WO2021140932A1 - 車両用灯具 - Google Patents

車両用灯具 Download PDF

Info

Publication number
WO2021140932A1
WO2021140932A1 PCT/JP2020/048377 JP2020048377W WO2021140932A1 WO 2021140932 A1 WO2021140932 A1 WO 2021140932A1 JP 2020048377 W JP2020048377 W JP 2020048377W WO 2021140932 A1 WO2021140932 A1 WO 2021140932A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
incident surface
surface portion
lens
Prior art date
Application number
PCT/JP2020/048377
Other languages
English (en)
French (fr)
Inventor
大久保 泰宏
Original Assignee
市光工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 市光工業株式会社 filed Critical 市光工業株式会社
Priority to CN202080091785.1A priority Critical patent/CN114930079A/zh
Priority to EP20912361.1A priority patent/EP4089318A4/en
Priority to US17/790,859 priority patent/US11738681B2/en
Publication of WO2021140932A1 publication Critical patent/WO2021140932A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/50Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating other intentions or conditions, e.g. request for waiting or overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/19Attachment of light sources or lamp holders
    • F21S43/195Details of lamp holders, terminals or connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/255Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/27Attachment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • F21S45/48Passive cooling, e.g. using fins, thermal conductive elements or openings with means for conducting heat from the inside to the outside of the lighting devices, e.g. with fins on the outer surface of the lighting device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2400/00Special features or arrangements of exterior signal lamps for vehicles
    • B60Q2400/50Projected symbol or information, e.g. onto the road or car body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/20Direction indicator lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/45Reversing lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/60Projection of signs from lighting devices, e.g. symbols or information being projected onto the road
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • This disclosure relates to vehicle lighting equipment.
  • Vehicle lighting fixtures are considered to form an irradiation pattern on the road surface around the vehicle.
  • Such a vehicle lamp is provided with a plurality of light sources in a single projection optical system in order to brighten the irradiation pattern (see, for example, Patent Document 1 and the like).
  • This vehicle lamp fixture forms a bright irradiation pattern by guiding light from a plurality of light sources onto a light-shielding member with a plurality of light guides.
  • this vehicle lamp has a plurality of light guides individually corresponding to a plurality of light sources, it has a complicated configuration and it is difficult to adjust the light distribution on the light-shielding member.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a vehicle lamp that can have a desired light distribution on a light-shielding member while having a simple configuration.
  • the vehicle lighting equipment of the present disclosure has a light emitting surface and collects light emitted from a first light source and a second light source arranged in a predetermined parallel direction, and the first light source and the second light source.
  • a lens is provided, and the first light source and the second light source are arranged at a distance equal to or larger than the dimension in the parallel direction on the light emitting surface, and the condensing lens has a light amount on the light shielding member. It is characterized in that the high light amount region having the highest light distribution has a single light distribution in the parallel direction.
  • the light distribution on the light-shielding member can be made desired while having a simple configuration.
  • Example 1 of the vehicle lamp 10 as an example of the vehicle lamp according to the present disclosure will be described with reference to the drawings.
  • the vehicle light fixture 10 in order to make it easy to grasp the state in which the vehicle light fixture 10 is provided, the vehicle light fixture 10 is emphasized with respect to the vehicle 1, and it does not necessarily match the actual state. It's not a thing.
  • FIGS. 6, 7, 9, and 10 in order to facilitate understanding of the configuration of the condenser lens 12 and the state in which light travels therein, the hatching attached to each cut surface is omitted. There is.
  • dots are added to the portions corresponding to the intermediate range Mr.
  • the vehicle lighting fixture 10 of the first embodiment is used as a lighting fixture of a vehicle 1 such as an automobile, and is a road surface around the front of the vehicle 1 in addition to the headlights provided in the vehicle 1.
  • An irradiation pattern Pi is formed in 2.
  • the periphery in front of the vehicle 1 always includes a proximity region closer to the vehicle 1 than the headlight region illuminated by the headlights provided in the vehicle 1, and partially includes the headlight region. In some cases.
  • the vehicle lighting fixture 10 is arranged in the lighting chambers on both the left and right sides of the front portion of the vehicle.
  • the lamp chamber is formed by covering the open front end of the lamp housing with an outer lens.
  • the vehicle lamp 10 is provided in the lamp chamber in a state where the projected optical axis Lp is inclined with respect to the road surface 2. This is because the light room is provided at a position higher than the road surface 2.
  • the direction in which the projected optical axis Lp, which is the direction of irradiating light, extends is defined as the optical axis direction (Z in the drawing), and the optical axis direction is set to be along the horizontal plane.
  • the vertical direction is the vertical direction (Y in the drawing), and the direction orthogonal to the optical axis direction and the vertical direction (horizontal direction) is the width direction (X in the drawing) (see FIG. 2 and the like).
  • the vehicle lighting fixture 10 is of a projector type in which a light source unit 11, a condenser lens 12, a filter 13, and a projection lens 14 are housed in a housing 15 to form a single projection optical system. It constitutes a road surface projection unit.
  • the housing 15 is composed of a semi-cylindrical lower member 15a and an upper member 15b, and the installation base portion 16 is provided with the above-mentioned members (12 to 14) installed on the lower member 15a.
  • the lower member 15a and the upper member 15b are fitted so as to be interposed.
  • the housing 15 is provided with a condenser lens groove 15c for fitting the condenser lens 12, a filter hole 15d for fitting the filter 13, and a projection lens groove 15e for fitting the projection lens 14 (lower member 15a). Only the side is shown).
  • the shape of the housing 15 may be appropriately set, and is not limited to the configuration of the first embodiment.
  • the installation base portion 16 is for installing the light source portion 11, is formed of an aluminum die-cast or resin having thermal conductivity, and has an installation portion 16a and a heat dissipation portion 16b.
  • the installation location 16a is a location where the light source unit 11 (the substrate 23 thereof) is installed, and has a flat plate shape orthogonal to the optical axis direction.
  • the installation location 16a is provided with a connection wall 16c surrounding the light source unit 11.
  • the connection wall 16c is connected to the housing 15 by sandwiching the front end portion 16d in the optical axis direction between the lower member 15a and the upper member 15b when the lower member 15a and the upper member 15b are fitted together. Will be done.
  • the heat radiating point 16b functions as a heat sink that releases the heat generated by the light source unit 11 to the outside.
  • the heat dissipation points 16b are continuously provided at the installation points 16a and have a plurality of heat dissipation fins 16e.
  • the heat radiating portion 16b radiates heat generated by the light source unit 11 installed at the installation portion 16a from each heat radiating fin 16e to the outside.
  • the light source unit 11 includes a first light source 21, a second light source 22, and a substrate 23 on which they are mounted.
  • the first light source 21 and the second light source 22 are composed of light emitting elements such as LEDs (Light Emitting Diodes), are arranged in the parallel direction Dp (see FIG. 3), and their emission light axes Li are parallel to each other. (See FIG. 6).
  • LEDs Light Emitting Diodes
  • the one of the first light source 21 is referred to as the first emitted optical axis Li1
  • the one of the second light source 22 is referred to as the second emitted optical axis Li2.
  • the first light source 21 and the second light source 22 are amber-colored light having a Lambersian distribution centered on the emitted light axis Li (the vertical axis is the amount of light and the horizontal axis is the wavelength). It emits light that has the largest peak in the wavelength band and is substantially close to amber monochromatic light.
  • the colors (wavelength band), distribution mode, number of colors (number of peaks in the above graph), and the like of the first light source 21 and the second light source 22 may be appropriately set, and other colors may be set.
  • the light of the above may be emitted, or white light may be emitted, and the configuration is not limited to that of the first embodiment.
  • the first light source 21 and the second light source 22 have a first light emitting surface 21a and a second light emitting surface 22a, which are rectangular when viewed in the optical axis direction, respectively.
  • the first light emitting surface 21a and the second light emitting surface 22a have the same shape and the same size, and have the same posture.
  • the first light source 21 and the second light source 22 have a positional relationship in which the first light emitting surface 21a and the second light emitting surface 22a are spaced apart from each other.
  • the parallel direction Dp is parallel to the width direction.
  • the interval d is equal to or larger than the size dimension (width dimension w) in the width direction on the first light emitting surface 21a and the second light emitting surface 22a.
  • the board 23 is attached to the installation location 16a of the installation base 16, and the first light source 21 and the second light source 22 are mounted.
  • the substrate 23 is provided with a lighting control circuit, and electric power is appropriately supplied from the lighting control circuit to light the first light source 21 and the second light source 22.
  • the substrate 23 is attached to the installation location 16a of the installation base portion 16 and the housing 15 is connected to the connection wall 16c to form a rear end portion of the housing 15 (projection lens groove 15e in the optical axis direction). Is located on the opposite end) side and faces the condenser lens 12 (incident surface 31 thereof) housed in the housing 15.
  • the condenser lens 12 collects the light emitted from the first light source 21 and the second light source 22, and collects the light on the filter 13.
  • the condenser lens 12 is basically a biconvex lens in the first embodiment, and the entrance surface 31 and the exit surface 32 (see FIG. 6 and the like) are free curved surfaces. The optical settings on the entrance surface 31 and the exit surface 32 will be described later.
  • the condenser lens 12 is provided with flange portions 33 at both ends in the width direction. Each flange portion 33 can be fitted into the condenser lens groove 15c of the housing 15.
  • the condenser lens 12 has a lens axis Lr extending in the optical axis direction.
  • the lens axis Lr is an axis that is the optical center of the condenser lens 12.
  • the flange portion 33 of the condenser lens 12 is fitted into the condenser lens groove 15c, the extending direction of the lens axis Lr coincides with the projected optical axis Lp.
  • the filter 13 is an example of a light-shielding member that forms an irradiation pattern Pi by partially passing light from the first light source 21 and the second light source 22 condensed by the condenser lens 12.
  • the irradiation pattern Pi has three irradiation symbols Di arranged at substantially equal intervals in the direction away from the vehicle 1.
  • each irradiation symbol Di has a V-shape that opens wide, and has substantially the same size as each other.
  • the irradiation symbol Di when each irradiation symbol Di is shown individually, the one farthest from the vehicle 1 is designated as the first irradiation symbol Di1, and as the vehicle approaches the vehicle 1, the second irradiation symbol Di2 and the third irradiation symbol Di3 are used in this order. And. Therefore, in the irradiation pattern Pi, the first irradiation symbol Di1 is the farthest portion, and the third irradiation symbol Di3 is the latest portion.
  • the irradiation pattern Pi can be made to look like an arrow pointing in a predetermined direction from the vehicle 1 by arranging the three irradiation symbols Di with the V-shaped vertices positioned substantially in a straight line.
  • the direction indicated by the arrow as the irradiation pattern Pi that is, the direction in which the V-shaped vertices of each irradiation symbol Di are lined up is the arrow direction Da, and the pointing side (first irradiation symbol Di1 side) is the front side of the arrow direction Da.
  • each irradiation symbol Di two side end Dies located in a direction orthogonal to the arrow direction Da are inside as the direction toward the rear side of the arrow direction Da (inside when viewed from the side where the vehicle indicated by the arrow direction Da turns). ) Is a straight line that slopes toward. That is, the both end Dies in each irradiation symbol Di are inclined inward with respect to the arrow direction Da. The direction in which the straight line of the both side end Die extends is defined as the side end direction De.
  • the irradiation pattern Pi composed of these three irradiation symbols Di is formed by the filter 13.
  • the filters 13 have the same configuration regardless of whether they are provided on the left or right side of the vehicle 1.
  • the filter 13 is provided with a filter portion 24 in the filter frame portion 25.
  • the filter frame portion 25 has a circular frame shape surrounding the filter portion 24, and can be fitted into the filter hole 15d of the housing 15 (see FIG. 1).
  • the filter unit 24 is basically formed of a plate-shaped film member that blocks the transmission of light, and is provided with an irradiation slit 26.
  • the irradiation slit 26 partially transmits the light from the first light source 21 and the second light source 22 condensed by the condensing lens 12 to form the irradiation pattern Pi into a predetermined shape.
  • the irradiation slit 26 corresponds to the irradiation pattern Pi, and is composed of three slit portions 27 in the first embodiment.
  • the three slits 27 have a one-to-one correspondence with the three irradiation symbols Di, and have a V-shape that opens wide like each irradiation symbol Di, and unlike each irradiation symbol Di, they have different sizes. It has different intervals. Specifically, since the projection optical axis Lp of the vehicle lamp 10 is provided so as to be inclined with respect to the road surface 2, the distances from the filter 13 and the projection lens 14 to the road surface 2 are different. When projected onto the lens, each slit portion 27 (each irradiation symbol Di that is the light transmitted through the slit portion 27) has a size and an interval corresponding to the distance. Therefore, the sizes and intervals of the slit portions 27 are set according to the distance to the road surface 2 so that the irradiation symbols Di are substantially equal in size and substantially equally spaced on the road surface 2.
  • each slit portion 27 has a positional relationship to be rotated about the projected optical axis Lp with respect to the positional relationship of each irradiation symbol Di of the irradiation pattern Pi. That is, in the vehicle lamp 10, since the projection lens 14 inverts and the filter 13 (irradiation slit 26) is projected onto the road surface 2, each irradiation symbol Di has a target positional relationship on the road surface 2.
  • a slit portion 27 is provided. Therefore, in each slit portion 27, the first slit portion 271 on the lowermost side in the vertical direction is the farthest portion corresponding to the first irradiation symbol Di1 (farthest portion) of the irradiation pattern Pi.
  • the second slit portion 272 above the second slit portion 272 corresponds to the second irradiation symbol Di2, and the uppermost third slit portion 273 corresponds to the third irradiation symbol Di3 (recent portion).
  • the third slit portion 273 is provided above the projected optical axis Lp in the vertical direction, and the second slit portion 272 is provided below the third slit portion 272 across the horizontal line including the projected optical axis Lp.
  • a first slit portion 271 is provided below the first slit portion 271. The light transmitted through the filter 13 (each slit portion 27 of the irradiation slit 26) is projected onto the road surface 2 by the projection lens 14.
  • the projection lens 14 includes a lens main body portion 28 which is a circular convex lens when viewed in the optical axis direction, and a flange portion 29 which surrounds the lens main body portion 28.
  • the lens body 28 has a free curved surface whose entrance surface and exit surface are convex surfaces, and is a surface whose curvature is smoothly changed without a step (at least a C2 class function). ..
  • the projection lens 14 has a lens axis extending in the optical axis direction. This lens axis is an optical axis that passes through a position in the lens body 28 that has the largest thickness in the optical axis direction.
  • the lens body 28 projects the irradiation pattern Pi on the road surface 2 inclined with respect to the projected optical axis Lp, as shown in FIG. Form.
  • the incident surface and the exit surface may be convex or concave as long as the lens body 28 is a convex lens, and are not limited to the configuration of the first embodiment.
  • the flange portion 29 projects from the lens body portion 28 in the radial direction centered on the lens axis, and extends over the entire circumference in the circumferential direction centered on the lens axis.
