WO2021140728A1 - 鋼矢板の製造方法及び鋼矢板製造用の圧延設備列 - Google Patents

鋼矢板の製造方法及び鋼矢板製造用の圧延設備列 Download PDF

Info

Publication number
WO2021140728A1
WO2021140728A1 PCT/JP2020/040514 JP2020040514W WO2021140728A1 WO 2021140728 A1 WO2021140728 A1 WO 2021140728A1 JP 2020040514 W JP2020040514 W JP 2020040514W WO 2021140728 A1 WO2021140728 A1 WO 2021140728A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
steel sheet
shape
sheet pile
hole type
Prior art date
Application number
PCT/JP2020/040514
Other languages
English (en)
French (fr)
Inventor
駒城 倫哉
悦男 東
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020227021516A priority Critical patent/KR20220104804A/ko
Priority to CN202080092307.2A priority patent/CN114929405A/zh
Priority to JP2021510476A priority patent/JP7031788B2/ja
Publication of WO2021140728A1 publication Critical patent/WO2021140728A1/ja
Priority to JP2021212773A priority patent/JP7127729B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/082Piling sections having lateral edges specially adapted for interlocking with each other in order to build a wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/095U-or channel sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/06Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles
    • B21D5/08Bending sheet metal along straight lines, e.g. to form simple curves by drawing procedure making use of dies or forming-rollers, e.g. making profiles making use of forming-rollers

