WO2021142883A1 - 燃料电池低温启动性能预测方法及系统 - Google Patents

燃料电池低温启动性能预测方法及系统 Download PDF

Info

Publication number
WO2021142883A1
WO2021142883A1 PCT/CN2020/076347 CN2020076347W WO2021142883A1 WO 2021142883 A1 WO2021142883 A1 WO 2021142883A1 CN 2020076347 W CN2020076347 W CN 2020076347W WO 2021142883 A1 WO2021142883 A1 WO 2021142883A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel cell
flow channel
cathode
temperature
Prior art date
Application number
PCT/CN2020/076347
Other languages
English (en)
French (fr)
Inventor
江宏亮
李建秋
徐梁飞
胡尊严
欧阳明高
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021142883A1 publication Critical patent/WO2021142883A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • This application relates to the technical field of fuel cells, and in particular to a method and system for predicting low-temperature start-up performance of fuel cells.
  • Fuel cell vehicles have the advantages of energy saving and environmental protection. They have developed rapidly in recent years and have good application prospects. Especially in the field of commercial vehicles, fuel cell vehicles have a longer driving range than pure electric vehicles. However, compared with traditional internal combustion engine vehicles, fuel cell vehicles face greater challenges in low-temperature environmental adaptability, especially in the low-temperature starting process.
  • the low temperature start-up of the fuel cell will cause internal icing, which may cause internal damage.
  • the commercial stack has a long flow path and a large number of chips. In the actual test, it is found that the inconsistency within and between the single chips has a great impact on the low temperature startup. Therefore, it is necessary to analyze and study the commercial large-area multi-chip stack .
  • the low-temperature start-up performance of the fuel cell is basically measured by experimental methods, and only information about whether it can be successfully started, the start-up time, current, voltage, temperature and other parameters can be obtained.
  • PCB printed circuit boards
  • this method is expensive and has a long experiment period, and is not suitable for engineering low-temperature start-up performance of fuel cell stacks. Perform analysis.
  • the model-based simulation method is an efficient and low-cost performance prediction method, but the traditional low-temperature start-up models mostly focus on the mechanism research of small area monomers, and cannot effectively obtain low temperature for large area fuel cell stack/monolithic. Started performance test results.
  • a method for predicting the low-temperature start-up performance of a fuel cell includes:
  • each component includes a bipolar plate, a gas diffusion layer, a catalyst layer, and a proton exchange membrane;
  • starting operation of the fuel cell low-temperature startup model includes the calculation solution of the monomer model and the calculation solution of the stack model;
  • S500 The calculation of the low-temperature start-up model of the fuel cell is completed, and the low-temperature start-up performance of the fuel cell to be predicted and the internal state distribution of the fuel cell to be predicted are output.
  • This application also provides a fuel cell low-temperature startup performance prediction system, including:
  • the stack parameter acquisition device is used to provide the stack parameters of the fuel cell to be predicted;
  • the stack parameters include: the number of stack cells, the number of cell segments, the geometric parameters of each component, the heat capacity of each component, and each One or more of the thermal conductivity of the components, the electrical conductivity of each component, and the porosity of each component;
  • each component includes a bipolar plate, a gas diffusion layer, a catalyst layer, and a proton exchange membrane;
  • a fuel cell low-temperature startup model establishment device for establishing a fuel cell low-temperature startup model, the fuel cell low-temperature startup model including a monomer model and a stack model;
  • a device for confirming environmental parameters and working conditions is used to input the stack parameters, environmental parameters, and working conditions of the fuel cell to be predicted into the low-temperature start-up model of the fuel cell;
  • the environmental parameters include at least temperature;
  • the conditions include at least one or more of current, excess gas ratio and back pressure;
  • the low-temperature start-up model of the fuel cell further includes:
  • the arithmetic module is used to start calculations, and the calculations of the fuel cell low-temperature start-up model include the calculation and solution of the monomer model and the calculation and solution of the stack model;
  • An output module which outputs the low-temperature start-up performance of the fuel cell to be predicted and the internal state distribution of the fuel cell to be predicted when the calculation module ends.
  • This application also provides a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the steps of the fuel cell low-temperature startup performance prediction method described in any one of the above are implemented.
  • This application also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the fuel cell low-temperature startup performance prediction method described in any one of the above are implemented.
  • the fuel cell low-temperature startup performance prediction method can simulate the low-temperature startup process according to the parameters and working conditions of the fuel cell stack, analyze the low-temperature startup performance of the fuel cell, and obtain status variables such as the internal temperature of the fuel cell, the circuit density, and the icing state. Distribution and changes over time to predict low-temperature start-up performance and guide the design of stacks and control methods.
  • the fuel cell low-temperature startup performance prediction method is to establish a fuel cell low-temperature startup model, and input the stack parameters, environmental parameters, and working conditions of the fuel cell to be predicted into the fuel cell low-temperature startup model.
  • the fuel cell low temperature startup model outputs the low temperature startup performance of the fuel cell to be predicted and the internal state distribution of the fuel cell to be predicted.
  • FIG. 1 is a flowchart of a method for predicting low-temperature start-up performance of a fuel cell provided in an embodiment of the application;
  • FIG. 2 is a schematic structural diagram of a segment in a monomer model provided in an embodiment of the application;
  • Figure 3 is a schematic structural diagram of a monomer model provided in an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a stack model provided in an embodiment of the application.
  • Figure 5 is a schematic structural diagram of a segment in a monomer model provided in an embodiment of the application.
  • Fig. 6 is a schematic structural diagram of a stack model provided in an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a fuel cell low-temperature startup performance prediction system provided in an embodiment of the application.
  • FIG. 8 is a schematic diagram of a single-chip voltage change during a low-temperature start-up process provided in an embodiment of the application;
  • FIG. 10 is a graph of temperature distribution and time change of the stack with the cathode inlet perpendicular to the film direction provided in an embodiment of the application;
  • FIG. 11 is a graph of ice saturation distribution and time change of the cathode inlet perpendicular to the film direction provided in an embodiment of the application;
  • Fig. 12 is a current density distribution in a stack provided in an embodiment of the application.
  • the low-temperature start-up model 110 of the fuel cell described by the environmental parameter and working condition confirmation device 13 is described by the environmental parameter and working condition confirmation device 13
  • Operation module 111 Output module 112 Monomer model 120 Segmented 120a Stack model 130
  • First electrode plate 121 Anode gas flow channel 121a Anode gas diffusion layer 122 Anode catalyst layer 123
  • this application proposes a model-based method for predicting the low-temperature start-up performance of a fuel cell for fuel cell vehicles. Based on the established monomer model and stack model, the stack parameters and working conditions are set, and the low temperature startup process is simulated, and then the low temperature startup performance of the fuel cell stack is predicted. Using this method, the low-temperature start-up performance of different stacks can be obtained at low cost and with high efficiency, especially the distribution of the internal state of the stack during the low-temperature start-up process.
  • This application provides a method for predicting the low-temperature start-up performance of a fuel cell, including:
  • the stack parameters include: the number of stacks, the number of cell segments, the geometric parameters of each component, the heat capacity of each component, the thermal conductivity of each component, and the One or more of the electrical conductivity of the component and the porosity of each component.
  • the various components include a bipolar plate, a gas diffusion layer, a catalyst layer, and a proton exchange membrane.
  • S200 Establish a fuel cell low-temperature startup model 110, where the fuel cell low-temperature startup model 110 includes a monomer model 120 and a stack model 130.
  • 2 and 5 are respectively a schematic structural diagram of a segment in the monomer model 120 provided in an embodiment.
  • FIG. 3 is a schematic structural diagram of a monomer model 120 provided in an embodiment.
  • 4 and 6 are respectively structural schematic diagrams of the stack model 130 provided in an embodiment.
  • S300 Input the stack parameters, environmental parameters, and working conditions of the fuel cell to be predicted into the low-temperature start-up model of the fuel cell.
  • the environmental parameter includes at least temperature.
  • the working conditions include at least one or more of current, gas excess ratio and back pressure.
  • the fuel cell low-temperature startup model 110 starts an operation, and the operation of the fuel cell low-temperature startup model 110 includes the calculation solution of the monomer model 120 and the calculation solution of the stack model 130.
  • S500 The calculation of the low-temperature start-up model 110 of the fuel cell is completed, and the low-temperature start-up performance of the fuel cell to be predicted and the internal state distribution of the fuel cell to be predicted are output.
  • the fuel cell low-temperature startup performance prediction method can simulate the low-temperature startup process according to the parameters and working conditions of the fuel cell stack, analyze the low-temperature startup performance of the fuel cell, and obtain the internal temperature, circuit density, and circuit density of the fuel cell.
  • the distribution of state quantities such as icing state and changes over time can predict low-temperature start-up performance and guide the design of stacks and control methods.
  • the fuel cell low-temperature startup performance prediction method is to establish the fuel cell low-temperature startup model 110, and input the stack parameters, environmental parameters, and working conditions of the fuel cell to be predicted into the fuel cell low-temperature startup model 110 middle.
  • the fuel cell low temperature startup model 110 outputs the low temperature startup performance of the fuel cell to be predicted and the internal state distribution of the fuel cell to be predicted.
  • the establishment of the monomer model 120 includes:
  • each of the segments includes a first electrode plate 121, an anode gas diffusion layer 122, an anode catalyst layer 123, a proton exchange membrane 124, a cathode catalyst layer 125, an anode gas diffusion layer 126, and a second electrode plate 127 that are stacked. .
  • each cell in the fuel cell stack to be predicted is divided into a plurality of segments along the direction of the flow channel, and the lengths of the multiple segments along the direction of the flow channel are equal, which can be more
  • the low-temperature start-up model 110 of the fuel cell is conveniently established, and at the same time, it is more convenient to calculate the low-temperature start-up performance of the fuel cell to be predicted and the internal state distribution of the fuel cell to be predicted.
  • the calculation and solution step of the monomer model 120 includes:
  • the gas concentration includes at least a cathode oxygen concentration, a cathode water vapor concentration, and a cathode nitrogen concentration.
  • S50 Calculate the phase change heat according to the water phase change of the liquid water into the solid water, calculate the Joule heat and the reaction heat according to the current and the voltage, and calculate the phase change heat, the Joule heat and the reaction heat according to the phase change heat, the Joule heat and the reaction heat Calculate the temperature.
  • S60 Circulate to the S20 to calculate the parameter values at the next moment.
  • the parameter values at different moments include the following variables: temperature, film state water content, water vapor concentration, flow channel oxygen concentration, and flow channel nitrogen concentration.
  • the rate of change of the parameter value is calculated according to the parameter value at different moments, and the parameter value of the next moment is calculated further according to the parameter value at the current moment and the rate of change between the current moment and the previous moment.
  • the above-mentioned steps S10-S60 are combined to solve the monomer model 120. After the monomer model 120 is established, it is helpful to calculate the low temperature start-up performance of the fuel cell to be predicted and the internal state distribution of the fuel cell to be predicted.
  • the subscripts of the parameters are numbered, indicating the numbers 1-12 shown in Figure 5.
  • Formulas (2) and (3) provide the conversion relationship between film state water content and saturation.
  • the following formula (2) and formula (3) are used to describe the relationship between the equivalent water vapor concentration c eq ( ⁇ ) of film water and water vapor corresponding to the membrane water content on the catalyst side in the monomer model 120:
  • represents the water content of the membrane state
  • a w represents the water activity
  • tanh represents the arithmetic symbol
  • s represents a coefficient, where 5 is taken
  • c vap represents the water vapor concentration
  • c sat represents the saturated water vapor concentration.
  • Formula (4) and formula (5) calculate the anode water vapor transfer flux of J H2O by the water content of the film, c 2-3 (concentration of the anode gas diffusion layer and the gas flow channel interface), c 3-4 ( Concentration at the interface between the anode gas diffusion layer and the catalyst layer).
  • the following formula (4) is used to describe the cathodic water vapor transmission process of the monomer model:
  • ⁇ mv represents the phase change coefficient
  • ⁇ cl represents the porosity of the catalyst layer
  • represents the proportional coefficient (the catalyst layer is artificially divided into two parts, and ⁇ is taken as 0.3 here)
  • ⁇ cl represents the thickness of the catalyst layer
  • ⁇ mem Indicates the film density
  • EW represents the equivalent weight of the film, in Kg/mol
  • represents the film water content
  • c represents the concentration
  • ⁇ 7 represents the film water content in 7
  • ⁇ 8 represents the film water content in 8
  • C eq represents the equilibrium water vapor concentration corresponding to the film state water content in the brackets
  • Indicates the equivalent diffusion coefficient of water vapor Indicates the water vapor concentration at the interface between 9 and 10; Indicates the water vapor concentration at the interface between 8 and 9;
  • h v,9-10 represents the transmission coefficient of water vapor at the interface of 9 and 10.
  • the formula (6) is used to calculate the concentration change of the gas flow channel. Through input: each component gas flow channel inlet flow, outlet flow, flow into the gas diffusion layer from the flow channel; output: the change rate of the gas component concentration, calculate the gas flow channel concentration change; according to the change rate and current concentration, calculate The concentration at the next moment.
  • the gas boundary condition is formula (6):
  • Formula (7)-Formula (9) provide the calculation method of the inlet flow rate, outlet flow rate of each component gas flow channel, and the flow rate from the flow channel into the gas diffusion layer.
  • the relationship between gas composition and total flow can refer to formula (7)-formula (9):
