WO2021143236A1 - 砌砖机器人 - Google Patents

砌砖机器人 Download PDF

Info

Publication number
WO2021143236A1
WO2021143236A1 PCT/CN2020/121637 CN2020121637W WO2021143236A1 WO 2021143236 A1 WO2021143236 A1 WO 2021143236A1 CN 2020121637 W CN2020121637 W CN 2020121637W WO 2021143236 A1 WO2021143236 A1 WO 2021143236A1
Authority
WO
WIPO (PCT)
Prior art keywords
brick
bricklaying
moving mechanism
manipulator
chassis
Prior art date
Application number
PCT/CN2020/121637
Other languages
English (en)
French (fr)
Inventor
李雪成
陆振河
曾绪武
刘浩然
张猛
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Publication of WO2021143236A1 publication Critical patent/WO2021143236A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/22Tools or apparatus for setting building elements with mortar, e.g. bricklaying machines

Definitions

  • the invention relates to the technical field of construction machinery, in particular to a bricklaying robot.
  • the purpose of the present invention is to provide a bricklaying robot, which can expand the range of movement for grabbing bricks.
  • the present invention adopts the following technical solutions:
  • a bricklaying robot includes: a chassis; a brick-feeding moving mechanism arranged on the chassis; a brick-feeding manipulator for grabbing bricks to be troweled, and the brick-feeding manipulator is arranged on the side of the brick-feeding moving mechanism At the output end, the brick supply moving mechanism can drive the brick supply manipulator up and down and horizontally move; the bricklaying moving mechanism is arranged on the chassis; and the bricklaying manipulator is used to grab the troweled bricks for masonry , The bricklaying manipulator is arranged at the output end of the bricklaying moving mechanism, and the bricklaying moving mechanism can drive the bricklaying manipulator to lift and move horizontally; the first rotation driving mechanism is arranged on the brick feeding and moving mechanism The first rotary drive mechanism is connected to the brick feeding manipulator and can drive the brick feeding manipulator to rotate in a horizontal plane; the second rotary drive mechanism is arranged at the output end of the bricklaying moving mechanism, The second rotation driving mechanism is connected with the bricklaying manipulator and can drive the bricklaying manipulator to rotate in a horizontal
  • the moving mechanism for supplying bricks includes:
  • the brick supply bracket is arranged on the chassis
  • the first linear drive assembly is arranged on the brick supply support, and the output end of the first linear drive assembly can reciprocate in a horizontal direction;
  • the second linear drive assembly is arranged at the output end of the first linear drive assembly, the output end of the second linear drive assembly can be raised and lowered vertically, and the brick supply manipulator is installed on the output end of the second linear drive assembly The output terminal.
  • the first linear drive assembly and the second linear drive assembly are both screw nut assemblies.
  • the first rotation drive mechanism includes:
  • the first connecting plate is connected to the output end of the moving mechanism for supplying bricks
  • the first drive assembly includes a first joint and a first motor, the first motor is arranged on the first connecting plate and its output shaft is arranged vertically, and the first joint is connected to the The output shaft of the first motor is connected, the first motor can drive the first joint to rotate, and the brick feeding manipulator is installed on the first joint.
  • the brick supply manipulator includes:
  • the first arm is installed on the first joint and arranged horizontally;
  • the second arm is slidably connected below the first arm, and its length direction is the same as the length direction of the first arm;
  • a brick-supplying jaw for grabbing bricks to be mortared the brick-supplying jaw is connected to the second arm;
  • the second drive assembly is arranged on the first arm, and the second drive assembly can drive the second arm to reciprocate along the length direction of the first arm.
  • the brick supply manipulator further includes:
  • a first mounting frame is rotatably connected to the second arm, and the brick supply jaws are connected to the first mounting frame;
  • the third drive assembly is arranged on the second arm, and the third drive assembly can drive the first mounting frame to rotate relative to the second arm in a horizontal plane.
  • the bricklaying robot further includes:
  • the bricklaying moving mechanism is arranged on the chassis;
  • Bricklaying manipulator for grabbing mortared bricks for masonry.
  • the bricklaying manipulator is arranged at the output end of the bricklaying moving mechanism.
  • the bricklaying moving mechanism can drive the bricklaying manipulator up and down and horizontally. move.
  • the bricklaying robot further includes:
  • a brick jacking mechanism arranged on the chassis, for placing bricks to be plastered by the brick supply manipulator;
  • the bricklaying robot further includes an electric control box, the electric control box and the brick lifting mechanism are located at two opposite ends of the chassis, and the troweling mechanism is located on the top of the brick. Rise above the structure;
  • the brick supply moving mechanism and the bricklaying moving mechanism are located in the middle of the chassis and arranged at intervals, and the slurry feeding mechanism is located between the brick supplying moving mechanism and the bricklaying moving mechanism.
  • At least one of the bricklaying moving mechanism and the brick feeding moving mechanism is movably mounted on the chassis to be close to or away from the other.
  • a sliding drive assembly is provided on the top of the chassis, and the sliding drive assembly can drive at least one of the bricklaying moving mechanism and the brick feeding moving mechanism to move on the chassis, Take it closer or farther away from the other.
  • the sliding drive assembly includes:
  • the sliding motor is arranged on the chassis;
  • a double-headed screw which is connected to the output end of the sliding motor and can be rotated by the drive of the sliding motor;
  • Two movable parts one of the movable parts is connected to the brick supply moving mechanism, and the other is connected to the bricklaying moving mechanism; the two movable parts are respectively connected to the two ends of the double-ended screw They are screw-threaded and can move along the length of the double-ended screw with the rotation of the double-ended screw to move closer to or away from each other.
  • the bricklaying robot of the present invention has at least the following beneficial effects: by arranging the brick supply manipulator for grabbing bricks to be plastered at the output end of the brick supply moving mechanism, the brick supply moving mechanism can drive the brick supply manipulator up and down and move horizontally, Therefore, the brick supply manipulator can grab bricks of different heights and different positions in the horizontal direction on the ground, and realizes the expansion of the movable range of grabbing bricks.
  • Fig. 1 is a schematic structural diagram of a bricklaying robot provided by an embodiment of the present invention
  • Figure 2 is a top view of the bricklaying robot shown in Figure 1;
  • Figure 3 is a left view of the bricklaying robot shown in Figure 2;
  • FIG. 4 is a schematic structural diagram of the bricklaying robot provided by the embodiment of the present invention in a folded state
  • Figure 5 is a front view of the bricklaying robot shown in Figure 4.
  • Figure 6 is a top view of the bricklaying robot shown in Figure 5;
  • FIG. 7 is a partial structural diagram of the brick supply moving mechanism and the bricklaying moving mechanism of the bricklaying robot provided by the embodiment of the present invention after moving toward the middle of the chassis;
  • Fig. 8 is a schematic structural diagram of a chassis provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the brick supply moving mechanism and the brick supply manipulator provided by the embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a bricklaying moving mechanism and a bricklaying manipulator provided by an embodiment of the present invention.
  • Chassis 10 brick supply moving mechanism 20, brick supply support 21, first brick supply slide rail 22, first brick supply motor 25, first brick supply screw 26, second brick supply motor 23, second brick supply screw 24.
  • a bricklaying robot includes a chassis 10, a brick feeding moving mechanism 20, a brick feeding manipulator 30, a bricklaying moving mechanism 40 and a bricklaying manipulator 50.
  • the brick supply moving mechanism 20 is arranged on the chassis 10; the brick supply manipulator 30 is used to grab the bricks to be mortared, and the brick supply manipulator 30 is set at the output end of the brick supply movement mechanism 20, and the brick supply movement mechanism 20 can drive the supply
  • the brick manipulator 30 moves up and down and moves horizontally;
  • the bricklaying moving mechanism 40 is set on the chassis 10;
  • the bricklaying manipulator 50 is used to grab the troweled bricks for masonry, and the bricklaying manipulator 50 is set at the output end of the bricklaying moving mechanism 40
  • the bricklaying moving mechanism 40 can drive the bricklaying manipulator 50 to lift and move horizontally.
  • the bricklaying robot described above installs a brick feeding manipulator 30 for grabbing bricks to be plastered at the output end of the brick feeding moving mechanism 20, and the brick feeding moving mechanism 20 can drive the brick feeding manipulator 30 to move up and down and move horizontally, thereby feeding bricks.
