WO2021143210A1 - 一种永磁铁氧体磁体成型助推注料装置及磁体制造方法 - Google Patents

一种永磁铁氧体磁体成型助推注料装置及磁体制造方法 Download PDF

Info

Publication number
WO2021143210A1
WO2021143210A1 PCT/CN2020/119224 CN2020119224W WO2021143210A1 WO 2021143210 A1 WO2021143210 A1 WO 2021143210A1 CN 2020119224 W CN2020119224 W CN 2020119224W WO 2021143210 A1 WO2021143210 A1 WO 2021143210A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
horizontal
pump
magnet
plunger pump
Prior art date
Application number
PCT/CN2020/119224
Other languages
English (en)
French (fr)
Inventor
张铁军
陈维仁
于兵
张霄兵
毛拔山
Original Assignee
湖南航天磁电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南航天磁电有限责任公司 filed Critical 湖南航天磁电有限责任公司
Publication of WO2021143210A1 publication Critical patent/WO2021143210A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface

Definitions

  • the invention relates to a booster injection device and a magnet manufacturing method, in particular to a permanent ferrite magnet forming booster injection device and a magnet manufacturing method.
  • Permanent magnet ferrite magnet is a common permanent magnet product, its shape is mostly tile-shaped, ring-shaped or square-shaped. It is mainly used in permanent magnet motors, audio and magnetic separation equipment.
  • the production of permanent ferrite magnets usually includes the following processes : (1) Wet-grind the raw material into a slurry with a particle size of about 1 ⁇ m, and the water content of the slurry is in the range of 34%-38%; (2) The slurry is pressed and dehydrated under the conditions of strong magnetic field orientation to form a green body; (3) The green body is sintered at a high temperature into a blank; (4) The blank becomes a finished magnet after being ground and cleaned.
  • Magnetic performance is the most important performance index of magnets, mainly including remanence Br and intrinsic coercivity Hcj.
  • permanent ferrite magnets with "residual magnetism Br ⁇ 4150Gs and intrinsic coercivity Hcj ⁇ 4000Oe" are used in the industry.
  • the most extensive product, usually mass production of this kind of magnet requires the addition of rare earth elements and cobalt elements to the raw materials. Due to the high price of rare earth and cobalt raw materials, the production cost of magnets has risen sharply, and the competitiveness of the product market has dropped sharply. Therefore, magnet manufacturers are vigorously researching production technologies that do not add rare earth elements and cobalt elements.
  • the grinding of the slurry particle size greatly increases the difficulty of compression dehydration molding.
  • the slurry with a particle size of less than 0.7 ⁇ m in the industry is used in the production of magnets, the green density is likely to be low, and the blank is easy to crack after sintering. Guarantee the qualified rate of magnet quality; while adding dispersant to the slurry can effectively improve the magnetic properties of the magnet, the difficulty of pressing and dehydrating the slurry is also greatly increased. Even if the pressing speed is reduced, the decline of the qualified rate of magnet cannot be suppressed.
  • the slurry added with dispersant can only be used in the production of square magnets, tile-shaped magnets with a small arc opening angle, and thin tile-shaped magnets with a small thickness. During the production of large tile-shaped magnets.
  • Figure 4 is a schematic diagram of a conventional permanent magnet ferrite magnet forming and injection device. Because the lower the water content of the slurry, the worse the fluidity of the slurry. There is a certain resistance at the outlet of the slurry mixing tank and the gate valve channel, which is pressed into shape.
  • auxiliary devices such as screw pumps or screw feeding devices to connect between the mixing barrel and the gate valve, trying to actively send the slurry into the slurry cavity of the injection pump through the auxiliary device, but these solutions did not improve the slurry from the mixing barrel. It enters the fluidity of auxiliary devices such as screw pumps or screw feeding devices, and the conveying force is small. Therefore, it is difficult for low-water content slurry to enter the auxiliary device from the mixing barrel. The auxiliary device is prone to "empty delivery" phenomenon, resulting in the injection pump The amount of slurry injected into the mold cavity is still unstable.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a permanent ferrite magnet forming booster injection device and a magnet manufacturing method that can greatly improve the pressing efficiency of the magnet green body and the magnet quality.
  • the technical solution adopted by the present invention to solve its technical problems is a permanent magnet ferrite magnet forming booster injection device, which includes a slurry mixing barrel, a horizontal booster plunger pump, and an injection pump.
  • the horizontal booster The plunger pump is installed directly under the slurry mixing barrel.
  • the discharge port at the bottom of the slurry mixing barrel and the feed port above the horizontal booster plunger pump are in a straight connection, and the discharge port and the feed port are through holes Diameter ⁇ ⁇ 80mm, the slurry enters the feed port of the horizontal booster plunger pump due to its own gravity;
  • the injection pump is connected to the discharge pipe of the horizontal booster plunger pump through a gate valve, and the feed pipe of the injection pump Connect the magnet forming mold.
  • the horizontal booster plunger pump is provided with a horizontal booster plunger pump slurry cavity, a horizontal booster plunger arranged in the horizontal booster plunger pump slurry cavity, the horizontal booster plunger pump