  • the flange portion 29 can be fitted into the projection lens groove 15e of the housing 15.
  • the lens axis coincides with the projection optical axis Lp.
  • the condenser lens 12 basically collects the light from the first light source 21 and the second light source 22 to irradiate the filter 13 with a light distribution including the set range Sr (see FIG. 5). (See FIG. 14).
  • the set range Sr is the range in which the irradiation slits 26 (each slit portion 27 thereof) are provided in the filter 13.
  • the setting range Sr may be set according to the shape of the irradiation slit 26, and is not limited to the configuration of the first embodiment. In the following, the direction orthogonal to the projected optical axis Lp is defined as the radial direction.
  • the condenser lens 12 includes a configuration in which the incident surface 31 is line-symmetrical with respect to the lens axis Lr in a cross section including the optical axis direction and the width direction (parallel direction Dp), that is, the lens axis Lr.
  • the configuration is axisymmetric with respect to the plane orthogonal to the width direction.
  • the condenser lens 12 has a first incident surface portion 34, a second incident surface portion 35, and an intermediate incident surface portion 36.
  • the first incident surface portion 34 is optically set for the first light source 21, that is, with reference to the first light emitting surface 21a, and is on the front side in the optical axis direction with respect to the first light source 21 and in the width direction.
  • the second incident surface portion 35 is optically set for the second light source 22, that is, with reference to the second light emitting surface 22a, and is on the front side in the optical axis direction with respect to the second light source 22 and in the width direction. It is provided on the outside (opposite side of the first light source 21).
  • the intermediate incident surface portion 36 is provided on the front side of the first light source 21 and the second light source 22 and between the first incident surface portion 34 and the second incident surface portion 35, and is located on the lens axis Lr.
  • the first emitting light axis Li1 of the first light source 21 is defined as the boundary between the first incident surface portion 34 and the intermediate incident surface portion 36, and the second light source 22 is exposed to the second light source 22.
  • the light emitting axis Li2 is defined as the boundary between the second incident surface portion 35 and the intermediate incident surface portion 36.
  • the incident surface 31 is a curved surface that is convex to the rear side in the optical axis direction
  • the exit surface 32 is convex to the front side in the optical axis direction. It is said to be a curved surface of.
  • the condenser lens 12 has a curvature in each vertical cross section of the incident surface 31 and the exit surface 32 so as to have a desired light distribution in the vertical direction (see FIG. 13 and the like) in the setting range Sr of the filter 13. To adjust.
  • the light distribution is gradually brightened in the vertical direction in the vicinity of the projected optical axis Lp and below the projected optical axis Lp in the set range Sr of the filter 13, as the distance from the projected optical axis Lp is increased. It is supposed to be dark.
  • the light distribution is asymmetrical in the vertical direction with respect to the line extending in the width direction including the projected optical axis Lp.
  • the incident surface 31 of the condenser lens 12 has a curved surface in which the first incident surface portion 34 and the second incident surface portion 35 are convex rearward in the optical axis direction in the cross section.
  • the intermediate incident surface portion 36 is formed as a plane parallel to the width direction (parallel direction Dp). That is, the intermediate incident surface portion 36 is designed to have a refractive power only in the vertical direction while extending in the width direction like a cylindrical lens.
  • the first incident surface portion 34 is optically set with reference to the light from the center of the first light emitting surface 21a of the first light source 21, and the second incident surface portion 35 is the second light emitting surface 22a of the second light source 22.
  • the sub-lens axis is set on the first emission optical axis Li1 of the first light source 21, and the sub-lens axis is set on the second emission optical axis Li2 of the second light source 22. ing.
  • the exit surface 32 is a curved surface that is convex to the front side in the optical axis direction.
  • the half on the side of the first incident surface portion 34 in the width direction with respect to the lens axis Lr is the first exit surface portion 37, and the other half is the second exit surface portion 38.
  • the range in which the intermediate incident surface portion 36 is provided in the width direction is defined as the intermediate range Mr. That is, the intermediate range Mr is a range facing the intermediate incident surface portion 36 in the optical axis direction, and is a range located on the front side of the intermediate incident surface portion 36 in the optical axis direction.
  • the curvature of the first incident surface portion 34, the second incident surface portion 35, and the exit surface 32 of the condenser lens 12 is set as follows in the cross section.
  • the condenser lens 12 controls the light L1 emitted from the first light source 21 and incident from the first incident surface portion 34 in the cross section, and the first incident surface portion 34 and the first The curvature with the exit surface portion 37 is set.
  • the condenser lens 12 gently diverges the light in the vicinity of the first emission optical axis Li1 of the light L1 while advancing in the direction intersecting the projection optical axis Lp before reaching the filter 13. ..
  • the condenser lens 12 advances the remaining light of the light L1 toward the projected optical axis Lp side without intersecting the projected optical axis Lp before reaching the filter 13. Gently diverge.
  • the curvature of the first exit surface portion 37 is set together with the first incident surface portion 34 so that the apex is located in the intermediate range Mr.
  • the condensing lens 12 is set to the above-mentioned optical setting, so that the light L1 is irradiated on the filter 13 to obtain a desired light distribution as shown in FIG.
  • the first incident surface portion 34 (first light source 21) side in the width direction with respect to the projected optical axis Lp is set as the first light-shielding region As1
  • the second light source 22) side is designated as the second light-shielding region As2.
  • a high light intensity portion Ha1 peak of the light intensity
  • the high light intensity portion Ha1 has a long shape extending in the width direction in both the first light-shielding region As1 and the second light-shielding region As2 across the vertical line passing through the projected optical axis Lp. Then, by irradiating the light L1 on the filter 13, a light distribution is formed over a predetermined range of up, down, left, and right within the set range Sr, centering on the high light intensity portion Ha1.
  • the brightness gradually changes as the distance from the high light intensity portion Ha1 is increased, that is, the brightness is gradually changed toward the peripheral edge of the set range Sr, and the single high light intensity portion Ha1 Is formed.
  • the light L1 irradiates a range extended from the vicinity of the center in the set range Sr to the first light-shielding region As1 side, and does not irradiate the entire range of the set range Sr.
  • the curvature of the second incident surface portion 35 and the second emitting surface portion 38 is set by using the first incident surface portion 34 and the first exit surface portion 37 set as described above in the cross section.
  • the condenser lens 12 is line-symmetrical with respect to the lens axis Lr in the cross section, that is, plane-symmetrical with respect to a plane including the lens axis Lr and orthogonal to the width direction.
  • the first incident surface portion 34 is inverted around the lens axis Lr to set the second incident surface portion 35
  • the first exit surface portion 37 is inverted around the lens axis Lr.
  • the second exit surface portion 38 is set.
  • the first incident surface portion 34 is formed into a curved surface that is convex toward the first light source 21 side, and is apex (in the optical axis direction) before reaching the lens axis Lr in the width direction.
  • There is a point that is closest to the first light source 21 see the two-dot chain line 34'extending from the first incident surface portion 34 in FIG. 6). Therefore, in the incident surface 31, when the second incident surface portion 35 is set with line symmetry centered on the lens axis Lr from the first incident surface portion 34 in the cross section, a dent (exit surface 32 in the optical axis direction) is provided in the vicinity of the lens axis Lr.
  • a curved depression is formed. This dent forms an unnecessarily bright region (see the portion surrounded by the broken line in FIG. 11) within the set range Sr.
  • the intermediate incident surface portion 36 is formed in the width direction in the cross section so as not to form a dent that causes an unnecessarily bright region when the first incident surface portion 34 and the second incident surface portion 35 are set as described above. If they are parallel, the position in the width direction may be appropriately set, and the configuration is not limited to that of the first embodiment.
  • the exit surface 32 Since the apex of the first exit surface portion 37 is located in the intermediate range Mr, the exit surface 32 is formed at a position where the apex exceeds the lens axis Lr in the width direction (the side where the second light source 22 is provided). In the case, it has a single vertex by being formed as described above. Further, the exit surface 32 is formed as described above when the apex of the first exit surface portion 37 is formed at a position (the side where the first light source 21 is provided) that does not exceed the lens axis Lr in the width direction. This makes it have two vertices.
  • the emission surface 32 is line-symmetrical with respect to the lens axis Lr in the cross section, so that the first emission surface portion 37 and the second emission surface portion 38 have a step on the lens axis Lr. It is said that there is no such thing (C0 class function).
  • the condenser lens 12 set as described above is outside in the width direction of the light L2 emitted from the second light source 22 and incident from the first incident surface portion 34 in the cross section.
  • the light in the vicinity of is emitted toward the lens axis Lr side.
  • the condenser lens 12 emits the light on the lens axis Lr side of the light L2 in the direction away from the lens axis Lr. That is, in the cross section, the condenser lens 12 emits light L2 in a direction away from the direction of approaching the lens axis Lr as the incident position becomes inside in the width direction of the first incident surface portion 34. Is changing. Therefore, the condenser lens 12 gently diverges the light L2 at a position away from the lens axis Lr after crossing the traveling directions in the cross section.
  • the condensing lens 12 set as described above diverges the light L3 emitted from the second light source 22 and incident from the intermediate incident surface portion 36 in the cross section, and the lens axis Lr. It emits light gradually away from the lens and gradually diverges.
  • the condensing lens 12 is optically set as described above, so that the light L2 and the light L3 from the second light source 22 passing through the first incident surface portion 34 and the intermediate incident surface portion 36 are transmitted on the filter 13 in FIG. Irradiate as shown in.
  • the high light amount portion Ha2 (the peak of the light amount) having the highest light amount in this light distribution is located in the vicinity of the projected optical axis Lp below the projected optical axis Lp. ) Is formed.
  • the high light intensity portion Ha2 has a long shape extending in the width direction within the first light-shielding region As1, and is partially overlapped with the high light intensity portion Ha1 (see FIG.
  • the filter 13 On the filter 13, the light distribution due to the light L1 (see FIG. 8) and the light distribution due to the light L2 and the light L3 (see FIG. 11) are superimposed. Then, on the filter 13, as shown in FIG. 12, the high light intensity portion Ha1 and the high light intensity portion Ha2 are overlapped to form the high light intensity portion Ha3 having the highest light intensity in this light distribution.
  • This high light intensity portion Ha3 is located in the vicinity of the projected optical axis Lp below the projected optical axis Lp, and partly straddles the vertical line passing through the projected optical axis Lp and is partially located in the second light-shielding region As2 while being in the first light-shielding region. It has a long shape that extends to As1 in the width direction.
  • the light distribution is distributed over a range extending from the high light amount portion Ha3 to the vicinity of the projected optical axis Lp in the second light-shielding region As2 while filling the first light-shielding region As1 side of the set range Sr. It is formed.
  • the brightness gradually changes as the distance from the high-light portion Ha3, that is, the closer to the periphery of the set range Sr, the darker the brightness, and the light distribution has a single high-light portion Ha3. There is.
  • the light distribution on the filter 13 shown in FIG. 12 is formed by light L1, light L2, and light L3 from the first light source 21 and the second light source 22 that have passed through the first incident surface portion 34 and the intermediate incident surface portion 36. It was done. Since the condenser lens 12 has a structure that is line-symmetrical with respect to the lens axis Lr in the cross section, it is based on the light that has passed through the second incident surface portion 35 and the intermediate incident surface portion 36 from the first light source 21 and the second light source 22. The light distribution is line-symmetrical with respect to the projected optical axis Lp of the light distribution in FIG.
  • FIG. 12 when the first light source 21 and the second light source 22 are turned on, the light distribution in FIG. 12 and the light distribution that is line-symmetrical with respect to the projected optical axis Lp are superimposed, and FIG. 13
  • the light distribution shown in is formed on the filter 13.
  • both high-intensity locations Ha3 are overlapped, so that in the vicinity of the projected optical axis Lp below the projected optical axis Lp, a long high-intensity region HA in the width direction straddles the projected optical axis Lp. Is formed.
  • the high light intensity region HA is a region having the highest light intensity (a region where the light intensity peaks) in this light distribution distribution, and is a so-called hot zone.
  • the filter 13 On the filter 13, light is irradiated so as to fill the set range Sr with the high light region HA as the center, and gradually becomes darker as the distance from the high light region HA increases, that is, the closer to the periphery of the set range Sr.
  • the brightness is changing.
  • a light distribution distribution having a single high light amount region HA (light amount peak) in the width direction (parallel direction Dp) is formed.
  • the distribution of brightness is assumed to expand in the width direction, and when the positions are the same in the vertical direction, the brightness hardly changes even if the position in the width direction changes.
  • the condenser lens 12 diverges in the width direction so as not to cause a difference in brightness as compared with the vertical direction, and irradiates the set range Sr with the light from the first light source 21 and the second light source 22. I'm letting you.
  • FIG. 14 shows how the light distribution shown in FIG. 13 is formed on each slit portion 27 of the irradiation slit 26 in the filter 13.
  • the high light intensity region HA is assumed to cover substantially the entire area of the first slit portion 271, and while making it the brightest (the peak of the light intensity), it gradually becomes darker as the distance from the first slit portion 271 increases.
  • the inside of the set range Sr is illuminated.
  • the first to third slits 271 are arranged so that the farthest first slit 271 is the brightest and the most recent third slit 273 is the darkest in the vertical direction.
  • the brightness gradually changes in the order of 272 and 273.
  • the brightness in the width direction is substantially uniform at each slit portion 27, that is, at each position in the vertical direction.
  • the second slit portion 272 is darker than the first slit portion 271
  • the third slit portion 273 is darker than the second slit portion 272, and each slit portion 27 is in the width direction.
  • the brightness is supposed to be almost uniform.
  • the vehicle lamp 10 is assembled as follows with reference to FIG. First, the first light source 21 and the second light source 22 are mounted on the substrate 23, the light source unit 11 is assembled, and the light source unit 11 is fixed to the installation location 16a to form the installation base unit 16. After that, in the lower member 15a of the housing 15, the condenser lens 12 is fitted into the condenser lens groove 15c, the filter 13 is fitted into the filter hole 15d, and the projection lens 14 is fitted into the projection lens groove 15e. Then, while the rear end portion of the lower member 15a of the housing 15 is directed to the lower side of the tip portion 16d of the connection wall 16c, the upper member 15b is fitted to the lower member 15a from the upper side.
  • the condenser lens 12, the filter 13, and the projection lens 14 are housed in the housing 15, and the light source unit 11 is connected to the housing 15.
  • the condensing lens 12, the filter 13, and the projection lens 14 are arranged on the projected optical axis Lp in a predetermined positional relationship from the side of the light source unit 11, and the vehicle lamp 10 is assembled.
