • N repeated BFRQ information is independently encoded.
  • the terminal device can select the network device configuration in S104 or instruct multiple PUSCH resources in the PUSCH to send N repeated BFRQs (also referred to as N same BFRQ MAC-CE). For example, the terminal device selects 2 PUSCH resources to carry 2 MAC-CEs respectively.
  • the terminal device For Mode 1 and Mode 2, it is an optional step for the terminal device to select the PUSCH resource to send the beam failure recovery request information according to a preset rule. That is, the terminal device may not execute the terminal device to select the PUSCH resource according to the preset rule to send the beam failure recovery request information. At this time, the PUSCH resource selected by the terminal device may depend on the implementation of the terminal device.
  • the terminal device selects the PUSCH resource according to a preset rule to send the beam failure recovery request information and is referred to as the first resource for short.
  • the network device determines the first cell group.
  • the network device may determine the first cell group according to spatial related parameter information. In other embodiments, the network device first groups multiple cells, and then associates a cell group with the same spatial related parameter information.
  • the terminal device may determine at least two cells with the same QCL information as the at least one control resource set as the first cell group.
  • the terminal device determines at least two cells with the same QCL information as the first cell group. It should be understood that at least two of the N cells are associated with the same QCL information.
  • the terminal device determines any two cells associated with the same QCL information as the first cell group. It should be understood that any two cells among the N cells are associated with the same QCL information.
  • the terminal device determines any two cells associated with the same QCL information as the first cell group. It should be understood that any two cells among the N cells are associated with the same QCL information.
  • the terminal device may determine each cell associated with the same spatial related parameter information as the first cell group. It should be understood that each of the N cells is associated with the same spatial related parameter information.
  • the terminal device may determine cells with the same QCL information set as the first cell group. It should be understood that the QCL information sets of any two cells in the first cell group are the same. Any set of QCL information is a set of QCL information of all control resource sets of the corresponding cell.
  • the terminal device may determine a cell in which at least one same QCL information exists as the first cell group. At least one piece of the same QCL information exists in all cells in the first cell group.
  • the at least one identical QCL information is QCL information of at least one control resource set of the corresponding cell.
  • the terminal device may determine a cell having at least one same control resource set as the first cell group.
  • Each cell in the first cell group includes at least one control resource set, where all QCL information in the at least one control resource set included in all cells is the same.
  • the spatial related parameter information may refer to QCL information or TCI.
  • QCL information QCL information or TCI.
  • TCI TCI
  • S806 The network device receives the beam failure recovery request information.
  • this embodiment may also include other steps, such as identifying a new link and feeding back a beam failure recovery response from the network device to the terminal device.
  • steps such as identifying a new link and feeding back a beam failure recovery response from the network device to the terminal device.
  • S102, S107, and S108 please refer to the description of S102, S107, and S108, which will not be repeated.
  • the TCI status or QCL information in the embodiments of the present application may refer to the activated TCI status or the QCL information indicated by the activated TCI status.
  • the beam failure detection method since the cells with the same beam direction are grouped into a group, beam failure detection can be performed on all cells in the cell group through a beam failure recovery process, thereby effectively reducing the number of terminals.
  • the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 19 and FIG. 20 are schematic structural diagrams of possible communication devices provided by embodiments of this application. These communication devices can be used to implement the functions of the terminal device or the network device in the foregoing method embodiment, and therefore can also achieve the beneficial effects of the foregoing method embodiment.
  • the communication device may be a terminal device 520 as shown in FIG. 5, or a network device 510 as shown in FIG. 5, or a module applied to a terminal device or a network device (such as chip).
  • the communication device 1900 includes a processing unit 1910 and a transceiving unit 1920.
  • the communication device 1900 is used to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 8.
  • the transceiver unit 1920 is used to perform S804; the processing unit 1910 is used to perform S801 to S803.
  • the transceiver unit 1920 is used to perform S806; the processing unit 1910 is used to perform S805.
  • processing unit 1910 and the transceiver unit 1920 can be obtained directly with reference to the relevant description in the method embodiment shown in FIG. 8, and will not be repeated here.
  • the communication device 2000 includes a processor 2010 and an interface circuit 2020.
  • the processor 2010 and the interface circuit 2020 are coupled to each other.
  • the interface circuit 2020 can be a transceiver or an input/output interface.
  • the communication device 2000 may further include a memory 2030 configured to store instructions executed by the processor 2010 or input data required by the processor 2010 to run the instructions or store data generated after the processor 2010 runs the instructions.
  • the processor 2010 is used to perform the functions of the above-mentioned processing unit 1910, and the interface circuit 2020 is used to perform the functions of the above-mentioned transceiving unit 1920.
  • the terminal device chip When the foregoing communication device is a chip applied to a terminal device, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or antenna), and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules in the terminal device (such as a radio frequency module or antenna).
  • the antenna sends information, which is sent from the terminal device to the network device.
  • the network device chip implements the function of the network device in the foregoing method embodiment.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antennas).
  • the antenna sends information, which is sent by the network device to the terminal device.
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), and programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • register hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the network device or the terminal device.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction may be transmitted from a website, a computer, or The server or data center transmits to another website site, computer, server or data center through wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that integrates one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a digital video disc (digital video disc, DVD); and it may also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the associated objects before and after are a kind of "division” Relationship.

Abstract

公开了一种波束失败检测方法及装置,涉及通信领域,解决了单独对每个小区进行波束失败检测复杂度较高,以及造成频繁传输波束失败恢复请求信息和资源浪费的问题。该方法包括:首先,根据空间相关参数信息对多个小区进行分组,对于任意一个小区组,再根据小区组的波束失败检测参数对该小区组进行波束失败检测,小区组的波束失败检测参数可以根据小区组包含的小区的波束失败检测参数确定。

Description

一种波束失败检测方法及装置 技术领域
本申请实施例涉及通信领域,尤其涉及一种波束失败检测方法及装置。
背景技术
为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生,5G移动通信系统又称为新无线接入技术(new radio access technology,NR)系统。
在NR系统中,引入了基于波束赋形技术的信号传输机制,即通过增大天线增益来提高信号发射功率,从而补偿网络设备与终端设备间采用高频频段传输无线信号过程中无线信号的路径损耗。但是,由于在高频信道下的无线信号的绕射能力较差,可能存在无线信号被阻挡无法继续传输。为了防止无线信号被阻挡导致通信突然中断的情况发生,终端设备可以测量网络设备配置的波束失败检测参考信号(beam failure detection reference signal,BFDRS)的通信质量来确定是否发生链路失败。
通常,网络设备可以为终端设备配置多个小区(如:主小区和/或辅小区)和每个小区的波束失败检测参数,波束失败检测参数包括BFDRS、波束失败检测计时器和波束失败事例最大次数。终端设备根据波束失败检测参数对每个小区分别独立进行波束失败检测,此时,终端设备需要检测多个波束失败检测参考信号,还需要维护多个波束失败检测计时器和波束失败检测计数器,对于终端设备的实现复杂度较高。另外,若终端设备确定每个小区发生波束失败的时间不同,可能造成波束失败恢复请求信息(beam failure recovery request,BFRQ)的频繁发送,进而造成资源浪费。
发明内容
本申请提供了一种波束失败检测方法及装置,解决了单独对每个小区进行波束失败检测复杂度较高,以及造成频繁传输波束失败恢复请求信息和资源浪费的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请提供了一种波束失败检测方法,该方法可应用于终端设备,或者该方法可应用于可以支持终端设备实现该方法的通信装置,例如该通信装置包括芯片系统,方法包括:确定第一小区组,并根据第一小区组的第一参数对第一小区组进行波束失败检测。其中,第一小区组包含N个小区,N为大于或等于2的整数。应理解,N个小区中至少两个小区与同一空间相关参数信息关联。还可理解的,N个小区中每个小区与同一空间相关参数信息关联。