  • the manipulator 30 can grab bricks of different heights and different positions in the horizontal direction on the ground, realizing the expansion of the activity range of grabbing bricks; by arranging the bricklaying manipulator 50 at the output end of the bricklaying moving mechanism 40, the bricklaying moving mechanism 40 can drive the bricklaying manipulator 50 to lift and move horizontally, so that the bricklaying manipulator 50 can grab the mortared bricks and move to different positions at different heights and horizontal directions, which expands the movable range of the bricklaying manipulator 50.
  • the brick supply moving mechanism 20 includes a brick supply support 21, a first linear drive assembly and a second linear drive assembly, wherein the brick supply support 21 is provided on the chassis 10;
  • the linear drive assembly is arranged on the brick supply support 21, the output end of the first linear drive assembly can reciprocate in the horizontal direction;
  • the second linear drive assembly is arranged at the output end of the first linear drive assembly, and the second linear drive assembly
  • the output end of can be raised and lowered vertically, and the brick manipulator 30 is installed at the output end of the second linear drive assembly.
  • the first linear drive assembly and the second linear drive assembly are both screw nut assemblies.
  • the first linear drive assembly includes a first brick-feeding motor 25, a first brick-feeding screw 26, and a first nut.
  • the first nut is connected to the second linear drive assembly, and the first brick-feeding screw 26 is connected to the first The output end of the brick feeding motor 25 extends in the horizontal direction.
  • the first brick feeding motor 25 can drive the first brick feeding screw 26 to rotate around its own axis; the first nut is sleeved on the first brick feeding screw 26 and is connected to the first brick feeding screw 26.
  • a brick feeding screw 26 is threadedly connected, and can drive the second linear drive assembly and the brick feeding manipulator 30 to move along the length direction of the first brick feeding screw 26 with the rotation of the first brick feeding screw 26.
  • the second linear drive assembly includes a second brick-feeding motor 23, a second brick-feeding screw 24, and a second nut.
  • the second nut is connected to the brick-feeding manipulator 30, and the second brick-feeding screw 24 is connected to the second brick-feeding motor 23.
  • the output end extends in the vertical direction.
  • the second brick supply motor 23 can drive the second brick supply screw 24 to rotate around its own axis; the second nut is sleeved on the second brick supply screw 24 and is connected to the second brick supply screw.
  • the rod 24 is threadedly connected, and can drive the brick feeding manipulator 30 to move along the length direction of the second brick feeding screw 24 with the rotation of the second brick feeding screw 24.
  • the brick supply moving mechanism 20 further includes a first guide assembly for guiding the vertical lifting of the brick supply manipulator 30 and a second guide assembly for guiding the horizontal movement of the second linear drive assembly.
  • the first guide assembly includes a first brick supply slide rail 22 and a first brick supply slider slidably connected to the first brick supply slide rail 22.
  • the length direction of the first brick supply slide rail 22 and the second brick supply wire The length directions of the bars 24 are the same, and the first brick supply slider is fixedly connected to the brick supply manipulator 30.
  • the second guide assembly includes a second brick supply slide rail 27 and a second brick supply slider that is slidably connected to the second brick supply slide rail 27.
  • the length direction of the second brick supply slide rail 27 is the same as that of the first brick supply screw 26.
  • the length direction is the same, and the second brick supply sliding block is fixedly connected to the second linear drive assembly.
  • the bricklaying robot further includes a first rotation driving mechanism, the first rotation driving mechanism is arranged at the output end of the brick supply moving mechanism 20, the first rotation driving mechanism is connected with the brick supply manipulator 30, and can drive the supply The brick manipulator 30 rotates in a horizontal plane.
  • the brick feeding manipulator 30 can be moved away from the brick feeding moving mechanism 20 (extended) by the first rotary drive mechanism to increase the working stroke; when it is necessary to pass through a narrow space, the brick feeding manipulator 30 can be moved by the first rotary drive mechanism Rotate in a horizontal plane to fit (shrink) with the brick supply moving mechanism 20 to reduce the overall size of the bricklaying robot, so that the bricklaying robot can pass through the narrow space smoothly, and improve the space adaptability of the bricklaying robot.
  • the first rotary drive mechanism includes a first connecting plate 31 and a first drive assembly, the first connecting plate 31 is connected to the output end of the brick supply moving mechanism 20; the first drive assembly includes a first joint and a first drive assembly.
  • the first motor 32 is arranged on the first connecting plate 31 and the output shaft of the first motor 32 is arranged vertically.
  • the first joint is connected with the output shaft of the first motor 32.
  • the first motor 32 can drive the first joint to rotate.
  • the brick manipulator 30 is installed on the first joint member.
  • the brick feeding manipulator 30 When in use, extend the brick feeding manipulator 30 horizontally, so that the bending moment of the brick feeding manipulator 30 is completely carried on the first joint, without the transmission of the motor output shaft or reducer in the middle, which greatly reduces the required motor torque and improves the bearing bending moment Compared with the traditional form of directly mounting the arm on the reducer or motor output shaft, the ability of the first joint is more symmetrical, and the structure is more reasonable. During the rotation of the first joint, it only needs to overcome the rotational friction and supply the bricks. The inertial force of the start and stop of the manipulator 30.
  • the brick feeding manipulator 30 includes a first arm 33, a second arm 35, a brick feeding jaw 34, and a second drive assembly.
  • the first arm 33 is mounted on the first joint and is horizontal.
  • the second arm 35 is slidably connected below the first arm 33, and its length direction is the same as that of the first arm 33;
  • the brick supply jaw 34 is used to grab the bricks to be mortared, and the brick supply jaw 34 Connected to the second arm 35;
  • the second driving assembly is arranged on the first arm 33, and the second driving assembly can drive the second arm 35 to reciprocate along the length direction of the first arm 33.
  • the extension length of the brick supply manipulator 30 is variable to better adapt to Work needs: when the second arm 35 is extended, the total length of the brick feeding manipulator 30 becomes longer, which expands the movable range of the brick feeding manipulator 30; when the second arm 35 is retracted, the total length of the brick feeding manipulator 30 becomes shorter, Can reduce the occupied space.
  • the brick supply manipulator 30 further includes a first mounting frame 36 and a third drive assembly.
  • the first mounting frame 36 is rotatably connected to the second arm 35, and the brick supply jaw 34 is connected to the first mounting frame 36;
  • the third driving assembly is arranged on the second arm 35, and the third driving assembly can drive the first mounting frame 36 to rotate relative to the second arm 35 in a horizontal plane, so as to increase the flexibility of the brick supply jaw 34.
  • the bricklaying moving mechanism 40 includes a bricklaying support 41, a lifting drive assembly and a traversing drive module.
  • the bricklaying support 41 is arranged on the chassis 10; the lifting drive assembly is arranged on the bricklaying support 41, The output end of the drive assembly can be raised and lowered vertically; the traverse drive assembly is arranged at the output end of the elevation drive assembly, the output end of the traverse drive assembly can reciprocate in the horizontal direction, and the bricklaying manipulator 50 is installed at the output end of the traverse drive assembly .
  • the lifting drive assembly includes a lifting motor 42, a lifting screw 43 and a lifting nut.
  • the lifting nut is connected to the transverse drive assembly.
  • the lifting screw 43 is connected to the output end of the lifting motor 42 and extends in the vertical direction.
  • the lifting motor 42 can The lifting screw 43 is driven to rotate around its own axis; the lifting nut is sleeved on the lifting screw 43 and is threadedly connected with the lifting screw 43, and can drive the traverse drive assembly and the bricklaying manipulator 50 to lift along with the rotation of the lifting screw 43
  • the screw 43 moves in the longitudinal direction.
  • the traverse drive assembly includes a traverse mounting frame 44, a traverse motor 45 and a transmission assembly.
  • the traverse mounting frame 44 is arranged horizontally and connected with a lifting nut.
  • the traverse motor 45 is installed on the traverse mounting frame 44;
  • the transmission assembly includes a driving wheel. 46.