  • the vehicle lighting fixture 10 is provided in the lighting chamber in a state where the projected optical axis Lp is directed to the diagonally front side on the outside of the vehicle 1 and is inclined with respect to the road surface 2 around the vehicle 1 (see FIG. 1).
  • the vehicle lighting equipment 10 can appropriately turn on and off the electric power from the lighting control circuit by supplying the electric power from the lighting control circuit to the first light source 21 and the second light source 22.
  • the light from the first light source 21 and the second light source 22 is collected by the condenser lens 12, irradiates the filter 13, passes through the irradiation slits 26 (each slit portion 27), and then is projected by the projection lens 14.
  • the irradiation pattern Pi is formed on the road surface 2.
  • the irradiation pattern Pi is substantially straightened with substantially equal brightness by projecting the light transmitted through the irradiation slits 26 (each slit portion 27) of the filter 13 having the above light distribution distribution by the projection lens 14.
  • Three irradiation symbols Di are arranged on the line.
  • the irradiation pattern Pi that is, each irradiation The design Di can be clarified.
  • the vehicle lighting tool 10 is interlocked with a turn lamp, and when either the left or right turn lamp is turned on, the first light source 21 and the second light source 22 are turned on, although they are provided on the turned side.
  • the irradiation pattern Pi is formed on the road surface 2.
  • FIG. 15 shows a scene in which a vehicle 1 coming out of an alley with poor visibility is about to turn left.
  • the turn signal lamp on the left side blinks, so that the vehicle lighting tool 10 provided on the left front side forms the irradiation pattern Pi on the road surface 2.
  • a person who is on the front side of FIG. 15 can visually recognize the irradiation pattern Pi formed on the road surface 2 even when the vehicle 1 cannot be visually recognized.
  • the side end Dies are inclined inward with respect to the arrow direction Da.
  • the vehicle lighting fixture 10 shows each side end Die as a line that is more inclined in the direction in which the vehicle is to be bent than the irradiation pattern Pi (the arrow direction Da) formed in the direction in which the vehicle is to be bent. be able to.
  • the side end Die on the front side (the side end direction De) of the irradiation pattern Pi formed on the left front side of the person who exists on the left front side of the vehicle 1 is directed to itself. You can make it look like it is aimed.
  • the vehicle lamp 10 intends not only to indicate the irradiation pattern Pi to the person in the arrow direction Da, but also to bend outward from the arrow direction Da, that is, in the direction in which the person is. Can be felt.
  • the vehicle lighting tool 10 makes the person in the vicinity of the vehicle 1 more surely recognize that the hazard lamp is lit, as compared with the case where only the left and right turn lamps are blinking. be able to.
  • the vehicle lamp 10 guides the light from the first light source 21 and the second light source 22 onto the filter 13, the brightness of the irradiation pattern Pi formed through the irradiation slit 26 can be made sufficient.
  • the first light source 21 and the second light source 22 generate heat, respectively, heat can be satisfactorily dissipated by arranging them at intervals.
  • the comparative vehicle lamp has a configuration in which light from a light source is condensed on a filter by a condenser lens and projected by a projection lens to form an irradiation pattern.
  • the comparative vehicle lamp when two light sources are arranged at intervals, the peaks of the amount of light formed by the two light sources are formed on the filter so as to be separated from each other. This causes light unevenness in the formed irradiation pattern, and when both light sources are arranged at intervals larger than the dimensions of both light emitting surfaces, the light unevenness becomes noticeable.
  • comparative vehicle lamps tend to make it difficult to consider two light sources as a single light source if both light sources are placed at a greater spacing than each light emitting surface, with two peaks on the filter. Is formed and causes light unevenness in the irradiation pattern.
  • the vehicle lamp 10 is a condensing lens 12 that collects light from two light sources (21, 22) at intervals d of a width dimension w or more on both light emitting surfaces (21a, 22a).
  • the incident surface 31 is provided with a first incident surface portion 34 and a second incident surface portion 35.
  • the first incident surface portion 34 is optically set for the first light source 21, and the second incident surface portion 35 is optically set for the second light source 22.
  • the condenser lens 12 the light from the first light source 21 and the second light source 22 incident from the first incident surface portion 34 and the second incident surface portion 35 is simply emitted on the filter 13 in the parallel direction Dp (width direction).
  • the exit surface 32 is optically set together with the first incident surface portion 34 and the second incident surface portion 35 so as to have a light distribution distribution having one high light amount region HA (light amount peak). Therefore, the vehicle lamp 10 can form a bright irradiation pattern Pi that suppresses light unevenness while appropriately cooling both light sources (21 and 22).
  • the condensing lens 12 projects the light from the first light source 21 that has passed through the first incident surface portion 34 onto the filter 13, and the projected light axis in the second light-shielding region As2.
  • the light distribution is such that the high light amount portion Ha1 in the light distribution is provided in the vicinity of Lp.
  • the condensing lens 12 projects the light from the second light source 22 that has passed through the second incident surface portion 35 onto the filter 13, and in the first light-shielding region As1, near the projected light axis Lp. It is assumed that the light distribution has a high light intensity portion (inverted high light intensity portion Ha1) in the light distribution distribution.
  • the condensing lens 12 arranges the above two high light intensity points in the parallel direction Dp without a gap, so that the light condensing lens 12 straddles the projected optical axis Lp without interruption in the width direction.
  • a long, high-light region HA is formed.
  • the condensing lens 12 the light L1 from the first light source 21 passing through the first incident surface portion 34 is formed so as to form a single high light amount region HA when the light distribution distribution is inverted and overlapped. The position and shape of the high light intensity portion Ha1 in the light distribution distribution are adjusted.
  • the vehicle lamp 10 can form a high light intensity region HA on the filter 13 over substantially the entire area of the first slit portion 271 extending in the width direction, and is formed at the farthest point of the first slit portion 271. It is possible to make the brightness substantially uniform while ensuring the brightness of the first irradiation symbol Di1 to be performed.
  • the conventional vehicle lighting equipment described in the prior art document is provided with a plurality of light guides individually corresponding to a plurality of light sources. Even if each light guide is integrated, it has a rod shape corresponding to a light source individually, and only the light from the corresponding light source is individually guided onto the light-shielding member. For this reason, the conventional vehicle lighting equipment has a complicated configuration because it is necessary to arrange a plurality of rod-shaped light guides according to each light source. Further, in the conventional vehicle lighting equipment, since the light from the light source corresponding to each light guide is guided on the light-shielding member, the light is guided separately on the light-shielding member for each light source.
  • the irradiation pattern Pi of the present invention taking the irradiation pattern Pi of the present invention as an example, the first slit portion 271 corresponding to the first irradiation symbol Di1 in the farthest portion is made the brightest, and the second slit portion 272 and the third slit portion are made brightest.
  • the darkening is performed in the order of 273, and the amount of light in each slit portion 27 is made substantially uniform.
  • the conventional vehicle lighting equipment forms a light distribution in the irradiation pattern Pi so that the amount of light is changed in the vertical direction in which the slit portions 27 are lined up, and the amount of light is substantially uniform in the width direction orthogonal to the amount of light. It becomes difficult to adjust to.
  • the vehicle lamp 10 is provided with a single condensing lens 12 for the first light source 21 and the second light source 22 so that the light from each of them is guided inward and emitted from the same exit surface 32.
  • the light distribution on the filter 13 is desired by the condensing lens 12. Therefore, the vehicle lighting fixture 10 can have a simple configuration as compared with the conventional vehicle lighting fixture while making the brightness of the irradiation pattern Pi to be formed sufficient.
  • the vehicle lamp 10 collects the light from the first light source 21 and the light from the second light source 22 by guiding the light from the first light source 21 and the light from the second light source 22 inward and emitting the light from the same exit surface 32 in a single condensing lens 12. Since it emits light, both lights can be guided onto the filter 13. Therefore, the vehicle lamp 10 can be easily adjusted to form a light distribution having a single high light region HA (light intensity peak) on the filter 13 as compared with the conventional vehicle lamp. It becomes.
  • HA light intensity peak
  • the vehicle lamp 10 of the first embodiment can obtain the following effects.
  • the two light sources (21, 22) are arranged side by side in the parallel direction Dp with an interval d equal to the width dimension w of both light emitting surfaces (21a, 22a) or an interval d larger than the width dimension w. ing.
  • the condensing lens 12 condenses the light from both light sources (21, 22) and has a single height in the parallel direction Dp on the light-shielding member (filter 13 in the first embodiment).
  • the light distribution has a light amount region HA. Therefore, the vehicle lamp 10 can form a light distribution distribution having a single high light amount region HA on the light shielding member while appropriately cooling the two light sources (21 and 22).
  • the vehicle lamp 10 can simplify the configuration of the condenser lens 12 and can form a bright irradiation pattern Pi that suppresses light unevenness.
  • the condensing lens 12 projects the light from the first light source 21 that has passed through the first incident surface portion 34 onto the light-shielding member, and the light amount of the light distribution is high in the second light-shielding region As2.
  • the location Ha1 is formed.
  • the condensing lens 12 projects the light from the second light source 22 that has passed through the second incident surface portion 35 onto the light-shielding member (filter 13), and distributes the light in the first light-shielding region As1.
  • a high-light portion (inverted high-light portion Ha1) of the distribution is formed.
  • the condenser lens 12 forms the high light intensity region HA by arranging the above two high light intensity portions in the parallel direction Dp without a gap. Therefore, the vehicle lamp 10 can have a light distribution distribution having a long high light amount region HA in the width direction across the projected optical axis Lp on the light-shielding member.
  • the incident surface 31 has an intermediate incident surface portion 36 between the first incident surface portion 34 and the second incident surface portion 35 in the parallel direction Dp, and the intermediate incident surface portion 36 thereof is in the parallel direction.
  • the plane is parallel to Dp. Therefore, the vehicle lamp 10 can suppress the formation of an unnecessarily bright region on the light-shielding member by setting the first incident surface portion 34 and the second incident surface portion 35 as described above.
  • the vehicle lamp 10 has an apex in which the exit surface 32 of the condenser lens 12 is convex toward the light-shielding member side in the intermediate range Mr provided with the intermediate incident surface portion 36 in the parallel direction Dp. Therefore, the vehicle lamp 10 can easily form the exit surface 32 including the periphery of the apex.
  • the vehicle lamp 10 of the first embodiment as the vehicle lamp according to the present disclosure can have a desired light distribution on the light-shielding member (filter 13) while having a simple configuration.
  • vehicle lamps of the present disclosure have been described based on the first embodiment, the specific configuration is not limited to the first embodiment and deviates from the gist of the invention according to each claim of the claims. Unless otherwise, design changes and additions are allowed.
  • the three irradiation symbols Di are arranged at substantially equal intervals in the direction away from the vehicle 1 to form the irradiation pattern Pi.
  • the irradiation pattern is formed on the road surface 2 around the vehicle 1 and informs the person around the vehicle 1 of some intention of the driver, the design, the position to be formed, and the like may be appropriately set.
  • the vehicle lamp 10 is interlocked with the turn lamp in the first embodiment, it may be interlocked with another lamp such as a back lamp or may be operated individually, and is limited to the configuration of the first embodiment. Not done.
  • the vehicle lighting equipment is provided in the vehicle 1 according to the position where the irradiation pattern is formed with respect to the vehicle 1, it can be housed in the door mirror or in the tail light room (light room on both the left and right sides at the rear of the vehicle). It may be arranged or provided on the vehicle body, and is not limited to the configuration of the first embodiment.
  • the vehicle lighting fixture 10A of FIG. 16 forms an irradiation pattern PiA on the rear side in the traveling direction of the vehicle 1.
  • the irradiation pattern PiA is formed by arranging three irradiation symbols Di similar to those in the first embodiment in the traveling direction of the vehicle 1.
  • the vehicle lighting tool 10A is arranged in a light chamber at the rear of the vehicle such as a high mount stop lamp or at the rear of the vehicle body toward the rear side in the traveling direction of the vehicle 1.
  • the first light source 21 and the second light source 22 in the light source unit 11 emit white light.
  • the vehicle lighting tool 10A is interlocked with the backward light, and when the backward light is turned on, an irradiation pattern PiA is formed on the road surface 2 so that the vehicle 1 points in the backward direction.
  • the irradiation pattern PiA can notify a person in the vicinity behind the vehicle 1 that the vehicle 1 is moving backward, and can alert the person in the vicinity. Since the vehicle lighting fixture 10A forms the same white irradiation pattern PiA as the interlocking back light, the discomfort of interlocking is suppressed.
  • the vehicle lighting fixture 10A may form, for example, a rectangular irradiation pattern as long as it forms a white irradiation pattern in conjunction with the back light, or forms an irradiation pattern of another shape. Also, it is not limited to other examples.
  • Example 1 the brightness in the width direction is made substantially uniform in each slit portion 27.
  • the condenser lens 12 has a light distribution distribution having a single high light amount region (HA) in the parallel direction Dp of the two light sources (21, 22) on the light shielding member (filter 13).
  • HA high light amount region
  • the parallel direction Dp may be appropriately set according to the shape and mode of the irradiation pattern to be formed, and is not limited to the configuration of the first embodiment.
  • a filter 13 that transmits the light collected by the condensing lens 12 through the irradiation slit 26 is used.
  • the light-shielding member may have other configurations as long as it is provided with an irradiation slit 26 that partially passes the light condensed by the condenser lens 12, and is not limited to the configuration of the first embodiment.
  • a plate-shaped member that does not allow light to pass through may be provided with an irradiation slit that penetrates the member, and a light-shielding plate that allows light that has passed through the condenser lens 12 to pass through the irradiation slit.
  • the vehicle 1 driven by the driver is provided with the vehicle lamps 10 and 10A.
  • the vehicle lighting equipment may be provided in a vehicle having an automatic driving function, and is not limited to the configuration of the first embodiment.
  • the vehicle lighting fixture may form an irradiation pattern at a timing according to the intended use, that is, at a timing according to some intention regarding the operation of the vehicle 1, and is not limited to the configuration of the first embodiment.
  • the light source portion 11 is provided on the installation base portion 16 having a function as a heat sink (heat dissipation portion 16b), and the installation base portion 16 is connected to the housing 15.
  • the light source unit is an end portion of the housing. It may be provided in, or may have another configuration, and is not limited to the configuration of the first embodiment.
  • First light source 21a (As an example of light-emitting surface) First light-emitting surface 22
  • Second light source 22a (Example of light-emitting surface) (As) 2nd light emitting surface 26
  • Irradiation slit 31 Incident surface 32
  • Exit surface 34 1st incident surface part 35 2nd incident surface part 36
  • Intermediate incident surface part As1 1st light blocking area As2 2nd light blocking area Dp Parallel direction HA High light intensity area Ha High light intensity Lr Lens axis Pi, PiA Irradiation pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