  • A represents the area of a single fuel cell; Indicates the water vapor flow rate at the inlet of the anode flow channel; Indicates the volume fraction of hydrogen at the inlet of the anode flow channel; Indicates the volume fraction of water vapor at the inlet of the anode flow channel; Indicates the oxygen flow rate at the inlet of the cathode gas flow channel; Indicates the excess air ratio; Indicates the nitrogen flow rate at the inlet of the cathode gas flow channel; Indicates the water vapor flow rate at the inlet of the cathode gas flow channel; Indicates the volume fraction of nitrogen at the inlet of the cathode gas flow channel; Indicates the volume fraction of oxygen at the inlet of the cathode gas flow channel; Represents the integral number of water vapor extraction at the inlet of the cathode gas flow channel; k agc,out and k
  • c 3 represents the water concentration at 3 locations; Represents the polymer volume fraction, 1.5th power; considering that the water distribution in the membrane state of the catalyst layer near the membrane is not strictly linear, ⁇ acl and ⁇ ccl are introduced for correction.
  • formula (12)-formula (15) is used to calculate the diffusion flow rate and the electric drag flow rate in formula (10):
  • I 1 and I 2 respectively represent the reaction rates of the two regions of the cathode catalyst layer.
  • the calculation and solution process of the monomer model 120 further includes:
  • the following formula (16) is used to divide the catalyst layer into two parts and then calculate and solve the electrochemical reaction and voltage of the monomer model.
  • s ice i represents the ice saturation of the partition of the cathode catalyst layer close to the membrane; j 0, c represents the reaction rate; Indicates the oxygen concentration; Represents the reference oxygen concentration; T 1 and T 2 respectively represent the temperature of the two zones of the cathode catalyst layer; ⁇ e, i represent the electric potential; ⁇ i, i represent the electrolyte potential; E eq, i represent the equilibrium potential; Indicates the equivalent conductivity of the catalyst layer.
  • the membrane impedance is calculated according to the water content of the membrane state, where the impedance of the anode catalyst layer and the cathode catalyst layer includes electron transmission resistance and proton transmission resistance.
  • the reaction rate and overpotential of the two parts of the cathode catalyst layer can be obtained by solving the above equations.
  • the impedance of the anode catalyst layer (ACL, anode catalyst layer) and the cathode catalyst layer (CCL, cathode catalyst layer) consists of electron transmission resistance and proton transmission resistance, expressed as:
  • R acl represents the resistance of the anode catalyst layer
  • ⁇ ele,cl represents the conductivity of the catalyst layer
  • the water content distribution in the monomer model membrane is approximately two-stage linear, and the proton transmission impedance of the membrane is:
  • R m represents the membrane resistance
  • ⁇ i represents the water content of the membrane at i.
  • the proton conductivity ⁇ (c) of the membrane is a function of the water content of the membrane, which can be obtained by the following formula (20):
  • V cell represents the monolithic voltage
  • ⁇ e,2 represents the potential at the interface between the cathode catalyst layer and the cathode gas diffusion layer
  • ⁇ i,1 represents the potential at the interface between the cathode catalyst layer and the membrane
  • I cell represents the current
  • Racl represents the anode catalyst Layer resistance
  • R ccl represents the resistance of the cathode catalyst layer
  • ⁇ gdl represents the thickness of the gas diffusion layer
  • ⁇ gdl represents the porosity of the gas diffusion layer
  • ⁇ ele, gdl represents the conductivity of the gas diffusion layer
  • ⁇ bp represents the thickness of the bipolar plate
  • ⁇ ele, bp represents the conductivity of the bipolar plate.
  • Formula (22)-Formula (24) calculate the temperature change of the monomer model according to the heat generation and thermal conductivity.
  • c p,i means heat capacity; Represents the temperature derivative with respect to time; ⁇ i, i-1 and ⁇ i, i+1 respectively represent the thermal conductivity; T i-1 represents the temperature at i-1; T represents the temperature; Ti +1 represents the temperature at i+1 Temperature; S heat, i represents the source of heat generation.
  • k i and k i+1 respectively represent the thermal conductivity; ⁇ i and ⁇ i+1 respectively represent the thickness.
  • the heat source is calculated as follows:
  • S heat, gdl represents the heat generation power of the gas diffusion layer
  • S heat, acl represents the heat generation power of the anode catalyst layer
  • ⁇ gdl represents the thickness of the gas diffusion layer
  • ⁇ h evap represents the latent heat of evaporation
  • S heat, pem represents the heat generation power of the membrane
  • S heat, ccl represents the heat generation power of the cathode catalyst layer
  • ⁇ S represents the entropy increase of the reaction
  • ⁇ h fusion represents the latent heat of water freezing
  • J m2i represents the rate of water freezing.
  • Two average ice saturation degrees are s ice, 1 and s ice, 2 respectively to describe the ice saturation of the cathode catalyst layer, and its mass conservation is:
  • ⁇ cl represents the porosity of the catalyst layer
  • ⁇ ice represents the density of ice
  • s ice, 1 represents the ice saturation of the partition of the cathode catalyst layer close to the membrane
  • s ice, 2 represents the partition of the cathode catalyst layer close to the gas diffusion layer Ice saturation.
  • ⁇ mi represents the rate coefficient of the phase transition from film water to ice.
  • the molar mass of water ⁇ 6 represents the membrane water content at 6
  • ⁇ 7 represents the membrane water content at 7
  • ⁇ sat (T 6 ) represents the membrane water saturation value ⁇ sat (T 7 ) Similar.
  • T F represents the freezing point.
  • the freezing rate inside the cathode catalyst layer is:
  • J m2i represents the icing rate inside the cathode catalyst layer
  • ⁇ m represents the density of the film.
  • the establishment of the stack model 130 includes:
  • S021 Connect a plurality of the monomer models 120 in series to form a plurality of battery cells.
  • a plurality of the battery cells are arranged side by side with each other in position, and a plurality of the battery cells are connected in series with each other in an electrical connection relationship to form the stack model 130.
  • the calculation and solution step of the stack model includes:
  • S422 Solve the water vapor flow rate and concentration separately for each segment, and calculate the value of the film state water in combination with the current distribution density in the battery cell, and calculate the icing rate and ice saturation of the battery cell.
  • the cyclic solution obtains the icing rate and ice saturation of all battery cells.
  • the gas concentration of the multi-stage flow channels inside each cell is solved simultaneously to obtain the gas concentration of one battery cell to obtain the formula 31 32 33, and the gas concentration of the flow channels of all the battery cells is obtained by cyclic solution.
  • S424 According to the solution results in S421, S422, and S423, calculate the water phase change heat, Joule heat, and reaction heat, solve the temperature field for each section, and solve the temperature field of all sections cyclically.
  • the temperature field refers to the temperature value of each point inside the stack. For example, there are a total of 11 temperature points inside a single cell, a stack contains n cells, and a single cell is divided into sections along the flow channel, so there are a total of m ⁇ n ⁇ 11 temperature values.
  • the calculation result of the next time step includes at least: the current density distribution of all the battery cells, the cell voltage, and the oxygen concentration of each segment.
  • the method for solving the stack model 130 includes: the stack model 130 is composed of a plurality of the monomer models 120, and the monomer model may be represented by the above formula (1) -Formula (27) for description.
  • the combination of the monomer models 120 can be described by the following formula (28)-formula (35).
  • Setting the initial value of the stack model includes setting the parameters of the stack model, such as the number of segments of a single chip, the number of single chips (it can be understood as a single chip is divided into several sections, and the stack has a total of single chip number).
  • phase change heat is the last term of the second formula and the last two terms of the fourth formula in the following formula (24).
  • the Joule heat is the first term of each formula in the following formula (24), and the first term, the second term and the third term in the fourth formula.
  • the reaction heat is the fourth, fifth and sixth terms on the right side of the fourth formula in the following formula (24).
  • the calculation formula of the stack model 130 is:
  • the flow channel in the stack model is divided into multiple parts, and the inlet and outlet of the multiple parts are connected.
  • the conservation of gas transmission mass and material composition between different sections meets the following requirements:
  • V agc represents the segmented volume of anode gas flow channel; Indicates the density of gas component i in the anode gas flow channel of section k; Indicates the inlet mass flow rate of gas component i in the inlet gas of the anode gas flow passage in the kth section; Indicates the mass flow rate of gas component i in the exhaust gas from the anode gas flow channel in the kth section; It represents the mass flow of the gas component k from the gas channel to the gas diffusion layer in the k-th section of the anode gas channel; i represents hydrogen and water vapor (in the anode).
  • the flow rate is:
  • ⁇ agc,k is the gas density
  • V agc is the segmented volume of the flow channel
  • k agc is the coefficient fitted by experiment
  • V cgc represents the segmented volume of the cathode gas flow channel; Indicates the density of gas component i in the cathode gas flow channel of the kth section; Indicates the inlet mass flow rate of gas component i in the inlet of the cathode gas flow passage in the kth section; Indicates the mass flow rate of gas component i in the exhaust gas from the cathode gas flow channel in the kth section; It represents the mass flow of the gas component k from the gas channel to the gas diffusion layer in the k-th stage of the cathode gas channel; i represents air, nitrogen, and water vapor (in the cathode).
  • the flow rate is:
  • ⁇ cgc k is the gas density
  • V cgc is the segmented volume of the flow channel
  • k cgc is the coefficient fitted by experiment
  • represents the partition coefficient of the catalyst layer and the proportion of the partition close to the membrane
  • H cl represents the thickness of the catalyst layer
  • a c i 0,1 represents the surface exchange current density
  • i 1,k represents the total reaction in the partition near the membrane of the catalyst layer Rate
  • i 2,k represents the total reaction rate in the partition of the catalyst layer close to the gas diffusion layer
  • R k represents the fixed resistance of the k-th segment
  • V cell represents the cell voltage
  • the subscript k represents the different segments within the same cell.
  • the calculation of the temperature field of all segments in the stack model adopts formula (35):
  • the original heat transfer model with 11 variables in formula (22) is expanded to a model with 11n+6 variables. Among them, considering the sheet-like structure of the single chip, the heat transfer between different segments in the same single chip is ignored.
  • c p,i represents the specific heat capacity of the i-th part
  • T i represents the temperature of the i-th part
  • k i,i-1 represents the thermal conductivity between the i-th part and the i-1 part
  • S heat,i represents the i-th part The heat production.
  • the above formula (1)-formula (27) describe the monomer model 120.
  • the above formula (28)-formula (34) describe the stack model 130.
  • the present application provides a fuel cell low-temperature startup performance prediction system 10 including: a stack parameter acquisition device 11, a fuel cell low-temperature startup model establishment device 12, and an environmental parameter and working condition confirmation device 13.
  • the stack parameter acquisition device 11 is used to provide stack parameters of the fuel cell to be predicted.
  • the stack parameters include: the number of single stacks, the number of single sections, the geometric parameters of each component, the heat capacity of each component, the thermal conductivity of each component, the electrical conductivity of each component, and the porosity of each component.
  • the various components include a bipolar plate, a gas diffusion layer, a catalyst layer, and a proton exchange membrane.
  • the fuel cell low-temperature startup model establishment device 12 is used to establish a fuel cell low-temperature startup model.
  • the low-temperature start-up model of the fuel cell includes a monomer model 120 and a stack model 130.
  • the environmental parameter and operating condition confirmation device 13 is used to input the stack parameters, environmental parameters, and operating conditions of the fuel cell to be predicted into the fuel cell low-temperature startup model 110.
  • the environmental parameter includes at least temperature.
  • the working conditions include at least one or more of current, gas excess ratio and back pressure.
  • the fuel cell low-temperature startup model 110 further includes: an arithmetic module 111 and an output module 112.
  • the calculation module 111 is used for starting calculations.
  • the calculations of the fuel cell low-temperature start-up model include calculations and solutions of the monomer model 120 and calculations and solutions of the stack model 130.
  • the output module 112 is configured to output the low-temperature startup performance of the fuel cell to be predicted and the internal state distribution of the fuel cell to be predicted when the calculation module 111 ends.
  • the fuel cell low-temperature startup performance prediction system 10 can simulate the low-temperature startup process according to the parameters and working conditions of the fuel cell stack by using any of the fuel cell low-temperature startup performance prediction methods described above, and analyze
  • the low-temperature start-up performance of the fuel cell obtains the distribution of internal temperature, circuit density, icing state and other state quantities and changes over time, so as to predict the low-temperature start-up performance, guide the design of the stack and the design of control methods.
  • FIGS. 8 to 12 show the calculation results obtained by using the fuel cell low-temperature start-up performance prediction system 10 provided by the present application.
  • FIG. 8 is a schematic diagram of a single-chip voltage change during a low-temperature start-up process provided in an embodiment of the application.
  • Figure 8 shows the distribution and change process of the monolithic voltage inside the stack at different times during the low-temperature startup process.
  • FIG. 10 is a graph of the temperature distribution of the stack with the cathode inlet perpendicular to the film direction and the change with time according to an embodiment of the application.
  • Figure 10 shows that this method can calculate the temperature distribution inside the stack at each moment, and the temperature difference at different positions inside the stack can be seen.
  • FIG. 11 is a graph of the ice saturation distribution and time change of the cathode inlet perpendicular to the film direction provided in an embodiment of the application.
  • Figure 11 shows that this method can calculate the icing situation inside the stack at each time, the distribution of ice saturation and its change.
  • Fig. 12 is a current density distribution in a stack provided in an embodiment of the application.
  • Figure 12 shows the distribution and change of the current density inside the stack during the low-temperature start-up process.
  • the oxygen concentration of each segment in the monomer model can be solved.
  • the water content of the catalyst layer and the water vapor concentration of the gas flow channel the water vapor flow rate and the gas concentration are solved.
  • This application provides a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the steps of the fuel cell low-temperature startup performance prediction method described in any one of the above are implemented.
  • This application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the fuel cell low-temperature startup performance prediction method described in any one of the above are implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Fuel Cell (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)

