WO2021140747A1 - ロールプレス装置、及び制御装置 - Google Patents

ロールプレス装置、及び制御装置 Download PDF

Info

Publication number
WO2021140747A1
WO2021140747A1 PCT/JP2020/042737 JP2020042737W WO2021140747A1 WO 2021140747 A1 WO2021140747 A1 WO 2021140747A1 JP 2020042737 W JP2020042737 W JP 2020042737W WO 2021140747 A1 WO2021140747 A1 WO 2021140747A1
Authority
WO
WIPO (PCT)
Prior art keywords
bend
press
cylinder
pressure
bearing portion
Prior art date
Application number
PCT/JP2020/042737
Other languages
English (en)
French (fr)
Inventor
史紘 寺澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/791,820 priority Critical patent/US20230033169A1/en
Priority to JP2021569743A priority patent/JPWO2021140747A1/ja
Priority to CN202080092127.4A priority patent/CN114929463A/zh
Publication of WO2021140747A1 publication Critical patent/WO2021140747A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B3/00Presses characterised by the use of rotary pressing members, e.g. rollers, rings, discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a roll press device for rolling an electrode plate of a secondary battery and a control device.
  • a general secondary battery has a positive electrode, a negative electrode, a separator, and an electrolytic solution as main components.
  • a roll press device is used in the compression processing step, which is one of the steps of manufacturing the positive electrode plate and the negative electrode plate of the secondary battery (see, for example, Patent Document 1).
  • a thickness accuracy of about 2 ⁇ m or less is generally required. Due to the change in the coating thickness of the electrode material in the previous process, or the change in the outer diameter of the roll due to the processing heat due to compression in the compression process and the heat generated by the bearing, the thickness changes in the length direction and width direction of the electrode plate during compression processing. ..
  • the moving time of the active material inside the electrode plate decreases or increases as the transport line accelerates or decelerates, and the filling property of the active material decreases or increases. An increase or decrease in thickness was observed.
  • a method is conceivable in which the thickness of the electrode plate during line transportation is measured with an automatic thickness measuring device, and the thickness is controlled to maintain the target value by feedback control.
  • the feedback control is not in time, and the thickness of the electrode plate changes when the transport line is accelerated or decelerated.
  • the first pressurizing roller and the second pressurizing roller that roll by sandwiching the electrode plate of the secondary battery that is continuously conveyed, and the rotation of the first pressurizing roller.
  • a first main bearing portion and a second main bearing portion that are provided on one side and the other side of the shaft and rotatably support the rotating shaft, and one side of the rotating shaft of the second pressurizing roller.
  • the third main bearing portion and the fourth main bearing portion which are provided on the other side and support the rotating shaft rotatably, and are provided on one side and the other side of the rotating shaft of the first pressurizing roller, respectively.
  • the first bend bearing portion and the second bend bearing portion that rotatably support the rotating shaft, and the rotating shaft are provided on one side and the other side of the rotating shaft of the second pressurizing roller, respectively.
  • the first pressure roller and the second pressure roller are rotatably supported on at least one of the third bend bearing portion and the fourth bend bearing portion, the first main bearing portion, and the third main bearing portion.
  • the first pressurizing roller and the second pressurizing roller are attached to at least one of the first compression mechanism capable of applying a load in a proximity direction and the second main bearing portion and the fourth main bearing portion.
  • the first pressurizing roller and the second pressurizing roller are attached to at least one of the first bend bearing portion and the third bend bearing portion of the second compression mechanism capable of applying a load in a proximity direction.
  • the first pressurizing roller and the second pressurizing roller are attached to at least one of the first bend mechanism capable of applying a load in the direction of disengagement and the second bend bearing portion and the fourth bend bearing portion.
  • a control unit that controls the loads of the first compression mechanism, the second compression mechanism, the first bend mechanism, and the second bend mechanism based on the calculation unit and the set value calculated by the calculation unit.
  • the calculation unit changes in advance the set values of the first compression mechanism and the second compression mechanism so that the change in the thickness of the electrode plate according to the change in the speed of the transfer line of the electrode plate becomes small.
  • FIG. 1 is a schematic front view of the roll press device according to the first embodiment.
  • FIG. 2 is a schematic front view of the roll press device according to the second embodiment.
  • FIG. 3 is a schematic front view of the roll press device according to the third embodiment.
  • FIG. 4 is a schematic side view of the roll press apparatus according to the first to third embodiments.
  • FIG. 5 is a diagram for explaining a feedback control example 1 using the first control panel and the second control panel.
  • FIG. 6 is a diagram for explaining a feedback control example 2 using the first control panel and the second control panel.
  • FIG. 7 is a diagram for explaining a feedback control example 3 using the first control panel and the second control panel.
  • FIG. 8 is a diagram for explaining a feedback control example 4 using the first control panel and the second control panel.
  • FIG. 5 is a diagram for explaining a feedback control example 1 using the first control panel and the second control panel.
  • FIG. 6 is a diagram for explaining a feedback control example 2 using the first control panel and the second
  • FIG. 9 is a diagram plotting the relationship between the change in the thickness of the electrode plate and the change in the line speed under a certain press-bend condition of a certain roll press device.
  • FIG. 10 is a diagram for explaining a feedforward control example 1 using the first control panel.
  • FIG. 11 is a diagram for explaining a feedforward control example 2 using the first control panel.
  • FIG. 12 is a diagram for explaining a feedforward control example 3 using the first control panel.
  • FIG. 1 is a schematic front view of the roll press device according to the first embodiment.
  • the first pressurizing roller 11 and the second pressurizing roller 12 are a pair of upper and lower roll bites, and are installed so as to face each other in a detachable manner.
  • the pair of first pressurizing rollers 11 and second pressurizing rollers 12 roll the electrode plates 2 by sandwiching the electrode plates 2 of the secondary batteries that are continuously conveyed.
  • the electrode plate 2 of the secondary battery passed through the roll press device is a sheet-shaped electrode material obtained by coating a metal foil with a slurry containing an active material and drying it.
  • a positive electrode plate of a lithium ion secondary battery is produced by applying a slurry containing a positive electrode active material such as lithium cobalt oxide or lithium iron phosphate on an aluminum foil.
  • the negative electrode plate of the lithium ion secondary battery is manufactured by applying a slurry containing a negative electrode active material such as graphite on a copper foil. Most of the thickness of the electrode plate 2 passed through the roll press device is the thickness of the applied active material.
  • the first main bearing portion 21 and the second main bearing portion 22 are provided on one side and the other side of the rotating shaft of the first pressure roller 11, respectively, and rotatably support the rotating shaft.
  • the third main bearing portion 23 and the fourth main bearing portion 24 are provided on one side and the other side of the rotating shaft of the second pressure roller 12, respectively, and rotatably support the rotating shaft.
  • the first bend bearing portion 31 and the second bend bearing portion 32 are provided on one side and the other side of the rotating shaft of the first pressure roller 11, respectively, and rotatably support the rotating shaft.
  • the third bend bearing portion 33 and the fourth bend bearing portion 34 are provided on one side and the other side of the rotating shaft of the second pressure roller 12, respectively, and rotatably support the rotating shaft.
  • the first main bearing portion 21 to the fourth main bearing portion 24 and the first bend bearing portion 31 to the fourth bend bearing portion 34 each have a built-in bearing that rotatably supports the rotating shaft of the roller. It is composed of bearing boxes.
  • the first compression mechanism 41 applies a load to at least one of the first main bearing portion 21 and the third main bearing portion 23 in the direction in which the first pressure roller 11 and the second pressure roller 12 are close to each other. It is a mechanism capable of compressing the electrode plate 2.
  • the second compression mechanism 42 applies a load to at least one of the second main bearing portion 22 and the fourth main bearing portion 24 in the direction in which the first pressure roller 11 and the second pressure roller 12 are close to each other. It is a mechanism capable of compressing the electrode plate 2.
  • the first compression mechanism 41 the first press cylinder 41a capable of applying a load to the third main bearing portion 23 and the first electric screw capable of applying a load to the first main bearing portion 21. 41b is provided.
  • a second press cylinder 42a capable of applying a load to the fourth main bearing portion 24 and a second electric screw 42b capable of applying a load to the second main bearing portion 22 are provided. ..
  • a hydraulic servo valve and a pressure reducing valve can be used for pressure control of the first press cylinder 41a and the second press cylinder 42a.
  • a servomotor is used to control the positions of the first electric screw 41b and the second electric screw 42b.
  • the reduction amounts of the first electric screw 41b and the second electric screw 42b are controlled by their respective servomotors, and the first electric screw 41b and the second electric screw 42b are the first main bearing portion 21 and the second main bearing portion 22.
  • the load applied to each is controlled.
  • the first bend mechanism 51 (in the first embodiment, the first bend cylinder 51a) is provided between the first bend bearing portion 31 and the third bend bearing portion 33, and is provided between the first pressurizing roller 11 and the second pressurization. It is a mechanism that can correct the bending of the rollers by applying a load in the direction in which the rollers 12 come into contact with each other.
  • the second bend mechanism 52 (in the first embodiment, the second bend cylinder 52a) is provided between the second bend bearing portion 32 and the fourth bend bearing portion 34, and is provided between the first pressurizing roller 11 and the second pressurizing portion. It is a mechanism that can correct the bending of the rollers by applying a load in the direction in which the rollers 12 come into contact with each other.
  • the roll gap between the first pressure roller 11 and the second pressure roller 12 is increased. Be controlled.
  • the roll deflection also changes as the roll gap changes.
  • the roll deflection amount can be corrected by changing the pressure of the first bend mechanism 51 and / or the second bend mechanism 52 by the bend pressure control unit 818a (see FIG. 5) described later. At that time, the roll gap also changes, which has the opposite effect of the pressure change caused by the first compression mechanism 41 and / or the second compression mechanism 42.
  • the first preload mechanism 61 (in the example shown in FIG. 1, the first preload cylinder 61a) has a constant load on the first bend bearing portion 31 in the direction in which the first pressure roller 11 and the second pressure roller 12 are separated from each other. It is a mechanism that adds.
  • the second preload mechanism 62 (in the example shown in FIG. 1, the second preload cylinder 62a) has a constant load on the second bend bearing portion 32 in the direction in which the first pressure roller 11 and the second pressure roller 12 are separated from each other. It is a mechanism that adds.
  • the pressures of the first preload cylinder 61a and the second preload cylinder 62a are fixed and are always set to the same pressure.
  • the first preload mechanism 61 and the second preload mechanism 62 apply a preload load equal to or greater than the own weight of the first pressure roller 11 to the first bend bearing portion 31 and the second bend bearing portion 32.
  • the first pressure roller 11 is appropriately pressed (pulled) upward to reduce the influence of rattling of the roll press device.
  • the first preload mechanism 61 and the second preload mechanism 62 can be omitted.
  • FIG. 2 is a schematic front view of the roll press device according to the second embodiment.
  • the first bend cylinder 51a and the first bend cylinder 51a are located between the upper first bend bearing portion 31 and the second bend bearing portion 32 and the lower third bend bearing portion 33 and the fourth bend bearing portion 34.
  • a second bend cylinder 52a is provided, and a first bend mechanism 51 and a second bend mechanism 52 of a type in which a load is applied in a direction in which the first pressure roller 11 and the second pressure roller 12 are separated from each other are adopted.
  • a third bend cylinder 51b is provided outside the first bend bearing portion 31, and a fourth bend cylinder 52b is provided outside the second bend bearing portion 32.
  • a fifth bend cylinder 51c is provided outside the third bend bearing portion 33, and a sixth bend cylinder 52c is provided outside the fourth bend bearing portion 34.
  • the type that applies a load to the cylinder is adopted.
  • the first preload mechanism 61 and the second preload mechanism 62 are not provided.
  • the first compression mechanism 41 includes a first press cylinder 41a, a first magnet scale 41c, and a first load cell 41d.
  • a hydraulic servo valve is used for pressure control of the first press cylinder 41a.
  • the first magnet scale 41c detects the position of the first press cylinder 41a.
  • a load due to the weight of the first pressure roller 11 is applied to the first main bearing portion 21.
  • the first load cell 41d is a compression type load cell, and detects the load applied to the first main bearing portion 21. Since the configuration of the second compression mechanism 42 is the same as that of the first compression mechanism 41, the description thereof will be omitted.
  • the first electric screw 41b and the second electric screw 42b are not provided.
  • FIG. 3 is a schematic front view of the roll press device according to the third embodiment.
  • the first bend mechanism 51 and the second bend mechanism 52 of the third embodiment adopt the same type as the first bend mechanism 51 and the second bend mechanism 52 of the second embodiment.
  • the first electric cotter 41e and the second electric cotter 42e are used instead of the first electric screw 41b and the second electric screw 42b of the first embodiment.
  • the first load cell 41d and the second load cell 42d are not provided.
  • the roll press apparatus according to the third embodiment can be manufactured at a lower cost than the roll press apparatus according to the first and second embodiments.
  • the first electric cotter 41e is provided between the first main bearing portion 21 and the third main bearing portion 23.
  • the first electric cotter 41e includes an upper cotter fixed to the first main bearing portion 21 and a lower cotter fixed to the third main bearing portion 23.
  • the lower surface of the upper cotter and the upper surface of the lower cotter are tapered surfaces, and are arranged so that the tapered surfaces face each other.
  • the lower cotter is provided with a linear servomotor for sliding the lower cotter in the left-right direction (the direction of the tapered surface).
  • the height of the first electric cotter 41e can be adjusted by sliding the lower cotter to the left and right. In the example shown in FIG.
  • the second electric cotter 42e is provided between the second main bearing portion 22 and the fourth main bearing portion 24.
  • the second electric cotter 42e includes an upper cotter fixed to the second main bearing portion 22 and a lower cotter fixed to the fourth main bearing portion 24. Since the configuration of the second electric cotter 42e is the same as that of the first electric cotter 41e, the description thereof will be omitted.
  • FIG. 4 is a schematic side view of the roll press device 1 according to the first to third embodiments.
  • a winding machine 13 is installed on the inlet side of the pair of the first pressure roller 11 and the second pressure roller 12, and a winder 14 is installed on the outlet side.
  • the unwinding machine 13 unwinds the sheet-shaped electrode plate 2 wound in a coil shape toward the pair of the first pressure roller 11 and the second pressure roller 12.
  • the winder 14 winds the electrode plate 2 compressed by the pair of the first pressure roller 11 and the second pressure roller 12 into a coil shape.
  • the motor 15 is a motor that drives the first pressurizing roller 11 and the second pressurizing roller 12.
  • the pulse generator 16 is attached to the driving motor 15 and detects the rotation speed of the motor 15.
  • the thickness gauge 70 is provided on the outlet side of the pair of the first pressure roller 11 and the second pressure roller 12, and the thickness of the electrode plate 2 is set at the first point and the second point where the thickness of the electrode plate 2 is arranged in the width direction of the electrode plate 2. , Detect at 3 points of the 3rd point respectively.
  • the first point is set at the end of the electrode plate 2 on the side where the first compression mechanism 41 is provided.
  • the second point is set at the center of the electrode plate 2.
  • the third point is set at the end of the electrode plate 2 on the side where the second compression mechanism 42 is provided.
  • the first compression mechanism 41 side in the first to third embodiments the side on which the motor 15 is installed (the first compression mechanism 41 side in the first to third embodiments) and the opposite side (the second compression mechanism 42 side in the first to third embodiments) A screen operated by the operator is installed in. Therefore, in the first to third embodiments, the first point will be referred to as the driving side, the second point will be referred to as the central portion, and the third point will be referred to as the operating side. That is, the thickness gauge 70 detects the thicknesses of the drive side, the central portion, and the operation side of the electrode plate 2 after compression processing, respectively.
  • the thickness gauge 70 scans one thickness detection sensor in the width direction of the electrode plate 2 and continuously detects the thickness of the electrode plate 2, thereby extracting the thicknesses of the drive side, the central portion, and the operation side, respectively. It may be a thing.
  • the thickness gauge 70 is installed with three thickness detection sensors fixed to the drive side, the central portion, and the operation side, and the three thickness detection sensors detect the thicknesses of the drive side, the central portion, and the operation side, respectively. Good.
  • a method may be used in which the distances to both sides of the electrode plate 2 are detected by using a laser sensor or an optical sensor, and the thickness is detected from their positional relationship. Further, the magnetic sensor detects the change in the eddy current to detect the distance to the outer diameter surface of the electrode plate 2, and the laser sensor or the optical sensor detects the distance to the surface of the electrode plate 2 on the guide roll to guide the guide. A method of detecting the thickness from the positional relationship between the roll and the surface of the electrode plate 2 may be used. The distance to the surface of the electrode plate 2 may be detected by using a white confocal sensor.
  • the control device 80 is a device for controlling the entire roll press device 1, and includes a first control panel 81 and a second control panel 82 in the example shown in FIG.
  • the first control panel 81 is a press-based control panel
  • the second control panel 82 is a thickness-based control panel.
  • the rotation pulse generated by the pulse generator 16 is input to the first control panel 81.
  • the thickness detection value detected by the thickness gauge 70 is input to the second control panel 82.
  • the configuration described with reference to FIG. 4 is common to the first to third embodiments.
  • FIG. 5 is a diagram for explaining a feedback control example 1 using the first control panel 81 and the second control panel 82.
  • Feedback control example 1 is a control used in the roll press apparatus according to the first embodiment shown in FIG.
  • the first press cylinder 41a and the second press cylinder 42a are used as the compression mechanism.
  • the first bend cylinder 51a and the second bend cylinder 52a are used as the bend mechanism.
  • the first control panel 81 includes a PLC (Programmable Logic Controller), a PC (Personal Computer), an HMI (Human Machine Interface), an actuator controller, and the like.
  • the second control panel includes a PLC, a PC, a sensor controller, and the like.
  • the program running in the PLC is generated by a dedicated application in the PC and downloaded to the PLC. Further, the product information of the electrode plate 2 is input to the PLC from the MES (Manufacturing Execution System). Further, various setting values input to the operator via the HMI are input to the PLC.
  • the set values include the thickness target value of the electrode plate 2, the pressure set values of the first press cylinder 41a and the second press cylinder 42a, and the pressure set values of the first bend cylinder 51a and the second bend cylinder 52a. included.
  • the HMI accepts operator input, displays driving status, alarms, etc., and outputs voice.
  • FIG. 5 depicts a functional block realized by the first control panel 81 and the second control panel 82, which is related to the feedback control example 1.
  • the first control panel 81 includes a length measurement unit 811, an acquisition timing generation unit 812, a thickness measurement value acquisition unit 813, a feature amount calculation unit 814, a correction value calculation unit 815, a set value correction unit 816, and a press pressure control unit 817a. It includes a PID control unit 817b, a press pressure deviation calculation unit 817c, a bend pressure control unit 818a, a PID control unit 818b, and a bend pressure deviation calculation unit 818c.
  • the second control panel 82 includes a thickness measurement value calculation unit 821.
  • a rotation pulse is input from the pulse generator 16 to the length measuring unit 811.
  • the length measuring unit 811 estimates the rotation speeds of the first pressure roller 11 and the second pressure roller 12 based on the input rotation pulse, and the first pressure roller 11 and the second pressure roller 12 The speed of the electrode plate 2 passing between them is estimated.
  • the length measuring unit 811 measures the length (distance) of the electrode plate 2 per unit time based on the estimated velocity of the electrode plate 2.
  • the length measuring unit 811 supplies the measured length of the electrode plate 2 to the acquisition timing generation unit 812 and the thickness measurement value calculation unit 821.
  • the thickness measurement value calculation unit 821 is input with the thickness detection values of the drive side, the center portion, and the operation side from the thickness gauge 70. Further, the length of the electrode plate 2 is input from the length measuring unit 811.
  • the thickness measurement value calculation unit 821 sets the three thickness detection values as electrodes in order to eliminate high-period thickness fluctuations that do not need to be controlled. Filtering is performed by averaging in the length direction (traveling direction) of the plate 2. In order to eliminate abrupt changes in the traveling direction due to pulsation of the coating pump in the coating process, it is desirable to calculate an average value of 5 mm or more in the traveling direction.
  • the thickness measurement value calculation unit 821 calculates a moving average value of 5 points in the traveling direction and uses it as the measurement value. Further, the average value of 3 points excluding the 2 points that are the most out of the 5 points detected in the traveling direction may be calculated and used as the measured value.
  • the thickness measurement value calculation unit 821 uses the length of the electrode plate 2 input from the length measurement unit 811 as a synchronization signal. The uncoated portion corresponding to the slit in the width direction of the electrode plate 2 and the detected value corresponding to the portion coated on only one side are removed.
  • the thickness measurement value calculation unit 821 has preset widths of the drive side, the center portion, and the operation side, respectively.
  • the average value of the detected values in the range may be calculated and used as the measured value. Further, the measured values may be averaged in the traveling direction as described above to obtain the final measured values.
  • the thickness measurement value calculation unit 821 supplies the calculated drive side thickness measurement value T m , the center thickness measurement value T c , and the operation side thickness measurement value T s to the thickness measurement value acquisition unit 813.
  • the acquisition timing generation unit 812 is the timing at which the thickness measurement value acquisition unit 813 acquires the drive side thickness measurement value T m , the center thickness measurement value T c , and the operation side thickness measurement value T s supplied from the thickness measurement value calculation unit 821. Is generated, and the generated timing is supplied to the thickness measurement value acquisition unit 813.
  • the press cylinders controlled by the hydraulic servo valve the press cylinders controlled by the pressure reducing valve, the electric screw, and the electric cotter, the most responsive is the press cylinder controlled by the hydraulic servo valve.
  • the control system time lag t d is the smallest.
  • the path line length L t and the control system time lag t d are actually measured in advance, and the measured values are set as fixed values in the acquisition timing generation unit 812.
  • the acquisition timing generation unit 812 uses a length parameter L to be compared with the path line length L t and a time parameter t to be compared with the control system time lag t d.
  • the acquisition timing generation unit 812 increments the length parameter L based on the length of the electrode plate 2 supplied from the length measurement unit 811 and sets the control system time lag t d based on the clock supplied from the clock. Increment.
  • the acquisition timing generation unit 812 changes at least one pressure set value of the first press cylinder 41a, the second press cylinder 42a, the first bend cylinder 51a, and the second bend cylinder 52a by the set value correction unit 816, Reset the length parameter L and the time parameter t to zero.
  • the acquisition timing generation unit 812 supplies the acquisition timing to the thickness measurement value acquisition unit 813.
  • the first press cylinder 41a, the second press cylinder 42a, the first bend cylinder 51a, and the second The change in the thickness of the electrode plate 2 due to the change in at least one pressure set value of the bend cylinder 52a is reflected in the detected value of the thickness gauge 70.
  • the first press cylinder 41a, the second press cylinder 42a, and the first bend The change in the thickness of the electrode plate 2 due to the change in at least one pressure set value of the cylinder 51a and the second bend cylinder 52a is not yet reflected in the detected value of the thickness gauge 70. In this state, the influence of the change in the pressure set value on the thickness of the electrode plate 2 has not been confirmed.
  • the thickness measurement value acquisition unit 813 supplies the drive side thickness measurement value T m , the center thickness measurement value T c , and the operation side thickness measurement value T s supplied from the thickness measurement value calculation unit 821 from the acquisition timing generation unit 812. It is acquired at the timing of the measurement and supplied to the feature amount calculation unit 814.
  • the drive-side thickness measurement value T m , the center thickness measurement value T c , and the operation-side thickness measurement value T s are input to the feature amount calculation unit 814 from the thickness measurement value acquisition unit 813. Further, the thickness target value Tt set by the operator is input to the feature amount calculation unit 814.
  • the feature amount calculation unit 814 describes the following thickness feature amount to be controlled based on the drive side thickness measurement value T m , the center thickness measurement value T c , the operation side thickness measurement value T s , and the thickness target value T t.
  • the three deviation feature quantities defined by (Equation 1) to (Equation 3) are calculated.
  • the first feature quantity T t-m is defined by the difference between the thickness target value T t and the driving side thickness measurements T m.
  • the second characteristic quantity T t-s is defined by the difference between the thickness target value T t and the operating side thickness measurements T s.
  • the third feature amount T drop is defined by the difference between the central thickness measurement value T c and the average value of the drive side thickness measurement value T m and the operation side thickness measurement value T s.
  • T t-m T t- T m ... (Equation 1)
  • T t-s T t- T s ... (expression 2)
  • T drop T c- T ms
  • ave T c- (T m + T s ) / 2 ...
  • T s the target thickness T t .
  • the third feature amount T drop represents a secondary component of the thickness profile (when the numerical value is large, an upwardly convex parabolic shape), and changes depending on the magnitude of the roll deflection and the direction of the roll deflection.
  • the feature amount calculation unit 814 supplies the calculated first feature amount T tm , the second feature amount T ts , and the third feature amount T drop to the correction value calculation unit 815.
  • the total press load is the sum of the drive side press load and the operation side press load
  • the total bend load is the sum of the drive side bend load and the operation side bend load
  • the total preload load is the sum of the drive side preload load and the operation side. It is the sum of the preload loads.
  • the drive-side load is a drive-side load generated by the drive-side press cylinder, the drive-side bend cylinder, and the drive-side preload cylinder.
  • the operation side load is an operation side load generated by the operation side press cylinder, the operation side bend cylinder, and the operation side preload cylinder.
  • the press cylinder load works in the direction of applying pressure to the material to be rolled, and the bend load and preload load work in the direction of lowering the pressure on the material to be rolled.
  • the preload cylinder load is set to a fixed value at a pressure that does not cause excessive roll deflection and a pressing pressure that can reduce the rattling and vibration of the equipment. That is, the preload load is not changed in the thickness control. If the preload cylinder load is excessively large, it becomes difficult to control the roll deflection within the control range of the press pressure and the bend pressure. In the case of equipment in which the first preload cylinder 61a and the second preload cylinder 62a are not provided, the preload load is zero.
  • A, B, and C in the above (Equation 6) are positive constants, and the difference between the drive side load and the operation side load of the total press load, total bend load, and total preload load is the third feature amount T. It shows that the influence on the drop is different.
  • each load is controlled by controlling the pressure of each cylinder.
  • the driving-side bend pressure B m and the operating side bend pressure B s of the driving-side bend pressure correction value .DELTA.B m and the operating side bend pressure correction value ⁇ B s can be obtained.
  • the pressure of the first press cylinder 41a is set to the corrected drive side press pressure set value P m + ⁇ P m
  • the pressure of the second press cylinder 42a is set to the corrected operation side press pressure set value P s + ⁇ P s.
  • the pressure of 51a becomes the corrected drive side bend pressure set value B m + ⁇ B m
  • the pressure of the second bend cylinder 52a becomes the corrected operation side bend pressure set value B s + ⁇ B s.
  • the correction value calculation unit 815 is supplied with the first feature amount T tm , the second feature amount T ts , and the third feature amount T drop from the feature amount calculation unit 814. Further, the drive side press pressure set value P m , the operation side press pressure set value P s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s input by the operator via the HMI are supplied. To. The drive side press pressure set value P m , the operation side press pressure set value P s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s are the first feature amounts T t under standard conditions. -m, second feature quantity T t-s, is pre-derived value as the third feature amount T drop is all zeros are set, respectively.
  • Correction value calculating unit 815 first feature amount T t-m, the second feature quantity T t-s, the third feature amount T drop, and the equation (7), (8), (Equation 10), ( Based on the proportionality constants of Equations 11), (Equation 13), and (Equation 14), the drive side press pressure correction value ⁇ P m , the operation side press pressure correction value ⁇ P s , the drive side bend pressure correction value ⁇ B m , and the operation.
  • the side bend pressure correction value ⁇ B s is calculated.
  • the correction value calculation unit 815 sets the calculated drive side press pressure correction value ⁇ P m , the operation side press pressure correction value ⁇ P s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value ⁇ B s. Supply to 816.
  • the set value correction unit 816 has a drive side press pressure correction value ⁇ P m , an operation side press pressure correction value ⁇ P s , a drive side bend pressure correction value ⁇ B m , and an operation side bend pressure correction value ⁇ B s. Is supplied. Further, the drive side press pressure set value P m , the operation side press pressure set value P s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s input by the operator via the HMI are supplied. To.
  • the set value correction unit 816 corrects the drive side press pressure to the drive side press pressure set value P m , the operation side press pressure set value P s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s.
  • the value ⁇ P m , the operation side press pressure correction value ⁇ P s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value ⁇ B s are added, respectively, and the corrected drive side press pressure set value P m + ⁇ P m.
  • the corrected operation side press pressure set value P s + ⁇ P s , the corrected drive side bend pressure set value B m + ⁇ B m , and the corrected operation side bend pressure set value B s + ⁇ B s are calculated.
  • the set value correction unit 816 supplies the calculated corrected drive side press pressure set value P m + ⁇ P m and the corrected operation side press pressure set value P s + ⁇ P s to the press pressure deviation calculation unit 817 c, and after the correction,
  • the drive side bend pressure set value B m + ⁇ B m and the corrected operation side bend pressure set value B s + ⁇ B s are supplied to the bend pressure deviation calculation unit 818c.
  • the press pressure deviation calculation unit 817c is a deviation between the corrected drive side press pressure set value P m + ⁇ P m supplied from the set value correction unit 816 and the measured pressure value of the first press cylinder 41a, and the corrected operation side.
  • the deviation between the press pressure set value P s + ⁇ P s and the measured pressure value of the second press cylinder 42a is calculated, respectively.
  • the measured pressure value of the first press cylinder 41a and the measured pressure value of the second press cylinder 42a can be estimated according to, for example, the measured value of the valve opening meter.