簡易な構成としつつ遮光部材上における配光分布を所望のものにできる車両用灯具を提供する。 車両用灯具(10)は、発光面(21a、22a)を有し、所定の並列方向(Dp)に並べられた第1光源(21)および第2光源(22)と、第1光源(21)と第2光源(22)とから出射された光を集光する単一の集光レンズ(12)と、集光レンズ(12)で集光された光を部分的に通す照射スリット(26)が設けられた遮光部材(13)と、遮光部材を通した光を投影して照射パターン(Pi)を形成する投影レンズ(14)と、を備える。第1光源(21)と第2光源(22)とは、発光面における並列方向(Dp)での寸法以上の間隔(d)を置いて並べられ、集光レンズ(12)は、遮光部材上において光量が最も高い高光量領域(HA)が並列方向(Dp)で単一となる配光分布とすることを特徴とする。

Description

車両用灯具
 本開示は、車両用灯具に関する。
 車両用灯具は、車両の周辺の路面に照射パターンを形成することが考えられている。
 このような車両用灯具は、照射パターンを明るくするために、単一の投射光学系において複数の光源を設けることが考えられている(例えば、特許文献1等参照)。この車両用灯具は、複数の光源からの光を複数のライトガイドで遮光部材上に導くことで、明るい照射パターンを形成する。
特開2019-192350号公報
 ところが、この車両用灯具は、複数のライトガイドを複数の光源に個別に対応させているので、複雑な構成となるとともに遮光部材上での配光分布の調整が困難となる。
 本開示は、上記の事情に鑑みて為されたもので、簡易な構成としつつ遮光部材上における配光分布を所望のものにできる車両用灯具を提供することを目的とする。
 本開示の車両用灯具は、発光面を有し、所定の並列方向に並べられた第1光源および第2光源と、前記第1光源と前記第2光源とから出射された光を集光する単一の集光レンズと、前記集光レンズで集光された光を部分的に通す照射スリットが設けられた遮光部材と、前記遮光部材を通した光を投影して照射パターンを形成する投影レンズと、を備え、前記第1光源と前記第2光源とは、前記発光面における前記並列方向での寸法以上の間隔を置いて並べられ、前記集光レンズは、前記遮光部材上において、光量が最も高い高光量領域が前記並列方向で単一となる配光分布とすることを特徴とする。
 本開示の車両用灯具によれば、簡易な構成としつつ遮光部材上における配光分布を所望のものにできる。
本開示に係る実施例1の車両用灯具が車両に搭載されて照射パターンを形成した様子を示す説明図である。 実施例1の車両用灯具の構成を示す説明図である。 基板に設けられた第1光源と第2光源とを示す説明図である。 路面上に投影した照射パターンを示す説明図である。 フィルタを示す説明図である。 光軸方向と幅方向とを含む横断面上で、集光レンズの構成を示す説明図である。 車両用灯具において横断面上で第1光源から第1入射面部を経て集光レンズを透過した光が進行する様子を示す説明図である。 図7に示す光によるフィルタ上での配光分布を示す説明図である。 車両用灯具において横断面上で第2光源から第1入射面部を経て集光レンズを透過した光が進行する様子を示す説明図である。 車両用灯具において横断面上で第2光源から中間入射面部を経て集光レンズを透過した光が進行する様子を示す説明図である。 図9に示す光と図10に示す光とによるフィルタ上での配光分布を示す説明図である。 図8の配光分布と図11の配光分布とを重ねたフィルタ上での配光分布を示す説明図である。 第1光源および第2光源を点灯した際のフィルタ上での配光分布を示す説明図である。 図13の配光分布に各照射スリットを重ねて示した説明図である。 車両用灯具で形成した照射パターンの一例としての使用例を示す説明図である。 本開示に係る他の例の車両用灯具が車両に搭載されて照射パターンを形成した様子を示す説明図である。
 以下に、本開示に係る車両用灯具の一例としての車両用灯具10の実施例1について図面を参照しつつ説明する。なお、図1では、車両用灯具10が設けられている様子の把握を容易とするために、車両1に対して車両用灯具10を強調して示しており、必ずしも実際の様子とは一致するものではない。また、図6、図7、図9、図10では、集光レンズ12の構成やその中を光が進行する様子の把握を容易とするために、それぞれの切断面に付すハッチングを省略している。さらに、図6では、中間範囲Mrの把握を容易とするために、中間範囲Mrに相当する箇所にドットを付して示している。
 本開示に係る車両用灯具の一実施形態に係る実施例1の車両用灯具10を、図1から図15を用いて説明する。実施例1の車両用灯具10は、図1に示すように、自動車等の車両1の灯具として用いられるもので、車両1に設けられる前照灯とは別に、車両1の前方の周辺の路面2に照射パターンPiを形成する。その車両1の前方の周辺とは、車両1に設けられる前照灯により照射される前照灯領域よりも車両1に近い近接領域を必ず含むものであり、部分的に前照灯領域を含む場合もある。車両用灯具10は、実施例1では、車両の前部の左右両側の灯室に配置されている。その灯室は、ランプハウジングの開放された前端がアウターレンズで覆われて形成されている。車両用灯具10は、灯室において、投影光軸Lpが路面2に対して傾斜した状態で設けられる。これは、灯室が路面2よりも高い位置に設けられていることによる。以下の説明では、車両用灯具10において、光を照射する方向となる投影光軸Lpが伸びる方向を光軸方向(図面ではZとする)とし、光軸方向を水平面に沿う状態とした際の鉛直方向を上下方向(図面ではYとする)とし、光軸方向および上下方向に直交する方向(水平方向)を幅方向(図面ではXとする)とする(図2等参照)。
 車両用灯具10は、図2に示すように、光源部11と集光レンズ12とフィルタ13と投影レンズ14とが筐体15に収容され、単一の投射光学系とされて、プロジェクタタイプの路面投影ユニットを構成する。筐体15は、半円筒形の下側部材15aと上側部材15bとで構成されており、下側部材15aに上記の各部材(12から14)が設置された状態で、設置台部16を介在させて下側部材15aと上側部材15bとが嵌め合わされる。筐体15では、集光レンズ12を嵌め入れる集光レンズ溝15cと、フィルタ13を嵌め入れるフィルタ孔15dと、投影レンズ14を嵌め入れる投影レンズ溝15eとが設けられている(下側部材15a側のみ図示)。なお、筐体15の形状は、適宜設定すればよく、実施例1の構成に限定されない。
 設置台部16は、光源部11を設置するもので、熱伝導性を有するアルミダイカストや樹脂で形成され、設置箇所16aと放熱箇所16bとを有する。設置箇所16aは、光源部11(その基板23)が設置される箇所であり、光軸方向に直交する平板状とされている。設置箇所16aには、光源部11を囲む接続壁16cが設けられている。接続壁16cは、下側部材15aと上側部材15bとが嵌め合わされる際、光軸方向の前側の先端部16dが下側部材15aと上側部材15bとに挟まれることで、筐体15に接続される。
 放熱箇所16bは、光源部11で発生する熱を外部に逃がすヒートシンクとして機能する。この放熱箇所16bは、設置箇所16aに連続して設けられ、複数の放熱フィン16eを有する。放熱箇所16bは、設置箇所16aに設置された光源部11で発生した熱を各放熱フィン16eから外部に放熱する。
 光源部11は、第1光源21と、第2光源22と、それらが実装される基板23と、を有する。第1光源21と第2光源22とは、LED(Light Emitting Diode)等の発光素子で構成され、並列方向Dp(図3参照)に並べられているとともに、互いの出射光軸Liが平行とされる(図6参照)。なお、出射光軸Liは、個別に記載する際は、第1光源21のものを第1出射光軸Li1とし、第2光源22のものを第2出射光軸Li2とする。第1光源21と第2光源22とは、実施例1では、出射光軸Liを中心とするランバーシアン分布でアンバー色の光(縦軸を光量とし横軸を波長としたグラフにおいてアンバー色の波長帯域に最も大きなピークがあって実質的にアンバー色の単色光に近いもの)を出射する。なお、第1光源21と第2光源22とは、色(波長帯域)や、分布の態様や、色の数(上記したグラフでのピークの数)等は適宜設定すればよく、他の色の光を出射するものでもよく、白色光を出射するものでもよく、実施例1の構成に限定されない。
 第1光源21と第2光源22とは、図3に示すように、それぞれ光軸方向で見て矩形状の第1発光面21a、第2発光面22aを有する。この第1発光面21aと第2発光面22aとは、実施例1では互いに等しい形状で等しい大きさとされており、互いに等しい姿勢とされている。第1光源21と第2光源22とは、第1発光面21aと第2発光面22aとが間隔dを置いた位置関係とされている。実施例1では、並列方向Dpが、幅方向と平行とされている。間隔dは、第1発光面21aおよび第2発光面22aにおける幅方向での大きさ寸法(幅寸法w)と等しいまたはその大きさ寸法よりも大きくされている。
 基板23は、設置台部16の設置箇所16aに取り付けられ、第1光源21と第2光源22とが実装される。基板23は、点灯制御回路が設けられており、そこから電力を適宜供給して第1光源21と第2光源22とを点灯させる。基板23は、設置台部16の設置箇所16aに取り付けられた状態で、接続壁16cに筐体15が接続されることで、筐体15の後端部(光軸方向で投影レンズ溝15eとは反対側の端部)側に位置されて、その筐体15に収容された集光レンズ12(その入射面31)と対向される。
 集光レンズ12は、図2に示すように、第1光源21、第2光源22から出射された光を集光するものであり、フィルタ13上に光を集める。集光レンズ12は、実施例1では基本的に両凸レンズとされており、入射面31および出射面32(図6等参照)が自由曲面とされている。その入射面31と出射面32とにおける光学的な設定については後述する。集光レンズ12では、幅方向の両端にフランジ部33が設けられている。各フランジ部33は、筐体15の集光レンズ溝15cに嵌め入れることが可能とされている。集光レンズ12は、光軸方向に延びるレンズ軸Lrを有する。そのレンズ軸Lrは、集光レンズ12における光学的な中心となる軸線である。集光レンズ12は、フランジ部33が集光レンズ溝15cに嵌め入れられるとレンズ軸Lrの延びる方向が投影光軸Lpと一致される。
 フィルタ13は、集光レンズ12で集光された第1光源21や第2光源22からの光を部分的に通すことで照射パターンPiを形成する遮光部材の一例である。その照射パターンPiは、図1に示すように、3つの照射図柄Diが車両1から遠ざかる方向に略等しい間隔で整列されている。各照射図柄Diは、図4に示すように、大きく開くV字形状とされており、互いに略等しい大きさとされている。ここで、各照射図柄Diは、個別に示す際には、車両1から最も遠いものを第1照射図柄Di1とし、そこから車両1に近づくにつれて順に、第2照射図柄Di2、第3照射図柄Di3とする。このため、照射パターンPiでは、第1照射図柄Di1が最遠部となり、第3照射図柄Di3が最近部となる。照射パターンPiは、V字形状の頂点が略一直線上に位置されて3つの各照射図柄Diが並べられることで、車両1から所定の方向を指し示す矢印のように見せることができる。この照射パターンPiとしての矢印が指し示す方向すなわち各照射図柄DiのV字形状の頂点が並ぶ方向を矢印方向Daとし、その指し示す側(第1照射図柄Di1側)を矢印方向Daの前側とする。
 その各照射図柄Diは、矢印方向Daに直交する方向に位置する2つの側端Dieが、矢印方向Daの後側に向かうに連れて内側(矢印方向Daが示す車両が曲がる側から見て内側)に向かう傾斜の直線とされている。すなわち、各照射図柄Diにおける両側端Dieは、矢印方向Daに対して内側に傾斜されている。この両側端Dieの直線が伸びる方向を側端方向Deとする。この3つの照射図柄Diからなる照射パターンPiは、フィルタ13により形成される。フィルタ13は、車両1の左右のいずれに設けられるのかに拘わらず、等しい構成とされている。