Abstract

本公开涉及一种燃料电池低温启动性能预测方法及系统。所述燃料电池低温启动性能预测方法,可以根据燃料电池电堆的参数、工作条件,模拟低温启动过程,分析燃料电池低温启动性能,得到燃料电池内部温度、电路密度、结冰状态等状态量的分布以及随时间的变化,从而预测低温启动性能,指导电堆设计和控制方法的设计。具体的,所述燃料电池低温启动性能预测方法,通过建立燃料电池低温启动模型,将所述待预测燃料电池的电堆参数、环境参数和工作条件,输入至所述燃料电池低温启动模型中。所述燃料电池低温启动模型输出所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。

Description

燃料电池低温启动性能预测方法及系统
相关申请
本公开要求2020年1月13日申请的,申请号为202010031317.7,名称为“燃料电池低温启动性能预测方法及系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及燃料电池技术领域,特别是涉及一种燃料电池低温启动性能预测方法及系统。
背景技术
燃料电池汽车具有节能、环保等优点,在近年来迅速发展,具有很好的应用前景。尤其在商用车领域,燃料电池汽车和纯电动汽车相比具有更长的续驶里程。但与传统内燃机汽车相比,燃料电池汽车在低温环境适应性方面面临较大的挑战,尤其在低温启动过程。
燃料电池低温启动会导致内部结冰,有可能造成内部损坏。而商用电堆流道长,片数多,在实际测试中发现其单片内部和单片间不一致性对低温启动有很大的影响,因此需要针对商用大面积多片电堆进行分析研究。
发明人所了解的技术中对燃料电池低温启动性能基本都采用实验的方法测得,并且仅能得到是否能成功启动、启动的时间、电流电压温度等参数的信息,无法获取对电堆内部的温度、电流密度等状态的分布。在实验室可以用内置传感器、分区域印刷电路板(PCB)等方法分别测量温度分布和电流密度分布,但该方法成本高、实验周期长,不适用于工程上对燃料电池电堆低温启动性能进行分析。基于模型仿真的方法是一种高效低成本的性能预测方法,但传统的低温启动模型大部分针对小面积单体进行机理研究,不能针对大面积的燃料电池电堆/单片有效的得出低温启动的性能测试结果。
发明内容
基于此,有必要针对传统的低温启动模型大部分针对小面积单体进行机理研究,不能针对大面积的燃料电池电堆/单片有效的得出低温启动的性能测试结果的问题,提供一种燃料电池低温启动性能预测方法及系统。
一种燃料电池低温启动性能预测方法,包括:
S100,提供待预测燃料电池的电堆参数;所述电堆参数包括:电堆单片数、单体分段数、各个部件的几何参数、各个部件的热容、各个部件的导热系数、各个部件的电导率、 各个部件的孔隙率中的一种或多种;所述各个部件包括双极板、气体扩散层、催化剂层、质子交换膜;
S200,建立燃料电池低温启动模型,所述燃料电池低温启动模型包括单体模型和电堆模型;
S300,将所述待预测燃料电池的电堆参数、环境参数和工作条件,输入至所述燃料电池低温启动模型中;所述环境参数至少包括温度;所述工作条件至少包括电流、气体过量比和背压中的一种或多种;
S400,所述燃料电池低温启动模型启动运算,所述燃料电池低温启动模型的运算包括所述单体模型的计算求解和所述电堆模型的计算求解;
S500,所述燃料电池低温启动模型运算结束,并输出所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。
本申请还提供一种燃料电池低温启动性能预测系统,包括:
电堆参数获取装置,用于提供待预测燃料电池的电堆参数;所述电堆参数包括:电堆单片数、单体分段数、各个部件的几何参数、各个部件的热容、各个部件的导热系数、各个部件的电导率、各个部件的孔隙率中的一种或多种;所述各个部件包括双极板、气体扩散层、催化剂层、质子交换膜;
燃料电池低温启动模型建立装置,用于建立燃料电池低温启动模型,所述燃料电池低温启动模型包括单体模型和电堆模型;以及
环境参数及工作条件确认装置,用于将所述待预测燃料电池的电堆参数、环境参数和工作条件,输入至所述燃料电池低温启动模型中;所述环境参数至少包括温度;所述工作条件至少包括电流、气体过量比和背压中的一种或多种;
其中,所述燃料电池低温启动模型还包括:
运算模块用于启动运算,所述燃料电池低温启动模型的运算包括所述单体模型的计算求解和所述电堆模型的计算求解;
输出模块,所述运算模块运算结束时,输出所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。
本申请还提供一种计算机设备,包括存储器、处理器及存储在存储器上并在处理器上运行的计算机程序。所述处理器执行所述计算机程序时实现上述任一项所述的燃料电池低温启动性能预测方法的步骤。
本申请还提供一种计算机可读存储介质,其上存储有计算机程序。所述计算机程序被处理器执行时实现上述任一项所述的燃料电池低温启动性能预测方法的步骤。
本申请中提供一种燃料电池低温启动性能预测方法及系统。所述燃料电池低温启动性能预测方法,可以根据燃料电池电堆的参数、工作条件,模拟低温启动过程,分析燃料电池低温启动性能,得到燃料电池内部温度、电路密度、结冰状态等状态量的分布以及随时间的变化,从而预测低温启动性能,指导电堆设计和控制方法的设计。具体的,所述燃料电池低温启动性能预测方法,通过建立燃料电池低温启动模型,将所述待预测燃料电池的电堆参数、环境参数和工作条件,输入至所述燃料电池低温启动模型中。所述燃料电池低温启动模型输出所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。
附图说明
图1为本申请一个实施例中提供的燃料电池低温启动性能预测方法的流程图;
图2为本申请一个实施例中提供的单体模型中的一个分段的结构示意图;
图3为本申请一个实施例中提供的单体模型的结构示意图;
图4为本申请一个实施例中提供的电堆模型的结构示意图;
图5为本申请一个实施例中提供的单体模型中一个分段的结构示意图;
图6为本申请一个实施例中提供的电堆模型的结构示意图。
图7为本申请一个实施例中提供的燃料电池低温启动性能预测系统的结构示意图;
图8为本申请一个实施例中提供的低温启动过程单片电压变化示意图;
图9为本申请一个实施例中提供的t=30s时刻燃料电池电堆内部温度分布示意图;
图10为本申请一个实施例中提供的阴极入口垂直于膜方向电堆温度分布及随时间变化图;
图11为本申请一个实施例中提供的阴极入口垂直于膜方向冰饱和度分布及随时间变化图;
图12为本申请一个实施例中提供的电堆内电流密度分布。
附图标记说明:
燃料电池低温启动性能预测系统10
电堆参数获取装置11燃料电池低温启动模型建立装置12
环境参数及工作条件确认装置13所述燃料电池低温启动模型110
运算模块111输出模块112单体模型120分段120a电堆模型130
第一极板121阳极气体流道121a阳极气体扩散层122阳极催化剂层123
质子交换膜124阴极催化剂层125阳极气体扩散层126第二极板127
阴极气体流道127a冷却水流道128
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施的限制。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请针对上述问题,面向燃料电池汽车,提出了一种基于模型的燃料电池低温启动性能预测方法。基于所建立的单体模型和电堆模型,设置电堆参数和工作条件,对低温启动过程进行仿真,进而预测燃料电池电堆的低温启动性能。使用该方法,可以低成本、高效率地得到不同电堆的低温启动性能,尤其是获取低温启动过程中电堆内部状态的分布。
请参阅图1,本申请提供一种燃料电池低温启动性能预测方法,包括:
S100,提供待预测燃料电池的电堆参数;所述电堆参数包括:电堆单片数、单体分段数、各个部件的几何参数、各个部件的热容、各个部件的导热系数、各个部件的电导率、各个部件的孔隙率中的一种或多种。所述各个部件包括双极板、气体扩散层、催化剂层、质子交换膜。
S200,建立燃料电池低温启动模型110,所述燃料电池低温启动模型110包括单体模型120和电堆模型130。图2和图5分别为一个实施例中提供的所述单体模型120中的一个分段的结构示意图。图3为一个实施例中提供的单体模型120的结构示意图。图4和图6分别为一个实施例中提供的所述电堆模型130的结构示意图。
S300,将所述待预测燃料电池的电堆参数、环境参数和工作条件,输入至所述燃料电池低温启动模型中。所述环境参数至少包括温度。所述工作条件至少包括电流、气体过量比和背压中的一种或多种。
S400,所述燃料电池低温启动模型110启动运算,所述燃料电池低温启动模型110的 运算包括所述单体模型120的计算求解和所述电堆模型130的计算求解。
S500,所述燃料电池低温启动模型110运算结束,并输出所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。
本申请实施例中提供的所述燃料电池低温启动性能预测方法,可以根据燃料电池电堆的参数、工作条件,模拟低温启动过程,分析燃料电池低温启动性能,得到燃料电池内部温度、电路密度、结冰状态等状态量的分布以及随时间的变化,从而预测低温启动性能,指导电堆设计和控制方法的设计。具体的,所述燃料电池低温启动性能预测方法,通过建立燃料电池低温启动模型110,将所述待预测燃料电池的电堆参数、环境参数和工作条件,输入至所述燃料电池低温启动模型110中。所述燃料电池低温启动模型110输出所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。
在一个实施例中,所述单体模型120的建立包括:
S010,将所述待预测燃料电池电堆中的每一个电池单片沿流道方向划分为多个分段,所述多个分段之间沿流道方向的长度相等。
S011,每一个所述分段包括层叠设置的第一极板121、阳极气体扩散层122、阳极催化剂层123、质子交换膜124、阴极催化剂层125、阳极气体扩散层126和第二极板127。
本实施例中,将所述待预测燃料电池电堆中的每一个电池单片沿流道方向划分为多个分段,所述多个分段之间沿流道方向的长度相等,可以更加方便的建立所述燃料电池低温启动模型110,同时更便于计算所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。
在一个实施例中,所述单体模型120的计算求解步骤包括:
S10,设置所述单体模型120的初始值,所述初始值至少包括温度初始值、膜态水含量初始值、水蒸气浓度初始值、流道氧气浓度初始值和流道氮气浓度初始值。
S20,在某一时刻,结合所述单体模型120的氧气传输过程,并根据所述膜态水含量初始值和所述水蒸气浓度初始值之间的关系求解水蒸气流量和气体浓度。所述气体浓度至少包括阴极氧气浓度、阴极水蒸气浓度、阴极氮气浓度。阳极水蒸气浓度、阳极氢气浓度。
S30,根据催化剂层氧气浓度、催化剂层氢气浓度,电流,温度,求解电压以及电流密度分布。并根据所述水蒸气流量、所述电流。采用下述的公式(10)~公式(15)求解膜态水或者膜态水的变化率。
S40,根据所述膜态水或者膜态水的变化率、所述温度,采用下述的公式(25),公式(26)和公式(27)求解结冰速率和冰饱和度。
S50,根据液态水变化为固态水的水相程度变计算相变热,根据所述电流、所述电压 计算焦耳热和反应热,根据所述相变热、所述焦耳热和所述反应热计算温度。
S60,循环到所述S20计算下一时刻的参数值,不同时刻的参数值包括以下变量:温度、膜态水含量、水蒸气浓度、流道氧气浓度、流道氮气浓度。根据不同时刻的参数值计算所述参数值的变化速率,进一步根据当前时刻的参数值和当前时刻与前一时刻的变化速率计算下一时刻的所述参数值。
本实施例中,结合上述S10-S60的步骤,求解所述单体模型120。建立所述单体模型120之后,有助于计算所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。
(1)将电流密度、阴极气体流道的氧气浓度输入至所述单体模型(120),计算阴极气体扩散层-阴极气体流道界面处的氧气浓度、阴极催化剂层-阴极气体扩散层界面处的氧气浓度和阴极催化剂层内部氧气浓度。在一个实施例中,所述单体模型120的氧气传输过程采用以下公式(1)描述:
Figure PCTCN2020076347-appb-000001
其中,
Figure PCTCN2020076347-appb-000002
分别是阴极气体流道/阴极气体扩散层界面处的传输系数、阴极气体扩散层的传输系数和阴极催化剂层的传输系数;i表示某个区域,第i个参数表示该区域参数的平均值,i-j表示i区域和j区域这两个区域的界面处,i和j的取值为大于等于1小于等于12的正整数;i cell表示单片总电流密度F表示法拉第常数
Figure PCTCN2020076347-appb-000003
表示编号为10处的平均氧气浓度,
Figure PCTCN2020076347-appb-000004
表示编号9和10界面处的氧气浓度;
Figure PCTCN2020076347-appb-000005
表示编号8和9界面处的氧气浓度;
Figure PCTCN2020076347-appb-000006
表示阴极催化剂层内部的氧气浓度。参数的下角标为数字的,表示图5中所示的编号1-12。
(2)公式(2)和公式(3)提供膜态水含量与饱和度之间的换算关系。采用以下公式(2)和公式(3),描述所述单体模型120中,催化剂侧膜态水含量对应的等效水蒸气浓度c eq(λ)膜态水和水蒸气之间的关系:
Figure PCTCN2020076347-appb-000007
Figure PCTCN2020076347-appb-000008
其中,λ表示膜态水含量;a w表示水活度;tanh表示运算符号;s表示一个系数,这里取5;c vap表示水蒸气浓度;c sat表示饱和水蒸气浓度。
(3)公式(4)和公式(5)通过膜态水含量计算J H2O阳极水蒸气传递通量,c 2-3(阳极气体扩散层和气体流道界面的浓度),c 3-4(阳极气体扩散层和催化剂层界面浓度)。采用以下公式(4),描述所述单体模型的阴极水蒸气传输过程:
Figure PCTCN2020076347-appb-000009
Figure PCTCN2020076347-appb-000010
表示阴极水蒸气传输流量;γ m-v表示相变系数;ε cl表示催化剂层孔隙率;β表示比例系数(催化剂层人为划分为两部分,β这里取0.3);δ cl表示催化剂层厚度;ρ mem表示膜密度;EW表示膜的等效重量,单位是Kg/mol;λ表示膜态水含量;c表示浓度;λ 7表示7里面的膜态水含量;λ 8表示8里面的膜态水含量;c eq表示括号内膜态水含量对应的平衡水蒸气浓度;
Figure PCTCN2020076347-appb-000011
表示水蒸气等效扩散系数;
Figure PCTCN2020076347-appb-000012
表示9和10界面的水蒸气浓度;
Figure PCTCN2020076347-appb-000013
表示8和9界面的水蒸气浓度;
Figure PCTCN2020076347-appb-000014
表示10里面的平均水蒸气浓度;h v,9-10表示9和10界面处水蒸气的传输系数。
(4)采用以下公式(5),描述所述单体模型的阳极的水蒸气传输过程:
Figure PCTCN2020076347-appb-000015