Definitions

  • the present invention relates to a method for manufacturing steel sheet piles and a row of rolling equipment for manufacturing steel sheet piles, and particularly to a method for manufacturing high-height steel sheet piles and a row of rolling equipment for manufacturing steel sheet piles.
  • FIG. 1 shows the cross-sectional shapes of a hat-shaped steel sheet pile (FIG. 1 (a)) and a U-shaped steel sheet pile (FIG. 1 (b)) as an example of the product shape.
  • the steel sheet pile 1 is usually manufactured using a slab, bloom, or the like as a material, for example, in the rolling equipment example 2 for manufacturing a steel sheet pile shown in FIG.
  • the material is charged into the heating device 3, heated to a predetermined temperature, for example, 1300 ° C., and then the heated material is the rough rolling mill 4, the intermediate rolling mill 5, and the finishing rolling mill. It is conveyed in the order of No. 6 and rolled to a predetermined cross-sectional shape to obtain a product shape.
  • the rolling in the rough rolling mill 4 is also referred to as rough rolling
  • the rolling in the intermediate rolling mill 5 is also referred to as intermediate rolling
  • the rolling in the finish rolling mill 6 is also referred to as finish rolling.
  • These rolling mills include rolling rolls in which a hole type called a cariba is engraved on an upper roll and a lower roll. In the following, the upper roll and the lower roll are collectively referred to as an upper and lower roll or a roll set.
  • FIG. 3 shows an example of a hole type engraved on the upper and lower rolls of the rough rolling mill 4 used for rough rolling of a hat-shaped steel sheet pile.
  • the width of the slab is reduced by the Box hole mold 71 using the slab as a material.
  • the K8 hole type 72 bending deformation of the slab into a hat shape and thickness reduction are performed.
  • the thickness of the K7 hole type 73 is reduced, and the material is formed into a shape close to the cross-sectional shape of the product.
  • a plurality of passes are rolled.
  • the intermediate rolling mill 5 used for the intermediate rolling also includes a rolling roll in which a hole shape of about 2 to 4 is engraved on the upper and lower rolls.
  • FIG. 4 shows an example of a hole type carved in the upper and lower rolls of the intermediate rolling mill 5 used for intermediate rolling of a hat-shaped steel sheet pile.
  • two hole types, K3 hole type 75 and K6 hole type 74 are engraved on the upper roll 51 and the lower roll 52.
  • two hole types, K4 hole type 77 and K5 hole type 76 are similarly engraved on the upper and lower rolls of the other intermediate rolling mill 5.
  • the rough-rolled material is sequentially rolled with these hole molds to reduce the thickness and form the shape, thereby forming the material into a shape closer to the cross-sectional shape of the product.
  • FIG. 5 shows an example of a hole type carved in the upper and lower rolls of the finish rolling mill 6 used for finish rolling of a hat-shaped steel sheet pile.
  • two hole types a K2 hole type 78 and a K1 hole type 79, are engraved on the upper roll 61 and the lower roll 62.
  • the finish rolling the intermediate-rolled material is subjected to the final thickness reduction with the K2 hole type 78, and then the joint portion 14 is bent and formed with the K1 hole type 79 to form the material into the final product cross-sectional shape.
  • the number of rolling passes in each hole type is basically one, and the number of rolling passes in the same hole type is about two or three at most.
  • the product is manufactured by rolling the U-shaped steel sheet pile by a plurality of rolling mills so as to gradually form the cross-sectional shape of the product.
  • the size of the steel sheet piles has been increased.
  • Patent Document 1 describes a "roll forming apparatus" for forming a lightweight steel sheet pile having a large height dimension.
  • the "roll forming apparatus” described in Patent Document 1 is a roll forming apparatus in which a roll stand for claw forming, a first half bending forming roll stand, a second half bending forming roll stand, and a shaping roll stand are configured in this order. It is a device.
  • the nail forming roll stand comprises a pair of upper and lower horizontal hole-shaped rolls in which nails are formed in advance on both ends of a flat material.
  • the first half bending roll stand is provided on a pair of upper and lower horizontal flat rolls that press down only the web portion of the lightweight steel sheet pile and roll shafts that are independent of each other, and bends and forms the second bent portion. It has a pair of upper and lower horizontal V-bending rolls.
  • the first half bending molding roll stand it is said that a part of molding of the first bent portion and most of the molding of the second bent portion are performed.
  • the latter half bending roll stand has a pair of upper and lower horizontal flat rolls sandwiching the web portion, an inclined roll provided on the inclined roll shaft and in contact with the outer surface of the flange portion, and a lower surface side of the second bent portion. It has a receiving roll and a receiving roll.
  • Patent Document 1 states that the latter half bending roll stand performs final molding of the first bent portion. Further, in Patent Document 1, the shape-determining roll stand is the same as the conventional one, and includes a pair of upper and lower hole-shaped rolls for forming a hole shape having a final cross-sectional shape, and shapes the product. According to the roll forming apparatus described in Patent Document 1, the roll diameter can be significantly reduced even when forming a cross-sectional shape having a large height dimension.
  • Patent Document 2 describes "a method for manufacturing a steel sheet pile".
  • the technique described in Patent Document 2 is to manufacture a hat-shaped or U-shaped steel sheet pile by hot rolling, and then cold-mold the steel sheet pile to obtain a steel sheet pile having a different cross-sectional shape.
  • the cold working is a process of widening or narrowing the width direction of the steel sheet pile, or a process of widening or narrowing the angle of the steel sheet pile corner portion. Is preferable.
  • Patent Document 3 describes a "method for manufacturing a grooved material".
  • the technique described in Patent Document 3 is a "method for manufacturing a grooved material" in which a rough rolling process and a finishing process are sequentially performed.
  • a plurality of sets of double-rolled rolls having a predetermined hole shape are used to perform a hole-shaped rolling process on a rolled material heated to a predetermined temperature to produce an intermediate product.
  • the shape of the cross section of the rolled material is a convex shape in which the pair of flange portions are inclined outward with respect to the perpendicular and the web portion protrudes toward the flange portion, and the central portion thereof is flat.
  • the intermediate product is formed by connecting both ends of the web portion at a substantially right angle to the flange portion and setting the wall thickness of the flange portion and the web portion to be substantially the same as the product dimensions.
  • the tip portion of the flange portion of this intermediate product is formed into a concave shape having a middle and high portion bulging in the thickness direction in a cross-sectional shape by a 4-axis rolling roll, and then the tip portion of the flange portion is further formed. Roll in the thickness direction to make adjustments to increase the flatness of the flange.
  • a plurality of sets of forming rolls arranged in parallel with each other form a convex web portion of an intermediate product, and a flange portion and a flat web that are perpendicular to the web portion and substantially parallel to each other are formed. It is a step of forming a grooved member having a portion by roll processing (cold, warm, hot). According to the technique described in Patent Document 3, it is possible to improve the flatness of the end surface of the tip end surface of the flange portion while suppressing the occurrence of surface defects even for a material having a low hot deformability.
  • Patent Document 4 describes a "method for manufacturing channel steel".
  • the channel steel is produced by sequentially rolling with a plurality of pairs of horizontal hole rolls.
  • a plate thickness difference of [web> flange] is given to the web portion and the flange portion of the material to be rolled by the pre-finishing pass, and the web and the flange are rolled in a curved shape.
  • the open angle of the flange is reduced by performing hot rough forming without contacting the roll with the flange portion between the pre-finishing pass and the final finishing pass.
  • Patent Document 4 after passing through the final finishing pass, the bending of the rolled material is straightened by hot straightening. According to the technique described in Patent Document 4, this makes it possible to mass-produce high-alloy steel channel steel easily and at low cost without causing roll-slip defects.
  • Patent Document 5 describes "a method for manufacturing a hot rolling channel".
  • the technique described in Patent Document 5 uses a plurality of sets of rolling rolls having a predetermined hole shape, from a curved web portion having concave and convex surfaces on the front and back surfaces, and from the left and right ends of the web portion.
  • a hot rolling process in which a W-shaped work intermediate material having flange portions extending at substantially right angles is manufactured by hot rolling, and a U-shape formed by bending from the manufactured W-shaped work intermediate material.
  • This is a method of manufacturing a hot-rolled channel by performing a forming step of manufacturing a channel.
  • the forming process is performed by the first roll that abuts the concave surface of the web portion of the work intermediate material and the central projecting portion of the convex surface of the web portion, and more than the central projecting portion. It is said that the rough forming step using the second roll having a gap with the portion near the end near the end is performed by hot forming. In the rough forming step, it is preferable that the flange portion is pressed inward by a pair of left and right induction rolls provided on the left and right sides of the first roll and the second roll to promote the above-mentioned bending forming. According to the technique described in Patent Document 5, it is possible to consistently produce hot rolling channels with excellent quality.
  • Patent Document 1 is limited to the production of lightweight steel sheet piles by cold bending forming, and requires cold roll forming equipment having a complicated structure.
  • Patent Document 2 has a problem that a cold processing facility is required in addition to the hot rolling facility.
  • the techniques described in Patent Documents 3 to 5 are a method for manufacturing a channel steel or a channel steel, and in a rolling method for these channel steels (groove material), a web portion and a flange portion are used.
  • bending forming is unstable and it is difficult to apply it to steel sheet piles that require claw formation of joints at the final stage of hot rolling.
  • the present invention solves the above-mentioned problems of the prior art, and is used for a method for manufacturing a steel sheet pile and a method for manufacturing a steel sheet pile, which can manufacture a high-height steel sheet pile only by a hot rolling process without using cold rolling.
  • the purpose is to provide a row of rolling equipment.
  • the "high" steel sheet pile here means a large steel sheet pile having an effective width W of 900 mm or more, an effective height H of more than 300 mm, and preferably 350 mm or more. ..
  • the present inventors have diligently studied a method for producing a high steel sheet pile without using a deep hole type rolling roll.
  • the idea is to roll the flange portion so that the shape is curved or bent outward.
  • the hole shape of the rolling roll can be made into a shallow hole shape as compared with the case where the flange portion has a linear shape. It was found that it is possible to prevent a decrease in the bending force of a rolling roll and to increase the roll usage allowance (effective use range).
  • a method for producing a steel sheet pile which comprises performing rough rolling, intermediate rolling, and finish rolling on a heated material in this order using a plurality of hole molds to produce a steel sheet pile having a flange portion having a predetermined shape.
  • the flange portion is rolled so as to have a first shape that is curved or bent outward, and in the finish rolling following the intermediate rolling, the flange portion of the first shape is formed.
  • a method for manufacturing a steel sheet pile which is bent so as to have a linear shape or a second shape curved or bent inward.
  • the web guide has a cross section orthogonal to the rolling direction and has a web guide upper surface width equal to or narrower than the lower surface width of the web of the material after the final rolling pass of the intermediate rolling, and the intermediate rolling.
  • the method for manufacturing a steel sheet pile according to [2] which has an angle formed by the upper surface of the web guide and the side surface of the web guide, which is equal to the angle formed by the joint portion between the web portion and the flange portion of the material after the final rolling pass.
  • [4] The method for producing a steel sheet pile according to any one of [1] to [3], wherein in the finish rolling, claw bending is performed in a rolling pass following the rolling pass in which the bending is performed.
  • [5] The method for manufacturing a steel sheet pile according to [4], wherein the claw bending is preformed on the exit side of the rolling path where the bending molding is performed in the finish rolling, and then the claw bending molding is performed.
  • a row of rolling equipment for producing steel sheet piles in which a heating device, a rough rolling mill, an intermediate rolling mill, and a finishing rolling mill are arranged in this order, wherein the rough rolling mill, the intermediate rolling mill, and the finishing rolling mill are arranged.