  • the timing belt 48 is connected to the driven wheel 47 and the driving wheel 46 respectively.
  • the driving wheel 46 is connected to the output shaft of the traverse motor 45 and can rotate under the drive of the traverse motor 45.
  • the synchronous belt 48 is connected Bricklaying robot 50. When the driving wheel 46 rotates, the timing belt 48 will drive the bricklaying manipulator 50 to move horizontally relative to the transverse mounting frame 44.
  • the bricklaying robot further includes a second rotary drive mechanism, the second rotary drive mechanism is arranged at the output end of the bricklaying moving mechanism 40, the second rotary drive mechanism is connected with the bricklaying manipulator 50, and can drive the bricklaying manipulator 50 Rotate in the horizontal plane.
  • the bricklaying manipulator 50 can be moved away from the bricklaying moving mechanism 40 (extended) by the second rotary drive mechanism to increase the working stroke; when it is necessary to pass through a narrow space, the bricklaying manipulator 50 can be moved by the second rotary drive mechanism Rotate in the horizontal plane to fit (shrink) with the bricklaying moving mechanism 40 to reduce the overall size of the bricklaying robot, so that the bricklaying robot can pass through the narrow space smoothly, and improve the space adaptability of the bricklaying robot.
  • the second rotation drive mechanism includes a second connecting plate and a second drive assembly, the second connecting plate is connected to the output end of the bricklaying moving mechanism 40;
  • the second drive assembly includes a second joint and a second motor, The second motor is arranged on the second connecting plate and its output shaft is vertically arranged.
  • the second joint is connected with the output shaft of the second motor.
  • the second motor can drive the second joint to rotate.
  • the bricklaying manipulator 50 is installed on the second joint. Joint parts.
  • the bricklaying manipulator 50 When in use, the bricklaying manipulator 50 is extended horizontally, so that the bending moment of the bricklaying manipulator 50 is completely carried on the second joint part, without the transmission of the motor output shaft or reducer in the middle, which greatly reduces the required motor torque and improves the bearing bending moment Compared with the traditional form of directly mounting the arm on the reducer or motor output shaft, the ability of the second joint is more symmetrical, and the structure is more reasonable. During the rotation of the second joint, it only needs to overcome the rotational friction and bricklaying. The inertia force of the manipulator 50 to start and stop.
  • At least one of the bricklaying moving mechanism 40 and the brick feeding moving mechanism 20 is movably mounted on the chassis 10 to be close to or away from the other, so that both the moving mechanism and the manipulator can be recovered in the chassis. In the space directly above 10, the overall passing performance of the robot is improved, and abnormal collisions with the outside of the manipulator or moving mechanism during walking are avoided.
  • a sliding drive assembly is provided on the top of the chassis 10, and the sliding drive assembly can drive at least one of the bricklaying moving mechanism 40 and the brick feeding moving mechanism 20 to move on the chassis 10 to move closer to or away from the other.
  • the sliding drive assembly may include a sliding motor 101, a double-ended screw 102 and two movable parts 103.
  • the sliding motor 101 is arranged on the chassis 10; the double-ended screw 102 is connected to the output end of the sliding motor 101, And can be rotated by the drive of the sliding motor 101; one of the movable parts 103 is connected to the brick moving mechanism 20, and the other movable part 103 is connected to the bricklaying moving mechanism 40; the two movable parts 103 are respectively connected to the two ends of the double-ended screw 102 They are screwed and can move along the length of the double-ended screw 102 to move closer to or away from each other with the rotation of the double-ended screw 102.
  • the bricklaying moving mechanism 40 and the brick feeding moving mechanism 20 are driven by the double-ended screw 102 and the movable part 103 to approach and open each other, and the limit positions of the two can be set by the stroke length and the end of the double-ended screw 102 .
  • the double-headed screw 102 realizes that the two movable parts 103 are driven to move by one power source, and the structure is simpler.
  • both the bricklaying moving mechanism 40 and the brick feeding moving mechanism 20 will be driven toward the same time. Move in a direction closer to or away from each other.
  • the bricklaying moving mechanism 40 and the brick feeding moving mechanism 20 may be installed on the guide rail 111 and the sliding block 112, and guided by the guide rail 111 and the sliding block 112.
  • the bricklaying moving mechanism 40 and the brick feeding moving mechanism 20 are arranged in parallel and side by side, and the two are respectively slidably connected to the chassis 10.
  • the bricklaying moving mechanism 40 slides to a limit position close to the brick feeding moving mechanism 20
  • the bricklaying manipulator 50 swings (rotates) to fit the bricklaying moving mechanism 40
  • the bricklaying moving mechanism 40 and the bricklaying manipulator 50 are located in the longitudinal three-dimensional space of the chassis 10, and the longitudinal three-dimensional space of the chassis 10 is not projected. (Folded state, as shown in Figure 5 and Figure 6).
  • the brick feeding moving mechanism 20 slides to the limit position close to the bricklaying moving mechanism 40, and the brick feeding manipulator 30 swings (rotates) to fit the brick feeding moving mechanism 20, at this time the brick feeding moving mechanism 20 and the brick feeding manipulator 30 It is located in the longitudinal three-dimensional space of the chassis 10, and does not protrude from the longitudinal three-dimensional space of the chassis 10 (in a folded state, as shown in FIGS. 5 and 6).
  • This slidable design structure of the bricklaying moving mechanism 40 and the brick feeding moving mechanism 20 can make the moving mechanism and the manipulator reclaim in the space directly above the chassis 10, thereby improving the overall passing performance of the robot and avoiding the manipulator or the moving mechanism An abnormal collision with the outside occurred during walking.
  • the bricklaying robot further includes a brick jacking mechanism 60, a slurry feeding mechanism 70, and a troweling mechanism 80.
  • the brick jacking mechanism 60 is provided on the chassis 10, and is used to place the bricks to be plastered by the brick feeding manipulator 30;
  • the mortar feeding mechanism 70 is used to supply mortar;
  • the plastering mechanism 80 is used to transfer the mortar feeding mechanism 70 mortar is applied to the bricks to be mortared placed on the brick jacking mechanism 60, and the bricklaying manipulator 50 is used to grab the bricks coated with mortar on the brick jacking mechanism 60, so that the bricklaying robot can collect Brick-grabbing, mortaring and brick-laying functions are integrated to realize brick-laying robots instead of workers to perform brick-laying work and improve masonry efficiency.
  • the bricklaying robot further includes an electric control box 90, the electric control box 90 and the brick lifting mechanism 60 are located at two opposite ends of the chassis 10, and the troweling mechanism 80 is located above the brick lifting mechanism 60; the brick supply moving mechanism 20 and the bricklaying moving mechanism 40 are located in the middle of the chassis 10 and arranged at intervals, and the mortar feeding mechanism 70 is located between the brick supplying moving mechanism 20 and the bricklaying moving mechanism 40.
  • the electric control box 90, the brick supply moving mechanism 20, the brick jacking mechanism 60, the mortaring mechanism 80 and the bricklaying moving mechanism 40 are reasonably arranged on the chassis 10 and work independently. The actions do not interfere with each other and can be synchronized to improve Improve masonry efficiency.
  • the chassis 10 may be an AGV (Automated Guided Vehicle), and the AGV drives the electric control box 90, the brick supply moving mechanism 20, the brick jacking mechanism 60, the mortar mechanism 80, and the bricklaying movement.
  • the mechanism 40 moves together to realize a wide range of operations.
  • the chassis 10 moves to the position where it needs to be built; the brick supply manipulator 30 grabs the bricks to be troweled from the ground according to visual guidance, and places the bricks to be troweled on the brick jacking mechanism 60; the troweling mechanism 80 pairs the bricks
  • the bottom and sides of the bricks to be plastered on the block jacking mechanism 60 are plastered, and then the plastered bricks are lifted to a suitable height through the brick jacking mechanism 60;
  • the bricklaying manipulator 50 is lifted from the bricks Grab the mortared bricks on 60 and move to the masonry position, and build the mortared bricks to the correct position according to the visual guidance and sensor detection to complete the bricklaying; continue to build the next brick.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种砌砖机器人,包括:底盘(10);供砖移动机构(20),设置于底盘(10)上;供砖机械手(30),用于抓取待抹浆砖块,供砖机械手(30)设置于供砖移动机构(20)的输出端,供砖移动机构(20)能驱动供砖机械手(30)升降以及水平移动;砌砖移动机构(40),设置于底盘(10)上;砌砖机械手(50),用于抓取已抹浆砖块进行砌筑,砌砖机械手(50)设置于砌砖移动机构(40)的输出端,砌砖移动机构(40)能驱动砌砖机械手(50)升降以及水平移动。供砖机械手(30)可以抓取地面上不同高度和水平方向不同位置的砖块,扩大了抓取砖块的活动范围。