Figure PCTCN2020076347-appb-000016
表示阳极水蒸气传输流量;λ 4表示编号为4处的膜态水含量(阳极催化剂层);λ 5表示编号为5处的膜态水含量;
Figure PCTCN2020076347-appb-000017
表示阳极气体扩散层中的水蒸气扩散系数;h v,2-3表示2和3界面处水蒸气传输系数。
公式(6)用于计算气体流道浓度变化。通过输入:各组分气体流道进口流量、出口流量、从流道进入气体扩散层流量;输出:该气体组分浓度的变化率,计算气体流道浓度 变化;根据变化率和当前浓度,计算下一时刻的浓度。其中,气体边界条件为公式(6):
Figure PCTCN2020076347-appb-000018
L agc和L cgc分别表示阳极气体流道长度和阴极气体流道长度;W agc和W cgc分别表示阳极气体流道宽度和阴极气体流道宽度;
Figure PCTCN2020076347-appb-000019
Figure PCTCN2020076347-appb-000020
分别表示阳极(或阴极)气体流道内气体组分i浓度随时间变化的导数;N agc,in,i和N cgc,in,i分别表示阳极(或阴极)气体流道内气体组分i入口流量;N agc,out,i和N cgc,out,i分别表示阳极(或阴极)气体流道内气体组分i出口流量;N agc2agdl,i和N cgc2cgdl,i分别表示阳极(或阴极)气体流道内气体组分i从气体流道流向气体扩散层的流量。
公式(7)-公式(9)提供各组分气体流道进口流量、出口流量、从流道进入气体扩散层流量的计算方式。其中,气体组分和总流量之间的关系可参考公式(7)-公式(9):
Figure PCTCN2020076347-appb-000021
Figure PCTCN2020076347-appb-000022
Figure PCTCN2020076347-appb-000023
Figure PCTCN2020076347-appb-000024
表示阳极流道进口氢气流量;
Figure PCTCN2020076347-appb-000025
表示氢气过量比;A表示燃料电池单片面积;
Figure PCTCN2020076347-appb-000026
表示阳极流道进口水蒸气流量;
Figure PCTCN2020076347-appb-000027
表示阳极流道进口氢气体积分数;
Figure PCTCN2020076347-appb-000028
表示阳极流道进口水蒸气体积分数;
Figure PCTCN2020076347-appb-000029
表示阴极气体流道进口氧气流量;
Figure PCTCN2020076347-appb-000030
表示空气过量比;
Figure PCTCN2020076347-appb-000031
表示阴极气体流道进口氮气流量;
Figure PCTCN2020076347-appb-000032
表示阴极气体流道进口水蒸 气流量;
Figure PCTCN2020076347-appb-000033
表示阴极气体流道进口氮气体积分数;
Figure PCTCN2020076347-appb-000034
表示阴极气体流道进口氧气体积分数;
Figure PCTCN2020076347-appb-000035
表示阴极气体流道进口水蒸气提积分数;k agc,out和k cgc,out分别表示阳极和阴极的出口系数;M n,agc和M n,cgc分别表示阳极(或阴极)气体流道内气体平均摩尔质量;N agc,out和N cgc,out分别表示阳极(或阴极)气体出口总流量;R和T分别表示通用气体常数和法拉第常数;c agc,i和c cgc,i分别表示阳极(或阴极)气体流道内气体组分i的浓度;p atm表示大气压力;N agc,out,i和N cgc,out,i分别表示阳极(或阴极)气体流道出口气体组分i的流量;x i表示组分i的体积分数。
(5)采用以下公式(10),描述所述单体模型的膜态水传输过程,采用公式(11)计算水浓度。
Figure PCTCN2020076347-appb-000036
其中
Figure PCTCN2020076347-appb-000037
Figure PCTCN2020076347-appb-000038
分别为c i到c j的扩散流量和电拖拽流量;
Figure PCTCN2020076347-appb-000039
表示浓度对时间的导数;S mw,i表示膜态水含量的源项;δ mem表示膜厚度;
Figure PCTCN2020076347-appb-000040
c 3表示3处的水浓度;
Figure PCTCN2020076347-appb-000041
表示聚合物体积分数,1.5次幂;考虑到催化剂层靠近膜部分膜态水分布并非严格线性,因此引入θ acl和θ ccl进行修正。
在一个实施例中,在界面处,采用以下公式(12)-公式(15)之间的流量关系计算公式(10)中的扩散流量和电拖拽流量:
在界面处,流量关系为:
Figure PCTCN2020076347-appb-000042
Figure PCTCN2020076347-appb-000043
表示i到j的扩散通量;
Figure PCTCN2020076347-appb-000044
表示i到j的电拖拽通量;D(c i)表示扩散系数;θ acl表示修正系数;H cl表示催化剂层厚度;I fc表示电流;F表示法拉第常数;
Figure PCTCN2020076347-appb-000045
Figure PCTCN2020076347-appb-000046
Figure PCTCN2020076347-appb-000047
I 1和I 2分别代表了阴极催化剂层两个区域的反应速率。
(6)在一个实施例中,在所述单体模型120的计算求解过程中还包括:
采用以下公式(16)将催化剂层分为两部分后计算求解所述单体模型的电化学反应和电压。
Figure PCTCN2020076347-appb-000048
s ice,i表示阴极催化剂层靠近膜的分区的冰饱和度;j 0,c表示反应速率;
Figure PCTCN2020076347-appb-000049
表示氧气浓度;
Figure PCTCN2020076347-appb-000050
表示参考氧气浓度;T 1和T 2分别表示阴极催化剂层两个分区的温度;φ e,i表示电势;φ i,i 表示电解液电势;E eq,i表示平衡电势;
Figure PCTCN2020076347-appb-000051
表示催化剂层等效导电率。
公式(17)-公式(20)中根据膜态水含量计算膜阻抗,其中,阳极催化剂层和阴极催化剂层的阻抗包括电子传输阻抗和质子传输阻抗。通过求解上述方程组可以得到阴极催化剂层两部分的反应速率和过电势。而阳极催化剂层(ACL,anode catalyst layer,阳极催化剂层)和阴极催化剂层(CCL,cathode catalyst layer,阴极催化剂层)的阻抗由电子传输阻抗和质子传输阻抗组成,表示为:
Figure PCTCN2020076347-appb-000052
Figure PCTCN2020076347-appb-000053
R acl表示阳极催化剂层阻抗;σ ele,cl表示催化剂层电导率;
所述单体模型膜内水含量分布近似为两段线性,膜的质子传输阻抗为:
Figure PCTCN2020076347-appb-000054
R m表示膜阻抗;λ i表示i处的膜态水含量。其中膜的质子传导率σ(c)是膜水含量的函数,可以通过以下公式(20)得出:
Figure PCTCN2020076347-appb-000055
σ m表示质子传导率;ρ m表示膜密度。
根据以下公式(21)计算燃料电池单体的电压:
Figure PCTCN2020076347-appb-000056
V cell表示单片电压;φ e,2表示阴极催化剂层和阴极气体扩散层界面处的电势;φ i,1表示阴极催化剂层和膜界面处的电势;I cell表示电流;R acl表示阳极催化剂层阻抗;R ccl表示阴极催化剂层阻抗;δ gdl表示气体扩散层厚度;ε gdl表示气体扩散层孔隙率;σ ele,gdl表示气体扩散层电导率;δ bp表示双极板厚度;σ ele,bp表示双极板电导率。
(7)公式(22)-公式(24)根据产热量、导热系数,计算所述单体模型的温度变化。
Figure PCTCN2020076347-appb-000057
c p,i表示热容;
Figure PCTCN2020076347-appb-000058
表示温度对时间导数;κ i,i-1和κ i,i+1分别表示导热系数;T i-1表示i-1处的温度;T表示温度;T i+1表示i+1处的温度;S heat,i表示产热源。
其中C i是热容,Q i是热源;导热系数κ i,i-1和κ i,i+1可以通过材料导热系数κ i和各层厚度H i计算得到:
Figure PCTCN2020076347-appb-000059
k i和k i+1分别表示导热系数;δ i和δ i+1分别表示厚度。
热源计算如下:
Figure PCTCN2020076347-appb-000060
S heat,gdl表示气体扩散层的产热功率;S heat,acl表示阳极催化剂层的产热功率;δ gdl表示气体扩散层厚度;
Figure PCTCN2020076347-appb-000061
表示气体扩散层等效电导率;Δh evap表示蒸发潜热;S heat,pem表示膜的产热功率;S heat,ccl表示阴极催化剂层的产热功率;
Figure PCTCN2020076347-appb-000062
表示催化剂层等效电导率;ΔS表示反应的熵增;
Figure PCTCN2020076347-appb-000063
表示水摩尔质量;
Figure PCTCN2020076347-appb-000064
Figure PCTCN2020076347-appb-000065
分别前面提到,水蒸气从阳极催化剂层到阳极流道的流量;Δh fusion表示水结冰的潜热;J m2i表示水结冰的速率。
(8)采用以下(25)-(27)的公式或公式组根据温度计算膜态水饱和值;根据当前膜态水含量,计算结冰速率。
用两个平均冰饱和度分别为s ice,1和s ice,2来描述阴极催化剂层的冰饱和度,其质量守恒为:
Figure PCTCN2020076347-appb-000066
Figure PCTCN2020076347-appb-000067
如果λ 7>λ sat(T 6)并且T 6<T F
其中,ε cl表示催化剂层的孔隙率;ρ ice表示冰的密度;s ice,1表示阴极催化剂层靠近膜的分区的冰饱和度;s ice,2表示阴极催化剂层靠近气体扩散层的分区的冰饱和度。γ m-i表示膜态水到冰的相变速率系数。
Figure PCTCN2020076347-appb-000068
水的摩尔质量;λ 6表示6处的膜态水含量,λ 7表示7处的膜态水含量,λ sat(T 6)表示在6处的温度下的膜态水饱和值λ sat(T 7)类似。T F表示凝固点。
阴极催化剂层内部结冰速率为:
Figure PCTCN2020076347-appb-000069
J m2i表示阴极催化剂层内部结冰速率,ρ m表示膜的密度。
在一个实施例中,所述电堆模型130的建立包括:
S020,提供多个所述单体模型120。
S021,将多个所述单体模型120串联形成多个电池单片。
S022,多个所述电池单片在位置上彼此之间并列排列,并且多个所述电池单片在电连接关系上彼此串联连接,以构成所述电堆模型130。
在一个实施例中,所述电堆模型的计算求解步骤包括:
S420,设置所述电堆模型的初始值。
S421,在一个时间步长中,对每一个所述电池单片的所有分段,通过公式34求解氧气浓度和电压电流方程组,得到电池单片内电流密度分布、单片电压、各个分段的氧气浓度。循环求解得到所有所述电池单片的电流密度分布、单片电压、各个分段的氧气浓度。
S422,对每一个分段分别求解水蒸气流量和浓度,并结合电池单片内电流分布密度求解膜态水的值,计算电池单片结冰速率和冰饱和度。循环求解得出所有电池单片的结冰速率和冰饱和度。
S423,对每个单片内部的多段流道气体浓度联立求解得出一个电池单片的气体浓度得出公式31 32 33,循环求解得出所有电池单片的流道气体浓度。
S424,根据上述S421、S422和S423中的求解结果,计算水相变热量、焦耳热、反应热,对每一个分段求解温度场,并循环求解所有分段的温度场。所述温度场是指电堆内部各个点的温度值。比如,一个单体内部共11个温度点,一个电堆包含n个单体,一个单体沿流道分为每段,那么总共就有m×n×11个温度值。
S425,返回S421,求解下一时间步长的计算结果,下一时间步长的计算结果至少包括:所有所述电池单片的电流密度分布、单片电压、各个分段的氧气浓度。所有电池单片的结冰速率和冰饱和度。所有电池单片的流道气体浓度。以及所有分段的温度场。
本实施例中,还可以理解为,所述电堆模型130的求解方法包括:所述电堆模型130由多个所述单体模型120组成,所述单体模型可以由上述公式(1)-公式(27)进行描述。所述单体模型120之间的结合可通过以下的公式(28)-公式(35)进行描述。
(1)设置所述电堆模型的初始值包括设置所述电堆模型的参数,比如一个单片分段数、单片数(可理解为一个单片分为几段,电堆总共单片数)。
(2)在一个时间步长中,对每一个所述电池单片的所有分段,通过公式(34)求解氧气浓度和电压电流方程组,得到电池单片内电流密度分布、单片电压、各个分段的氧气浓度;循环求解出所有的所述电池单片的电流密度分布、单片电压、各个分段的氧气浓度。
(3)对每一个分段分别求解水蒸气流量和浓度,并结合电池单片内电流分布密度求解膜态水的值,计算电池单片结冰速率和冰饱和度;循环求解得出所有电池单片的结冰速率和冰饱和度。
(4)对每个单片内部的多段流道气体浓度联立求解得出公式(31)、公式(32)和公式(33),并循环求解所有电池单片的流道气体浓度。
(5)根据上面的求解结果计算水相变热量、焦耳热、反应热,对每一个分段求解温度场,并循环求解所有分段的温度场。
(6)返回上述(2)求解下一时间步长的值。求解出所有所述电池单片的电流密度分布、单片电压、各个分段的氧气浓度;所有电池单片的结冰速率和冰饱和度;所有电池单片的流道气体浓度;以及所有分段的温度场。
具体的,所述相变热为下述公式(24)中的第二个式子最后一项以及第四个式子最后两项。所述焦耳热为下述公式(24)中每个式子的第一项,第四个式子中的第一项、第二项和第三项。所述反应热为下述公式(24)中第四个式子右侧的第四项、第五项和第六项。
在一个实施例中,所述电堆模型130的计算公式:
采用以下公式(28)-公式(34)求解得到,所述电堆模型中各个电池单片电压及电流密度分布:
所述电堆模型中流道分为多个部分,所述多个部分进出口相连接,对于阳极流道,不同分段之间的气体传输质量守恒和物质组分守恒满足如下:
Figure PCTCN2020076347-appb-000070
Figure PCTCN2020076347-appb-000071
V agc表示阳极气体流道分段体积;
Figure PCTCN2020076347-appb-000072
表示第k段阳极气体流道内气体组分i的密度;
Figure PCTCN2020076347-appb-000073
表示第k段阳极气体流道进气中气体组分i的进气质量流量;