  • Each machine is a rolling mill provided with upper and lower rolls in which hole molds are engraved, and at least all or a part of the hole molds on the downstream side of the intermediate rolling mill has a first in which the flange portion is curved or bent outward. It is a hole type carved so as to have a shape, and a part of the hole type of the finish rolling mill bends the flange portion of the first shape into a straight shape or a second shape curved or bent inward.
  • a row of rolling equipment for manufacturing steel sheet piles which is a hole type carved to form.
  • a steel sheet pile having a high effective height and a large effective width can be easily and stably performed only in a hot rolling process without using cold rolling without accidents such as roll breakage. It can be manufactured with high productivity and has a remarkable effect on the industry.
  • the steel sheet pile 1 is manufactured using the rolling equipment row 2 shown in FIG.
  • a material (steel material; for example, a rectangular slab) is charged into the heating device 3 and heated to a predetermined temperature, for example, 1300 ° C. Then, the heated material is conveyed to the rough rolling mill 4, the intermediate rolling mill 5, and the finishing rolling mill 6 in this order and rolled to produce, for example, the hat-shaped steel sheet pile 1A having the cross-sectional shape shown in FIG. 1 (a).
  • the rolling equipment row 2 by sequentially rolling a plurality of materials, products having the same size (hat-shaped steel sheet pile 1A) can be continuously manufactured.
  • Box hole type 71, K8 hole type 72, and K7 hole type 73 3 are engraved on the upper and lower rolls 41 and 42 of the rough rolling mill 4 as shown in FIG. It is a perforated type and rough-rolls the heated material.
  • K8 hole type 72 and the K7 hole type 73 a plurality of passes are rolled.
  • rough rolling using a slab as a material, first, the width of the material (slab) is reduced with the Box hole type 71, and then the material (slab) is turned 90 ° to bend and deform the slab into a hat shape with the K8 hole type 72. At the same time, thickness reduction (thickness reduction) is performed.
  • the thickness reduction and the rough forming of the joint portion are continuously performed, and the shape is formed to be close to the cross-sectional shape of the product.
  • the height H7 of the K7 hole type 73 is engraved larger than the height H8 of the K8 hole type 72, and in the K7 hole type 73, the flange portion is also stretched and deformed.
  • the flange portion in the K7 hole type 731, can be carved so as to have an outwardly curved shape, and the flange portion can be rolled into an outwardly curved shape.
  • the flange portion may be rolled into a shape that is bent outward.
  • the material (intermediate material) formed by rough rolling is rolled (intermediate rolling) with a hole mold carved in the upper and lower rolls of the intermediate rolling mill 5.
  • two rolling mills (two roll sets) are arranged as the intermediate rolling mill 5, and tandem rolling is performed with two hole molds arranged in the rolling direction. You can also.
  • this rolling intermediate rolling
  • the thickness of the material is mainly reduced, but the flange portion can be stretched and deformed.
  • the flange portion of the first shape refers to a flange portion having a shape that is curved or bent outward after intermediate rolling.
  • the material is made by using the hole mold engraved on the upper and lower rolls (roll assembly) so that the flange portion is curved or bent outward.
  • rolling passes in which the rolling load tends to increase with respect to the hole depth include, for example, a part of rough rolling, a whole intermediate rolling, or a part of the downstream side. Can be mentioned.
  • the rolling passes of the intermediate rolling or a part of the rolling paths on the downstream side are flanged on the upper and lower rolls (roll assembly) so that the flange portion is curved or bent outward after the intermediate rolling.
  • a hole type in which the portion is carved so as to have a curved or bent shape on the outside is preferable.
  • the hole type to be used for example, a hole type carved so that the flange portion has an outwardly curved shape as shown in FIG. 6 for rough rolling and FIG. 7 (a) for intermediate rolling is preferable.
  • it may be a hole type carved so that the flange portion as shown in FIG. 7B has a shape bent outward.
  • the height H of the hole type H3 in FIG. 7 can be made smaller than when the flange portion has a linear shape, and the effective use allowance (effective use range) of the roll becomes larger.
  • the intermediate rolling mill 5 has, for example, two holes of K3 hole type 751 (see FIG. 7) and K6 hole type 741 (not shown) for the upper roll 51 and the lower roll 52.
  • the finishing rolling mill 6 is a rolling roll in which, for example, two hole types, K2 hole type 78 (see FIG. 8) and K1 hole type 79 (not shown), are engraved on the upper roll 61 and the lower roll 62. To be equipped.
  • the flange portion is bent back by using the K2 hole mold 78, and the flange portion is formed into a linear shape.
  • the K2 hole type 78 is a hole type in which the upper and lower rolls are engraved in a shape in which the flange portion exhibits a linear shape.
  • the width of the lower surface of the K2 hole type web (B2 in FIG. 8) is equal to the width of the lower surface of the web before rolling in the K2 hole type (B3 in FIG. 7). It is preferable that the angle formed by the web ( ⁇ 2 in FIG. 8) is equal to the angle formed by the web and the flange before K2 hole rolling ( ⁇ 3 in FIG. 7). As a result, the material does not shift in the vertical direction or the horizontal direction during the bending back molding of the flange portion, and the bending back molding of the flange portion can be stably performed.
  • the flange portion in the product shape may be other than the linear shape.
  • the flange portion may be molded into a shape that is curved or bent inward to obtain the final product shape.
  • the K2 hole type 78 is a hole type in which the flange portion is curved or bent inward on the upper and lower rolls.
  • the shape of the flange formed by bending molding in finish rolling that is, the shape in which the flange portion is linear or curved or bent inward is defined as the second shape.
  • FIG. 10 shows an outline of bending back forming of the flange portion in the K2 hole type 78.
  • FIG. 10A is a cross-sectional view schematically showing a state when the material (intermediate material) after the final rolling pass of the intermediate rolling starts contacting with the K2 hole mold (at the time of biting).
  • FIG. 10B is a cross-sectional view showing a state in which molding is completed in the K2 hole type (at the time of completion of bending molding). In this bending back molding, the web portion 11, the flange portion 12, and the arm portion 13 of the material (intermediate material) come into contact with the roll (hole type) and undergo bending back molding, but the joint portion 14 is a roll (hole type).
  • the flange portion is bent back as described above, but the material formed by intermediate rolling is displaced in the vertical and horizontal directions, and the tip and rear ends are unsteady. It is more preferable to roll using the web guide 60 on the entry side of rolling so that the flange portion can be stably bent back without changing the steady length.
  • the web guide 60 to be used has a shape in which the web guide upper surface width 601 width B is equal to the web lower surface width B3 or slightly narrower than the web lower surface width B3 in accordance with the web lower surface width B3 after the completion of intermediate rolling, and the web guide. It is preferable that the angle ⁇ formed by the upper surface 601 and the web guide side surface 602 is equal to ⁇ 3 (the angle formed by the joint portion between the web portion 11 and the flange portion 12) of the hole type K3 at the end of intermediate rolling.
  • B is usually narrowed by about 2 mm to 8 mm from B3. Is preferable.
  • the preferred shape of the web guide is shown in FIG. 11 (a). Note that FIG. 11B shows the arrangement position of the web guide 60.
  • the lower surface of the web of the material formed by the intermediate rolling and the joint between the web portion and the flange portion are sufficiently held. Then, it can be guided to the K2 hole type 78. As a result, it is possible to prevent the material from shifting in the vertical direction and the horizontal direction, and to stably perform the bending back molding of the flange portion.
  • Bending and forming of the claw portion of the joint portion 14 is performed by the K1 hole type 79 which is the final hole type.
  • the K1 hole type 79 which is the final hole type.
  • the amount of nail bending becomes excessive, and proper nail bending molding may not be possible.
  • the claw bending roller 8 as shown in FIG.
  • the claw 7A is bent from the outside to the inside by the vertical roller 81 while the upper and lower parts are restrained.
  • the vertical roller 81 is arranged so that the central axis is located on the outside of the claw 7A.
  • the amount of claw bending in the K1 hole type can be optimized.
  • the flange portion is bent back in the first rolling pass of the finish rolling, but the bending back forming may be performed stepwise by a plurality of rolling passes including the first rolling pass.
  • the flange may be bent back by using the K1 hole type 79, or another hole type may be provided between the K2 hole type 78 and the K1 hole type 79. Bending back molding may be performed.
  • the material (steel slab (steel type: SYW295)) is charged into the heating device 3, heated to a heating temperature of 1300 ° C., and then the rough rolling mill 4 and the intermediate rolling mill 5 are used.
  • the rough rolling mill 4 and the intermediate rolling mill 5 are used.
  • the rough rolling mill 4 and the intermediate rolling mill 5 are used.
  • the rough rolling mill 4 and the intermediate rolling mill 5 are used.
  • the finishing rolling mill 6 web part wall thickness: 17 mm, flange part wall thickness: 12 mm, effective height H: 370 mm, effective width W: 900 mm
  • the shape shown in FIG. 1 is high in height.
  • Manufactured a hat-shaped steel sheet pile.
  • the heated material (steel material) is rolled by a rough rolling mill 4 equipped with upper and lower rolls engraved with Box hole type, K8 hole type and K7 hole type, and shaped into a shape close to the cross-sectional shape of the product. did.
  • a first intermediate rolling mill 5 equipped with upper and lower rolls in which K5 hole type and K4 hole type are engraved, and upper and lower parts in which K6 hole type and K3 hole type are engraved are engraved on the material formed by rough rolling. Rolling (intermediate rolling) was sequentially performed using a second intermediate rolling mill 5 provided with a roll.
  • the first rolling pass in the intermediate rolling is rolled in the order of the hole type K5 and the hole type K6 (not pressed in K5), and the second rolling path is rolled in the order of the hole type K6 and the hole type K5.
  • the hole type K4 and the hole type K3 were rolled in this order.
  • the hole type used in the intermediate rolling is, for example, the K3 hole type having the hole type depth of the shape shown in FIG. 7A. It has a shallow hole shape.
  • the K6 hole type, the K5 hole type, and the K4 hole type also have the same hole type with a shallower hole type.
  • the hole type depth H used is passed through the hole type (K6 hole type, K5 hole type, K4 hole type and K3 hole type) in the order of the following formula (1). The hole type was changed to satisfy. H6 ⁇ H5 ⁇ H4 ⁇ H3 ......
  • the depth H of the hole type used is shown in Table 1 as a ratio to the product height (reference: 1.0).
  • Steel sheet pile No. 3 is a comparative example in which a hole type in which the flange portion exhibits a linear shape is used in all rolling passes of intermediate rolling.
  • the stress generated at each part of the rolling roll at the time of rolling is calculated in advance by using the finite element method, and this stress is the roll material.
  • the rolling load capacity (unit: MN) for each hole type was calculated so as not to exceed the allowable stress of. The results obtained are also shown in Table 1. As a matter of course, as the hole depth H increases, the load capacity value decreases and the risk of roll breakage increases.
  • the material formed by intermediate rolling was subjected to finish rolling and formed into a product shape. In the first rolling pass of finish rolling, the flange portion was bent back from the shape in which the flange portion was bent outward to the second shape in which the flange portion was linear, using the K2 hole type 78.
  • the web guide 60 has the shape shown in FIG. 11A, and the width B of the upper surface (upper surface of the web guide) is set to be substantially equal to the width B3 of the lower surface of the web of the K3 hole type (dimensions 4 mm narrower than B3).
  • the angle ⁇ formed with the side surface of the web guide was made equal to the angle ⁇ 3 formed by the joint portion between the web portion and the flange portion at the end of intermediate rolling.
  • a claw bending molding of the joint portion was performed using a K2 hole type 79 to obtain a hat-shaped steel sheet pile (product).
  • a claw bending roller was used to preform the claw bending molding on the exit side of the first rolling pass, and then the claw bending molding was performed.
  • the effective width dimension W and height dimension H are measured from the rolled tip, and the shape of the joint is visually confirmed.
  • the lengths of the unsteady portions (length in the longitudinal direction (m)) of the rolled tip and rear ends whose dimensions W and H and the shape of the joints do not fall within the tolerance range were measured.
  • the obtained results are also shown in Table 1.
  • the flange portion can be stably bent back and the subsequent claw bending can be stably performed, and a high-height steel sheet pile can be easily manufactured. Further, according to the present invention, the depth of the hole formed in the rolling roll can be made shallow, and the decrease in the bending force of the roll is also reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

