WO2021139416A1 - 一种同步脱氮除磷的复合功能材料及其制备方法 - Google Patents

一种同步脱氮除磷的复合功能材料及其制备方法 Download PDF

Info

Publication number
WO2021139416A1
WO2021139416A1 PCT/CN2020/130064 CN2020130064W WO2021139416A1 WO 2021139416 A1 WO2021139416 A1 WO 2021139416A1 CN 2020130064 W CN2020130064 W CN 2020130064W WO 2021139416 A1 WO2021139416 A1 WO 2021139416A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
rare earth
composite functional
functional material
particle size
Prior art date
Application number
PCT/CN2020/130064
Other languages
English (en)
French (fr)
Inventor
马天海
阮晓红
詹炎培
尹琳
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2021139416A1 publication Critical patent/WO2021139416A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/14Diatomaceous earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Definitions

  • the invention belongs to the field of in-situ restoration of surface water, and more specifically, relates to a composite functional material for simultaneous denitrification and phosphorus removal and a preparation method thereof.
  • the document discloses a method for preparing a modified zeolite for simultaneous advanced treatment of nitrogen and phosphorus.
  • the modified zeolite prepared by this method has lanthanum hydroxide and CPB on the surface, and the lanthanum hydroxide and CPB are combined with nitrate nitrogen and phosphate ions. Inter-ion exchange can improve the efficiency of removing nitrogen and phosphorus from water, and can be used as a supplement to the secondary treatment of sewage treatment plants.
  • the above-mentioned patents disclose some materials for simultaneous removal of nitrogen and phosphorus, all of which are aimed at secondary treatment in sewage treatment plants and cannot be directly applied to natural environment water bodies of rivers and lakes.
  • the present invention provides a method for preparing a composite functional material for simultaneous denitrification and dephosphorization, which combines powdered nitrogen adsorption components, penetrating components, and sticky components.
  • the composite component and the rare earth component are mixed and pelletized and then calcined to obtain the finished filter material.
  • the present invention also provides a composite functional material for simultaneous denitrification and dephosphorization, which is directly loaded with lanthanum oxide or lanthanum hydroxide particles, which solves the problem of limited lanthanum loading; and the weight ratio of rare earth components It improves the adsorption effect of phosphorus and solves the problem that other biological solidification materials have no obvious effect on phosphorus adsorption, so as to achieve simultaneous adsorption of nitrogen and phosphorus.
  • the invention provides a method for preparing a composite functional material for simultaneous denitrification and dephosphorization.
  • the powdered nitrogen adsorption component, the permeating component, the binding component and the rare earth component are mixed to obtain a mixture, wherein the rare earth component is mixed.
  • the mass ratio in the material is 0.5 to 5%; the mixed material is granulated in a granulator to obtain a spherical filter material, and the finished filter material is obtained after calcination.
  • the particle size of the rare earth component is larger than the particle size of the nitrogen adsorption component, and the particle size of the rare earth component is larger than the particle size of the binding component.
  • the preparation step is, S100, crushing the nitrogen adsorption component, the permeating component, the binding component and the rare earth component; S200, the powder after the crushing step S100 is uniformly mixed according to the following mass ratio: nitrogen adsorption component 40-60%, penetration component 1-5%, binding component 35-50%, rare-earth component 0.5-5%, the mixed mixture is added to the granulator and rolled to a spherical shape to obtain Spherical filter material; S300, calcining the spherical filter material obtained in step S200 at 500-600°C for 4-8 hours to obtain a finished filter material.
  • the particle size of the nitrogen adsorption component is 75-110 ⁇ m; the particle size of the binding component is 75-110 ⁇ m.
  • the particle size of the permeating component is 250-420 ⁇ m; the particle size of the rare earth component is 250-420 ⁇ m.
  • the nitrogen adsorption component is clinoptilolite or mordenite; the permeating component is diatomaceous earth or activated carbon; and the binding component is attapulgite or kaolin.
  • the present invention also provides a composite functional material for simultaneous denitrification and dephosphorization, which includes a nitrogen adsorption component, a binding component, an infiltration component and a rare earth component, which is prepared by the above preparation method, wherein the weight of the rare earth component The proportion is 0.5 to 5%; the rare earth component is lanthanum oxide or lanthanum hydroxide.