  • the press pressure deviation calculation unit 817c supplies the calculated pressure deviation of the first press cylinder 41a and the pressure deviation of the second press cylinder 42a to the PID control unit 817b.
  • the PID control unit 817b operates the pressure of the first press cylinder 41a and the pressure of the second press cylinder 42a based on the pressure deviation of the first press cylinder 41a and the pressure deviation of the second press cylinder 42a. Generate a quantity.
  • P compensation may be used instead of PID compensation.
  • the integral term can be controlled
  • I compensation the proportional term (steady state deviation) can be controlled
  • D compensation the differential term can be controlled.
  • the PID control unit 817b supplies the generated pressure operation amount of the first press cylinder 41a and the pressure operation amount of the second press cylinder 42a to the press pressure control unit 817a.
  • the press pressure control unit 817a includes an actuator, and based on the pressure operation amount of the first press cylinder 41a and the pressure operation amount of the second press cylinder 42a, the first press cylinder 41a and the second press cylinder 42a are operated. Drive each.
  • the bend pressure deviation calculation unit 818c is the deviation between the corrected drive side bend pressure set value B m + ⁇ B m supplied from the set value correction unit 816 and the measured pressure value of the first bend cylinder 51a, and the corrected operation side.
  • the deviations between the bend pressure set value B s + ⁇ B s and the measured pressure value of the second bend cylinder 52a are calculated respectively.
  • the bend pressure deviation calculation unit 818c supplies the calculated pressure deviation of the first bend cylinder 51a and the pressure deviation of the second bend cylinder 52a to the PID control unit 818b.
  • the PID control unit 818b operates the pressure of the first bend cylinder 51a and the pressure of the second bend cylinder 52a based on the pressure deviation of the first bend cylinder 51a and the pressure deviation of the second bend cylinder 52a. Generate a quantity.
  • the PID control unit 818b supplies the generated pressure manipulated amount of the first bend cylinder 51a and the pressure manipulated amount of the second bend cylinder 52a to the bend pressure control unit 818a.
  • the bend pressure control unit 818a includes an actuator, and based on the pressure manipulated amount of the first bend cylinder 51a and the pressure manipulated amount of the second bend cylinder 52a, the first bend cylinder 51a and the fourth bend cylinder 52b To drive each.
  • feedback control is performed so that the pressure of the press cylinder maintains the set value.
  • the operation target is the pressure of the press cylinder.
  • feedback control is performed so that the pressure of the bend cylinder maintains the set value.
  • the operation target is the pressure of the bend cylinder.
  • the thickness of the electrode plate 2 is controlled to the target value by adding the correction value calculated from the thickness measurement value to the set value of the press cylinder pressure and the set value of the bend cylinder pressure.
  • FIG. 6 is a diagram for explaining a feedback control example 2 using the first control panel 81 and the second control panel 82.
  • Feedback control example 2 is a control used in the roll press apparatus according to the second embodiment shown in FIG.
  • the first press cylinder 41a and the second press cylinder 42a are used as the compression mechanism.
  • At least one of the third bend cylinder 51b and the fifth bend cylinder 51c, and at least one of the fourth bend cylinder 52b and the sixth bend cylinder 52c are used as the bend mechanism.
  • the differences from the feedback control example 1 shown in FIG. 5 will be described.
  • a cylinder position control unit 817d instead of the press pressure control unit 817a, the PID control unit 817b, and the press pressure deviation calculation unit 817c, a cylinder position control unit 817d, a PID control unit 817e, and a cylinder position deviation calculation unit 817f are provided.
  • the first feature amount T t m the second feature amount T t t s , the third feature amount T drop , the drive side press cylinder position G m , and the operation side press cylinder position G s.
  • the thickness of the electrode plate 2 does not increase or decrease only by changing the position of the press cylinder, but also considers the amount of elastic deformation of the first pressure roller 11 and the second pressure roller 12 due to the change in the reaction force from the electrode plate 2. There is a need to.
  • the first feature amount T tm and the second feature amount are based on the correlation shown in (Equation 16) and (Equation 17) above.
  • the drive-side press cylinder position G m and the drive-side press cylinder position correction value ⁇ G m and the operation-side press cylinder position correction value ⁇ G s of the operation-side press cylinder position G s are obtained.
  • the cylinder position of the first press cylinder 41a is set to the corrected drive side press cylinder position set value G m + ⁇ G m
  • the cylinder position of the second press cylinder 42a is set to the corrected operation side press cylinder position set value G s + ⁇ G s .
  • the pressures of the 3rd bend cylinder 51b and the 5th bend cylinder 51c are adjusted to the drive side bend pressure set value B m + ⁇ B m
  • the pressures of the 4th bend cylinder 52b and the 6th bend cylinder 52c are corrected to the operation side bend.
  • the cylinder positions of the first press cylinder 41a and the second press cylinder 42a, the third bend cylinder 51b, the fifth bend cylinder 51c, the fourth bend cylinder 52b, and the sixth bend so as to be the pressure set values B s + ⁇ B s, respectively.
  • the pressure of the cylinder 52c By controlling the pressure of the cylinder 52c, the thickness of the electrode plate 2 over the entire width can be controlled to the target value Tt.
  • the correction value calculation unit 815 is supplied with the first feature amount T tm , the second feature amount T ts , and the third feature amount T drop from the feature amount calculation unit 814. Further, the drive side press cylinder position set value G m , the operation side press cylinder position set value G s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s input by the operator via the HMI are Be supplied. The drive side press cylinder position set value G m , the operation side press cylinder position set value G s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s are the first feature quantities under standard conditions. T t-m, the second feature quantity T t-s, is pre-derived value as the third feature amount T drop is all zeros are set, respectively.
  • Correction value calculating unit 815 first feature amount T t-m, the second feature quantity T t-s, the third feature amount T drop, and the (Formula 16), (Equation 17), (Equation 18), ( Based on the proportionality constant of Equation 14), the drive side press cylinder position correction value ⁇ G m , the operation side press cylinder position correction value ⁇ G s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value ⁇ B s are set. calculate.
  • the correction value calculation unit 815 sets the calculated drive side press cylinder position correction value ⁇ G m , the operation side press cylinder position correction value ⁇ G s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value ⁇ B s. It is supplied to the correction unit 816.
  • the set value correction unit 816 received the drive side press cylinder position correction value ⁇ G m , the operation side press cylinder position correction value ⁇ G s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value from the correction value calculation unit 815. ⁇ B s is supplied. Further, the drive side press cylinder position set value G m , the operation side press cylinder position set value G s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s input by the operator via the HMI are Be supplied.
  • the set value correction unit 816 sets the drive side press cylinder position set value G m , the operation side press cylinder position set value G s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s to the drive side press. Cylinder position correction value ⁇ G m , operation side press cylinder position correction value ⁇ G s , drive side bend pressure correction value ⁇ B m , and operation side bend pressure correction value ⁇ B s are added to set the drive side press cylinder position after correction.
  • the set value correction unit 816 supplies the calculated corrected drive side press cylinder position set value G m + ⁇ G m and the corrected operation side press cylinder position set value G s + ⁇ G s to the cylinder position deviation calculation unit 817 f for correction.
  • the subsequent drive side bend pressure set value B m + ⁇ B m and the corrected operation side bend pressure set value B s + ⁇ B s are supplied to the bend pressure deviation calculation unit 818c.
  • the cylinder position deviation calculation unit 817f has the corrected drive side press cylinder position set value G m + ⁇ G m supplied from the set value correction unit 816 and the cylinder position of the first press cylinder 41a measured by the first magnet scale 41c. Calculate the deviation from the measured value of. Further, the cylinder position deviation calculation unit 817f has the corrected operation side press cylinder position set value G s + ⁇ G s supplied from the set value correction unit 816 and the cylinder of the second press cylinder 42a measured by the second magnet scale 42c. Calculate the deviation from the measured value of the position.
  • the cylinder position deviation calculation unit 817f supplies the calculated cylinder position deviation of the first press cylinder 41a and the cylinder position deviation of the second press cylinder 42a to the PID control unit 817e. Based on the cylinder position deviation of the first press cylinder 41a and the cylinder position deviation of the second press cylinder 42a, the PID control unit 817e operates the pressure of the first press cylinder 41a and the pressure of the second press cylinder 42a. Generate the operation amount of.
  • the PID control unit 817e supplies the generated pressure operation amount of the first press cylinder 41a and the pressure operation amount of the second press cylinder 42a to the cylinder position control unit 817d.
  • the cylinder position control unit 817d includes an actuator, and based on the pressure operation amount of the first press cylinder 41a and the pressure operation amount of the second press cylinder 42a, the first press cylinder 41a and the second press cylinder 42a are operated. Drive each.
  • the third bend cylinder 51b, the fifth bend cylinder 51c, the fourth bend cylinder 52b, and the sixth bend cylinder 52c are controlled as the bend mechanism, but the first bend cylinder 51a in the feedback control example 1 is controlled. Since it is basically the same as the case of controlling the second bend cylinder 52a, the description thereof will be omitted.
  • the feedback control is performed so that the position of the press cylinder maintains the set value, instead of the feedback control so that the pressure of the press cylinder maintains the set value as in the feedback control example 1. ..
  • the operation target is the pressure of the press cylinder.
  • feedback control is performed so that the pressure of the bend cylinder maintains the set value.
  • the operation target is the pressure of the bend cylinder.
  • the thickness of the electrode plate 2 is controlled to the target value by adding the correction value calculated from the thickness measurement value to the set value of the press cylinder position and the set value of the bend cylinder pressure.
  • FIG. 7 is a diagram for explaining a feedback control example 3 using the first control panel 81 and the second control panel 82.
  • Feedback control example 3 is a control used in the roll press device according to the first embodiment shown in FIG.
  • the first electric screw 41b and the second electric screw 42b are used as the compression mechanism.
  • the first press cylinder 41a and the second press cylinder 42a are subjected to a sufficiently large pressure (fixed value) so that the positions of the cylinders do not change due to the position control of the first electric screw 41b and the second electric screw 42b. Add it.
  • the first bend cylinder 51a and the second bend cylinder 52a are used as the bend mechanism.
  • the differences from the feedback control example 1 shown in FIG. 5 will be described.
  • a screw position control unit 817g, a PID control unit 817h, and a screw position deviation calculation unit 817i are provided.
  • the first feature amount T t m the second feature amount T t t s , the third feature amount T drop , the drive side electric screw position D m , and the operation side electric screw position D s.
  • the thickness of the electrode plate 2 does not increase or decrease only by changing the position of the electric screw, but also considers the amount of elastic deformation of the first pressure roller 11 and the second pressure roller 12 due to the change in the reaction force from the electrode plate 2. There is a need to.
  • Driving side electric screw position D m the operating-side electric screw position D s, an average electric screw position D ave, first feature amount T t-m which represents the thickness of the electrode plate 2, the second feature quantity T t-s, the The correlation with the three feature quantities T drop is experimentally obtained in advance.
  • the position of the first electric cylinder 41b is set to the corrected drive side electric screw position set value D m + ⁇ D m
  • the position of the second electric screw 42b is set to the corrected operation side electric screw position set value D s + ⁇ D s
  • the pressure of the bend cylinder 51a is set to the corrected drive side bend pressure set value B m + ⁇ B m
  • the pressure of the second bend cylinder 52a is set to the corrected operation side bend pressure set value B s + ⁇ B s .
  • the thickness over the entire width of the electrode plate 2 is controlled to the target value Tt. Can be done.
  • the correction value calculation unit 815 is supplied with the first feature amount T tm , the second feature amount T ts , and the third feature amount T drop from the feature amount calculation unit 814. Further, the drive side electric screw position set value D m , the operation side electric screw position set value D s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s input by the operator via the HMI are Be supplied. The drive side electric screw position set value D m , the operation side electric screw position set value D s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s are the first feature quantities under standard conditions. T t-m, the second feature quantity T t-s, is pre-derived value as the third feature amount T drop is all zeros are set, respectively.
  • Correction value calculating unit 815 first feature amount T t-m, the second feature quantity T t-s, the third feature amount T drop, and the (Formula 19), (Equation 20), (Equation 21), ( Based on the proportionality constant of Equation 14), the drive side electric screw position correction value ⁇ D m , the operation side electric screw position correction value ⁇ D s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value ⁇ B s are set. calculate.
  • the correction value calculation unit 815 sets the calculated drive side electric screw position correction value ⁇ D m , the operation side electric screw position correction value ⁇ D s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value ⁇ B s. It is supplied to the correction unit 816.
  • the drive side electric screw position correction value ⁇ D m is supplied from the correction value calculation unit 815 to the set value correction unit 816. Further, the drive side electric screw position set value D m , the operation side electric screw position set value D s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s input by the operator via the HMI are Be supplied.
  • the set value correction unit 816 sets the drive side electric screw position set value D m , the operation side electric screw position set value D s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s to the drive side electric screw. Add the screw position correction value ⁇ D m , the operation side electric screw position correction value ⁇ D s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value ⁇ B s , respectively, and set the drive side electric screw position after correction.
  • the set value correction unit 816 supplies the calculated corrected drive side electric screw position set value D m + ⁇ D m and the corrected operation side electric screw position set value D s + ⁇ D s to the screw position deviation calculation unit 817i for correction.
  • the subsequent drive side bend pressure set value B m + ⁇ B m and the corrected operation side bend pressure set value B s + ⁇ B s are supplied to the bend pressure deviation calculation unit 818c.
  • the screw position deviation calculation unit 817i calculates the deviation between the corrected drive-side electric screw position set value D m + ⁇ D m supplied from the set value correction unit 816 and the measured value of the position of the first electric screw 41b. Further, the screw position deviation calculation unit 817i calculates the deviation between the corrected operation side electric screw position set value D s + ⁇ D s supplied from the set value correction unit 816 and the measured value of the position of the second electric screw 42b. ..
  • the screw position control unit 817g includes a servomotor for reducing the first electric screw 41b and the second electric screw 42b, respectively.
  • the amount of change in the position of each of the first electric screw 41b and the second electric screw 42b can be calculated from the rotation speed of each servomotor.
  • the screw position deviation calculation unit 817i supplies the calculated position deviation of the first electric screw 41b and the position deviation of the second electric screw 42b to the PID control unit 817h. Based on the position deviation of the first electric screw 41b and the position deviation of the second electric screw 42b, the PID control unit 817h operates the rotation operation amount of the servomotor for the first electric screw 41b and the second electric screw 42b. Generates the amount of rotation of the servo motor for.
  • the PID control unit 817h supplies the generated operation amount of rotation of the servomotor for the first electric screw 41b and the operation amount of rotation of the servomotor for the second electric screw 42b to the screw position control unit 817g.
  • the screw position control unit 817g is based on the amount of rotation of the servomotor for the first electric screw 41b and the amount of operation of rotation of the servomotor for the second electric screw 42b, and the servo for the first electric screw 41b. It drives the motor and the servomotor for the second electric screw 42b, respectively.
  • the feedback control is performed so that the position of the electric screw maintains the set value, instead of the feedback control so that the pressure of the press cylinder maintains the set value as in the feedback control example 1. ..
  • the operation target is the rotation speed of the servo motor.
  • feedback control is performed so that the pressure of the bend cylinder maintains the set value.
  • the operation target is the pressure of the bend cylinder.
  • the thickness of the electrode plate 2 is controlled to the target value by adding the correction value calculated from the thickness measurement value to the set value of the position of the electric screw and the set value of the bend cylinder pressure.
  • FIG. 8 is a diagram for explaining a feedback control example 4 using the first control panel 81 and the second control panel 82.
  • Feedback control example 4 is a control used in the roll press apparatus according to the third embodiment shown in FIG.
  • the first electric cotter 41e and the second electric cotter 42e are used as the compression mechanism.
  • the pressure (fixed value) of the first press cylinder 41a and the second press cylinder 42a is sufficiently large so that the positions of the cylinders do not change due to the height control of the first electric cotter 41e and the second electric cotter 42e. Is added.
  • At least one of the third bend cylinder 51b and the fifth bend cylinder 51c, and at least one of the fourth bend cylinder 52b and the sixth bend cylinder 52c are used as the bend mechanism.
  • the differences from the feedback control example 1 shown in FIG. 5 will be described.
  • a cotter height control unit 817j, a PID control unit 817k, and a cotter height deviation calculation unit 817l are provided. Be done.
  • the press load becomes constant.
  • the load acting on the electrode plate 2 can be changed by changing the height of the cotter to change the load acting on the cotter. It is difficult to measure the load change acting on each of the first electric cotter 41e and the second electric cotter 42e due to the change in the height of each of the first electric cotter 41e and the second electric cotter 42e.
  • T tm and the second feature amount are based on the correlation shown in (Equation 22) and (Equation 23) above.
  • T t-s is each driving side electric cotter height K m and the operating-side electric cotter height K s of the driving electric cotter height correction value [Delta] K m and the operating-side electric cotter height correction value [Delta] K s becomes zero at the same time I want it.
  • the height of the first electric cotter 41e is the corrected drive side electric cotter height set value K m + ⁇ K m
  • the height of the second electric cotter 42e is the corrected operation side electric cotter height set value K s + ⁇ K s.
  • the pressures of the third bend cylinder 51b and the fifth bend cylinder 51c are adjusted to the drive side bend pressure set value B m + ⁇ B m
  • the pressures of the fourth bend cylinder 52b and the sixth bend cylinder 52c are corrected.
  • the heights of the first electric cotter 41e and the second electric cotter 42e, the third bend cylinder 51b, the fifth bend cylinder 51c, the fourth bend cylinder 52b, and the sixth so as to be the side bend pressure set values B s + ⁇ B s, respectively.
  • the pressure of the bend cylinder 52c By controlling the pressure of the bend cylinder 52c, the thickness of the electrode plate 2 over the entire width can be controlled to the target value Tt.
  • the correction value calculation unit 815 is supplied with the first feature amount T tm , the second feature amount T ts , and the third feature amount T drop from the feature amount calculation unit 814. Further, the drive side electric cotter height set value K m , the operation side electric cotter height set value K s , the drive side bend pressure set value B m , and the operation side bend pressure set value B input by the operator via the HMI. s is supplied.
  • the drive side electric cotter height set value K m , the operation side electric cotter height set value K s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s are the first under standard conditions.
  • feature amount T t-m, the second feature quantity T t-s, is pre-derived value as the third feature amount T drop is all zeros are set, respectively.
  • Correction value calculating unit 815 first feature amount T t-m, the second feature quantity T t-s, the third feature amount T drop, and the (Formula 22), (Equation 23), (Equation 24), ( Based on the proportionality constant of Equation 14), the drive side electric cotter height correction value ⁇ K m , the operation side electric cotter height correction value ⁇ K s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value ⁇ B. Calculate s.
  • the correction value calculation unit 815 calculates the calculated drive side electric cotter height correction value ⁇ K m , the operation side electric cotter height correction value ⁇ K s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value ⁇ B s . It is supplied to the set value correction unit 816.
  • the set value correction unit 816 has a drive side electric cotter height correction value ⁇ K m , an operation side electric cotter height correction value ⁇ K s , a drive side bend pressure correction value ⁇ B m , and an operation side bend pressure.
  • the correction value ⁇ B s is supplied.
  • the drive side electric cotter height set value K m , the operation side electric cotter height set value K s , the drive side bend pressure set value B m , and the operation side bend pressure set value B input by the operator via the HMI. s is supplied.
  • the set value correction unit 816 drives the drive side electric cotter height set value K m , the operation side electric cotter height set value K s , the drive side bend pressure set value B m , and the operation side bend pressure set value B s .
  • the drive side after correction by adding the side electric cotter height correction value ⁇ K m , the operation side electric cotter height correction value ⁇ K s , the drive side bend pressure correction value ⁇ B m , and the operation side bend pressure correction value ⁇ B s, respectively.
  • Electric cotter height setting value K m + ⁇ K m corrected operation side electric cotter height setting value K s + ⁇ K s , corrected drive side bend pressure setting value B m + ⁇ B m , and corrected operation side bend pressure setting Calculate the value B s + ⁇ B s.
  • the set value correction unit 816 supplies the calculated corrected drive side electric cotter height set value K m + ⁇ K m and the corrected operation side electric cotter height set value K s + ⁇ K s to the cotter height deviation calculation unit 817 l. Then, the corrected drive side bend pressure set value B m + ⁇ B m and the corrected operation side bend pressure set value B s + ⁇ B s are supplied to the bend pressure deviation calculation unit 818 c.
  • the cotter height deviation calculation unit 817l determines the deviation between the corrected drive-side electric cotter height set value K m + ⁇ K m supplied from the set value correction unit 816 and the measured value of the height of the first electric cotter 41e. calculate. Further, the cotter height deviation calculation unit 817l is a deviation between the corrected operation side electric cotter height set value K s + ⁇ K s supplied from the set value correction unit 816 and the measured value of the height of the second electric cotter 42e. Is calculated.
  • the cotter height control unit 817j includes a linear servomotor for sliding the lower cotters of the first electric cotter 41e and the second electric cotter 42e in the left-right direction, respectively.
  • the amount of change in height of each of the first electric cotter 41e and the second electric cotter 42e can be calculated from the amount of movement of each linear servomotor.
  • a range finder is provided between the first main bearing portion 21 and the third main bearing portion 23 to measure the height of the first electric cotter 41e, and a range finder is provided between the second main bearing portion 22 and the fourth main bearing portion 24. It may be provided and the height of the second electric cotter 42e may be measured respectively.
  • the cotter height deviation calculation unit 817l supplies the calculated height deviation of the first electric cotter 41e and the height deviation of the second electric cotter 42e to the PID control unit 817k. Based on the height deviation of the first electric cotter 41e and the height deviation of the second electric cotter 42e, the PID control unit 817k operates the movement of the linear servomotor for the first electric cotter 41e and the second. The operation amount of the movement of the linear servomotor for the electric cotter 42e is generated.
  • the PID control unit 817k supplies the generated operation amount of the linear servomotor for the first electric cotter 41e and the operation amount of the movement of the linear servomotor for the second electric cotter 42e to the cotter height control unit 817j.
  • the cotter height control unit 817j is based on the movement operation amount of the linear servomotor for the first electric cotter 41e and the movement operation amount of the linear servomotor for the second electric cotter 42e, and the first electric cotter 41e
  • the linear servomotor for the second electric cotter 42e and the linear servomotor for the second electric cotter 42e are driven respectively.
  • the third bend cylinder 51b, the fifth bend cylinder 51c, the fourth bend cylinder 52b, and the sixth bend cylinder 52c are controlled as the bend mechanism, but the first bend cylinder 51a in the feedback control example 1 is controlled. Since it is basically the same as the case of controlling the second bend cylinder 52a, the description thereof will be omitted.
  • the feedback control is performed so that the height of the electric cotter maintains the set value, instead of the feedback control so that the pressure of the press cylinder maintains the set value as in the feedback control example 1.
  • the operation target is the amount of movement of the linear servo motor.
  • feedback control is performed so that the pressure of the bend cylinder maintains the set value.
  • the operation target is the pressure of the bend cylinder.
  • the thickness of the electrode plate 2 is controlled to the target value by adding the correction value calculated from the thickness measurement value to the set value of the height of the electric cotter and the set value of the bend cylinder pressure.
  • first press cylinder 41a When using a hydraulic cylinder, it is desirable to install a hydraulic control device as close as possible to the hydraulic cylinder. Further, it is desirable to use a hydraulic servo valve having a high pressure control speed as the hydraulic control device. As a result, it is possible to prevent a delay in pressure response and pressure hunting due to a pressure change in the hydraulic piping due to a pressure change in the hydraulic cylinder.
  • the transfer line is accelerated or decelerated. It is difficult to correct the thickness change with high accuracy. It is conceivable to slow down the speed of the transport line during acceleration or deceleration, but in that case, the production efficiency is reduced. Therefore, a method of predicting a change in the thickness of the electrode plate 2 due to a change in the speed of the transport line and correcting the thickness of the electrode plate 2 by feedforward control is introduced.
  • FIG. 9 is a diagram plotting the relationship between the change in the thickness of the electrode plate 2 and the change in the line speed under a certain press / bend condition of a certain roll press device 1.
  • the horizontal axis represents the line speed [mpm]
  • the vertical axis represents the average thickness width [ ⁇ m] of the electrode plate 2. As shown in FIG. 9, it can be seen that the thickness of the electrode plate 2 increases as the line speed increases.
  • FIG. 10 is a diagram for explaining a feedforward control example 1 using the first control panel 81.
  • Feedforward control example 1 is a control used in the roll press apparatus according to the first embodiment shown in FIG.
  • the first press cylinder 41a and the second press cylinder 42a are used as the compression mechanism.
  • the bend mechanism is not used for feedforward control in order to simplify the feedforward control.
  • FIG. 10 depicts a functional block realized by the first control panel 81 related to feedforward control example 1.
  • the first control panel 81 includes a line speed setting change unit 819, a line speed control unit 8110, a correction value calculation unit 815, a set value correction unit 816, a press pressure control unit 817a, a PID control unit 817b, and a press pressure deviation calculation unit 817c. including.
  • the line speed control unit 8110 is based on the command value of the line speed supplied from the line speed setting change unit 819, the rotation speed of the unwinder 13, the rotation of the first pressurizing roller 11 and the rotation of the second pressurizing roller 12. The speed and the rotation speed of the winder 14 are controlled.
  • the line speed set by the operator is input to the line speed setting change unit 819.
  • the acceleration during acceleration of the transport line and the deceleration during deceleration are basically preset by the manufacturer of the roll press device 1. The specifications may be such that the acceleration during acceleration and the deceleration during deceleration can be set and changed by the user.
  • feedforward control example 1 the change in the thickness of the electrode plate 2 due to the change in the line speed is predicted, the press load required to maintain the thickness of the electrode plate 2 is calculated, and the press load is changed by the feedforward control. Let me. By experimentally investigating the relationship between the line speed and the thickness of the electrode plate 2, an appropriate press pressure can be predicted with high accuracy.
  • the line speed V s S seconds after the start of acceleration or deceleration is the speed V 0 at the start of acceleration or deceleration and the speed V 0 at the start of acceleration or deceleration.
  • the amount of change ⁇ V s of the line speed after S seconds it can be defined as follows (Equation 25).
  • the amount of change ⁇ V s of the line speed after S seconds from the start of acceleration or deceleration can be defined as follows (Equation 26).
  • the relationship between the change amount ⁇ V of the line speed and the change amount ⁇ T ave of the thickness average value T ave may be obtained experimentally and fitted by a multidimensional function, an exponential function, or a logarithmic function.
  • linear pressure the average value Lave (hereinafter referred to as linear pressure) of the press load acting on the electrode plate 2 in the width direction and the thickness average value Tave after pressing are in a proportional relationship
  • linear pressure is determined.
  • Equation 28 the linear pressure relationship holds between the amount of change in linear pressure ⁇ L ave and the amount of change in average thickness T ave ⁇ T ave when changed.
  • the linear pressure correction values ⁇ L ave, s for making the change amount ⁇ T ave, s of the thickness average value T ave S seconds after the start of acceleration or deceleration to zero are the above (Equation 26), (Equation 27), (Equation 27).
  • ⁇ V s and ⁇ T ave can be removed from the relationship of Eq. 28) and obtained by the following (Equation 29).
  • the press acting on the electrode plate 2 by keeping the positions of the first electric screw 41b and the second electric screw 42b constant and changing the pressures of the first press cylinder 41a and the second press cylinder 42a. Change the load.
  • the average press pressure P ave (P m + P s ) / 2 change amount ⁇ P ave of the drive side press pressure P m and the operation side press pressure P s , and the change amount ⁇ T ave of the thickness average value T ave of the electrode plate 2 since during a proportional relationship, when varying the pressing pressure, between the variation [Delta] T ave of the average pressing pressure P ave of the variation [Delta] P ave and the thickness average value T ave is represented by the following (equation 30) The relationship holds.
  • the differential pressure between the drive side press pressure P m and the operation side press pressure P s during the acceleration period or deceleration period of the transport line may be basically the same as before acceleration or deceleration. If the change in thickness of the electrode plate 2 due to the change in line speed differs between the drive side and the operation side due to the difference in rigidity between the drive side and the operation side of the roll press device 1, the differential pressure during the acceleration period or the deceleration period is used. It may be changed.
  • the correction value calculation unit 815 is supplied with the acceleration start time, the acceleration end time, the line speed V 0 at the start of acceleration, and the acceleration ⁇ from the line speed setting changing unit 819 before the start of acceleration of the transfer line. For example, when the roll press device 1 is started up and when the line speed is changed during the start-up, the line speed setting changing unit 819 supplies such information. Further, the correction value calculation unit 815 is supplied with the deceleration start time, the deceleration end time, the line speed V 0 at the deceleration start, and the deceleration ⁇ before the deceleration start of the transport line from the line speed setting changing unit 819. ..
  • the correction value calculation unit 815 calculates the amount of change ⁇ V s of the line speed S seconds after the start of acceleration based on the above (Equation 26), the line speed V 0 at the start of acceleration and the acceleration ⁇ .
  • the correction value calculation unit 815 applies the calculated change amount ⁇ V s of the line speed to the above (Equation 27), and predicts the change amount ⁇ T ave, s of the thickness average value T ave S seconds after the start of acceleration.
  • the correction value calculation unit 815 calculates the correction value ⁇ P ave, s of the average press pressure Pave for making the change amount ⁇ T ave, s of the thickness average value T ave zero. ..