本発明は、高さが高い大型鋼矢板の製造方法を提供する。加熱装置、粗圧延機、中間圧延機及び仕上圧延機をこの順に配設してなる圧延設備列を利用して、素材を加熱し、孔型による圧延パスを複数回施して、所定形状の鋼矢板とする。この際、中間圧延において中間圧延後の形状が、フランジ部が外側に湾曲又は屈曲する第1形状となるように、刻設された孔型を用いて圧延する。これにより、刻設する孔型の深さを浅くでき、ロールの抗折力の低下を抑制でき、ロールの使用範囲が大きくなる。そして、中間圧延に続く仕上圧延では、第1形状の前記フランジ部が、直線形状若しくは内側に湾曲又は屈曲した第2形状となるように曲げ成形を施す。

Description

鋼矢板の製造方法及び鋼矢板製造用の圧延設備列
 本発明は、鋼矢板の製造方法及び鋼矢板製造用の圧延設備列に係り、とくに高さの高い鋼矢板の製造方法及び鋼矢板製造用の圧延設備列に関する。
 土木工事の土留め部材等として好適な鋼矢板には、ハット形鋼矢板やU形鋼矢板等がある。図1には、製品形状の一例として、ハット形鋼矢板(図1(a))及びU形鋼矢板(図1(b))の断面形状をそれぞれ示す。
 鋼矢板1は、通常、スラブやブルーム等を素材として、例えば、図2に示す鋼矢板製造用の圧延設備例2で製造される。このような圧延設備列2では、素材を加熱装置3に装入し、所定の温度、例えば1300℃に加熱したのち、加熱された素材は、粗圧延機4、中間圧延機5及び仕上圧延機6の順に搬送され、所定の断面形状まで圧延されることで、製品形状となる。なお、粗圧延機4での圧延を粗圧延、中間圧延機5での圧延を中間圧延、仕上圧延機6での圧延を仕上圧延ともいう。これらの圧延機は、カリバと呼ばれる孔型が上ロールと下ロールとに刻設された圧延ロールを備える。なお、以下では、上ロールと下ロールとをまとめて、上下ロールまたはロール組ともいう。
 ハット形鋼矢板の粗圧延に用いられる粗圧延機4の上下ロールに刻設される孔型の一例を図3に示す。上ロール41と下ロール42とに対し、Box孔型71、K8孔型72及びK7孔型73の3つの孔型が刻設されている。この孔型を用いた粗圧延では、スラブを素材として、まず、Box孔型71でスラブの幅圧下が行われる。次いで、K8孔型72で、スラブのハット形への曲げ変形及び厚み圧下が行われる。さらに、K7孔型73で、厚み圧下が行われ、素材が製品断面形状に近い形に造形される。なお、K8孔型72及びK7孔型73では、それぞれ複数パスの圧延が行われる。
 中間圧延に用いられる中間圧延機5も、粗圧延機4と同様に、上下ロールに2~4程度の孔型が刻設された圧延ロールを備える。ハット形鋼矢板の中間圧延に用いられる中間圧延機5の上下ロールに刻設される孔型の一例を図4に示す。図4では、上ロール51と下ロール52とに対し、K3孔型75及びK6孔型74の2つの孔型が刻設されている。なお、とくに図示しないが、もう1台の中間圧延機5の上下ロールには、K4孔型77及びK5孔型76という2つの孔型が同様に刻設されている。中間圧延では、粗圧延された素材に対し、これらの孔型で、順次、圧延を行って、厚み圧下と形状の成形を行うことで、素材をさらに製品断面形状に近い形に造形する。
 仕上圧延に用いられる仕上圧延機6も、同様に、上下ロールに1~3程度の孔型が刻設される。ハット形鋼矢板の仕上圧延に用いられる仕上圧延機6の上下ロールに刻設される孔型の一例を図5に示す。図5では、上ロール61と下ロール62とに対し、K2孔型78及びK1孔型79の2つの孔型が刻設されている。仕上圧延では、中間圧延された素材に対して、K2孔型78で最終的な厚み圧下を行い、次いでK1孔型79で継手部14の曲げ成形を行うことで、素材を最終製品断面形状に造形する。
 なお、中間圧延及び仕上圧延では、各孔型での圧延パス数は1パスが基本であり、同一孔型での圧延パス数は、多い場合でも2,3パス程度としている。
 また、U形鋼矢板についても、ハット形鋼矢板と同様に、複数の圧延機によって、徐々に製品断面形状となるように孔型圧延が行われることで、製品が製造される。
 このような鋼矢板に対し、最近では、剛性、断面係数を向上させ、合わせて施工性を向上させるために、鋼矢板の大型化が指向されている。
 このような傾向に対し、例えば、特許文献1には、高さ寸法の大きい軽量鋼矢板を成形する「ロール成形装置」が記載されている。特許文献1に記載された「ロール成形装置」は、爪成形用ロールスタンドと、前半曲げ成形ロールスタンドと、後半曲げ成形ロールスタンドと、形決め用ロールスタンドとが、この順に構成されたロール成形装置である。爪成形用ロールスタンドは、平坦な素材の両端に予め爪を成形する上下一対の水平な孔型ロールからなる。また、前半曲げ成形ロールスタンドは、軽量鋼矢板のウェブ部のみを圧下する上下一対の水平なフラットロールと、それとはそれぞれ独立したロール軸に設けられ、第2の折曲部の曲げ成形を行う上下一対の水平なV曲げロールと、を有する。前半曲げ成形ロールスタンドでは、第1の折曲部の成形の一部と第2の折曲部の成形の大部分を行うとしている。また、後半曲げ成形ロールスタンドは、ウェブ部を挟む上下一対の水平なフラットロールと、傾斜したロール軸に設けられフランジ部の外側面に接する傾斜ロールと、第2の折曲部の下面側を受ける受けロールと、を備えている。特許文献1では、後半曲げ成形ロールスタンドでは、第1の折曲部の最終成形を行うとしている。また、特許文献1では、形決め用ロールスタンドは、従来と同様で、最終断面形状の孔型を形成する上下一対の孔型ロールを備え、製品の形状出しを行うとしている。特許文献1に記載されたロール成形装置によれば、高さ寸法の大きな断面形状を成形する場合でも、ロール径を大幅に小さくすることができるとしている。
 また、特許文献2には、「鋼矢板の製造方法」が記載されている。特許文献2に記載された技術は、熱間圧延によりハット形またはU形の鋼矢板を製造したのち、該鋼矢板を冷間加工により成形し、断面形状の異なる鋼矢板とする鋼矢板の製造方法である。特許文献2に記載された技術では、冷間加工は、鋼矢板の幅方向を拡幅もしくは狭幅とする加工であるか、鋼矢板コ-ナー部の角度を広角もしくは挟角とする加工であることが好ましい、としている。特許文献2に記載された技術によれば、同一の熱間圧延設備では製造できない鋼矢板でも製造でき、自由度の高い鋼矢板の製造が可能になる、としている。
 また、特許文献3には、「溝形材の製造方法」が記載されている。特許文献3に記載された技術は、粗圧延工程と仕上工程とを順に実施する「溝形材の製造方法」である。ここで、特許文献3の粗圧延工程では、所定の孔型を形成した複数組の二重圧延ロールで、所定温度に加熱された圧延素材に孔型圧延加工を施し、中間製品を製造する。この際、圧延素材の横断面の形状を、一対のフランジ部がそれぞれ垂線に対して外側に傾斜し、かつウェブ部が該フランジ部側へ突出る凸状の形状とし、その中央部が平担で、ウェブ部の両端がフランジ部とほぼ直角に連結され、フランジ部とウェブ部の肉厚が製品寸法とほぼ同一の厚さとすることで、中間製品が成形される。次いで、粗圧延工程では、この中間製品のフランジ部の先端部を、4軸圧延ロールで、横断面形状で厚み方向に膨出した中高部を有する凹状としたのち、さらにフランジ部の先端部を厚み方向に圧延して、フランジ部の平坦度を高める調整を行う。また、仕上工程は、互いに平行に配設された複数組の成形ロールで、中間製品の凸部形状のウェブ部を成形し、ウェブ部に対し直角でかつ互いにほぼ平行なフランジ部と平坦なウェブ部を有する溝形材をロール加工(冷間、温間、熱間)で形成する工程とする。特許文献3に記載された技術では、熱間変形能が低い素材に対しても、表面疵の発生を抑えつつ、フランジ部の先端部端面の平坦度を高めることができるとしている。