  • the weight ratio of the nitrogen adsorption component is 40-60%, the weight ratio of the permeating component is 1% to 5%, and the weight ratio of the binding component is 35-50%.
  • the BET specific surface area is 20-30 m 2 /g.
  • the method for preparing a composite functional material for simultaneous denitrification and dephosphorization of the present invention is to mix powdered nitrogen adsorption components, infiltration components, binding components and rare earth components to obtain a mixture, wherein the rare earth components
  • the mass ratio of the mixture in the mixture is 0.5% to 5%; there is no need to use the rare earth solution, which significantly increases the load of the rare earth component and enhances the phosphorus adsorption effect of the finished filter material; and the mixture is granulated in the granulator ,
  • the finished filter material is obtained.
  • the filter material treatment process is simplified, and the spherical granulation is adopted, which greatly improves the strength of the material. It can be directly added to natural water bodies for use.
  • the particle size of the rare earth component is larger than the particle size of the nitrogen adsorption component and the binding component, and the rare earth component plays a role in the pelletizing process.
  • the role of "skeleton” and “core” can promote the formation of cue ball and increase the green ball strength, and can also make the rare earth component have a better phosphorus removal effect; while the nitrogen adsorption component and the binding component, due to The surface energy is large, which is a cohesive particle, which can significantly improve the green ball strength.
  • the mass proportions of the powders used are: 40-60% of nitrogen adsorption component and 1-5% of permeating component ,
  • the binding component is 35-50%, the rare earth component is 0.5-5%;
  • the nitrogen adsorption component mainly plays the role of accommodating the retained ammonia nitrogen;
  • the binding component mainly plays the role of plasticizing into pellets and making the finished product
  • the filter material has a certain strength;
  • the rare earth component mainly plays the role of accommodating the retained phosphate;
  • the permeating component mainly plays the role of pore formation during the preparation process, connecting the internal and external adsorption pores of the finished filter material, and increasing the effect of the rare earth component.
  • the retention capacity of nitrogen and phosphorus pollutants are: 40-60% of nitrogen adsorption component and 1-5% of permeating component ,
  • the binding component is 35-50%, the rare earth component is 0.5-5%;
  • the nitrogen adsorption component mainly plays the role of accommodating the retained ammonia nitrogen;
  • the binding component
  • the spherical filter material obtained is calcined at 500-600°C for 4-8 hours; the temperature is lower than 500°C It will lead to insufficient strength of the finished product, and the temperature higher than 600 °C will easily lead to the collapse of the mineral material structure and lose the removal effect of nitrogen and phosphorus.
  • the weight of the rare earth component is 0.5 to 5%; the rare earth component is lanthanum oxide or lanthanum hydroxide; the rare earth component lanthanum oxide (La 2 O 3 ) and lanthanum hydroxide (La(OH) 3 ) particles can make the adsorbent exhibit an excellent sizing effect, and greatly improve the phosphorus adsorption performance of the present invention.
  • Figure 1 is a SEM electron microscope scanning image of the composite functional material 1 of the present invention.
  • Fig. 2 is a SEM electron microscope scanning image of the composite functional material 2 of the present invention.
  • the invention provides a method for preparing a composite functional material for simultaneous denitrification and dephosphorization.
  • the powdered nitrogen adsorption component, the permeating component, the binding component and the rare earth component are mixed to obtain a mixture, wherein the rare earth component is mixed
  • the mass ratio in the material is 0.5 to 5%; the mixed material is granulated in a granulator to obtain a spherical filter material, and the finished filter material is obtained after calcination.
  • the particle size of the rare earth component used is larger than the particle size of the nitrogen adsorption component, and the particle size of the rare earth component is larger than the particle size of the binding component.
  • the rare earth component plays the role of "skeleton” and “core” in the pelletizing process, can promote the formation of the cue ball and increase the green ball strength, and can also make the rare earth component have a better phosphorus removal effect; and Nitrogen adsorption components and binding components, due to their large surface energy, are cohesive particles, which can significantly improve the green ball strength.