  • the correction value calculating unit 815 an average pressing pressure P ave of the correction value [Delta] P 0.1 0.1 second intervals, [Delta] P 0.2, ⁇ ⁇ ⁇ , average pressing pressure P to calculate the [Delta] P t end, was calculated correction value [Delta] P 0.1 of ave, ⁇ P 0.2, ⁇ , supplies [Delta] P t end the set value correcting section 816.
  • the set value correcting section 816 the correction value [Delta] P 0.1 of the average pressing pressure P ave from the correction value calculating unit 815, [Delta] P 0.2, ⁇ ⁇ ⁇ , the [Delta] P t end is supplied.
  • the set value correction unit 816 adds the correction values ⁇ P 0.1 , ⁇ P 0.2 , ..., ⁇ P tend to the press pressure set value P 0 at the start of acceleration, respectively, and the corrected press pressure set value P 0 + ⁇ P 0.1. , P 0 + ⁇ P 02 , ⁇ , P 0 + ⁇ P tend is calculated.
  • the press pressure set value P 0 at the start of acceleration is, for example, a press pressure set value P input by the operator via the HMI.
  • the set value correction unit 816 supplies the calculated corrected press pressure set values P 0 + ⁇ P 0.1 , P 0 + ⁇ P 02 , ..., P 0 + ⁇ P tend to the press pressure deviation calculation unit 817c.
  • the press pressure deviation calculation unit 817c is assigned to the first press cylinder 41a of the corrected press pressure set values P 0 + ⁇ P 0.1 , P 0 + ⁇ P 02 , ..., P 0 + ⁇ P tend supplied from the set value correction unit 816.
  • the deviation between the set value of the press pressure and the measured pressure value of the first press cylinder 41a is calculated at each time.
  • the press pressure deviation calculation unit 817c is attached to the second press cylinder 42a of the corrected press pressure set values P 0 + ⁇ P 0.1 , P 0 + ⁇ P 02 , ..., P 0 + ⁇ P tend supplied from the set value correction unit 816.
  • the deviation between the assigned press pressure set value and the measured pressure value of the second press cylinder 42a is calculated at each time.
  • the measured pressure value of the first press cylinder 41a and the measured pressure value of the second press cylinder 42a can be estimated according to, for example, the measured value of the valve opening meter.
  • the press pressure deviation calculation unit 817c supplies the calculated pressure deviation of the first press cylinder 41a and the pressure deviation of the second press cylinder 42a to the PID control unit 817b.
  • the PID control unit 817b operates the pressure of the first press cylinder 41a and the pressure of the second press cylinder 42a based on the pressure deviation of the first press cylinder 41a and the pressure deviation of the second press cylinder 42a. Generate a quantity.
  • the PID control unit 817b supplies the generated pressure operation amount of the first press cylinder 41a and the pressure operation amount of the second press cylinder 42a to the press pressure control unit 817a.
  • the press pressure control unit 817a includes an actuator, and based on the pressure operation amount of the first press cylinder 41a and the pressure operation amount of the second press cylinder 42a, the first press cylinder 41a and the second press cylinder 42a are operated. Drive each. In the above explanation, acceleration is assumed, but the same control is applied during deceleration.
  • the line speed setting change unit 819 instructs the line speed control unit 8110 to change the line speed at a timing corresponding to a time lag t e from the timing of instructing the correction value calculation unit 815 to change the set value of the press pressure. Supply the value.
  • the operation of the actuator can be changed more appropriately with respect to the change in the line speed, and the thickness of the electrode plate 2 can be corrected with high accuracy.
  • FIG. 11 is a diagram for explaining a feedforward control example 2 using the first control panel 81.
  • Feedforward control example 2 is a control used in the roll press apparatus according to the second embodiment shown in FIG.
  • the first press cylinder 41a and the second press cylinder 42a are used as the compression mechanism.
  • the differences from the feedforward control example 1 shown in FIG. 10 will be described.
  • feedforward control example 2 instead of the press pressure control unit 817a, the PID control unit 817b, and the press pressure deviation calculation unit 817c, a cylinder position control unit 817d, a PID control unit 817e, and a cylinder position deviation calculation unit 817f are provided. ..
  • the press acting on the electrode plate 2 by keeping the positions of the first electric screw 41b and the second electric screw 42b constant and changing the pressures of the first press cylinder 41a and the second press cylinder 42a. Change the load.
  • the cylinder position of the first press cylinder 41a is measured by the first magnet scale 41c, and the pressure of the first press cylinder 41a is controlled so that the cylinder position of the first press cylinder 41a maintains the set value.
  • the cylinder position of the second press cylinder 42a is measured by the second magnet scale 42c, and the pressure of the second press cylinder 42a is controlled so that the cylinder position of the second press cylinder 42a maintains the set value.
  • the correction value ⁇ G ave, s of the average press cylinder position Gave for making the change amount ⁇ T ave, s of the thickness average value T ave S seconds after the start of acceleration or deceleration to zero is the above (Equation 26), (Equation 26). 27), ⁇ V s and ⁇ Tave are removed from the relationship of (Equation 32), and it can be obtained by the following (Equation 33).
  • the difference between the drive side press cylinder position G m and the operation side press cylinder position G s during the acceleration period or deceleration period of the transport line may be basically the same as before acceleration or deceleration. If the change in thickness of the electrode plate 2 due to the change in line speed differs between the drive side and the operation side due to the difference in rigidity between the drive side and the operation side of the roll press device 1, the difference in the acceleration period or the deceleration period is changed. You may let me.
  • the correction value calculation unit 815 is supplied with the acceleration start time, the acceleration end time, the line speed V 0 at the start of acceleration, and the acceleration ⁇ from the line speed setting changing unit 819 before the start of acceleration of the transfer line. Further, the correction value calculation unit 815 is supplied with the deceleration start time, the deceleration end time, the line speed V 0 at the deceleration start, and the deceleration ⁇ before the deceleration start of the transport line from the line speed setting changing unit 819. ..
  • the correction value calculation unit 815 calculates the amount of change ⁇ V s of the line speed S seconds after the start of acceleration based on the above (Equation 26), the line speed V 0 at the start of acceleration and the acceleration ⁇ .
  • the correction value calculation unit 815 applies the calculated change amount ⁇ V s of the line speed to the above (Equation 27), and predicts the change amount ⁇ T ave, s of the thickness average value T ave S seconds after the start of acceleration.
  • the correction value calculation unit 815 calculates the correction value ⁇ G ave, s of the average press cylinder position Gave for making the change amount ⁇ T ave, s of the thickness average value T ave zero. To do.
  • the correction value calculation unit 815 calculates the correction values ⁇ G 0.1 , ⁇ G 0.2 , ..., ⁇ G tend of the average press cylinder position Gave at intervals of 0.1 seconds, and the calculated average press cylinder.
  • the correction values ⁇ G 0.1 , ⁇ G 0.2 , ..., ⁇ G tend of the position G ave are supplied to the set value correction unit 816.
  • the set value correcting section 816, the correction value .DELTA.G 0.1 average press cylinder position G ave from the correction value calculating unit 815, ⁇ G 0.2, ⁇ , ⁇ G tend is supplied.
  • the set value correction unit 816 adds the correction values ⁇ G 0.1 , ⁇ G 0.2 , ..., ⁇ G tend to the press cylinder position setting value G 0 at the start of acceleration, respectively, and the corrected press cylinder position setting value G 0.
  • the press cylinder position setting value G 0 at the start of acceleration is, for example, a press cylinder position setting value G input by the operator via the HMI.
  • the set value correction unit 816 supplies the calculated corrected press cylinder position set values G 0 + ⁇ G 0.1 , G 0 + ⁇ G 02 , ..., G 0 + ⁇ G tend to the cylinder position deviation calculation unit 817f.
  • the cylinder position deviation calculation unit 817f includes the corrected press cylinder position set values G 0 + ⁇ G 0.1 , G 0 + ⁇ G 02 , ..., G 0 + ⁇ G tend supplied from the set value correction unit 816, and the first magnet scale 41c. The deviation from the measured value of the cylinder position of the first press cylinder 41a measured by the above is calculated at each time. Further, the cylinder position deviation calculation unit 817f has a corrected press cylinder position set value G 0 + ⁇ G 0.1 , G 0 + ⁇ G 02 , ..., G 0 + ⁇ G tend supplied from the set value correction unit 816, and a second magnet scale. The deviation from the measured value of the cylinder position of the second press cylinder 42a measured by 42c is calculated at each time.
  • the cylinder position deviation calculation unit 817f supplies the calculated cylinder position deviation of the first press cylinder 41a and the cylinder position deviation of the second press cylinder 42a to the PID control unit 817e. Based on the cylinder position deviation of the first press cylinder 41a and the cylinder position deviation of the second press cylinder 42a, the PID control unit 817e operates the pressure of the first press cylinder 41a and the pressure of the second press cylinder 42a. Generate the operation amount of.
  • the PID control unit 817e supplies the generated pressure operation amount of the first press cylinder 41a and the pressure operation amount of the second press cylinder 42a to the cylinder position control unit 817d.
  • the cylinder position control unit 817d includes an actuator, and based on the pressure operation amount of the first press cylinder 41a and the pressure operation amount of the second press cylinder 42a, the first press cylinder 41a and the second press cylinder 42a are operated. Drive each. In the above explanation, acceleration is assumed, but the same control is applied during deceleration.
  • the line speed setting change unit 819 instructs the line speed control unit 8110 to change the line speed at a timing corresponding to a time lag t e from the timing of instructing the correction value calculation unit 815 to change the set value of the cylinder position. Supply the value.
  • the operation of the actuator can be changed more appropriately with respect to the change in the line speed, and the thickness of the electrode plate 2 can be corrected with high accuracy.
  • feedforward control example 2 the change in the thickness of the electrode plate 2 due to the change in the line speed is predicted, the press cylinder position required to keep the thickness of the electrode plate 2 constant is calculated, and the press cylinder position is set. Change by feedforward control. As a result, changes in the thickness of the electrode plate 2 during the acceleration period or deceleration period of the transport line can be suppressed with high accuracy.
  • FIG. 12 is a diagram for explaining a feedforward control example 3 using the first control panel 81.
  • Feedforward control example 3 is a control used in the roll press apparatus according to the first embodiment shown in FIG.
  • the first electric screw 41b and the second electric screw 42b are used as the compression mechanism.
  • the differences from the feedforward control example 1 shown in FIG. 10 will be described.
  • feedforward control example 3 instead of the press pressure control unit 817a, the PID control unit 817b, and the press pressure deviation calculation unit 817c, a screw position control unit 817g, a PID control unit 817h, and a screw position deviation calculation unit 817i are provided. ..
  • the pressure (1) and the second press cylinder 42a are sufficiently large so that the cylinder positions do not change due to the position change of the first electric screw 41b and the second electric screw 42b. (Fixed value) is added.
  • the press load acting on the electrode plate 2 is changed.
  • the positions of the first electric screw 41b and the second electric screw 42b are controlled by a servomotor.
  • the difference between the drive side electric screw position D m and the operation side electric screw position D s during the acceleration period or deceleration period of the transport line may be basically the same as before acceleration or deceleration. If the change in thickness of the electrode plate 2 due to the change in line speed differs between the drive side and the operation side due to the difference in rigidity between the drive side and the operation side of the roll press device 1, the difference in the acceleration period or the deceleration period is changed. You may let me.
  • the correction value calculation unit 815 is supplied with the acceleration start time, the acceleration end time, the line speed V 0 at the start of acceleration, and the acceleration ⁇ from the line speed setting changing unit 819 before the start of acceleration of the transfer line. Further, the correction value calculation unit 815 is supplied with the deceleration start time, the deceleration end time, the line speed V 0 at the deceleration start, and the deceleration ⁇ before the deceleration start of the transport line from the line speed setting changing unit 819. ..
  • the correction value calculation unit 815 calculates the amount of change ⁇ V s of the line speed S seconds after the start of acceleration based on the above (Equation 26), the line speed V 0 at the start of acceleration and the acceleration ⁇ .
  • the correction value calculation unit 815 applies the calculated change amount ⁇ V s of the line speed to the above (Equation 27), and predicts the change amount ⁇ T ave, s of the thickness average value T ave S seconds after the start of acceleration.
  • the correction value calculation unit 815 calculates the correction value ⁇ D ave, s of the average electric screw position D ave for making the change amount ⁇ T ave, s of the thickness average value T ave zero. To do.
  • the correction value calculation unit 815 calculates the correction values ⁇ D 0.1 , ⁇ D 0.2 , ..., ⁇ D tend of the average electric screw position Dave at 0.1 second intervals, and the calculated average electric screw.
  • the correction values ⁇ D 0.1 , ⁇ D 0.2 , ..., ⁇ D tend of the position D ave are supplied to the set value correction unit 816.
  • the set value correcting section 816 the correction value [Delta] D 0.1 of the average electric screw position D ave from the correction value calculating unit 815, ⁇ D 0.2, ⁇ , ⁇ D tend is supplied.
  • the set value correction unit 816 adds the correction values ⁇ D 0.1 , ⁇ D 0.2 , ..., ⁇ D tend to the electric screw position set value D 0 at the start of acceleration, respectively, and the corrected electric screw position set value D 0.
  • the electric screw position setting value D 0 at the start of acceleration is, for example, the electric screw position setting value D input by the operator via the HMI.
  • the set value correction unit 816 supplies the calculated corrected electric screw position set values D 0 + ⁇ D 0.1 , D 0 + ⁇ D 02 , ..., D 0 + ⁇ D tend to the screw position deviation calculation unit 817i.
  • the screw position deviation calculation unit 817i includes the corrected electric screw position set values D 0 + ⁇ D 0.1 , D 0 + ⁇ D 02 , ..., D 0 + ⁇ D tend and the first electric screw 41b supplied from the set value correction unit 816. The deviation from the measured value of the position of is calculated at each time. Further, the screw position deviation calculation unit 817i has the corrected electric screw position set values D 0 + ⁇ D 0.1 , D 0 + ⁇ D 02 , ..., D 0 + ⁇ D tend supplied from the set value correction unit 816, and the second electric screw. The deviation from the measured value of the position 42b is calculated at each time.
  • the screw position control unit 817g includes a servomotor for reducing the first electric screw 41b and the second electric screw 42b, respectively.
  • the amount of change in the position of each of the first electric screw 41b and the second electric screw 42b can be calculated from the rotation speed of each servomotor.
  • the screw position deviation calculation unit 817i supplies the calculated position deviation of the first electric screw 41b and the position deviation of the second electric screw 42b to the PID control unit 817h. Based on the position deviation of the first electric screw 41b and the position deviation of the second electric screw 42b, the PID control unit 817h operates the rotation operation amount of the servomotor for the first electric screw 41b and the second electric screw 42b. Generates the amount of rotation of the servo motor for.
  • the PID control unit 817h supplies the generated operation amount of rotation of the servomotor for the first electric screw 41b and the operation amount of rotation of the servomotor for the second electric screw 42b to the screw position control unit 817g.
  • the screw position control unit 817g is based on the amount of rotation of the servomotor for the first electric screw 41b and the amount of operation of rotation of the servomotor for the second electric screw 42b, and the servo for the first electric screw 41b. It drives the motor and the servomotor for the second electric screw 42b, respectively. In the above explanation, acceleration is assumed, but the same control is applied during deceleration.
  • the line speed setting change unit 819 changes the line speed to the line speed control unit 8110 at a timing corresponding to a time lag t e from the timing of instructing the correction value calculation unit 815 to change the set value of the electric screw position. Supply the command value.
  • the operation of the servomotor can be changed more appropriately with respect to the change in the line speed, and the thickness of the electrode plate 2 can be corrected with high accuracy.
  • feedforward control example 3 the change in the thickness of the electrode plate 2 due to the change in the line speed is predicted, the electric screw position required to keep the thickness of the electrode plate 2 constant is calculated, and the electric screw position is set. Change by feedforward control. As a result, changes in the thickness of the electrode plate 2 during the acceleration period or deceleration period of the transport line can be suppressed with high accuracy.
  • the compression mechanism and / or the bend mechanism is controlled so that m, the second feature T ts , and the third feature T drop are all zero.
  • the compression mechanism a press mechanism or a cotter mechanism can be used. As a result, the thickness of the electrode plate 2 after compression processing can be converged to the target value Tt over the entire width.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2013-11167
  • the thickness after compression is measured at three locations on the operation side, the central portion, and the drive side, and the difference between the measured thickness value and the target thickness is set in advance.
  • a method of controlling the press mechanism and the bend mechanism so as to enter the threshold value when the threshold value is exceeded is disclosed.
  • the film thickness control since the film thickness control is not activated until the threshold value is exceeded, the thickness accuracy higher than the threshold value cannot be obtained, and it takes time to converge to the vicinity of the target thickness, or the target is set. It may not be possible to converge near the thickness.
  • the drive side thickness, the operation side thickness, and the target thickness are compared, and when at least one of the drive side thickness and the operation side thickness exceeds the threshold value, the position of the press cylinder is repositioned so as to correct this.
  • the pressure of the bend cylinder is calculated and set in order to set and maintain the amount of deflection correction that changes due to the position change of the press cylinder. If both the drive side thickness and the operation side thickness do not exceed the threshold value, the central part thickness and the threshold value are compared, and if the threshold value is exceeded, the roll deformation of the central part is assumed to be large, and the bend cylinder Only the pressure of the press cylinder is changed, and the position of the press cylinder is not changed. These control flows are repeated and executed.
  • the pressure change of the bend cylinder acts in the direction of opening the roll gap and changes the rolling load on the material to be rolled, so that the thickness changes. Therefore, in any of the procedures in the above control flow, the film thickness changes by changing the pressure of the bend cylinder, and the threshold value is exceeded again, and it takes time to reach the target thickness. Or, there are cases where the threshold cannot be controlled. In particular, the narrower the threshold value, or the more the position of the press cylinder or the pressure of the bend cylinder needs to be changed, the more likely it is that the threshold value will be exceeded again. There is a limit to.
  • the thickness on the drive side, the thickness on the operation side, and the target thickness are compared, and if both the thickness on the drive side and the thickness on the operation side do not exceed the threshold value, the thickness at the center and the threshold value are compared. If it exceeds the value, it is judged that the roll deflection is large, and only the pressure of the bend cylinder is changed. In this case, since the thickness at both ends is controlled to be equal to or less than the threshold value and then the center thickness is controlled, it takes time to converge to the target thickness. Further, in the process of controlling the thickness at both ends, the central thickness may deviate from the target thickness.
  • the load on both sides is controlled to be reduced so that the thickness at both ends becomes the target thickness, but it acts on the central portion of the electrode plate. Since the pressure from the press roll is also reduced, the central thickness becomes thicker and the target value is deviated.
  • the magnitude of the roll deflection and the direction of the roll deflection are the difference between the center thickness and the average thickness at both ends (the difference between the center thickness and the average thickness at both ends). Judging by the third feature amount T drop ), while controlling the thickness at both ends, the difference in thickness between the center and both ends due to roll bending is controlled at the same time. As a result, it is possible to quickly converge the thickness of the electrode plate 2 to the target value over the entire width without deteriorating the thickness in the width direction.
  • the thickness of the electrode plate 2 after compression processing is always converged to the target value Tt.
  • the thickness of the electrode plate 2 is always maintained in a good state.
  • the operator since the thickness of the electrode plate 2 is automatically controlled to the target value Tt , the operator periodically stops the line, measures the thickness of the electrode plate 2 with a micrometer, and based on the measured value, the compression mechanism and / Or there is no need to adjust the pressure value of the bend mechanism. Therefore, it is not necessary to assign a skilled operator, and labor costs can be suppressed. In addition, it is possible to suppress variations in quality depending on the operator.
  • the correction of the new set value is executed based on the thickness measurement value before the correction of the set value is reflected.
  • the correction thickness measured value is acquired after the time t d until it is reflected has elapsed.
  • Three feature quantities are calculated based on the acquired thickness measurement values, correction values are calculated based on the three feature quantities, and the next set value change is executed.
  • the feedforward control examples 1 to 3 together, it is possible to suppress the change in the thickness of the electrode plate 2 at the time of acceleration or deceleration of the transport line with high accuracy. That is, by predicting the change in the thickness of the electrode plate 2 due to the change in the line speed, calculating the compression condition for making the predicted thickness change zero, and controlling the compression mechanism in feedforward, the thickness due to the change in the line speed is obtained. Changes can be suppressed with high accuracy.
  • control device 80 is composed of two control panels, a first control panel 81 and a second control panel 82, has been described, but one in which the first control panel 81 and the second control panel 82 are integrated. It may be composed of a control panel.
  • the compression mechanism and / or the bend mechanism are set so that the first feature amount T tm , the second feature amount T ts , and the third feature amount T drop are all zero.
  • An example of controlling is described.
  • the electrode plate 2 is flat in the width direction.
  • a compression mechanism and / or a bend mechanism is provided so that the third feature amount T drop becomes a negative value according to the thickness difference between the edge and the center.
  • the compression mechanism and / or the bend mechanism is controlled so that the third feature amount T drop becomes a positive value according to the thickness difference between the edge and the center.
  • the electrode plate 2 having an arbitrary thickness profile can be manufactured by arbitrarily setting ⁇ , ⁇ , and ⁇ of the following (Equation 35) to (Equation 37).
  • the third feature amount indicating the secondary component of the thickness profile of the electrode plate is the central thickness measurement value T c , the drive side thickness measurement value T m, and the operation side thickness measurement value T s. It is specified by the difference from the average value of.
  • the third feature amount can be defined from a quadratic or quaternary approximate curve derived by using the least squares method based on the thickness measurement values of three or more points.
  • the feature amount calculation unit 814 sets the quadratic coefficient of the approximated quadratic curve to the third feature amount.
  • the feature amount calculation unit 814 sets the quadratic coefficient of the approximated quadratic curve as the third feature amount.
  • the larger the number of sample points the better the approximation accuracy. Further, if it is a function of quadratic or higher, a quadratic coefficient can be derived.
  • the first feature amount T tm is the thickness target value T t and the thickness measurement value T m of the most driving side point among the points of 5 points or more.
  • the second feature amount T t-s is defined by the deviation between the thickness target value T t and the thickness measurement value T s of the most operating point among the five or more points. ..
  • the embodiment may be specified by the following items.
  • First compression mechanism (41) capable of adding A load in a direction in which the first pressure roller (11) and the second pressure roller (12) are close to at least one of the second main bearing portion (22) and the fourth main bearing portion (24).
  • Second compression mechanism (42) capable of adding A load in the direction in which the first pressure roller (11) and the second pressure roller (12) are separated from each other on at least one of the first bend bearing portion (31) and the third bend bearing portion (33).
  • 1st bend mechanism (51) capable of adding A load in the direction in which the first pressurizing roller (11) and the second pressurizing roller (12) are separated from each other on at least one of the second bend bearing portion (32) and the fourth bend bearing portion (34).
  • 2nd bend mechanism (52) capable of adding Calculation units (815, 816) that calculate the set values of the first compression mechanism (41), the second compression mechanism (42), the first bend mechanism (51), and the second bend mechanism (52).
  • the calculation unit (815, 816) When, Based on the set value calculated by the calculation unit (815, 816), the first compression mechanism (41), the second compression mechanism (42), the first bend mechanism (51), and the second A control unit (817, 818) for controlling the load of the bend mechanism (52), respectively, is provided.
  • the calculation unit (815, 816) has the first compression mechanism (41) and the above so that the change in the thickness of the electrode plate (2) according to the speed change of the transport line of the electrode plate (2) becomes small. Change the set value of the second compression mechanism (42) in advance. Roll press device (1).
  • the calculation unit (815, 816) also determines the relationship between the speed change amount of the line derived in advance and the thickness change amount of the electrode plate (2), and the set acceleration or deceleration of the line. Then, the amount of change in the thickness of the electrode plate (2) after a predetermined time from the start of acceleration or deceleration of the line is predicted.
  • the control unit (817, 818) has the first compression mechanism (41) and the second compression mechanism so that the amount of change in the thickness of the electrode plate (2) during the acceleration period or the deceleration period of the line becomes zero.
  • Control (42) The roll press device (1) according to item 1.
  • the first compression mechanism (41) and the second compression are based on the relationship between the amount of change in the speed of the transfer line and the amount of change in the thickness of the electrode plate (2) and the acceleration or deceleration of the transfer line.
  • feedforward controlling the mechanism (42) it is possible to suppress a change in the thickness of the electrode plate (2) during the acceleration period or the deceleration period of the transport line with high accuracy.
  • the calculation unit (815, 816) is a previously derived amount of change in the load generated by the first compression mechanism (41) and the second compression mechanism (42), and a change in the thickness of the electrode plate (2). Based on the relationship with the amount, the set values of the first compression mechanism (41) and the second compression mechanism (42) so that the thickness change amount during the acceleration period or deceleration period of the line becomes zero. To correct, The roll press device (1) according to item 2.
  • the first compression mechanism is based on the relationship between the amount of change in the load generated by the first compression mechanism (41) and the second compression mechanism (42) and the amount of change in the thickness of the electrode plate (2).
  • the first compression mechanism (41) includes a cylinder (41a) for the first press.
  • the second compression mechanism (42) includes a cylinder (42a) for a second press.
  • the calculation unit (815, 816) is used for the first press during the acceleration period or deceleration period of the line so that the amount of change in the thickness of the electrode plate (2) during the acceleration period or deceleration period of the line becomes zero. Corrects the set values of the pressure of the cylinder (41a) and the pressure of the cylinder (42a) for the second press.
  • the roll press device (1) according to item 3.
  • the thickness change of the electrode plate (2) during the acceleration period or deceleration period of the transport line is increased. It can be suppressed to accuracy.
  • the first compression mechanism (41) includes a cylinder (41a) for the first press.
  • the second compression mechanism (42) includes a cylinder (42a) for a second press.
  • the calculation unit (815, 816) is used for the first press during the acceleration period or deceleration period of the line so that the amount of change in the thickness of the electrode plate (2) during the acceleration period or deceleration period of the line becomes zero. Corrects the set values of the position of the cylinder (41a) and the position of the cylinder (42a) for the second press.
  • the roll press device (1) according to item 3.
  • the thickness change of the electrode plate (2) during the acceleration period or deceleration period of the transport line is increased. It can be suppressed to accuracy.
  • the first compression mechanism (41) further includes a first magnet scale (41c) for measuring the position of the cylinder (41a) for the first press.
  • the second compression mechanism (42) further includes a second magnet scale (42c) for measuring the position of the cylinder (42a) for the second press.
  • the control unit (817d, 818) The position of the cylinder (41a) for the first press measured by the first magnet scale (41c) and the position of the cylinder (41a) for the first press supplied from the calculation unit (815, 816).
  • the pressure of the cylinder (41a) for the first press is controlled so that The position of the cylinder (42a) for the second press measured by the second magnet scale (42c) and the position of the cylinder (42a) for the second press supplied from the calculation unit (815, 816).
  • the pressure of the cylinder (42a) for the second press is controlled so that The roll press device (1) according to item 5.
  • the position of the cylinder (41a) for the first press and the position of the cylinder (42a) for the second press are highly accurate using the first magnet scale (41c) and the second magnet scale (42c). It is possible to realize feedforward control of a compression mechanism with high responsiveness.
  • the first compression mechanism (41) includes a first electric screw (41b).
  • the second compression mechanism (42) includes a second electric screw (42b).
  • the calculation unit (815, 816) uses the first electric screw during the acceleration period or deceleration period of the line so that the amount of change in the thickness of the electrode plate (2) during the acceleration period or deceleration period of the line becomes zero. Correct the set values of the position of (41b) and the position of the second electric screw (42b).
  • the roll press device (1) according to item 3.
  • the first electric screw By feedforward controlling the position of the second electric screw (42b) and the position of the second electric screw (42b), it is possible to suppress the change in the thickness of the electrode plate (2) during the acceleration period or the deceleration period of the transport line with high accuracy.
  • the first main bearing portion (21) and the second main bearing portion (22) provided on one side and the other side of the rotation shaft of the first pressure roller (11) and rotatably support the rotation shaft.
  • the third main bearing portion (23) and the fourth main bearing portion (24) provided on one side and the other side of the rotating shaft of the second pressure roller (12) and rotatably support the rotating shaft.
  • the first bend bearing portion (31) and the second bend bearing portion (32) provided on one side and the other side of the rotation shaft of the first pressure roller (11) and rotatably support the rotation shaft.
  • First compression mechanism (41) capable of adding A load in a direction in which the first pressure roller (11) and the second pressure roller (12) are close to at least one of the second main bearing portion (22) and the fourth main bearing portion (24).
  • Second compression mechanism (42) capable of adding A load in the direction in which the first pressure roller (11) and the second pressure roller (12) are separated from each other on at least one of the first bend bearing portion (31) and the third bend bearing portion (33).
  • 1st bend mechanism (51) capable of adding A load in the direction in which the first pressurizing roller (11) and the second pressurizing roller (12) are separated from each other on at least one of the second bend bearing portion (32) and the fourth bend bearing portion (34).
  • 2nd bend mechanism (52) capable of adding The control device (80) used in the roll press device (1) including the above.
  • Calculation units (815, 816) that calculate the set values of the first compression mechanism (41), the second compression mechanism (42), the first bend mechanism (51), and the second bend mechanism (52).
  • a control unit (817, 818) for controlling the load of 52) is provided.
  • the calculation unit (815, 816) has the first compression mechanism (41) and the above so that the change in the thickness of the electrode plate (2) according to the speed change of the transport line of the electrode plate (2) becomes small. Change the set value of the second compression mechanism (42) in advance. Control device (80).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