 また、特許文献4には、「溝形鋼の製造方法」が記載されている。特許文献4に記載された「溝形鋼の製造方法」では、複数対の水平孔型ロールで順次圧延して、溝形鋼を製造する。この際に、仕上前パスまでに被圧延材のウェブ部とフランジ部とに、[ウェブ>フランジ]なる板厚差を付与しておくと共に、ウェブとフランジを湾曲した形状で圧延を行っていき、仕上前パスと最終仕上パスとの間でフランジ部にロールを接触されることなく、熱間粗成形を施してフランジの開き角を減少させていく。続いて、特許文献4では、最終仕上パスを通過させた後、熱間矯正にて圧延材の曲がり矯正を行う。特許文献4に記載された技術では、これにより、高合金鋼製溝形鋼を、ロールスリップ疵を生じさせることなく、簡易かつ低コストで量産することが可能になるとしている。
 また、特許文献5には、「熱間圧延チャンネルの製造方法」が記載されている。特許文献5に記載された技術は、所定の孔型を形成した複数組の圧延ロールを用いて、表裏に凹状面及び凸状面を有する曲面形状のウェブ部と、該ウェブ部の左右両端から略直角にそれぞれ延設されたフランジ部とを有するW形状のワーク中間材を熱間圧延により製造する熱間圧延工程と、該製造されたW形状のワーク中間材から曲げ成形によりコ字状のチャンネルを製造する成形工程とを行って熱間圧延チャンネルを製造する方法である。特許文献5に記載された技術では、成形工程を、ワーク中間材のウェブ部の凹状面と当接する第1ロールと、ウェブ部の凸状面の中央突出部と当接するとともに中央突出部よりも端部寄りの端部近傍部とは間隙を有する第2ロールとを用いた粗成形工程を熱間成形にて行うとしている。なお、粗成形工程では、第1ロール及び第2ロールの左右に設けた左右一対の誘導ロールによりフランジ部を内側に押圧して、上記した曲げ成形を助長することが好ましいとしている。特許文献5に記載された技術によれば、一貫して熱間において製造でき、すぐれた品質の熱間圧延チャンネルが製造できるとしている。
特開平07-088562号公報 特開2003-230916号公報 特開平04-066202号公報 特開平05-154502号公報 特開2001-276902号公報
 しかしながら、特許文献1に記載された技術では、冷間の曲げ成形による軽量鋼矢板の製造に限定されるうえ、複雑な構成の冷間ロール成形設備を必要とする。また、特許文献2に記載された技術では、熱間圧延設備に加えてさらに冷間加工設備をも必要とするという問題がある。また、特許文献3~5に記載された技術は、溝形鋼あるいは溝形材の製造方法であり、これら溝形鋼(溝形材)を対象とする圧延方法では、ウェブ部とフランジ部の曲げ成形が不安定であるうえ、熱間圧延の最終段階で、継手部の爪形成が必要な鋼矢板には適用しにくい、という問題があった。さらに、最近では、有効幅Wが900mmで、有効高さHが300mmを超えるような大型の鋼矢板が要望されている。
 有効高さHが高い鋼矢板(以下、「高さが高い」鋼矢板ともいう)を圧延するためには、深い孔型を有するロールを用いて成形(圧延)する必要がある。しかし、ロールに深い孔型を刻設すると、ロール小径部の径が小さくなりすぎて、圧延時のロールの抗折力が低下する。また、有効高さHが高く有効幅Wが広い鋼矢板の圧延では、従来の有効幅の狭い鋼矢板と同様の圧下条件で圧延すると、圧延荷重及び圧延トルクが増大する。大型の鋼矢板の製造に際しては、このようなロールの抗折力の低下と圧延負荷の増大とが重畳して、圧延時にロールの折損が生じ、圧延が不能になる恐れがある。また、ロールに深い孔型を刻設するため、ロール小径部の径が小さくなりすぎて、ロールの有効使用代(有効使用範囲)が大きく低下するという問題もある。
 本発明は、上記したような従来技術の問題点を解決し、冷間圧延を用いることなく熱間圧延工程のみで、高さの高い鋼矢板を製造できる鋼矢板の製造方法及び鋼矢板製造用の圧延設備列を提供することを目的とする。なお、ここでいう「高さの高い」鋼矢板とは、有効幅Wが900mm以上で、有効高さHが300mmを超え、好ましくは350mm以上となるような大型の鋼矢板をいうものとする。
 本発明者らは、上記した目的を達成するため、深い孔型の圧延ロールを用いることなく、高さの高い鋼矢板を製造する方法について、鋭意検討した。その結果、孔型深さに対して圧延負荷が大きくなりやすい圧延パス、例えば、粗圧延の一部及び中間圧延において、フランジ部が外側に湾曲又は屈曲した形状となるように圧延することに想到した。すなわち、中間圧延後に、フランジ部が外側に湾曲又は屈曲した形状になるように圧延すれば、フランジ部が直線的形状の場合に比べて、圧延ロールの孔型を浅い孔型とすることができ、圧延ロールの抗折力の低下を防止でき、またロールの使用代(有効使用範囲)を大きくできることを知見した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
[1]加熱した素材に、複数の孔型を用いて、粗圧延、中間圧延及び仕上圧延をこの順に施し、所定形状のフランジ部を有する鋼矢板を製造する鋼矢板の製造方法であって、前記中間圧延において前記フランジ部の前記中間圧延後の形状が外側に湾曲又は屈曲する第1形状となるように圧延し、前記中間圧延に続く前記仕上圧延では、前記第1形状の前記フランジ部が、直線形状若しくは内側に湾曲又は屈曲した第2形状となるように曲げ成形が施される、鋼矢板の製造方法。
[2]前記仕上圧延において前記曲げ成形を行う圧延パスが、圧延入側でウェブガイドを用いる圧延パスである、[1]に記載の鋼矢板の製造方法。
[3]前記ウェブガイドが、圧延方向に直交する断面で、前記中間圧延の最終圧延パス後の素材のウェブの下面幅と等しいか、あるいはそれより狭いウェブガイド上面幅を有し、前記中間圧延の最終圧延パス後の素材のウェブ部とフランジ部との接合部がなす角度に等しいウェブガイド上面とウェブガイド側面とのなす角度を有する、[2]に記載の鋼矢板の製造方法。
[4]前記仕上圧延において、前記曲げ成形を行う圧延パスに続く圧延パスで、爪曲げ成形を行う、[1]ないし[3]のいずれかに記載の鋼矢板の製造方法。
[5]前記仕上圧延において前記曲げ成形を行う圧延パスの出側で、爪曲げの予成形を行い、しかる後に前記爪曲げ成形を行う、[4]に記載の鋼矢板の製造方法。
[6]加熱装置、粗圧延機、中間圧延機及び仕上圧延機をこの順に配設してなる鋼矢板製造用の圧延設備列であって、前記粗圧延機、前記中間圧延機及び前記仕上圧延機は、夫々、孔型が刻設された上下ロールを備える圧延機であり、少なくとも前記中間圧延機の全部または下流側の一部の孔型は、フランジ部が外側に湾曲又は屈曲する第1形状となるように刻設された孔型であり、前記仕上げ圧延機の一部の孔型が、前記第1形状のフランジ部を直線形状、若しくは、内側に湾曲又は屈曲した第2形状に曲げ成形するように刻設された孔型である、鋼矢板製造用の圧延設備列。
 本発明によれば、有効高さが高く、かつ有効幅が大きい鋼矢板を、冷間圧延を用いることなく熱間圧延工程のみで、ロールの折損等の事故もなく容易に、しかも安定して生産性高く製造でき、産業上格段の効果を奏する。
鋼矢板の製品形状の一例を模式的に示す説明図である。(a)はハット形鋼矢板の例であり、(b)はU形鋼矢板の例である。 鋼矢板製造用の圧延設備例の一例を示す説明図である。 ハット形鋼矢板製造に用いる粗圧延用孔型(断面)の一例を示す説明図である。 ハット形鋼矢板製造に用いる中間圧延用孔型(断面)の一例を示す説明図である。 ハット形鋼矢板製造に用いる仕上圧延用孔型(断面)の一例を示す説明図である。 本発明でハット形鋼矢板製造に好適な粗圧延用孔型K7の一例を示す断面図である。 本発明でハット形鋼矢板製造に好適な中間圧延用孔型K3の一例を示す断面図である。(a)はフランジ部が外側に湾曲した例を示し、(b)はフランジ部が外側に屈曲した例を示す。 本発明でハット形鋼矢板製造に好適な仕上圧延用孔型K2の一例を示す断面図である。 鋼矢板の製品形状の一例を模式的に示す説明図である。 仕上圧延におけるフランジ部の曲げ戻し成形の状況を模式的に示す断面図である。 ウェブガイドを模式的に示す説明図である。(a)はウェブガイドの形状を示し、(b)はウェブガイドの配置位置示す。 爪曲げローラの一例を模式的に示す説明図である。