  • the push plunger pump is provided with a horizontal boost plunger pump propulsion cylinder oil inlet pipe and a horizontal boost plunger pump retreat cylinder oil inlet pipe.
  • the upper side of the horizontal boost plunger pump slurry chamber is provided with a feed inlet .
  • the injection pump is provided with a slurry cavity, a piston is arranged in the slurry cavity of the injection pump, and an oil inlet pipe of the injection pump propulsion cylinder and an oil inlet pipe of the injection pump retreat cylinder are arranged on the outer side of the injection pump.
  • discharge port at the bottom of the slurry mixing barrel and the feed port of the horizontal booster plunger pump are directly connected through a flange.
  • discharge port at the bottom of the slurry mixing barrel and the feed port of the horizontal booster plunger pump are directly connected through a hose.
  • the horizontal booster plunger pump and the injection pump are hydraulic control pumps.
  • the magnet manufacturing method of the present invention using the permanent magnet ferrite magnet forming boost injection device includes the following steps:
  • step (3) Grinding and cleaning: The magnet blank obtained in step (2) is ground and processed into a finished magnet according to the size required by the design, and cleaned.
  • the weight content of water in the permanent ferrite slurry is 22%-30%.
  • the average particle size of the permanent ferrite particles contained in the permanent ferrite slurry is 0.6-0.7 ⁇ m.
  • mass production of permanent ferrite magnets with "remanence Br ⁇ 4150Gs and intrinsic coercivity Hcj ⁇ 4000 Oe" can be realized without adding rare earth elements and/or cobalt elements; Under the condition of element and/or cobalt element, the forming and pressing efficiency of the permanent ferrite magnet green body, the quality of the magnet product and the quality pass rate can be greatly improved.
  • Fig. 1 is a schematic structural view of Embodiment 1/2 of the permanent magnet ferrite magnet forming booster injection device according to the present invention
  • Fig. 2 is a schematic diagram of embodiment 1/2 shown in Fig. 1 when it is in a state of sucking materials;
  • Figure 3 is a schematic diagram of the embodiment 1/2 shown in Figure 1 when it is in the injection state;
  • Fig. 4 is a schematic structural diagram of a prior art permanent magnet ferrite magnet molding and injection device.
  • this implementation includes a slurry mixing barrel 1, a horizontal booster plunger pump installed below the slurry mixing barrel 1, an injection pump 4, the injection pump 4 through the gate valve 3 and the horizontal auxiliary The discharge pipe 2f of the push plunger pump is connected.
  • the bottom of the slurry mixing tank 1 is provided with a discharge port 1a, and the bottom side is provided with a slurry mixing tank cleaning port 1b.
  • the horizontal booster plunger pump 2 includes a horizontal booster plunger pump slurry cavity 2d, and a booster plunger 2a arranged in the horizontal booster plunger pump slurry cavity 2d.
  • the diameter of the booster plunger 2a is ⁇ 160mm
  • the inner diameter of the slurry cavity 2d of the horizontal booster plunger pump is ⁇ 161.5mm
  • the upper side of the slurry cavity 2d of the horizontal booster plunger pump is equipped with the horizontal booster plunger pump inlet 2e, horizontal Type boost plunger pump push cylinder oil inlet pipe 2b and horizontal boost plunger pump return cylinder oil inlet pipe 2c
  • horizontal boost plunger pump boost plunger 2a during propulsion horizontal boost plunger pump slurry cavity
  • Most of the slurry in 2d enters the gate valve 3 through the discharge pipe 2f of the horizontal booster plunger pump, and then enters the slurry chamber 4d of the injection pump.
  • a small amount of slurry passes through the horizontal booster plunger pump to boost the plunger 2a and The gap between the s
  • the injection pump 4 includes an injection pump slurry cavity 4d, an injection pump piston 4a arranged in the injection pump slurry cavity 4d, and a side of the injection pump slurry cavity 4d is provided with an injection pump propulsion cylinder oil inlet pipe 4b, The injection pump returns the cylinder oil inlet pipe 4c and the injection pump feeding pipe 4e.
  • Both the horizontal booster plunger pump 2 and the injection pump 4 are hydraulically controlled, and there is a flange between the outlet 1a at the bottom of the slurry mixing barrel 1 and the inlet 2e above the horizontal booster plunger pump 2
  • the disc or hose is connected directly, the slurry can fall freely into the horizontal booster plunger pump inlet 2e due to its own gravity, the outlet 1a at the bottom of the slurry mixing barrel 1 has an outer diameter of 100mm, and the horizontal booster plunger
  • the inner diameter of the pump feeding port 2e is 101 mm, and the feeding pump feeding pipe 4e is connected to the magnet molding die (not shown in the figure).
  • the forming mold is an arched tile-shaped magnet mold (12 out of one mold), which is installed on a magnetic field forming hydraulic press dedicated to magnetic materials.
  • the working process of the permanent magnet ferrite magnet forming booster injection device includes the injection pump suction process and the injection pump injection process:
  • the hydraulic control gate valve 3 is opened, and the high-pressure hydraulic oil enters the horizontal booster plunger pump propulsion cylinder oil inlet pipe 2b, and the booster plunger 2a is pushed to the right to pressurize the slurry in the horizontal booster plunger pump slurry cavity 2d ;