Figure PCTCN2020076347-appb-000074
表示第k段阳极气体流道排气中气体组分i的质量流量;
Figure PCTCN2020076347-appb-000075
表示第k段阳极气体流道气体组分k从气体流道到气体扩散层的质量流量;i表示氢气、水蒸气(在阳极中)。
Figure PCTCN2020076347-appb-000076
表示第k段阳极气体流道内气体组分i的摩尔浓度;
Figure PCTCN2020076347-appb-000077
表示第k段阳极气体流道进气中气体组分i的进气摩尔流量;
Figure PCTCN2020076347-appb-000078
表示第k段阳极气体流道排气中气体组分i的摩尔流量;
Figure PCTCN2020076347-appb-000079
表示第k段阳极气体流道气体组分k从气体流道到气体扩散层的摩尔流量。
其中流量为:
Figure PCTCN2020076347-appb-000080
ρ agc,k为气体密度,V agc为流道分段体积,k agc为通过实验拟合的系数,
Figure PCTCN2020076347-appb-000081
为第k段阳极流道的压力。
对于阴极:
Figure PCTCN2020076347-appb-000082
Figure PCTCN2020076347-appb-000083
V cgc表示阴极气体流道分段体积;
Figure PCTCN2020076347-appb-000084
表示第k段阴极气体流道内气体组分i的密度;
Figure PCTCN2020076347-appb-000085
表示第k段阴极气体流道进气中气体组分i的进气质量流量;
Figure PCTCN2020076347-appb-000086
表示第k段阴极气体流道排气中气体组分i的质量流量;
Figure PCTCN2020076347-appb-000087
表示第k段阴极气体流道气体组分k从气体流道到气体扩散层的质量流量;i表示空气、氮气、水蒸气(在阴极中)。
Figure PCTCN2020076347-appb-000088
表示第k段阴极气体流道内气体组分i的摩尔浓度;
Figure PCTCN2020076347-appb-000089
表示第k段阴极气体流道进气中气体组分i的进气摩尔流量;
Figure PCTCN2020076347-appb-000090
表示第k段阴极气体流道排气中气体组分i的摩尔流量;
Figure PCTCN2020076347-appb-000091
表示第k段阴极气体流道气体组分k从气体流道到气体扩散层的摩尔流量。
其中流量为:
Figure PCTCN2020076347-appb-000092
ρ cgc,k为气体密度,V cgc为流道分段体积,k cgc为通过实验拟合的系数,
Figure PCTCN2020076347-appb-000093
为第k段阳极流道的压力。
所述电堆模型中单片的电压求解:
Figure PCTCN2020076347-appb-000094
E eq,1,k表示第k段阴极催化剂层靠近膜的分区的平衡电势;(该方程k=1~n,共分为n段,共2n+1个公式组成方程组);E eq,2,k表示第k段阴极催化剂层靠近气体扩散层的分区的平衡电势。R表示气体常数;T 1,k表示第k段催化剂层靠近膜的分区的温度;F表示法拉第常数;
Figure PCTCN2020076347-appb-000095
表示参考氧气浓度;
Figure PCTCN2020076347-appb-000096
表示第k段催化剂层氧气浓度。β表示催化剂层分区系数,及靠近膜的分区所占比例;H cl表示催化剂层厚度;a ci 0,1表示面交换电流密度;i 1,k表示在催化剂层靠近膜的分区的总反应速率;i 2,k表示在催化剂层靠近气体扩散层的分区的总反应速率;
Figure PCTCN2020076347-appb-000097
表示电子传导率;
Figure PCTCN2020076347-appb-000098
表示质子传导率;R k表示第k段的固定电阻;V cell表示单片电压;下标k代表同一个单片内部的不同分段,通过求解该方程组,可以得到电池单片电压及电流密度分布。
在一个实施例中,所述电堆模型中所有分段的温度场的计算采用公式(35):
公式(22)中原来包含11个变量的传热模型扩展为包含11n+6个变量的模型。其中,考虑到单片的薄片状结构,因此忽略同一单片内不同分段之间的热传递。
Figure PCTCN2020076347-appb-000099
c p,i表示第i部分的比热容;T i表示第i部分的温度;k i,i-1表示第i部分和第i-1部分之间的导热系数;S heat,i表示第i部分的产热量。
在一个具体的实施例中,上述公式(1)-公式(27)描述所述单体模型120。上述公式(28)-公式(34)描述所述电堆模型130。
请参阅图7,本申请提供一种燃料电池低温启动性能预测系统10包括:电堆参数获取装置11、燃料电池低温启动模型建立装置12和环境参数及工作条件确认装置13。
所述电堆参数获取装置11用于提供待预测燃料电池的电堆参数。所述电堆参数包括:电堆单片数、单体分段数、各个部件的几何参数、各个部件的热容、各个部件的导热系数、各个部件的电导率、各个部件的孔隙率中的一种或多种。所述各个部件包括双极板、气体扩散层、催化剂层、质子交换膜。
所述燃料电池低温启动模型建立装置12用于建立燃料电池低温启动模型。所述燃料电池低温启动模型包括单体模型120和电堆模型130。
所述环境参数及工作条件确认装置13用于将所述待预测燃料电池的电堆参数、环境参数和工作条件,输入至所述燃料电池低温启动模型110中。所述环境参数至少包括温度。所述工作条件至少包括电流、气体过量比和背压中的一种或多种。
其中,所述燃料电池低温启动模型110还包括:运算模块111和输出模块112。
所述运算模块111用于启动运算,所述燃料电池低温启动模型的运算包括所述单体模型120的计算求解和所述电堆模型130的计算求解。所述输出模块112,用于当所述运算模块111运算结束时,输出所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。
本实施例中提供的所述燃料电池低温启动性能预测系统10可以通过上述任一项所述的燃料电池低温启动性能预测方法实现根据燃料电池电堆的参数、工作条件,模拟低温启动过程,分析燃料电池低温启动性能,得到内部温度、电路密度、结冰状态等状态量的分布以及随时间的变化,从而预测低温启动性能,指导电堆设计和控制方法的设计。
具体的,图8至图12中示出了采用本申请提供的所述燃料电池低温启动性能预测系统10得出的运算结果。其中,图8为本申请一个实施例中提供的低温启动过程单片电压变化示意图。图8可以看出低温启动过程不同时刻电堆内部单片电压的分布及其变化过程。
图9为本申请一个实施例中提供的t=30s时刻燃料电池电堆内部温度分布示意图。图9可以看出该方法可以计算出各个时刻电堆内部的温度分布,可以看出电堆内部不同位置的温度差异。
图10为本申请一个实施例中提供的阴极入口垂直于膜方向电堆温度分布及随时间变化图。图10可以看出该方法可以计算出各个时刻电堆内部的温度分布,可以看出电堆内部不同位置的温度差异。
图11为本申请一个实施例中提供的阴极入口垂直于膜方向冰饱和度分布及随时间变化图。图11可以看出该方法可以计算出各个时刻电堆内部的结冰情况,冰饱和度的分布及其变化。
图12为本申请一个实施例中提供的电堆内电流密度分布。图12可以看出低温启动过程中电堆内部电流密度的分布情况及其变化。
根据所述单体模型的氧气传输过程可以求解所述单体模型中所述各个分段的氧气浓度。根据催化剂层水含量和气体流道水蒸气浓度,求解水蒸气流量和气体浓度。
本申请提供一种计算机设备,包括存储器、处理器及存储在存储器上并在处理器上运行的计算机程序。所述处理器执行所述计算机程序时实现上述任一项所述的燃料电池低温启动性能预测方法的步骤。
本申请提供一种计算机可读存储介质,其上存储有计算机程序。所述计算机程序被处理器执行时实现上述任一项所述的燃料电池低温启动性能预测方法的步骤。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种燃料电池低温启动性能预测方法,其特征在于,包括:
    S100,提供待预测燃料电池的电堆参数;所述电堆参数包括:电堆单片数、单体分段数、各个部件的几何参数、各个部件的热容、各个部件的导热系数、各个部件的电导率、各个部件的孔隙率中的一种或多种;所述各个部件包括双极板、气体扩散层、催化剂层、质子交换膜;
    S200,建立燃料电池低温启动模型(110),所述燃料电池低温启动模型(110)包括单体模型(120)和电堆模型(130);
    S300,将所述待预测燃料电池的电堆参数、环境参数和工作条件,输入至所述燃料电池低温启动模型中;所述环境参数至少包括温度;所述工作条件至少包括电流、气体过量比和背压中的一种或多种;
    S400,所述燃料电池低温启动模型(110)启动运算,所述燃料电池低温启动模型(110)的运算包括所述单体模型(120)的计算求解和所述电堆模型(130)的计算求解;
    S500,所述燃料电池低温启动模型(110)运算结束,并输出所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。
  2. 根据权利要求1所述的燃料电池低温启动性能预测方法,其特征在于,所述单体模型(120)的建立包括:
    S010,将所述待预测燃料电池电堆中的每一个电池单片沿流道方向划分为多个分段,所述多个分段之间沿流道方向的长度相等;
    S011,每一个所述分段包括层叠设置的第一极板(121)、阳极气体扩散层(122)、阳极催化剂层(123)、质子交换膜(124)、阴极催化剂层(125)、阳极气体扩散层(126)和第二极板(127)。
  3. 根据权利要求2所述的燃料电池低温启动性能预测方法,其特征在于,
    所述单体模型(120)的计算求解步骤包括:
    S10,设置所述单体模型(120)的初始值,所述初始值至少包括温度初始值、膜态水含量初始值、水蒸气浓度初始值、流道氧气浓度初始值和流道氮气浓度初始值;
    S20,在某一时刻,结合所述单体模型(120)的氧气传输过程,并根据所述膜态水含量初始值和所述水蒸气浓度初始值之间的关系求解水蒸气流量和气体浓度;所述气体浓度至少包括阴极氧气浓度、阴极水蒸气浓度、阴极氮气浓度;阳极水蒸气浓度、阳极氢气浓度;
    S30,根据催化剂层氧气浓度、催化剂层氢气浓度,电流,温度,求解电压以及电流 密度分布;并根据所述水蒸气流量、所述电流,求解膜态水或者膜态水的变化率;
    S40,根据所述膜态水或者膜态水的变化率、所述温度,求解结冰速率和冰饱和度;
    S50,根据液态水变化为固态水的水相程度变计算相变热,根据所述电流、所述电压计算焦耳热和反应热,根据所述相变热、所述焦耳热和所述反应热计算温度;
    S60,循环到所述S20计算下一时刻的参数值,不同时刻的参数值包括以下变量:温度,膜态水含量,水蒸气浓度,流道氧气浓度、流道氮气浓度,根据不同时刻的参数值计算所述参数值的变化速率,进一步根据当前时刻的参数值和当前时刻与前一时刻的变化速率计算下一时刻的所述参数值。
  4. 根据权利要求3所述的燃料电池低温启动性能预测方法,其特征在于,所述单体模型(120)的计算求解过程包括:
    将电流密度、阴极气体流道的氧气浓度输入至所述单体模型(120),计算阴极气体扩散层-阴极气体流道界面处的氧气浓度、阴极催化剂层-阴极气体扩散层界面处的氧气浓度和阴极催化剂层内部氧气浓度;
    提供膜态水含量与饱和度之间的换算关系;
    采用以下公式(5),描述所述单体模型的阳极的水蒸气传输过程:
    Figure PCTCN2020076347-appb-100001
    Figure PCTCN2020076347-appb-100002
    表示阳极水蒸气传输流量;λ 4表示编号为4的阳极催化剂层处的膜态水含量;λ 5表示编号为5的阳极催化剂层处的膜态水含量;
    Figure PCTCN2020076347-appb-100003
    表示阳极气体扩散层中的水蒸气扩散系数;h v,2-3表示编号为2的阳极气体流道和编号为3的阳极气体扩散层界面处水蒸气传输系数;
    通过输入:各组分气体流道进口流量、出口流量、从流道进入气体扩散层流量;输出:该气体组分浓度的变化率,计算气体流道浓度变化;根据变化率和当前浓度,计算下一时刻的浓度;
    采用以下公式(10),描述所述单体模型的膜态水传输过程,采用公式(11)计算水浓度:
    Figure PCTCN2020076347-appb-100004
    其中
    Figure PCTCN2020076347-appb-100005
    Figure PCTCN2020076347-appb-100006
    分别为c i到c j的扩散流量和电拖拽流量;
    Figure PCTCN2020076347-appb-100007
    表示浓度对时间的导数;S mw,i表示膜态水含量的源项;δ mem表示膜厚度;
    Figure PCTCN2020076347-appb-100008
    c 3表示3处的水浓度;
    Figure PCTCN2020076347-appb-100009
    表示聚合物体积分数,1.5次幂;考虑到催化剂层靠近膜部分膜态水分布并非严格线性,因此引入θ acl和θ ccl进行修正。
  5. 根据权利要求4所述的燃料电池低温启动性能预测方法,其特征在于,所述阴极气体扩散层-阴极气体流道界面处的氧气浓度、所述阴极催化剂层-阴极气体扩散层界面处的氧气浓度和所述阴极催化剂层内部氧气浓度,通过以下公式(1)得出:
    Figure PCTCN2020076347-appb-100010
    其中,
    Figure PCTCN2020076347-appb-100011
    分别是阴极气体流道/阴极气体扩散层界面处的传输系数、阴极气体扩散层的传输系数和阴极催化剂层的传输系数;i表示某个区域,第i个参数表示该区域参数的平均值,i-j表示i区域和j区域这两个区域的界面处,i和j的取值为大于等于1小于等于12的正整数;i cell表示单片总电流密度F表示法拉第常数
    Figure PCTCN2020076347-appb-100012
    表示编号为10处的平均氧气浓度,
    Figure PCTCN2020076347-appb-100013
    表示编号9和10界面处的氧气浓度;
    Figure PCTCN2020076347-appb-100014
    表示编号8和9界面处的氧气浓度;
    Figure PCTCN2020076347-appb-100015
    表示阴极催化剂层内部的氧气浓度。
  6. [根据细则26改正15.05.2020] 
    根据权利要求4所述的燃料电池低温启动性能预测方法,其特征在于,采用以下公式(2)和公式(3),描述所述单体模型(120)中,催化剂侧膜态水含量对应的等效水 蒸气浓度c eq(λ)膜态水和水蒸气之间的关系:
    Figure PCTCN2020076347-appb-100016