Description

砌砖机器人 技术领域
本发明涉及建筑机械技术领域,尤其涉及一种砌砖机器人。
背景技术
目前市场上80%的内墙为砌筑形式,国内外砌筑时仍是采用全人工作业的传统作业方法,工人劳动强度大、效率低、作业环境条件差,而且作业成本高,工程质量及工人安全不易保证。随着建筑业的不断发展和科学技术的不断进步,这种传统的作业方法已经不能适应时代的要求,所以提出以砌砖机器人替代人进行砌筑的设计方案,在此背景下,如何扩大砌砖机器人抓取砖块的活动范围是亟需解决的问题之一。
发明内容
本发明的目的在于提出一种砌砖机器人,该砌砖机器人能扩大抓取砖块的活动范围。
为达此目的,本发明采用以下技术方案:
一种砌砖机器人,包括:底盘;供砖移动机构,设置于所述底盘上;供砖机械手,用于抓取待抹浆砖块,所述供砖机械手设置于所述供砖移动机构的输出端,所述供砖移动机构能驱动所述供砖机械手升降以及水平移动;砌砖移动机构,设置于所述底盘上;以及砌砖机械手,用于抓取已抹浆砖块进行砌筑,所述砌砖机械手设置于所述砌砖移动机构的输出端,所述砌砖移动机构能驱动所述砌砖机械手升降以及水平移动;第一旋转驱动机构,设置于所述供砖移动机构的输出端,所述第一旋转驱动机构与所述供砖机械手连接,且能驱动所述供砖机械手在水平面内转动;第二旋转驱动机构,设置于所述砌砖移动机构的输出端,所述第二旋转驱动机构与所述砌砖机械手连接,且能驱动所述砌砖机械手在水平面内转动。
在一些实施例中,所述供砖移动机构包括:
供砖支架,设置于所述底盘上;
第一直线驱动组件,设置于所述供砖支架上,所述第一直线驱动组件的输出端能够沿水平方向往复移动;以及
第二直线驱动组件,设置于所述第一直线驱动组件的输出端,所述第二直线驱动组件的输出端能竖直升降,所述供砖机械手安装于所述第二直线驱动组件的输出端。
在一些实施例中,所述第一直线驱动组件和所述第二直线驱动组件均为丝杠螺母组件。
在一些实施例中,所述第一旋转驱动机构包括:
第一连接板,连接在所述供砖移动机构的输出端上;以及
第一驱动组件,所述第一驱动组件包括第一关节件和第一电机,第一电机设置于所述第一连接板上且其输出轴竖直设置,所述第一关节件与所述第一电机的输出轴连接,所述第一电机能驱动所述第一关节件转动,所述供砖机械手安装于所述第一关节件。
在一些实施例中,所述供砖机械手包括:
第一臂,安装于所述第一关节件且水平设置;
第二臂,滑动连接在所述第一臂的下方,且其长度方向与所述第一臂的长度方向相同;
供砖夹爪,用于抓取待抹浆砖块,所述供砖夹爪连接在所述第二臂上;以及
第二驱动组件,设置于所述第一臂上,所述第二驱动组件能驱动所述第二臂沿所述第一臂的长度方向往复运动。
在一些实施例中,所述供砖机械手还包括:
第一安装架,可转动地连接在所述第二臂上,所述供砖夹爪连接在所述第一安装架上;以及
第三驱动组件,设置于所述第二臂上,所述第三驱动组件能驱动所述第一安装架相对所 述第二臂在水平面内转动。
在一些实施例中,所述砌砖机器人还包括:
砌砖移动机构,设置于所述底盘上;以及
砌砖机械手,用于抓取已抹浆砖块进行砌筑,所述砌砖机械手设置于所述砌砖移动机构的输出端,所述砌砖移动机构能驱动所述砌砖机械手升降以及水平移动。
在一些实施例中,所述砌砖机器人还包括:
砖块顶升机构,设置于所述底盘上,用于放置所述供砖机械手所抓取的待抹浆砖块;
送浆机构,用于供应砂浆;以及
抹浆机构,用于将所述送浆机构的砂浆涂抹到置于所述砖块顶升机构上的待抹浆砖块,所述砌砖机械手用于抓取所述砖块顶升机构上涂抹有砂浆的砖块。
在一些实施例中,所述砌砖机器人还包括电控箱,所述电控箱与所述砖块顶升机构位于所述底盘的两相对端,所述抹浆机构位于所述砖块顶升机构的上方;
所述供砖移动机构和所述砌砖移动机构位于所述底盘的中部且间隔排列,所述送浆机构位于所述供砖移动机构与所述砌砖移动机构之间。
在一些实施例中,所述砌砖移动机构与所述供砖移动机构两者中的至少一个可移动地安装在所述底盘上,以靠近或远离另一个。
在一些实施例中,所述底盘的顶部设有滑动驱动组件,所述滑动驱动组件能驱动所述砌砖移动机构和所述供砖移动机构两者中的至少一个在所述底盘上移动,以靠近或远离另一个。
在一些实施例中,所述滑动驱动组件包括:
滑动电机,设置于所述底盘上;
双头丝杠,所述双头丝杠连接在所述滑动电机的输出端,且能在所述滑动电机的驱动下转动;以及
两个活动件,其中一个所述活动件连接所述供砖移动机构,另一个所述活动件连接所述砌砖移动机构;两个所述活动件分别与所述双头丝杠的两端螺纹连接,并能随所述双头丝杠的转动沿所述双头丝杠的长度方向移动以相互靠近或远离。
本发明砌砖机器人至少具有以下有益效果:通过将用于抓取待抹浆砖块的供砖机械手设置于供砖移动机构的输出端,供砖移动机构能驱动供砖机械手升降以及水平移动,从而供砖机械手可以抓取地面上不同高度和水平方向不同位置的砖块,实现了扩大抓取砖块的活动范围。
附图说明
图1为本发明实施方式提供的砌砖机器人的结构示意图;
图2为图1所示砌砖机器人的俯视图;
图3为图2所示砌砖机器人的左视图;
图4为本发明实施方式提供的砌砖机器人处于折叠状态的结构示意图;
图5为图4所示砌砖机器人的主视图;
图6为图5所示砌砖机器人的俯视图;
图7为本发明实施方式提供的砌砖机器人的供砖移动机构和砌砖移动机构均朝底盘中间移动后的局部结构示意图;
图8为本发明实施方式提供的底盘的结构示意图;
图9为本发明实施方式提供的供砖移动机构和供砖机械手的结构示意图;
图10为本发明实施方式提供的砌砖移动机构和砌砖机械手的结构示意图;
附图标号说明:
底盘10,供砖移动机构20,供砖支架21,第一供砖滑轨22,第一供砖电机25,第一供砖丝杠26,第二供砖电机23,第二供砖丝杠24,第二供砖滑轨27,供砖机械手30,第一连 接板31,第一电机32,第一臂33,供砖夹爪34,第二臂35,第一安装架36,砌砖移动机构40,砌砖支架41,升降电机42,升降丝杠43,横移安装架44,横移电机45,主动轮46,从动轮47,同步带48,砌砖机械手50,砖块顶升机构60,送浆机构70,抹浆机构80,电控箱90,滑动电机101,双头丝杠102,活动件103,导轨111,滑块112。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