  • high-pressure hydraulic oil enters the injection pump retreat cylinder oil inlet pipe 4c, the injection pump piston 4a moves up, and a vacuum is formed in the injection pump slurry cavity 4d; the pressurized horizontal booster plunger pump slurry cavity
  • the slurry in 2d fills the slurry cavity 4d of the injection pump after passing through the discharge pipe 2f of the horizontal booster plunger pump and the gate valve 3.
  • the pressure of the high-pressure hydraulic oil in the propulsion cylinder of the horizontal booster plunger pump 2 can be as high as 2MPa or more, the slurry in the slurry cavity 2d of the horizontal booster plunger pump can be discharged smoothly through the horizontal booster plunger pump After the pipe 2f and the gate valve 3 are filled with the vacuum range in the slurry cavity 4d of the injection pump, no air or residual vacuum will enter the slurry cavity 4d of the injection pump; excess material in the slurry cavity 2d of the horizontal booster plunger pump The slurry returns to the slurry mixing barrel 1 through the gap between the horizontal boosting plunger pump boosting plunger 2a and the horizontal boosting plunger pump slurry cavity 2d.
  • the hydraulic control gate valve 3 is closed, the high-pressure hydraulic oil enters the injection pump propulsion cylinder oil inlet pipe 4b, the injection pump piston 4a is pressed down, and the slurry in the injection pump slurry cavity 4d is conveyed at high pressure out of the injection pump feeding pipe 4e and enters
  • the injection pump push cylinder can transmit a pressure of more than 2MPa, the slurry can smoothly fill each cavity of the mold.
  • the press starts to shape the slurry in the cavity with magnetic field orientation, compression and dehydration.
  • the high-pressure hydraulic oil enters the inlet pipe 2c of the retraction cylinder of the horizontal booster plunger pump, and the booster plunger 2a moves to the left and retreats.
  • a vacuum cavity is formed in the slurry cavity 2d of the horizontal booster plunger pump.
  • the flange between the outlet 1a at the bottom of the mixing barrel and the inlet 2e of the horizontal booster plunger pump has a larger aperture, and between the horizontal booster plunger pump 2 and the outlet 1a at the bottom of the slurry mixing barrel There is no valve or other increasing resistance factors, so the slurry in the slurry mixing barrel 1 can smoothly fall to fill the vacuum cavity under the action of its own weight to prepare for the injection pump suction process in the next round of molding cycle.
  • the role of the cleaning port 1b of the slurry mixing tank When the slurry in the slurry mixing tank needs to be replaced, the slurry in the tank and the water for cleaning the mixing tank can be discharged from this port.
  • the pre-fired powder of permanent magnet ferrite without rare earth elements and cobalt is produced by a well-known technology.
  • the powder is divided into three parts, which are used as raw materials for making permanent ferrite magnets.
  • Dispersants After the formulations and other known formulations, they were wet-milled into slurries with average particle sizes of 0.61 ⁇ m, 0.65 ⁇ m, and 0.69 ⁇ m, respectively, and the slurry was dehydrated and adjusted into a ready-to-use permanent ferrite slurry with a water content of 28%.
  • the weight difference of the cavities of the green bodies formed by the three slurries in this embodiment is less than 3%.
  • the weight deviation of the green body of each cavity in a multi-cavity mold is 3%, the pressure of the press that each cavity bears during the pressing process is close, which is beneficial to realize the consistency of the green body density of each cavity.
  • the green body produced by the above slurry is sintered at 1180°C in an electric kiln to become a blank; the blank becomes a finished tile-shaped magnet after being ground and cleaned; then the appearance quality of the finished tile-shaped magnet is fully inspected, the quality qualification rate is counted, and the tile is sampled
  • Table 2 The magnetic properties of the shaped magnet, the specific results are shown in Table 2:
  • This embodiment adopts the same permanent magnet ferrite magnet forming booster injection device, a tile-shaped magnet one-mold multi-cavity mold and a special magnetic field forming hydraulic press for magnetic materials as in the first embodiment.
  • the pre-fired powder of permanent magnet ferrite without rare earth elements and cobalt elements is produced by the known technology.
  • the known formulas such as dispersants and formulas are added to the raw materials, they are wet ground into a slurry with an average particle size of 0.66 ⁇ m. After dehydration, they are respectively adjusted to form a ready-to-use permanent ferrite slurry with a water content of 23%, 26%, and 29%.
  • the weight difference of each cavity of the green bodies formed by the three types of slurries in this embodiment is less than 3%.
  • the weight deviation of the green body of each cavity in a multi-cavity mold is 3%, the pressure of the press that each cavity bears during the pressing process is close, which is beneficial to realize the consistency of the green body density of each cavity.
  • the green body produced by the above slurry is sintered at 1180°C in an electric kiln to become a blank; the blank is ground and cleaned to become a finished tile magnet for the 770 motor; then the appearance quality of the finished tile magnet is fully inspected, and the statistical quality is qualified.
  • the magnetic properties of tile-shaped magnets are randomly checked, and the specific results are shown in Table 4 below:

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种永磁铁氧体磁体成型助推注料装置及磁体制造方法,该永磁铁氧体磁体成型助推注料装置包括料浆搅拌桶(1)、卧式助推柱塞泵(2)和注料泵(4),卧式助推柱塞泵(2)安装在料浆搅拌桶(1)正下方,料浆搅拌桶(1)底部的出料口(1a)和卧式助推柱塞泵上方的进料口(2e)为直通连接,出料口(1a)与进料口(2e)的通孔直径≥Φ80mm;注料泵(4)通过闸阀(3)与卧式助推柱塞泵(2)的出料管(2f)连接,注料泵(4)的送料管(4e)连接磁体成型模具。所述磁体制造方法利用所述永磁铁氧体磁体成型助推注料装置。所述永磁铁氧体磁体成型助推注料装置及磁体制造方法可以在不添加稀土元素和钴元素的情况下,实现"剩磁B≥4150Gs,内禀矫顽力Hcj≥4000Oe"的永磁铁氧体磁体的批量生产;大幅提升永磁铁氧体磁体的成型压制效率和质量合格率。

Description

一种永磁铁氧体磁体成型助推注料装置及磁体制造方法 技术领域
本发明涉及一种助推注料装置及磁体制造方法,具体涉及一种永磁铁氧体磁体成型助推注料装置及磁体制造方法。
背景技术
永磁铁氧体磁体是一种常见的永磁产品,其外形多为瓦形、环形或方块形,主要应用在永磁电机、音响和磁选设备中,永磁铁氧体磁体生产通常包括以下过程:(1)将原料湿磨为粒度1μm左右的料浆,料浆含水量在34%-38%范围内;(2)料浆在强磁场取向条件下压制脱水成型为生坯;(3)生坯经高温烧结为毛坯;(4)毛坯经磨削清洗后成为磁体成品。
磁性能是磁体的最重要性能指标,主要包括剩磁Br和内禀矫顽力Hcj,目前“剩磁Br≥4150Gs,内禀矫顽力Hcj≥4000Oe”的永磁铁氧体磁体是行业内应用最为广泛的产品,通常批量生产该种磁体需要在原料中添加稀土元素和钴元素。由于稀土和钴原料价格昂贵,导致磁体生产成本大幅上升,产品市场竞争力大幅下降,因此磁体生产企业均在大力研究不添加稀土元素和钴元素的生产技术。
从磁学理论可知,将料浆粒度进一步磨细和在料浆中加入分散剂改善磁晶粒磁场取向度这两种措施理论上可提升磁体的磁性能,因而磁体生产企业多在这两个方面开展研究。
然而遗憾的是,料浆粒度磨细后大大增加了压制脱水成型难度,目前行业内粒度低于0.7μm的料浆用于磁体生产时,易出现生坯密度低,烧结后毛坯易开裂,无法保证磁体质量合格率;而在料浆中加入分散剂虽能有效提升磁体磁性能,但料浆压制脱水成型难度也大幅上升,即使将压制速度降低也无法抑制磁体质量合格率下降。目前添加了分散剂的料浆只能应用在方块类磁体、拱形张角较小的瓦形磁体和厚度较小的薄瓦形磁体生产中,无法应用到拱形张角较大、厚度较大的瓦形磁体生产过程中。
也有技术方案试图将料浆的含水量降至30%以下来降低以上料浆的压制成型难度。图4为常规的永磁铁氧体磁体成型注料装置原理图,由于料浆含水量越低,料浆的流动性越差,料浆搅拌桶出料口、闸阀通道均存在一定阻力,压制成 型时注料泵料浆腔内的真空负压(通常为0.1MPa)难以把低含水量料浆顺利地从料浆搅拌桶吸入注料泵料浆腔,导致注料泵注入模具成型腔中的料浆量不稳定,压制出来的各腔生坯重量偏差往往在8%以上,生坯经烧结、磨削和清洗后磁体的质量合格率很难超过80%,产品的利润率大大下降。
另有人利用螺杆泵或螺旋送料装置等辅助装置连接在搅拌桶和闸阀之间,试图通过该辅助装置将料浆主动送入注料泵料浆腔,但这些方案并没有改善料浆从搅拌桶中进入螺杆泵或螺旋送料装置等辅助装置的流动性,且输送力量较小,因此低含水量料浆很难从搅拌桶进入辅助装置,辅助装置易出现“空送”现象,导致注料泵注入模具成型腔中的料浆量依旧不稳定。
由于以上原因,在不采用添加稀土元素和钴元素技术的条件下,现有技术很难实现“剩磁Br≥4150Gs,内禀矫顽力Hcj≥4000Oe”的永磁铁氧体磁体批量生产。
发明内容
本发明所要解决的技术问题是,克服现有技术的不足,提供一种能大幅提升磁体生坯的压制成型效率和磁体质量的永磁铁氧体磁体成型助推注料装置及磁体制造方法。
本发明解决其技术问题采用的技术方案是,一种永磁铁氧体磁体成型助推注料装置,包括料浆搅拌桶、卧式助推柱塞泵和注料泵,所述卧式助推柱塞泵安装在料浆搅拌桶正下方,料浆搅拌桶的底部的出料口和卧式助推柱塞泵上方的进料口为直通连接,且出料口与进料口的通孔直径≥Φ80mm,料浆因自身重力的作用进入卧式助推柱塞泵进料口;所述注料泵通过闸阀与卧式助推柱塞泵的出料管连接,注料泵的送料管连接磁体成型模具。