    Figure PCTCN2020076347-appb-100017

    其中,λ表示膜态水含量;a w表示水活度;tanh表示运算符号;s表示一个系数,这里取5;c vap表示水蒸气浓度;c sat表示饱和水蒸气浓度。
    [根据细则26改正15.05.2020] 

    [权利要求7]

    7、根据权利要求4所述的燃料电池低温启动性能预测方法,其特征在于,根据公式(6)-公式(9)计算气体流道浓度变化;根据变化率和当前浓度,计算下一时刻的浓度;其中,气体边界条件为公式(6):
    Figure PCTCN2020076347-appb-100018

    L agc和L cgc分别表示阳极气体流道长度和阴极气体流道长度;W agc和W cgc分别表示阳极气体流道宽度和阴极气体流道宽度;
    Figure PCTCN2020076347-appb-100019
    Figure PCTCN2020076347-appb-100020
    分别表示阳极(或阴极)气体流道内气体组分i浓度随时间变化的导数;N agc,in,i和N cgc,in,i分别表示阳极(或阴极)气体流道内气体组分i入口流量;N agc,out,i和N cgc,out,i分别表示阳极(或阴极)气体流道内气体组分i出口流量;N agc2agdl,i和N cgc2cgdl,i分别表示阳极(或阴极)气体流道内气体组分i从气体流道流向气体扩散层的流量;
    公式(7)-公式(9)提供各组分气体流道进口流量、出口流量、从流道进入气体扩散层流量的计算方式;其中,气体组分和总流量之间的关系可参考公式(7)-公式(9):
    Figure PCTCN2020076347-appb-100021