ロールプレス装置において、第1加圧ローラ及び第2加圧ローラで、連続的に搬送される二次電池の電極板を挟み込むことにより圧延する。制御部は、算出部により算出された設定値をもとに、第1圧縮機構、第2圧縮機構、第1ベンド機構、及び第2ベンド機構の荷重をそれぞれ制御する。算出部は、電極板の搬送ラインの速度変化に応じた電極板の厚み変化が小さくなるように、第1圧縮機構及び第2圧縮機構の設定値を予め変更する。

Description

ロールプレス装置、及び制御装置
 本開示は、二次電池の電極板を圧延するロールプレス装置、及び制御装置に関する。
 近年、電気自動車(EV)、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)の普及に伴い二次電池の出荷が増えている。特にリチウムイオン二次電池の出荷が増えている。一般的な二次電池は、正極、負極、セパレータ、電解液を主な構成要素とする。二次電池の正極板、負極板を製造する工程の1つである圧縮加工工程では、ロールプレス装置が使用される(例えば、特許文献1参照)。
特開2013-111647号公報
 ロールプレス装置における電極板の圧縮加工工程では、一般に、2μm以下程度の厚み精度が要求される。前工程の電極材の塗膜厚さの変化、または圧縮工程における圧縮による加工熱やベアリング発熱によるロール外径の変化によって、圧縮加工中に電極板の長さ方向や幅方向に厚み変化が生じる。
 また本発明者らの調査により、搬送ラインの加速または減速に伴い、電極板内部での活物質の移動時間が減少または増加し、活物質の充填性が低下または増加することによる、電極板の厚みの増加または減少が観察された。
 二次電池に対して、近年ますます、小型・軽量で高容量化、あるいは同じ製造コストで高容量化することが求められている。そのために、より高精度な厚み制御が求められており、搬送ラインの加速または減速に伴う電極板の厚み変化を抑制する必要性が高まっている。
 ライン搬送中の電極板の厚みを自動厚み測定器で測定し、フィードバック制御で厚みを目標値に維持するように制御する方法が考えられる。しかしながら、搬送ラインの速度変化が大きいと、フィードバック制御が間に合わず、搬送ラインの加速または減速時に電極板の厚みが変化してしまう。
 本開示のある態様のロールプレス装置は、連続的に搬送される二次電池の電極板を挟み込むことにより圧延する第1加圧ローラ及び第2加圧ローラと、前記第1加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第1主軸受部及び第2主軸受部と、前記第2加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第3主軸受部及び第4主軸受部と、前記第1加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第1ベンド軸受部及び第2ベンド軸受部と、前記第2加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第3ベンド軸受部及び第4ベンド軸受部と、前記第1主軸受部及び前記第3主軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが近接する方向への荷重を加えることが可能な第1圧縮機構と、前記第2主軸受部及び前記第4主軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが近接する方向への荷重を加えることが可能な第2圧縮機構と、前記第1ベンド軸受部及び前記第3ベンド軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが離接する方向への荷重を加えることが可能な第1ベンド機構と、前記第2ベンド軸受部及び前記第4ベンド軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが離接する方向への荷重を加えることが可能な第2ベンド機構と、前記第1圧縮機構、前記第2圧縮機構、前記第1ベンド機構、及び前記第2ベンド機構のそれぞれの設定値を算出する算出部と、前記算出部により算出された設定値をもとに、前記第1圧縮機構、前記第2圧縮機構、前記第1ベンド機構、及び前記第2ベンド機構の荷重をそれぞれ制御する制御部と、を備える。前記算出部は、前記電極板の搬送ラインの速度変化に応じた前記電極板の厚み変化が小さくなるように、前記第1圧縮機構及び前記第2圧縮機構の設定値を予め変更する。
 本開示によれば、ロールプレス装置において、搬送ラインの加速または減速時の厚み制御を高精度化することができる。
図1は、実施の形態1に係るロールプレス装置の概略正面図である。 図2は、実施の形態2に係るロールプレス装置の概略正面図である。 図3は、実施の形態3に係るロールプレス装置の概略正面図である。 図4は、実施の形態1~3に係るロールプレス装置の概略側面図である。 図5は、第1制御盤及び第2制御盤を用いたフィードバック制御例1を説明するための図である。 図6は、第1制御盤及び第2制御盤を用いたフィードバック制御例2を説明するための図である。 図7は、第1制御盤及び第2制御盤を用いたフィードバック制御例3を説明するための図である。 図8は、第1制御盤及び第2制御盤を用いたフィードバック制御例4を説明するための図である。 図9は、あるロールプレス装置の一定のプレス・ベンド条件下における、ライン速度の変化に対する電極板の厚み変化の関係をプロットした図である。 図10は、第1制御盤を用いたフィードフォワード制御例1を説明するための図である。 図11は、第1制御盤を用いたフィードフォワード制御例2を説明するための図である。 図12は、第1制御盤を用いたフィードフォワード制御例3を説明するための図である。
 図1は、実施の形態1に係るロールプレス装置の概略正面図である。第1加圧ローラ11及び第2加圧ローラ12は上下一対のロールバイトであり、接離自在に対向して設置される。一対の第1加圧ローラ11及び第2加圧ローラ12は、連続的に搬送される二次電池の電極板2を挟み込むことにより電極板2を圧延する。ロールプレス装置に通される二次電池の電極板2は、金属箔に、活物質を含むスラリーを塗工して乾燥させたシート状の電極素材である。例えば、リチウムイオン二次電池の正極板は、アルミ箔上に、コバルト酸リチウムやリン酸鉄リチウム等の正極活物質を含むスラリーが塗布されて作製される。また、リチウムイオン二次電池の負極板は、銅箔上に、黒鉛等の負極活物質を含むスラリーが塗布されて作製される。ロールプレス装置に通される電極板2の厚みは、塗布された活物質の厚みが大部分を占める。
 第1主軸受部21及び第2主軸受部22は、第1加圧ローラ11の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する。第3主軸受部23及び第4主軸受部24は、第2加圧ローラ12の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する。
 第1ベンド軸受部31及び第2ベンド軸受部32は、第1加圧ローラ11の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する。第3ベンド軸受部33及び第4ベンド軸受部34は、第2加圧ローラ12の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する。
 図1に示す例では、第1主軸受部21~第4主軸受部24及び第1ベンド軸受部31~第4ベンド軸受部34はそれぞれ、ローラの回転軸を回転自在に支持する軸受を内蔵する軸受箱で構成されている。
 第1圧縮機構41は、第1主軸受部21及び第3主軸受部23の少なくとも一方に、第1加圧ローラ11と第2加圧ローラ12が近接する方向への荷重を加えることで、電極板2を圧縮することが可能な機構である。第2圧縮機構42は、第2主軸受部22及び第4主軸受部24の少なくとも一方に、第1加圧ローラ11と第2加圧ローラ12が近接する方向への荷重を加えることで、電極板2を圧縮することが可能な機構である。
 実施の形態1では、第1圧縮機構41として、第3主軸受部23に荷重を加えることができる第1プレスシリンダ41a、及び第1主軸受部21に荷重を加えることができる第1電動スクリュ41bが設けられている。第2圧縮機構42として、第4主軸受部24に荷重を加えることができる第2プレスシリンダ42a、及び第2主軸受部22に荷重を加えることができる第2電動スクリュ42bが設けられている。第1プレスシリンダ41a及び第2プレスシリンダ42aの圧力制御には、例えば、油圧サーボ弁、減圧弁を使用することができる。第1電動スクリュ41b及び第2電動スクリュ42bの位置制御にはサーボモータが使用される。第1電動スクリュ41b及び第2電動スクリュ42bのそれぞれ圧下量は、それぞれのサーボモータで制御され、第1電動スクリュ41b及び第2電動スクリュ42bが第1主軸受部21及び第2主軸受部22にそれぞれ加える荷重が制御される。
 第1ベンド機構51(実施の形態1では、第1ベンドシリンダ51a)は、第1ベンド軸受部31と第3ベンド軸受部33の間に設けられ、第1加圧ローラ11と第2加圧ローラ12が離接する方向への荷重を加えることで、ローラの撓みを補正することが可能な機構である。第2ベンド機構52(実施の形態1では、第2ベンドシリンダ52a)は、第2ベンド軸受部32と第4ベンド軸受部34の間に設けられ、第1加圧ローラ11と第2加圧ローラ12が離接する方向への荷重を加えることで、ローラの撓みを補正することが可能な機構である。
 後述するプレス圧力制御部817a(図5参照)による、第1圧縮機構41及び/又は第2圧縮機構42の圧力変更によって、第1加圧ローラ11と第2加圧ローラ12間のロールギャップが制御される。ロールギャップの変更に伴いロール撓みも変化する。後述するベンド圧力制御部818a(図5参照)による、第1ベンド機構51及び/又は第2ベンド機構52の圧力変更によって、ロール撓み量を補正することができる。その際、ロールギャップも変化し、第1圧縮機構41及び/又は第2圧縮機構42による圧力変化と逆の作用をする。
 第1プレロード機構61(図1に示す例では、第1プレロードシリンダ61a)は、第1ベンド軸受部31に、第1加圧ローラ11と第2加圧ローラ12が離接する方向へ一定の荷重を加えている機構である。第2プレロード機構62(図1に示す例では、第2プレロードシリンダ62a)は、第2ベンド軸受部32に、第1加圧ローラ11と第2加圧ローラ12が離接する方向へ一定の荷重を加えている機構である。第1プレロードシリンダ61a及び第2プレロードシリンダ62aの圧力は固定であり、常に同じ圧力に設定されている。
 図1に示す例では、第1プレロード機構61及び第2プレロード機構62が第1ベンド軸受部31及び第2ベンド軸受部32に第1加圧ローラ11の自重以上のプレロード荷重を加えている。これにより、第1加圧ローラ11を上方に適度に押し付け(引っ張り)、ロールプレス装置のガタツキの影響を少なくしている。なお第1プレロード機構61及び第2プレロード機構62は省略可能である。
 図2は、実施の形態2に係るロールプレス装置の概略正面図である。以下、実施の形態1の構成との相違点を説明する。実施の形態1では、上側の第1ベンド軸受部31及び第2ベンド軸受部32と、下側の第3ベンド軸受部33及び第4ベンド軸受部34との間に、第1ベンドシリンダ51a及び第2ベンドシリンダ52aを設け、第1加圧ローラ11と第2加圧ローラ12が離接する方向へ荷重を加えるタイプの第1ベンド機構51及び第2ベンド機構52を採用した。
 実施の形態2では第1ベンド機構51及び第2ベンド機構52として、第1ベンド軸受部31の外側に第3ベンドシリンダ51bが、第2ベンド軸受部32の外側に第4ベンドシリンダ52bが、第3ベンド軸受部33の外側に第5ベンドシリンダ51cが、第4ベンド軸受部34の外側に第6ベンドシリンダ52cがそれぞれ設けられる。実施の形態2では、これらの第3ベンドシリンダ51b、第4ベンドシリンダ52b、第5ベンドシリンダ51c及び第6ベンドシリンダ52cにより、第1加圧ローラ11と第2加圧ローラ12が離接する方向への荷重を加えるタイプを採用している。実施の形態2では第1プレロード機構61及び第2プレロード機構62は設けられない。
 実施の形態2では、第1圧縮機構41として、第1プレスシリンダ41a、第1マグネスケール41c、第1ロードセル41dを含む。実施の形態2では第1プレスシリンダ41aの圧力制御に油圧サーボ弁が使用される。第1マグネスケール41cは、第1プレスシリンダ41aの位置を検出する。実施の形態2では、第1主軸受部21に、第1加圧ローラ11の自重による荷重が加えられている。第1ロードセル41dは圧縮型のロードセルであり、第1主軸受部21に加えられている荷重を検出する。第2圧縮機構42の構成は、第1圧縮機構41と同様であるため説明を省略する。実施の形態2では、第1電動スクリュ41b及び第2電動スクリュ42bは設けられない。
 図3は、実施の形態3に係るロールプレス装置の概略正面図である。以下、実施の形態1の構成との相違点を説明する。実施の形態3の第1ベンド機構51及び第2ベンド機構52は、実施の形態2の第1ベンド機構51及び第2ベンド機構52と同様のタイプを採用している。
 実施の形態3の第1圧縮機構41及び第2圧縮機構42は、実施の形態1の第1電動スクリュ41b及び第2電動スクリュ42bの代わりに、第1電動コッタ41e及び第2電動コッタ42eが設けられる。第1ロードセル41d及び第2ロードセル42dは設けられない。一般的に、実施の形態3に係るロールプレス装置は、実施の形態1、2に係るロールプレス装置より安価に製造することができる。
 第1電動コッタ41eは、第1主軸受部21と第3主軸受部23の間に設けられる。第1電動コッタ41eは、第1主軸受部21に固定された上側コッタと、第3主軸受部23に固定された下側コッタを含む。上側コッタの下面と下側コッタの上面がそれぞれテーパ面になっており、互いのテーパ面が対向するように配置される。下側コッタに、下側コッタを左右方向(テーパ面の方向)にスライドさせるためのリニアサーボモータが設けられる。下側コッタが左右にスライドすることにより、第1電動コッタ41eの高さを調整することができる。図3に示す例では、下側コッタが左方向にスライドすると第1電動コッタ41eの高さが低くなり、右方向にスライドすると第1電動コッタ41eの高さが高くなる。即ち、下側コッタを左方向にスライドするほど、第1加圧ローラ11と第2加圧ローラ12が近接する方向への荷重が大きくなる。
 第2電動コッタ42eは、第2主軸受部22と第4主軸受部24の間に設けられる。第2電動コッタ42eは、第2主軸受部22に固定された上側コッタ、第4主軸受部24に固定された下側コッタを含む。第2電動コッタ42eの構成は、第1電動コッタ41eと同様であるため説明を省略する。
 図4は、実施の形態1~3に係るロールプレス装置1の概略側面図である。一対の第1加圧ローラ11と第2加圧ローラ12の入側には巻出機13が設置され、出側には巻取機14が設置されている。巻出機13は、コイル状に巻回されているシート状の電極板2を、一対の第1加圧ローラ11と第2加圧ローラ12に向けて巻き出す。巻取機14は、一対の第1加圧ローラ11と第2加圧ローラ12により圧縮加工された電極板2をコイル状に巻き取る。
 モータ15は、第1加圧ローラ11と第2加圧ローラ12を駆動するモータである。パルスジェネレータ16は、駆動用のモータ15に取り付けられ、モータ15の回転数を検出する。
 厚み計70は、一対の第1加圧ローラ11と第2加圧ローラ12の出側に設けられ、電極板2の厚みを、電極板2の幅方向に並んだ第1地点、第2地点、第3地点の3点でそれぞれ検出する。第1地点は、電極板2の第1圧縮機構41が設けられる側の端部に設定される。第2地点は、電極板2の中央部に設定される。第3地点は、電極板2の第2圧縮機構42が設けられる側の端部に設定される。
 一般的なロールプレス装置1では、モータ15が設置されている側(実施の形態1~3では第1圧縮機構41側)と反対側(実施の形態1~3では第2圧縮機構42側)にオペレータが操作する画面が設置される。そこで以下、実施の形態1~3では、第1地点を駆動側、第2地点を中央部、第3地点を操作側とそれぞれ表記する。すなわち、厚み計70は、圧縮加工後の電極板2の駆動側、中央部、操作側の厚みをそれぞれ検出する。
 厚み計70は、1つの厚み検出センサを電極板2の幅方向に走査して、連続的に電極板2の厚みを検出することにより、駆動側、中央部、操作側の厚みをそれぞれ抽出するものであってもよい。
 また厚み計70は、3つの厚み検出センサを駆動側、中央部、操作側にそれぞれ固定して設置し、3つの厚み検出センサで駆動側、中央部、操作側の厚みをそれぞれ検出してもよい。
 厚み計70の検出方式として、レーザセンサもしくは光学センサを用いて電極板2の両面までの距離をそれぞれ検出し、それらの位置関係から厚みを検出する方式を用いてもよい。また、磁気センサで渦電流の変化を検出して電極板2の外径面までの距離を検出し、レーザセンサもしくは光学センサでガイドロール上の電極板2の表面までの距離を検出し、ガイドロールと電極板2の表面の位置関係から厚みを検出する方式を用いてもよい。なお、電極板2の表面までの距離を、白色共焦点方式のセンサを使用して検出してもよい。
 制御装置80は、ロールプレス装置1全体を制御するための装置であり、図4に示す例では第1制御盤81及び第2制御盤82を備える。第1制御盤81はプレス系の制御盤であり、第2制御盤82は厚み系の制御盤である。パルスジェネレータ16により生成される回転パルスは、第1制御盤81に入力される。厚み計70により検出される厚み検出値は、第2制御盤82に入力される。図4を用いて説明した構成は、実施の形態1~3で共通である。
 図5は、第1制御盤81及び第2制御盤82を用いたフィードバック制御例1を説明するための図である。フィードバック制御例1は、図1に示した実施の形態1に係るロールプレス装置で使用される制御である。フィードバック制御例1では、圧縮機構として第1プレスシリンダ41a及び第2プレスシリンダ42aを使用する。ベンド機構として第1ベンドシリンダ51a及び第2ベンドシリンダ52aを使用する。第1制御盤81は、PLC(Programmable Logic Controller)、PC(Personal Computer)、HMI(Human Machine Interface)、アクチュエータコントローラ等を含んで構成される。第2制御盤は、PLC、PC、センサコントローラ等を含んで構成される。
 PLC内で動作するプログラムは、PC内の専用のアプリケーションで生成され、PLCにダウンロードされる。またPLCには、MES(Manufacturing Execution System)から電極板2の製品情報が入力される。またPLCには、HMIを介してオペレータに入力された各種の設定値が入力される。フィードバック制御例1では当該設定値に、電極板2の厚み目標値、第1プレスシリンダ41a、第2プレスシリンダ42aの圧力設定値、第1ベンドシリンダ51a、第2ベンドシリンダ52aの圧力設定値が含まれる。HMIは、オペレータの入力を受け付けるとともに、運転状況や警報などを表示したり、音声出力したりする。
 図5は、フィードバック制御例1に関連する、第1制御盤81及び第2制御盤82で実現される機能ブロックを描いている。第1制御盤81は、長さ測定部811、取得タイミング生成部812、厚み測定値取得部813、特徴量算出部814、補正値算出部815、設定値補正部816、プレス圧力制御部817a、PID制御部817b、プレス圧力偏差算出部817c、ベンド圧力制御部818a、PID制御部818b、及びベンド圧力偏差算出部818cを含む。第2制御盤82は、厚み測定値算出部821を含む。
 長さ測定部811には、パルスジェネレータ16から回転パルスが入力される。長さ測定部811は、入力された回転パルスをもとに、第1加圧ローラ11及び第2加圧ローラ12の回転速度を推定し、第1加圧ローラ11と第2加圧ローラ12間を通過する電極板2の速度を推定する。長さ測定部811は、推定した電極板2の速度をもとに、電極板2の単位時間当たりに進む長さ(距離)を測定する。長さ測定部811は、測定した電極板2の長さを取得タイミング生成部812と厚み測定値算出部821に供給する。
 厚み測定値算出部821には、厚み計70から駆動側、中央部、操作側のそれぞれの厚み検出値が入力される。また長さ測定部811から電極板2の長さが入力される。
 厚み計70において3つの厚み検出センサを固定して厚みを検出する場合、制御する必要の無い高周期の厚み変動を除去するため、厚み測定値算出部821は、3つの厚み検出値をそれぞれ電極板2の長さ方向(走行方向)に平均化してフィルタリングする。塗布工程における塗布ポンプ脈動などによる、走行方向の急峻な変化を除去するため、走行方向に5mm以上の平均値を算出するのが望ましい。
 例えば、1mmピッチ毎に厚み検出値が入力される場合、厚み測定値算出部821は、走行方向に5点の移動平均値を算出して測定値とする。また、走行方向に検出した5点の内、最も外れている2点を排除した3点の平均値を算出して測定値としてもよい。厚み測定値算出部821は、移動平均値を算出する際、長さ測定部811から入力される電極板2の長さを同期信号として使用する。なお、電極板2の幅方向のスリットに相当する無塗工部や片面しか塗工されてない部分に相当する検出値は、除去する。
 厚み計70において1つの厚み検出センサを電極板2の幅方向に走査して厚みを検出する場合、厚み測定値算出部821は、予め設定された駆動側、中央部、操作側のそれぞれの幅範囲の検出値の平均値を算出して測定値としてもよい。さらに当該測定値を上述したように走行方向に平均化して最終的な測定値としてもよい。
 厚み測定値算出部821は、算出した駆動側厚み測定値T、中央厚み測定値T、操作側厚み測定値Tを厚み測定値取得部813に供給する。
 取得タイミング生成部812は厚み測定値取得部813が、厚み測定値算出部821から供給される駆動側厚み測定値T、中央厚み測定値T、操作側厚み測定値Tを取得するタイミングを生成して、生成したタイミングを厚み測定値取得部813に供給する。
 第1加圧ローラ11と第2加圧ローラ12によるプレス位置と、厚み計70との間には距離L(パスライン長L)がある。したがって、第1加圧ローラ11と第2加圧ローラ12による圧力変更により発生する厚み変化が、厚み計70により検出されるまでにタイムラグが発生する。また、圧縮機構および/またはベンド機構の圧力設定値を変更してから、圧縮機構および/またはベンド機構の実際の圧力変更が完了するまでにもタイムラグtが発生する。
 油圧サーボ弁で制御されるプレスシリンダ、減圧弁で制御されるプレスシリンダ、電動スクリュ、及び電動コッタの内、最も応答性が高いのは油圧サーボ弁で制御されるプレスシリンダであり、油圧サーボ弁で制御されるプレスシリンダが使用される場合が、最も制御系タイムラグtが小さくなる。
 パスライン長Lと制御系タイムラグtは予め実測され、実測された値が、取得タイミング生成部812に固定値として設定される。取得タイミング生成部812は、パスライン長Lと比較する長さパラメータLと、制御系タイムラグtと比較する時間パラメータtを使用する。取得タイミング生成部812は、長さパラメータLを長さ測定部811から供給される電極板2の長さをもとにインクリメントし、制御系タイムラグtを時計から供給されるクロックをもとにインクリメントする。
 取得タイミング生成部812は、第1プレスシリンダ41a、第2プレスシリンダ42a、第1ベンドシリンダ51a、及び第2ベンドシリンダ52aの少なくとも1つの圧力設定値が設定値補正部816により変更されると、長さパラメータLと時間パラメータtをゼロにリセットする。取得タイミング生成部812は、長さパラメータLがパスライン長Lを超え、かつ時間パラメータtが制御系タイムラグtを超えると、厚み測定値取得部813に取得タイミングを供給する。
 長さパラメータLがパスライン長Lを超え、かつ時間パラメータtが制御系タイムラグtを超えた状態は、第1プレスシリンダ41a、第2プレスシリンダ42a、第1ベンドシリンダ51a、及び第2ベンドシリンダ52aの少なくとも1つの圧力設定値の変更による電極板2の厚み変化が、厚み計70の検出値に反映されている状態である。
 一方、長さパラメータLがパスライン長Lを超えていない状態、または時間パラメータtが制御系タイムラグtを超えていない状態は、第1プレスシリンダ41a、第2プレスシリンダ42a、第1ベンドシリンダ51a、及び第2ベンドシリンダ52aの少なくとも1つの圧力設定値の変更による電極板2の厚み変化が、厚み計70の検出値にまだ反映されていない状態である。この状態は、上記圧力設定値の変更が電極板2の厚みに与える影響を確認できていない状態である。
 したがって、長さパラメータLがパスライン長Lを超え、かつ時間パラメータtが制御系タイムラグtを超えた状態まで待つ必要があり、その状態になるまで次の圧力設定値の変更は保留される。これにより、無駄または過度な第1プレスシリンダ41a、第2プレスシリンダ42a、第1ベンドシリンダ51a、及び第2ベンドシリンダ52aの圧力設定値の変更が回避され、効率的な圧力設定値の調整が可能となる。
 厚み測定値取得部813は、厚み測定値算出部821から供給される駆動側厚み測定値T、中央厚み測定値T、及び操作側厚み測定値Tを、取得タイミング生成部812から供給されるタイミングで取得し、特徴量算出部814に供給する。
 特徴量算出部814には、厚み測定値取得部813から駆動側厚み測定値T、中央厚み測定値T、及び操作側厚み測定値Tが入力される。また特徴量算出部814には、オペレータにより設定された厚み目標値Tが入力される。
 特徴量算出部814は、駆動側厚み測定値T、中央厚み測定値T、操作側厚み測定値T、及び厚み目標値Tをもとに、制御すべき厚み特徴量として、下記(式1)~(式3)で定義される3つの偏差特徴量を算出する。第1特徴量Tt-mは、厚み目標値Tと駆動側厚み測定値Tmの差分で規定される。第2特徴量Tt-sは、厚み目標値Tと操作側厚み測定値Tの差分で規定される。第3特徴量Tdropは、中央厚み測定値Tと、駆動側厚み測定値Tと操作側厚み測定値Tとの平均値との差分で規定される。
 Tt-m=T-Tm ・・・(式1)
 Tt-s=T-Ts ・・・(式2)
 Tdrop=T-Tms,ave=T-(Tm+Ts)/2 ・・・(式3)
 第1特徴量Tt-m=0、第2特徴量Tt-s=0、第3特徴量Tdrop=0の時、駆動側厚み測定値T=中央厚み測定値T=操作側厚み測定値T=厚み目標値Tとなる。第3特徴量Tdropは、厚みプロフィールの2次成分(数値が大の時、上に凸の放物線形状)を表しており、ロール撓みの大小とロール撓みの向きによって変化する。
 特徴量算出部814は、算出した第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropを補正値算出部815に供給する。
 本発明者らの実験によると、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropと荷重との間に、下記(式4)~(式6)に定義される関係があることが分かった。
 Tt-m∝(駆動側荷重) ・・・(式4)
 Tt-s∝(操作側荷重) ・・・(式5)
 Tdrop∝A×(トータルプレス荷重)-B×(トータルベンド荷重)-C×(トータルプレロード荷重) ・・・(式6)
 ここで、トータルプレス荷重は駆動側プレス荷重と操作側プレス荷重の合算であり、トータルベンド荷重は駆動側ベンド荷重と操作側ベンド荷重の合算であり、トータルプレロード荷重は駆動側プレロード荷重と操作側プレロード荷重の合算である。駆動側荷重は、駆動側プレスシリンダと駆動側ベンドシリンダと駆動側プレロードシリンダによって発生する駆動側荷重である。操作側荷重は、操作側プレスシリンダと操作側ベンドシリンダと操作側プレロードシリンダによって発生する操作側荷重である。
 プレスシリンダ荷重は被圧延材に圧力を加える方向に働き、ベンド荷重とプレロード荷重は被圧延材への圧力を下げる方向に働く。プレロードシリンダ荷重は、ロール撓みを過度に発生させない程度の圧力で、かつ設備のガタツキや振動を小さくできる押し付け圧力が確保された固定値に設定される。すなわち、厚み制御においてプレロード荷重は変化させない。なお、プレロードシリンダ荷重が過度に大きい場合、プレス圧力とベンド圧力の制御範囲内でロール撓みを制御することが困難になる。なお、第1プレロードシリンダ61a及び第2プレロードシリンダ62aが設けられない設備の場合、プレロード荷重はゼロである。