  • the detailed preparation steps of the present invention are:
  • the crushing method uses fine grinding or grinding, which can obtain the required particle size
  • step S200 The powder after pulverization in step S100 is uniformly mixed according to the following mass ratio: nitrogen adsorption component is 40-60%, permeation component is 1 to 5%, binding component is 35-50%, and rare earth component is 0.5% to 5%, add the mixed mixture into the granulator and roll to a spherical shape to obtain a spherical filter material;
  • step S300 The spherical filter material obtained in step S200 is calcined at 500-600°C for 4-8 hours to obtain a finished filter material. It is further explained that the temperature lower than 500°C will lead to insufficient strength of the finished product, and the temperature higher than 600°C will easily lead to minerals. The material structure collapses and loses the effect of removing nitrogen and phosphorus.
  • the invention also includes a composite functional material for simultaneous denitrification and dephosphorization, which is composed of a nitrogen adsorption component, a binding component, an infiltration component and a rare earth component.
  • the finished filter material of the invention has a BET specific surface area of 20-30 m 2 /g, strong adsorption capacity, and good denitrification and dephosphorization effects.
  • the weight ratio of the nitrogen adsorption component is 40-60%
  • the weight ratio of the penetrating component is 1% to 5%
  • the weight ratio of the binding component is 35-50%
  • the weight ratio of the rare earth component is It is 0.5 to 5%. Due to the addition of rare earth oxides, it has a greater impact on the strength of the finished filter material.
  • the content of the binding component must be greater than 35%.
  • the nitrogen adsorption component is clinoptilolite or mordenite
  • the permeating component is diatomaceous earth or activated carbon
  • the binding component is attapulgite or kaolin
  • the rare earth component is lanthanum oxide or lanthanum hydroxide.
  • the nitrogen adsorption component in the composite functional material mainly plays the role of holding the retained ammonia nitrogen; the binding component mainly plays the role of plasticizing into spheres and granulation, so that the material has a certain strength; the rare earth component material mainly plays the role of holding the retained phosphoric acid The role of salt; the permeating component mainly plays a pore-forming function in the preparation process of the composite functional material, connecting the internal and external adsorption pores of the composite functional material, increasing the retention and holding capacity of nitrogen and phosphorus pollutants, not only that, the permeating component When diatomite is selected, the porosity of the composite functional material can be significantly enhanced, the specific surface area of the composite functional material can be increased, and the contact between pollutants and the surface of the material can be increased.
  • Rare earth components have the effect of removing phosphate, and the concentration of lanthanum is very important for removing phosphorus from sewage.
  • the present invention directly uses lanthanum oxide or lanthanum hydroxide particles for loading, which can solve the problem of limited lanthanum loading.
  • Lanthanum oxide (La 2 O 3 ) and lanthanum hydroxide (La(OH) 3 ) particles can make the adsorbent exhibit an excellent sizing effect, and greatly improve its phosphorus adsorption performance.
  • Lanthanum oxide is a chemically unstable oxide, which can react with water to form lanthanum hydroxide, and then phosphate radicals can be adsorbed by lanthanum hydroxide.
  • the reaction formula is as follows:
  • the ratio is 50% by weight of mordenite, 40% by weight of attapulgite, 5% by weight of diatomite powder, and 5% by weight of lanthanum oxide.
  • Zeolite and attapulgite are crushed to 200 mesh (that is, the particle size is 75 ⁇ m), and diatomaceous earth is crushed to 50 mesh (that is, the size is 270 ⁇ m), mix well, and roll while adding water in the granulator to make the particle size
  • It is a spherical filter material of about 5mm, calcined at 500°C for 4 hours to produce a composite functional material 1 for simultaneous denitrification and phosphorus removal.
  • the above preparation method there is no need to use a rare earth solution, which significantly increases the loading of rare earth components and enhances the phosphorus adsorption effect of the finished filter material; and the mixture is granulated in a granulator to obtain a spherical filter material, which is obtained after calcination
  • the finished filter material by directly calcining the powdered rare earth component and other components, simplifies the filter material treatment process, and adopts spherical granulation, which greatly improves the strength of the material, and can be directly added to natural water for use.
  • the composite functional material 1 prepared by the present invention has a high content of rare earth components, the removal rate of ammonia nitrogen reaches 82.20%, and the removal rate of phosphate reaches 98.60%, which not only solves the problem of insignificant phosphorus adsorption effect of other biosolidified materials , Also achieved the simultaneous adsorption of nitrogen and phosphorus.
  • the composite functional material 1 can exhibit an excellent sizing effect and greatly improve the phosphorus adsorption performance of the present invention.