 本発明の一実施形態では、例えば、図2に示す圧延設備列2を用いて、鋼矢板1の製造を行う。
 本実施形態では、素材(鋼素材;例えば矩形スラブ)を、加熱装置3に装入し、所定の温度、例えば1300℃に、加熱する。その後、加熱した素材を、粗圧延機4、中間圧延機5及び仕上圧延機6に、この順に搬送して圧延し、例えば、図1(a)に示す断面形状のハット形鋼矢板1Aを製造する。なお、圧延設備列2では、複数本の素材を順次圧延することで、同一サイズとなる製品(ハット形鋼矢板1A)を連続して製造することができる。
 粗圧延機4における圧延(粗圧延)では、図3に示すように粗圧延機4の上下ロール41,42に刻設された、Box孔型71、K8孔型72及びK7孔型73の3つ孔型で、加熱された素材の粗圧延を行う。K8孔型72及びK7孔型73では、それぞれ複数パスの圧延が行われる。粗圧延では、スラブを素材として、まず、Box孔型71で素材(スラブ)の幅圧下を行ったのち、90°転回して、K8孔型72で、スラブのハット形への曲げ変形を行うとともに、厚み圧下(減厚)を行う。さらに、K7孔型73で、厚み圧下と、継手部の粗成形とが継続的に行われ、製品断面形状に近い形に造形される。なお、K7孔型73の高さH7は、K8孔型72の高さH8よりも大きく刻設され、K7孔型73では、フランジ部の引き伸ばし変形も行われる。
 また、図6に示すように、K7孔型731では、フランジ部が外側に湾曲した形状になるように刻設して、フランジ部を外側に湾曲した形状に圧延することもできる。なお、フランジ部を外側に屈曲した形状に圧延してもよい。しかし、粗圧延段階において、圧延負荷に対して孔型深さが深いことに起因してロール強度が問題となりやすい圧延パス以外の圧延パスでは、フランジ部が外側に湾曲または屈曲した形状で圧延する必要はない。
 ついで、粗圧延により造形された素材(中間素材)に、中間圧延機5の上下ロールに刻設された孔型で圧延(中間圧延)を施す。なお、図2に示す圧延設備列2では、中間圧延機5として、2台の圧延機(2つのロール組)が配設され、圧延方向に並んだ2つの孔型で、タンデム圧延を行うこともできる。この圧延(中間圧延)では、主に素材の厚み圧下を行うが、フランジ部の引き伸ばし変形を加えることもできる。
 本発明では、中間圧延後の形状が、フランジ部が外側に湾曲又は屈曲した形状である第1形状になるように、圧延する。また、第1形状のフランジ部とは、中間圧延後において外側に湾曲又は屈曲する形状となったフランジ部を示す。
 孔型深さに対して圧延負荷が大きくなりやすい圧延パスにおいて、フランジ部が外側に湾曲又は屈曲した形状となるように、上下ロール(ロール組)に刻設された孔型を使用して素材を圧延する。このような、孔型深さに対して圧延負荷が大きくなりやすい圧延パスとしては、例えば、粗圧延の一部の圧延パス、中間圧延の全部の圧延パスまたは下流側の一部の圧延パス等が挙げられる。本発明では、中間圧延後に、フランジ部が外側に湾曲又は屈曲する形状となるように、少なくとも中間圧延の全部の圧延パスまたは下流側の一部の圧延パスを、上下ロール(ロール組)にフランジ部が外側に湾曲又は屈曲した形状となるように刻設された孔型を使用することが好ましい。使用する孔型としては、例えば、粗圧延では図6、中間圧延では図7(a)に示すような、フランジ部が外側に湾曲した形状となるように刻設された孔型が好ましい。また、図7(b)に示すようなフランジ部が外側に屈曲した形状となるように刻設した孔型としてもよい。これにより、フランジ部が直線形状の場合より、孔型の高さH(図7ではH3)を小さくすることができ、ロールの有効使用代(有効使用範囲)が大きくなる。
 中間圧延機5は、第2の中間圧延機として、例えば、上ロール51と下ロール52とに対し、K3孔型751(図7参照)及びK6孔型741(図示せず)の2つの孔型が刻設された圧延ロールと、図示はしていないが、第1の中間圧延機として、例えば、上下ロールに対し、K5孔型761及びK4孔型771の2つの孔型が刻設された圧延ロールとを備える。中間圧延後にフランジ部が外側に湾曲又は屈曲した形状となるように刻設されたこれらの孔型を用いて、粗圧延された素材に対し中間圧延として、タンデム圧延を含む圧延を、順次、行うことができる。
 なお、中間圧延において使用する孔型の高さHを、圧延パス順に、例えば、K6孔型でH6、K5孔型でH5、K4孔型でH4、K3孔型でH3とすると、下記(1)式を満足するように、孔型の高さを設定することが好ましい。
  H6≦H5≦H4≦H3  ......(1)
中間圧延に用いる孔型の高さを(1)式を満足するように設定することにより、各孔型で順次、フランジ部の引き伸ばし変形を加えることができ、高さの高い鋼矢板素材として安定的に圧延できるという効果が期待できる。
 ついで、中間圧延により造形された中間素材に、さらに仕上圧延機6の上下ロールに刻設された孔型で圧延(仕上圧延)を施す。
 仕上圧延機6は、上ロール61と下ロール62とに対し、例えば、K2孔型78(図8参照)とK1孔型79(図示せず)の2つの孔型が刻設された圧延ロールを備える。本実施形態の仕上圧延では、第1圧延パスで、K2孔型78を用いて、フランジ部の曲げ戻し成形を行い、フランジ部が直線状を呈する形状に成形する。K2孔型78は、フランジ部が直線状を呈する形状に上下ロールに刻設された孔型とする。なお、K2孔型では、K2孔型のウェブ下面幅(図8のB2)を、K2孔型圧延前のウェブ下面幅(図7のB3)に等しく、また、K2孔型のウェブとフランジとのなす角(図8のθ2)を、K2孔型圧延前のウェブとフランジとのなす角(図7のθ3)に等しくすることが好ましい。これにより、フランジ部の曲げ戻し成形時に、素材が上下方向や左右方向にずれることがなく、フランジ部の曲げ戻し成形を安定して行うことができる。
 なお、上記説明では最終的な製品形状においてフランジ部が直線形状とされる場合を例に説明したが、製品形状におけるフランジ部は直線形状以外であってもよい。例えば、図9に模式的に示される断面形状のように、フランジ部が内側に湾曲又は屈曲した形状に成型して最終的な製品形状としてもよい。この場合のK2孔型78は、フランジ部が内側に湾曲又は屈曲する形状を上下ロールに刻設された孔型とする。
 また、仕上圧延での曲げ成形によって造形されるフランジの形状、つまり、フランジ部が直線形状若しくは内側に湾曲又は屈曲した形状を第2形状とする。
 K2孔型78でのフランジ部の曲げ戻し成形の概要を図10に示す。図10(a)は、中間圧延の最終圧延パス後の素材(中間素材)が、K2孔型と接触を開始するとき(噛み込み時)の状況を模式的に示す断面図である。図10(b)は、K2孔型で成形が完了した状態(曲げ成形完了時)を示す断面図である。この曲げ戻し成形では、素材(中間素材)のウェブ部11、フランジ部12、腕部13は、ロール(孔型)と接触し、曲げ戻し成形を受けるが、継手部14はロール(孔型)と接触し変形しないように、孔型を刻設することが好ましい。継手部の爪部の曲げ成形は、K1孔型79で行う。なお、K2孔型78及びK1孔型79での圧延パス回数は基本的には1パスである。
 仕上圧延の第1圧延パスでは、上記したように、フランジ部の曲げ戻し成形を行うが、中間圧延で造形された素材が、上下方向や左右方向にずれたりして、先端や後端の非定常長さが変動することなく、安定してフランジ部の曲げ戻し成形を行うことが可能なように、圧延の入側でウェブガイド60を使用して圧延することがより好ましい。