本申请提供的波束失败检测方法,由于将具有相同波束方向的小区分为一组,可以通过一个波束失败恢复过程对该小区组中所有小区进行波束失败检测,从而,有效地降低了终端设备对多个小区进行波束失败检测的实现复杂度;另外,通过一个MAC-CE发送多个小区的波束失败恢复请求信息,有效地节省了发送波束失败恢复请求信息的资源开销。
在一种可能的实现方式中,空间相关参数信息可以是指TCI状态,终端设备可以根据TCI状态确定第一小区组。在一些实施例中,终端设备可以将控制资源集合的TCI状态相同的小区确定为第一小区组。
在第一种可能的实现方式中,终端设备可以将与至少一个控制资源集合的TCI状态相同的至少两个小区确定为第一小区组。第一小区组内至少两个小区与至少一个TCI状态相同的具体实现方式包括以下几种:
方式一,终端设备将具有同一个TCI状态的至少两个小区确定为第一小区组。应理解,所述N个小区中至少两个小区与同一TCI状态关联。
方式二,终端设备将与同一TCI状态关联的任意两个小区确定为第一小区组。应理解,所述N个小区中任意两个小区与同一TCI状态关联。
方式三,终端设备将与同一TCI状态关联的所有小区确定为第一小区组。应理解,所述N个小区中任意两个小区与同一TCI状态关联。
在第二种可能的实现方式中,终端设备可以将与同一空间相关参数信息关联的一个或多个小区确定为第一小区组。应理解,所述N个小区中每个小区与同一空间相关参数信息关联。第一小区组内每个小区与同一空间相关参数信息关联的具体实现方式包括以下几种:
方式一,终端设备可以将具有相同TCI状态集合的小区确定为第一小区组。应理解,第一小区组中任意两个小区的TCI状态集合相同。任一个TCI状态集合为对应小区的所有控制资源集合的TCI状态的集合。
方式二,终端设备可以将存在至少一个相同的TCI状态的小区确定为第一小区组。第一小区组中所有小区存在至少一个相同的TCI状态。至少一个相同的TCI状态为对应小区的至少一个控制资源集合的TCI状态。
方式三,终端设备可以将具有至少一个相同的TCI状态的控制资源集合的小区确定为第一小区组。第一小区组中每个小区包括至少一个控制资源集合,其中,所有小区包括的至少一个控制资源集合中所有TCI状态相同。
在另一种可能的实现方式中,空间相关参数信息可以是指QCL信息,终端设备可以根据QCL信息确定第一小区组。在一些实施例中,终端设备可以将控制资源集合的QCL信息相同的小区确定为第一小区组。QCL信息可以是类型D的QCL信息或类型A的QCL信息。
在第一种可能的实现方式中,终端设备可以将与至少一个控制资源集合的QCL信息相同的至少两个小区确定为第一小区组。第一小区组内至少两个小区与至少一个QCL信息相同的具体实现方式包括以下几种:
方式一,终端设备将具有同一个QCL信息的至少两个小区确定为第一小区组。应理解,所述N个小区中至少两个小区与同一QCL信息关联。
方式二,终端设备将与同一QCL信息关联的任意两个小区确定为第一小区组。应理解,所述N个小区中任意两个小区与同一QCL信息关联。
方式三,终端设备将与同一QCL信息关联的所有小区确定为第一小区组。应理解,所述N个小区中任意两个小区与同一QCL信息关联。
在第二种可能的实现方式中,终端设备可以将与同一空间相关参数信息关联的一 个或多个小区确定为第一小区组。应理解,所述N个小区中每个小区与同一空间相关参数信息关联。第一小区组内每个小区与同一空间相关参数信息关联的具体实现方式包括以下几种:
方式一,终端设备可以将具有相同QCL信息集合的小区确定为第一小区组。应理解,第一小区组中任意两个小区的QCL信息集合相同。任一个QCL信息集合为对应小区的所有控制资源集合的QCL信息的集合。
方式二,终端设备可以将存在至少一个相同的QCL信息的小区确定为第一小区组。第一小区组中所有小区存在至少一个相同的QCL信息。至少一个相同的QCL信息为对应小区的至少一个控制资源集合的QCL信息。
方式三,终端设备可以将具有至少一个相同的控制资源集合的小区确定为第一小区组。第一小区组中每个小区包括至少一个控制资源集合,其中,所有小区包括的至少一个控制资源集合中所有QCL信息相同。
在另一种可能的实现方式中,终端设备可以根据子载波间隔确定所述第一参数。例如,第一参数为第一小区组中子载波间隔最大的小区的波束失败检测参数。
在另一种可能的实现方式中,终端设备可以根据小区标识确定所述第一参数。例如,第一参数为第一小区组中小区标识最小的小区的波束失败检测参数。
在另一种可能的实现方式中,终端设备可以根据波束失败事例最大次数确定所述第一参数。例如,第一参数为波束失败事例最大次数最小的小区的波束失败检测参数。
在另一种可能的实现方式中,终端设备可以根据波束失败检测计时器确定所述第一参数。例如,第一参数为波束失败检测计时器最小的小区的波束失败检测参数。
在另一种可能的实现方式中,终端设备可以根据波束失败检测参考信号资源的指示方式确定所述第一参数。例如,第一参数为隐式指示的波束失败检测参考信号资源所在小区的波束失败检测参数。
在另一种可能的实现方式中,终端设备可以根据波束失败检测参考信号资源的周期确定所述第一参数。例如,第一参数为最小周期的波束失败检测参考信号资源所在小区的波束失败检测参数,最小周期的波束失败检测参考信号资源对应的传输配置指示状态为N个小区的相同的传输配置指示状态,或,最小周期的波束失败检测参考信号资源对应的准共址信息为N个小区的相同的准共址信息。
在另一种可能的实现方式中,终端设备可以根据波束失败事例指示周期确定所述第一参考。例如,第一参数为波束失败事例指示周期最小的小区的波束失败检测参数。
在另一种可能的实现方式中,终端设备可以根据控制资源集合的传输配置指示状态确定所述第一参数。例如,第一参数为N个小区中控制资源集合的传输配置指示状态个数最少的小区的波束失败检测参数。或者,终端设备可以根据控制资源集合的准共址信息确定所述第一参数。例如,第一参数为N个小区中控制资源集合的准共址信息个数最少的小区的波束失败检测参数。
在另一种可能的实现方式中,波束失败检测参数包括波束失败检测参考信号资源、波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。
在另一种可能的实现方式中,第一小区组中的N个小区共用一个波束失败检测计时器和一个波束失败检测计数器。
在另一种可能的实现方式中,方法还包括:确定第一小区组波束失败;发送波束失败恢复请求信息,波束失败恢复请求信息包括以下内容中的至少一个:第一小区组内的一个小区的标识信息和至少一个参考信号资源信息,至少一个参考信号资源信息用于恢复第一小区组中至少一个小区的链路。
第二方面,本申请提供了一种波束失败检测方法,该方法可应用于网络设备,或者该方法可应用于可以支持网络设备实现该方法的通信装置,例如该通信装置包括芯片系统,方法包括:确定第一小区组,N个小区中至少两个小区与同一空间相关参数信息关联,N为大于或等于2的整数;接收波束失败恢复请求信息,波束失败恢复请求信息包括以下内容中的至少一个:第一小区组内的一个小区的标识信息和至少一个参考信号资源信息,至少一个参考信号资源信息用于恢复第一小区组中至少一个小区的链路。
本申请提供的波束失败检测方法,由于将具有相同波束方向的小区分为一组,可以通过一个波束失败恢复过程对该小区组中所有小区进行波束失败检测,从而,有效地降低了终端设备对多个小区进行波束失败检测的实现复杂度;另外,通过一个MAC-CE发送多个小区的波束失败恢复请求信息,有效地节省了发送波束失败恢复请求信息的资源开销。
在一种可能的实现方式中,空间相关参数信息可以是指TCI状态,终端设备可以根据TCI状态确定第一小区组。在一些实施例中,终端设备可以将控制资源集合的TCI状态相同的小区确定为第一小区组。
在第一种可能的实现方式中,终端设备可以将与至少一个控制资源集合的TCI状态相同的至少两个小区确定为第一小区组。第一小区组内至少两个小区与至少一个TCI状态相同的具体实现方式包括以下几种:
方式一,终端设备将具有同一个TCI状态的至少两个小区确定为第一小区组。应理解,所述N个小区中至少两个小区与同一TCI状态关联。
方式二,终端设备将与同一TCI状态关联的任意两个小区确定为第一小区组。应理解,所述N个小区中任意两个小区与同一TCI状态关联。
方式三,终端设备将与同一TCI状态关联的任意两个小区确定为第一小区组。应理解,所述N个小区中任意两个小区与同一TCI状态关联。
在第二种可能的实现方式中,终端设备可以将与同一空间相关参数信息关联的每个小区确定为第一小区组。应理解,所述N个小区中每个小区与同一空间相关参数信息关联。第一小区组内每个小区与同一空间相关参数信息关联的具体实现方式包括以下几种:
方式一,终端设备可以将具有相同TCI状态集合的小区确定为第一小区组。应理解,第一小区组中任意两个小区的TCI状态集合相同。任一个TCI状态集合为对应小区的所有控制资源集合的TCI状态的集合。
方式二,终端设备可以将存在至少一个相同的TCI状态的小区确定为第一小区组。第一小区组中所有小区存在至少一个相同的TCI状态。至少一个相同的TCI状态为对应小区的至少一个控制资源集合的TCI状态。
方式三,终端设备可以将具有至少一个相同的控制资源集合的小区确定为第一小 区组。第一小区组中每个小区包括至少一个控制资源集合,其中,所有小区包括的至少一个控制资源集合中所有TCI状态相同。
在另一种可能的实现方式中,空间相关参数信息可以是指QCL信息,终端设备可以根据QCL信息确定第一小区组。在一些实施例中,终端设备可以将控制资源集合的QCL信息相同的小区确定为第一小区组。QCL信息可以是类型D的QCL信息或类型A的QCL信息。
在第一种可能的实现方式中,终端设备可以将与至少一个控制资源集合的QCL信息相同的至少两个小区确定为第一小区组。第一小区组内至少两个小区与至少一个QCL信息相同的具体实现方式包括以下几种:
方式一,终端设备将具有同一个QCL信息的至少两个小区确定为第一小区组。应理解,所述N个小区中至少两个小区与同一QCL信息关联。
方式二,终端设备将与同一QCL信息关联的任意两个小区确定为第一小区组。应理解,所述N个小区中任意两个小区与同一QCL信息关联。
方式三,终端设备将与同一QCL信息关联的任意两个小区确定为第一小区组。应理解,所述N个小区中任意两个小区与同一QCL信息关联。
在第二种可能的实现方式中,终端设备可以将与同一空间相关参数信息关联的每个小区确定为第一小区组。应理解,所述N个小区中每个小区与同一空间相关参数信息关联。第一小区组内每个小区与同一空间相关参数信息关联的具体实现方式包括以下几种:
方式一,终端设备可以将具有相同QCL信息集合的小区确定为第一小区组。应理解,第一小区组中任意两个小区的QCL信息集合相同。任一个QCL信息集合为对应小区的所有控制资源集合的QCL信息的集合。
方式二,终端设备可以将存在至少一个相同的QCL信息的小区确定为第一小区组。第一小区组中所有小区存在至少一个相同的QCL信息。至少一个相同的QCL信息为对应小区的至少一个控制资源集合的QCL信息。
方式三,终端设备可以将具有至少一个相同的控制资源集合的小区确定为第一小区组。第一小区组中每个小区包括至少一个控制资源集合,其中,所有小区包括的至少一个控制资源集合中所有QCL信息相同。
第三方面,本申请实施例还提供了一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发单元和处理单元。所述处理单元,用于确定第一小区组,并根据第一小区组的第一参数对第一小区组进行波束失败检测。其中,第一小区组包含N个小区,N为大于或等于2的整数。应理解,N个小区中至少两个小区与同一空间相关参数信息关联。还可理解的,N个小区中每个小区与同一空间相关参数信息关联。所述收发单元,用于发送波束失败恢复请求信息,波束失败恢复请求信息包括以下内容中的至少一个:第一小区组内的一个小区的标识信息和至少一个参考信号资源信息,至少一个参考信号资源信息用于恢复第一小区组中至少一个小区的链路。这些单元可以执行上述第一 方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第四方面,本申请实施例还提供了一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,该通信装置包括:收发单元和处理单元。所述处理单元,用于确定第一小区组。所述收发单元,用于接收波束失败恢复请求信息,波束失败恢复请求信息包括以下内容中的至少一个:第一小区组内的一个小区的标识信息和至少一个参考信号资源信息,至少一个参考信号资源信息用于恢复第一小区组中至少一个小区的链路。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第六方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其它分立器件。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其它分立器件。
第十一方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方 法。
本申请中,终端设备、网络设备和通信装置的名字对设备本身不构成限定,在实际实现中,这些设备可以以其它名称出现。只要各个设备的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
附图说明
图1为一实施例提供的波束失败恢复流程的流程图;
图2为一实施例提供的波束失败检测的示意图;
图3为一实施例提供的波束失败检测的示意图;
图4为一实施例提供的波束失败检测的示意图;
图5为一实施例提供的通信系统的架构示意图;
图6为一实施例提供的通信系统的架构示意图;
图7为一实施例提供的通信系统的架构示意图;
图8为一实施例提供的波束失败检测方法流程图;
图9为一实施例提供的小区分组示意图;
图10为一实施例提供的小区分组示意图;
图11为一实施例提供的小区分组示意图;
图12为一实施例提供的小区分组示意图;
图13为一实施例提供的小区分组示意图;
图14为一实施例提供的小区分组示意图;
图15为一实施例提供的小区分组示意图;
图16为一实施例提供的小区分组示意图;
图17为一实施例提供的小区分组示意图;
图18为一实施例提供的小区分组示意图;
图19为一实施例提供的通信装置的组成示意图;
图20为一实施例提供的通信装置的组成示意图。
具体实施方式
本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
1、控制资源集合(control resource set,CORESET)
为了提高终端设备盲检控制信道的效率,NR标准制定过程中提出了控制资源集合的概念。网络设备可为终端设备配置一个或多个资源集合,用于发送物理下行控制信道(physical downlink control channel,PDCCH)。网络设备可以在终端设备对应的任一控制资源集合上,向终端设备发送控制信道。此外,网络设备还需要通知终端设备所述控制资源集合的相关联的其它配置,例如搜索空间集合等。每个控制资源集合的 配置信息存在差异,例如频域宽度差异、时域长度差异等。可扩展地,本申请中的控制资源集合可以是5G移动通信系统定义的CORESET或控制区域(control region)或增强物理下行控制信道(enhanced-physical downlink control channel,ePDCCH)集合(set)。
PDCCH所占用的时频位置可以称之为下行控制区域。在长期演进(Long Term Evolution,LTE)中,PDCCH始终位于一个子帧的前m个(m可能的取值为1、2、3和4)符号。应注意,LTE中E-PDCCH和R-PDCCH的位置未处于前m个符号。
在NR中,下行控制区域可以由无线资源控制(Radio Resource Control,RRC)信令通过控制资源集合和搜索空间集合(search space set)灵活配置:
控制资源集合可以配置PDCCH或控制信道单元(control channel element,CCE)的频域位置,时域的持续符号数等信息;
搜索空间集合可配置PDCCH的检测周期以及偏移量,在一个时隙内的起始符号等信息。
例如,搜索空间集合可配置PDCCH周期为1个时隙,而时域起始符号为符号0,则终端设备可以在每个时隙的起始位置检测PDCCH。
2、空间相关参数信息
空间相关参数信息可以是准共址(quasi-collocation,QCL)信息,还可以是空间相关信息(spatial relation)。一般来说,QCL信息用于指示下行信号(如PDCCH/PDSCH/CSI-RS/DMRS/TRS)的空间相关参数(还可以称为空间相关特性),空间相关信息用于指示上行信号(如PUCCH/PUSCH/SRS/DMRS)的空间相关参数(还可以称为空间相关特性)。
准共址,也可以称为准共站、同位置。QCL信息也可以称为QCL假设信息。QCL信息用于辅助描述终端设备接收波束赋形信息以及接收流程。
QCL信息可以用于指示两个参考信号之间的QCL关系,其中目标参考信号一般可以是解调参考信号(demodulation reference signal,DMRS),信道状态信息参考信号(channel state information reference signal,CSI-RS)等,而被引用的参考信号或者源参考信号一般可以是CSI-RS、同步信号广播信道块(synchronous signal/PBCH block,SSB)),探测参考信号(sounding reference signal,SRS)等。应理解,追踪参考信号(tracking reference signal,TRS)也是CSI-RS的一种。应理解,目标参考信号一般可以是下行信号。
具有QCL关系的天线端口对应的信号中可以具有相同的或相近的空间特性参数(或称为参数),或者,一个天线端口的空间特性参数(或称为参数),可以用于确定与该天线端口具有QCL关系的另一个天线端口的空间特性参数(或称为参数),或者,两个天线端口具有相同的或相似的空间特性参数(或称为参数),或者,两个天线端口间的空间特性参数(或称为参数)差小于某阈值。
空间相关信息用于辅助描述终端设备发射侧波束赋形信息以及发射流程。
空间相关信息用于指示两个参考信号之间的空间发送参数关系,其中目标参考信号一般是可以是DMRS,SRS等,而被引用的参考信号或者源参考信号一般可以是CSI-RS、SRS、SSB等。应理解,目标参考信号一般可以是上行信号。
应理解,满足QCL关系的两个参考信号或信道的空间特性参数是相同的(或相近的,或相似的),从而基于该源参考信号资源索引可推断出目标参考信号的空间特性参数。
还应理解,满足空间相关性信息的两个参考信号或信道的空间特性参数是相同的(或相近的,或相似的),从而基于该源参考信号资源索引可推断出目标参考信号的空间特性参数。
其中,空间特性参数包括以下参数中的一种或多种:
入射角(angle of arrival,AoA)、主(dominant)入射角AoA、平均入射角、入射角的功率角度谱(power angular spectrum,PAS)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端设备发送波束成型、终端设备接收波束成型、空间信道相关性、网络设备发送波束成型、网络设备接收波束成型、平均信道增益、平均信道时延(average delay)、时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(doppler shift)、空间接收参数(spatial Rx parameters)等。
其中,上述角度可以为不同维度的分解值,或不同维度分解值的组合。天线端口可以为具有不同天线端口编号的天线端口,和/或,具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或,具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。
这些空间特性参数描述了源参考信号与目标参考信号的天线端口间的空间信道特性,有助于终端设备根据该QCL信息完成接收侧波束赋形或接收处理过程。应理解,终端设备可以根据QCL信息指示的源参考信号的接收波束信息,接收目标参考信号;这些空间特性参数还有助于终端设备根据该空间相关信息完成发射侧波束赋形或者发射处理过程,应理解,终端设备可以根据空间相关信息指示的源参考信号的发射波束信息,发射目标参考信号。
其中,为了节省网络设备对终端设备的QCL信息指示开销,作为一种可选的实施方式,网络设备可以指示PDCCH或物理下行共享信道(physical downlink shared channel,PDSCH)的解调参考信号与终端设备之前上报的多个参考信号资源中的一个或多个是满足QCL关系的,例如,该参考信号可以是CSI-RS。这里,每一个上报的CSI-RS资源索引对应了一个之前基于该CSI-RS资源测量时建立的一个收发波束对。应理解,满足QCL关系的两个参考信号或信道的接收波束信息是相同的,该终端设备可以根据该参考信号资源索引推断出接收PDCCH或PDSCH的接收波束信息。
现有标准中定义了四种类型的QCL,网络设备可以同时给终端设备配置一个或多种类型的QCL,如QCL type A+D,C+D:
QCL types A:Doppler shift,Doppler spread,average delay,delay spread
QCL types B:Doppler shift,Doppler spread
QCL types C:average delay,Doppler shift
QCL types D:Spatial Rx parameter
当QCL关系指类型D的QCL关系时,可以认为是空域QCL。当天线端口满足空域QCL关系时,可以是下行信号的端口和下行信号的端口之间,或上行信号的端口和 上行信号的端口之间的QCL关系(上文中称为spatial relation),可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发射波束。又例如对于下行信号和上行信号间或上行信号与下行信号的端口间的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束互易性,根据下行接收波束确定上行发射波束,或根据上行发射波束确定下行接收波束。
从发送端来看,如果说两个天线端口是空域QCL的,则可以是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域QCL的,则可以是指接收端能够在同一波束方向上接收到这两个天线端口发送的信号。
具有空域QCL关系的端口上传输的信号还可以具有对应的波束,对应的波束可以包括以下至少之一:相同的接收波束、相同的发射波束、与接收波束对应的发射波束(对应于有互易的场景)、与发射波束对应的接收波束(对应于有互易的场景)。
具有空域QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送信号。空间滤波器可以为以下至少之一:预编码,天线端口的权值,天线端口的相位偏转,天线端口的幅度增益。
具有空域QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(beam pair link,BPL),对应的BPL包括以下至少之一:相同的下行BPL,相同的上行BPL,与下行BPL对应的上行BPL,与上行BPL对应的下行BPL。
因此,空间接收参数(即,类型D的QCL)可以理解为用于指示接收波束的方向信息的参数。
在本申请的举例中,某些参数的对应关系也可以应用于QCL描述下的场景。
应理解,本申请中适用于QCL假设的场景,也可以是两个参考信号,进一步或者是传输对象间的关联关系。
3、传输配置指示(transmission configuration indicator,TCI)状态(state)
TCI用于指示信号或信道的QCL信息。其中信道可以是PDCCH/CORESET或者是PDSCH。信号可以是CSI-RS、DMRS、TRS或PTRS等。TCI信息是指TCI中包括的参考信号与该信道或信号满足QCL关系,主要用于指示接收信号或信道时,其空间特性参数等信息与TCI中包括的参考信号的空间特性参数等信息相同,相似,相近。
一个TCI状态(TCI state)可以配置一个或多个被引用的参考信号,及所关联的QCL类型(QCL type)。QCL类型又可以分为A、B、C和D四个类别,分别是{Doppler shift,Doppler spread,average delay,delay spread,spatial Rx parameter}的不同组合或选择。TCI状态包括QCL信息,或者TCI状态用于指示QCL信息。
4、同步信号广播信道块(synchronous signal/物理广播信道(physical broadcast channel,PBCH)block,SS/PBCH block)
SS/PBCH block还可以称为SSB。其中,SSB包含主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和PBCH中的至少一个。主要用于小区搜索、小区同步、承载广播信息的信号。
5、小区载波相关概念
单元载波(component carrier,CC)又可以称为分量载波,组成载波,或成员载 波等。多载波聚合中的每个载波都可以称为“CC”,每个载波由一个或多个物理资源块(physical resource block,PRB)组成,每个载波上可以有各自对应的物理下行控制信道(physical downlink control channel,PDCCH),调度各自CC的物理下行共享信道(physical downlink shared channel,PDSCH);或者,有些载波没有PDCCH,此时所述载波可以进行跨载波调度,也即一个CC的PDCCH调度另一个CC的PDSCH。终端设备可以在多个CC上接收数据。
载波聚合(carrier aggregation,CA)可以是指将多个连续或非连续的单元载波聚合成更大的带宽。
主小区/主服务小区(primary cell/primary serving cell,PCell)是CA UE驻留的小区。一般情况下只有PCell才有物理上行控制信道(physical uplink control channel,PUCCH)。
辅助主小区(Primary Secondary Cell,PSCell)是主基站(master eNodeB,MeNB)通过RRC连接信令配置给DC UE的在辅基站(secondary eNodeB,SeNB)上的一个特殊辅小区。
辅小区(Secondary Cell,SCell)是指通过RRC连接信令配置给CA的终端设备的小区,工作在SCC(辅载波)上,可以为CA终端设备提供更多的无线资源。SCell可以只有下行,也可以上下行同时存在。
特殊小区(Special Cell,SpCell),对于双连接(dual connectivity,DC)场景,SpCell指主小区组(master cell group,MCG)的PCell或者辅小区组(secondary cell group,SCG)的PSCell;否则,如CA场景,SpCell指PCell。
MCG/SCG是指主基站中为终端设备提供服务的小区所在的组为主小区组。在双连接模式下,MeNB关联的一组服务小区,包括PCell和一个或多个SCell。
SCG是指辅基站中为UE提供服务的小区所在的组为辅小区组。在双链接模式下,包括PSCell和0个或者多个SCell。
MeNB是DC终端设备驻留小区所属的基站。
SeNB是MeNB通过RRC连接信令配置给DC UE的另一个基站。
6、波束(beam)
波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其它类型波束。形成波束的技术可以是波束赋形技术或者其它技术手段。波束赋形技术可以具体为数字波束赋形技术,模拟波束赋形技术,混合数字/模拟波束赋形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
波束可以分为网络设备的发送波束和接收波束,与终端设备的发送波束和接收波束。网络设备的发送波束用于描述网络设备发送侧波束赋形信息,基站接收波束用于描述网络设备接收侧波束赋形信息,终端设备的发送波束用于描述终端设备发送侧波 束赋形信息,终端接收波束用于描述终端设备接收侧波束赋形信息。也即波束用于描述波束赋形信息。
波束可以对应时间资源和/或空间资源和/或频域资源。
可选地,波束还可以与参考信号资源(例如,波束赋形的参考信号资源),或者波束赋形信息对应。
可选地,波束还可以与网络设备的参考信号资源关联的信息对应,其中参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS),SSB,解调参考信号(demodulation reference signal,DMRS)、相位跟踪信号(phase tracking reference signal,PTRS)跟踪信号(tracking reference signal,TRS)等,参考信号资源关联的信息可以是参考信号资源标识,或者QCL信息(特别是type D类型的QCL)等。其中,参考信号资源标识对应了之前基于该参考信号资源测量时建立的一个收发波束对,通过该参考信号资源索引,终端可推断波束信息。
可选地,波束还可以与空域滤波器(spatial filter或spatial domain filter)、空域传输滤波器(spatial domain transmission filter)对应。
其中,接收波束可以等价于空间传输滤波器,空域传输滤波器,空域接收滤波器,空间接收滤波器;发送波束可以等价于空域滤波器,空域传输滤波器,空域发送滤波器,空间发送滤波器。空间相关参数的信息可以等价于空间滤波器(spatial dimain transmission/receive filter)。可选地,空间滤波器一般包括空间发送滤波器,和/或空间接收滤波器。该空间滤波器还可以称之为空域发送滤波器,空域接收滤波器,空间传输滤波器,空域传输滤波器等。其中,终端设备侧的接收波束和网络设备侧的发送波束可以为下行空间滤波器,终端设备侧的发送波束和网络设备侧的接收波束可以为上行空间滤波器。
7、天线端口(antenna port)
天线端口也可以简称端口。被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号端口对应。
8、带宽区域(bandwidth part,BWP)
网络设备可为终端设备配置一个或多个下行/上行带宽区域,该BWP可以是由频域上连续的PRB组成,BWP为终端设备带宽内的一个子集。该BWP在频域上的最小粒度是1个PRB。系统可为终端设备配置一个或多个带宽区域,且所述多个带宽区域在频域上可以重叠(overlap)。
在单载波场景下,一个终端设备在同一时刻可以只有一个激活的BWP,终端设备只能在激活的BWP(active BWP)上接收数据/参考信号,或者发送数据/参考信号。
在本申请中,适用于BWP场景的情况中,特定的BWP也可以是一个特定的频率上的带宽集合,或者是多个RB组成的集合。
9、检测波束失败及恢复波束失败所配置的参考信号
为了检测波束失败,网络设备需要给终端设备指示用于波束失败检测参考信号资源(也可以称为链路失败检测参考信号资源)。波束失败检测参考信号资源可以有以下几种可能的指示方式。例如,网络设备可以给终端设备显示配置用于波束失败检测 参考信号资源集合(beam failure detection RS set)(例如,beam failure detection RS resourceconfig或beam failure detection RS或failure detection resources)(也可以称为波束失败检测参考信号资源集合)。网络设备配置波束失败检测参考信号资源集合可以通过RRC、MAC-CE、DCI信令中的一种或多种信令指示。再例如,波束失败检测的参考信号还可以通过隐式方式指示,如将指示PDCCH的TCI(如type-D QCL)中关联的参考信号资源作为波束失败检测的参考信号资源,该参考信号资源是与PDCCH的DMRS满足QCL关系的参考信号资源,且为周期的参考信号资源。可选地,当网络设备显示配置了用于波束失败检测的参考信号资源集合时,终端设备可以根据该波束失败检测参考信号资源集合检测波束失败;当网络设备没有显示配置用于波束失败检测的参考信号资源集合时,终端设备可以按照上述隐式方式指示的参考信号资源检测波束失败。
其中,波束失败检测参考信号资源集合中的RS与下行物理控制信道PDCCH的解调参考信号满足QCL关系或者与PDCCH使用相同的TCI状态,当该集合中的部分或者所有参考信号的信道质量信息(如参考信号接收功率(reference signal receiving power,RSRP),信道质量指示(channel quality indicator,CQI),块差错率(block error ratio,BLER),信号与干扰加噪声比(signal to Interference plus noise ratio,SINR),信噪比(signal noise ratio,SNR)等)低于预定门限,则判定为波束失败。其中低于预定门限可以是连续N次低于预定门限或者一定时间段内N次低于预定门限。该预定门限可以称为波束失败检测门限,还可以称为波束失败门限。应理解,只要是用于波束失败的检测的门限均可以为该预定门限,本申请不对该预定门限的名称做限定。可选的,该波束失败检测门限可以是网络设备配置的,还可以是与无线波束失败失步门限(radio link failure OOS(out of sync))相同的门限。可选地,当网络设备配置了波束失败检测门限时,使用该波束失败检测门限检测波束失败;当网络设备没有配置波束失败检测门限时,可以将无线链路失步门限作为波束失败检测门限检测波束失败。应理解,这里波束失败检测参考信号可以是用于终端检测网络设备的某一发射波束的信道质量,该发射波束是网络设备与该终端进行通信时所使用的波束。
为了恢复波束失败,网络设备还可以给终端设备指示用于恢复终端设备与网络设备链路的参考信号资源集合(candidate beam RS list或candidate beam RS identification resource或beam failure candidate beam resource或candidate beam identification RS或candidate beam list)(也可以称为候选参考信号资源集合或波束失败恢复参考信号资源集合)。波束失败后,终端设备需要从候选参考信号资源集合中选出信道质量信息(如以下一项或多项RSRP、RSRQ、CQI、SINR等)高于预定门限的参考信号资源,用于恢复通信链路。也可以理解为candidate beam identification RS用于终端设备在判断出网络设备的发射波束发生波束失败后,用于发起链路重配的参考信号集合。例如,网络设备可以给终端设备显示配置用于波束失败恢复的参考信号资源集合。网络设备配置波束失败检测参考信号资源集合可以通过RRC、MAC-CE、DCI信令中的一种或多种信令指示。用于波束失败恢复的参考信号资源集合还可以是某个默认的参考信号资源集合,(例如用于波束管理BM的参考信号资源集合,或者是用于RRM测量的参考信号资源集合,所有或部分SSB组成的参考信号资源集合,或者是复用其它功能 的某个参考信号资源集合)。其中,用于波束管理(beam management,BM)的参考信号资源集合可以是repetition标识为“off”的参考信号资源集合(还可以是repetition标识为”on”的参考信号资源集合)。可选地,当网络设备配置了候选参考信号资源集合时,在该参考信号资源集合中识别参考信号;当网络设备没有配置候选参考信号资源集合时,在该默认的参考信号资源集合中识别参考信号。该识别的参考信号可以用于恢复波束失败。可选地,该识别的参考信号的信道质量大于预设门限。
可选的,上述用于识别恢复链路的参考信号过程中的预定门限可以由网络设备配置,或者还可以是预定义的门限。例如,当网络设备没有配置该门限时,默认使用用于移动性测量的门限。该预定门限可以称为波束失败恢复门限,还可以称为链路恢复门限。应理解,只要是用于波束失败恢复的门限均可以为该预定门限,本发明不对该预定门限的名称做限定。
应理解,在具体实现中,用于波束失败检测的参考信号资源集合以及用于恢复终端设备与网络设备链路的参考信号资源集合这两个集合的名称还可以有其它叫法,本申请对此不作具体限定。
在本申请实施例中,波束失败还可以称为波束故障、链路失败、链路故障、通信失败、通信故障、通信链路失败、通信链路故障等。在本申请实施例中,这些概念是相同的含义。该通信失败可以是指用于PDCCH的波束失败检测的参考信号的信号质量小于或者等于预设门限。
在本申请实施例中,波束失败恢复也可以称为恢复网络设备与终端设备通信,波束失败恢复、波束故障恢复、波束恢复、链路失败恢复、链路故障恢复、链路恢复、通信失败恢复、通信故障恢复、通信链路失败恢复、通信链路故障恢复、通信恢复、链路重配等。
本申请实施例中,波束失败恢复请求(Beam failure recovery request,BFRQ)信息又可以称为波束故障恢复请求信息、波束恢复请求信息、链路失败恢复请求信息、链路故障恢复请求信息、链路恢复请求信息、通信失败恢复请求信息、通信故障恢复请求信息、通信恢复请求信息、通信链路失败恢复请求信息、通信链路故障恢复请求信息、通信链路恢复请求信息、链路重配请求信息、重配请求信息等。可选地,通信失败恢复请求可以是指在用于承载通信失败恢复请求的资源上发送信号。
应理解,本申请中的“信息”可以替换为“消息”。
本申请实施例中,波束失败恢复响应信息可以简称为波束失败恢复响应。波束失败恢复响应信息又可以称为波束故障恢复响应信息、波束失败响应信息、波束故障响应信息、波束恢复响应、链路失败恢复响应信息、链路故障恢复响应信息、链路失败响应信息、链路故障响应信息、链路恢复响应信息、通信失败恢复响应信息、通信故障恢复响应信息、通信失败响应信息、通信故障响应信息、通信恢复响应信息、通信链路失败恢复响应信息、通信链路故障恢复响应信息、通信链路故障响应信息、通信链路失败响应信息、通信链路响应信息、链路重配响应信息、重配响应信息等。应理解,本申请中,通信失败恢复响应信息可以简称为响应信息。
本申请实施例中,波束失败恢复响应信息可以是指在用于发送波束失败恢复响应的控制资源集合和/或搜索空间集合上接收循环冗余校验(cyclic redundancy check, CRC)由小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰的下行控制信息(downlink control information,DCI),该波束失败恢复响应信息还可以由其它信息加扰的DCI(如BFR-RNTI加扰的DCI),该波束失败恢复响应信息还可以是由上述DCI调度的数据,该波束失败恢复响应信息还可以是由上述DCI调度的数据的ACK。该波束失败恢复响应信息还可以是以下信息中的一种:小区无线网络临时标识C-RNTI加扰的DCI、调制编码方式小区特定无线网络临时标识MCS-C-RNTI加扰的DCI、专用搜索空间内的下行控制信息DCI、专用无线网络临时标识RNTI加扰的DCI、随机接入无线网络临时标识RA-RNTI加扰的DCI、包含预设状态值的DCI、包含传输配置指示TCI信息的DCI、所述发生波束失败的小区的准共址QCL指示信息或指示新传数据的DCI。本申请实施例对此并不作限定。应理解,该指示新传数据的DCI与调度承载波束失败请求信息资源的DCI具有相同的混合自动重传请求(hybrid automatic repeat request,HARQ)进程标识(process identifier),可选地,该两个DCI的新数据指示(new date indicator,NDI)不同)。应理解,当终端设备接收到波束失败恢复响应信息后,认为波束失败恢复成功。应理解,波束失败恢复成功后,终端设备可以不再发送波束失败恢复请求信息,还可以停止或重置波束失败检测的计数器,还可以停止或重置波束失败检测的计时器、还可以停止或重置波束失败恢复计数器,还可以停止或重置波束失败恢复计时器等。
应理解,本申请实施例中的波束失败、波束失败恢复、波束失败恢复请求信息和波束失败恢复响应信息的名称还可以有其它叫法,本申请对此不作具体限定。
应理解,本申请中,波束恢复失败可以理解为终端设备不再发送波束失败恢复请求信息,也可以理解为停止波束失败恢复计时器(或称为时钟)计时,也可以理解为停止波束失败恢复计数器计数等。
应理解,本申请实施例中,“波束”可以替换为“链路”。
还应理解,本申请实施例中,“小区”可以理解为“服务小区”、“载波”。
可选地,小区包括下行载波、上行(uplink,UL)载波、上行补充(supplementary uplink,SUL)载波中的至少一个。具体地,小区可以包括下行载波、上行载波;或者小区可以包括下行载波、上行补充载波;或者小区包括下行载波、上行载波、上行补充载波。
可选地,上行补充载波的载频低于上行载波,用以提高上行覆盖。
可选地,一般情况下,FDD系统中,上行载波与下行载波的载频不同;TDD系统中,上行载波与下行载波的载频相同。
还应理解,本申请实施例中,上行资源在上行载波上;下行资源在下行载波上。
还应理解,本申请实施例中,上行载波可以是正常的上行载波,还可以是补充上行(supplementary uplink,SUL)载波。
应理解,本申请实施例中的“检测”可以理解为“接收”,还可以理解为“解码”。
应理解,本申请中,时间单元可以是LTE或者5G NR系统中定义的一个或多个无线帧,一个或多个子帧,一个或多个时隙,一个或多个微时隙(mini slot),一个或多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号等,也可以是多个帧或子帧构成的时间窗口,例如系统信息(system information,SI)窗口。