如图1至图10所示,一实施方式的砌砖机器人包括底盘10、供砖移动机构20、供砖机械手30、砌砖移动机构40和砌砖机械手50。其中,供砖移动机构20设置于底盘10上;供砖机械手30用于抓取待抹浆砖块,供砖机械手30设置于供砖移动机构20的输出端,供砖移动机构20能驱动供砖机械手30升降以及水平移动;砌砖移动机构40设置于底盘10上;砌砖机械手50用于抓取已抹浆砖块进行砌筑,砌砖机械手50设置于砌砖移动机构40的输出端,砌砖移动机构40能驱动砌砖机械手50升降以及水平移动。
上述砌砖机器人通过将用于抓取待抹浆砖块的供砖机械手30设置于供砖移动机构20的输出端,供砖移动机构20能驱动供砖机械手30升降以及水平移动,从而供砖机械手30可以抓取地面上不同高度和水平方向不同位置的砖块,实现了扩大抓取砖块的活动范围;通过将砌砖机械手50设置于砌砖移动机构40的输出端,砌砖移动机构40能驱动砌砖机械手50升降以及水平移动,从而砌砖机械手50可以抓取已抹浆砖块移动至不同高度和水平方向的不同位置,扩大了砌砖机械手50的活动范围。
如图9所示,在一些实施例中,供砖移动机构20包括供砖支架21、第一直线驱动组件和第二直线驱动组件,其中,供砖支架21设置于底盘10上;第一直线驱动组件设置于供砖支架21上,第一直线驱动组件的输出端能够沿水平方向往复移动;第二直线驱动组件设置于第一直线驱动组件的输出端,第二直线驱动组件的输出端能竖直升降,供砖机械手30安装于第二直线驱动组件的输出端。
在一些实施例中,第一直线驱动组件和第二直线驱动组件均为丝杠螺母组件。具体地,第一直线驱动组件包括第一供砖电机25、第一供砖丝杠26和第一螺母,第一螺母连接第二直线驱动组件,第一供砖丝杠26连接在第一供砖电机25的输出端且沿水平方向延伸,第一供砖电机25能驱动第一供砖丝杠26绕自身轴线转动;第一螺母套设在第一供砖丝杠26上且与第一供砖丝杠26螺纹连接,并能随第一供砖丝杠26的转动带动第二直线驱动组件及供砖机械手30沿第一供砖丝杠26的长度方向移动。
第二直线驱动组件包括第二供砖电机23、第二供砖丝杠24和第二螺母,第二螺母连接供砖机械手30,第二供砖丝杠24连接在第二供砖电机23的输出端且沿竖直方向延伸,第二供砖电机23能驱动第二供砖丝杠24绕自身轴线转动;第二螺母套设在第二供砖丝杠24上且与第二供砖丝杠24螺纹连接,并能随第二供砖丝杠24的转动带动供砖机械手30沿第二供砖丝杠24的长度方向移动。
进一步地,供砖移动机构20还包括为供砖机械手30的竖直升降导向的第一导向组件和为第二直线驱动组件的水平移动导向的第二导向组件。
具体地,第一导向组件包括第一供砖滑轨22以及与第一供砖滑轨22滑动连接的第一供砖滑块,第一供砖滑轨22的长度方向与第二供砖丝杠24的长度方向相同,第一供砖滑块固定连接供砖机械手30。第二导向组件包括第二供砖滑轨27以及与第二供砖滑轨27滑动连接的第二供砖滑块,第二供砖滑轨27的长度方向与第一供砖丝杠26的长度方向相同,第二供砖滑块固定连接第二直线驱动组件。
在一些实施例中,砌砖机器人还包括第一旋转驱动机构,第一旋转驱动机构设置于供砖 移动机构20的输出端,该第一旋转驱动机构与供砖机械手30连接,且能驱动供砖机械手30在水平面内转动。在工作时可通过第一旋转驱动机构使供砖机械手30远离供砖移动机构20(伸展),以增大工作行程;在需要通过狭窄空间时又可通过第一旋转驱动机构使供砖机械手30在水平面内转动至与供砖移动机构20贴合(收缩),以减小砌砖机器人的外形尺寸,以便砌砖机器人顺利通过狭窄空间,提高了砌砖机器人的空间适应能力。
可选地,第一旋转驱动机构包括第一连接板31和第一驱动组件,第一连接板31连接在供砖移动机构20的输出端上;第一驱动组件包括第一关节件和第一电机32,第一电机32设置于第一连接板31上且其输出轴竖直设置,第一关节件与第一电机32的输出轴连接,第一电机32能驱动第一关节件转动,供砖机械手30安装于第一关节件。使用时,使供砖机械手30水平延伸,从而供砖机械手30的弯矩完全承载在第一关节件上,中间无需电机输出轴或减速机传递,大大降低所需电机转矩,提高承载弯矩的能力,与传统的在减速机或电机输出轴上直接装手臂的形式相比显得更对称,结构受力更合理;第一关节件在转动的过程中,只需要克服转动摩擦力以及供砖机械手30的启动、停止的惯性力。
如图9所示,在一些实施例中,供砖机械手30包括第一臂33、第二臂35、供砖夹爪34和第二驱动组件,第一臂33安装于第一关节件且水平设置;第二臂35滑动连接在第一臂33的下方,且其长度方向与第一臂33的长度方向相同;供砖夹爪34用于抓取待抹浆砖块,供砖夹爪34连接在第二臂35上;第二驱动组件设置于第一臂33上,第二驱动组件能驱动第二臂35沿第一臂33的长度方向往复运动。可以理解的,通过设计第二臂35滑动连接在第一臂33的下方且其长度方向与第一臂33的长度方向相同,使得供砖机械手30的伸出长度可变,以更好地适应工作需要:当第二臂35伸长时,供砖机械手30的总长度变长,扩大供砖机械手30的活动范围;当第二臂35回缩时,供砖机械手30的总长度变短,可以减小占用空间。
进一步地,供砖机械手30还包括第一安装架36和第三驱动组件,第一安装架36可转动地连接在第二臂35上,供砖夹爪34连接在第一安装架36上;第三驱动组件设置于第二臂35上,第三驱动组件能驱动第一安装架36相对第二臂35在水平面内转动,以增加供砖夹爪34的灵活度。
如图10所示,砌砖移动机构40包括砌砖支架41、升降驱动组件和横移驱动组件,其中,砌砖支架41设置于底盘10上;升降驱动组件设置于砌砖支架41上,升降驱动组件的输出端能够竖直升降;横移驱动组件设置于升降驱动组件的输出端,横移驱动组件的输出端能沿水平方向往复移动,砌砖机械手50安装于横移驱动组件的输出端。
具体地,升降驱动组件包括升降电机42、升降丝杠43和升降螺母,升降螺母连接横移驱动组件,升降丝杠43连接在升降电机42的输出端且沿竖直方向延伸,升降电机42能驱动升降丝杠43绕自身轴线转动;升降螺母套设在升降丝杠43上且与升降丝杠43螺纹连接,并能随升降丝杠43的转动带动横移驱动组件及砌砖机械手50沿升降丝杠43的长度方向移动。