 フィルタ13は、図5に示すように、フィルタ部24がフィルタ枠部25に設けられている。フィルタ枠部25は、フィルタ部24を取り囲む円形の枠状とされており、筐体15のフィルタ孔15dに嵌め入れることが可能とされている(図1参照)。
 フィルタ部24は、基本的に光の透過を阻む板状のフィルム部材で形成されており、照射スリット26が設けられている。照射スリット26は、集光レンズ12で集光された第1光源21、第2光源22からの光を部分的に透過させることで、照射パターンPiを所定の形状に成形する。照射スリット26は、照射パターンPiに対応されており、実施例1では3つのスリット部27で構成されている。3つのスリット部27は、3つの照射図柄Diに一対一で対応しており、各照射図柄Diと同様に大きく開くV字形状とされ、各照射図柄Diとは異なり互いに異なる大きさとされるとともに異なる間隔とされている。詳細には、車両用灯具10は、路面2に対して投影光軸Lpが傾斜して設けられることでフィルタ13および投影レンズ14から路面2までの距離が異なるので、投影レンズ14により路面2上に投影されると各スリット部27(そこを透過した光である各照射図柄Di)がその距離に応じた大きさおよび間隔とされる。このため、各スリット部27は、路面2上で各照射図柄Diが略等しい大きさで略等間隔となるように、路面2までの距離に応じて大きさおよび間隔が設定されている。
 また、各スリット部27は、照射パターンPiの各照射図柄Diの位置関係に対して、投影光軸Lpを中心として回転対象な位置関係とされている。すなわち、車両用灯具10は、投影レンズ14が反転させてフィルタ13(照射スリット26)を路面2に投影させることから、路面2上で各照射図柄Diが狙った位置関係となるように、各スリット部27を設けている。このため、各スリット部27は、上下方向の最も下側の第1スリット部271が、照射パターンPiの第1照射図柄Di1(最遠部)に対応する最遠箇所となる。そして、各スリット部27は、その上の第2スリット部272が第2照射図柄Di2に対応し、最も上側の第3スリット部273が第3照射図柄Di3(最近部)に対応する最近箇所となる。実施例1のフィルタ13では、上下方向において、第3スリット部273が投影光軸Lpよりも上方に設けられ、その下で投影光軸Lpを含む水平線を跨いで第2スリット部272が設けられ、その下に第1スリット部271が設けられている。このフィルタ13(照射スリット26の各スリット部27)を透過した光は、投影レンズ14により路面2に投影される。
 投影レンズ14は、図2に示すように、光軸方向で見て円形状の凸レンズとされたレンズ本体部28と、その周辺を取り巻くフランジ部29と、を備える。レンズ本体部28は、実施例1では、入射面および出射面が、凸面とされた自由曲面とされており、段差がなく滑らかに曲率が変化された面(少なくともC2級関数)とされている。投影レンズ14は、光軸方向に延びるレンズ軸を有する。このレンズ軸は、レンズ本体部28において光軸方向での厚さが最も大きい位置を通る光学的な軸線である。レンズ本体部28は、フィルタ13の照射スリット26(その各スリット部27)を投影することで、図1等に示すように、投影光軸Lpに対して傾斜する路面2上に照射パターンPiを形成する。なお、入射面と出射面とは、レンズ本体部28を凸レンズとするものであれば、凸面でもよく凹面でもよく、実施例1の構成に限定されない。
 フランジ部29は、レンズ本体部28からレンズ軸を中心とする放射方向に突出しており、レンズ軸を中心する周方向で全周に亘っている。フランジ部29は、筐体15の投影レンズ溝15eに嵌め入れることが可能とされている。投影レンズ14は、フランジ部29が投影レンズ溝15eに嵌め入れられるとレンズ軸が投影光軸Lpと一致される。
 次に、集光レンズ12の光学的な設定について、図6から図14を用いて説明する。その図8と、図11から図14と、では、色が濃くなるほど相対的に明るいことを示し、色が薄くなるほど相対的に暗いことを示す。
 先ず、集光レンズ12は、基本的に、第1光源21および第2光源22からの光を集光することで、フィルタ13における設定範囲Sr(図5参照)を含む配光分布で照射させる(図14参照)。設定範囲Srは、実施例1では、フィルタ13において照射スリット26(その各スリット部27)が設けられている範囲とされている。なお、設定範囲Srは、照射スリット26の形状に合わせて形状を設定すればよく、実施例1の構成に限定されない。以下では、投影光軸Lpに直交する方向を径方向とする。
 集光レンズ12は、図6に示すように、入射面31が、光軸方向と幅方向(並列方向Dp)とを含む横断面においてレンズ軸Lrに関して線対称な構成、すなわちレンズ軸Lrを含み幅方向に直交する面に関して面対称な構成とされている。集光レンズ12は、第1入射面部34と第2入射面部35と中間入射面部36とを有する。第1入射面部34は、第1光源21を対象として、すなわちその第1発光面21aを基準として光学的に設定されており、第1光源21に対して光軸方向の前側であって幅方向の外側(第2光源22とは反対側)に設けられている。第2入射面部35は、第2光源22を対象として、すなわちその第2発光面22aを基準として光学的に設定されており、第2光源22に対して光軸方向の前側であって幅方向の外側(第1光源21とは反対側)に設けられている。中間入射面部36は、第1光源21および第2光源22の前側であって第1入射面部34と第2入射面部35との間に設けられており、レンズ軸Lr上に位置している。実施例1の入射面31は、横断面において、第1光源21の第1出射光軸Li1上が第1入射面部34と中間入射面部36との境とされ、第2光源22の第2出射光軸Li2上が第2入射面部35と中間入射面部36との境とされている。
 集光レンズ12は、光軸方向と上下方向とを含む縦断面において、入射面31が光軸方向の後側に凸の曲面とされているとともに、出射面32が光軸方向の前側に凸の曲面とされている。このとき、集光レンズ12は、フィルタ13の設定範囲Srにおいて上下方向で所望の配光分布(図13等参照)とするように、入射面31と出射面32とのそれぞれの縦断面における曲率を調整する。その配光分布は、実施例1では、フィルタ13の設定範囲Srにおいて、上下方向で投影光軸Lpの近傍で投影光軸Lpよりも下方を最も明るくしつつ、そこから離れるに連れて漸次的に暗くなるものとされている。これにより、フィルタ13上では、縦断面において、投影光軸Lpを含む幅方向にのびる線に関して、上下で非対称な配光分布とされる。
 また、集光レンズ12の入射面31は、図6に示すように、横断面において、第1入射面部34と第2入射面部35とが光軸方向の後側に凸の曲面とされているとともに、中間入射面部36が幅方向(並列方向Dp)と平行な平面とされている。すなわち、中間入射面部36は、シリンドリカルレンズのように幅方向に伸びつつ上下方向のみに屈折力を持つものとされている。その第1入射面部34は、第1光源21の第1発光面21aの中心からの光を基準として光学的に設定され、第2入射面部35は、第2光源22の第2発光面22aの中心からの光を基準として光学的に設定されている。このため、入射面31では、第1光源21の第1出射光軸Li1上にサブレンズ軸が設定されているとともに、第2光源22の第2出射光軸Li2上にサブレンズ軸が設定されている。
 また、集光レンズ12は、横断面において、出射面32が光軸方向の前側に凸の曲面とされている。その出射面32では、横断面において、レンズ軸Lrよりも幅方向の第1入射面部34側の半分を第1出射面部37とし、残りの半分を第2出射面部38とする。また、集光レンズ12では、幅方向で中間入射面部36が設けられた範囲を中間範囲Mrとする。すなわち、中間範囲Mrは、光軸方向で中間入射面部36と対向する範囲であり、中間入射面部36の光軸方向の前側に位置する範囲である。そして、集光レンズ12は、横断面において、第1入射面部34および第2入射面部35と、出射面32と、の曲率が次のように設定されている。
 集光レンズ12は、図7に示すように、横断面において、第1光源21から出射されて第1入射面部34から入射された光L1を制御の対象として、第1入射面部34と第1出射面部37との曲率を設定する。集光レンズ12は、横断面において、光L1のうちの第1出射光軸Li1の近傍の光を、フィルタ13に至る前に投影光軸Lpと交差する方向へと進行させつつ緩やかに発散させる。また、集光レンズ12は、横断面において、光L1のうちの残りの光を、フィルタ13に至る前では投影光軸Lpと交差させることなく投影光軸Lp側へと向かうように進行させつつ緩やかに発散させる。このとき、第1出射面部37は、中間範囲Mrに頂点が位置するように、第1入射面部34とともに曲率が設定される。
 集光レンズ12は、上記した光学的な設定とされることで、光L1をフィルタ13上に照射させて、図8に示すように所望の配光分布とする。ここで、フィルタ13では、投影光軸Lpよりも幅方向で第1入射面部34(第1光源21)側を第1遮光領域As1とし、その反対側すなわち幅方向で第2入射面部35(第2光源22)側を第2遮光領域As2とする。
 フィルタ13上では、光L1が照射されることにより、投影光軸Lpよりも下方における投影光軸Lpの近傍に、この配光分布において最も光量の高い高光量箇所Ha1(光量のピーク)が形成される。その高光量箇所Ha1は、投影光軸Lpを通る鉛直線を跨いで第1遮光領域As1と第2遮光領域As2との双方に幅方向に伸びる長尺な形状としている。そして、フィルタ13上では、光L1が照射されることにより、高光量箇所Ha1を中心として、設定範囲Sr内における上下左右の所定の範囲に亘り配光分布が形成される。その光L1による配光分布では、高光量箇所Ha1から離れるに連れて、すなわち設定範囲Srの周縁に近付くほど暗くなるように、徐々に明るさが変化しており、単一の高光量箇所Ha1が形成されている。なお、フィルタ13上では、光L1が、設定範囲Srにおける中央近傍から第1遮光領域As1側に広げた範囲を照射しており、設定範囲Srの全域を照射してはいない。
 集光レンズ12では、横断面において、上記のように設定された第1入射面部34と第1出射面部37とを用いて、第2入射面部35と第2出射面部38との曲率が設定される。この集光レンズ12は、横断面においてレンズ軸Lrに関して線対称、すなわちレンズ軸Lrを含み幅方向に直交する面に関して面対称とする。そして、集光レンズ12は、横断面においてレンズ軸Lrを中心に第1入射面部34を反転させて第2入射面部35を設定し、レンズ軸Lrを中心に第1出射面部37を反転させて第2出射面部38を設定する。
 ここで、第1入射面部34は、上記のように設定することで、第1光源21側に凸となる曲面とされるとともに、幅方向でレンズ軸Lrに至る前に頂点(光軸方向で最も第1光源21側となる点)が存在する(図6において第1入射面部34からのびる二点鎖線34´参照)。このため、入射面31では、横断面において第1入射面部34からレンズ軸Lrを中心に線対称として第2入射面部35を設定すると、レンズ軸Lrの近傍に凹み(光軸方向で出射面32側に湾曲した窪み)が形成される。この凹みは、設定範囲Sr内において、不要に明るい領域(図11の破線で囲む箇所参照)を形成してしまう。