  • the basic content of this embodiment is the same as that of embodiment 1, and the difference is: the proportion of 58% by weight of clinoptilolite, 35% by weight of attapulgite, 5% by weight of diatomite powder, 2% The weight ratio of lanthanum hydroxide.
  • Zeolite and attapulgite are crushed to 200 mesh (that is, the particle size is 75 ⁇ m), and diatomaceous earth is crushed to 50 mesh (that is, the size is 270 ⁇ m), mix well, and roll while adding water in the granulator to make the particle size
  • the spherical filter material of about 5mm is calcined at 600°C for 6 hours to produce composite functional material 2 for simultaneous denitrification and phosphorus removal.
  • the scanning image of the SEM electron microscope is shown in FIG. 2.
  • the above preparation method there is no need to use a rare earth solution, which significantly increases the loading of rare earth components and enhances the phosphorus adsorption effect of the finished filter material; and the mixture is granulated in a granulator to obtain a spherical filter material, which is obtained after calcination
  • the finished filter material by directly calcining the powdered rare earth component and other components, simplifies the filter material processing technology, and adopts spherical granulation, which greatly improves the strength of the material, and can be directly added to natural water for use.
  • the composite functional material 2 prepared by the invention has a high content of rare earth components, a large specific surface area, and a large particle strength.
  • the removal rate of ammonia nitrogen reaches 78.60%, and the removal rate of phosphate reaches 98.45%, which not only solves the problem of insignificant phosphorus adsorption effect of other biological solidification materials, but also achieves simultaneous adsorption of nitrogen and phosphorus.
  • the composite functional material 2 can exhibit an excellent sizing effect, and the adsorption performance of the present invention for phosphorus is greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种同步脱氮除磷的复合功能材料的制备方法,将粉状的氮吸附组分、渗透组分、粘结组分和稀土组分混合得到混合料,其中,稀土组分在混合料中的质量占比为0.5~5%;将混合料在造粒机中造粒,得到球型滤料;煅烧后得到成品滤料;所述的稀土组分能够提高对磷的吸附作用,达到氮磷的同步吸附。

Description

一种同步脱氮除磷的复合功能材料及其制备方法 技术领域