在LTE系统中,最小的时间调度单元为一个1ms时间长度的传输时间间隔(transmission time interval,TTI)。5G既支持时间单元级别的时域调度粒度,也可以支持微时间单元的时域调度粒度,以及满足不同业务的时延需求。例如,时间单元主要用于eMBB业务,微时间单元主要用于URLLC业务。需要说明的是,上述时间单元和微时间单元是一般性的说法,具体的一个例子可以为,时间单元可以称为时隙,微时间单元可以称为微时隙、非时隙(non-slot-based)或迷你时隙(mini-slot);或者,时间单元可以称为子帧,微时间单元可以称为微子帧;其它类似的时域资源划分方式都不做限定。本申请所述的第一时间单元可以是指时隙或迷你时隙等。例如,一个时隙比如可以包括14个时域符号,一个迷你时隙包括的时域符号数小于14,比如2、3、4、5、6或7等等;或者,一个时隙比如可以包括7个时域符号,一个迷你时隙包括的时域符号数小于7,比如2或4等等,具体取值也不做限定。这里的时域符号可以是OFDM符号。对于子载波间隔为15千赫兹(kilohertz,kHz)的一个时隙,包括6个或7个时域符号,对应的时间长度为0.5ms;对于子载波间隔为60kHz的一个时隙,对应的时间长度则缩短为0.125ms。
应理解,本申请中,“小区标识”还可以替换为“小区索引”。
应理解,本申请实施例中,波束失败事例计数器,还可以称为波束失败事例指示计数器,还可以称为波束失败检测计数器。
应理解,本申请各实施例中,参考信号信息可以包括参考信号资源索引和/或参考信号的信道质量。其中,信道质量可以包括以下一项或多项:参考信号接收功率(reference signal receiving power,RSRP)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、参考信号接收质量(reference signal receiving quality,RSRQ)、信道质量指示(channel quality indication,CQI)、或信噪比(signal noise ratio,SNR)等。应理解,本申请各实施例中,“参考信号信息”还可以称为“参考信号资源信息”。
通信系统通常使用不同种类的参考信号:一类参考信号用于估计信道,从而可以对含有控制信息或者数据的接收信号进行相干解调;另一类用于信道状态或信道质量的测量,从而实现对终端设备的调度。终端设备基于对CSI-RS的信道质量测量得到信道状态信息CSI。所述CSI包括秩指示(Rank Indicator,RI)、预编码指示(Precoding Matrix Indicator,PMI)和信道质量指示(Channel Quality Indicator,CQI)等中的至少一种。这些CSI信息可由终端设备通过PUCCH或PUSCH发送给网络设备。
随着智能终端特别是视频业务的出现,当前的频谱资源已经难以满足用户对容量需求的爆炸式增长。具有更大的可用带宽的高频频段特别是毫米波频段,日益成为下一代通信系统的候选频段。另一方面,现代通信系统通常使用多天线技术来提高系统的容量和覆盖或者改善用户的体验,使用高频频段带来的另一个好处就是可以大大减小多天线配置的尺寸,从而便于站址获取和更多天线的部署。然而,与现有LTE等系统的工作频段不同的是,高频频段将导致更大的路径损耗,特别是大气、植被等因素的影响更进一步加剧了无线传播的损耗。
为克服上述较大的传播损耗,一种基于波束赋形技术的信号传输机制被采用,以通过较大的天线增益来补偿信号传播过程中的上述损耗。其中,波束赋形的信号可包括广播信号、同步信号和小区特定的参考信号等。
当信号基于波束赋形技术进行传输时,一旦用户发生移动,可能出现传输信号对应的赋形波束的方向不再匹配移动后的用户位置,从而接收信号频繁中断的问题。为跟踪所述信号传输过程中的赋形波束变化,一种基于波束赋形技术的信道质量测量及结果上报被引入。所述信道质量的测量可以基于波束赋形后的同步信号或小区特定参考信号。相比小区切换,用户在不同赋形波束间的切换更加动态和频繁,因此一种动态的测量上报机制被需要。可选地,类似于CSI信息的上报,所述赋形波束的信道质量结果的上报也可由终端设备通过PUCCH或PUSCH发送给网络设备。
终端设备通过对网络设备发送的多个波束进行测量选择其较优的N个波束,并将较优的N个波束测量信息上报给网络设备。波束测量信息主要包括参考信号资源索引和参考信号质量信息。参考信号质量信息可以为参考信号的接收功率(L1-reference signal received power,L1-RSRP)、参考信号的信号噪声干扰比(L1-signal to interference plus noise ratio,L1-SINR)、参考信号的信号噪声干扰比(signal to interference plus noise ratio,SINR)或参考信号的信道质量指示(channel quality indication,CQI)等参考信号的信道质量信息中的至少一个。
在下行信号的传输中,网络设备发射波束和终端接收波束均可能发生动态变化,终端设备基于接收信号确定的较优接收波束可能包括多个,为了使终端设备确定自身的接收波束,终端设备可以将多个接收波束的信息反馈给网络设备,网络设备可以通过向终端设备发送波束指示信息来向终端设备指示终端接收波束。当终端设备采用模拟域的波束赋形时,终端设备可以基于网络设备发送的波束指示信息来精确的确定终端接收波束,从而可以节省终端设备的波束扫描时间,达到省电的效果。例如,网络设备可以通过配置PDCCH的QCL信息指示终端设备所采用的接收参数。具体地,PDCCH的QCL信息配置方法如下:RRC配置PDCCH的K个候选QCL信息,如K TCI states;MAC-CE指示PDCCH的QCL信息(当K>1时)。
此外协议中还规定网络设备在没有发送RRC和MAC-CE之前,终端设备可以假设PDCCH和PDSCH的DMRS与初始接入时确定的SSB是QCL的。
但是由于在通信过程中存在遮挡,高频信道下的绕射能力差,导致当前服务的波束被阻挡,信号无法继续传输。为了防止在出现波束被阻挡的情况下,通信被突然中段,需要引入相应的机制对当前链路质量进行检测,并在发生阻挡的情况下快速恢复链路。
为了防止无线信号被阻挡导致通信突然中断的情况发生,终端设备可以测量网络设备配置的波束失败检测的参考信号的通信质量来确定是否发生波束失败。图1示出了现有技术中波束失败恢复流程的示意性流程图,如图1所示,该波束失败恢复流程包括:
S101、终端设备测量波束失败检测的参考信号资源集合,确定该终端设备与网络设备之间的波束失败。
在一些实施例中,当终端设备判断连续M次波束失败检测参考信号或者波束失败检测参考信号资源集合中所有或部分参考信号的信道质量信息小于或等于链路失败检测门限时,该终端设备可以确定该终端设备与网络设备之间的波束发生失败。具体地,可以有如下步骤:
1、终端设备测量波束失败检测参考信号资源集合内的参考信号的信道质量(也可称为“信号质量”)。为描述方便,可以将波束失败检测参考信号资源集合内的参考信号称为q0。当波束失败事例上报周期内q0中全部或部分参考信号的信道质量小于或等于链路失败检测门限时,则终端设备的物理(PHY)层会向介质访问控制(media access control,MAC)层上报波束失败事例指示信息。
其中,所述波束失败事例上报周期为物理(PHY)层向介质访问控制(media access control,MAC)层上报波束失败事例指示信息的周期。
应理解,该q0中的参考信号资源与配置该参考信号的SCell的CORESET/PDCCH满足QCL关系(波束失败检测参考信号资源与CORESET可以是一对一的关系,或者是多对一的关系,或者是一对多的关系)。例如,波束失败检测参考信号资源集合中参考信号与PDCCH的DMRS满足准共址(quasi co-location,QCL)关系或者与PDCCH具有相同的TCI状态。
2、若终端设备检测连续N次波束失败事例(也可以理解为MAC层在波束失败检测计时器运行时,收到了N个波束失败事例信息),则终端设备判定当前SCell发生波束失败。
其中,N通过波束失败检测参数(可以是RRC信令或MAC-CE信令配置的beamFailureInstanceMaxCount参数)配置。
N次波束失败事例是否连续或者说N次波束失败事例的计数,通过波束失败检测参数中的波束失败检测计时器(可以是RRC信令或MAC-CE信令配置的beamFailureDetectionTimer参数)控制。
其中,波束失败事例上报周期为q0中的周期最小的参考信号的周期和2ms中的最大值。波束失败检测计时器的长度为波束失败事例上报周期的整数倍。
终端设备会维护一个波束失败事例计数器(简称为BFI-COUNTER),该波束失败事例计数器初始值为0。如果终端设备的MAC层接收到PHY层发送的波束失败事例指示信息(beam failure instance indication),终端设备就会启动或者重启波束失败检测计时器,并且使得BFI-COUNTER加一。当BFI-COUNTER计数值大于或等于N,则确定该SCell发生波束失败。
如果波束失败检测计时器超时,或者高层信令重配了波束失败检测参数中的任何一个参数,将BFI-COUNTER置为0。如果波束失败恢复成功,也将BFI-COUNTER置为0,停止波束失败检测计时器。
波束失败检测参数包括波束失败检测参考信号资源(beam failure Detection Resources或Radio Link Monitoring RS)、波束失败事例最大次数(beam Failure Instance Max Count)N和波束失败检测计时器(beamFailureDetectionTimer)(或者称为波束失败检测计时器的时长)。示例的,如图2所示,示出了一种波束失败检测的示意图。其中,假设q0为用于一个小区的波束失败检测的参考信号资源集合。q0中的参考信号资源包括CSI-RS1(周期是5ms)和SSB1(周期是5ms),则波束失败事例(beam failure instance,BFI)指示间隔(indication interval)(或称为波束失败事例上报周期)等于5ms。用于波束失败检测的参考信号资源集合可以简称为波束失败检测参考信号资源(BFD RS)集合。该BFD RS集合可以是通过网络设备的RRC信令或MAC-CE信令 显示配置的用于波束失败检测的参考信号资源集合,还可以是通过CORESET的TCI state中的type D QCL信息指示的参考信号资源隐式获得的(也即CORESET的TCI state中的type D QCL信息指示的参考信号资源作为波束检测参考信号资源,可选地该TCI state为CORESET的激活的TCI state)。此外,网络设备可以通过RRC信令或MAC CE信令配置波束失败事例最大次数(例如,波束失败事例最大次数为3)和波束失败检测计时器。该波束失败检测计时器为波束失败事例上报周期的整数倍(例如,波束失败检测计时器等于波束失败事例上报周期)。终端设备维护一个波束失败检测计时器(BFD timer)和一个波束失败事例指示计数器(BFI counter)。当BFI counter大于或等于波束失败事例最大次数时,则确定一个小区发生波束失败。其中,波束失败事例由终端设备的物理层(PHY)上报给终端设备的介质接入控制(media access control,MAC)层。由图2可知,从10ms至25ms连续3次BFI的上报,每个BFI间隔内的CSI-RS1和SSB1的信号质量均小于第一门限,因此,终端设备根据该3次BFI确定该小区的波束失败。图中标识“X”表示该参考信号的信号质量低于第一门限。
示例的,图3示出了另一种波束失败检测的示意图。其中,假设q0为用于一个小区的波束失败检测的参考信号资源集合。q0中参考信号资源包括CSI-RS1(周期是5ms)和SSB1(周期是10ms);BFI指示间隔等于5ms。网络设备可以通过RRC信令或MAC CE信令配置波束失败事例最大次数(例如,波束失败事例最大次数为3),波束失败检测计时器,该波束失败检测计时器为波束失败事例上报周期的整数倍(例如,波束失败检测计时器等于波束失败事例上报周期)。由图3可知,从10ms至25ms连续3次BFI的上报,每个BFI间隔内的CSI-RS1和SSB1的信号质量均小于第一门限,因此,终端设备根据该3次BFI确定该小区的波束失败。图中标识“X”表示该参考信号的信号质量低于第一门限。
图2和图3的区别在于,图2中一个BFI间隔内包括了所有的波束失败检测参考信号(CSI-RS1和SSB1)。图3中一个BFI间隔内可能包括了所有的波束失败检测参考信号(如10ms至15ms),另一个BFI间隔内可能仅包括了部分的波束失败检测参考信号(如15ms至20ms)。
示例的,图4示出了一种波束失败检测示意图。
图4中的(a)所示,波束失败检测计时器等于2倍的波束失败事例上报周期(也即波束失败计时器时长为10ms),MAC层的波束失败计时器(BFD timer)在收到BFI后启动或重新启动。5ms收到BFI则重启BFD timer,BFI counter加1;在BFD timer运行期间内(5ms至15ms间)收到了BFI,则BFI counter再累加1,也即15ms时BFD counter值为2;20ms时UE MAC又收到了BFI,BFI counter的值为3,此时终端设备确定该小区发生了波束失败。
图4中的(b)所示,波束失败检测计时器等于波束失败事例上报周期(也即波束失败计时器时长为5ms),MAC层的波束失败计时器(BFD timer)在收到BFI后启动或重新启动。5ms收到BFI则重启BFD timer,BFI counter加1;在BFD timer运行期间内(5ms至10ms间)没有收到BFI,BFD timer超时,则BFI counter清0;15ms时,UE MAC收到了BFI,BFD timer重启,BFI counter加1;20ms时UE MAC又收到了BFI,BFI counter加1,值为2;25ms时UE MAC又收到了BFI,BFI counter加1,值为3,此 时终端设备确定该小区发生了波束失败。
终端设备的MAC层在波束失败检测计时器运行期间内收到BFI可以将BFI counter加1,若波束失败检测计时器运行期间内没有收到BFI将BFI counter重置/清零(也即波束失败检测计时器超时将BFI counter重置/清零)。因此对于不同取值的(或者不同时长的)波束失败计时器,其BFI coutner的计数方法略有不同。如图4中的(a)和图4中的(b)的区别在于,图4中的(a)的波束失败检测计时器等于2倍的波束失败事例上报周期。图4中的(b)的波束失败检测计时器等于波束失败事例上报周期,因此对于相同的信道情况,不同的波束失败检测计时器的取值,会有对BFI counter的计数方法,如两个图的BFI counter在某些时刻的取值不同。
应理解,本实施例中,该终端设备确定与网络设备之间在某个载波上的链路发生失败的方式并不限于以上举例,还可以由其它判断方式确定,本申请对此并不作任何限定。
应理解,终端设备确定与网络设备之间在某个载波上的波束发生失败,可以理解为,终端设备确定与网络设备之间在某个载波上的链路发生失败。
S102、终端设备识别新链路。
终端设备可以测量某个参考信号资源集合中的参考信号,识别出用于恢复终端设备与网络设备之间的链路的参考信号。一般地,该用于恢复终端设备与网络设备之间的链路的参考信号的信道质量需要大于或等于链路失败恢复门限。该参考信号可以简称为第一参考信号或new beam。该第一参考信号可以为一个参考信号或者还可以为多个参考信号。该多个参考信号可以用于恢复载波的链路。该多个参考信号中的每个参考信号可以用于恢复配置该参考信号的载波。或者,该多个参考信号可以用于恢复配置该多个参考信号的单元载波。
在一些实施例中,终端设备可以识别候选参考信号资源集合(candidate beam identification RS set)中的参考信号。终端设备可以根据该参考信号恢复链路。可选地,该识别出的参考信号的信道质量大于或等于波束失败恢复门限。终端设备识别参考信号的过程,可以理解为终端设备在候选参考信号资源集合中确定信道质量大于或者等于波束失败恢复门限的参考信号(可以简称为new identified beam或new beam);这里的确定过程可以是测量所述候选参考信号资源集合的信道质量信息确定的。
应理解,在一种可能的情况中,终端设备识别不出信道质量大于或者等于波束失败恢复门限的参考信号(new identified beam)。在另一种可能的情况中,终端设备不执行步骤S102。
S103、网络设备为终端设备配置或指示PUSCH资源。
S104、终端设备接收网络设备发送的配置或指示PUSCH资源的信息。
应理解,为描述方便,网络设备为终端设备配置的PUSCH资源简称为第二资源。
其中,具体的第二资源的指示方式可以有以下方式中的一种或多种:
方式1:终端设备发送第一请求信息请求第二资源。第二资源可以是网络设备通过uplink grant(或DCI)指示的PUSCH资源。该uplink grant(或DCI)可以是CRC由C-RNTI/MCS-C-RNTI加扰的DCI。
其中,在一种实现方式中,第一请求信息指示链路失败事件,承载在PUCCH资 源或PRACH资源上。在另一种实现方式中,第一请求信息可以用于请求上行资源,承载在PUCCH资源或PRACH资源上。第一请求信息又可以称为调度请求信息。
应理解,终端设备发送第一请求信息可以在步骤S101后执行,步骤S104前执行。
具体的,终端设备发送第一请求信息。
该第一请求信息还可以称为调度请求信息或者该第一请求信息与调度请求信息采用相同的格式。该第一请求信息可以用于请求用于承载第二请求信息的资源(简称为第二资源)。
应理解,该第二资源可以是第一请求信息的响应信息指示或激活的。
具体地,在一种实施方式中,网络设备在接收到第一请求信息之后,还可以发送该第一请求信息的响应信息。
该第一请求信息的响应信息可以用于指示为该终端分配的第二资源,即网络设备为该终端分配资源。该第二资源可以是非周期资源(或称为动态资源),该种方法下,网络设备根据当前网络中是否有波束失败的小区(通过第一请求信息指示)来确定是否要分配第二资源,若网络设备接收到第一请求信息,即可获知当前网络中有发生波束失败的小区,网络设备即可动态的分配第二资源,以便终端设备进一步上报有哪些小区发生波束失败,和/或,上报恢复波束失败小区的新链路的信息。由于波束失败事件是突发事件,该种方法不需要提前预留发送波束失败恢复请求信息的周期资源,可以有效节省资源开销。
在另一种实施方式中,该第一请求信息的响应信息还可以用于激活第二资源,即原本为该终端分配的第二资源,由该第一请求信息的响应信息触发激活,该激活的第二资源为半静态资源(semi-persistent)或静态资源(periodic)。如第二资源可以是由第一请求信息后的第一请求信息的响应信息或第一请求信息后的DCI信令激活的半静态资源或静态资源(例如PUSCH,PUCCH,或物理随机接入信道(physical random access channel,PRACH))。该种方法下,网络设备根据当前网络中是否有链路失败的小区(通过第一请求信息指示)来确定是否要激活第二资源,若网络设备接收到第一请求信息,即可获知当前网络中有发生波束失败的小区,网络设备激活第二资源,以便终端设备进一步上报有哪些小区发生波束失败,和/或,上报恢复链路失败小区的新链路的信息。
可选地,该第二资源可以是高层信令或系统信息配置的,或为预设资源。
具体地,该第二资源可以是由网络设备为该终端配置的,并通过高层信令或系统信息发送给终端。该第二资源还可以网络设备和终端设备预先约定的,或者由终端提前设定,本申请对此不进行限定。
可选地,该第二资源还可以是与用于承载第一请求信息的资源具有关联关系的资源。
具体地,该第二资源可以与用于承载第一请求信息的资源具有映射关系,这样终端在获知用于承载第一请求信息的资源的情况下,就可以确定出第二资源。可选地,该用于承载第一请求信息的资源和第二资源的关联关系可以由主信息块(master information block,MIB)或系统消息块(system information block,SIB)等系统信息配置,或者由无线资源控制(radio resource control,RRC)或媒体访问控制(media access  control,MAC)-控制元素(control element,CE)信令配置。该系统信息或信令可以在发送第一请求信息之前发送。可选地,该用于承载第一请求信息的资源和第二资源的配置也可以通过上述系统信息或信令配置。该种方法可以不用再通过第一请求信息的响应信息分配的资源发送第二请求信息,而是直接在该第二资源上发送,可以有效减小波束恢复时延,提高波束恢复速度。
需要说明的是,网络设备可以为终端设备配置多个资源用于传输第一请求信息,以及为终端设备配置多个资源用于传输第二请求信息,终端设备可以从该多个用于传输第一请求信息的资源中选择一个或多个资源发送第一请求信息,还可以从多个用于传输第二请求信息的资源中选择一个或多个作为第二资源。其中,该多个用于传输第一请求信息的资源和该多个用于传输第二请求信息的资源分别可以由上述MIB或SIB等系统信息配置,或者由RRC或MAC-CE等信令配置。