 使用するウェブガイド60は、そのウェブガイド上面601幅Bを中間圧延終了後のウェブ下面幅B3に合わせて、ウェブ下面幅B3に等しいか、あるいはウェブ下面幅B3より少し狭くした形状、かつウェブガイド上面601とウェブガイド側面602の成す角度θを中間圧延終了時の孔型K3のθ3(ウェブ部11とフランジ部12との接合部の成す角度)と等しくした形状とすることが好ましい。なお、ウェブガイド上面601幅Bをウェブ下面幅B3と等しくするウェブガイドでは、フランジ内面ないしウェブ下面にスリ疵を発生させる恐れがあるため、通常、Bは、B3より2mm~8mmほど狭くすることが好ましい。ウェブガイドの好ましい形状を図11(a)に示す。なお、図11(b)には、ウェブガイド60の配置位置を示す。
 仕上圧延の第1圧延パスの圧延入側で、上記したようなウェブガイド60を使用することにより、中間圧延により造形された素材のウェブ下面及びウェブ部とフランジ部との接合部を十分に保持して、K2孔型78へ案内することができる。その結果、素材の上下方向、左右方向へのずれを防止して、フランジ部の曲げ戻し成形を安定的に行うことができる。
 継手部14の爪部の曲げ成形は、最終孔型であるK1孔型79で行う。しかし、この孔型1つでは、爪曲げ量が過大となり、適正な爪曲げ成形が行えない場合がある。そのような場合には、継手部の爪曲げ予成形を行うことが好ましい。継手部の爪曲げ予成形は、K2孔型78の出側(後面)に、例えば、特開2006-272343号公報に記載されるような爪曲げローラを設置して行うことが好ましい。
 爪を外側から内側に曲げる予成形は、図12に示すような爪曲げローラ8で、竪ローラ82により腕部13の屈曲部を拘束し、水平ローラ83a,83bにより腕部13の水平部の上下を拘束した状態で、竪ローラ81により爪7Aを外側から内側に曲げ加工する。なお、竪ローラ81は、爪7Aの外側に中心軸が位置するように配設されている。
 このような爪曲げローラを用いて、継手部の爪曲げ予成形を行ったのち、K1孔型での爪曲げ成形を行えば、K1孔型での爪曲げ量を適正化することができる。
 なお、上記実施形態では仕上圧延の第1圧延パスにおいてフランジ部の曲げ戻し成形を行うこととしたが、第1圧延パスを含む複数の圧延パスにより段階的に曲げ戻し成形を行ってもよい。その場合、K2孔型78に加えて、K1孔型79を用いてフランジの曲げ戻し成形を行ってもよいし、K2孔型78とK1孔型79との間に他の孔型を設けて曲げ戻し成形を行ってもよい。
 以下、実施例に基づき、さらに本発明について説明する。
 図2に示す圧延設備列2を用いて、素材(鋼スラブ(鋼種:SYW295))を加熱装置3に装入し、加熱温度:1300℃に加熱したのち、粗圧延機4、中間圧延機5、仕上圧延機6で圧延を施し、ウェブ部肉厚:17mm、フランジ部肉厚:12mm、有効高さH:370mm、有効幅W:900mmである、図1に示す形状の、高さの高いハット形鋼矢板を製造した。
 粗圧延では、加熱した素材(鋼素材)を、Box孔型、K8孔型及びK7孔型が刻設された上下ロールを備えた粗圧延機4で圧延し、製品断面形状に近い形状に造形した。次いで、粗圧延により造形された素材に、K5孔型及びK4孔型が刻設された上下ロールを備えた第1の中間圧延機5、並びにK6孔型及びK3孔型が刻設された上下ロールを備えた第2の中間圧延機5を用いて順次、圧延(中間圧延)を施した。具体的には、中間圧延における第1圧延パスは、孔型K5及び孔型K6の順に(K5では圧下せず)、第2圧延パスは、孔型K6及び孔型K5の順に圧延したのち、第3圧延パスとして、孔型K4及び孔型K3の順に圧延した。
 中間圧延終了後に、フランジ部が外側に湾曲又は屈曲した第1形状とするため、中間圧延で使用した孔型は、例えばK3孔型では図7(a)に示す形状の、孔型深さを浅くした孔型とした。なお、K6孔型、K5孔型及びK4孔型においても同様の孔型深さを浅くした孔型とした。さらに、中間圧延では、使用した孔型の孔型深さHを、通過した孔型の順(K6孔型、K5孔型、K4孔型及びK3孔型の順)に、下記(1)式を満足するように変更した孔型とした。
  H6≦H5≦H4≦H3  ......(1)
 なお、使用した孔型の深さHは、製品高さ(基準:1.0)に対する比率で、表1に示す。なお、鋼矢板No.3は、中間圧延のすべての圧延パスで、フランジ部が直線状を呈する孔型を使用した比較例である。
 上記した深さHの孔型を刻設された各圧延ロールについて、あらかじめ有限要素法を利用して、圧延時の当該圧延ロールの各部位に発生する応力を算出し、この応力が当該ロール材質の許容応力を超えないように、各孔型での圧延耐荷重(単位MN)を算出した。得られた結果を表1に併記した。当然ながら、孔型深さHが大きくなると、耐荷重の値が低くなり、ロール破断のリスクが大きくなる。
 次いで、中間圧延により造形された素材は、仕上圧延を施され、製品形状に造形された。なお、仕上圧延の第1圧延パスでは、K2孔型78を用いて、フランジ部が外側に屈曲した形状から、フランジ部が直線状を呈する第2形状にフランジ部の曲げ戻し成形を行った。
 なお、仕上圧延の第1圧延パスの一部では、圧延入側で、ウェブガイド60を使用して圧延を行った。ウェブガイド60は、図11(a)に示す形状とし、上面(ウェブガイド上面)の幅BをK3孔型のウェブ下面幅B3とほぼ等しい寸法(B3より4mm狭い寸法)とし、ウェブガイド上面とウェブガイド側面とのなす角度θを中間圧延終了時のウェブ部とフランジ部の接合部の成す角度θ3と等しくした。
 仕上圧延の第1圧延パスを施した後に、K2孔型79を用いて、継手部の爪曲げ成形を行い、ハット形鋼矢板(製品)とした。なお、本発明例はいずれも、第1圧延パスの出側で、爪曲げローラを用いて、爪曲げ成形の予成形を施し、しかるのちに、爪曲げ成形を行った。
 得られた製品(鋼矢板)について、有効幅寸法W、高さ寸法H(図1(a)参照)を圧延先端部から測定していくとともに、接手形状を目視で確認していき、これらの寸法W,Hや接手形状が公差範囲に収まらない圧延先端部及び後端部の非定常部長さ(長手方向の長さ(m))を測定した。
 得られた結果を表1に併記して示す。
Figure JPOXMLDOC01-appb-T000001
 本発明例である鋼矢板No.1,No.2のいずれの条件についても、仕上圧延最終パスまでの圧延が行え、製品の採取に成功した。とくに、鋼矢板No.2では、ウェブガイドの効果で製品とならない先端部、後端部の非定常部の発生が少なく良好な結果を得た。 
 これに対し、比較例である鋼矢板No.3では、K5孔型での圧延で実績圧延荷重が12.54MNとなり、ロールの耐荷重12.45MNを超えたため、これ以上の圧延は危険と判断され、K4孔型以降の圧延は断念した。
 このように、本発明によれば、安定してフランジ部の曲げ戻し成形や、さらにその後の爪曲げ成形も安定して行うことができ、高さの高い鋼矢板を容易に製造できる。また、本発明によれば、圧延ロ―ルに刻設される孔型の深さを浅くでき、ロールの抗折力の低下も少なくなる。
1 鋼矢板
1A ハット形鋼矢板、1B U形鋼矢板
2 圧延設備列(鋼矢板製造用の圧延設備列)
3 加熱装置
4 粗圧延機
5 中間圧延機
6 仕上圧延機
8 爪曲げローラ
11 ウェブ部、12 フランジ部、13 腕部、14 継手部
41 上ロール(上粗ロール)、42 下ロール(下粗ロール)
51 上ロール(上中間ロール)、52 下ロール(下中間ロール)
60 ウェブガイド
61 上ロール(上仕上ロール)、62 下ロール(下仕上ロール)
81 竪ローラ、82 竪ローラ、83 水平ローラ
601 ウェブガイド上面、602 ウェブガイド側面