进一步,所述卧式助推柱塞泵设有卧式助推柱塞泵料浆腔、设于卧式助推柱塞泵料浆腔内的卧式助推柱塞,所述卧式助推柱塞泵设有卧式助推柱塞泵推进缸进油管和卧式助推柱塞泵退回缸进油管,所述卧式助推柱塞泵料浆腔的上侧设有进料口。
进一步,所述注料泵设有料浆腔,所述注料泵料浆腔内设有活塞,所述注料泵的外侧设有注料泵推进缸进油管、注料泵退回缸进油管。
进一步,所述料浆搅拌桶的底部的出料口与卧式助推柱塞泵的进料口之间通过法兰直通连接。
进一步,所述料浆搅拌桶的底部的出料口与卧式助推柱塞泵的进料口之间通过胶管直通连接。
进一步,所述卧式助推柱塞泵和注料泵为液压控制泵。
本发明之利用所述永磁铁氧体磁体成型助推注料装置的磁体制造方法,包括以下步骤:
(1)成型:采用永磁铁氧体料浆为原料,利用安装在料浆搅拌桶下方的卧式助推柱塞泵将料浆主动推入注料泵的料浆腔,然后由注料泵将料浆腔内料浆经注料管注入成型模具中成型,得成型生坯;
(2)烧结:将步骤(1)所得成型生坯置于烧结窑炉内进行烧结,得磁体毛坯;
(3)磨削清洗:将步骤(2)所得磁体毛坯按设计要求尺寸磨削加工为磁体成品,并清洗洁净。
进一步,所述永磁铁氧体料浆中,水分重量含量为22%-30%。
进一步,所述永磁铁氧体料浆中,所含永磁铁氧体颗粒料的平均粒度为0.6-0.7μm。
利用本发明,可以在不采用添加稀土元素和/或钴元素的情况下,实现“剩磁Br≥4150Gs,内禀矫顽力Hcj≥4000Oe”的永磁铁氧体磁体的批量生产;在添加稀土元素和/或钴元素的条件下,可以大幅提升永磁铁氧体磁体生坯的成型压制效率和磁体成品质量及质量合格率。
附图说明
图1是本发明永磁铁氧体磁体成型助推注料装置实施例1/2的结构示意图;
图2是图1所示实施例1/2处于吸料状态时的示意图;
图3是图1所示实施例1/2处于注料状态时的示意图;
图4是现有技术的永磁铁氧体磁体成型注料装置的结构示意图。
图中:1.料浆搅拌桶,1a.料浆搅拌桶底部出料口,1b.料浆搅拌桶清洗口,2.卧式助推柱塞泵,2a.助推柱塞,2b.卧式助推柱塞泵推进缸进油管,2c.卧式助推柱塞泵退回缸进油管,2d.卧式助推柱塞泵料浆腔,2e.卧式助推柱塞泵进料口,2f.卧式助推柱塞泵出料管,3.闸阀,4.注料泵,4a.注料泵活塞,4b.注料泵推进缸进油管,4c.注料泵退回缸进油管,4d.注料泵料浆腔,4e.注料泵送料管。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
实施例1
参照附图1-3,本实施包括料浆搅拌桶1、安装于料浆搅拌桶1下方的卧式助推柱塞泵2、注料泵4,注料泵4通过闸阀3与卧式助推柱塞泵的出料管2f连接。
料浆搅拌桶1的底部设有出料口1a,底部侧面设有料浆搅拌桶清洗口1b。
卧式助推柱塞泵2包括卧式助推柱塞泵料浆腔2d、设于卧式助推柱塞泵料浆腔2d内的助推柱塞2a,助推柱塞2a的直径为Φ160mm,卧式助推柱塞泵料浆腔2d的内直径为Φ161.5mm,卧式助推柱塞泵料浆腔2d的上侧设有卧式助推柱塞泵进料口2e、卧式助推柱塞泵推进缸进油管2b和卧式助推柱塞泵退回缸进油管2c,卧式助推柱塞泵助推柱塞2a推进过程中卧式助推柱塞泵料浆腔2d内的料浆大部份通过卧式助推柱塞泵出料管2f进入闸阀3后进入注料泵料浆腔4d,少量料浆经卧式助推柱塞泵助推柱塞2a和卧式助推柱塞泵料浆腔2d之间的间隙返回料浆搅拌桶1。
注料泵4包括注料泵料浆腔4d、设于注料泵料浆腔4d内的注料泵活塞4a,注料泵料浆腔4d的侧面设有注料泵推进缸进油管4b、注料泵退回缸进油管4c和注料泵送料管4e。
卧式助推柱塞泵2和注料泵4均采用液压控制,其中料浆搅拌桶1底部的出料口1a和卧式助推柱塞泵2上方的进料口2e之间为法兰盘或胶管直通连接,料浆可因自身重力而自由坠落进入卧式助推柱塞泵进料口2e,料浆搅拌桶1底部的出料口1a外径为100mm,卧式助推柱塞泵进料口2e的内径为101mm,注料泵送料管4e和磁体成型模具(图中未示出)相连接。成型模具为拱形的瓦形磁体模具(一模12出),安装在磁性材料专用磁场成型液压机上。
永磁铁氧体磁体成型助推注料装置的工作过程包括注料泵吸料过程和注料泵注料过程:
参照图2,注料泵吸料过程:
液压控制闸阀3开启,同时高压液压油进入卧式助推柱塞泵推进缸进油管2b,助推柱塞2a右推,对卧式助推柱塞泵料浆腔2d内的料浆加压;与此同时高 压液压油进入注料泵退回缸进油管4c,注料泵活塞4a上移,注料泵料浆腔4d内形成真空;加压后的卧式助推柱塞泵料浆腔2d内的料浆经卧式助推柱塞泵出料管2f、闸阀3后充满注料泵料浆腔4d。由于卧式助推柱塞泵2推进缸中高压液压油的压强可高达2MPa以上,卧式助推柱塞泵料浆腔2d内的料浆能够顺利地通过卧式助推柱塞泵出料管2f和闸阀3后充满注料泵料浆腔4d内的真空范围,注料泵料浆腔4d内不会进入空气或残留真空;卧式助推柱塞泵料浆腔2d内多余的料浆经卧式助推柱塞泵助推柱塞2a和卧式助推柱塞泵料浆腔2d之间的间隙返回料浆搅拌桶1。
参照图3,注料泵注料过程:
液压控制闸阀3关闭,高压液压油进入注料泵推进缸进油管4b,注料泵活塞4a下压,注料泵料浆腔4d内的料浆被高压输送出注料泵送料管4e,进入瓦形磁体模具各模腔,由于注料泵推进缸可传递2MPa以上的压强,因而料浆可以顺利地充满模具各模腔。注料结束后压机开始对模腔内的料浆成型磁场取向、压制脱水成型。
在压制结束前,高压液压油进入卧式助推柱塞泵退回缸进油管2c,助推柱塞2a左移退回,卧式助推柱塞泵料浆腔2d内形成真空腔,由于料浆搅拌桶底部出料口1a和卧式助推柱塞泵进料口2e之间的法兰盘孔径较大,且卧式助推柱塞泵2和料浆搅拌桶底部出料口1a之间无阀门等增加阻力因素,因而料浆搅拌桶1中料浆在自身重量的作用下能顺利地坠落充满该真空腔,为下一轮次成型周期中的注料泵吸料过程作为准备。
料浆搅拌桶清洗口1b的作用:当料浆搅拌桶中料浆需更换时,桶中料浆以及清洗搅拌桶的水可从该口排出。
采用公知的技术制作不含稀土元素和钴元素的永磁铁氧体预烧料粉,将料粉分为三份,作为制作永磁铁氧体磁体的原料,往三份原料中分别添加分散剂、配方料等公知配方后,分别湿磨成平均粒度为0.61μm、0.65μm、0.69μm的料浆,料浆经脱水调控成含水重量为28%的待用的永磁铁氧体料浆。
启动永磁铁氧体磁体成型助推注料装置和磁场成型液压机,将以上三种料浆分别加入料浆搅拌桶内,利用成型助推注料装置将料浆注入模具模腔中,料浆在磁场成型液压机的压制下成为瓦形磁体生坯,抽检各模腔生坯的重量;具体结果 见下表1:
表1各腔生坯重量
Figure PCTCN2020119224-appb-000001
从表1可知,本实施例中三种料浆成型的生坯各腔重量差异均小于3%。一模多腔模具中各腔生坯重量偏差在3%时,各腔在压制过程中承受的压机压力接近,有利于实现各腔生坯密度一致。
以上料浆生产的生坯在电窑中经1180℃烧结后成为毛坯;毛坯经磨削、清洗后成为瓦形磁体成品;然后全检瓦形磁体成品的外观质量,统计质量合格率,抽检瓦形磁体磁性能,具体结果见下表2:
表2三种料浆生产产品质量和磁性能
Figure PCTCN2020119224-appb-000002
从表2可知,本实施例中采用三种料浆生产的质量合格率均在91%以上,且磁性能均满足“剩磁Br≥4150Gs,内禀矫顽力Hcj≥4000Oe”标准要求。
实施例2
本实施例采用与实施例1采用相同的永磁铁氧体磁体成型助推注料装置、瓦形磁体一模多腔模具和磁性材料专用磁场成型液压机。
采用公知的技术制作不含稀土元素和钴元素的永磁铁氧体预烧料粉,往原料中添加分散剂、配方料等公知配方后,湿磨成平均粒度为0.66μm的料浆,料浆经脱水分别调控成含水重量为23%、26%、29%的待用的永磁铁氧体料浆。
启动永磁铁氧体磁体成型助推注料装置和磁场成型液压机,将以上三种料浆分别加入料浆搅拌桶内,利用成型助推注料装置将料浆注入模具模腔中,料浆在磁场成型液压机的压制下成为瓦形磁体生坯,抽检各模腔生坯的重量;具体结果见下表3:
表3各腔生坯重量
Figure PCTCN2020119224-appb-000003
从表3可知,本实施例中三种料浆成型的生坯各腔重量差异均小于3%。一模多腔模具中各腔生坯重量偏差在3%时,各腔在压制过程中承受的压机压力接近,有利于实现各腔生坯密度一致。
以上料浆生产的生坯在电窑中经1180℃烧结后成为毛坯;毛坯经磨削、清洗后成为770型电机用瓦形磁体成品;然后全检瓦形磁体成品的外观质量,统计质量合格率,抽检瓦形磁体磁性能,具体结果见下表4:
表4三种料浆生产产品质量和磁性能
Figure PCTCN2020119224-appb-000004
从表4可知,本实施例中采用三种料浆生产的质量合格率均在91%以上,且磁性能均满足“剩磁Br≥4150Gs,内禀矫顽力Hcj≥4000Oe”标准要求。
本领域的技术人员可以对本发明进行各种修改和变型,倘若这些修改和变型在本发明权利要求及其等同技术的范围之内,则这些修改和变型也仍在本发明专利的保护范围之内。
说明书中未详细描述的内容为本领域技术人员公知的现有技术。