    Figure PCTCN2020076347-appb-100022

    Figure PCTCN2020076347-appb-100023

    Figure PCTCN2020076347-appb-100024
    表示阳极流道进口氢气流量;
    Figure PCTCN2020076347-appb-100025
    表示氢气过量比;A表示燃料电池单片面积;
    Figure PCTCN2020076347-appb-100026
    表示阳极流道进口水蒸气流量;
    Figure PCTCN2020076347-appb-100027
    表示阳极流道进口氢气体积分数;
    Figure PCTCN2020076347-appb-100028
    表示阳极流道进口水蒸气体积分数;
    Figure PCTCN2020076347-appb-100029
    表示阴极气体流道进口氧气流量;
    Figure PCTCN2020076347-appb-100030
    表示空气过量比;
    Figure PCTCN2020076347-appb-100031
    表示阴极气体流道进口氮气流量;
    Figure PCTCN2020076347-appb-100032
    表示阴极气体流道进口水蒸气流量;
    Figure PCTCN2020076347-appb-100033
    表示阴极气体流道进口氮气体积分数;
    Figure PCTCN2020076347-appb-100034
    表示阴极气体流道进口氧气体积分数;
    Figure PCTCN2020076347-appb-100035
    表示阴极气体流道进口水蒸气提积分数;k agc,out和k cgc,out分别表示阳极和阴极的出口系数;M n,agc和M n,cgc分别表示阳极(或阴极)气体流道内气体平均摩尔质量;N agc,out和N cgc,out分别表示阳极(或阴极)气体出口总流量;R和T分别表示通用气体常数和法拉第常数;c agc,i和c cgc,i分别表示阳极(或阴极)气体流道内气体组分i的浓度;p atm表示大气压力;N agc,out,i和N cgc,out,i分别表示阳极(或阴极)气体流道出口气体组分i的流量;x i表示组分i的体积分数。
  7. 根据权利要求4所述的燃料电池低温启动性能预测方法,其特征在于,在界面处,采用以下公式(12)-公式(15)之间的流量关系计算公式(10)中的扩散流量和电拖拽流量:
    在界面处,流量关系为:
    Figure PCTCN2020076347-appb-100036
    Figure PCTCN2020076347-appb-100037
    表示i到j的扩散通量;
    Figure PCTCN2020076347-appb-100038
    表示i到j的电拖拽通量;D(c i)表示扩散系数;θ acl表示修正系数;H cl表示催化剂层厚度;I fc表示电流;F表示法拉第常数;
    Figure PCTCN2020076347-appb-100039
    Figure PCTCN2020076347-appb-100040
    Figure PCTCN2020076347-appb-100041
    I 1和I 2分别代表了阴极催化剂层两个区域的反应速率。
  8. 根据权利要求4所述的燃料电池低温启动性能预测方法,其特征在于,所述单体模型(120)的计算求解过程还包括:
    采用以下公式(16)将催化剂层分为两部分后计算求解所述单体模型的电化学反应和电压:
    Figure PCTCN2020076347-appb-100042
    s ice,i表示阴极催化剂层靠近膜的分区的冰饱和度;j 0,c表示反应速率;
    Figure PCTCN2020076347-appb-100043
    表示氧气浓度;
    Figure PCTCN2020076347-appb-100044
    表示参考氧气浓度;T 1和T 2分别表示阴极催化剂层两个分区的温度;φ e,i表示电势;φ i,i表示电解液电势;E eq,i表示平衡电势;
    Figure PCTCN2020076347-appb-100045
    表示催化剂层等效导电率;
    根据膜态水含量计算膜阻抗,其中,阳极催化剂层和阴极催化剂层的阻抗包括电子传输阻抗和质子传输阻抗;
    根据以下公式(21)计算燃料电池单体的电压:
    Figure PCTCN2020076347-appb-100046
    V cell表示单片电压;φ e,2表示阴极催化剂层和阴极气体扩散层界面处的电势;φ i,1表示阴极催化剂层和膜界面处的电势;I cell表示电流;R acl表示阳极催化剂层阻抗;R ccl表示阴极催化剂层阻抗;δ gdl表示气体扩散层厚度;ε gdl表示气体扩散层孔隙率;σ ele,gdl表示气体扩散层电导率;δ bp表示双极板厚度;σ ele,bp表示双极板电导率;
    根据产热量、导热系数,计算所述单体模型的温度变化;
    根据温度计算膜态水饱和值;根据当前膜态水含量,计算结冰速率。
  9. 根据权利要求9所述的燃料电池低温启动性能预测方法,其特征在于,
    根据以下的公式(17)-公式(20)来计算膜阻抗,表示为:
    Figure PCTCN2020076347-appb-100047
    Figure PCTCN2020076347-appb-100048
    R acl表示阳极催化剂层阻抗;σ ele,cl表示催化剂层电导率;
    所述单体模型膜内水含量分布近似为两段线性,膜的质子传输阻抗为:
    Figure PCTCN2020076347-appb-100049
    R m表示膜阻抗;λ i表示i处的膜态水含量;其中膜的质子传导率σ(c)是膜水含量的函数,可以通过以下公式(20)得出:
    Figure PCTCN2020076347-appb-100050
    σ m表示质子传导率;ρ m表示膜密度。
  10. 根据权利要求10所述的燃料电池低温启动性能预测方法,其特征在于,
    根据以下公式(22)-公式(24)中的产热量、导热系数,计算所述单体模型的温度变化:
    Figure PCTCN2020076347-appb-100051
    c p,i表示热容;
    Figure PCTCN2020076347-appb-100052
    表示温度对时间导数;κ i,i-1和κ i,i+1分别表示导热系数;T i-1表示i-1处的温度;T表示温度;T i+1表示i+1处的温度;S heat,i表示产热源。
    其中C i是热容,Q i是热源;导热系数κ i,i-1和κ i,i+1可以通过材料导热系数κ i和各层厚度H i计算得到:
    Figure PCTCN2020076347-appb-100053
    k i和k i+1分别表示导热系数;δ i和δ i+1分别表示厚度;
    热源计算如下:
    Figure PCTCN2020076347-appb-100054
    S heat,gdl表示气体扩散层的产热功率;S heat,acl表示阳极催化剂层的产热功率;δ gdl表示气体扩散层厚度;
    Figure PCTCN2020076347-appb-100055
    表示气体扩散层等效电导率;Δh evap表示蒸发潜热;S heat,pem表示膜的产热功率;S heat,ccl表示阴极催化剂层的产热功率;
    Figure PCTCN2020076347-appb-100056
    表示催化剂层等效电导率;ΔS表示反应的熵增;
    Figure PCTCN2020076347-appb-100057
    表示水摩尔质量;
    Figure PCTCN2020076347-appb-100058
    Figure PCTCN2020076347-appb-100059
    分别前面提到,水蒸气从阳极催化剂层到阳极流道的流量;Δh fusion表示水结冰的潜热;J m2i表示水结冰的速率。
  11. 根据权利要求11所述的燃料电池低温启动性能预测方法,其特征在于,采用以下(25)-(27)的公式或公式组根据温度计算膜态水饱和值;根据当前膜态水含量,计算结冰速率:
    用两个平均冰饱和度分别为s ice,1和s ice,2来描述阴极催化剂层的冰饱和度,其质量守恒为:
    Figure PCTCN2020076347-appb-100060
    Figure PCTCN2020076347-appb-100061
    如果λ 7>λ sat(T 6)并且T 6<T F
    其中,ε cl表示催化剂层的孔隙率;ρ ice表示冰的密度;s ice,1表示阴极催化剂层靠近膜的分区的冰饱和度;s ice,2表示阴极催化剂层靠近气体扩散层的分区的冰饱和度;γ m-i表示膜态水到冰的相变速率系数;
    Figure PCTCN2020076347-appb-100062
    水的摩尔质量;λ 6表示6处的膜态水含量,λ 7表示7处的膜态水含量,λ sat(T 6)表示在6处的温度下的膜态水饱和值λ sat(T 7)类似;T F表示凝固点;
    阴极催化剂层内部结冰速率为:
    Figure PCTCN2020076347-appb-100063
    J m2i表示阴极催化剂层内部结冰速率,ρ m表示膜的密度。
  12. 根据权利要求12所述的燃料电池低温启动性能预测方法,其特征在于,所述电堆模型(130)的建立包括:
    S020,提供多个所述单体模型(120);
    S021,将多个所述单体模型(120)串联形成多个电池单片;
    S022,多个所述电池单片在位置上彼此之间并列排列,并且多个所述电池单片在电连接关系上彼此串联连接,以构成所述电堆模型(130)。
  13. 根据权利要求13所述的燃料电池低温启动性能预测方法,其特征在于,所述电堆模型的计算求解步骤包括:
    S420,设置所述电堆模型的初始值;
    S421,在一个时间步长中,对每一个所述电池单片的所有分段,求解氧气浓度和电压电流方程组,得到电池单片内电流密度分布、单片电压、各个分段的氧气浓度;循环求解得到所有所述电池单片的电流密度分布、单片电压、各个分段的氧气浓度;
    S422,对每一个分段分别求解水蒸气流量和浓度,并结合电池单片内电流分布密度求解膜态水的值,计算电池单片结冰速率和冰饱和度;循环求解得出所有电池单片的结冰速率和冰饱和度;
    S423,对每个单片内部的多段流道气体浓度联立求解,并循环求解得出所有电池单片的流道气体浓度;
    S424,根据上述S421、S422和S423中的求解结果,计算水相变热量、焦耳热、反应热,对每一个分段求解温度场,并循环求解所有分段的温度场;
    S425,返回S421,求解下一时间步长的计算结果,下一时间步长的计算结果至少包括:所有所述电池单片的电流密度分布、单片电压、各个分段的氧气浓度;所有电池单片的结冰速率和冰饱和度;所有电池单片的流道气体浓度;以及所有分段的温度场。
  14. 根据权利要求14所述的燃料电池低温启动性能预测方法,其特征在于,所述电堆模型计算公式:
    采用以下公式(28)、公式(29)、公式(31)、公式(32)和公式(34)求解得到,所述电堆模型中各个电池单片电压及电流密度分布:
    所述电堆模型中流道分为多个部分,所述多个部分进出口相连接,对于阳极流道,不同分段之间的气体传输质量守恒和物质组分守恒满足如下:
    Figure PCTCN2020076347-appb-100064
    Figure PCTCN2020076347-appb-100065
    V agc表示阳极气体流道分段体积;
    Figure PCTCN2020076347-appb-100066
    表示第k段阳极气体流道内气体组分i的密度;
    Figure PCTCN2020076347-appb-100067
    表示第k段阳极气体流道进气中气体组分i的进气质量流量;
    Figure PCTCN2020076347-appb-100068
    表示第k段阳极气体流道排气中气体组分i的质量流量;
    Figure PCTCN2020076347-appb-100069
    表示第k段阳极气体流道气体组分k从气体流道到气体扩散层的质量流量;i表示氢气、水蒸气(在阳极中);
    Figure PCTCN2020076347-appb-100070
    表示第k段阳极气体流道内气体组分i的摩尔浓度;
    Figure PCTCN2020076347-appb-100071
    表示第k段阳极气体流道进气中气体组分i的进气摩尔流量;
    Figure PCTCN2020076347-appb-100072
    表示第k段阳极气体流道排气中气体组分i的摩尔流量;
    Figure PCTCN2020076347-appb-100073
    表示第k段阳极气体流道气体组分k从气体流道到气体扩散层的摩尔流量;
    对于阴极:
    Figure PCTCN2020076347-appb-100074
    Figure PCTCN2020076347-appb-100075
    V cgc表示阴极气体流道分段体积;
    Figure PCTCN2020076347-appb-100076
    表示第k段阴极气体流道内气体组分i的密度;
    Figure PCTCN2020076347-appb-100077
    表示第k段阴极气体流道进气中气体组分i的进气质量流量;
    Figure PCTCN2020076347-appb-100078
    表示第k段阴极气体流道排气中气体组分i的质量流量;
    Figure PCTCN2020076347-appb-100079
    表示第k段阴极气体流道气体组分k从 气体流道到气体扩散层的质量流量;i表示空气、氮气、水蒸气(在阴极中);
    Figure PCTCN2020076347-appb-100080
    表示第k段阴极气体流道内气体组分i的摩尔浓度;
    Figure PCTCN2020076347-appb-100081
    表示第k段阴极气体流道进气中气体组分i的进气摩尔流量;
    Figure PCTCN2020076347-appb-100082
    表示第k段阴极气体流道排气中气体组分i的摩尔流量;
    Figure PCTCN2020076347-appb-100083
    表示第k段阴极气体流道气体组分k从气体流道到气体扩散层的摩尔流量;
    所述电堆模型中单片的电压求解:
    Figure PCTCN2020076347-appb-100084
    E eq,1,k表示第k段阴极催化剂层靠近膜的分区的平衡电势;(该方程k=1~n,共分为n段,共2n+1个公式组成方程组);E eq,2,k表示第k段阴极催化剂层靠近气体扩散层的分区的平衡电势;R表示气体常数;T 1,k表示第k段催化剂层靠近膜的分区的温度;F表示法拉第常数;
    Figure PCTCN2020076347-appb-100085
    表示参考氧气浓度;
    Figure PCTCN2020076347-appb-100086
    表示第k段催化剂层氧气浓度;β表示催化剂层分区系数,及靠近膜的分区所占比例;H cl表示催化剂层厚度;a ci 0,1表示面交换电流密度;i 1,k表示在催化剂层靠近膜的分区的总反应速率;i 2,k表示在催化剂层靠近气体扩散层的分区的总反应速率;
    Figure PCTCN2020076347-appb-100087
    表示电子传导率;
    Figure PCTCN2020076347-appb-100088
    表示质子传导率;R k表示第k段的固定电阻;V cell表示单片电压;下标k代表同一个单片内部的不同分段,通过求解该方程组,可以得到电池单片电压及电流密度分布下标k代表同一个单片内部的不同分段,通过求解该方程组,可以得到电池单片电压及电流密度分布。
  15. 根据权利要求15所述的燃料电池低温启动性能预测方法,其特征在于,所述电堆模型中所有分段的温度场的计算采用公式(35):
    公式(35)为包含11n+6个变量的模型,其中,考虑到单片的薄片状结构,因此忽略 同一单片内不同分段之间的热传递:
    Figure PCTCN2020076347-appb-100089
    c p,i表示第i部分的比热容;T i表示第i部分的温度;k i,i-1表示第i部分和第i-1部分之间的导热系数;S heat,i表示第i部分的产热量。
  16. 一种燃料电池低温启动性能预测系统,其特征在于,包括:
    电堆参数获取装置(11),用于提供待预测燃料电池的电堆参数;所述电堆参数包括:电堆单片数、单体分段数、各个部件的几何参数、各个部件的热容、各个部件的导热系数、各个部件的电导率、各个部件的孔隙率中的一种或多种;所述各个部件包括双极板、气体扩散层、催化剂层、质子交换膜;
    燃料电池低温启动模型建立装置(12),用于建立燃料电池低温启动模型,所述燃料电池低温启动模型包括单体模型(120)和电堆模型(130);以及
    环境参数及工作条件确认装置(13),用于将所述待预测燃料电池的电堆参数、环境参数和工作条件,输入至所述燃料电池低温启动模型(110)中;所述环境参数至少包括温度;所述工作条件至少包括电流、气体过量比和背压中的一种或多种;
    其中,所述燃料电池低温启动模型(110)还包括:
    运算模块(111)用于启动运算,所述燃料电池低温启动模型的运算包括所述单体模型(120)的计算求解和所述电堆模型(130)的计算求解;
    输出模块(112),所述运算模块(111)运算结束时,输出所述待预测燃料电池的低温启动性能和所述待预测燃料电池的内部状态分布。
  17. 一种计算机设备,包括存储器、处理器及存储在存储器上并在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至16中任一项所述的燃料电池低温启动性能预测方法的步骤。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-16中任一项所述的燃料电池低温启动性能预测方法的步骤。
PCT/CN2020/076347 2020-01-13 2020-02-24 燃料电池低温启动性能预测方法及系统 WO2021142883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010031317.7A CN111199110B (zh) 2020-01-13 2020-01-13 燃料电池低温启动性能预测方法及系统
CN202010031317.7 2020-01-13