 そこで、実施例1の集光レンズ12は、横断面において、第1入射面部34および第2入射面部35を、幅方向で外側の端部34a、35aからそれぞれが対応する光源(21、22)の出射光軸(Li1、Li2)まで伸びるものとし、その間を幅方向に平行な線で繋いで中間入射面部36とする。この中間入射面部36は、第1入射面部34と第2入射面部35とを連続させているので、縦断面においては、それらと一体的に光軸方向の後側に凸の曲面とされている。この中間入射面部36は、第1入射面部34と第2入射面部35とを上記のように設定した際に不要に明るい領域の原因のとなる凹みを形成しないように、横断面において幅方向に平行とされていれば、幅方向での位置は適宜設定すればよく、実施例1の構成に限定されない。
 出射面32は、第1出射面部37の頂点が中間範囲Mrに位置するので、その頂点が幅方向でレンズ軸Lrを超えた位置(第2光源22が設けられた側)に形成されている場合、上記のように形成されることで単一の頂点を有するものとなる。また、出射面32は、第1出射面部37の頂点が幅方向でレンズ軸Lrを超えない位置(第1光源21が設けられた側)に形成されている場合、上記のように形成されることで2つの頂点を有するものとなる。そして、出射面32は、いずれの場合であっても横断面においてレンズ軸Lrを中心として線対称とされているので、第1出射面部37と第2出射面部38とがレンズ軸Lr上において段差のないもの(C0級関数)とされている。
 上記のように設定された集光レンズ12は、図9に示すように、横断面において、第2光源22から出射されて第1入射面部34から入射された光L2のうち、幅方向の外側の近傍の光をレンズ軸Lr側へ向けて出射する。また、集光レンズ12は、横断面において、光L2のうち、レンズ軸Lr側の光をレンズ軸Lrから離れる方向へ向けて出射する。すなわち、集光レンズ12は、横断面において、光L2に対して、入射位置が第1入射面部34における幅方向の内側となるに連れて、レンズ軸Lrに近付く方向から遠ざかる方向へ出射させる方向を変化させている。このため、集光レンズ12は、横断面において、光L2を、進行する方向を交差させた後にレンズ軸Lrから離れた位置で緩やかに発散させる。
 上記のように設定された集光レンズ12は、図10に示すように、横断面において、第2光源22から出射されて中間入射面部36から入射された光L3を、発散させつつレンズ軸Lrから徐々に離れる方向へと出射して、緩やかに発散させる。
 集光レンズ12は、上記のように光学的に設定されることで、第1入射面部34および中間入射面部36を経た第2光源22からの光L2および光L3を、フィルタ13上において図11に示すように照射させる。フィルタ13上では、光L2および光L3が照射されることにより、投影光軸Lpよりも下方における投影光軸Lpの近傍に、この配光分布において最も光量の高い高光量箇所Ha2(光量のピーク)が形成される。その高光量箇所Ha2は、第1遮光領域As1内で幅方向に伸びる長尺な形状とされており、上記の光L1による高光量箇所Ha1(図8参照)と一部を重ねつつ幅方向で並ぶ位置関係とされている。そして、フィルタ13上では、高光量箇所Ha2を中心として、設定範囲Sr内における第1遮光領域As1側の上下左右の所定の範囲に亘り配光分布が形成される。その配光分布では、高光量箇所Ha2から離れるに連れて、すなわち設定範囲Srの周縁に近付くほど暗くなるように、徐々に明るさが変化しており、単一の高光量箇所Ha2が形成されている。
 フィルタ13上では、光L1による配光分布(図8参照)と、光L2と光L3とによる配光分布(図11参照)と、が重ねられる。すると、フィルタ13上では、図12に示すように、高光量箇所Ha1と高光量箇所Ha2とが重ねられて、この配光分布において最も光量の高い高光量箇所Ha3が形成される。この高光量箇所Ha3は、投影光軸Lpよりも下方における投影光軸Lpの近傍において、投影光軸Lpを通る鉛直線を跨いで一部が第2遮光領域As2に位置しつつ第1遮光領域As1まで幅方向に伸びる長尺な形状とされている。そして、フィルタ13上では、高光量箇所Ha3を中心として、設定範囲Srの第1遮光領域As1側を埋めつつ第2遮光領域As2における投影光軸Lpの近傍に至る範囲に亘って配光分布が形成される。その配光分布では、高光量箇所Ha3から離れるに連れて、すなわち設定範囲Srの周縁に近付くほど暗くなるように徐々に明るさが変化しており、単一の高光量箇所Ha3を有している。
 ここで、図12に示すフィルタ13上の配光分布は、第1入射面部34および中間入射面部36を経た第1光源21および第2光源22からの光L1と光L2と光L3とにより形成されたものである。そして、集光レンズ12は、横断面においてレンズ軸Lrに関して線対称な構成とされているので、第1光源21および第2光源22からの第2入射面部35および中間入射面部36を経た光による配光分布が、図12の配光分布の投影光軸Lpに関して線対称なものとされる。
 これらのことから、第1光源21と第2光源22とが点灯されると、図12の配光分布と、それと投影光軸Lpに関して線対称な配光分布と、が重ねられて、図13に示す配光分布がフィルタ13上に形成される。フィルタ13上では、双方の高光量箇所Ha3が重ねられることで、投影光軸Lpよりも下方の投影光軸Lpの近傍において、投影光軸Lpを跨いで幅方向に長尺な高光量領域HAが形成される。高光量領域HAは、この配光分布において最も光量の高い領域(光量がピークとなる領域)であり、所謂ホットゾーンとなる。フィルタ13上では、高光量領域HAを中心として、設定範囲Srを埋めるように光が照射され、高光量領域HAから離れるに連れてすなわち設定範囲Srの周縁に近付くほど暗くなるように、徐々に明るさが変化している。このように、フィルタ13上では、幅方向(並列方向Dp)で単一の高光量領域HA(光量のピーク)を有する配光分布が形成されている。このとき、フィルタ13上では、明るさの分布が幅方向に拡がるものとされており、上下方向で等しい位置である場合には幅方向での位置が変化しても明るさが殆ど変化しない。すなわち、集光レンズ12は、幅方向において、上下方向と比較して明るさの差が生じないように発散させて、第1光源21および第2光源22からの光で設定範囲Sr内を照射させている。
 この図13に示す配光分布が、フィルタ13における照射スリット26の各スリット部27上に形成された様子を図14に示す。フィルタ13上では、高光量領域HAが第1スリット部271の略全域を包含するものとされており、そこを最も明るく(光量のピークと)しつつ、そこから離れるに連れて漸次的に暗くされて設定範囲Sr内が照射されている。その設定範囲Srでは、上下方向において、最遠箇所となる第1スリット部271が最も明るく、最近箇所となる第3スリット部273が最も暗くなるように、第1から第3のスリット部271、272、273の順に徐々に明るさが変化している。このとき、設定範囲Srでは、各スリット部27すなわち上下方向での各位置において、幅方向における明るさが略均一なものとされている。これにより、フィルタ13上では、第1スリット部271よりも第2スリット部272が、かつ第2スリット部272よりも第3スリット部273が、暗くされつつ、その各スリット部27が幅方向における明るさが略均一なものとされている。
 車両用灯具10は、図2を参照して以下のように組み付けられる。先ず、基板23に第1光源21、第2光源22が実装されて光源部11が組み付けられ、その光源部11が設置箇所16aに固定されて設置台部16が構成される。その後、筐体15の下側部材15aにおいて、集光レンズ溝15cに集光レンズ12を嵌め入れ、フィルタ孔15dにフィルタ13を嵌め入れ、投影レンズ溝15eに投影レンズ14を嵌め入れる。そして、筐体15の下側部材15aの後端部を接続壁16cの先端部16dの下側に宛がいつつその下側部材15aに上側から上側部材15bを嵌め合わせる。これにより、集光レンズ12とフィルタ13と投影レンズ14とが筐体15に収容されつつ、その筐体15に光源部11が接続される。これにより、投影光軸Lp上に、光源部11の側から集光レンズ12とフィルタ13と投影レンズ14との順に並ぶ所定の位置関係で配置されて、車両用灯具10が組み付けられる。
 次に、車両用灯具10の作用について説明する。この車両用灯具10は、投影光軸Lpが車両1の外側の斜め前側に向けられつつ車両1の周辺の路面2に対して傾斜された状態で灯室に設けられる(図1参照)。車両用灯具10は、点灯制御回路からの電力を基板23から第1光源21および第2光源22に供給することで、それらを適宜点灯および消灯できる。第1光源21および第2光源22からの光は、集光レンズ12で集光されてフィルタ13を照射し、その照射スリット26(各スリット部27)を透過した後に、投影レンズ14により投影されることで、照射パターンPiを路面2上に形成する。その照射パターンPiは、上記の配光分布とされたフィルタ13の照射スリット26(その各スリット部27)を透過した光が、投影レンズ14により投影されることで、略等しい明るさで略一直線上に3つの照射図柄Diが並べられる。特に、実施例1の車両用灯具10では、第1光源21、第2光源22を単色光としているので、投影レンズ14における色収差の影響を大幅に抑制することができ、照射パターンPiすなわち各照射図柄Diを明確なものにできる。
 車両用灯具10は、ターンランプと連動されており、左右いずれかのターンランプが点灯されると、その点灯された側に設けられたものの第1光源21、第2光源22が点灯されて、照射パターンPiを路面2上に形成する。例えば、図15に示す例では、見通しの悪い路地から出てくる車両1が左折しようとしている場面を示している。車両1では、左側のターンランプが点滅されることで、左前に設けられた車両用灯具10が照射パターンPiを路面2上に形成する。すると、図15を正面視して手前側に存在する者は、車両1を視認できない場合であっても、路面2上に形成された照射パターンPiを視認できる。
 特に、車両用灯具10は、形成する照射パターンPiの各照射図柄Diにおいて、両側端Dieを矢印方向Daに対して内側に傾斜させている。このため、車両用灯具10は、曲がろうとする方向へ向けて形成した照射パターンPi(その矢印方向Da)よりも、その曲がろうとする方向へと大きく傾けたラインとして各側端Dieを示すことができる。このことから、車両用灯具10は、例えば、左前に形成された照射パターンPiを車両1の左前側に存在する者に対して、手前側の側端Die(その側端方向De)が自らへ向けられているように見せることができる。これにより、車両用灯具10は、その者に対して、照射パターンPiが単に矢印方向Daを指し示しているだけではなく、矢印方向Daからより外側すなわちその者がいる方向へと曲がる意図があることを感じさせることができる。
 また、車両1は、左右の車両用灯具10がターンランプと連動されているので、ハザードランプが点灯された場合には、左右の2つの車両用灯具10が同時に照射パターンPiを路面2上に形成することとなる(図1参照)。このため、車両用灯具10は、左右のターンランプのみを点滅させている場合と比較して、車両1の周辺にいる者に対して、ハザードランプが点灯されていることをより確実に認識させることができる。
 車両用灯具10は、第1光源21と第2光源22とからの光をフィルタ13上に導いているので、その照射スリット26を通して形成する照射パターンPiの明るさを十分なものにできる。ここで、第1光源21と第2光源22とは、それぞれが発熱するので、間隔を置いて配置することで、良好に放熱できる。
 ここで、比較例としての車両用灯具(以下では、比較車両用灯具とする)について述べる。比較車両用灯具は、車両用灯具10と同様に、光源からの光を集光レンズでフィルタ上に集光し、投影レンズで投影することで照射パターンを形成する構成とされている。比較車両用灯具は、間隔を置いて2つの光源を配置すると、フィルタ上において、2つの光源が形成する光量のピークが離れて形成される。このことは、形成した照射パターンにおける光ムラの原因となり、両光源が双方の発光面の寸法よりも大きな間隔で配置された場合に、顕著となって光ムラが目立つようになる。換言すると、比較車両用灯具は、各発光面よりも大きな間隔を置いて両光源を配置すると、2つの光源を単一の光源とみなすことが困難となる傾向があり、フィルタ上で2つのピークが形成されて照射パターンに光ムラを生じさせてしまう。