Claims (10)

  1. 一种永磁铁氧体磁体成型助推注料装置,包括料浆搅拌桶、卧式助推柱塞泵和注料泵,其特征在于:所述卧式助推柱塞泵安装在料浆搅拌桶正下方,料浆搅拌桶的底部的出料口和卧式助推柱塞泵上方的进料口为直通连接,且出料口与进料口的通孔直径≥Φ80mm,料浆因自身重力的作用进入卧式助推柱塞泵进料口;所述注料泵通过闸阀与卧式助推柱塞泵的出料管连接,注料泵的送料管连接磁体成型模具。
  2. 根据权利要求1所述的一种永磁铁氧体磁体成型助推注料装置,其特征在于:所述卧式助推柱塞泵设有卧式助推柱塞泵料浆腔、设于卧式助推柱塞泵料浆腔内的卧式助推柱塞,所述卧式助推柱塞泵设有卧式助推柱塞泵推进缸进油管和卧式助推柱塞泵退回缸进油管,所述卧式助推柱塞泵料浆腔的上侧设有进料口。
  3. 根据权利要求1或2所述的一种永磁铁氧体磁体成型助推注料装置,其特征在于:所述注料泵设有料浆腔,所述注料泵料浆腔内设有活塞,所述注料泵的外侧设有注料泵推进缸进油管、注料泵退回缸进油管。
  4. 根据权利要求1或2所述的一种永磁铁氧体磁体成型助推注料装置,其特征在于:所述料浆搅拌桶的底部的出料口与卧式助推柱塞泵的进料口之间通过法兰直通连接。
  5. 根据权利要求1或2所述的一种永磁铁氧体磁体成型助推注料装置,其特征在于:所述料浆搅拌桶的底部的出料口与卧式助推柱塞泵的进料口之间通过胶管直通连接。
  6. 根据权利要求1或2所述的一种永磁铁氧体磁体成型助推注料装置,其特征在于:所述卧式助推柱塞泵为液压控制泵。
  7. 根据权利要求1或2所述的一种永磁铁氧体磁体成型助推注料装置,其特征在于:所述注料泵为液压控制泵。
  8. 一种利用权利要求1-7之一所述永磁铁氧体磁体成型助推注料装置的磁体制造方法,其特征在于:包括以下步骤:
    (1)成型:采用永磁铁氧体料浆为原料,利用安装在料浆搅拌桶下方的卧式助推柱塞泵将料浆主动推入注料泵的料浆腔,然后由注料泵将料浆腔内料浆经 注料管注入成型模具中成型,得成型生坯;
    (2)烧结:将步骤(1)所得成型生坯置于烧结窑炉内进行烧结,得磁体毛坯;
    (3)磨削清洗:将步骤(2)所得磁体毛坯按设计要求尺寸磨削加工为磁体成品,并清洗洁净。
  9. 根据权利要求8所述的磁体制造方法,其特征在于:所述永磁铁氧体料浆中,水分重量含量为22%-30%。
  10. 根据权利要求8或9所述的磁体制造方法,其特征在于:所述永磁铁氧体料浆中,所含永磁铁氧体颗粒料的平均粒度为0.6-0.7μm。
PCT/CN2020/119224 2020-01-15 2020-09-30 一种永磁铁氧体磁体成型助推注料装置及磁体制造方法 WO2021143210A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010039854.6 2020-01-15
CN202010039854.6A CN110842205B (zh) 2020-01-15 2020-01-15 一种永磁铁氧体磁体成型助推注料装置及磁体制造方法

Publications (1)

Publication Number Publication Date
WO2021143210A1 true WO2021143210A1 (zh) 2021-07-22

Family

ID=69610706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119224 WO2021143210A1 (zh) 2020-01-15 2020-09-30 一种永磁铁氧体磁体成型助推注料装置及磁体制造方法

Country Status (2)