可选地,该第二资源还可以是与第一请求信息关联的资源。可选地,网络设备可以通过MIB或SIB等系统信息,或者通过RRC或MAC-CE信令配置,多个用于发送第一请求信息的资源和多个用于发送第二请求信息的资源,以及该多个用于发送第一请求信息的资源与多个用于发送第二请求信息资源的关联关系,终端可以从该多个用于传输第一请求信息的资源中选择一个发送第一请求信息,还可以从多个用于传输第二请求信息的资源中选择一个作为第二资源。每个用于传输第一请求信息的资源可以关联一个或多个第二资源,每个用于传输第一请求信息的资源关联的第二资源可以大小不同。终端设备在哪个资源发送第一请求信息,那么,终端设备就在该发送第一请求信息的资源关联的第二资源上发送第二请求信息。
应理解,第二资源可以为PUSCH资源,或者可以为PUCCH资源。
应理解,实施例的第二请求信息可以为指示波束失败小区的小区信息的MAC-CE。第一请求信息的响应信息可以是DCI信息。
第二请求信息可以包括波束失败小区的标识信息和/或恢复波束失败小区的参考信号信息。或者说,该波束失败小区的小区信息可以包括波束失败小区的标识信息和/或恢复波束失败小区的参考信号信息。恢复波束失败小区的参考信号信息可以是参考信号资源的索引,和/或参考信号资源的信道质量信息(如以下一项或多项RSRP、SINR、RSRQ、CQI等)。
方式2:第二资源还可以是网络设备直接通过uplink grant(或DCI)指示的PUSCH资源。该uplink grant(或DCI)可以是CRC由C-RNTI/MCS-C-RNTI加扰的DCI。
对于方式1和方式2,第二资源可以是网络设备动态分配的资源。该种方法不需要提前预留周期资源,可以有效节省资源开销。
方式3:第二资源可以是网络设备通过RRC或MAC-CE或DCI激活的半静态资源(semi-persistent)或静态资源(periodic)。例如,第二资源可以是物理上行共享信道(physical uplink shared channel,PUSCH),物理上行控制信道(physical uplink control channel,PUCCH),或物理随机接入信道(physical random access channel,PRACH)。
方式4:该第二资源可以是配置信息配置的,或为预设资源。
具体地,该第二资源可以是由网络设备为该终端配置的,并通过高层信令或系统信息发送给终端。该第二资源还可以网络设备和终端设备预先约定的,或者由终端提 前设定,本申请对此不进行限定。
可选地,该配置信息可以由主信息块(master information block,MIB)或系统消息块(system information block,SIB)等系统信息配置,或者由无线资源控制(radio resource control,RRC)或媒体访问控制(media access control,MAC)-控制元素(control element,CE)信令配置。该配置信息可以是configured grant配置的。
方式5:该第二资源可以是与PRACH或PUCCH关联的PUSCH资源。或者说,该第二资源可以是2step PRACH中的PUSCH资源。可理解的,网络设备配置具有关联关系的PRACH资源和PUSCH资源,PUSCH资源不需要DCI指示。一种实现方式中,终端设备选择一个PRACH资源发起随机接入过程,并在该PRACH资源关联的PUSCH资源上发送其它信息(如UE ID等)。另一种实现方式中,该PRACH资源或PUCCH资源为承载第一请求信息的资源。其中第一请求信息如方式1所述,此处不再赘述。
对于方法3、方法4和方法5,网络设备指示第二资源的配置信息可以是提前发送的,该配置信息可以是终端设备在确定波束失败之前由网络设备发送给终端设备的,那么终端设备在发现波束失败后直接在该资源上发送波束失败恢复请求信息,而无需再等待网络设备分配PUSCH资源。
S105、终端设备向网络设备发送波束失败恢复请求信息。
该波束失败恢复请求信息关联S102中识别的信道质量大于或者等于波束失败恢复门限的参考信号(new identified beam或new beam),该终端设备可以通过显示的方式或者隐式的方式将new identified beam或者参考信号资源通知给该网络设备。例如,对于显示的方式,终端设备可以将该新识别的参考信号的资源索引或资源标识显示上报给网络设备。例如,对于隐式的方式,网络设备提前配置发送BFRQ信息的多个上行资源与多个候选参考信号资源的关联关系,终端设备通过选择发送BFRQ的上行资源,隐式指示新识别参考信号资源。
终端设备还可以通过一个或多个波束失败恢复请求信息上报新波束(new beam)信息、波束失败的小区标识等内容中的至少一个内容。也可以理解为BFRQ指示new beam信息、波束失败的小区标识、波束失败事件中的一个或多个内容。
应理解,本实施例中,该终端设备可以向该网络设备发送BFRQ,并通过该网络设备恢复该终端设备与该网络设备之间的波束失败,还可以是该终端设备向另一个网络设备发送BFRQ,通过该另一个网络设备恢复该终端设备与该网络设备之间的波束失败。
NR中PCell的BFRQ信息可以通过PRACH资源上报。基站配置一个或多个PRACH资源,并配置每个PRACH资源关联一个参考信号,该参考信号为用于恢复链路失败的参考信号。该参考信号可以是基站配置的候选参考信号资源集合中的参考信号。终端设备确认波束失败,识别new beam,选择与new beam关联的PRACH资源发送信号。通过该方式终端设备可以隐式指示new beam信息。
例如,网络设备为第一小区配置的用于发送第一小区的波束失败请求信息的上行资源集合,称为第一上行资源集合。该第一上行资源集合中包括的物理随机接入信道(Physical Random Access Channel,PRACH)资源的个数等于第一小区的候选参考信 号资源集合中下行参考信号的个数,即一个PRACH资源与一个下行参考信号相关联。终端设备在候选参考信号资源集合中识别大于或等于波束失败恢复门限的参考信号,并在该参考信号关联的PRACH资源上发送波束失败恢复请求信息。可选地,在上下行有互易性时,终端设备在一个PRACH资源上发送信息时的发送波束即为该PRACH资源关联的下行参考信号的接收波束对应的发送波束,即终端设备可以利用该接收波束对应的发送波束在该PRACH资源上发送信息。而上下行没有互易性时,一种可选的实施方式是,该第一上行资源集合中,一个PRACH资源与一个下行参考信号和一个上行参考信号关联,终端设备可以根据确定的下行参考信号关联的PRACH资源,进而确定该PRACH资源关联的上行参考信号,从而利用该上行参考信号的发送波束在该PRACH资源上发送信息。
NR中SCell的BFRQ信息可以通过一步上报。该BFRQ信息可以承载在PUSCH资源上;还可以承载在PUCCH资源上;其中该BFRQ信息可以指示波束失败的小区标识,和/或new beam信息。
BFRQ信息还可以通过BFRQ1+BFRQ2两步上报。其中,BFRQ1可以承载在PUCCH资源或PRACH资源上,BFRQ2可以承载在PUSCH资源或PUCCH资源上。在一种实现方式中,BFRQ1指示波束失败事件,BFRQ2指示波束失败的小区标识和/或new beam信息。在另一种实现方式中,BFRQ1指示波束失败事件和/或波束失败的小区标识,BFRQ2指示new beam信息。
应理解,上述BFRQ信息承载在PUSCH资源上,可以理解为通过MAC-CE上报BFRQ信息。
可选地,该终端设备的媒体接入控制(media access control,MAC)层会维护一个波束失败恢复计时器(beam failure recovery timer)和波束失败恢复计数器(beam failure recovery counter)。该波束失败恢复计时器用于控制整个波束失败恢复的时间,该波束失败恢复计数器用于限制该终端设备发送波束失败恢复请求信息的次数。当波束失败恢复计数器达到最大值时,该终端设备认为波束失败恢复不成功,停止波束失败恢复过程。所述恢复计时器的恢复时间和所述恢复计数器的计数值可以是网络设备配置的,也可以是预设值。
S106、网络设备接收终端设备发送的波束失败恢复请求信息。
在一些实施例中,网络设备接收到波束失败恢复请求信息之后,还可以向终端设备发送波束失败恢复响应,终端设备接收波束失败恢复响应,即执行S107和S108。
该终端设备可以通过检测控制资源集合(CORESET)和搜索空间集合(search space set)内的C-RNTI加扰或者MCS-C-RNTI加扰的DCI作为BFRR。
该CORESET和/或search space set可以是网络设备为该终端设备配置的专用的CORESET和/或search space set,用于在该终端设备发送链路失败请求后,网络设备发送对波束失败恢复请求信息的响应信息的下行控制资源。
还应理解,本实施例中,并不对波束失败恢复流程中S101和S102的时间先后顺序进行限定,可以是S102在S101之前,也可以是S101在S102之前,还可以是S102和S101同时进行。还应理解,S107和S108是可选地步骤。
通常,网络设备可以为终端设备配置多个小区(如:主小区和/或辅小区)和每个 小区的波束失败检测参数,波束失败检测参数包括BFDRS、波束失败检测计时器和波束失败事例最大次数。终端设备还可以向网络设备上报其最多支持的波束失败恢复(beam failure recovery,BFR)的小区个数。终端设备根据波束失败检测参数对每个小区分别独立进行波束失败检测,此时,终端设备需要检测多个波束失败检测参考信号资源,还需要维护多个波束失败检测计时器和波束失败检测计数器,对于终端设备的实现复杂度较高。另外,若终端设备确定每个小区发生波束失败的时间不同,可能造成波束失败恢复请求(beam failure recovery request,BFRQ)信息的频繁发送,进而造成资源浪费。
为了解决上述问题,本申请实施例提供一种波束失败检测方法,该方法包括:首先,根据空间相关参数信息对多个小区进行分组,对于任意一个小区组,再根据小区组的波束失败检测参数对该小区组进行波束失败检测,小区组的波束失败检测参数可以根据小区组包含的小区的波束失败检测参数确定。从而,由于将具有相同波束方向的小区分为一组,可以通过一个波束失败恢复过程对该小区组中所有小区进行波束失败检测,从而,有效地降低了终端设备对多个小区进行波束失败检测的实现复杂度;另外,通过一个MAC-CE发送多个小区的波束失败恢复请求信息,有效地节省了发送波束失败恢复请求信息的资源开销。
下面将结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(univeRMal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)等,本申请所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统和/或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是PLMN网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、IoT网络或者其它网络。
图5是本申请的实施例应用的通信系统的架构示意图。如图5所示,该通信系统500包括网络设备510和终端设备520。终端设备520通过无线的方式与网络设备510相连。图5只是示意图,该通信系统中还可以包括其它设备,如还可以包括核心网设备、无线中继设备和无线回传设备,在图5中未画出。核心网设备与网络设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备的功能。终端设备可以是固定位置的,也可以是可移动的。本申请的实施例对该通信系统中包括的终端设备、核心网设备、无线接入网设备和终端设备的数量不做限定。
该通信系统500处于单载波场景或载波聚合场景(carrier aggregation,CA)中,该通信系统500包括网络设备510和终端设备520,网络设备510与终端设备520通过无线网络进行通信,当终端设备520检测到网络设备510和终端设备520之间的链路发生故障后,终端设备520向网络设备510发送BFRQ。可选地,网络设备510接收到该BFRQ后,向终端设备520发送波束失败恢复响应(beam failure recovery response,BFRR)或重新配置链路。
应理解,图5中网络设备510下可以包括一个或多个小区。例如,包括第一小区和第二小区,若终端设备和该网络设备在第二小区的链路发生故障,该第一小区可以辅助该第二小区进行链路恢复,例如,该终端设备可以在属于该第一小区的上行资源上向该网络设备发送该BFRQ信息,该终端设备可以在属于该第二小区的下行资源上接收该网络设备发送的该BFRR信息。
当通信系统500的传输方向为上行传输时,终端设备520为发送端,网络设备510为接收端,当通信系统500的传输方向为下行传输时,网络设备510为发送端,终端设备520为接收端。
图6是一种适用本申请的通信系统600。该通信系统600处于双链接(dual connectivity,DC)或多点协作传输(coordinated multipoint transmission/reception,CoMP)的场景中,该通信系统600包括网络设备610、网络设备620和终端设备630,网络设备610为终端设备630初始接入时的网络设备,负责与终端设备630之间的RRC通信,网络设备620是在RRC重配置时添加的,用于提供额外的无线资源。配置了载波聚合的终端设备630与网络设备610和网络设备620相连,网络设备610和终端设备630之间的链路可以为称之为第一链路,网络设备620和终端设备630之间的链路可以称之为第二链路。
当网络设备610和网络设备620可以都向终端设备630配置用于传输BFRQ的上行资源时,当该第一链路或者第二链路发生故障,则终端设备630可以在用于传输BFRQ的上行资源上向网络设备610或者网络设备620发送BFRQ,网络设备610或者网络设备620收到该BFRQ后,向终端设备630发送BFRR。
特别地,若该网络设备620没有配置用于传输BFRQ的上行资源,那么当该第二链路发生故障时,该终端设备630可以通过该网络设备610恢复该第二链路。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的网络设备和终端设备的数量还可以是其它的数量,或者采用单基站、多载波聚合的场景、双链接的场景或设备到设备(device to device,D2D)通信场景。
应理解,本申请实施例的技术方案可以应用于载波聚合场景下的一个小区辅助另一个小区或者多个小区恢复链路。或者是双链接场景下,一个小区组内的一个小区辅助另一个小区或者多个小区恢复链路。
应理解,本申请实施例的技术方案还可以应用于单载波或载波聚合或双链接场景下,一个小区在该小区的资源上恢复本小区的波束失败。
应理解,本申请实施例中的技术方案可以适用于主小区(Pcell)是高频或者低频,辅小区(Scell)是高频或者低频的情况,例如,当Pcell是低频,Scell是高频。在一 种可能的实现方式中,对于没有配置上行资源的Scell,可以使用Pcell的上行资源辅助Scell恢复链路。通常低频和高频是相对而言的,也可以以某一特定频率为分界,例如6GHz。
应理解,本申请实施例的技术方案还可以应用于多点协作传输(coordinated multipoint transmission/reception,CoMP)场景下,一个TRP辅助另一个TRP恢复链路。其中CoMP可以为非相干联合发送(non coherent joint transmission,NCJT)、相干联合发送(coherent joint transmission,CJT)、联合发送(joint transmission,JT)等中的一种或多种场景。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰和鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band)NB技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以是车联网系统中的终端设备。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB、eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器, 或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:基站、下一代基站gNB、发送接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、家庭基站、基带单元(baseband unit,BBU),或WiFi系统中的接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
本申请主要应用于5G NR系统。本申请也可以应用于其它的通信系统,只要该通信系统中存在实体需要发送传输方向指示信息,另一个实体需要接收该指示信息,并根据该指示信息确定一定时间内的传输方向。示例的,图7为本申请实施例提供的一种通信系统示例图。如图7所示,基站和终端设备1~终端设备6组成一个通信系统。在该通信系统中,终端设备1~终端设备6可以发送上行数据给基站,基站接收终端设备1~终端设备6发送的上行数据。基站也可以向终端设备1~终端设备6发送下行数据,终端设备1~终端设备6接收下行数据。此外,终端设备4~终端设备6也可以组成一个通信系统。在该通信系统中,终端设备5可以接收终端设备4或终端设备6发送的上行信息,终端设备5向终端设备4或终端设备6发送的下行信息。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
在本申请的实施例中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分复用(single carrier-frequency division multiplexing,SC-FDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
可以理解的是,本申请的实施例中,PDSCH、PDCCH和PUSCH只是作为下行数据信道、下行控制信道和上行数据信道一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
接下来,对波束失败检测方法进行详细说明。图8为本申请实施例提供的一种波束失败检测方法流程图。如图8所示,该方法可以包括:
S801、终端设备确定第一小区组。
终端设备确定第一小区组,可以理解为终端设备根据空间相关参数信息确定第一小区组。
应理解,本申请中“空间相关参数信息”可以替换描述为“空间相关参数”、“空间信息”或“空间参数信息”。
示例的,终端设备可以根据空间相关参数信息划分M个小区,确定至少一个小区组,M为大于或等于2的整数。第一小区组可以是指划分得到的小区组中任意一个小区组。本实施例以第一小区组为例进行说明。第一小区组可以包含N个小区,N为大于或等于2的整数。
应理解,M个小区可以为网络设备配置给终端设备的所有小区;或者,M个小区可以为网络设备配置给终端设备的所有辅小区;或者,M个小区为网络设备指示给终端设备的所有需要做波束失败检测和/或波束失败恢复的小区;或者,M个小区为网络设备指示给终端设备的所有需要做波束失败检测和/或波束失败恢复的辅小区;或者,M个小区为网络设备给终端设备配置了波束失败检测参数或波束失败恢复参数的所有小区;或者,M个小区为网络设备给终端设备配置了波束失败检测参数或波束失败恢复参数的所有辅小区。
在一种可能的实现方式中,N个小区可以包括主小区和辅小区。
在另一种可能的实现方式中,N个小区可以仅包括辅小区。应理解,“仅包括辅小区”指“包括辅小区,不包括主小区”。
应理解,根据空间相关参数信息确定第一小区组的可能实现方式有多种,例如所述N个小区中至少两个小区与同一空间相关参数信息关联。或者,所述N个小区中任意两个小区与同一空间相关参数信息关联。或者,所述N个小区中每个小区与同一空间相关参数信息关联。
接下来,对终端设备根据空间相关参数信息确定第一小区组的可能实现方式进行详细说明。
在一种可能的实现方式中,空间相关参数信息可以是指QCL信息,终端设备可以根据QCL信息确定第一小区组。
在一些实施例中,QCL信息可以是类型D的QCL信息。
在另一些实施例中,QCL信息可以是类型A的QCL信息。
在另一些实施例中,QCL信息可以是类型D和类型A的QCL信息。
如果一个小区的控制资源集合的QCL信息与另一个小区的控制资源集合的QCL信息相同,将该两个小区划分到一个小区组。或者说一个小区组内的每个小区的控制资源集合的QCL信息相同。
一个小区的控制资源集合可以指一个小区的所有带宽区域(Bandwidth part,BWP)上的控制资源集合。或者,一个小区的控制资源集合可以指一个小区的激活BWP上的控制资源集合。