横移驱动组件包括横移安装架44、横移电机45和传动组件,横移安装架44水平设置并与升降螺母连接,横移电机45安装在横移安装架44上;传动组件包括主动轮46、从动轮47和同步带48,同步带48分别连接从动轮47和主动轮46,主动轮46连接横移电机45的输出轴并能在横移电机45的驱动下转动,同步带48连接砌砖机械手50。当主动轮46转动时,同步带48将带动砌砖机械手50相对于横移安装架44水平移动。
进一步地,砌砖机器人还包括第二旋转驱动机构,第二旋转驱动机构设置于砌砖移动机构40的输出端,该第二旋转驱动机构与砌砖机械手50连接,且能驱动砌砖机械手50在水平面内转动。在工作时可通过第二旋转驱动机构使砌砖机械手50远离砌砖移动机构40(伸展),以增大工作行程;在需要通过狭窄空间时又可通过第二旋转驱动机构使砌砖机械手50在水平面内转动至与砌砖移动机构40贴合(收缩),以减小砌砖机器人的外形尺寸,以便砌砖机器人顺利通过狭窄空间,提高了砌砖机器人的空间适应能力。
可选地,第二旋转驱动机构包括第二连接板和第二驱动组件,第二连接板连接在砌砖移 动机构40的输出端上;第二驱动组件包括第二关节件和第二电机,第二电机设置于第二连接板上且其输出轴竖直设置,第二关节件与第二电机的输出轴连接,第二电机能驱动第二关节件转动,砌砖机械手50安装于第二关节件。使用时,使砌砖机械手50水平延伸,从而砌砖机械手50的弯矩完全承载在第二关节件上,中间无需电机输出轴或减速机传递,大大降低所需电机转矩,提高承载弯矩的能力,与传统的在减速机或电机输出轴上直接装手臂的形式相比显得更对称,结构受力更合理;第二关节件在转动的过程中,只需要克服转动摩擦力以及砌砖机械手50的启动、停止的惯性力。
在一些实施例中,砌砖移动机构40与供砖移动机构20两者中的至少一个可移动地安装在底盘10上,以靠近或远离另一个,从而能够使移动机构和机械手均回收在底盘10的正上方空间内,提高机器人的整体通过性能,避免机械手或移动机构在行走过程中与外部产生异常碰撞。
可选地,底盘10的顶部设有滑动驱动组件,滑动驱动组件能驱动砌砖移动机构40和供砖移动机构20两者中的至少一个在底盘10上移动,以靠近或远离另一个。
如图8所示,滑动驱动组件可以包括滑动电机101、双头丝杠102和两个活动件103,滑动电机101设置于底盘10上;双头丝杠102连接在滑动电机101的输出端,且能在滑动电机101的驱动下转动;其中一个活动件103连接供砖移动机构20,另一个活动件103连接砌砖移动机构40;两个活动件103分别与双头丝杠102的两端螺纹连接,并能随双头丝杠102的转动沿双头丝杠102的长度方向移动以相互靠近或远离。即,砌砖移动机构40以及供砖移动机构20通过双头丝杠102和活动件103带动相互靠近和张开,两者的极限位置可通过双头丝杠102的行程长度及末端来设定。
通过双头丝杠102实现了通过一个动力源驱动两个活动件103运动,结构更简单,当双头丝杠102转动时,将驱动砌砖移动机构40和供砖移动机构20两者同时朝相互靠近或相互远离的方向移动。可选地,砌砖移动机构40和供砖移动机构20可以安装在导轨111和滑块112上,由导轨111和滑块112进行导向。
具体地,如图7所示,砌砖移动机构40与供砖移动机构20平行并列设置,两者分别与底盘10滑动连接,当砌砖移动机构40滑动至靠近供砖移动机构20的极限位置时,且砌砖机械手50摆动(转动)至与砌砖移动机构40贴合,此时砌砖移动机构40和砌砖机械手50位于底盘10的纵向立体空间内,未突出底盘10的纵向立体空间(折叠状态,如图5和图6所示)。当供砖移动机构20滑动至靠近砌砖移动机构40的极限位置时,且供砖机械手30摆动(转动)至与供砖移动机构20贴合,此时供砖移动机构20和供砖机械手30位于底盘10的纵向立体空间内,未突出底盘10的纵向立体空间(折叠状态,如图5和图6所示)。这种砌砖移动机构40与供砖移动机构20的可滑动设计结构,能够使移动机构和机械手均回收在底盘10的正上方空间内,从而提高机器人的整体通过性能,避免机械手或移动机构在行走过程中与外部产生异常碰撞。
如图1至图6所示,在一些实施例中,砌砖机器人还包括砖块顶升机构60、送浆机构70和抹浆机构80。其中,砖块顶升机构60设置于底盘10上,用于放置供砖机械手30所抓取的待抹浆砖块;送浆机构70用于供应砂浆;抹浆机构80用于将送浆机构70的砂浆涂抹到置于砖块顶升机构60上的待抹浆砖块,砌砖机械手50用于抓取砖块顶升机构60上涂抹有砂浆的砖块,由此砌砖机器人可以集抓砖、抹浆和砌砖功能于一体,实现砌砖机器人代替工人进行砌砖工作,提高砌筑效率。
进一步地,砌砖机器人还包括电控箱90,电控箱90与砖块顶升机构60位于底盘10的两相对端,抹浆机构80位于砖块顶升机构60的上方;供砖移动机构20和砌砖移动机构40位于底盘10的中部且间隔排列,送浆机构70位于供砖移动机构20与砌砖移动机构40之间。将电控箱90、供砖移动机构20、砖块顶升机构60、抹浆机构80和砌砖移动机构40合理布置在底盘10上,各自独立工作,动作互不干涉、可以同步进行,提高了砌筑效率。
可选地,底盘10可以为AGV(Automated Guided Vehicle,自动导引运输车),通过AGV带动电控箱90、供砖移动机构20、砖块顶升机构60、抹浆机构80和砌砖移动机构40一同移动,可实现大范围作业。
图1至图6所示砌砖机器人的工作流程如下:
底盘10运动到需要砌筑的位置;供砖机械手30根据视觉引导从地面抓取待抹浆砖块,并将待抹浆砖块放置到砖块顶升机构60上;抹浆机构80对砖块顶升机构60上的待抹浆砖块的底面及侧面抹浆,然后通过砖块顶升机构60将已抹浆砖块顶升到合适的高度;砌砖机械手50从砖块顶升机构60上抓取已抹浆砖块运动到砌筑位置,并根据视觉引导及传感器检测将已抹浆砖块砌筑到正确位置,完成砌砖;继续砌筑下一个砖块。