 これに対して、車両用灯具10は、両発光面(21a、22a)における幅寸法w以上の間隔dを置いた2つの光源(21、22)からの光を集光する集光レンズ12において、入射面31に第1入射面部34と第2入射面部35とを設けている。その第1入射面部34は、第1光源21を対象として光学的に設定しているとともに、第2入射面部35は、第2光源22を対象として光学的に設定している。そして、集光レンズ12では、第1入射面部34や第2入射面部35から入射させた第1光源21および第2光源22からの光が、フィルタ13上において並列方向Dp(幅方向)で単一の高光量領域HA(光量のピーク)を有する配光分布となるように、第1入射面部34および第2入射面部35とともに出射面32を光学的に設定している。このため、車両用灯具10は、両光源(21、22)を適切に冷却しつつ、光ムラを抑制した明るい照射パターンPiを形成できる。
 特に、実施例1の車両用灯具10では、集光レンズ12が、第1入射面部34を経た第1光源21からの光をフィルタ13上に投影して、第2遮光領域As2で投影光軸Lpの近傍に配光分布における高光量箇所Ha1を有する配光分布とする。また、車両用灯具10では、集光レンズ12が、第2入射面部35を経た第2光源22からの光をフィルタ13上に投影して、第1遮光領域As1で投影光軸Lpの近傍に配光分布における高光量箇所(高光量箇所Ha1を反転したもの)を有する配光分布とする。そして、車両用灯具10では、集光レンズ12が、上記の2つの高光量箇所を並列方向Dpで隙間なく並べることで、投影光軸Lp上で途切れることなく投影光軸Lpを跨いで幅方向に長尺な高光量領域HAを形成する。換言すると、集光レンズ12は、配光分布を反転させて重ねた際に単一の高光量領域HAを形成するように、第1入射面部34を経た第1光源21からの光L1が形成する配光分布における高光量箇所Ha1の位置および形状を調整している。これにより、車両用灯具10は、フィルタ13上において、幅方向に伸びる第1スリット部271の略全域に亘って高光量領域HAを形成することができ、第1スリット部271の最も遠くに形成される第1照射図柄Di1の明るさを確保しつつ略均一な明るさにできる。
 ここで、先行技術文献に記載の従来の車両用灯具は、複数の光源に個別に対応させて複数のライトガイドを設けている。この各ライトガイドは、一体化されていても、個別に光源に対応する棒状とされており、対応する光源からの光のみを遮光部材上へと個別に導くものとされている。このため、従来の車両用灯具は、各光源に合わせて複数の棒状のライトガイドを配置する必要があり、複雑な構成となる。また、従来の車両用灯具は、遮光部材上において、ライトガイド毎に対応する光源からの光が導かれるので、光源毎に別々に遮光部材上に導かれることとなる。このため、従来の車両用灯具は、形成する照射パターンに最適化させて遮光部材上で単一の高光量領域(光量のピーク)を有する配光分布を形成するように調整することが困難となる。この最適化は、例えば、本願発明の照射パターンPiを例にすると、最遠部の第1照射図柄Di1に対応する第1スリット部271を最も明るくして第2スリット部272、第3スリット部273の順に暗くしていくとともに、各スリット部27内を略均一な光量とするものである。このように、従来の車両用灯具は、照射パターンPiにおいて、各スリット部27が並ぶ上下方向では光量を変化させつつ、それに直交する幅方向では光量を略均一とする配光分布を形成するように調整することが困難となる。
 これに対して、車両用灯具10は、第1光源21および第2光源22に対して、それぞれからの光を内方に導きつつ同じ出射面32から出射させる単一の集光レンズ12を設け、その集光レンズ12でフィルタ13上における配光分布を所望のものとしている。このため、車両用灯具10は、形成する照射パターンPiの明るさを十分なものとしつつ、従来の車両用灯具と比較して簡易な構成にできる。また、車両用灯具10は、単一の集光レンズ12において、第1光源21からの光と第2光源22とからの光とを内方に導いて同一の出射面32から出射させて集光するので、双方の光を併せてフィルタ13上に導くことができる。このため、車両用灯具10は、従来の車両用灯具と比較して、フィルタ13上で単一の高光量領域HA(光量のピーク)を有する配光分布を形成するように調整することが容易となる。
 実施例1の車両用灯具10は、以下の各作用効果を得ることができる。
 車両用灯具10は、2つの光源(21、22)を両発光面(21a、22a)の幅寸法wと同じ間隔dもしくは幅寸法wよりも大きな間隔dを置いて並列方向Dpに並べて配置している。そして、車両用灯具10では、集光レンズ12が、両光源(21、22)からの光を集光して、遮光部材(実施例1ではフィルタ13)上における並列方向Dpで単一の高光量領域HAを有する配光分布とする。このため、車両用灯具10は、2つの光源(21、22)を適切に冷却しつつ、遮光部材上で単一の高光量領域HAを有する配光分布を形成できる。これにより、車両用灯具10は、集光レンズ12の構成を簡易なものにできるとともに、光ムラを抑制した明るい照射パターンPiを形成できる。
 また、車両用灯具10では、集光レンズ12が、第1入射面部34を経た第1光源21からの光を遮光部材上に投影して、その第2遮光領域As2で配光分布の高光量箇所Ha1を形成する。また、車両用灯具10では、集光レンズ12が、第2入射面部35を経た第2光源22からの光を遮光部材(フィルタ13)上に投影して、その第1遮光領域As1で配光分布の高光量箇所(高光量箇所Ha1を反転したもの)を形成する。そして、車両用灯具10では、集光レンズ12が、上記の2つの高光量箇所を並列方向Dpで隙間なく並べることで高光量領域HAを形成する。このため、車両用灯具10は、遮光部材上において、投影光軸Lpを跨いで幅方向に長尺な高光量領域HAを有する配光分布とすることができる。
 さらに、車両用灯具10は、入射面31が、並列方向Dpで、第1入射面部34と第2入射面部35との間に中間入射面部36を有し、その中間入射面部36が、並列方向Dpと平行な面とされている。このため、車両用灯具10は、上記のように第1入射面部34と第2入射面部35とを設定することに伴って、遮光部材上において不要に明るい領域が形成されることを抑制できる。
 車両用灯具10は、集光レンズ12の出射面32が、並列方向Dpにおいて、中間入射面部36が設けられた中間範囲Mrに遮光部材側へ向けて凸となる頂点を有している。このため、車両用灯具10は、頂点の周辺を含む出射面32の成形を容易なものにできる。
 したがって、本開示に係る車両用灯具としての実施例1の車両用灯具10は、簡易な構成としつつ遮光部材(フィルタ13)上における配光分布を所望のものにできる。
 以上、本開示の車両用灯具を実施例1に基づき説明してきたが、具体的な構成については実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 なお、実施例1では、3つの照射図柄Diを車両1から遠ざかる方向に略等しい間隔で整列させて照射パターンPiを構成している。しかしながら、照射パターンは、車両1の周辺の路面2に形成されて、車両1の周辺の者に対して運転手の何らかの意図を知らせるものであれば、図柄や形成する位置等は適宜設定すればよく、実施例1の構成に限定されない。また、車両用灯具10は、実施例1ではターンランプに連動されていたが、後退灯等の他のランプに連動させてもよく、個別に動作されてもよく、実施例1の構成に限定されない。そして、車両用灯具は、車両1に対して照射パターンを形成する位置に応じて車両1に設ければ、ドアミラーに収容したり、尾灯の灯室(車両の後部の左右両側の灯室)に配置したり、車体に設けたりしてもよく、実施例1の構成に限定されない。
 この他の一例を図16に示す。図16の車両用灯具10Aは、車両1の進行方向の後側に照射パターンPiAを形成する。この照射パターンPiAは、実施例1と同様の3つの照射図柄Diが車両1の進行方向に並べられて形成される。この車両用灯具10Aは、車両1の進行方向の後側に向けて、ハイマウントストップランプ等の車両の後部の灯室または車体の後部に配置される。車両用灯具10Aは、光源部11における第1光源21と第2光源22とが白色光を出射するものとしている。車両用灯具10Aは、後退灯と連動されており、後退灯が点灯されると、車両1が後進する方向を指し示すように照射パターンPiAを路面2上に形成する。照射パターンPiAは、車両1の後方の周辺の者に対して、車両1が後進していることを知らせることができ、注意喚起することができる。そして、車両用灯具10Aは、連動された後退灯と同じ白色の照射パターンPiAを形成するので、連動することの違和感が抑制されている。なお、車両用灯具10Aは、後退灯と連動して白色の照射パターンを形成するものであれば、例えば、矩形状の照射パターンを形成してもよく、他の形状の照射パターンを形成してもよく、この他の例に限定されない。
 また、実施例1(上記の他の例も含む(以下、同様とする))では、各スリット部27において、幅方向における明るさを略均一なものとしている。しかしながら、集光レンズ12は、遮光部材(フィルタ13)上において、2つの光源(21、22)の並列方向Dpで単一の高光量領域(HA)を有する配光分布とするものであればよく、実施例1の構成に限定されない。すなわち、並列方向Dpは、形成する照射パターンの形状や態様に合わせて適宜設定すればよく、実施例1の構成に限定されない。
 さらに、実施例1では、遮光部材として、集光レンズ12で集光された光を照射スリット26から透過させるフィルタ13を用いている。しかしながら、遮光部材は、集光レンズ12で集光された光を部分的に通す照射スリット26が設けられたものであれば、他の構成でもよく、実施例1の構成に限定されない。その他の構成としては、例えば、光を通さない板状の部材に、その部材を貫通する照射スリットを設け、集光レンズ12を経た光を照射スリットから通過させる遮光板とすることができる。
 実施例1では、運転手が運転する車両1に車両用灯具10、10Aを設けている。しかしながら、車両用灯具は、自動運転機能を有する車両に設けられてもよく、実施例1の構成に限定されない。この場合、車両用灯具は、設けられる用途に応じたタイミング、すなわち車両1の動作に関する何らかの意図に応じたタイミングで照射パターンを形成すればよく、実施例1の構成に限定されない。
 実施例1では、光源部11がヒートシンク(放熱箇所16b)としての機能を有する設置台部16に設けられており、この設置台部16が筐体15に接続される構成とされている。しかしながら、車両用灯具は、光源部からの光を集光レンズで遮光部材上に集光し、投影レンズで投影することで照射パターンを形成するものであれば、光源部は筐体の端部に設けられてもよく、他の構成でもよく、実施例1の構成に限定されない。
 10、10A 車両用灯具   12 集光レンズ   13 (遮光部材の一例としての)フィルタ   14 投影レンズ   21 第1光源   21a (発光面の一例としての)第1発光面   22 第2光源   22a (発光面の一例としての)第2発光面   26 照射スリット   31 入射面   32 出射面   34 第1入射面部   35 第2入射面部   36 中間入射面部   As1 第1遮光領域   As2 第2遮光領域   Dp 並列方向   HA 高光量領域 
  Ha 高光量箇所   Lr レンズ軸   Pi、PiA 照射パターン