Country Link
CN (1) CN110842205B (zh)
WO (1) WO2021143210A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116423646A (zh) * 2023-06-02 2023-07-14 济南鸿广建筑设备安装有限公司 一种可使浆料均匀分布的grc轻质隔墙板加工成型工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110842205B (zh) * 2020-01-15 2020-05-22 湖南航天磁电有限责任公司 一种永磁铁氧体磁体成型助推注料装置及磁体制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013692A1 (de) * 1991-02-05 1992-08-20 Robert Bosch Gmbh Vorrichtung und verfahren zur herstellung von masshaltigen formkörpern aus pastösen massen
JP2006253526A (ja) * 2005-03-14 2006-09-21 Tdk Corp 磁場中成形装置、磁場中成形方法
US20070069426A1 (en) * 2005-09-29 2007-03-29 Tdk Corporation Magnetic field molding device, method for producing ferrite magnet, and die
CN101154855A (zh) * 2006-09-25 2008-04-02 天津得鑫电机有限公司 电机氧体磁极制备方法
CN201404792Y (zh) * 2009-04-23 2010-02-17 郑钧译 一种注料机
CN207310206U (zh) * 2017-08-15 2018-05-04 湖南航天磁电有限责任公司 一种适用于低含水率铁氧体料浆的多级注料装置
CN110375203A (zh) * 2019-06-28 2019-10-25 广西金秀松源林产有限公司 一种松脂输送装置
CN110842205A (zh) * 2020-01-15 2020-02-28 湖南航天磁电有限责任公司 一种永磁铁氧体磁体成型助推注料装置及磁体制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286012A (ja) * 1996-04-19 1997-11-04 Sumitomo Metal Ind Ltd 酸化物磁性材料の湿式成形方法
CN106166850A (zh) * 2016-08-17 2016-11-30 南通皋液液压机有限公司 一种磁性材料液压机的注料系统
CN207954256U (zh) * 2018-03-15 2018-10-12 武穴市张榜德诚电子有限公司 一种磁性材料湿压料浆自动注料装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013692A1 (de) * 1991-02-05 1992-08-20 Robert Bosch Gmbh Vorrichtung und verfahren zur herstellung von masshaltigen formkörpern aus pastösen massen
JP2006253526A (ja) * 2005-03-14 2006-09-21 Tdk Corp 磁場中成形装置、磁場中成形方法
US20070069426A1 (en) * 2005-09-29 2007-03-29 Tdk Corporation Magnetic field molding device, method for producing ferrite magnet, and die
CN101154855A (zh) * 2006-09-25 2008-04-02 天津得鑫电机有限公司 电机氧体磁极制备方法
CN201404792Y (zh) * 2009-04-23 2010-02-17 郑钧译 一种注料机
CN207310206U (zh) * 2017-08-15 2018-05-04 湖南航天磁电有限责任公司 一种适用于低含水率铁氧体料浆的多级注料装置
CN110375203A (zh) * 2019-06-28 2019-10-25 广西金秀松源林产有限公司 一种松脂输送装置
CN110842205A (zh) * 2020-01-15 2020-02-28 湖南航天磁电有限责任公司 一种永磁铁氧体磁体成型助推注料装置及磁体制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116423646A (zh) * 2023-06-02 2023-07-14 济南鸿广建筑设备安装有限公司 一种可使浆料均匀分布的grc轻质隔墙板加工成型工艺

Also Published As

Publication number Publication date
CN110842205A (zh) 2020-02-28
CN110842205B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2021143210A1 (zh) 一种永磁铁氧体磁体成型助推注料装置及磁体制造方法
CN103332936B (zh) 注射挤压成型烧结永磁铁氧体辐射环的制备方法
CN104802284B (zh) 一种制备大规格ito坯体的方法
JP2009111169A (ja) 磁石の製造方法、これにより得られる磁石及び磁石用成形体の製造装置
US20220028590A1 (en) Preparation method of ring-shaped sintered nd-fe-b magnet and its moulding die
CN103787650A (zh) 一种制备ito靶材的方法
WO2019095921A1 (zh) 一种湿压成形制备高取向度结钕铁硼永磁材料的方法
CN104190925A (zh) 一种压制成型模具
CN202071200U (zh) 一种磁性材料湿压定量注料控制装置
CN111605037A (zh) 一种高压注浆成型装置以及一种ito旋转靶材的制备方法
CN103056371A (zh) 一种制备取向长度L≥60mm的钕铁硼永磁材料的工艺
CN107021743A (zh) 熔融石英质陶瓷回转体的制备方法
CN101157243B (zh) 一种绝缘陶瓷的压注成型设备及绝缘陶瓷的制作工艺
JP2006253526A (ja) 磁場中成形装置、磁場中成形方法
CN205096537U (zh) 烧结钕铁硼材料成型装置
JP3116885B2 (ja) 希土類永久磁石の製造方法及び希土類永久磁石
CN201143718Y (zh) 一种绝缘陶瓷的压注成型设备
CN202367835U (zh) 高性能永磁铁氧体料浆自动输送装置
CN101195238A (zh) 卫浴陶瓷器具坯体成型工艺
CN202491290U (zh) 永磁铁氧体湿压成型生产的多缸定量注料装置
CN210477292U (zh) 一种1500kn磁性材料湿式成型液压机
CN108237616A (zh) 一种陶瓷注模装置
CN203752288U (zh) 一种制备ito靶材坯体的装置
CN103887056B (zh) 钕铁硼粘接磁体的加工工艺
CN117656232A (zh) 一种湿压永磁铁氧体磁钢的成型注料装置及注料方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913345

Country of ref document: EP

Kind code of ref document: A1