需要说明的是,当一个部被称为“固定于”另一个部,它可以直接在另一个部上也可以存在居中的部。当一个部被认为是“连接”到另一个部,它可以是直接连接到另一个部或者可能同时存在居中部。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述,只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中使用的术语只是为了描述具体的实施方式的目的,不是旨在限制本发明。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种砌砖机器人,其特征在于,包括:
    底盘(10);
    供砖移动机构(20),设置于所述底盘(10)上;
    供砖机械手(30),用于抓取待抹浆砖块,所述供砖机械手(30)设置于所述供砖移动机构(20)的输出端,所述供砖移动机构(20)能驱动所述供砖机械手(30)升降以及水平移动;
    砌砖移动机构(40),设置于所述底盘(10)上;以及
    砌砖机械手(50),用于抓取已抹浆砖块进行砌筑,所述砌砖机械手(50)设置于所述砌砖移动机构(40)的输出端,所述砌砖移动机构(40)能驱动所述砌砖机械手(50)升降以及水平移动;
    第一旋转驱动机构,设置于所述供砖移动机构(20)的输出端,所述第一旋转驱动机构与所述供砖机械手(30)连接,且能驱动所述供砖机械手(30)在水平面内转动;
    第二旋转驱动机构,设置于所述砌砖移动机构(40)的输出端,所述第二旋转驱动机构与所述砌砖机械手(50)连接,且能驱动所述砌砖机械手(50)在水平面内转动。
  2. 根据权利要求1所述的砌砖机器人,其特征在于,所述供砖移动机构(20)包括:
    供砖支架(21),设置于所述底盘(10)上;
    第一直线驱动组件,设置于所述供砖支架(21)上,所述第一直线驱动组件的输出端能够沿水平方向往复移动;以及
    第二直线驱动组件,设置于所述第一直线驱动组件的输出端,所述第二直线驱动组件的输出端能竖直升降,所述供砖机械手(30)安装于所述第二直线驱动组件的输出端。
  3. 根据权利要求2所述的砌砖机器人,其特征在于,所述第一直线驱动组件和所述第二直线驱动组件均为丝杠螺母组件。
  4. 根据权利要求1所述的砌砖机器人,其特征在于,所述第一旋转驱动机构包括:
    第一连接板(31),连接在所述供砖移动机构(20)的输出端上;以及
    第一驱动组件,所述第一驱动组件包括第一关节件和第一电机(32),第一电机(32)设置于所述第一连接板(31)上且其输出轴竖直设置,所述第一关节件与所述第一电机(32)的输出轴连接,所述第一电机(32)能驱动所述第一关节件转动,所述供砖机械手(30)安装于所述第一关节件。
  5. 根据权利要求4所述的砌砖机器人,其特征在于,所述供砖机械手(30)包括:
    第一臂(33),安装于所述第一关节件且水平设置;
    第二臂(35),滑动连接在所述第一臂(33)的下方,且其长度方向与所述第一臂(33)的长度方向相同;
    供砖夹爪(34),用于抓取待抹浆砖块,所述供砖夹爪(34)连接在所述第二臂(35)上;以及
    第二驱动组件,设置于所述第一臂(33)上,所述第二驱动组件能驱动所述第二臂(35)沿所述第一臂(33)的长度方向往复运动。
  6. 根据权利要求5所述的砌砖机器人,其特征在于,所述供砖机械手(30)还包括:
    第一安装架(36),可转动地连接在所述第二臂(35)上,所述供砖夹爪(34)连接在所述第一安装架(36)上;以及
    第三驱动组件,设置于所述第二臂(35)上,所述第三驱动组件能驱动所述第一安装架(36)相对所述第二臂(35)在水平面内转动。
  7. 根据权利要求1所述的砌砖机器人,其特征在于,所述砌砖机器人还包括:
    砖块顶升机构(60),设置于所述底盘(10)上,用于放置所述供砖机械手(30)所抓取 的待抹浆砖块;
    送浆机构(70),用于供应砂浆;以及
    抹浆机构(80),用于将所述送浆机构(70)的砂浆涂抹到置于所述砖块顶升机构(60)上的待抹浆砖块,所述砌砖机械手(50)用于抓取所述砖块顶升机构(60)上涂抹有砂浆的砖块。
  8. 根据权利要求7所述的砌砖机器人,其特征在于,所述砌砖机器人还包括电控箱(90),所述电控箱(90)与所述砖块顶升机构(60)位于所述底盘(10)的两相对端,所述抹浆机构(80)位于所述砖块顶升机构(60)的上方;
    所述供砖移动机构(20)和所述砌砖移动机构(40)位于所述底盘(10)的中部且间隔排列,所述送浆机构(70)位于所述供砖移动机构(20)与所述砌砖移动机构(40)之间。
  9. 根据权利要求1所述的砌砖机器人,其特征在于,所述砌砖移动机构(40)与所述供砖移动机构(20)两者中的至少一个可移动地安装在所述底盘(10)上,以靠近或远离另一个。
  10. 根据权利要求9所述的砌砖机器人,其特征在于,所述底盘(10)的顶部设有滑动驱动组件,所述滑动驱动组件能驱动所述砌砖移动机构(40)和所述供砖移动机构(20)两者中的至少一个在所述底盘(10)上移动,以靠近或远离另一个。
  11. 根据权利要求10所述的砌砖机器人,其特征在于,所述滑动驱动组件包括:
    滑动电机(101),设置于所述底盘(10)上;
    双头丝杠(102),所述双头丝杠(102)连接在所述滑动电机(101)的输出端,且能在所述滑动电机(101)的驱动下转动;以及
    两个活动件(103),其中一个所述活动件(103)连接所述供砖移动机构(20),另一个所述活动件(103)连接所述砌砖移动机构(40);两个所述活动件(103)分别与所述双头丝杠(102)的两端螺纹连接,并能随所述双头丝杠(102)的转动沿所述双头丝杠(102)的长度方向移动以相互靠近或远离。
PCT/CN2020/121637 2020-01-14 2020-10-16 砌砖机器人 WO2021143236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010034283.7 2020-01-14
CN202010034283.7A CN110842949B (zh) 2020-01-14 2020-01-14 砌砖机器人