Claims (4)

  1.  発光面を有し、所定の並列方向に並べられた第1光源および第2光源と、
     前記第1光源と前記第2光源とから出射された光を集光する単一の集光レンズと、
     前記集光レンズで集光された光を部分的に通す照射スリットが設けられた遮光部材と、
     前記遮光部材を通した光を投影して照射パターンを形成する投影レンズと、を備え、
     前記第1光源と前記第2光源とは、前記発光面における前記並列方向での寸法以上の間隔を置いて並べられ、
     前記集光レンズは、前記遮光部材上において、光量が最も高い高光量領域が前記並列方向で単一となる配光分布とすることを特徴とする車両用灯具。
  2.  前記集光レンズは、前記第1光源と前記第2光源とからの光を入射させる入射面を有し、
     前記入射面は、前記並列方向で、前記第1光源側となる第1入射面部と、前記第2光源側となる第2入射面部とを有し、
     前記遮光部材では、前記並列方向で、前記第1入射面部側を第1遮光領域とするとともに、前記第2入射面部側を第2遮光領域とし、
     前記集光レンズは、前記第1光源から出射されて前記第1入射面部から入射した光を前記遮光部材上に投影して前記第2遮光領域で配光分布の高光量箇所を形成するとともに、前記第2光源から出射されて前記第2入射面部から入射した光を前記遮光部材上に投影して前記第1遮光領域で配光分布の高光量箇所を形成し、2つの高光量箇所を前記並列方向で隙間なく並べることで前記高光量領域を形成することを特徴とする請求項1に記載の車両用灯具。
  3.  前記入射面は、前記並列方向で、前記第1入射面部と前記第2入射面部との間に中間入射面部を有し、
     前記中間入射面部は、前記並列方向と平行な面であることを特徴とする請求項2に記載の車両用灯具。
  4.  前記集光レンズは、前記第1光源からの光と前記第2光源からの光とを出射させる出射面を有し、
     前記出射面は、前記並列方向において、前記中間入射面部が設けられた範囲に、前記遮光部材側へ向けて凸となる頂点が設けられていることを特徴とする請求項3に記載の車両用灯具。
PCT/JP2020/048377 2020-01-07 2020-12-24 車両用灯具 WO2021140932A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080091785.1A CN114930079A (zh) 2020-01-07 2020-12-24 车辆用灯具
EP20912361.1A EP4089318A4 (en) 2020-01-07 2020-12-24 VEHICLE LAMP
US17/790,859 US11738681B2 (en) 2020-01-07 2020-12-24 Vehicular lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-000915 2020-01-07
JP2020000915A JP7351225B2 (ja) 2020-01-07 2020-01-07 車両用灯具

Publications (1)

Publication Number Publication Date
WO2021140932A1 true WO2021140932A1 (ja) 2021-07-15

Family

ID=76788593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048377 WO2021140932A1 (ja) 2020-01-07 2020-12-24 車両用灯具

Country Status (5)

Country Link
US (1) US11738681B2 (ja)
EP (1) EP4089318A4 (ja)
JP (1) JP7351225B2 (ja)
CN (1) CN114930079A (ja)
WO (1) WO2021140932A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264068B2 (ja) * 2019-06-12 2023-04-25 市光工業株式会社 車両用灯具
WO2021166814A1 (ja) * 2020-02-17 2021-08-26 株式会社小糸製作所 灯具システム
WO2023106422A1 (ja) * 2021-12-10 2023-06-15 市光工業株式会社 ランプユニット、車両用灯具
JP2023134232A (ja) * 2022-03-14 2023-09-27 スタンレー電気株式会社 車両用灯具用光源ユニット及び車両用灯具
WO2023210678A1 (ja) * 2022-04-27 2023-11-02 市光工業株式会社 車両用灯具
JP2024042359A (ja) 2022-09-15 2024-03-28 スタンレー電気株式会社 点灯制御用のコントローラ、車両用灯具システム
WO2024128304A1 (ja) * 2022-12-16 2024-06-20 市光工業株式会社 車両用灯具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097874A (ja) * 2011-10-28 2013-05-20 Koito Mfg Co Ltd 車両用照明灯具
JP2014013779A (ja) * 2013-10-21 2014-01-23 Koito Mfg Co Ltd 灯具ユニット
JP2017162799A (ja) * 2016-02-22 2017-09-14 ヴァレオ ビジョンValeo Vision 光源のサブマトリックスを備えた光ビーム投影デバイス、当該デバイスを備えた照明およびヘッドライトモジュール
WO2018092834A1 (ja) * 2016-11-17 2018-05-24 大日本印刷株式会社 照明装置およびその製造方法
WO2018139325A1 (ja) * 2017-01-25 2018-08-02 マクセル株式会社 ヘッドライト装置
JP2019192350A (ja) 2018-04-18 2019-10-31 マクセル株式会社 路面映像投射装置および車両用灯具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050600A1 (de) * 2004-10-15 2006-04-20 Daimlerchrysler Ag Beleuchtungseinrichtung für ein Fahrzeug
US8801245B2 (en) * 2011-11-14 2014-08-12 Magna Mirrors Of America, Inc. Illumination module for vehicle
DE102014207419A1 (de) * 2014-04-17 2015-11-05 Volkswagen Aktiengesellschaft Kraftfahrzeug mit wenigstens einer Projektionsvorrichtung zur Erzeugung wenigstens einer räumlich abgegrenzten Lichtprojektion
JP6595258B2 (ja) * 2015-08-26 2019-10-23 株式会社小糸製作所 灯具
KR101882907B1 (ko) * 2017-02-28 2018-07-30 주식회사 에스엘미러텍 퍼들 램프 및 퍼들 램프의 조립 방법
US10759348B2 (en) * 2017-03-31 2020-09-01 Motherson Innovations Company Limited Rear view assembly for a motor vehicle with interchangeable approach lamp

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097874A (ja) * 2011-10-28 2013-05-20 Koito Mfg Co Ltd 車両用照明灯具
JP2014013779A (ja) * 2013-10-21 2014-01-23 Koito Mfg Co Ltd 灯具ユニット
JP2017162799A (ja) * 2016-02-22 2017-09-14 ヴァレオ ビジョンValeo Vision 光源のサブマトリックスを備えた光ビーム投影デバイス、当該デバイスを備えた照明およびヘッドライトモジュール
WO2018092834A1 (ja) * 2016-11-17 2018-05-24 大日本印刷株式会社 照明装置およびその製造方法
WO2018139325A1 (ja) * 2017-01-25 2018-08-02 マクセル株式会社 ヘッドライト装置
JP2019192350A (ja) 2018-04-18 2019-10-31 マクセル株式会社 路面映像投射装置および車両用灯具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089318A4

Also Published As

Publication number Publication date
US11738681B2 (en) 2023-08-29
EP4089318A4 (en) 2024-01-17
US20220371509A1 (en) 2022-11-24
CN114930079A (zh) 2022-08-19
EP4089318A1 (en) 2022-11-16
JP7351225B2 (ja) 2023-09-27
JP2021111465A (ja) 2021-08-02

Similar Documents

Publication Publication Date Title
WO2021140932A1 (ja) 車両用灯具
JP7264068B2 (ja) 車両用灯具
KR102109910B1 (ko) 차량용 전조등
WO2021172134A1 (ja) 車両用灯具
JP2023071849A (ja) 車両用前照灯
KR20160136900A (ko) 차량용 램프
US11982420B2 (en) Vehicle lighting
KR101986003B1 (ko) 차량용 헤드램프
JP7326896B2 (ja) 車両用灯具
KR20140133063A (ko) 차량용 램프 어셈블리
JP2011086466A (ja) 灯具ユニット
JP5457780B2 (ja) 車輌用灯具
KR20150072064A (ko) 차량용 램프
JP7279569B2 (ja) 車両用灯具
JP2023162988A (ja) 車両用灯具
JP2024025228A (ja) ランプユニット、車両用灯具
WO2023106422A1 (ja) ランプユニット、車両用灯具
WO2023210678A1 (ja) 車両用灯具
JP2023178905A (ja) 車両用灯具
WO2023085344A1 (ja) ランプユニット、車両用灯具
WO2022044731A1 (ja) 車両用灯具
JP6459679B2 (ja) 車両用灯具
JP2024034376A (ja) ランプユニット、車両用灯具
KR20150072070A (ko) 차량용 램프
KR20150072579A (ko) 차량용 램프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020912361

Country of ref document: EP

Effective date: 20220808