应理解,本实施例中,一个小区的控制资源集合的QCL信息是指终端设备根据QCL信息在该一个小区的控制资源集合上检测PDCCH(或称为DCI)。或者说,将该一个小区称为目标小区,该控制资源集合上的PDCCH称为目标信号,QCL信息指示一个源参考信号资源,终端设备使用与源参考信号资源相同或相近的空间参数接收或解调该目标小区上的该目标信号。
应理解,本实施例中,QCL信息相同可以指传输指示状态指示的QCL信息相同。 QCL信息可以包括参考信号资源索引和QCL类型。该QCL信息还可以包括小区索引和BWP标识中的一个或多个。其中,该小区索引指示该参考信号资源索引对应的参考信号资源所在的小区,BWP标识指示小区的BWP的位置。当QCL信息中不包括该小区索引和BWP标识时,默认QCL信息指示的参考信号资源在目标小区上。
应理解,QCL信息相同,可以指QCL信息中包括的参考信号资源索引相同。此外,QCL信息相同,还可以指小区索引相同、BWP标识相同和QCL类型相同。或者说,QCL信息相同,可以指QCL信息指示的参考信号资源的频域位置相同。或者说,QCL信息相同,可以指QCL信息指示的参考信号资源相同。其中,参考信号资源相同可以指参考信号资源索引相同,该参考信号资源所在的小区相同,所在的BWP相同。
在一些实施例中,终端设备可以将控制资源集合的QCL信息相同的小区确定为第一小区组。应理解,终端设备确定第一小区组的方式可以是以下方式中的一种。
在第一种可能的实现方式中,终端设备可以将与至少一个控制资源集合的QCL信息相同的至少两个小区确定为第一小区组。第一小区组包含N个小区,N为大于或等于2的整数。下面对第一小区组内至少两个小区与至少一个QCL信息相同的具体实现方式进行详细说明。
方式一,终端设备将具有同一个QCL信息的至少两个小区确定为第一小区组。或者说,所述N个小区中至少两个小区与同一QCL信息关联。
为描述方便用CC#x-CORESET#a-QCL信息#b表示配置关系。CC#x上包括CORESET#a,该CORESET#a的QCL信息为QCL信息#b。也就是说标识为x的CC上有标识为a的CORESET,该标识为a的CORESET对应的QCL信息为标识为b的TCI state。若网络设备配置给终端设备CC#1、CC#2和CC#3,这三个CC包含的所有CORESET及其对应的QCL信息配置如下。
例如,网络设备配置给终端设备CC#1、CC#2和CC#3,这三个CC包含的所有CORESET及其对应的QCL信息配置如下。
如图9中的所示,CC#1具有一个CORESET#1、CORESET#2和CORESET#3。其中,该CORESET#1的QCL信息为QCL信息#1,该CORESET#2的QCL信息为QCL信息#2,该CORESET#3的QCL信息为QCL信息#3。CC#2具有CORESET#5。其中,该CORESET#5的QCL信息为QCL信息#1。CC#3具有CORESET#6。其中,该CORESET#6的QCL信息为QCL信息#2。
如果CC#1的QCL信息#1和CC#2的QCL信息#1指示的QCL信息相同,且CC#1的QCL信息#2和CC#3的QCL信息#2指示的QCL信息相同,那么CC1#1、CC#2和CC#3分为一组。
方式二,终端设备将具有同一个QCL信息的任意两个小区确定为第一小区组。或者说,所述N个小区中任意两个小区与同一QCL信息关联。
例如,网络设备配置给终端设备CC#1、CC#2和CC#3,这三个CC包含的所有CORESET及其对应的QCL信息配置如下。
如图10中的所示,CC#1具有一个CORESET#1和CORESET#2。其中,该CORESET#1的QCL信息为QCL信息#1,该CORESET#2的QCL信息为QCL信息#2。 CC#2具有CORESET#5和CORESET#6。其中,该CORESET#5的QCL信息为QCL信息#2,该CORESET#6的QCL信息为QCL信息#3。CC#3具有CORESET#3和CORESET#7。其中,该CORESET#3的QCL信息为QCL信息#1,该CORESET#7的QCL信息为QCL信息#3。
如果CC#1的QCL信息#2和CC#2的QCL信息#2指示的QCL信息相同,且CC#1的QCL信息#1和CC#3的QCL信息#1指示的QCL信息相同,且CC#2的QCL信息#3和CC#3的QCL信息#3指示的QCL信息相同,那么CC1#1、CC#2和CC#3分为一组。
方式三,终端设备将具有同一QCL信息的所有小区确定为第一小区组。或者说,所述N个小区中每个小区与同一QCL信息关联。
例如,网络设备配置给终端设备CC#1、CC#2和CC#3,这三个CC包含的所有CORESET及其对应的QCL信息配置如下。
如图11中的所示,CC#1具有一个CORESET#1和CORESET#2。其中,该CORESET#1的QCL信息为QCL信息#1,该CORESET#2的QCL信息为QCL信息#2。CC#2具有CORESET#5和CORESET#6。其中,该CORESET#5的QCL信息为QCL信息#2,该CORESET#6的QCL信息为QCL信息#3。CC#3具有CORESET#3和CORESET#7。其中,该CORESET#3的QCL信息为QCL信息#1,该CORESET#7的QCL信息为QCL信息#3。
如果CC#1的QCL信息#2和CC#2的QCL信息#2指示的QCL信息相同,CC#1的QCL信息#1和CC#3的QCL信息#1指示的QCL信息相同。CC#2的QCL信息#3和CC#3的QCL信息#3指示的QCL信息相同,虽然任意两个CC的QCL可以是相同的,但是由于不存在一个空间相关参数信息在每个小区中都存在,因此,无法将CC1#1、CC#2、CC#3分为一组。只能是其中两个CC分为一个小区组,另一个CC自己是一个小区组。可选地,此时可以根据CC索引从小到大依次分组,如CC#1、CC#2均关联QCL信息#2可以组成为组#1,CC#3不关联QCL信息#2可以组成组#2。
在第二种可能的实现方式中,终端设备可以将与同一空间相关参数信息关联的一个或多个小区确定为第一小区组。应理解,所述N个小区中每个小区与同一空间相关参数信息关联。下面对第一小区组内每个小区与同一空间相关参数信息关联的具体实现方式进行详细说明。
方式一,终端设备可以将具有相同QCL信息集合的小区确定为第一小区组。或者说,第一小区组中任意两个小区的QCL信息集合相同。其中,任一个QCL信息集合为对应小区的所有控制资源集合的QCL信息的集合。或者说,第一小区组中所有小区的QCL信息集合相同。其中,任一个QCL信息集合为对应小区的所有控制资源集合的QCL信息的集合。
应理解,一个小区的所有CORESET对应的所有QCL信息与另一个小区的所有CORESET对应的所有QCL信息完全相同。第一小区组中任意两个小区不包括不同的QCL信息。
为描述方便用CC#x-CORESET#a-QCL信息#b表示配置关系。CC#x上包括CORESET#a,该CORESET#a的QCL信息为QCL信息#b。也就是说标识为x的CC 上有标识为a的CORESET,该标识为a的CORESET对应的QCL信息为标识为b的TCI state。若网络设备配置给终端设备CC#1、CC#2和CC#3,这三个CC包含的所有CORESET及其对应的QCL信息配置如下。
例如,网络设备配置给终端设备CC#1和CC#2,这两个CC包含的所有CORESET及其对应的QCL信息配置如下。
如图12中的(a)所示,CC#1具有一个CORESET#1,该CORESET#1的QCL信息为QCL信息#1;CC#2具有CORESET#2,该CORESET#2的QCL信息为QCL信息#2。
如果QCL信息#1和QCL信息#2指示的QCL信息相同,那么CC1#1和CC#2分为一组。
又例如,如图12中的(b)所示,CC#1具有一个CORESET#1,该CORESET#1的QCL信息为QCL信息#1和QCL信息#2;CC#2具有CORESET#2,该CORESET#2的QCL信息为QCL信息#1和QCL信息#2。
如果CC#1的QCL信息#1和CC#2的QCL信息#1指示的QCL信息相同,且CC#1的QCL信息#2和CC#2的QCL信息#2指示的QCL信息相同,那么CC1#1和CC#2分为一组。
又例如,网络设备配置给终端设备CC#1、CC#2和CC#3,这三个CC包含的所有CORESET及其对应的QCL信息配置如下。
如图13所示,CC#1具有CORESET#1和CORESET2,该CORESET#1的QCL信息为QCL信息#1,该CORESET#2的QCL信息为QCL信息#2。CC#2具有CORESET#3和CORESET4,该CORESET#3的QCL信息为QCL信息#1,该CORESET#4的QCL信息为QCL信息#2。CC#3具有CORESET#5、CORESET6和CORESET7,该CORESET#5的QCL信息为QCL信息#1,该CORESET#6的QCL信息为QCL信息#2,该CORESET#7的QCL信息为QCL信息#3。
如果CC#1的QCL信息#1、CC#2的QCL信息#1、CC#3的QCL信息#1指示的QCL信息相同,与其它QCL信息不同;CC#1的QCL信息#2、CC#2的QCL信息#2、CC#3的QCL信息#2指示的QCL信息相同,与其它QCL信息不同;CC#3的QCL信息#3与其它QCL信息均不同。由于CC1#1和CC#2的QCL信息完全相同,而CC#3的QCL信息#3与其它CC不同,因此将CC#1和CC#2分为一组,CC#3是另一个组。
方式二,终端设备可以将存在至少一个相同的QCL信息的小区确定为第一小区组。或者说,第一小区组中所有小区存在至少一个相同的QCL信息。至少一个相同的QCL信息为对应小区的至少一个控制资源集合的QCL信息。
应理解,第一小区组中所有小区存在至少一个相同的QCL信息是指第一小区组中的小区间存在至少一个相同的QCL信息。第一小区组中每个小区的控制资源集合的至少一个QCL信息完全相同。一个小区可以配置至少一个控制资源集合,一个控制资源集合可以包括至少一个QCL信息。一个小区的一个CORESET对应的QCL信息与另一个小区的一个CORESET对应的QCL信息相同。
例如,网络设备配置给终端设备CC#1和CC#2,这两个CC包含的所有CORESET及其对应的QCL信息配置如图14所示。如果CC#1的QCL信息#1和CC#2的QCL信息#1指示的QCL信息相同,且CC#1的QCL信息#2和CC#2的QCL信息#3指示 的QCL信息不相同。由于CC#1的QCL信息#1和CC#2的QCL信息#1指示的QCL信息相同,因此可以将CC#1和CC#2分为一组。
又例如,网络设备配置给终端设备CC#1、CC#2和CC#3,这三个CC包含的所有CORESET及其对应的QCL信息配置如图15所示。如果CC#1的QCL信息#1、CC#2的QCL信息#1、CC#3的QCL信息#1指示的QCL信息相同,与其它QCL信息不同;CC#1的QCL信息#2、CC#2的QCL信息#2、CC#3的QCL信息#2指示的QCL信息相同,与其它QCL信息不同;CC#3的QCL信息#3与其它QCL信息均不同。由于CC#1的QCL信息#1、CC#2的QCL信息#1、CC#3的QCL信息#1指示的QCL信息相同,CC#1的QCL信息#2、CC#2的QCL信息#2、CC#3的QCL信息#2指示的QCL信息相同,因此将CC#1、CC#2和CC#3分为一组。
例如,网络设备配置给终端设备CC#1、CC#2和CC#3,这三个CC包含的所有CORESET及其对应的QCL信息配置如图16所示。CC#1具有CORESET#1,该CORESET#1的QCL信息为QCL信息#1。CC#2具有CORESET#2,该CORESET#2的QCL信息为QCL信息#1和QCL信息#3。CC#3具有CORESET#3,该CORESET#3的QCL信息为QCL信息#2和QCL信息#3。
如果CC#1的QCL信息#1和CC#2的QCL信息#1指示的QCL信息相同,与其它QCL信息不同;CC#2的QCL信息#3指示的QCL信息相同,与其它QCL信息不同;CC#3的QCL信息#2和QCL信息#3与其它QCL信息均不同。由于CC1#1和CC#2的QCL信息#1完全相同,因此将CC#1和CC#2分为一组。由于CC#3不包括QCL信息#1,不能将CC#3与CC#1和CC#2分为一组。
方式三,终端设备可以将具有至少一个相同的TCI状态的控制资源集合的小区确定为第一小区组。或者说,第一小区组中每个小区包括至少一个控制资源集合,其中,所有小区包括的至少一个控制资源集合中所有QCL信息相同。或者说,所述第一小区组中存在至少一个控制资源集合组,其中,所述至少一个控制资源集合组中的任一控制资源集合组包括所述第一小区组中每个小区的至少一个控制资源集合,且任一控制资源集合组中包括的所有控制资源集合的QCL信息相同。
应理解,第一小区组中每个小区的至少一个控制资源集合的QCL信息相同。一个小区可以配置至少一个控制资源集合,一个控制资源集合可以包括至少一个QCL信息。如果一个小区的控制资源集合的QCL信息与另一个小区的控制资源集合的QCL信息相同,将该两个小区划分到一个小区组。
例如,网络设备配置给终端设备CC#1、CC#2和CC#3,这三个CC包含的所有CORESET及其对应的QCL信息配置如图17所示。CC#1具有CORESET#1,该CORESET#1的QCL信息为QCL信息#1和QCL信息#2。CC#2具有CORESET#2和CORESET3,该CORESET#2的QCL信息为QCL信息#1和QCL信息#2,该CORESET#3的QCL信息为QCL信息#3。CC#3具有CORESET#4、CORESET5和CORESET6,该CORESET#4的QCL信息为QCL信息#1和QCL信息#2,该CORESET#5的QCL信息为QCL信息#2,该CORESET#6的QCL信息为QCL信息#3。
如果CC#1的QCL信息#1、CC#2的QCL信息#1、CC#3的QCL信息#1指示的QCL信息相同,与其它QCL信息不同;CC#1的QCL信息#2、CC#2的QCL信息#2、 CC#3的QCL信息#2指示的QCL信息相同,与其它QCL信息不同;CC#2的QCL信息#3与其它QCL信息均不同,CC#3的QCL信息#3与其它QCL信息均不同。由于CC1#1、CC#2和CC#3分别对应的CORESET#1,CORESET#2,CORESET#4的QCL信息完全相同,因此将CC#1、CC#2和CC#3分为一组。
例如,网络设备配置给终端设备CC#1、CC#2和CC#3,这三个CC包含的所有CORESET及其对应的QCL信息配置如图18所示。
CC#1具有CORESET#1,该CORESET#1的QCL信息为QCL信息#1和QCL信息#1。CC#2具有CORESET#2和CORESET3,该CORESET#2的QCL信息为QCL信息#1和QCL信息#2,该CORESET#3的QCL信息为QCL信息#3。CC#3具有CORESET#4、CORESET5和CORESET6,该CORESET#4的QCL信息为QCL信息#1,该CORESET#5的QCL信息为QCL信息#2,该CORESET#6的QCL信息为QCL信息#3。
如果CC#1的QCL信息#1、CC#2的QCL信息#1、CC#3的QCL信息#1指示的QCL信息相同,与其它QCL信息不同;CC#1的QCL信息#2、CC#2的QCL信息#2、CC#3的QCL信息#2指示的QCL信息相同,与其它QCL信息不同;CC#2的QCL信息#3与其它QCL信息均不同,CC#3的QCL信息#3与其它QCL信息均不同。由于CC1#1和CC#2分别对应的CORESET#1和CORESET#2的QCL信息完全相同,因此将CC#1和CC#2分为一组。由于CC#3的CORESET#4、CORESET#5和CORESET#6各自对应的QCL信息与CC1#1和CC#2的CORESET各自对应的QCL信息都不相同,因此CC#3不能与CC#1和CC#2分为一组。
在另一种可能的实现方式中,空间相关参数信息可以为TCI状态,终端设备可以根据TCI状态确定第一小区组。
如果一个小区的控制资源集合的TCI state与另一个小区的控制资源集合的TCI state相同,将该两个小区划分到一个小区组。或者说一个小区组内的每个小区的控制资源集合的传输配置指示状态相同。
一个小区的控制资源集合可以指一个小区的所有带宽区域(Bandwidth part,BWP)上的控制资源集合。或者,一个小区的控制资源集合可以指一个小区的激活BWP上的控制资源集合。
应理解,本实施例中,一个小区的控制资源集合的TCI state是指终端设备根据TCI state在该一个小区的控制资源集合上检测PDCCH(或称为DCI)。或者说,将该一个小区称为目标小区,该控制资源集合上的PDCCH称为目标信号,TCI state指示一个源参考信号资源,终端设备使用与源参考信号资源相同或相近的空间参数接收或解调该目标小区上的该目标信号。
应理解,本实施例中,TCI state相同可以指TCI state指示的QCL信息相同。QCL信息可以包括参考信号资源索引和QCL类型。该QCL信息还可以包括小区索引和BWP标识中的一个或多个。其中,该小区索引指示该参考信号资源索引对应的参考信号资源所在的小区,BWP标识指示小区的BWP的位置。当QCL信息中不包括该小区索引和BWP标识时,默认QCL信息指示的参考信号资源在目标小区上。
在一种可能的实现方式中,N个小区中至少两个小区与同一TCI state关联。
在另一种可能的设计中,N个小区中任意两个小区与同一TCI state关联。
在另一种可能的设计中,N个小区中每个小区与同一TCI state关联。
在另一种可能的实现方式中,第一小区组中任意两个小区的TCI state集合相同。任一个TCI state集合为对应小区的所有控制资源集合的TCI state的集合。
在另一种可能的设计中,第一小区组中所有小区存在至少一个相同的TCI state。至少一个相同的TCI state为对应小区的至少一个控制资源集合的TCI state。
在另一种可能的设计中,第一小区组中每个小区包括至少一个控制资源集合,其中,所有小区包括的至少一个控制资源集合中所有TCI state相同。或者说,所述第一小区组中存在至少一个控制资源集合组,其中,所述至少一个控制资源集合组中的任一控制资源集合组包括所述第一小区组中每个小区的至少一个控制资源集合,且任一控制资源集合组中包括的所有控制资源集合的TCI状态相同。
应理解,TCI state可以替换为QCL信息,具体的解释可以参数上述对QCL信息的阐述,不予赘述。
应理解,本申请各实施例中的控制资源集合可以替换为BFD RS,具体的解释可以参数上述对QCL信息的阐述,不予赘述。
S802、终端设备根据第一小区组的第一参数对第一小区组进行波束失败检测。
应理解,第一小区组的第一参数为第一小区组的波束失败检测参数。在一些实施例中,由于网络设备给每个小区均配置波束失败检测参数,终端设备可以根据第一小区组中小区的波束失败检测参数确定第一小区组的第一参数。
波束失败检测参数包括波束失败检测参考信号资源、波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。第一参数可以是指波束失败检测参考信号资源、波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。
应理解“根据所述第一参数对所述第一小区组进行波束失败检测”还可以描述为,“根据所述第一参数检测所述第一小区组的波束失败”。
接下来,对确定第一小区组的第一参数的可能实现方式进行详细说明。具体的,可以有以下几规则:
规则一:终端设备可以根据子载波间隔确定所述第一参数。
在一些实施例中,终端设备可以根据子载波间隔的最大值确定所述第一参数。应理解,终端设备将第一小区组中子载波间隔最大的小区的波束失败检测参数确定为所述第一参数。第一参数为第一小区组中子载波间隔最大的小区的波束失败检测参数。
在一些实施例中,第一参数包括波束失败检测参考信号资源、波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。
将所述第一小区组中子载波间隔最大的小区的波束失败检测参数确定为所述第一参数,可以理解为包括以下内容中的一种或多种:
例如,将子载波间隔最大的小区的波束失败检测参考信号资源确定为第一小区组的波束失败检测参考信号资源。
又例如,将子载波间隔最大的小区的波束失败事例最大次数确定为第一小区组的波束失败事例最大次数。
又例如,将子载波间隔最大的小区的波束失败检测计时器确定为第一小区组的波束失败检测计时器。
又例如,将子载波间隔最大的小区的波束失败事例指示周期确定为第一小区组的波束失败事例指示周期。
规则二:终端设备可以根据小区标识确定所述第一参数。
在一些实施例中,终端设备可以根据小区标识的最小值确定所述第一参数。应理解,终端设备将第一小区组中所有小区中小区标识最小的小区的波束失败检测参数确定为所述第一参数。第一参数为第一小区组中小区标识最小的小区的波束失败检测参数。
在一些实施例中,第一参数包括波束失败检测参考信号资源、波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。