 上記(式6)のA、B、Cは正の定数であり、トータルプレス荷重、トータルベンド荷重、及びトータルプレロード荷重のそれぞれの駆動側荷重と操作側荷重との差が、第3特徴量Tdropに対して与える影響が、それぞれ異なることを表している。
 予め上記(式4)~(式6)のそれぞれの左辺と右辺の比例定数を測定しておくことで、トータルプレロード荷重が一定値の時、もしくはプレロード機構が設けられない時、上記(式4)~(式6)より、第1特徴量Tt-mと第2特徴量Tt-sと第3特徴量Tdropを同時にゼロにするトータルプレス荷重とトータルベンド荷重を一義的に求めることができる。
 フィードバック制御例1では、各シリンダの圧力を制御することで各荷重を制御する。荷重はシリンダ径(定数)×シリンダ圧力で計算される。上記(式4)~(式6)より、駆動側プレス圧力Pm、操作側プレス圧力Ps、駆動側ベンド圧力Bm、操作側ベンド圧力Bs、駆動側プレロード圧力Rm、操作側プレロード圧力Rs、平均プレス圧力Pave=(Pm+Ps)/2、平均ベンド圧力Bave=(Bm+Bs)/2、平均プレロード圧力Rave=(Rm+Rs)/2と、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropとの間に下記(式7)~(式15)の関係が成り立つ。具体的には、上記(式4)から下記(式7)~(式9)が導かれ、上記(式5)から(式10)~(式12)が導かれ、上記(式6)から下記(式13)~(式15)が導かれる。
 Tt-m∝Pm ・・・(式7)
 Tt-m∝-Bm ・・・(式8)
 Tt-m∝-Rm ・・・(式9)
 Tt-s∝Ps ・・・(式10)
 Tt-s∝-Bs ・・・(式11)
 Tt-s∝-Rs ・・・(式12)
 Tdrop∝Pave ・・・(式13)
 Tdrop∝-Bave ・・・(式14)
 Tdrop∝-Rave ・・・(式15)
 予め上記(式7)~(式8)、上記(式10)~(式11)、上記(式13)~(式14)の比例定数を測定しておく。プレロード圧力が一定の時、もしくはプレロード機構が設けられない時において、駆動側ベンド圧力Bmと操作側ベンド圧力Bsの圧力差を一定にすると、上記(式7)と(式10)に示す相関関係より、第1特徴量Tt-mと第2特徴量Tt-sが同時にゼロになる駆動側プレス圧力Pmと操作側プレス圧力Psの駆動側プレス圧力補正値ΔPと操作側プレス圧力補正値ΔPがそれぞれ求まる。
 上記(式13)に示す相関関係より、上述の駆動側プレス圧力Pmと操作側プレス圧力Psの補正に伴う第3特徴量Tdropの変化量が求まる。上記(式14)に示す相関関係と、当該第3特徴量Tdropの変化量をもとに、第3特徴量Tdropをゼロにするための平均ベンド圧力Baveの補正値ΔBaveが求まる。駆動側ベンド圧力Bmと操作側ベンド圧力Bsの差が一定であるため、駆動側ベンド圧力Bmと操作側ベンド圧力Bsの駆動側ベンド圧力補正値ΔBmと操作側ベンド圧力補正値ΔBsが求まる。
 第1プレスシリンダ41aの圧力が補正後の駆動側プレス圧力設定値P+ΔPに、第2プレスシリンダ42aの圧力が補正後の操作側プレス圧力設定値P+ΔPに、第1ベンドシリンダ51aの圧力が補正後の駆動側ベンド圧力設定値B+ΔBに、及び第2ベンドシリンダ52aの圧力が補正後の操作側ベンド圧力設定値B+ΔBにそれぞれなるように、各シリンダの圧力を制御することで、電極板2の全幅に渡る厚みを目標値Tに制御することができる。
 補正値算出部815には、特徴量算出部814から第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropが供給される。また、HMIを介してオペレータにより入力された駆動側プレス圧力設定値P、操作側プレス圧力設定値P、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bが供給される。駆動側プレス圧力設定値P、操作側プレス圧力設定値P、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bには、標準条件下において、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropが全てゼロになるように予め導出された値がそれぞれ設定されている。
 補正値算出部815は、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdrop、及び上記(式7)、(式8)、(式10)、(式11)、(式13)、(式14)の比例定数をもとに、駆動側プレス圧力補正値ΔP、操作側プレス圧力補正値ΔP、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBを算出する。補正値算出部815は、算出した駆動側プレス圧力補正値ΔP、操作側プレス圧力補正値ΔP、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBを設定値補正部816に供給する。
 設定値補正部816には、補正値算出部815から駆動側プレス圧力補正値ΔP、操作側プレス圧力補正値ΔP、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBが供給される。また、HMIを介してオペレータにより入力された駆動側プレス圧力設定値P、操作側プレス圧力設定値P、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bが供給される。
 設定値補正部816は、駆動側プレス圧力設定値P、操作側プレス圧力設定値P、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bに、駆動側プレス圧力補正値ΔP、操作側プレス圧力補正値ΔP、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBをそれぞれ加算して、補正後の駆動側プレス圧力設定値P+ΔP、補正後の操作側プレス圧力設定値P+ΔP、補正後の駆動側ベンド圧力設定値B+ΔB、及び補正後の操作側ベンド圧力設定値B+ΔBを算出する。
 設定値補正部816は、算出した補正後の駆動側プレス圧力設定値P+ΔP、補正後の操作側プレス圧力設定値P+ΔPをプレス圧力偏差算出部817cに供給し、補正後の駆動側ベンド圧力設定値B+ΔB、補正後の操作側ベンド圧力設定値B+ΔBをベンド圧力偏差算出部818cに供給する。
 プレス圧力偏差算出部817cは、設定値補正部816から供給された補正後の駆動側プレス圧力設定値P+ΔPと第1プレスシリンダ41aの圧力実測値との偏差、及び補正後の操作側プレス圧力設定値Ps+ΔPsと第2プレスシリンダ42aの圧力実測値との偏差をそれぞれ算出する。第1プレスシリンダ41aの圧力実測値と第2プレスシリンダ42aの圧力実測値はそれぞれ、例えば弁開度計の測定値に応じて推定することができる。
 プレス圧力偏差算出部817cは、算出した第1プレスシリンダ41aの圧力偏差と第2プレスシリンダ42aの圧力偏差をPID制御部817bに供給する。PID制御部817bは、第1プレスシリンダ41aの圧力偏差、及び第2プレスシリンダ42aの圧力偏差をもとに、第1プレスシリンダ41aの圧力の操作量、及び第2プレスシリンダ42aの圧力の操作量を生成する。
 なお、PID補償の代わりに、P補償、PI補償、またはPD補償を用いてもよい。P補償では積分項を制御でき、I補償では比例項(定常偏差)を制御でき、D補償では微分項を制御できる。
 PID制御部817bは、生成した第1プレスシリンダ41aの圧力の操作量と第2プレスシリンダ42aの圧力の操作量をプレス圧力制御部817aに供給する。プレス圧力制御部817aは、アクチュエータを含み、第1プレスシリンダ41aの圧力の操作量、及び第2プレスシリンダ42aの圧力の操作量をもとに、第1プレスシリンダ41a及び第2プレスシリンダ42aをそれぞれ駆動する。
 ベンド圧力偏差算出部818cは、設定値補正部816から供給された補正後の駆動側ベンド圧力設定値B+ΔBと第1ベンドシリンダ51aの圧力実測値との偏差、及び補正後の操作側ベンド圧力設定値Bs+ΔBsと第2ベンドシリンダ52aの圧力実測値との偏差をそれぞれ算出する。
 ベンド圧力偏差算出部818cは、算出した第1ベンドシリンダ51aの圧力偏差と第2ベンドシリンダ52aの圧力偏差をPID制御部818bに供給する。PID制御部818bは、第1ベンドシリンダ51aの圧力偏差、及び第2ベンドシリンダ52aの圧力偏差をもとに、第1ベンドシリンダ51aの圧力の操作量、及び第2ベンドシリンダ52aの圧力の操作量を生成する。
 PID制御部818bは、生成した第1ベンドシリンダ51aの圧力の操作量と第2ベンドシリンダ52aの圧力の操作量をベンド圧力制御部818aに供給する。ベンド圧力制御部818aは、アクチュエータを含み、第1ベンドシリンダ51aの圧力の操作量、及び第2ベンドシリンダ52aの圧力の操作量をもとに、第1ベンドシリンダ51a、及び第4ベンドシリンダ52bをそれぞれ駆動する。
 このようにフィードバック制御例1では、プレスシリンダの圧力が設定値を維持するようにフィードバック制御する。操作対象はプレスシリンダの圧力である。また、ベンドシリンダの圧力が設定値を維持するようにフィードバック制御する。操作対象はベンドシリンダの圧力である。プレスシリンダ圧力の設定値と、ベンドシリンダ圧力の設定値に、厚み測定値から算出される補正値が加えられることにより、電極板2の厚みが目標値に制御される。
 図6は、第1制御盤81及び第2制御盤82を用いたフィードバック制御例2を説明するための図である。フィードバック制御例2は、図2に示した実施の形態2に係るロールプレス装置で使用される制御である。フィードバック制御例2では、圧縮機構として第1プレスシリンダ41a及び第2プレスシリンダ42aを使用する。ベンド機構として第3ベンドシリンダ51b及び第5ベンドシリンダ51cの少なくとも一方、並びに第4ベンドシリンダ52b及び第6ベンドシリンダ52cの少なくとも一方を使用する。以下、図5に示したフィードバック制御例1との相違点を説明する。フィードバック制御例2では、プレス圧力制御部817a、PID制御部817b、及びプレス圧力偏差算出部817cの代わりに、シリンダ位置制御部817d、PID制御部817e、及びシリンダ位置偏差算出部817fが設けられる。
 本発明者らの実験によると、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropと、駆動側プレスシリンダ位置Gm、操作側プレスシリンダ位置Gs、平均プレスシリンダ位置Gave=(Gm+Gs)/2との間に、下記(式16)~(式18)に定義される関係があることが分かった。
 Tt-m∝Gm ・・・(式16)
 Tt-s∝Gs ・・・(式17)
 Tdrop∝-Gave ・・・(式18)
 電極板2の厚みはプレスシリンダ位置の変化だけで増減するわけではなく、電極板2からの反力が変化することによる第1加圧ローラ11と第2加圧ローラ12の弾性変形量も考慮する必要がある。
 駆動側プレスシリンダ位置Gm、操作側プレスシリンダ位置Gs、平均プレスシリンダ位置Gaveと、電極板2の厚みを表す第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropとの相関関係は、予め実験的に求めておく。
 駆動側ベンド圧力Bmと操作側ベンド圧力Bsの圧力差を一定にすると、上記(式16)と(式17)に示す相関関係より、第1特徴量Tt-mと第2特徴量Tt-sが同時にゼロになる駆動側プレスシリンダ位置Gmと操作側プレスシリンダ位置Gsの駆動側プレスシリンダ位置補正値ΔGと操作側プレスシリンダ位置補正値ΔGがそれぞれ求まる。
 上記(式18)に示す相関関係より、上述の駆動側プレスシリンダ位置Gmと操作側プレスシリンダ位置Gsの補正に伴う第3特徴量Tdropの変化量ΔTdropが求まる。上記(式14)に示す相関関係より、当該変化量ΔTdropが加味された第3特徴量Tdrop+ΔTdropをゼロにするための平均ベンド圧力Baveの補正値ΔBaveが求まる。
 第1プレスシリンダ41aのシリンダ位置が補正後の駆動側プレスシリンダ位置設定値G+ΔGに、第2プレスシリンダ42aのシリンダ位置が補正後の操作側プレスシリンダ位置設定値G+ΔGに、第3ベンドシリンダ51b及び第5ベンドシリンダ51cの圧力が補正後の駆動側ベンド圧力設定値B+ΔBに、並びに第4ベンドシリンダ52b及び第6ベンドシリンダ52cの圧力が補正後の操作側ベンド圧力設定値B+ΔBにそれぞれなるように、第1プレスシリンダ41a及び第2プレスシリンダ42aのシリンダ位置と、第3ベンドシリンダ51b、第5ベンドシリンダ51c、第4ベンドシリンダ52b及び第6ベンドシリンダ52cの圧力を制御することで、電極板2の全幅に渡る厚みを目標値Tに制御することができる。
 補正値算出部815には、特徴量算出部814から第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropが供給される。また、HMIを介してオペレータにより入力された駆動側プレスシリンダ位置設定値G、操作側プレスシリンダ位置設定値G、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bが供給される。駆動側プレスシリンダ位置設定値G、操作側プレスシリンダ位置設定値G、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bには、標準条件下において、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropが全てゼロになるように予め導出された値がそれぞれ設定されている。
 補正値算出部815は、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdrop、及び上記(式16)、(式17)、(式18)、(式14)の比例定数をもとに、駆動側プレスシリンダ位置補正値ΔG、操作側プレスシリンダ位置補正値ΔG、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBを算出する。補正値算出部815は、算出した駆動側プレスシリンダ位置補正値ΔG、操作側プレスシリンダ位置補正値ΔG、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBを設定値補正部816に供給する。
 設定値補正部816には、補正値算出部815から駆動側プレスシリンダ位置補正値ΔG、操作側プレスシリンダ位置補正値ΔG、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBが供給される。また、HMIを介してオペレータにより入力された駆動側プレスシリンダ位置設定値G、操作側プレスシリンダ位置設定値G、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bが供給される。
 設定値補正部816は、駆動側プレスシリンダ位置設定値G、操作側プレスシリンダ位置設定値G、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bに、駆動側プレスシリンダ位置補正値ΔG、操作側プレスシリンダ位置補正値ΔG、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBをそれぞれ加算して、補正後の駆動側プレスシリンダ位置設定値G+ΔG、補正後の操作側プレスシリンダ位置設定値G+ΔG、補正後の駆動側ベンド圧力設定値B+ΔB、及び補正後の操作側ベンド圧力設定値B+ΔBを算出する。
 設定値補正部816は、算出した補正後の駆動側プレスシリンダ位置設定値G+ΔG、補正後の操作側プレスシリンダ位置設定値G+ΔGをシリンダ位置偏差算出部817fに供給し、補正後の駆動側ベンド圧力設定値B+ΔB、補正後の操作側ベンド圧力設定値B+ΔBをベンド圧力偏差算出部818cに供給する。
 シリンダ位置偏差算出部817fは、設定値補正部816から供給された補正後の駆動側プレスシリンダ位置設定値G+ΔGと、第1マグネスケール41cにより測定された第1プレスシリンダ41aのシリンダ位置の実測値との偏差を算出する。またシリンダ位置偏差算出部817fは、設定値補正部816から供給された補正後の操作側プレスシリンダ位置設定値Gs+ΔGsと、第2マグネスケール42cにより測定された第2プレスシリンダ42aのシリンダ位置の実測値との偏差を算出する。
 シリンダ位置偏差算出部817fは、算出した第1プレスシリンダ41aのシリンダ位置偏差と第2プレスシリンダ42aのシリンダ位置偏差をPID制御部817eに供給する。PID制御部817eは、第1プレスシリンダ41aのシリンダ位置偏差、及び第2プレスシリンダ42aのシリンダ位置偏差をもとに、第1プレスシリンダ41aの圧力の操作量、及び第2プレスシリンダ42aの圧力の操作量を生成する。
 PID制御部817eは、生成した第1プレスシリンダ41aの圧力の操作量と第2プレスシリンダ42aの圧力の操作量をシリンダ位置制御部817dに供給する。シリンダ位置制御部817dは、アクチュエータを含み、第1プレスシリンダ41aの圧力の操作量、及び第2プレスシリンダ42aの圧力の操作量をもとに、第1プレスシリンダ41a及び第2プレスシリンダ42aをそれぞれ駆動する。
 フィードバック制御例2ではベンド機構として、第3ベンドシリンダ51b、第5ベンドシリンダ51c、第4ベンドシリンダ52b、及び第6ベンドシリンダ52cを制御しているが、フィードバック制御例1における第1ベンドシリンダ51a及び第2ベンドシリンダ52aを制御する場合と基本的に同じであるため説明を省略する。
 このようにフィードバック制御例2では、フィードバック制御例1のようにプレスシリンダの圧力が設定値を維持するようにフィードバック制御するのではなく、プレスシリンダの位置が設定値を維持するようにフィードバック制御する。操作対象はプレスシリンダの圧力である。また、フィードバック制御例2でもベンドシリンダの圧力が設定値を維持するようにフィードバック制御する。操作対象はベンドシリンダの圧力である。プレスシリンダ位置の設定値と、ベンドシリンダ圧力の設定値に、厚み測定値から算出される補正値が加えられることにより、電極板2の厚みが目標値に制御される。
 図7は、第1制御盤81及び第2制御盤82を用いたフィードバック制御例3を説明するための図である。フィードバック制御例3は、図1に示した実施の形態1に係るロールプレス装置で使用される制御である。フィードバック制御例3では、圧縮機構として第1電動スクリュ41b及び第2電動スクリュ42bを使用する。なお、第1プレスシリンダ41a及び第2プレスシリンダ42aには、第1電動スクリュ41b及び第2電動スクリュ42bの位置制御によって、シリンダの位置が変化しないように、十分に大きな圧力(固定値)を付加しておく。
 ベンド機構として第1ベンドシリンダ51a及び第2ベンドシリンダ52aを使用する。以下、図5に示したフィードバック制御例1との相違点を説明する。フィードバック制御例3では、プレス圧力制御部817a、PID制御部817b、及びプレス圧力偏差算出部817cの代わりに、スクリュ位置制御部817g、PID制御部817h、及びスクリュ位置偏差算出部817iが設けられる。
 本発明者らの実験によると、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropと、駆動側電動スクリュ位置Dm、操作側電動スクリュ位置Ds、平均電動スクリュ位置Dave=(Dm+Ds)/2との間に、下記(式19)~(式21)に定義される関係があることが分かった。
 Tt-m∝Dm ・・・(式19)
 Tt-s∝Ds ・・・(式20)
 Tdrop∝-Dave ・・・(式21)
 電極板2の厚みは電動スクリュ位置の変化だけで増減するわけではなく、電極板2からの反力が変化することによる第1加圧ローラ11と第2加圧ローラ12の弾性変形量も考慮する必要がある。
 駆動側電動スクリュ位置Dm、操作側電動スクリュ位置Ds、平均電動スクリュ位置Daveと、電極板2の厚みを表す第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropとの相関関係は、予め実験的に求めておく。
 プレロード圧力が一定の時、もしくはプレロード機構が設けられない時において、駆動側ベンド圧力Bmと操作側ベンド圧力Bsの圧力差を一定にすると、上記(式19)と(式20)に示す相関関係より、第1特徴量Tt-mと第2特徴量Tt-sが同時にゼロになる駆動側電動スクリュ位置Dmと操作側電動スクリュ位置Dsの駆動側電動スクリュ位置補正値ΔDと操作側電動スクリュ位置補正値ΔDがそれぞれ求まる。
 上記(式21)に示す相関関係より、上述の駆動側電動スクリュ位置Dmと操作側電動スクリュ位置Dsの補正に伴う第3特徴量Tdropの変化量ΔTdropが求まる。上記(式14)に示す相関関係より、当該変化量ΔTdropが加味された第3特徴量Tdrop+ΔTdropをゼロにするための平均ベンド圧力Baveの補正値ΔBaveが求まる。
 第1電動スクリュ41bの位置が補正後の駆動側電動スクリュ位置設定値D+ΔDに、第2電動スクリュ42bの位置が補正後の操作側電動スクリュ位置設定値D+ΔDに、第1ベンドシリンダ51aの圧力が補正後の駆動側ベンド圧力設定値B+ΔBに、及び第2ベンドシリンダ52aの圧力が補正後の操作側ベンド圧力設定値B+ΔBにそれぞれなるように、第1電動スクリュ41b及び第2電動スクリュ42bの位置と、第1ベンドシリンダ51a及び第2ベンドシリンダ52aの圧力を制御することで、電極板2の全幅に渡る厚みを目標値Tに制御することができる。
 補正値算出部815には、特徴量算出部814から第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropが供給される。また、HMIを介してオペレータにより入力された駆動側電動スクリュ位置設定値D、操作側電動スクリュ位置設定値D、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bが供給される。駆動側電動スクリュ位置設定値D、操作側電動スクリュ位置設定値D、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bには、標準条件下において、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropが全てゼロになるように予め導出された値がそれぞれ設定されている。
 補正値算出部815は、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdrop、及び上記(式19)、(式20)、(式21)、(式14)の比例定数をもとに、駆動側電動スクリュ位置補正値ΔD、操作側電動スクリュ位置補正値ΔD、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBを算出する。補正値算出部815は、算出した駆動側電動スクリュ位置補正値ΔD、操作側電動スクリュ位置補正値ΔD、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBを設定値補正部816に供給する。
 設定値補正部816には、補正値算出部815から駆動側電動スクリュ位置補正値ΔD、操作側電動スクリュ位置補正値ΔD、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBが供給される。また、HMIを介してオペレータにより入力された駆動側電動スクリュ位置設定値D、操作側電動スクリュ位置設定値D、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bが供給される。
 設定値補正部816は、駆動側電動スクリュ位置設定値D、操作側電動スクリュ位置設定値D、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bに、駆動側電動スクリュ位置補正値ΔD、操作側電動スクリュ位置補正値ΔD、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBをそれぞれ加算して、補正後の駆動側電動スクリュ位置設定値D+ΔD、補正後の操作側電動スクリュ位置設定値D+ΔD、補正後の駆動側ベンド圧力設定値B+ΔB、及び補正後の操作側ベンド圧力設定値B+ΔBを算出する。
 設定値補正部816は、算出した補正後の駆動側電動スクリュ位置設定値D+ΔD、補正後の操作側電動スクリュ位置設定値D+ΔDをスクリュ位置偏差算出部817iに供給し、補正後の駆動側ベンド圧力設定値B+ΔB、補正後の操作側ベンド圧力設定値B+ΔBをベンド圧力偏差算出部818cに供給する。
 スクリュ位置偏差算出部817iは、設定値補正部816から供給された補正後の駆動側電動スクリュ位置設定値D+ΔDと、第1電動スクリュ41bの位置の測定値との偏差を算出する。またスクリュ位置偏差算出部817iは、設定値補正部816から供給された補正後の操作側電動スクリュ位置設定値Ds+ΔDsと、第2電動スクリュ42bの位置の測定値との偏差を算出する。
 スクリュ位置制御部817gは、第1電動スクリュ41b及び第2電動スクリュ42bを圧下させるためのサーボモータをそれぞれ含む。第1電動スクリュ41b及び第2電動スクリュ42bのそれぞれの位置の変化量は、それぞれのサーボモータの回転数から計算することができる。
 スクリュ位置偏差算出部817iは、算出した第1電動スクリュ41bの位置偏差と第2電動スクリュ42bの位置偏差をPID制御部817hに供給する。PID制御部817hは、第1電動スクリュ41bの位置偏差、及び第2電動スクリュ42bの位置偏差をもとに、第1電動スクリュ41b用のサーボモータの回転の操作量、及び第2電動スクリュ42b用のサーボモータの回転の操作量を生成する。
 PID制御部817hは、生成した第1電動スクリュ41b用のサーボモータの回転の操作量と第2電動スクリュ42b用のサーボモータの回転の操作量をスクリュ位置制御部817gに供給する。スクリュ位置制御部817gは、第1電動スクリュ41b用のサーボモータの回転の操作量、及び第2電動スクリュ42b用のサーボモータの回転の操作量をもとに、第1電動スクリュ41b用のサーボモータ及び第2電動スクリュ42b用のサーボモータをそれぞれ駆動する。
 このようにフィードバック制御例3では、フィードバック制御例1のようにプレスシリンダの圧力が設定値を維持するようにフィードバック制御するのではなく、電動スクリュの位置が設定値を維持するようにフィードバック制御する。操作対象はサーボモータの回転数である。フィードバック制御例3でもベンドシリンダの圧力が設定値を維持するようにフィードバック制御する。操作対象はベンドシリンダの圧力である。電動スクリュの位置の設定値と、ベンドシリンダ圧力の設定値に、厚み測定値から算出される補正値が加えられることにより、電極板2の厚みが目標値に制御される。
 図8は、第1制御盤81及び第2制御盤82を用いたフィードバック制御例4を説明するための図である。フィードバック制御例4は、図3に示した実施の形態3に係るロールプレス装置で使用される制御である。フィードバック制御例4では、圧縮機構として第1電動コッタ41e及び第2電動コッタ42eを使用する。なお、第1プレスシリンダ41a及び第2プレスシリンダ42aには、第1電動コッタ41e及び第2電動コッタ42eの高さ制御によって、シリンダの位置が変化しないように、十分に大きな圧力(固定値)を付加しておく。
 ベンド機構として第3ベンドシリンダ51b及び第5ベンドシリンダ51cの少なくとも一方、並びに第4ベンドシリンダ52b及び第6ベンドシリンダ52cの少なくとも一方を使用する。以下、図5に示したフィードバック制御例1との相違点を説明する。フィードバック制御例4では、プレス圧力制御部817a、PID制御部817b、及びプレス圧力偏差算出部817cの代わりに、コッタ高さ制御部817j、PID制御部817k、及びコッタ高さ偏差算出部817lが設けられる。
 第1電動コッタ41e及び第2電動コッタ42eが第1プレスシリンダ41a及び第2プレスシリンダ42aに接触し、第1加圧ローラ11及び第2加圧ローラ12が電極板2に接触している状態において、第1プレスシリンダ41a及び第2プレスシリンダ42aによるプレス荷重の一部は第1電動コッタ41e及び第2電動コッタ42eに分散するため、(電極板2に作用する荷重)は、(プレス荷重)-(コッタに作用する荷重)で表される。