Publications (1)

Publication Number Publication Date
WO2021143236A1 true WO2021143236A1 (zh) 2021-07-22

Family

ID=69610677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121637 WO2021143236A1 (zh) 2020-01-14 2020-10-16 砌砖机器人

Country Status (2)

Country Link
CN (1) CN110842949B (zh)
WO (1) WO2021143236A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110842949B (zh) * 2020-01-14 2020-06-02 广东博智林机器人有限公司 砌砖机器人
CN111088895B (zh) * 2020-03-20 2020-07-17 广东博智林机器人有限公司 砌砖装置及砌砖机器人
CN113585771B (zh) * 2020-04-30 2022-07-15 广东博智林机器人有限公司 砌砖机器人
CN111519920B (zh) * 2020-05-11 2021-08-13 广东博智林机器人有限公司 抹浆装置及砌墙设备
CN113700321B (zh) * 2020-05-20 2022-11-22 广东博智林机器人有限公司 一种砌砖设备
CN111622517B (zh) * 2020-06-01 2021-12-17 广东博智林机器人有限公司 一种砖块抹浆装置及砖块抹浆设备
CN111673771B (zh) * 2020-07-01 2022-03-11 深圳市羡鱼动力技术有限公司 一种烹饪机械手
CN111910894B (zh) * 2020-08-05 2022-01-04 广东博智林机器人有限公司 一种墙砖铺贴设备
CN112267697B (zh) * 2020-10-15 2021-10-29 清华大学 一种用于砖块砂浆涂覆的建筑机器人
CZ309343B6 (cs) * 2021-06-04 2022-09-07 České vysoké učení technické v Praze Robotický zdicí systém
CN113187238B (zh) * 2021-06-08 2023-02-03 广东博智林机器人有限公司 砌砖设备及建筑系统
CN113431354B (zh) * 2021-06-28 2022-04-19 广东博智林机器人有限公司 一种砌砖设备
CN113431355B (zh) * 2021-06-30 2022-11-01 广东博智林机器人有限公司 建筑装置
CN114753664B (zh) * 2022-05-12 2023-05-05 重庆电子工程职业学院 一种砌砖机器人
CN115478701A (zh) * 2022-07-01 2022-12-16 重庆纽森工业设计有限公司 高度可调的半自动砌砖机器人及其行进控制方法
CN116214538A (zh) * 2023-01-10 2023-06-06 五冶集团上海有限公司 焦炉炉体的砌筑机器人系统及砌筑方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284000A (en) * 1992-11-30 1994-02-08 Redwall Engineering Corp. Automating bricklaying
CN201972413U (zh) * 2011-01-17 2011-09-14 淮安信息职业技术学院 自动砌墙机
CN107443353A (zh) * 2016-05-30 2017-12-08 洛阳海特智能科技有限公司 一种砌墙机器人及其工作方法
CN206801059U (zh) * 2017-05-27 2017-12-26 厦门华蔚物联网科技有限公司 一种墙砖自动上浆机器人
CN207484999U (zh) * 2017-09-27 2018-06-12 南阳市建设工程质量监督检验站 一种自动砌墙机
CN108868169A (zh) * 2018-09-10 2018-11-23 杭州厚谋创意设计有限公司 一种砌墙机器人
EP3434845A1 (en) * 2017-07-28 2019-01-30 Construction Automation Ltd Automated brick laying system and method of use thereof
CN110340863A (zh) * 2018-04-08 2019-10-18 AIrobot株式会社 自主移动搬运机器人
CN110842949A (zh) * 2020-01-14 2020-02-28 广东博智林机器人有限公司 砌砖机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020113A (zh) * 2010-11-17 2011-04-20 重庆大学 装校搬运机械手
CN104552239A (zh) * 2014-12-31 2015-04-29 东莞市乐佰特机器人有限公司 四轴移栽机械手
CN107083845B (zh) * 2017-06-22 2019-06-04 厦门华蔚物联网科技有限公司 一种自动砌墙方法及自动砌墙系统
CN108818493A (zh) * 2018-07-16 2018-11-16 汕头大学 一种复合型移动机器人及复合型移动机器人控制系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284000A (en) * 1992-11-30 1994-02-08 Redwall Engineering Corp. Automating bricklaying
CN201972413U (zh) * 2011-01-17 2011-09-14 淮安信息职业技术学院 自动砌墙机
CN107443353A (zh) * 2016-05-30 2017-12-08 洛阳海特智能科技有限公司 一种砌墙机器人及其工作方法
CN206801059U (zh) * 2017-05-27 2017-12-26 厦门华蔚物联网科技有限公司 一种墙砖自动上浆机器人
EP3434845A1 (en) * 2017-07-28 2019-01-30 Construction Automation Ltd Automated brick laying system and method of use thereof
CN207484999U (zh) * 2017-09-27 2018-06-12 南阳市建设工程质量监督检验站 一种自动砌墙机
CN110340863A (zh) * 2018-04-08 2019-10-18 AIrobot株式会社 自主移动搬运机器人
CN108868169A (zh) * 2018-09-10 2018-11-23 杭州厚谋创意设计有限公司 一种砌墙机器人
CN110842949A (zh) * 2020-01-14 2020-02-28 广东博智林机器人有限公司 砌砖机器人

Also Published As

Publication number Publication date
CN110842949A (zh) 2020-02-28
CN110842949B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2021143236A1 (zh) 砌砖机器人
CN105113771A (zh) 外墙贴瓷砖机
CN108839013A (zh) 一种工业自动化装配线用万向机械手
CN110587626A (zh) 一种砌墙机器人
CN207172074U (zh) 一种用于压铸业的机械手装置
CN109252686B (zh) 一种板条安装车
CN204960260U (zh) 外墙贴瓷砖机
CN105563219A (zh) 一种工件抓取装置
WO2024027605A1 (zh) 焦炉炉体砌筑系统
CN104986677A (zh) 一种桁车用物料抓取升降平移装置
CN111119500A (zh) 一种砌墙机
CN213352366U (zh) 一种升降翻转旋转工作台
CN112593715A (zh) 一种建筑用砌墙机
CN106423610A (zh) 一种多自由度喷粉机械手
CN111910936B (zh) 一种双臂砌墙机器人及其砌墙方法
CN210757763U (zh) 一种砌墙机器人
CN114147756A (zh) 一种用于装配大吨位预制结构块的抓手及机械臂
CN107892170A (zh) 一种砌墙安装洞口过梁用承载架、砌砖机器人及控制方法
CN210790959U (zh) 一种用于工业机器人的移动式轨道
CN204549478U (zh) 空间坐标式码坯装置
CN107806248B (zh) 一种砌墙机器人设备
CN216661666U (zh) 一种隧道窑的自动上料装置
CN215167820U (zh) 一种装配式建筑高空作业平台
CN221037132U (zh) 一种井下爆破用自动装药台车
CN113006485B (zh) 装配式建筑盖楼设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914147

Country of ref document: EP

Kind code of ref document: A1