将第一小区组中所有小区中小区标识最小的小区的波束失败检测参数为所述第一参数,可以理解为包括以下内容中的一种或多种:
例如,将小区标识最小的小区的波束失败检测参考信号资源确定为第一小区组的波束失败检测参考信号资源。
又例如,将小区标识最小的小区的波束失败事例最大次数确定为第一小区组的波束失败事例最大次数。
又例如,将小区标识最小的小区的波束失败检测计时器确定为第一小区组的波束失败检测计时器。
又例如,将小区标识最小的小区的波束失败事例指示周期确定为第一小区组的波束失败事例指示周期。
规则三:终端设备可以根据波束失败事例最大次数确定所述第一参数。
在一些实施例中,终端设备可以根据波束失败事例最大次数的最小值确定所述第一参数。应理解,终端设备将第一小区组中所有小区中波束失败事例最大次数最小的小区的波束失败检测参数确定为第一参数。第一参数可以为波束失败事例最大次数最小值的小区的波束失败检测参数。应理解,所述第一小区组的波束失败事例最大次数的取值为所述第一小区组中所有小区的波束失败事例最大次数的最小值。
在一些实施例中,第一参数还可以包括波束失败检测参考信号资源、波束失败检测计时器和波束失败事例指示周期中至少一个。
将第一小区组中所有小区中波束失败事例最大次数最小的小区的波束失败检测参数为第一参数,可以理解为包括以下内容中的一种或多种:
例如,将波束失败事例最大次数最小的小区的波束失败检测参考信号资源确定为第一小区组的波束失败检测参考信号资源。
又例如,将波束失败事例最大次数最小的小区的波束失败检测计时器确定为第一小区组的波束失败检测计时器。
又例如,将波束失败事例最大次数最小的小区的波束失败事例指示周期确定为第一小区组的波束失败事例指示周期。
规则四:终端设备可以根据波束失败检测计时器确定所述第一参数。
在一些实施例中,终端设备可以根据波束失败检测计时器的最小值确定所述第一 参数。应理解,终端设备将第一小区组中所有小区中波束失败检测计时器最小的小区的波束失败检测参数确定为第一参数。第一参数为波束失败检测计时器最小值的小区的波束失败检测参数。应理解,所述第一小区组的波束失败检测计时器的取值为所述第一小区组的所有小区中波束失败检测计时器的最小值。
在一些实施例中,第一参数还可以包括波束失败检测参考信号资源、波束失败事例最大次数和波束失败事例指示周期中至少一个。
终端设备将第一小区组中所有小区中波束失败检测计时器最小的小区的波束失败检测参数为第一参数,可以理解为包括以下内容中的一种或多种:
例如,将波束失败检测计时器最小的小区的波束失败检测参考信号资源确定为第一小区组的波束失败检测参考信号资源。
又例如,将波束失败检测计时器最小的小区的波束失败事例最大次数确定为第一小区组的波束失败事例最大次数。
又例如,将波束失败检测计时器最小的小区的波束失败事例指示周期确定为第一小区组的波束失败事例指示周期。
规则五:终端设备可以根据波束失败检测参考信号资源的指示方式确定所述第一参数。
在一些实施例中,终端设备可以根据隐式指示的波束失败检测参考信号资源确定所述第一参数。应理解,终端设备将第一小区组中所有小区中隐式指示的波束失败检测参考信号资源的小区的波束失败检测参数确定为所述第一参数。第一参数为隐式指示的波束失败检测参考信号资源的小区的波束失败检测参数。应理解,所述第一小区组的波束失败检测参考信号资源为所述第一小区组的所有小区中隐式指示的波束失败检测参考信号资源。
所谓隐式指示可以是指将指示PDCCH的TCI(如type-D QCL)中关联的参考信号资源作为波束失败检测的参考信号资源,该参考信号资源是与PDCCH的DMRS满足QCL关系的参考信号资源,且为周期的参考信号资源。
在一些实施例中,第一参数包括波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。
将第一小区组中所有小区中隐式指示的波束失败检测参考信号资源的小区的波束失败检测参数为所述第一参数,可以理解为包括以下内容中的一种或多种:
例如,将隐式指示的波束失败检测参考信号资源所在小区的波束失败事例最大次数确定为第一小区组的波束失败事例最大次数。
又例如,将隐式指示的波束失败检测参考信号资源所在小区的波束失败检测计时器确定为第一小区组的波束失败检测计时器。
又例如,将隐式指示的波束失败检测参考信号资源所在小区的波束失败事例指示周期确定为第一小区组的波束失败事例指示周期。
规则六:终端设备可以根据波束失败检测参考信号资源的周期确定所述第一参数。
在一些实施例中,终端设备可以根据波束失败检测参考信号资源的周期的最小值确定所述第一参数。应理解,终端设备可以将第一小区组中波束失败检测参考信号资源的周期最小的小区的波束失败检测参数确定确定为所述第一参数。第一参数为第一 小区组中波束失败检测参考信号资源的周期最小的小区的波束失败检测参数。
例如,第一小区组中所有小区包括至少一个相同的传输配置指示状态。在该至少一个相同的传输配置指示状态的波束失败检测参考信号资源中,选择最小周期的波束失败检测参考信号资源,配置该最小周期的波束失败检测参考信号资源的小区的波束失败检测参数确定为所述第一参数。
又例如,第一小区组中所有小区包括至少一个相同的类型D的准共址信息。在该至少一个相同的类型D的准共址信息的波束失败检测参考信号资源中,选择最小周期的波束失败检测参考信号资源,配置该最小周期的波束失败检测参考信号资源的小区的波束失败检测参数确定为所述第一参数。
应理解,每个小区可以具有一个或多个CORESET,每个CORESET对应一个TCI state,每个TCI state指示一个tyep D QCL信息给该COREST。BFD RS可以与CORESET满足一一对应关系,此时BFD RS与TCI state或type D QCL满足一一对应关系。或者BFD RS与TCI state满足一一对应关系。或者BFD RS与typeD QCL满足一一对应关系。使用与BFD RS有对应关系的TCI state或typeD QCL接收该BFD RS。
可选地,波束失败事例指示周期=maximum{相同TCI的最小BFD RS周期,2ms}。可选地,波束失败事例指示周期内该相同TCI的BFD RS小于波束失败门限时即可上报波束失败事例。
可选地,波束失败事例指示周期=maximum{相同QCL信息的最小BFD RS周期,2ms}。可选地,波束失败事例指示周期内该相同QCL信息的BFD RS小于波束失败门限时即可上报波束失败事例。
应理解,所述第一小区组的波束失败检测参考信号资源可以为所述第一小区组的所有小区中对应相同的传输配置指示状态或对应相同QCL信息的波束失败检测参考信号资源。
应理解,所述第一小区组的波束失败事例指示周期可以为所述第一小区组的所有小区中对应相同的传输配置指示状态或对应相同QCL信息的波束失败检测参考信号资源的周期的最小值。或者,所述第一小区组的波束失败事例指示周期可以为所述第一小区组的所有小区中对应相同的传输配置指示状态或对应相同QCL信息的波束失败检测参考信号资源的周期的最小值与2ms中的最大值。
在一些实施例中,第一参数还可以包括波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。
将所述第一小区组中波束失败检测参考信号资源的周期最小的小区的波束失败检测参数确定为所述第一参数,可以理解为包括以下内容中的一种或多种:
例如,将波束失败检测参考信号资源的周期最小的小区的波束失败事例最大次数确定为第一小区组的波束失败事例最大次数。
又例如,将波束失败检测参考信号资源的周期最小的小区的波束失败检测计时器确定为第一小区组的波束失败检测计时器。
示例的,CC#1的CORESET的type D QCL指示参考信号RS#1,BFD RS为RS#2(周期为5ms)。CC#2的CORESET的type D QCL指示参考信号RS#1,BFD RS为RS#3(周期为10ms)。那么对应相同QCL信息的BFD RS为RS#2和RS#3。RS#2 和RS#3的周期最小值为5ms,因此,波束失败事例指示周期=maximum{5ms,2ms}=5ms。
规则七:终端设备可以根据波束失败事例指示周期确定所述第一参考。
在一些实施例中,终端设备可以根据波束失败事例指示周期的最小值确定所述第一参数。应理解,终端设备将第一小区组中波束失败事例指示周期最小的小区的波束失败检测参数确定为所述第一参数。第一参数为波束失败事例指示周期最小的小区的波束失败检测参数。所述第一小区组的波束失败事例指示周期为所述第一小区组中所有小区中最小的波束失败事例指示周期。
需要说明的是,所述第一小区组的波束失败事例指示周期可以是根据所述第一小区组中所有小区中传输配置指示状态相同的波束失败检测参考信号资源确定的。或者,所述第一小区组的波束失败事例指示周期可以是根据所述第一小区组中所有小区中准共址信息相同的波束失败检测参考信号资源确定的。其中,所述波束失败事例指示周期可以是根据波束失败检测参考信号资源的周期最小值确定的。例如,波束失败事例指示周期可以是{波束失败检测参考信号资源的周期最小值,2ms}中的最大值。
应理解,所述第一小区组的波束失败事例指示周期的取值可以为所述第一小区组的所有小区中波束失败事例指示周期的最小值。或者所述第一小区组的波束失败事例指示周期的取值可以为{所述第一小区组的所有小区中波束失败事例指示周期的最小值,2ms}中的最大值。
在一些实施例中,第一参数还可以包括波束失败检测参考信号资源、波束失败事例最大次数和波束失败检测计时器中至少一个。
将所述第一小区组中波束失败事例指示周期最小的小区的波束失败检测参数确定为所述第一参数,可以理解为包括以下内容中的一种或多种:
例如,将波束失败事例指示周期最小的小区的波束失败检测参考信号资源确定为第一小区组的波束失败检测参考信号资源。
又例如,将波束失败事例指示周期最小的小区的波束失败事例最大次数确定为第一小区组的波束失败事例最大次数。
又例如,将波束失败事例指示周期最小的小区的波束失败检测计时器确定为第一小区组的波束失败检测计时器。
规则八:终端设备可以根据控制资源集合的传输配置指示状态确定所述第一参数。
在一些实施例中,终端设备可以根据控制资源集合的最小传输配置指示状态集合确定所述第一参数。应理解,终端设备将第一小区组中控制资源集合的传输配置指示状态的最小集合的小区的波束失败检测参数确定为所述第一参数。第一参数为第一小区组中控制资源集合的最小集合传输配置指示状态的小区的波束失败检测参数。或者说,一个小区的一个TCI状态集合为对应小区的所有控制资源集合的TCI状态的集合,第一小区组中具有最小TCI状态集合的小区的波束失败检测参数确定为第一参数。
在一些实施例中,第一参数包括波束失败检测参考信号资源、波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。
将所述第一小区组中具有最小TCI状态集合的小区的波束失败检测参数确定为所述第一参数,可以理解为包括以下内容中的一种或多种:
例如,将第一小区组中具有最小TCI状态集合的小区的波束失败检测参考信号资源确定为第一小区组的波束失败检测参考信号资源。
又例如,将第一小区组中具有最小TCI状态集合的小区的波束失败事例最大次数确定为第一小区组的波束失败事例最大次数。
又例如,将第一小区组中具有最小TCI状态集合的小区的波束失败检测计时器确定为第一小区组的波束失败检测计时器。
又例如,将第一小区组中具有最小TCI状态集合的小区的波束失败事例指示周期确定为第一小区组的波束失败事例指示周期。
规则九:终端设备可以根据控制资源集合的准共址信息确定所述第一参数。
在一些实施例中,终端设备可以根据控制资源集合的最小准共址信息集合确定所述第一参数。应理解,终端设备将第一小区组中控制资源集合的准共址信息的最小集合的小区的波束失败检测参数确定为所述第一参数。第一参数为第一小区组中控制资源集合的准共址信息的最小集合的小区的波束失败检测参数。
在一些实施例中,第一参数包括波束失败检测参考信号资源、波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。或者说,一个小区的一个准共址信息集合为对应小区的所有控制资源集合的准共址信息的集合,第一小区组中具有最小准共址信息集合的小区的波束失败检测参数确定为第一参数。
将所述第一小区组中控制资源集合的准共址信息的最小值的小区的波束失败检测参数确定为所述第一参数,可以理解为包括以下内容中的一种或多种:
例如,将第一小区组中具有最小准共址信息集合的小区的波束失败检测参考信号资源确定为第一小区组的波束失败检测参考信号资源。
又例如,将第一小区组中具有最小准共址信息集合的小区的波束失败事例最大次数确定为第一小区组的波束失败事例最大次数。
又例如,将第一小区组中具有最小准共址信息集合的小区的波束失败检测计时器确定为第一小区组的波束失败检测计时器。
又例如,将第一小区组中具有最小准共址信息集合的小区的波束失败事例指示周期确定为第一小区组的波束失败事例指示周期。
示例的,CC#1的控制资源集合的类型D的准共址信息指示参考信号RS#1和RS#2,RS#1对应的BFD RS为BFD RS#3,RS#2对应的BFD RS为BFD RS#4。CC#2的控制资源集合的类型D的准共址信息指示参考信号RS#1,RS#1对应的BFD RS为RS#5。由于CC#2的QCL信息集合仅包括一个比CC#1的QCL信息集合小,因此,第一参数为CC2的波束失败检测参数。
需要说明的是,终端设备可以根据上述规则确定第一小区组的所有波束失败检测参数,或者,确定第一小区组的部分波束失败检测参数。如:波束失败检测参考信号资源、波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。上述确定第一参数的多个规则可以结合使用,或者单独使用,本申请不予限定。
在一些实施例中,规则一与规则二可以结合使用。例如,若终端设备选择到两个以上的子载波间隔最大的小区,此时,终端设备可以从两个以上的子载波间隔最大的小区中选择小区标识最小的小区,将小区标识最小的小区的波束失败检测参数作为该 第一小区的第一参数,其中,波束失败检测参数可以包括波束失败检测参考信号资源、波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中的全部或部分。将小区标识最小的小区的波束失败检测参考信号资源确定为第一小区组的波束失败检测参考信号资源。将小区标识最小的小区的波束失败事例最大次数确定为第一小区组的波束失败事例最大次数。将小区标识最小的小区的波束失败检测计时器确定为第一小区组的波束失败检测计时器。将小区标识最小的小区的波束失败事例指示周期确定为第一小区组的波束失败事例指示周期。
可选的,如果终端设备选择到一个的子载波间隔最大的小区,则该子载波间隔最大的小区的波束失败检测参数作为该第一小区的第一参数。其它小区的波束失败检测参数失效。
在另一些可能的实施方式中,规则一与规则三可以结合使用。例如,若终端设备选择到两个以上的子载波间隔最大的小区,此时,终端设备可以从两个以上的子载波间隔最大的小区中选择波束失败事例最大次数最小的小区的波束失败检测参数作为第一参数。
在另一些可能的实施方式中,规则一与规则四可以结合使用。例如,若终端设备选择到两个以上的子载波间隔最大的小区,此时,终端设备可以从两个以上的子载波间隔最大的小区中选择波束失败检测计时器最小的小区的波束失败检测参数为第一参数。
在另一些实施例中,规则一至规则九中任意两个或者任意三个可以结合使用或者任意多个可以结合使用。当多个规则结合使用时,需要定义哪个规则优先使用(也即优先根据哪个规则选择资源)。
可选地,规则一的优先级大于以下规则中的至少一个规则的优先级:规则二至规则九。如:规则一至规则九均存在,那么规则一的优先级最高。
可选地,规则二的优先级大于规则三至规则九的优先级;或者规则二的优先级大于规则三至规则九中任一个的优先级。
可选地,规则四至规则九的优先级可以参考上述方法设置规则的优先级等级。
终端设备可以先根据优先级较高的规则选择资源,当该资源有多个资源时,再根据次高优先级的规则在该多个资源中选择资源,以此类推。
在另一些可能的实施方式中,规则一至规则九中的至少两个规则可以结合使用。例如,终端设备根据规则三确定第一小区组的波束失败事例最大次数,即第一小区组的波束失败事例最大次数的取值为所述第一小区组中所有小区的波束失败事例最大次数的最小值,以及根据规则四确定第一小区组的波束失败检测计时器,第一小区组的波束失败检测计时器的取值为所述第一小区组的所有小区中波束失败检测计时器的最小值,以及根据规则五确定第一小区组的波束失败检测参考信号资源,第一小区组的波束失败检测参考信号资源为所述第一小区组的所有小区中隐式指示的波束失败检测参考信号资源,以及根据规则七确定第一小区组的波束失败事例指示周期,第一小区组的波束失败事例指示周期为所述第一小区组中所有小区中最小的波束失败事例指示周期与2ms的最大值。
在一些实施例中,终端设备和网络设备可以预先定义或预先配置规则一至规则九, 终端设备或网络设备从规则一至规则九中选择至少一个规则确定第一参数。
在另一些实施例中,终端设备和网络设备可以预先定义或预先配置规则一至规则九中至少一个规则,终端设备或网络设备根据存储的规则确定第一参数。
本申请对确定第一参考的具体方式不作确定,当然,也可以有其它确定第一参数的方式。
在终端设备确定了第一小区组的第一参数,并根据第一小区组的第一参数对第一小区组进行波束失败检测后,可以执行S803。
具体的波束失败检测过程参考S101的阐述,不予赘述。
S803、终端设备确定第一小区组波束失败。
终端设备根据第一小区组的第一参数对第一小区组进行波束失败检测时,第一小区组中的N个小区可以共用一个波束失败检测计时器和一个波束失败检测计数器。具体的波束失败检测方法可以参考上述S101的阐述,不予赘述。
S804、终端设备向网络设备发送波束失败恢复请求信息。
应理解,本申请各实施例中,波束失败恢复请求信息可以用于指示波束失败小区的小区信息。终端设备可以将该波束失败恢复请求信息承载在MAC-CE上向网络设备发送。
在一些实施例中,波束失败恢复请求信息包括以下内容中的至少一个:第一小区组内的一个小区的标识信息和至少一个参考信号资源信息,该至少一个参考信号资源信息用于恢复第一小区组中至少一个小区的链路。
该参考信号资源信息可以为用于恢复波束失败小区的参考信号资源索引,或者,没有识别出用于恢复波束失败小区的参考信号资源的信息。该至少一个参考信号资源信息还可以称为恢复波束失败小区的参考信号资源信息。
应理解,本申请各实施例中,恢复波束失败小区的参考信号资源信息,可以是恢复波束失败小区的参考信号资源索引,还可以是恢复波束失败小区的参考信号资源索引和该参考信号资源的信道质量信息,还可以是未识别恢复波束失败小区的参考信号资源的指示信息。其中,恢复波束失败小区的参考信号资源可以是CSI-RS资源,或者可以是SSB资源。参考信号资源的信道质量信息可以是RSRP、SINR、RSRQ、CQI中的一个或多个。
可选地,对于N个小区中的任意一个小区,终端设备识别出该小区的用于恢复波束失败的参考信号资源,即可上报该小区对应的波束失败参考信号资源索引。如N个小区对应N个参考信号资源信息。终端设备上报一个小区的标识信息和N个小区的参考信号资源信息。
在一些实施例中,小区的标识信息即为小区的标识或小区的索引。该小区为发生波束失败的小区。
在一些实施例中,小区的标识信息可以是波束失败小区标识的指示信息。如通过位图指示小区是否发生波束失败。示例的,需要波束失败检测或波束失败恢复的小区共有K个,那么可以使用K个比特表示K个小区,每个比特位的不同取值指示对应的小区发生波束失败和没有发生波束失败的两种状态。例如:第i个比特位对应第i个小区,当第i个比特位为1时,表示第i个小区发生波束失败;当第i个比特位为0 时,表示第i个小区没有发生波束失败。
可选地,一个小区的标识信息可以为第一参数所属的小区。或者,一个小区的标识信息可以为第一小区组中标识最小的小区的标识信息。
在一些实施例中,“小区的标识信息”可以替换为“小区组的标识信息”。
在一些实施例中,终端设备可以根据上述方法从第二资源中选择第一资源发送链路失败恢复请求信息。
应理解,承载BFRQ的资源可以由以下几种可能的方式:
方式1:终端设备可以选择S104中网络设备配置或指示PUSCH中的一个PUSCH资源发送N个重复的BFRQ(也可以称为N个相同的BFRQ MAC-CE)。可选地,N个重复的BFRQ信息独立编码。
方式2:终端设备可以选择S104中网络设备配置或指示PUSCH中的多个PUSCH资源发送N个重复的BFRQ(也可以称为N个相同的BFRQ MAC-CE)。例如,终端设备选择2个PUSCH资源分别承载2个MAC-CE。
对于方式1和方式2,终端设备根据预设规则选择PUSCH资源发送波束失败恢复请求信息是可选地步骤。也即终端设备可以不执行终端设备根据预设规则选择PUSCH资源发送波束失败恢复请求信息。此时终端设备选择的PUSCH资源可以取决于终端设备的实现。
为描述方便,终端设备根据预设规则选择PUSCH资源发送波束失败恢复请求信息简称为第一资源。
S805、网络设备确定第一小区组。
在一些实施例中,网络设备可以根据空间相关参数信息确定第一小区组。在另一些实施例中,网络设备先将多个小区分组,再将一个小区组关联同一个空间相关参数信息。
在一些实施例中,终端设备可以将与至少一个控制资源集合的QCL信息相同的至少两个小区确定为第一小区组。