 第1プレスシリンダ41a及び第2プレスシリンダ42aの圧力が一定のとき、プレス荷重は一定となる。この状態では、コッタ高さを変化させてコッタに作用する荷重を変化させることで、電極板2に作用する荷重を変化させることができる。第1電動コッタ41e及び第2電動コッタ42eのそれぞれの高さの変化による第1電動コッタ41e及び第2電動コッタ42eのそれぞれに作用する荷重変化の測定は難しい。
 本発明者らの実験によると、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropと、駆動側電動コッタ高さKm、操作側電動コッタ高さKs、平均電動コッタ高さKave=(Km+Ks)/2との間に、下記(式22)~(式24)に定義される関係があることが分かった。
 Tt-m∝Km ・・・(式22)
 Tt-s∝Ks ・・・(式23)
 Tdrop∝-Kave ・・・(式24)
 駆動側電動コッタ高さKm、操作側電動コッタ高さKs、平均電動コッタ高さKaveと、電極板2の厚みを表す第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropとの相関関係は、予め実験的に求めておく。
 駆動側ベンド圧力Bmと操作側ベンド圧力Bsの圧力差を一定にすると、上記(式22)と(式23)に示す相関関係より、第1特徴量Tt-mと第2特徴量Tt-sが同時にゼロになる駆動側電動コッタ高さKmと操作側電動コッタ高さKsの駆動側電動コッタ高さ補正値ΔKと操作側電動コッタ高さ補正値ΔKがそれぞれ求まる。
 上記(式24)に示す相関関係より、上述の駆動側電動コッタ高さKmと操作側電動コッタ高さKsの補正に伴う第3特徴量Tdropの変化量ΔTdropが求まる。上記(式14)に示す相関関係より、当該変化量ΔTdropが加味された第3特徴量Tdrop+ΔTdropをゼロにするための平均ベンド圧力Baveの補正値ΔBaveが求まる。
 第1電動コッタ41eの高さが補正後の駆動側電動コッタ高さ設定値K+ΔKに、第2電動コッタ42eの高さが補正後の操作側電動コッタ高さ設定値K+ΔKに、第3ベンドシリンダ51b及び第5ベンドシリンダ51cの圧力が補正後の駆動側ベンド圧力設定値B+ΔBに、並びに第4ベンドシリンダ52b及び第6ベンドシリンダ52cの圧力が補正後の操作側ベンド圧力設定値B+ΔBにそれぞれなるように、第1電動コッタ41e及び第2電動コッタ42eの高さと、第3ベンドシリンダ51b、第5ベンドシリンダ51c、第4ベンドシリンダ52b及び第6ベンドシリンダ52cの圧力を制御することで、電極板2の全幅に渡る厚みを目標値Tに制御することができる。
 補正値算出部815には、特徴量算出部814から第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropが供給される。また、HMIを介してオペレータにより入力された駆動側電動コッタ高さ設定値K、操作側電動コッタ高さ設定値K、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bが供給される。駆動側電動コッタ高さ設定値K、操作側電動コッタ高さ設定値K、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bには、標準条件下において、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdropが全てゼロになるように予め導出された値がそれぞれ設定されている。
 補正値算出部815は、第1特徴量Tt-m、第2特徴量Tt-s、第3特徴量Tdrop、及び上記(式22)、(式23)、(式24)、(式14)の比例定数をもとに、駆動側電動コッタ高さ補正値ΔK、操作側電動コッタ高さ補正値ΔK、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBを算出する。補正値算出部815は、算出した駆動側電動コッタ高さ補正値ΔK、操作側電動コッタ高さ補正値ΔK、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBを設定値補正部816に供給する。
 設定値補正部816には、補正値算出部815から駆動側電動コッタ高さ補正値ΔK、操作側電動コッタ高さ補正値ΔK、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBが供給される。また、HMIを介してオペレータにより入力された駆動側電動コッタ高さ設定値K、操作側電動コッタ高さ設定値K、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bが供給される。
 設定値補正部816は、駆動側電動コッタ高さ設定値K、操作側電動コッタ高さ設定値K、駆動側ベンド圧力設定値B、及び操作側ベンド圧力設定値Bに、駆動側電動コッタ高さ補正値ΔK、操作側電動コッタ高さ補正値ΔK、駆動側ベンド圧力補正値ΔB、及び操作側ベンド圧力補正値ΔBをそれぞれ加算して、補正後の駆動側電動コッタ高さ設定値K+ΔK、補正後の操作側電動コッタ高さ設定値K+ΔK、補正後の駆動側ベンド圧力設定値B+ΔB、及び補正後の操作側ベンド圧力設定値B+ΔBを算出する。
 設定値補正部816は、算出した補正後の駆動側電動コッタ高さ設定値K+ΔK、補正後の操作側電動コッタ高さ設定値K+ΔKをコッタ高さ偏差算出部817lに供給し、補正後の駆動側ベンド圧力設定値B+ΔB、補正後の操作側ベンド圧力設定値B+ΔBをベンド圧力偏差算出部818cに供給する。
 コッタ高さ偏差算出部817lは、設定値補正部816から供給された補正後の駆動側電動コッタ高さ設定値K+ΔKと、第1電動コッタ41eの高さの測定値との偏差を算出する。またコッタ高さ偏差算出部817lは、設定値補正部816から供給された補正後の操作側電動コッタ高さ設定値Ks+ΔKsと、第2電動コッタ42eの高さの測定値との偏差を算出する。
 コッタ高さ制御部817jは、第1電動コッタ41e及び第2電動コッタ42eのそれぞれの下側コッタを左右方向にスライドさせるためのリニアサーボモータをそれぞれ含む。第1電動コッタ41e及び第2電動コッタ42eのそれぞれの高さの変化量は、それぞれのリニアサーボモータの移動量から計算することができる。なお、第1主軸受部21と第3主軸受部23間に距離計を設けて第1電動コッタ41eの高さを、第2主軸受部22と第4主軸受部24間に距離計を設けて第2電動コッタ42eの高さをそれぞれ測定してもよい。
 コッタ高さ偏差算出部817lは、算出した第1電動コッタ41eの高さ偏差と第2電動コッタ42eの高さ偏差をPID制御部817kに供給する。PID制御部817kは、第1電動コッタ41eの高さ偏差、及び第2電動コッタ42eの高さ偏差をもとに、第1電動コッタ41e用のリニアサーボモータの移動の操作量、及び第2電動コッタ42e用のリニアサーボモータの移動の操作量を生成する。
 PID制御部817kは、生成した第1電動コッタ41e用のリニアサーボモータの移動の操作量と第2電動コッタ42e用のリニアサーボモータの移動の操作量をコッタ高さ制御部817jに供給する。コッタ高さ制御部817jは、第1電動コッタ41e用のリニアサーボモータの移動の操作量、及び第2電動コッタ42e用のリニアサーボモータの移動の操作量をもとに、第1電動コッタ41e用のリニアサーボモータ及び第2電動コッタ42e用のリニアサーボモータをそれぞれ駆動する。
 フィードバック制御例4ではベンド機構として、第3ベンドシリンダ51b、第5ベンドシリンダ51c、第4ベンドシリンダ52b、及び第6ベンドシリンダ52cを制御しているが、フィードバック制御例1における第1ベンドシリンダ51a及び第2ベンドシリンダ52aを制御する場合と基本的に同じであるため説明を省略する。
 このようにフィードバック制御例4では、フィードバック制御例1のようにプレスシリンダの圧力が設定値を維持するようにフィードバック制御するのではなく、電動コッタの高さが設定値を維持するようにフィードバック制御する。操作対象はリニアサーボモータの移動量である。フィードバック制御例4でもベンドシリンダの圧力が設定値を維持するようにフィードバック制御する。操作対象はベンドシリンダの圧力である。電動コッタの高さの設定値と、ベンドシリンダ圧力の設定値に、厚み測定値から算出される補正値が加えられることにより、電極板2の厚みが目標値に制御される。
 上述の第1プレスシリンダ41a、第2プレスシリンダ42a、第1ベンドシリンダ51a、第2ベンドシリンダ52a、第3ベンドシリンダ51b、第4ベンドシリンダ52b、第5ベンドシリンダ51c、及び第6ベンドシリンダ52cに油圧シリンダを使用する場合、油圧シリンダのなるべく近くに油圧制御機器を設置することが望ましい。また、油圧制御機器として、圧力制御速度の速い油圧サーボ弁を使用することが望ましい。これにより、油圧シリンダの圧力変更に伴う油圧配管の圧力変化による圧力応答の遅れや圧力ハンチングを防止することができる。
 ところで、フィードバック制御例1~4に示した、搬送中の電極板2の厚みを厚み計70で測定し、フィードバック制御により電極板2の厚みを補正する方法では、搬送ラインの加速または減速時の厚み変化を高精度に補正することが難しい。搬送ラインの加速または減速時の速度を遅くすることも考えられるが、その場合、生産効率が低下する。そこで、搬送ラインの速度変化による電極板2の厚み変化を予測し、フィードフォワード制御により電極板2の厚みを補正する方法を導入する。
 図9は、あるロールプレス装置1の一定のプレス・ベンド条件下における、ライン速度の変化に対する電極板2の厚み変化の関係をプロットした図である。横軸がライン速度[mpm]、縦軸が電極板2の厚み幅平均値[μm]を示している。図9に示すように、ライン速度が速くなるほど、電極板2の厚みが厚くなることが分かる。
 図10は、第1制御盤81を用いたフィードフォワード制御例1を説明するための図である。フィードフォワード制御例1は、図1に示した実施の形態1に係るロールプレス装置で使用される制御である。フィードフォワード制御例1では、圧縮機構として第1プレスシリンダ41a及び第2プレスシリンダ42aを使用する。本明細書ではフィードフォワード制御を単純化するため、フィードフォワード制御にベンド機構は使用しない。
 図10は、フィードフォワード制御例1に関連する第1制御盤81で実現される機能ブロックを描いている。第1制御盤81は、ライン速度設定変更部819、ライン速度制御部8110、補正値算出部815、設定値補正部816、プレス圧力制御部817a、PID制御部817b、及びプレス圧力偏差算出部817cを含む。
 ライン速度制御部8110は、ライン速度設定変更部819から供給されたライン速度の指令値をもとに、巻出機13の回転速度、第1加圧ローラ11及び第2加圧ローラ12の回転速度、並びに巻取機14の回転速度を制御する。
 ライン速度設定変更部819には、オペレータにより設定されたライン速度が入力される。搬送ラインの加速時の加速度、及び減速時の減速度は基本的に、ロールプレス装置1のメーカにより予め設定されている。なお、加速時の加速度、及び減速時の減速度がユーザにより設定変更可能な仕様であってもよい。
 フィードフォワード制御例1では、ライン速度の変化による電極板2の厚み変化を予測し、電極板2の厚みを一定に維持するのに必要なプレス荷重を計算し、プレス荷重をフィードフォワード制御で変化させる。ライン速度と電極板2の厚みとの関係は、実験的に調査しておくことで、適切なプレス圧力を高精度に予測することができる。
 ライン速度の加速度または減速度をα[m/s2]としたとき、加速または減速開始からS秒後のライン速度Vsは、加速または減速開始時の速度V0と、加速または減速開始からS秒後のライン速度の変化量ΔVsを用いて、下記(式25)のように定義できる。加速または減速開始からS秒後のライン速度の変化量ΔVsは、下記(式26)のように定義できる。
 Vs =V0+ΔVs=V0+α×S ・・・(式25)
 ΔVs =Vs-V0 =α×S ・・・(式26)
 図9に示したように、S秒後のライン速度の変化量ΔVsと、電極板2の幅方向の厚み平均値Taveの変化量ΔTaveとの間は比例関係にあるため、下記(式27)の関係が成り立つ。
 ΔTave=D×ΔVs ・・・(式27)
 Dは比例定数。
 ライン速度の変化量ΔVと、厚み平均値Taveの変化量ΔTaveの関係は実験的に求め、多次元関数、指数関数、又は対数関数でフィッティングしてもよい。
 また、電極板2に作用するプレス荷重の幅方向の平均値Lave(以降、線圧と呼称する)と、プレス後の厚み平均値Taveとの間は比例関係にあるため、線圧を変化させたときの、線圧の変化量ΔLaveと厚み平均値Taveの変化量ΔTaveとの間には、下記(式28)の関係が成り立つ。
 ΔTave=E×ΔLave ・・・(式28)
 Eは比例定数。
 加速または減速開始からS秒後の厚み平均値Taveの変化量ΔTave,sをゼロにするための線圧の補正値ΔLave,sは、上記(式26)、(式27)、(式28)の関係からΔVsとΔTaveを除去し、下記(式29)で求めることができる。
 ΔLave,s={(D×α)/E}×S ・・・(式29)
 加速または減速時の線圧をLave,0とするとき、S秒後の線圧をLave,0+ΔLave,sになるようにプレス機構をフィードフォワード制御することで、ライン速度の変化による電極板2の厚み変化を減少させることができる。
 フィードフォワード制御例1では、第1電動スクリュ41b及び第2電動スクリュ42bの位置を一定にし、第1プレスシリンダ41a及び第2プレスシリンダ42aの圧力を変化させることで、電極板2に作用するプレス荷重を変化させる。駆動側プレス圧力Pmと操作側プレス圧力Psの平均プレス圧力Pave=(Pm+Ps)/2の変化量ΔPaveと、電極板2の厚み平均値Taveの変化量ΔTaveとの間は比例関係にあるため、プレス圧力を変化させたときの、平均プレス圧力Paveの変化量ΔPaveと厚み平均値Taveの変化量ΔTaveとの間には、下記(式30)の関係が成り立つ。
 ΔTave=F×ΔPave ・・・(式30)
 Fは比例定数。
 加速または減速開始からS秒後の厚み平均値Taveの変化量ΔTave,sをゼロにするための平均プレス圧力Paveの補正値ΔPave,sは、上記(式26)、(式27)、(式30)の関係からΔVsとΔTaveを除去し、下記(式31)で求めることができる。
 ΔPave,s={(D×α)/F}×S ・・・(式31)
 加速または減速時の平均プレス圧力をPave,0とするとき、S秒後の平均プレス圧力がPave,0+ΔPave,sになるように第1プレスシリンダ41a及び第2プレスシリンダ42aの圧力をフィードフォワード制御することで、ライン速度の変化による電極板2の厚み変化を抑制することができる。
 搬送ラインの加速期間または減速期間の、駆動側プレス圧力Pmと操作側プレス圧力Psの差圧は、基本的に加速または減速前と同じでよい。なお、ロールプレス装置1の駆動側と操作側の剛性の違いによって、ライン速度の変化による電極板2の厚み変化が駆動側と操作側で異なる場合は、加速期間または減速期間の当該差圧を変化させてもよい。
 補正値算出部815にはライン速度設定変更部819から、搬送ラインの加速開始前に、加速開始時刻、加速終了時刻、加速開始時のライン速度V0、及び加速度αが供給される。例えば、ロールプレス装置1の起動時、及び起動中におけるライン速度の変更時に、ライン速度設定変更部819からこれらの情報が供給される。また、補正値算出部815にはライン速度設定変更部819から、搬送ラインの減速開始前に、減速開始時刻、減速終了時刻、減速開始時のライン速度V0、及び減速度αが供給される。
 補正値算出部815は、上記(式26)、加速開始時のライン速度V0、加速度αをもとに、加速開始からS秒後のライン速度の変化量ΔVsを算出する。補正値算出部815は、算出したライン速度の変化量ΔVsを上記(式27)に当てはめて、加速開始からS秒後の厚み平均値Taveの変化量ΔTave,sを予測する。補正値算出部815は、上記(式31)をもとに、厚み平均値Taveの変化量ΔTave,sをゼロにするための平均プレス圧力Paveの補正値ΔPave,sを算出する。
 図10に示す例では、補正値算出部815は、0.1秒間隔で平均プレス圧力Paveの補正値ΔP0.1、ΔP0.2、・・・、ΔPtendを算出し、算出した平均プレス圧力Paveの補正値ΔP0.1、ΔP0.2、・・・、ΔPtendを設定値補正部816に供給する。
 設定値補正部816には、補正値算出部815から平均プレス圧力Paveの補正値ΔP0.1、ΔP0.2、・・・、ΔPtendが供給される。設定値補正部816は、加速開始時のプレス圧力設定値P0に、補正値ΔP0.1、ΔP0.2、・・・、ΔPtendをそれぞれ加算して、補正後のプレス圧力設定値P0+ΔP0.1、P0+ΔP02、・・・、P0+ΔPtendを算出する。加速開始時のプレス圧力設定値P0は、例えば、HMIを介してオペレータにより入力されたプレス圧力設定値Pである。設定値補正部816は、算出した補正後のプレス圧力設定値P0+ΔP0.1、P0+ΔP02、・・・、P0+ΔPtendをプレス圧力偏差算出部817cに供給する。
 プレス圧力偏差算出部817cは、設定値補正部816から供給された補正後のプレス圧力設定値P0+ΔP0.1、P0+ΔP02、・・・、P0+ΔPtendの第1プレスシリンダ41aに割り当てられた分のプレス圧力設定値と、第1プレスシリンダ41aの圧力実測値との偏差をそれぞれの時刻で算出する。またプレス圧力偏差算出部817cは、設定値補正部816から供給された補正後のプレス圧力設定値P0+ΔP0.1、P0+ΔP02、・・・、P0+ΔPtendの第2プレスシリンダ42aに割り当てられた分のプレス圧力設定値と、第2プレスシリンダ42aの圧力実測値との偏差をそれぞれの時刻で算出する。第1プレスシリンダ41aの圧力実測値と第2プレスシリンダ42aの圧力実測値はそれぞれ、例えば弁開度計の測定値に応じて推定することができる。
 プレス圧力偏差算出部817cは、算出した第1プレスシリンダ41aの圧力偏差と第2プレスシリンダ42aの圧力偏差をPID制御部817bに供給する。PID制御部817bは、第1プレスシリンダ41aの圧力偏差、及び第2プレスシリンダ42aの圧力偏差をもとに、第1プレスシリンダ41aの圧力の操作量、及び第2プレスシリンダ42aの圧力の操作量を生成する。
 PID制御部817bは、生成した第1プレスシリンダ41aの圧力の操作量と第2プレスシリンダ42aの圧力の操作量をプレス圧力制御部817aに供給する。プレス圧力制御部817aは、アクチュエータを含み、第1プレスシリンダ41aの圧力の操作量、及び第2プレスシリンダ42aの圧力の操作量をもとに、第1プレスシリンダ41a及び第2プレスシリンダ42aをそれぞれ駆動する。以上の説明では加速時を想定したが、減速時も同様の制御となる。
 プレス圧力設定値の変更から実際のプレス圧力が変化するまでの遅れ時間(タイムラグte)を考慮する必要がある。そこでライン速度設定変更部819は、補正値算出部815にプレス圧力の設定値変更を指示するタイミングより、タイムラグteに相当する時間遅らせたタイミングで、ライン速度制御部8110にライン速度変更の指令値を供給する。これにより、ライン速度の変化に対して、より適切にアクチュエータの動作を変更させることができ、電極板2の厚みを高精度に補正することができる。なお上述のように、第1プレスシリンダ41a及び第2プレスシリンダ42aの圧力制御には、応答性の高い油圧サーボ弁を使用することが望ましい。
 このようにフィードフォワード制御例1では、ライン速度の変化による電極板2の厚み変化を予測し、電極板2の厚みを一定に維持するのに必要なプレス圧力を算出し、プレス圧力をフィードフォワード制御で変化させる。これにより、搬送ラインの加速期間または減速期間の電極板2の厚み変化を高精度に抑制することができる。
 図11は、第1制御盤81を用いたフィードフォワード制御例2を説明するための図である。フィードフォワード制御例2は、図2に示した実施の形態2に係るロールプレス装置で使用される制御である。フィードフォワード制御例2では、圧縮機構として第1プレスシリンダ41a及び第2プレスシリンダ42aを使用する。以下、図10に示したフィードフォワード制御例1との相違点を説明する。フィードフォワード制御例2では、プレス圧力制御部817a、PID制御部817b、及びプレス圧力偏差算出部817cの代わりに、シリンダ位置制御部817d、PID制御部817e、及びシリンダ位置偏差算出部817fが設けられる。
 フィードフォワード制御例2では、第1電動スクリュ41b及び第2電動スクリュ42bの位置を一定にし、第1プレスシリンダ41a及び第2プレスシリンダ42aの圧力を変化させることで、電極板2に作用するプレス荷重を変化させる。第1プレスシリンダ41aのシリンダ位置を第1マグネスケール41cで測定し、第1プレスシリンダ41aのシリンダ位置が設定値を維持するように第1プレスシリンダ41aの圧力を制御する。同様に、第2プレスシリンダ42aのシリンダ位置を第2マグネスケール42cで測定し、第2プレスシリンダ42aのシリンダ位置が設定値を維持するように第2プレスシリンダ42aの圧力を制御する。駆動側プレスシリンダ位置Gmと操作側プレスシリンダ位置Gsの平均プレスシリンダ位置Gave=(Gm+Gs)/2の変化量ΔGaveと、電極板2の厚み平均値Taveの変化量ΔTaveとの間は比例関係にあるため、シリンダ位置を変化させたときの、平均プレスシリンダ位置Gaveの変化量ΔGaveと厚み平均値Taveの変化量ΔTaveとの間には、下記(式32)の関係が成り立つ。
 ΔTave=G×ΔGave ・・・(式32)
 Gは比例定数。
 加速または減速開始からS秒後の厚み平均値Taveの変化量ΔTave,sをゼロにするための平均プレスシリンダ位置Gaveの補正値ΔGave,sは、上記(式26)、(式27)、(式32)の関係からΔVsとΔTaveを除去し、下記(式33)で求めることができる。
 ΔGave,s={(D×α)/G}×S ・・・(式33)
 加速または減速時の平均プレスシリンダ位置をGave,0とするとき、S秒後の平均プレスシリンダ位置がGave,0+ΔGave,sになるように第1プレスシリンダ41a及び第2プレスシリンダ42aのシリンダ位置をフィードフォワード制御することで、ライン速度の変化による電極板2の厚み変化を抑制することができる。
 搬送ラインの加速期間または減速期間の、駆動側プレスシリンダ位置Gmと操作側プレスシリンダ位置Gsの差は、基本的に加速または減速前と同じでよい。なお、ロールプレス装置1の駆動側と操作側の剛性の違いによって、ライン速度の変化による電極板2の厚み変化が駆動側と操作側で異なる場合は、加速期間または減速期間の当該差を変化させてもよい。
 補正値算出部815にはライン速度設定変更部819から、搬送ラインの加速開始前に、加速開始時刻、加速終了時刻、加速開始時のライン速度V0、及び加速度αが供給される。また、補正値算出部815にはライン速度設定変更部819から、搬送ラインの減速開始前に、減速開始時刻、減速終了時刻、減速開始時のライン速度V0、及び減速度αが供給される。
 補正値算出部815は、上記(式26)、加速開始時のライン速度V0、加速度αをもとに、加速開始からS秒後のライン速度の変化量ΔVsを算出する。補正値算出部815は、算出したライン速度の変化量ΔVsを上記(式27)に当てはめて、加速開始からS秒後の厚み平均値Taveの変化量ΔTave,sを予測する。補正値算出部815は、上記(式33)をもとに、厚み平均値Taveの変化量ΔTave,sをゼロにするための平均プレスシリンダ位置Gaveの補正値ΔGave,sを算出する。
 図11に示す例では、補正値算出部815は、0.1秒間隔で平均プレスシリンダ位置Gaveの補正値ΔG0.1、ΔG0.2、・・・、ΔGtendを算出し、算出した平均プレスシリンダ位置Gaveの補正値ΔG0.1、ΔG0.2、・・・、ΔGtendを設定値補正部816に供給する。
 設定値補正部816には、補正値算出部815から平均プレスシリンダ位置Gaveの補正値ΔG0.1、ΔG0.2、・・・、ΔGtendが供給される。設定値補正部816は、加速開始時のプレスシリンダ位置設定値G0に、補正値ΔG0.1、ΔG0.2、・・・、ΔGtendをそれぞれ加算して、補正後のプレスシリンダ位置設定値G0+ΔG0.1、G0+ΔG02、・・・、G0+ΔGtendを算出する。加速開始時のプレスシリンダ位置設定値G0は、例えば、HMIを介してオペレータにより入力されたプレスシリンダ位置設定値Gである。設定値補正部816は、算出した補正後のプレスシリンダ位置設定値G0+ΔG0.1、G0+ΔG02、・・・、G0+ΔGtendをシリンダ位置偏差算出部817fに供給する。
 シリンダ位置偏差算出部817fは、設定値補正部816から供給された補正後のプレスシリンダ位置設定値G0+ΔG0.1、G0+ΔG02、・・・、G0+ΔGtendと、第1マグネスケール41cにより測定された第1プレスシリンダ41aのシリンダ位置の実測値との偏差をそれぞれの時刻で算出する。またシリンダ位置偏差算出部817fは、設定値補正部816から供給された補正後のプレスシリンダ位置設定値G0+ΔG0.1、G0+ΔG02、・・・、G0+ΔGtendと、第2マグネスケール42cにより測定された第2プレスシリンダ42aのシリンダ位置の実測値との偏差をそれぞれの時刻で算出する。
 シリンダ位置偏差算出部817fは、算出した第1プレスシリンダ41aのシリンダ位置偏差と第2プレスシリンダ42aのシリンダ位置偏差をPID制御部817eに供給する。PID制御部817eは、第1プレスシリンダ41aのシリンダ位置偏差、及び第2プレスシリンダ42aのシリンダ位置偏差をもとに、第1プレスシリンダ41aの圧力の操作量、及び第2プレスシリンダ42aの圧力の操作量を生成する。
 PID制御部817eは、生成した第1プレスシリンダ41aの圧力の操作量と第2プレスシリンダ42aの圧力の操作量をシリンダ位置制御部817dに供給する。シリンダ位置制御部817dは、アクチュエータを含み、第1プレスシリンダ41aの圧力の操作量、及び第2プレスシリンダ42aの圧力の操作量をもとに、第1プレスシリンダ41a及び第2プレスシリンダ42aをそれぞれ駆動する。以上の説明では加速時を想定したが、減速時も同様の制御となる。
 シリンダ位置設定値の変更から実際のシリンダ位置が変化するまでの遅れ時間(タイムラグte)を考慮する必要がある。そこでライン速度設定変更部819は、補正値算出部815にシリンダ位置の設定値変更を指示するタイミングより、タイムラグteに相当する時間遅らせたタイミングで、ライン速度制御部8110にライン速度変更の指令値を供給する。これにより、ライン速度の変化に対して、より適切にアクチュエータの動作を変更させることができ、電極板2の厚みを高精度に補正することができる。なお上述のように、第1プレスシリンダ41a及び第2プレスシリンダ42aの圧力制御には、応答性の高い油圧サーボ弁を使用することが望ましい。
 このようにフィードフォワード制御例2では、ライン速度の変化による電極板2の厚み変化を予測し、電極板2の厚みを一定に維持するのに必要なプレスシリンダ位置を算出し、プレスシリンダ位置をフィードフォワード制御で変化させる。これにより、搬送ラインの加速期間または減速期間の電極板2の厚み変化を高精度に抑制することができる。
 図12は、第1制御盤81を用いたフィードフォワード制御例3を説明するための図である。フィードフォワード制御例3は、図1に示した実施の形態1に係るロールプレス装置で使用される制御である。フィードフォワード制御例3では、圧縮機構として第1電動スクリュ41b及び第2電動スクリュ42bを使用する。以下、図10に示したフィードフォワード制御例1との相違点を説明する。フィードフォワード制御例3では、プレス圧力制御部817a、PID制御部817b、及びプレス圧力偏差算出部817cの代わりに、スクリュ位置制御部817g、PID制御部817h、及びスクリュ位置偏差算出部817iが設けられる。