Claims (6)

  1.  加熱した素材に、複数の孔型を用いて、粗圧延、中間圧延及び仕上圧延をこの順に施し、所定形状のフランジ部を有する鋼矢板を製造する、鋼矢板の製造方法であって、
     前記中間圧延において前記フランジ部の前記中間圧延後の形状が外側に湾曲又は屈曲する第1形状となるように圧延し、
     前記中間圧延に続く前記仕上圧延では、前記第1形状の前記フランジ部が、直線形状若しくは内側に湾曲又は屈曲した第2形状となるように曲げ成形が施される、鋼矢板の製造方法。
  2.  前記仕上圧延において前記曲げ成形を行う圧延パスが、圧延入側でウェブガイドを用いる圧延パスである、請求項1に記載の鋼矢板の製造方法。
  3.  前記ウェブガイドが、圧延方向に直交する断面で、前記中間圧延の最終圧延パス後の素材ウェブの下面幅と等しいか、あるいはそれより狭いウェブガイド上面幅を有し、前記中間圧延の最終圧延パス後の素材ウェブとフランジとの接合部がなす角度に等しいウェブガイド上面とウェブガイド側面とのなす角度を有する、請求項2に記載の鋼矢板の製造方法。
  4.  前記仕上圧延において、前記曲げ成形を行う圧延パスに続く圧延パスで、爪曲げ成形を行う、請求項1ないし3のいずれかに記載の鋼矢板の製造方法。
  5.  前記仕上圧延において前記曲げ成形を行う圧延パスの出側で、爪曲げの予成形を行い、しかる後に前記爪曲げ成形を行う、請求項4に記載の鋼矢板の製造方法。
  6.  加熱装置、粗圧延機、中間圧延機及び仕上圧延機をこの順に配設してなる鋼矢板製造用の圧延設備列であって、
     前記粗圧延機、前記中間圧延機及び前記仕上圧延機は、夫々、孔型が刻設された上下ロールを備える圧延機であり、
     少なくとも前記中間圧延機の一部の孔型は、フランジ部が外側に湾曲又は屈曲する第1形状となるように刻設された孔型であり、
     前記仕上げ圧延機の一部の孔型が、前記第1形状のフランジ部を直線形状、若しくは、内側に湾曲又は屈曲した第2形状に曲げ成形するように刻設された孔型である、鋼矢板製造用の圧延設備列。
PCT/JP2020/040514 2020-01-10 2020-10-28 鋼矢板の製造方法及び鋼矢板製造用の圧延設備列 WO2021140728A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227021516A KR20220104804A (ko) 2020-01-10 2020-10-28 강 시트 파일의 제조 방법 및 강 시트 파일 제조용의 압연 설비열
CN202080092307.2A CN114929405A (zh) 2020-01-10 2020-10-28 钢板桩的制造方法及钢板桩制造用的轧制设备组
JP2021510476A JP7031788B2 (ja) 2020-01-10 2020-10-28 鋼矢板の製造方法及び鋼矢板製造用の圧延設備列
JP2021212773A JP7127729B2 (ja) 2020-01-10 2021-12-27 鋼矢板の製造方法及び鋼矢板製造用の圧延設備列

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020002925 2020-01-10
JP2020-002925 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021140728A1 true WO2021140728A1 (ja) 2021-07-15

Family

ID=76787830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040514 WO2021140728A1 (ja) 2020-01-10 2020-10-28 鋼矢板の製造方法及び鋼矢板製造用の圧延設備列

Country Status (4)

Country Link
JP (2) JP7031788B2 (ja)
KR (1) KR20220104804A (ja)
CN (1) CN114929405A (ja)
WO (1) WO2021140728A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272343A (ja) * 2005-03-28 2006-10-12 Jfe Steel Kk ハット型鋼矢板継手の爪曲げ方法および爪曲げ装置
JP2006272342A (ja) * 2005-03-28 2006-10-12 Jfe Steel Kk ハット型鋼矢板継手の爪曲げ方法および爪曲げ装置
JP2016203219A (ja) * 2015-04-24 2016-12-08 新日鐵住金株式会社 ハット形鋼矢板の製造方法及び粗圧延ロール
WO2018186379A1 (ja) * 2017-04-03 2018-10-11 新日鐵住金株式会社 フランジを有する鋼矢板の製造方法及び製造設備
JP2019038035A (ja) * 2017-08-23 2019-03-14 Jfeスチール株式会社 ハット形鋼矢板、ハット形鋼矢板の製造方法、およびその製造設備

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466202A (ja) 1990-06-29 1992-03-02 Aichi Steel Works Ltd 溝形材の製造方法
JPH05154502A (ja) 1991-12-06 1993-06-22 Nippon Stainless Steel Co Ltd 溝形鋼の製造方法
JPH0788562A (ja) 1993-09-27 1995-04-04 Nippon Steel Metal Prod Co Ltd ロール成形装置
JP2001276902A (ja) 2000-03-30 2001-10-09 Aichi Steel Works Ltd 熱間圧延チャンネルの製造方法
JP4012407B2 (ja) 2002-02-08 2007-11-21 新日本製鐵株式会社 ハット型鋼矢板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272343A (ja) * 2005-03-28 2006-10-12 Jfe Steel Kk ハット型鋼矢板継手の爪曲げ方法および爪曲げ装置
JP2006272342A (ja) * 2005-03-28 2006-10-12 Jfe Steel Kk ハット型鋼矢板継手の爪曲げ方法および爪曲げ装置
JP2016203219A (ja) * 2015-04-24 2016-12-08 新日鐵住金株式会社 ハット形鋼矢板の製造方法及び粗圧延ロール
WO2018186379A1 (ja) * 2017-04-03 2018-10-11 新日鐵住金株式会社 フランジを有する鋼矢板の製造方法及び製造設備
JP2019038035A (ja) * 2017-08-23 2019-03-14 Jfeスチール株式会社 ハット形鋼矢板、ハット形鋼矢板の製造方法、およびその製造設備

Also Published As

Publication number Publication date
CN114929405A (zh) 2022-08-19
KR20220104804A (ko) 2022-07-26
JPWO2021140728A1 (ja) 2021-07-15
JP7127729B2 (ja) 2022-08-30
JP2022031515A (ja) 2022-02-18
JP7031788B2 (ja) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2006057074A1 (ja) 角管成形用ロールと角管のロール成形方法及び成形装置
JP4376602B2 (ja) 金属材料の加工方法及び金属加工品
WO2021140728A1 (ja) 鋼矢板の製造方法及び鋼矢板製造用の圧延設備列
JP6521054B2 (ja) H形鋼の製造方法
JP2738280B2 (ja) 外法一定平行フランジ溝形鋼の製造方法
CN108430659B (zh) H型钢的制造方法和轧制装置
JP4023436B2 (ja) ユニバーサルミル及びこれを用いた鋼板の製造方法
JP6565691B2 (ja) H形鋼の製造方法及びh形鋼製品
JP6064398B2 (ja) 形鋼の曲り矯正方法
US11958092B2 (en) Production method for hat-shaped steel sheet pile
JP7260858B2 (ja) 鋼矢板の矯正装置、矯正方法および鋼矢板の製造方法
JP2861829B2 (ja) 非対称u型鋼矢板の圧延方法
JP2023113156A (ja) ハット形鋼矢板の製造方法
JP6501047B1 (ja) H形鋼の製造方法
JP2023113154A (ja) ハット形鋼矢板の製造方法
JP2023039810A (ja) ハット形鋼矢板の製造方法
JPH0813362B2 (ja) フランジを有する形材の熱間圧延方法
JPH0596304A (ja) 不等辺不等厚山形鋼の圧延方法
WO2017094509A1 (ja) 直線型鋼矢板の継手部成型機及び直線型鋼矢板の製造方法
WO2007129387A1 (ja) 角管のロール成形方法及び成形装置
JP2001105002A (ja) 非対称u型鋼矢板の熱間圧延方法
JPH1128502A (ja) 溝形鋼の圧延法
JPH04330113A (ja) 左右非対称継手を有する直線型形鋼およびその製造方法
CN111050934A (zh) H型钢的制造方法
JPH0813364B2 (ja) フランジを有する形材の熱間圧延方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021510476

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227021516

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912028

Country of ref document: EP

Kind code of ref document: A1