例如,终端设备将具有同一个QCL信息的至少两个小区确定为第一小区组。应理解,所述N个小区中至少两个小区与同一QCL信息关联。
又例如,终端设备将与同一QCL信息关联的任意两个小区确定为第一小区组。应理解,所述N个小区中任意两个小区与同一QCL信息关联。
又例如,终端设备将与同一QCL信息关联的任意两个小区确定为第一小区组。应理解,所述N个小区中任意两个小区与同一QCL信息关联。
在另一些实施例中,终端设备可以将与同一空间相关参数信息关联的每个小区确定为第一小区组。应理解,所述N个小区中每个小区与同一空间相关参数信息关联。
例如,终端设备可以将具有相同QCL信息集合的小区确定为第一小区组。应理解,第一小区组中任意两个小区的QCL信息集合相同。任一个QCL信息集合为对应小区的所有控制资源集合的QCL信息的集合。
又例如,终端设备可以将存在至少一个相同的QCL信息的小区确定为第一小区组。第一小区组中所有小区存在至少一个相同的QCL信息。至少一个相同的QCL信息为对应小区的至少一个控制资源集合的QCL信息。
又例如,终端设备可以将具有至少一个相同的控制资源集合的小区确定为第一小区组。第一小区组中每个小区包括至少一个控制资源集合,其中,所有小区包括的至少一个控制资源集合中所有QCL信息相同。
空间相关参数信息可以是指QCL信息或TCI。具体的分组方法可以参考上述S801的阐述,不予赘述。
S806、网络设备接收波束失败恢复请求信息。
需要说明的是,本申请实施例提供的方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,示例的,如S805和S806之间的前后顺序可以互换,即可先执行S806再执行S805,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
需要说明的是,本实施例还可以包括其它步骤,如识别新链路和网络设备向终端设备反馈波束失败恢复响应,具体的可以参考S102、S107和S108的阐述,不予赘述。
需要说明的是,可选地,本申请各实施例中的TCI状态或QCL信息可以指激活的TCI状态或激活TCI状态指示的QCL信息。
本申请实施例提供的波束失败检测方法,由于将具有相同波束方向的小区分为一组,可以通过一个波束失败恢复过程对该小区组中所有小区进行波束失败检测,从而,有效地降低了终端设备对多个小区进行波束失败检测的实现复杂度;另外,通过一个MAC-CE发送多个小区的波束失败恢复请求信息,有效地节省了发送波束失败恢复请求信息的资源开销。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图19和图20为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图5所示的终端设备520,也可以是如图5所示的网络设备510,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图19所示,通信装置1900包括处理单元1910和收发单元1920。通信装置1900用于实现上述图8中所示的方法实施例中终端设备或网络设备的功能。
当通信装置1900用于实现图8所示的方法实施例中终端设备的功能时:收发单元1920用于执行S804;处理单元1910用于执行S801~S803。
当通信装置1900用于实现图8所示的方法实施例中网络设备的功能时:收发单元1920用于执行S806;处理单元1910用于执行S805。
有关上述处理单元1910和收发单元1920更详细的描述可以直接参考图8所示的方法实施例中相关描述直接得到,这里不加赘述。
如图20所示,通信装置2000包括处理器2010和接口电路2020。处理器2010和接口电路2020之间相互耦合。可以理解的是,接口电路2020可以为收发器或输入输 出接口。可选的,通信装置2000还可以包括存储器2030,用于存储处理器2010执行的指令或存储处理器2010运行指令所需要的输入数据或存储处理器2010运行指令后产生的数据。
当通信装置2000用于实现图8所示的方法时,处理器2010用于执行上述处理单元1910的功能,接口电路2020用于执行上述收发单元1920的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些 接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种波束失败检测方法,其特征在于,包括:
    确定第一小区组,所述第一小区组包含N个小区,所述N个小区中至少两个小区与同一空间相关参数信息关联,N为大于或等于2的整数;
    根据所述第一小区组的第一参数对所述第一小区组进行波束失败检测。
  2. 根据权利要求1所述的方法,其特征在于,所述空间相关参数信息为传输配置指示TCI状态,所述N个小区中至少两个小区与同一空间相关参数关联,包括:
    所述第一小区组中任意两个小区的TCI状态集合相同,任一个TCI状态集合为对应小区的所有控制资源集合的TCI状态的集合,或者,
    所述第一小区组中所有小区存在至少一个相同的TCI状态,所述至少一个相同的TCI状态为对应小区的至少一个控制资源集合的TCI状态,或者,
    所述第一小区组中存在至少一个控制资源集合组,其中,所述至少一个控制资源集合组中的任一控制资源集合组包括所述第一小区组中每个小区的至少一个控制资源集合,且任一控制资源集合组中包括的所有控制资源集合的TCI状态相同。
  3. 根据权利要求1所述的方法,其特征在于,所述空间相关参数信息为准共址QCL信息,所述N个小区中至少两个小区与同一空间相关参数关联,包括:
    所述第一小区组中任意两个小区的QCL信息集合相同,任一个QCL信息集合为对应小区的所有控制资源集合的QCL信息的集合,或者,
    所述第一小区组中所有小区存在至少一个相同的QCL信息,所述至少一个相同的QCL信息为对应小区的至少一个控制资源集合的QCL信息,或者,
    所述第一小区组中存在至少一个控制资源集合组,其中,所述至少一个控制资源集合组中的任一控制资源集合组包括所述第一小区组中每个小区的至少一个控制资源集合,且任一控制资源集合组中包括的所有控制资源集合的QCL信息相同。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一参数为所述第一小区组中子载波间隔最大的小区的波束失败检测参数。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第一参数为所述第一小区组中小区标识最小的小区的波束失败检测参数。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一参数为波束失败事例最大次数最小的小区的波束失败检测参数。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述第一参数为波束失败检测计时器最小的小区的波束失败检测参数。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一参数为隐式指示的波束失败检测参考信号资源所在小区的波束失败检测参数。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一参数为最小周期的波束失败检测参考信号资源所在小区的波束失败检测参数,所述最小周期的波束失败检测参考信号资源对应的传输配置指示状态为所述N个小区的相同的传输配置指示状态,或,所述最小周期的波束失败检测参考信号资源对应的准共址信息为所述N个小区的相同的准共址信息。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述第一参数为波束 失败事例指示周期最小的小区的波束失败检测参数。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述第一参数为所述N个小区中控制资源集合的传输配置指示状态个数最少的小区的波束失败检测参数;或者,所述第一参数为所述N个小区中控制资源集合的准共址信息个数最少的小区的波束失败检测参数。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述波束失败检测参数包括波束失败检测参考信号资源、波束失败事例最大次数、波束失败检测计时器和波束失败事例指示周期中至少一个。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述第一小区组中的所述N个小区共用一个波束失败检测计时器和一个波束失败检测计数器。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述方法还包括:
    确定所述第一小区组波束失败;
    发送波束失败恢复请求信息,所述波束失败恢复请求信息包括以下内容中的至少一个:
    所述第一小区组内的一个小区的标识信息和至少一个参考信号资源信息,所述至少一个参考信号资源信息用于恢复所述第一小区组中至少一个小区的链路。
  15. 一种波束失败检测方法,其特征在于,包括:
    确定第一小区组,所述N个小区中至少两个小区与同一空间相关参数信息关联,N为大于或等于2的整数;
    接收波束失败恢复请求信息,所述波束失败恢复请求信息包括以下内容中的至少一个:
    所述第一小区组内的一个小区的标识信息和至少一个参考信号资源信息,所述至少一个参考信号资源信息用于恢复所述第一小区组中至少一个小区的链路。
  16. 根据权利要求15所述的方法,其特征在于,所述空间相关参数信息为传输配置指示TCI状态,所述N个小区中至少两个小区与同一空间相关参数信息关联,包括:
    所述第一小区组中任意两个小区的TCI状态集合相同,任一个TCI状态集合为对应小区的所有控制资源集合的TCI状态的集合,或者,
    所述第一小区组中所有小区存在至少一个相同的TCI状态,所述至少一个相同的TCI状态为对应小区的至少一个控制资源集合的TCI状态,或者,
    所述第一小区组中存在至少一个控制资源集合组,其中,所述至少一个控制资源集合组中的任一控制资源集合组包括所述第一小区组中每个小区的至少一个控制资源集合,且任一控制资源集合组中包括的所有控制资源集合的TCI状态相同。
  17. 根据权利要求15所述的方法,其特征在于,所述空间相关参数信息为准共址QCL信息,所述N个小区中至少两个小区与同一空间相关参数关联,包括:
    所述第一小区组中任意两个小区的QCL信息集合相同,任一个QCL信息集合为对应小区的所有控制资源集合的QCL信息的集合,或者,
    所述第一小区组中所有小区存在至少一个相同的QCL信息,所述至少一个相同的QCL信息为对应小区的至少一个控制资源集合的QCL信息,或者,
    所述第一小区组中存在至少一个控制资源集合组,其中,所述至少一个控制资源 集合组中的任一控制资源集合组包括所述第一小区组中每个小区的至少一个控制资源集合,且任一控制资源集合组中包括的所有控制资源集合的QCL信息相同。
  18. 一种通信装置,其特征在于,包括:至少一个处理器、存储器,其中,所述存储器用于存储计算机程序,使得所述计算机程序被所述至少一个处理器执行时实现如权利要求1-14中任一项所述的波束失败检测方法、或者实现如权利要求15-17中任一项所述的波束失败检测方法。
  19. 一种计算机可读存储介质,其特征在于,包括:计算机软件指令;
    当所述计算机软件指令在通信装置或内置在通信装置的芯片中运行时,使得所述通信装置执行如权利要求1-14中任一项所述的波束失败检测方法、或者实现如权利要求15-17中任一项所述的波束失败检测方法。
PCT/CN2019/109761 2019-09-30 2019-09-30 一种波束失败检测方法及装置 WO2021062832A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980098092.2A CN114041321A (zh) 2019-09-30 2019-09-30 一种波束失败检测方法及装置
PCT/CN2019/109761 WO2021062832A1 (zh) 2019-09-30 2019-09-30 一种波束失败检测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109761 WO2021062832A1 (zh) 2019-09-30 2019-09-30 一种波束失败检测方法及装置

Publications (1)

Publication Number Publication Date
WO2021062832A1 true WO2021062832A1 (zh) 2021-04-08

Family

ID=75337667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109761 WO2021062832A1 (zh) 2019-09-30 2019-09-30 一种波束失败检测方法及装置

Country Status (2)

Country Link
CN (1) CN114041321A (zh)
WO (1) WO2021062832A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210136604A1 (en) * 2019-11-01 2021-05-06 Qualcomm Incorporated Joint beam failure detection
WO2024012328A1 (zh) * 2022-07-15 2024-01-18 华为技术有限公司 一种信号发送方法及装置
WO2024026657A1 (en) * 2022-08-02 2024-02-08 Qualcomm Incorporated Group level beam failure detection reference signal activation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027294A1 (en) * 2017-08-04 2019-02-07 Samsung Electronics Co., Ltd. METHOD AND USER EQUIPMENT (UE) FOR BEAM MANAGEMENT FRAMEWORK FOR AGGREGATION OF CARRIERS
WO2019032017A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) APPARATUSES AND METHODS FOR ACHIEVING BEAM RECOVERY
CN110167203A (zh) * 2018-02-12 2019-08-23 华为技术有限公司 波束失败恢复的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487437B (zh) * 2015-08-27 2020-10-16 中兴通讯股份有限公司 基于宽窄波束接入的高频同步实现方法、系统及装置
WO2018202188A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 一种通信方法、系统及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027294A1 (en) * 2017-08-04 2019-02-07 Samsung Electronics Co., Ltd. METHOD AND USER EQUIPMENT (UE) FOR BEAM MANAGEMENT FRAMEWORK FOR AGGREGATION OF CARRIERS
WO2019032017A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) APPARATUSES AND METHODS FOR ACHIEVING BEAM RECOVERY
CN110167203A (zh) * 2018-02-12 2019-08-23 华为技术有限公司 波束失败恢复的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "TP on RLM and beam failure monitoring corrections (E396), R2-1802777", 3GPP TSG-RAN WG2 #101, 2 March 2018 (2018-03-02), XP051400801 *
NOKIA, NOKIA SHANGHAI BELL: "SCell Beam Failure Recovery", 3GPP DRAFT; R2-1808024 SCELL BEAM FAILURE RECOVERY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Busan, South Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051444346 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210136604A1 (en) * 2019-11-01 2021-05-06 Qualcomm Incorporated Joint beam failure detection
US11653231B2 (en) * 2019-11-01 2023-05-16 Qualcomm Incorporated Joint beam failure detection
WO2024012328A1 (zh) * 2022-07-15 2024-01-18 华为技术有限公司 一种信号发送方法及装置
WO2024026657A1 (en) * 2022-08-02 2024-02-08 Qualcomm Incorporated Group level beam failure detection reference signal activation

Also Published As

Publication number Publication date
CN114041321A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
JP7318069B2 (ja) 搬送波感知による共用スペクトルにおけるlte波形を送信するための方法及び装置
US20210029626A1 (en) Discovery signal transmission/reception method and apparatus for use in mobile communication system
US10931483B2 (en) Device-to-device (D2D) communication management techniques
EP3195688B1 (en) Drx cycle configuration in dual connectivity
WO2020228589A1 (zh) 通信方法和通信装置
WO2021018066A1 (zh) 信息上报方法及装置
KR20200116975A (ko) 스케줄링 요청 및 ack/nack의 우선 순위화
US20210235340A1 (en) Measurement Configuration for Unlicensed Operations
WO2020207333A1 (zh) 链路失败恢复的方法和装置
WO2021062832A1 (zh) 一种波束失败检测方法及装置
KR20220047343A (ko) 통신-전-청취 파라미터들의 시그널링
CN110798900A (zh) 一种通信失败恢复的方法和装置
WO2021017848A1 (zh) 用于链路失败恢复的方法和装置
WO2021062689A1 (zh) 一种上行传输的方法及装置
US20220159767A1 (en) Communication Method And Communications Apparatus
WO2021062672A1 (zh) 一种发送波束失败恢复请求的方法及装置
WO2019246136A1 (en) Device-to-device (d2d) channel measurement techniques
EP3811706A1 (en) Device-to-device (d2d) communication management techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948106

Country of ref document: EP

Kind code of ref document: A1