 フィードフォワード制御例3では、第1プレスシリンダ41a及び第2プレスシリンダ42aには、第1電動スクリュ41b及び第2電動スクリュ42bの位置変化によって、シリンダ位置が変化しないように、十分に大きな圧力(固定値)を付加しておく。この状態で、第1電動スクリュ41b及び第2電動スクリュ42bの位置を変化させることで、電極板2に作用するプレス荷重を変化させる。第1電動スクリュ41b及び第2電動スクリュ42bの位置はサーボモータで制御する。駆動側電動スクリュ位置Dmと操作側電動スクリュ位置Dsの平均電動スクリュ位置Dave=(Dm+Ds)/2の変化量ΔDaveと、電極板2の厚み平均値Taveの変化量ΔTaveとの間は比例関係にあるため、電動スクリュ位置を変化させたときの、平均電動スクリュ位置Daveの変化量ΔDaveと厚み平均値Taveの変化量ΔTaveとの間には、下記(式34)の関係が成り立つ。
 ΔTave=H×ΔDave ・・・(式34)
 Hは比例定数。
 加速または減速開始からS秒後の厚み平均値Taveの変化量ΔTave,sをゼロにするための平均電動スクリュ位置Daveの補正値ΔDave,sは、上記(式26)、(式27)、(式34)の関係からΔVsとΔTaveを除去し、下記(式35)で求めることができる。
 ΔDave,s={(D×α)/H}×S ・・・(式35)
 加速または減速時の平均電動スクリュ位置をDave,0とするとき、S秒後の平均電動スクリュ位置がDave,0+ΔDave,sになるように第1電動スクリュ41b及び第2電動スクリュ42bの位置をフィードフォワード制御することで、ライン速度の変化による電極板2の厚み変化を抑制することができる。
 搬送ラインの加速期間または減速期間の、駆動側電動スクリュ位置Dmと操作側電動スクリュ位置Dsの差は、基本的に加速または減速前と同じでよい。なお、ロールプレス装置1の駆動側と操作側の剛性の違いによって、ライン速度の変化による電極板2の厚み変化が駆動側と操作側で異なる場合は、加速期間または減速期間の当該差を変化させてもよい。
 補正値算出部815にはライン速度設定変更部819から、搬送ラインの加速開始前に、加速開始時刻、加速終了時刻、加速開始時のライン速度V0、及び加速度αが供給される。また、補正値算出部815にはライン速度設定変更部819から、搬送ラインの減速開始前に、減速開始時刻、減速終了時刻、減速開始時のライン速度V0、及び減速度αが供給される。
 補正値算出部815は、上記(式26)、加速開始時のライン速度V0、加速度αをもとに、加速開始からS秒後のライン速度の変化量ΔVsを算出する。補正値算出部815は、算出したライン速度の変化量ΔVsを上記(式27)に当てはめて、加速開始からS秒後の厚み平均値Taveの変化量ΔTave,sを予測する。補正値算出部815は、上記(式35)をもとに、厚み平均値Taveの変化量ΔTave,sをゼロにするための平均電動スクリュ位置Daveの補正値ΔDave,sを算出する。
 図12に示す例では、補正値算出部815は、0.1秒間隔で平均電動スクリュ位置Daveの補正値ΔD0.1、ΔD0.2、・・・、ΔDtendを算出し、算出した平均電動スクリュ位置Daveの補正値ΔD0.1、ΔD0.2、・・・、ΔDtendを設定値補正部816に供給する。
 設定値補正部816には、補正値算出部815から平均電動スクリュ位置Daveの補正値ΔD0.1、ΔD0.2、・・・、ΔDtendが供給される。設定値補正部816は、加速開始時の電動スクリュ位置設定値D0に、補正値ΔD0.1、ΔD0.2、・・・、ΔDtendをそれぞれ加算して、補正後の電動スクリュ位置設定値D0+ΔD0.1、D0+ΔD02、・・・、D0+ΔDtendを算出する。加速開始時の電動スクリュ位置設定値D0は、例えば、HMIを介してオペレータにより入力された電動スクリュ位置設定値Dである。設定値補正部816は、算出した補正後の電動スクリュ位置設定値D0+ΔD0.1、D0+ΔD02、・・・、D0+ΔDtendをスクリュ位置偏差算出部817iに供給する。
 スクリュ位置偏差算出部817iは、設定値補正部816から供給された補正後の電動スクリュ位置設定値D0+ΔD0.1、D0+ΔD02、・・・、D0+ΔDtendと、第1電動スクリュ41bの位置の測定値との偏差をそれぞれの時刻で算出する。またスクリュ位置偏差算出部817iは、設定値補正部816から供給された補正後の電動スクリュ位置設定値D0+ΔD0.1、D0+ΔD02、・・・、D0+ΔDtendと、第2電動スクリュ42bの位置の測定値との偏差をそれぞれの時刻で算出する。
 スクリュ位置制御部817gは、第1電動スクリュ41b及び第2電動スクリュ42bを圧下させるためのサーボモータをそれぞれ含む。第1電動スクリュ41b及び第2電動スクリュ42bのそれぞれの位置の変化量は、それぞれのサーボモータの回転数から計算することができる。
 スクリュ位置偏差算出部817iは、算出した第1電動スクリュ41bの位置偏差と第2電動スクリュ42bの位置偏差をPID制御部817hに供給する。PID制御部817hは、第1電動スクリュ41bの位置偏差、及び第2電動スクリュ42bの位置偏差をもとに、第1電動スクリュ41b用のサーボモータの回転の操作量、及び第2電動スクリュ42b用のサーボモータの回転の操作量を生成する。
 PID制御部817hは、生成した第1電動スクリュ41b用のサーボモータの回転の操作量と第2電動スクリュ42b用のサーボモータの回転の操作量をスクリュ位置制御部817gに供給する。スクリュ位置制御部817gは、第1電動スクリュ41b用のサーボモータの回転の操作量、及び第2電動スクリュ42b用のサーボモータの回転の操作量をもとに、第1電動スクリュ41b用のサーボモータ及び第2電動スクリュ42b用のサーボモータをそれぞれ駆動する。以上の説明では加速時を想定したが、減速時も同様の制御となる。
 電動スクリュ位置設定値の変更から実際の電動スクリュ位置が変化するまでの遅れ時間(タイムラグte)を考慮する必要がある。そこでライン速度設定変更部819は、補正値算出部815に電動スクリュ位置の設定値変更を指示するタイミングより、タイムラグteに相当する時間遅らせたタイミングで、ライン速度制御部8110にライン速度変更の指令値を供給する。これにより、ライン速度の変化に対して、より適切にサーボモータの動作を変更させることができ、電極板2の厚みを高精度に補正することができる。
 このようにフィードフォワード制御例3では、ライン速度の変化による電極板2の厚み変化を予測し、電極板2の厚みを一定に維持するのに必要な電動スクリュ位置を算出し、電動スクリュ位置をフィードフォワード制御で変化させる。これにより、搬送ラインの加速期間または減速期間の電極板2の厚み変化を高精度に抑制することができる。
 以上説明したように実施の形態1~3に係るロールプレス装置1を使用したフィードバック制御例1~4によれば、駆動側厚み測定値T、中央厚み測定値T、操作側厚み測定値T、及び厚み目標値Tをもとに、第1特徴量Tt-m、第2特徴量Tt-s、及び第3特徴量Tdropを算出し、第1特徴量Tt-m、第2特徴量Tt-s、及び第3特徴量Tdropが全てゼロになるように圧縮機構および/またはベンド機構を制御する。圧縮機構として、プレス機構またはコッタ機構を使用することができる。これにより、圧縮加工後の電極板2の厚みを全幅に渡って目標値Tに収束させることができる。
 上記特許文献1(特開2013-111647号公報)には、操作側、中央部、駆動側の3か所で圧縮後の厚みを測定し、それら厚み測定値と目標厚みの差が、予め設定されたしきい値を外れた場合に、しきい値に入るように、プレス機構とベンド機構を制御する手法が開示されている。当該手法では、しきい値を超えるまで膜厚制御が発動されないため、しきい値以上の厚み精度を得ることができず、目標とする厚み付近に収束するまでに時間がかかるか、目標とする厚み付近に収束できない場合がある。
 また上記手法では、駆動側厚みと操作側厚みと目標厚みを比較し、駆動側厚みと操作側厚みの少なくとも一方がしきい値を超えた場合、これを補正するようにプレスシリンダの位置を再設定し、プレスシリンダの位置変更によって変化する撓み補正量を維持するために、ベンドシリンダの圧力を計算し、設定する。駆動側厚みと操作側厚みの両方がしきい値を超えない場合、中央部厚みとしきい値を比較し、しきい値を超えた場合、中央部のロール変形が大きくなっているとして、ベンドシリンダの圧力のみを変更し、プレスシリンダの位置は変更しない。これらの制御フローが繰り返し、実行される。
 一般にベンドシリンダの圧力変化は、ロールギャップを開く方向に作用し、被圧延材への圧延荷重を変化させるため、厚み変化を伴う。従って、上記制御フローにおけるいずれの手順においても、ベンドシリンダの圧力を変化させたことによって膜厚が変化し、再びしきい値を外れることになり、目標とする厚み付近に到達するまで時間がかかるか、しきい値に制御できない場合が発生する。特に、しきい値を狭めた時ほど、またはプレスシリンダの位置やベンドシリンダの圧力を大きく変更する必要がある場合ほど、再びしきい値を外れる可能性が高まるため、制御できる厚み範囲や制御速度に限界がある。
 また上述したように、駆動側厚みと操作側厚みと目標厚みを比較し、駆動側厚みと操作側厚みの両方がしきい値を超えない場合、中央部厚みとしきい値を比較し、しきい値を超える場合、ロール撓みが大と判断して、ベンドシリンダの圧力のみを変更する。この場合、両端の厚みがしきい値以下に制御してから中央厚みを制御するため、目標厚みに収束するまで時間がかかる。さらに、両端厚みを制御する過程において、中央厚みが目標厚みから離れてしまう可能性がある。例えば、中央厚みが目標厚みより厚く、かつ両端の厚みがそれぞれ目標厚みより薄い場合、両端厚みが目標厚みになるように、両側の荷重を下げるように制御するが、電極板の中央部に作用するプレスロールからの圧力も減少するため、中央厚みが厚くなり、目標値から離れる。
 これに対して実施の形態1~3に係るロールプレス装置1を使用したフィードバック制御例1~4によれば、ロール撓みの大小とロール撓みの方向を、中央厚みと両端厚み平均との差分(第3特徴量Tdrop)で判断し、両端厚みを制御しながら、ロール撓みによる中央-両端厚み差を同時に制御する。これにより、幅方向の厚みを悪化させることなく、より速く、電極板2の厚みを全幅に渡って目標値に収束させることが可能である。
 このように実施の形態1~3に係るロールプレス装置1を使用したフィードバック制御例1~4によれば、圧縮加工後の電極板2の厚みが常に目標値Tに収束されるようにフィードバック制御されることにより、電極板2の厚みが常に良好な状態に維持される。また、自動で電極板2の厚みが目標値Tに制御されるため、オペレータが定期的にラインを止めて、電極板2の厚みをマイクロメータで測定し、測定値にもとづき圧縮機構および/またはベンド機構の圧力値を調整する必要がない。従って、熟練したオペレータを配置する必要がなく、人件費を抑制することができる。また、オペレータによる品質のバラツキを抑えることができる。
 また実施の形態1~3に係るロールプレス装置1を使用したフィードバック制御例1~4によれば、設定値の補正が反映される前の厚み測定値を基準に新たな設定値の補正が実行されることを防止するため、設定値の補正の実行後、プレス位置から厚み計70までのパスライン長Lに電極板2の長さが到達し、かつ設定値の補正が厚み測定値に反映されるまでの時間tを経過してから、厚み測定値を取得する。取得した厚み測定値をもとに3つの特徴量を計算し、3つの特徴量をもとに補正値を計算し、次回の設定値変更を実行する。
 プレス前工程の塗工工程や乾燥工程において、被圧延材の塗膜厚みの変化や塗膜硬さの変化、あるいは加圧ローラや主軸受部の熱影響によって、プレス後の被圧延材の厚みに変化が発生する場合がある。その場合であっても、上記制御を反復して連続的に行うことで、厚み計70が厚み変化を検出した直後に、プレス後の被圧延材の厚みを全幅において目標値Tに制御できるので、全長に渡って良好な厚みを得ることができる。
 さらに、フィードフォワード制御例1~3を併用することにより、搬送ラインの加速または減速時の電極板2の厚み変化を高精度に抑制することができる。即ち、ライン速度の変化による電極板2の厚み変化を予測し、予測される厚み変化をゼロにするための圧縮条件を算出し、圧縮機構をフィードフォワード制御することで、ライン速度の変化による厚み変化を高精度に抑制することができる。
 上述した各比例定数は被圧延材の品種によって異なるので、品種毎に比例定数を測定しておくことが望ましい。
 以上、本開示を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
 図3では、制御装置80を、第1制御盤81と第2制御盤82の2つの制御盤で構成する例を説明したが、第1制御盤81と第2制御盤82を統合した1つの制御盤で構成してもよい。
 また上述の実施の形態1~3では、第1特徴量Tt-m、第2特徴量Tt-s、及び第3特徴量Tdropが全てゼロになるように圧縮機構および/またはベンド機構を制御する例を説明した。第3特徴量Tdropがゼロで、駆動側厚み測定値Tと操作側厚み測定値Tとの差分もゼロの状態は、電極板2が幅方向に平坦な状態である。この点、両エッジが中央より厚い電極板2を製造する場合、第3特徴量Tdropが、エッジと中央との厚み差に応じた負の値になるように圧縮機構および/またはベンド機構を制御する。また、両エッジが中央より薄い電極板2を製造する場合、第3特徴量Tdropが、エッジと中央との厚み差に応じた正の値になるように圧縮機構および/またはベンド機構を制御する。
 即ち、下記(式35)~(式37)のβ、γ、δを任意に設定することにより、任意の厚みプロフィールの電極板2を製造できる。
 Tt-m+β=0 ・・・(式35)
 Tt-s+γ=0 ・・・(式36)
 Tdrop+δ=0 ・・・(式37)
 β、γ、δは任意の実数[μm]。
 上述の実施の形態1~3では、電極板の厚みプロフィールの2次成分を示す第3特徴量を、中央厚み測定値Tと、駆動側厚み測定値Tと操作側厚み測定値Tとの平均値との差分で規定した。この点、第3特徴量を、3点以上の厚み測定値をもとに最小二乗法を用いて導出した2次または4次の近似曲線から規定することもできる。2次曲線で近似した場合、特徴量算出部814は、近似した2次曲線の2次係数を第3特徴量に設定に設定する。4次曲線で近似した場合、特徴量算出部814は、近似した4次曲線の2次係数を第3特徴量に設定する。なお一般に、サンプル点の数が多くなるほど近似精度が向上する。また、2次以上の関数であれば、2次係数を導出することができる。
 なお、5点以上の厚み測定値を取得する場合、第1特徴量Tt-mは、厚み目標値Tと、5点以上の点のうちの最も駆動側の点の厚み測定値Tmとの偏差で規定され、第2特徴量Tt-sは、厚み目標値Tと、5点以上の点のうちの最も操作側の点の厚み測定値Tsとの偏差で規定される。
 なお、実施の形態は、以下の項目によって特定されてもよい。
 [項目1]
 連続的に搬送される二次電池の電極板(2)を挟み込むことにより圧延する第1加圧ローラ(11)及び第2加圧ローラ(12)と、
 前記第1加圧ローラ(11)の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第1主軸受部(21)及び第2主軸受部(22)と、
 前記第2加圧ローラ(12)の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第3主軸受部(23)及び第4主軸受部(24)と、
 前記第1加圧ローラ(11)の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第1ベンド軸受部(31)及び第2ベンド軸受部(32)と、
 前記第2加圧ローラ(12)の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第3ベンド軸受部(33)及び第4ベンド軸受部(34)と、
 前記第1主軸受部(21)及び前記第3主軸受部(23)の少なくとも一方に、前記第1加圧ローラ(11)と前記第2加圧ローラ(12)が近接する方向への荷重を加えることが可能な第1圧縮機構(41)と、
 前記第2主軸受部(22)及び前記第4主軸受部(24)の少なくとも一方に、前記第1加圧ローラ(11)と前記第2加圧ローラ(12)が近接する方向への荷重を加えることが可能な第2圧縮機構(42)と、
 前記第1ベンド軸受部(31)及び前記第3ベンド軸受部(33)の少なくとも一方に、前記第1加圧ローラ(11)と前記第2加圧ローラ(12)が離接する方向への荷重を加えることが可能な第1ベンド機構(51)と、
 前記第2ベンド軸受部(32)及び前記第4ベンド軸受部(34)の少なくとも一方に、前記第1加圧ローラ(11)と前記第2加圧ローラ(12)が離接する方向への荷重を加えることが可能な第2ベンド機構(52)と、
 前記第1圧縮機構(41)、前記第2圧縮機構(42)、前記第1ベンド機構(51)、及び前記第2ベンド機構(52)のそれぞれの設定値を算出する算出部(815、816)と、
 前記算出部(815、816)により算出された設定値をもとに、前記第1圧縮機構(41)、前記第2圧縮機構(42)、前記第1ベンド機構(51)、及び前記第2ベンド機構(52)の荷重をそれぞれ制御する制御部(817、818)と、を備え、
 前記算出部(815、816)は、前記電極板(2)の搬送ラインの速度変化に応じた前記電極板(2)の厚み変化が小さくなるように、前記第1圧縮機構(41)及び前記第2圧縮機構(42)の設定値を予め変更する、
 ロールプレス装置(1)。
 これによれば、搬送ラインの加速時または減速時においても、電極板(2)の厚み変化を高精度に抑制することができる。
 [項目2]
 前記算出部(815、816)は、予め導出された前記ラインの速度変化量と前記電極板(2)の厚み変化量との関係性と、設定されている前記ラインの加速度または減速度をもとに、前記ラインの加速開始または減速開始から所定時間後の前記電極板(2)の厚み変化量を予測し、
 前記制御部(817、818)は、前記ラインの加速期間または減速期間の前記電極板(2)の厚み変化量がゼロになるように、前記第1圧縮機構(41)及び前記第2圧縮機構(42)を制御する、
 項目1に記載のロールプレス装置(1)。
 これによれば、搬送ラインの速度変化量と電極板(2)の厚み変化量との関係性と、搬送ラインの加速度または減速度をもとに、第1圧縮機構(41)及び第2圧縮機構(42)をフィードフォワード制御することにより、搬送ラインの加速期間または減速期間の電極板(2)の厚み変化を高精度に抑制することができる。
 [項目3]
 前記算出部(815、816)は、予め導出された、前記第1圧縮機構(41)及び前記第2圧縮機構(42)が発生させる荷重の変化量と、前記電極板(2)の厚み変化量との関係性をもとに、前記ラインの加速期間または減速期間の前記厚み変化量がゼロになるように、前記第1圧縮機構(41)及び前記第2圧縮機構(42)の設定値を補正する、
 項目2に記載のロールプレス装置(1)。
 これによれば、第1圧縮機構(41)及び第2圧縮機構(42)が発生させる荷重の変化量と電極板(2)の厚み変化量との関係性をもとに、第1圧縮機構(41)及び第2圧縮機構(42)をフィードフォワード制御することにより、搬送ラインの加速期間または減速期間の電極板(2)の厚み変化を高精度に抑制することができる。
 [項目4]
 前記第1圧縮機構(41)は第1プレス用のシリンダ(41a)を含み、
 前記第2圧縮機構(42)は第2プレス用のシリンダ(42a)を含み、
 前記算出部(815、816)は、前記ラインの加速期間または減速期間の前記電極板(2)の厚み変化量がゼロになるように、前記ラインの加速期間または減速期間の前記第1プレス用のシリンダ(41a)の圧力と前記第2プレス用のシリンダ(42a)の圧力の設定値を補正する、
 項目3に記載のロールプレス装置(1)。
 これによれば、第1プレス用のシリンダ(41a)及び第2プレス用のシリンダ(42a)が発生させる荷重の変化量と電極板(2)の厚み変化量との関係性をもとに、第1プレス用のシリンダ(41a)の圧力と第2プレス用のシリンダ(42a)の圧力をフィードフォワード制御することにより、搬送ラインの加速期間または減速期間の電極板(2)の厚み変化を高精度に抑制することができる。
 [項目5]
 前記第1圧縮機構(41)は第1プレス用のシリンダ(41a)を含み、
 前記第2圧縮機構(42)は第2プレス用のシリンダ(42a)を含み、
 前記算出部(815、816)は、前記ラインの加速期間または減速期間の前記電極板(2)の厚み変化量がゼロになるように、前記ラインの加速期間または減速期間の前記第1プレス用のシリンダ(41a)の位置と前記第2プレス用のシリンダ(42a)の位置の設定値を補正する、
 項目3に記載のロールプレス装置(1)。
 これによれば、第1プレス用のシリンダ(41a)及び第2プレス用のシリンダ(42a)が発生させる荷重の変化量と電極板(2)の厚み変化量との関係性をもとに、第1プレス用のシリンダ(41a)の位置と第2プレス用のシリンダ(42a)の位置をフィードフォワード制御することにより、搬送ラインの加速期間または減速期間の電極板(2)の厚み変化を高精度に抑制することができる。
 [項目6]
 前記第1圧縮機構(41)は前記第1プレス用のシリンダ(41a)の位置を測定するための第1マグネスケール(41c)をさらに含み、
 前記第2圧縮機構(42)は前記第2プレス用のシリンダ(42a)の位置を測定するための第2マグネスケール(42c)をさらに含み、
 前記制御部(817d、818)は、
 前記第1マグネスケール(41c)により測定される前記第1プレス用のシリンダ(41a)の位置と、前記算出部(815、816)から供給される前記第1プレス用のシリンダ(41a)の位置が一致するように、前記第1プレス用のシリンダ(41a)の圧力を制御し、
 前記第2マグネスケール(42c)により測定される前記第2プレス用のシリンダ(42a)の位置と、前記算出部(815、816)から供給される前記第2プレス用のシリンダ(42a)の位置が一致するように、前記第2プレス用のシリンダ(42a)の圧力を制御する、
 項目5に記載のロールプレス装置(1)。
 これによれば、第1マグネスケール(41c)及び第2マグネスケール(42c)を用いて、第1プレス用のシリンダ(41a)の位置及び第2プレス用のシリンダ(42a)の位置を高精度に測定することができ、応答性が高い圧縮機構のフィードフォワード制御を実現することができる。
 [項目7]
 前記第1圧縮機構(41)は第1電動スクリュ(41b)を含み、
 前記第2圧縮機構(42)は第2電動スクリュ(42b)を含み、
 前記算出部(815、816)は、前記ラインの加速期間または減速期間の前記電極板(2)の厚み変化量がゼロになるように、前記ラインの加速期間または減速期間の前記第1電動スクリュ(41b)の位置と前記第2電動スクリュ(42b)の位置の設定値を補正する、
 項目3に記載のロールプレス装置(1)。
 これによれば、第1電動スクリュ(41b)及び第2電動スクリュ(42b)が発生させる荷重の変化量と電極板(2)の厚み変化量との関係性をもとに、第1電動スクリュ(41b)の位置と第2電動スクリュ(42b)の位置をフィードフォワード制御することにより、搬送ラインの加速期間または減速期間の電極板(2)の厚み変化を高精度に抑制することができる。
 [項目8]
 前記第1加圧ローラ(11)及び第2加圧ローラ(12)の入側に設置される巻出機(13)と、
 前記第1加圧ローラ(11)及び第2加圧ローラ(12)の出側に設置される巻取機(14)と、
 前記第1加圧ローラ(11)の回転速度、前記第2加圧ローラ(12)の回転速度、前記巻出機(13)の回転速度、及び前記巻取機(14)の回転速度を制御する速度制御部(8110)と、
 をさらに備え、
 前記算出部(815、816)は、前記第1圧縮機構(41)及び前記第2圧縮機構(42)の応答時間に応じて、前記速度制御部(8110)への加速指令または減速指令を遅延させる、
 項目1から7のいずれか1項に記載のロールプレス装置(1)。
 これによれば、無駄または過度な圧縮機構の設定値の変更を回避することができる。
 [項目9]
 連続的に搬送される二次電池の電極板(2)を挟み込むことにより圧延する第1加圧ローラ(11)及び第2加圧ローラ(12)と、
 前記第1加圧ローラ(11)の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第1主軸受部(21)及び第2主軸受部(22)と、
 前記第2加圧ローラ(12)の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第3主軸受部(23)及び第4主軸受部(24)と、
 前記第1加圧ローラ(11)の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第1ベンド軸受部(31)及び第2ベンド軸受部(32)と、
 前記第2加圧ローラ(12)の回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第3ベンド軸受部(33)及び第4ベンド軸受部(34)と、
 前記第1主軸受部(21)及び前記第3主軸受部(23)の少なくとも一方に、前記第1加圧ローラ(11)と前記第2加圧ローラ(12)が近接する方向への荷重を加えることが可能な第1圧縮機構(41)と、
 前記第2主軸受部(22)及び前記第4主軸受部(24)の少なくとも一方に、前記第1加圧ローラ(11)と前記第2加圧ローラ(12)が近接する方向への荷重を加えることが可能な第2圧縮機構(42)と、
 前記第1ベンド軸受部(31)及び前記第3ベンド軸受部(33)の少なくとも一方に、前記第1加圧ローラ(11)と前記第2加圧ローラ(12)が離接する方向への荷重を加えることが可能な第1ベンド機構(51)と、
 前記第2ベンド軸受部(32)及び前記第4ベンド軸受部(34)の少なくとも一方に、前記第1加圧ローラ(11)と前記第2加圧ローラ(12)が離接する方向への荷重を加えることが可能な第2ベンド機構(52)と、
 を備えるロールプレス装置(1)に使用される制御装置(80)であって、
 前記第1圧縮機構(41)、前記第2圧縮機構(42)、前記第1ベンド機構(51)、及び前記第2ベンド機構(52)のそれぞれの設定値を算出する算出部(815、816)と、
 前記算出部(815、816)により算出された設定値をもとに、前記第1圧縮機構、前記第2圧縮機構(42)、前記第1ベンド機構(51)、及び前記第2ベンド機構(52)の荷重をそれぞれ制御する制御部(817、818)と、を備え、
 前記算出部(815、816)は、前記電極板(2)の搬送ラインの速度変化に応じた前記電極板(2)の厚み変化が小さくなるように、前記第1圧縮機構(41)及び前記第2圧縮機構(42)の設定値を予め変更する、
 制御装置(80)。
 これによれば、搬送ラインの加速時または減速時においても、電極板(2)の厚み変化を高精度に抑制することができる。
1  ロールプレス装置
2  電極板
11  第1加圧ローラ
12  第2加圧ローラ
13  巻出機
14  巻取機
15  モータ
16  パルスジェネレータ
21~24  主軸受部
31~34  ベンド軸受部
41  第1圧縮機構
42  第2圧縮機構
41a  第1プレスシリンダ
41b  第1電動スクリュ
41c  第1マグネスケール
41d  第1ロードセル
41e  第1電動コッタ
42a  第2プレスシリンダ
42b  第2電動スクリュ
42c  第2マグネスケール
42d  第2ロードセル
42e  第2電動コッタ
51  第1ベンド機構
51a  第1ベンドシリンダ
51b  第3ベンドシリンダ
51c  第5ベンドシリンダ
52a  第2ベンドシリンダ
52b  第4ベンドシリンダ
52c  第6ベンドシリンダ
52  第2ベンド機構
61  第1プレロード機構
61a  第1プレロードシリンダ
62  第2プレロード機構
62a  第2プレロードシリンダ
70  厚み計
80  制御装置
81  第1制御盤
811  長さ測定部
812  取得タイミング生成部
813  厚み測定値取得部
814  特徴量算出部
815  補正値算出部
816  設定値補正部
817a  プレス圧力制御部
817b  PID制御部
817c  プレス圧力偏差算出部
817d  シリンダ位置制御部
817e  PID制御部
817f  シリンダ位置偏差算出部
817g  スクリュ位置制御部
817h  PID制御部
817i  スクリュ位置偏差算出部
817j  コッタ高さ制御部
817k  PID制御部
817l  コッタ高さ偏差算出部
818a  ベンド圧力制御部
818b  PID制御部
818c  ベンド圧力偏差算出部
819  ライン速度設定変更部
8110  ライン速度制御部