Publications (1)

Publication Number Publication Date
WO2021142883A1 true WO2021142883A1 (zh) 2021-07-22

Family

ID=70744639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076347 WO2021142883A1 (zh) 2020-01-13 2020-02-24 燃料电池低温启动性能预测方法及系统

Country Status (2)

Country Link
CN (1) CN111199110B (zh)
WO (1) WO2021142883A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114186438A (zh) * 2021-12-27 2022-03-15 天津大学 用于制氢的质子交换膜电解池性能预测模型的建立方法
CN114976151A (zh) * 2022-07-13 2022-08-30 浙江浙能技术研究院有限公司 一种考虑热区部件间热传递的系统多物理域模拟方法
CN115015313A (zh) * 2022-05-16 2022-09-06 中国人民解放军国防科技大学 激光烧蚀Al-PTFE反应材料的烧蚀深度和温度分布预测方法
CN115312815A (zh) * 2022-08-09 2022-11-08 西安交通大学 空气冷却质子交换膜燃料电池电堆的电化学性能计算方法
CN115470581A (zh) * 2022-08-29 2022-12-13 华北电力大学 燃料电池气体流道优化设计方法、系统、电子设备及介质
CN115577529A (zh) * 2022-10-10 2023-01-06 武汉雄韬氢雄燃料电池科技有限公司 一种燃料电池系统增湿器建模仿真方法
CN116093383A (zh) * 2023-04-11 2023-05-09 北京新研创能科技有限公司 一种用于氢燃料电池的进气控制方法及系统
CN116187097A (zh) * 2023-04-21 2023-05-30 中国汽车技术研究中心有限公司 燃料电池模型标定方法及装置
CN116504122A (zh) * 2023-06-29 2023-07-28 武汉理工大学 基于元宇宙的质子交换膜燃料电池教学实验平台
CN117457094A (zh) * 2023-12-20 2024-01-26 安徽农业大学 一种基于ap算法的氢氧燃料电池能效表现评估方法和系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909303B (zh) * 2020-12-21 2022-05-20 天津大学 质子交换膜燃料电池瞬态实时模型的建立方法
CN114784339A (zh) * 2022-03-30 2022-07-22 深圳氢时代新能源科技有限公司 一种质子交换膜燃料电池进行建模的方法
CN114580322B (zh) * 2022-05-06 2022-07-19 中汽研新能源汽车检验中心(天津)有限公司 一种燃料电池水传输电拖拽效应的离散化建模方法
CN116207306B (zh) * 2023-04-24 2023-08-01 中汽数据有限公司 燃料电池电拖拽系数确定方法
CN116799258B (zh) * 2023-08-29 2023-11-03 上海重塑能源科技有限公司 一种燃料电池电堆结冰位置静态及动态检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848351A (zh) * 2016-12-26 2017-06-13 天津大学 质子交换膜燃料电池性能预测模型建立的方法
CN107171004A (zh) * 2017-05-05 2017-09-15 武汉理工大学 一种燃料电池低温启动分级预热控制方法
KR20180138329A (ko) * 2017-06-21 2018-12-31 현대자동차주식회사 연료전지 수명 예측 장치 및 방법, 그리고 차량 시스템

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134475B1 (ko) * 2009-09-22 2012-04-13 한양대학교 산학협력단 연료전지 저온 운전 제어방법
US9625532B2 (en) * 2011-10-10 2017-04-18 Battelle Energy Alliance, Llc Method, system, and computer-readable medium for determining performance characteristics of an object undergoing one or more arbitrary aging conditions
KR101448764B1 (ko) * 2012-12-28 2014-10-08 현대자동차 주식회사 연료 전지 차량의 냉 시동 방법
CN104111425B (zh) * 2013-04-18 2016-12-28 同济大学 一种燃料电池冷启动分区性能测试系统及测试方法
CN107679268B (zh) * 2017-08-23 2020-11-27 同济大学 一种燃料电池汽车能量管理控制策略的定量综合评价方法
CN109873186B (zh) * 2019-03-05 2022-05-27 天津大学 质子交换膜燃料电池准二维模型建立方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848351A (zh) * 2016-12-26 2017-06-13 天津大学 质子交换膜燃料电池性能预测模型建立的方法
CN107171004A (zh) * 2017-05-05 2017-09-15 武汉理工大学 一种燃料电池低温启动分级预热控制方法
KR20180138329A (ko) * 2017-06-21 2018-12-31 현대자동차주식회사 연료전지 수명 예측 장치 및 방법, 그리고 차량 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI YI, XU SI-CHUAN;XU PENG: "Simulation of cold start of PEM fuel cell system", CHINESE JOURNAL OF POWER SOURCES, JIXIE DIANZI GONGYEBU DIANYUAN QINGBAOWANG , TIANJIN, CN, vol. 40, no. 6, 1 January 2016 (2016-01-01), CN, pages 1202 - 1276, XP055829319, ISSN: 1002-087X *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114186438A (zh) * 2021-12-27 2022-03-15 天津大学 用于制氢的质子交换膜电解池性能预测模型的建立方法
CN115015313B (zh) * 2022-05-16 2024-05-10 中国人民解放军国防科技大学 激光烧蚀Al-PTFE反应材料的烧蚀深度和温度分布预测方法
CN115015313A (zh) * 2022-05-16 2022-09-06 中国人民解放军国防科技大学 激光烧蚀Al-PTFE反应材料的烧蚀深度和温度分布预测方法
CN114976151A (zh) * 2022-07-13 2022-08-30 浙江浙能技术研究院有限公司 一种考虑热区部件间热传递的系统多物理域模拟方法
CN114976151B (zh) * 2022-07-13 2024-04-02 浙江浙能技术研究院有限公司 一种考虑热区部件间热传递的系统多物理域模拟方法
CN115312815A (zh) * 2022-08-09 2022-11-08 西安交通大学 空气冷却质子交换膜燃料电池电堆的电化学性能计算方法
CN115312815B (zh) * 2022-08-09 2024-03-15 西安交通大学 空气冷却质子交换膜燃料电池电堆的电化学性能计算方法
CN115470581A (zh) * 2022-08-29 2022-12-13 华北电力大学 燃料电池气体流道优化设计方法、系统、电子设备及介质
CN115470581B (zh) * 2022-08-29 2024-02-20 华北电力大学 燃料电池气体流道优化设计方法、系统、电子设备及介质
CN115577529B (zh) * 2022-10-10 2023-03-28 武汉雄韬氢雄燃料电池科技有限公司 一种燃料电池系统增湿器建模仿真方法
CN115577529A (zh) * 2022-10-10 2023-01-06 武汉雄韬氢雄燃料电池科技有限公司 一种燃料电池系统增湿器建模仿真方法
CN116093383B (zh) * 2023-04-11 2023-06-30 北京新研创能科技有限公司 一种用于氢燃料电池的进气控制方法及系统
CN116093383A (zh) * 2023-04-11 2023-05-09 北京新研创能科技有限公司 一种用于氢燃料电池的进气控制方法及系统
CN116187097A (zh) * 2023-04-21 2023-05-30 中国汽车技术研究中心有限公司 燃料电池模型标定方法及装置
CN116187097B (zh) * 2023-04-21 2023-08-01 中国汽车技术研究中心有限公司 燃料电池模型标定方法及装置
CN116504122B (zh) * 2023-06-29 2023-10-24 武汉理工大学 基于元宇宙的质子交换膜燃料电池教学实验平台
CN116504122A (zh) * 2023-06-29 2023-07-28 武汉理工大学 基于元宇宙的质子交换膜燃料电池教学实验平台
CN117457094A (zh) * 2023-12-20 2024-01-26 安徽农业大学 一种基于ap算法的氢氧燃料电池能效表现评估方法和系统
CN117457094B (zh) * 2023-12-20 2024-03-29 安徽农业大学 一种基于ap算法的氢氧燃料电池能效表现评估方法和系统

Also Published As

Publication number Publication date
CN111199110A (zh) 2020-05-26
CN111199110B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2021142883A1 (zh) 燃料电池低温启动性能预测方法及系统
CN112909303B (zh) 质子交换膜燃料电池瞬态实时模型的建立方法
Pei et al. Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review
Chen et al. Performance degradation and recovery characteristics during gas purging in a proton exchange membrane fuel cell with a dead-ended anode
Jia et al. Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell
Zhang et al. Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
Chen et al. Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode
CN111625929B (zh) 一种多物理场耦合作用下sofc数值模拟方法
CN111180767A (zh) 具有流体不均匀分配效应的燃料电池堆建模方法
CN108875166B (zh) 采用电化学氢气泵回收燃料电池阳极氢气的建模方法
Guo et al. Three-dimensional two-phase simulation of a unitized regenerative fuel cell during mode switching from electrolytic cell to fuel cell
Bhattacharya et al. Performance evaluation of different bipolar plate designs of 3D planar anode-supported SOFCs
Zhou et al. Water and pressure effects on a single PEM fuel cell
Zhang et al. 3D non-isothermal dynamic simulation of high temperature proton exchange membrane fuel cell in the start-up process
CN113488680B (zh) 基于simulink的燃料电池电堆冷启动建模仿真试验方法
CN109873186A (zh) 质子交换膜燃料电池准二维模型建立方法
Gerhardt et al. Modeling Water Management and Carbon-Dioxide Contamination Effects in Anion-Exchange Membrane Fuel Cells
CN113745591B (zh) 具有过冷却水结冰机理的燃料电池低温冷启动建模方法
Min et al. Study on the output performance of the proton exchange membrane fuel cells using print circuit board
Yuan et al. Influence of operation parameters on mode switching from electrolysis cell mode to fuel cell mode in a unitized regenerative fuel cell
Ming et al. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells
CN114551937B (zh) 一种燃料电池的性能检测系统及方法
CN115911468A (zh) 一种提高燃料电池发电效率的操作条件寻优方法
CN114824373B (zh) 一种仿真试验联合的燃料电池性能优化方法、装置及设备
CN111162297B (zh) 质子交换膜燃料电池单片及电池堆工作条件选择量化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914646

Country of ref document: EP

Kind code of ref document: A1