Claims (9)

  1.  連続的に搬送される二次電池の電極板を挟み込むことにより圧延する第1加圧ローラ及び第2加圧ローラと、
     前記第1加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第1主軸受部及び第2主軸受部と、
     前記第2加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第3主軸受部及び第4主軸受部と、
     前記第1加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第1ベンド軸受部及び第2ベンド軸受部と、
     前記第2加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第3ベンド軸受部及び第4ベンド軸受部と、
     前記第1主軸受部及び前記第3主軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが近接する方向への荷重を加えることが可能な第1圧縮機構と、
     前記第2主軸受部及び前記第4主軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが近接する方向への荷重を加えることが可能な第2圧縮機構と、
     前記第1ベンド軸受部及び前記第3ベンド軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが離接する方向への荷重を加えることが可能な第1ベンド機構と、
     前記第2ベンド軸受部及び前記第4ベンド軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが離接する方向への荷重を加えることが可能な第2ベンド機構と、
     前記第1圧縮機構、前記第2圧縮機構、前記第1ベンド機構、及び前記第2ベンド機構のそれぞれの設定値を算出する算出部と、
     前記算出部により算出された設定値をもとに、前記第1圧縮機構、前記第2圧縮機構、前記第1ベンド機構、及び前記第2ベンド機構の荷重をそれぞれ制御する制御部と、を備え、
     前記算出部は、前記電極板の搬送ラインの速度変化に応じた前記電極板の厚み変化が小さくなるように、前記第1圧縮機構及び前記第2圧縮機構の設定値を予め変更する、
     ロールプレス装置。
  2.  前記算出部は、予め導出された前記ラインの速度変化量と前記電極板の厚み変化量との関係性と、設定されている前記ラインの加速度または減速度をもとに、前記ラインの加速開始または減速開始から所定時間後の前記電極板の厚み変化量を予測し、
     前記制御部は、前記ラインの加速期間または減速期間の前記電極板の厚み変化量がゼロになるように、前記第1圧縮機構及び前記第2圧縮機構を制御する、
     請求項1に記載のロールプレス装置。
  3.  前記算出部は、予め導出された、前記第1圧縮機構及び前記第2圧縮機構が発生させる荷重の変化量と、前記電極板の厚み変化量との関係性をもとに、前記ラインの加速期間または減速期間の前記厚み変化量がゼロになるように、前記第1圧縮機構及び前記第2圧縮機構の設定値を補正する、
     請求項2に記載のロールプレス装置。
  4.  前記第1圧縮機構は第1プレス用のシリンダを含み、
     前記第2圧縮機構は第2プレス用のシリンダを含み、
     前記算出部は、前記ラインの加速期間または減速期間の前記電極板の厚み変化量がゼロになるように、前記ラインの加速期間または減速期間の前記第1プレス用のシリンダの圧力と前記第2プレス用のシリンダの圧力の設定値を補正する、
     請求項3に記載のロールプレス装置。
  5.  前記第1圧縮機構は第1プレス用のシリンダを含み、
     前記第2圧縮機構は第2プレス用のシリンダを含み、
     前記算出部は、前記ラインの加速期間または減速期間の前記電極板の厚み変化量がゼロになるように、前記ラインの加速期間または減速期間の前記第1プレス用のシリンダの位置と前記第2プレス用のシリンダの位置の設定値を補正する、
     請求項3に記載のロールプレス装置。
  6.  前記第1圧縮機構は前記第1プレス用のシリンダの位置を測定するための第1マグネスケールをさらに含み、
     前記第2圧縮機構は前記第2プレス用のシリンダの位置を測定するための第2マグネスケールをさらに含み、
     前記制御部は、
     前記第1マグネスケールにより測定される前記第1プレス用のシリンダの位置と、前記算出部から供給される前記第1プレス用のシリンダの位置が一致するように、前記第1プレス用のシリンダの圧力を制御し、
     前記第2マグネスケールにより測定される前記第2プレス用のシリンダの位置と、前記算出部から供給される前記第2プレス用のシリンダの位置が一致するように、前記第2プレス用のシリンダの圧力を制御する、
     請求項5に記載のロールプレス装置。
  7.  前記第1圧縮機構は第1電動スクリュを含み、
     前記第2圧縮機構は第2電動スクリュを含み、
     前記算出部は、前記ラインの加速期間または減速期間の前記電極板の厚み変化量がゼロになるように、前記ラインの加速期間または減速期間の前記第1電動スクリュの位置と前記第2電動スクリュの位置の設定値を補正する、
     請求項3に記載のロールプレス装置。
  8.  前記第1加圧ローラ及び第2加圧ローラの入側に設置される巻出機と、
     前記第1加圧ローラ及び第2加圧ローラの出側に設置される巻取機と、
     前記第1加圧ローラの回転速度、前記第2加圧ローラの回転速度、前記巻出機の回転速度、及び前記巻取機の回転速度を制御する速度制御部と、
     をさらに備え、
     前記算出部は、前記第1圧縮機構及び前記第2圧縮機構の応答時間に応じて、前記速度制御部への加速指令または減速指令を遅延させる、
     請求項1から7のいずれか1項に記載のロールプレス装置。
  9.  連続的に搬送される二次電池の電極板を挟み込むことにより圧延する第1加圧ローラ及び第2加圧ローラと、
     前記第1加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第1主軸受部及び第2主軸受部と、
     前記第2加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第3主軸受部及び第4主軸受部と、
     前記第1加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第1ベンド軸受部及び第2ベンド軸受部と、
     前記第2加圧ローラの回転軸の一方の側と他方の側にそれぞれ設けられ、当該回転軸を回転自在に支持する第3ベンド軸受部及び第4ベンド軸受部と、
     前記第1主軸受部及び前記第3主軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが近接する方向への荷重を加えることが可能な第1圧縮機構と、
     前記第2主軸受部及び前記第4主軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが近接する方向への荷重を加えることが可能な第2圧縮機構と、
     前記第1ベンド軸受部及び前記第3ベンド軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが離接する方向への荷重を加えることが可能な第1ベンド機構と、
     前記第2ベンド軸受部及び前記第4ベンド軸受部の少なくとも一方に、前記第1加圧ローラと前記第2加圧ローラが離接する方向への荷重を加えることが可能な第2ベンド機構と、
     を備えるロールプレス装置に使用される制御装置であって、
     前記第1圧縮機構、前記第2圧縮機構、前記第1ベンド機構、及び前記第2ベンド機構のそれぞれの設定値を算出する算出部と、
     前記算出部により算出された設定値をもとに、前記第1圧縮機構、前記第2圧縮機構、前記第1ベンド機構、及び前記第2ベンド機構の荷重をそれぞれ制御する制御部と、を備え、
     前記算出部は、前記電極板の搬送ラインの速度変化に応じた前記電極板の厚み変化が小さくなるように、前記第1圧縮機構及び前記第2圧縮機構の設定値を予め変更する、
     制御装置。
PCT/JP2020/042737 2020-01-09 2020-11-17 ロールプレス装置、及び制御装置 WO2021140747A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/791,820 US20230033169A1 (en) 2020-01-09 2020-11-17 Roll press device, and control device
JP2021569743A JPWO2021140747A1 (ja) 2020-01-09 2020-11-17
CN202080092127.4A CN114929463A (zh) 2020-01-09 2020-11-17 辊压装置以及控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-002268 2020-01-09
JP2020002268 2020-01-09

Publications (1)

Publication Number Publication Date
WO2021140747A1 true WO2021140747A1 (ja) 2021-07-15

Family

ID=76787869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042737 WO2021140747A1 (ja) 2020-01-09 2020-11-17 ロールプレス装置、及び制御装置

Country Status (4)

Country Link
US (1) US20230033169A1 (ja)
JP (1) JPWO2021140747A1 (ja)
CN (1) CN114929463A (ja)
WO (1) WO2021140747A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411010A (en) * 1987-07-02 1989-01-13 Kawasaki Steel Co Shape control method for rolled stock in continuous rough rolling
JPH04367309A (ja) * 1991-06-12 1992-12-18 Sumitomo Metal Ind Ltd 板厚制御方法
JPH0638961B2 (ja) * 1984-12-03 1994-05-25 株式会社日立製作所 圧延材の形状制御方法
JP2960011B2 (ja) * 1995-11-24 1999-10-06 古河電気工業株式会社 圧延における加減速時の板厚制御方法および制御装置
JP2014042923A (ja) * 2012-08-27 2014-03-13 Hitachi Power Solutions Co Ltd ロールプレス機及びロールプレス方法
JP2016064441A (ja) * 2014-09-26 2016-04-28 日本電気株式会社 加圧装置及び加圧方法、演算制御装置、並びにコンピュータ・プログラム
JP2016115406A (ja) * 2014-12-11 2016-06-23 株式会社日立パワーソリューションズ 厚み計及びそれを備えるロールプレス機
WO2020100561A1 (ja) * 2018-11-13 2020-05-22 パナソニックIpマネジメント株式会社 ロールプレス装置、及び制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603124A (en) * 1968-05-09 1971-09-07 Nippon Kokan Kk Computer control system for rolling metal strips using feed-forward and prediction
US5101650A (en) * 1990-05-01 1992-04-07 Allegheny Ludlum Corporation Tandem mill feed forward gage control with speed ratio error compensation
JP3320974B2 (ja) * 1996-04-26 2002-09-03 三菱電機株式会社 可逆式圧延機の板厚制御装置
JP4852846B2 (ja) * 2004-12-24 2012-01-11 大日本印刷株式会社 プレスロール装置およびプレス方法
WO2009037766A1 (ja) * 2007-09-20 2009-03-26 Toshiba Mitsubishi-Electric Industrial Systems Corporation 板厚制御装置
JP5328876B2 (ja) * 2011-12-01 2013-10-30 株式会社日立パワーソリューションズ ロールプレス設備
JP5383941B2 (ja) * 2013-05-28 2014-01-08 京セラドキュメントソリューションズ株式会社 Ih定着装置
WO2018025476A1 (ja) * 2016-08-01 2018-02-08 新東工業株式会社 ロールプレス方法及びロールプレスシステム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638961B2 (ja) * 1984-12-03 1994-05-25 株式会社日立製作所 圧延材の形状制御方法
JPS6411010A (en) * 1987-07-02 1989-01-13 Kawasaki Steel Co Shape control method for rolled stock in continuous rough rolling
JPH04367309A (ja) * 1991-06-12 1992-12-18 Sumitomo Metal Ind Ltd 板厚制御方法
JP2960011B2 (ja) * 1995-11-24 1999-10-06 古河電気工業株式会社 圧延における加減速時の板厚制御方法および制御装置
JP2014042923A (ja) * 2012-08-27 2014-03-13 Hitachi Power Solutions Co Ltd ロールプレス機及びロールプレス方法
JP2016064441A (ja) * 2014-09-26 2016-04-28 日本電気株式会社 加圧装置及び加圧方法、演算制御装置、並びにコンピュータ・プログラム
JP2016115406A (ja) * 2014-12-11 2016-06-23 株式会社日立パワーソリューションズ 厚み計及びそれを備えるロールプレス機
WO2020100561A1 (ja) * 2018-11-13 2020-05-22 パナソニックIpマネジメント株式会社 ロールプレス装置、及び制御装置

Also Published As

Publication number Publication date
JPWO2021140747A1 (ja) 2021-07-15
CN114929463A (zh) 2022-08-19
US20230033169A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP7316589B2 (ja) ロールプレス装置、及び制御装置
JP5328876B2 (ja) ロールプレス設備
CN101543841B (zh) 用于改善带钢表面质量的冷轧机组的控制方法
EP1964799B1 (en) Web guide control, web processing apparatus and method for operating the same
KR101782281B1 (ko) 압연 라인의 에너지 소비량 예측 장치
WO2021140748A1 (ja) ロールプレス装置、及び制御装置
EP2671652A1 (en) Hot strip mill controller
WO2021140747A1 (ja) ロールプレス装置、及び制御装置
US20190039107A1 (en) Mass flow regulation in roller devices
JPH04167950A (ja) 双ロール式連続鋳造機の制御方法および装置
US20090235706A1 (en) Method For Rolling A Sheet Metal Strip
CN101543842B (zh) 用于改善带钢表面质量的冷轧机组的控制方法
JPH10305352A (ja) 双ロール式連続鋳造機の制御方法
US20150344261A1 (en) Method and device for winding a metal strip
CN109622631A (zh) 一种优化冷轧升降速段厚差方法
JP3501982B2 (ja) 板幅制御装置
EP0638374A1 (en) Mill actuator reference adaptation for speed changes
KR20210058643A (ko) 플랜트 제어 장치 및 플랜트 제어 방법
CN116954281B (zh) 一种金属轧制后处理工艺线的定位控制系统
CN102740988B (zh) 补偿加速度引导的卷取机驱动装置的带材中拉应力干扰的方法和装置
CN113458150B (zh) 热轧带钢的厚度控制方法及应用
Gasiyarov et al. Improving the Algorithm of Automated Gage Control during Shaped Feed Rolling on a Plate Mill
JP2012096281A (ja) 圧延機における形状制御方法及び形状制御装置
JP4412103B2 (ja) スキンパスミルの速度制御方法及び装置
JP6520864B2 (ja) 圧延機の板厚制御方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912467

Country of ref document: EP

Kind code of ref document: A1