本发明属于地表水原位修复领域,更具体地说,涉及一种同步脱氮除磷的复合功能材料及其制备方法。
背景技术
根据《2018年中国环境状况公报》统计,全国1613个水质断面中,IV~劣V类水质断面比例为25.7%,主要污染指标为氨氮、TP等;107个监测营养状态的湖泊(水库)中,轻度富营养占23.4%,中度富营养占5.6%。可见,全国的河湖水体受氮、磷的污染仍然比较严重。过量的氮磷等污染物可导致河湖系统富营养化、藻类爆发、生态退化,同时也会引发黑臭水体,严重影响水生态环境质量。
在我国,对于自然水体同步脱氮除磷原位修复工作整体上处于研究阶段,原位修复是一种运行费用低、操作简便的方法,因此,迫切需要开发一种绿色、高效的环境功能材料,解决富营养水体、城市水体黑臭治理治理过程中氨氮和磷酸盐的同步去除问题,实现我国多功能环境功能材料的创新。
目前针对城镇污水处理厂二级出水中较低浓度的氮磷难以同步去除的问题,大量的学者在改性沸石方面进行了相关的研究,例如中国专利申请号201510541822.5,申请日期为2015年08月31日的专利申请文件公开了一种强化氮磷吸附的水处理悬浮式填料及其制备方法和用途,该填料先将沸石和玻璃混合,经球磨得到粉体配合料,再经发泡、退火处理得到,主要用于人工湿地中,使待处理废水通过该生物填料,达到对污水中氮磷的吸附;又如,中国专利申请号为201810016284.1,申请日期为2018年01月08日的专利申请文件公开了一种用于同步深度处理氮磷的改性沸石的制备方法,该方法制备的改性沸石表面有氢氧化镧和CPB,通过氢氧化镧和CPB与硝酸盐氮和磷酸根离子之间的离子交换,提高去除水中氮磷的效率,可作为污水处理厂二级处理补充。上述专利中公开了一些氮磷同步去除的材料,均是针对污水处理厂二级处理而言,无法直接在河、湖的自然环境水体中应用。
发明内容
1.要解决的问题
针对现有地表水水体原位修复材料除磷效果不佳的问题,本发明提供一种同步脱氮除磷的复合功能材料的制备方法,将粉状的氮吸附组分、渗透组分、粘结组分和稀土组分混合造球后煅烧得成品滤料。通过将粉状稀土组分与其他组分直接煅烧,无需使用稀土溶液,显著提高了稀土成分的负载量,增强了成品滤料的磷吸附效果,解决了除磷效果不佳的问题。
进一步地,本发明还提供一种同步脱氮除磷的复合功能材料,直接采用氧化镧或氢氧化镧的颗粒物进行负载,解决了镧负荷量受限制的问题;且稀土组分的重量占比大,提高了磷的吸附效果,解决了其它生物固化材料对磷吸附效果不明显的问题,从而达到了氮磷的同步吸附。
2.技术方案
本发明提供一种同步脱氮除磷的复合功能材料的制备方法,将粉状的氮吸附组分、渗透组分、粘结组分和稀土组分混合得到混合料,其中稀土组分在混合料中的质量占比为0.5~5%;将混合料在造粒机中造粒,得到球型滤料,煅烧后得到成品滤料。
优选地,稀土组分的粒度比氮吸附组分的粒度大,且稀土组分的粒度比粘结组分的粒度大。
优选地,制备步骤为,S100、将氮吸附组分、渗透组分、粘结组分和稀土组分破碎;S200、将步骤S100粉碎后的粉料按照如下质量比混合均匀:氮吸附组分为40~60%、渗透组分为1~5%、粘结组分为35~50%、稀土组分为0.5~5%,将混合的混合料加入造粒机中滚动至球型,得到球型滤料;S300、将步骤S200得到的球型滤料在500-600℃煅烧4-8小时,得到成品滤料。
优选地,S200中,氮吸附组分粒度为75~110μm;粘结组分粒度为75~110μm。
优选地,S200中,渗透组分粒度为250~420μm;稀土组分粒度为250~420μm。
优选地,氮吸附组分为斜发沸石或丝光沸石;渗透组分为硅藻土或活性炭;粘结组分为凹凸棒土或高岭土。
本发明还提供一种同步脱氮除磷的复合功能材料,包括氮吸附组分、粘结组分、渗透组分和稀土组分,以上述的制备方法制备而成,其中稀土组分的重量占比为0.5~5%;稀土组分为氧化镧或氢氧化镧。
优选地,氮吸附组分的重量占比为40~60%、渗透组分的重量占比为1~5%、粘结组分的重量占比为35~50%。
优选地,BET比表面积为20-30m 2/g。
3.有益效果
(1)本发明的一种同步脱氮除磷的复合功能材料的制备方法,将粉状的氮吸附组分、渗透组分、粘结组分和稀土组分混合得到混合料,其中稀土组分在混合料中的质量占比为0.5~5%;无需使用稀土溶液,显著提高了稀土成分的负载量,增强了成品滤料的磷吸附效果;并且将混合料在造粒机中造粒,得到球型滤料,煅烧后得到成品滤料,通过将粉状稀土组分与其他组分直接煅烧,简化了滤料处理工艺,并采用了球型造粒,大大提高了材料的强度, 可以直接投加到天然水体中使用。
(2)本发明的一种同步脱氮除磷的复合功能材料制备方法,稀土组分的粒度比氮吸附组分和粘结组分的粒度大,稀土组分在造球过程中起到“骨架”和“球核”的作用,能促进母球形成和生球强度的提高,也能使得稀土组分能起到更好的磷去除效果;而氮吸附组分和粘结组分,由于表面能大,属于黏结性颗粒,能显著提高生球强度。
(3)本发明的一种同步脱氮除磷的复合功能材料制备方法,所使用的各粉料的质量占比为:氮吸附组分为40~60%、渗透组分为1~5%、粘结组分为35~50%、稀土组分为0.5~5%;氮吸附组分主要起着容纳滞留氨氮的作用;粘结组分主要起着塑性成球造粒的作用,使成品滤料具有一定的强度;稀土组分主要起着容纳滞留磷酸盐的作用;渗透组分在制备过程中主要起造孔的功能,使成品滤料的内外吸附孔位联通,增加稀土组分对氮、磷污染物的滞留容纳能力。
(4)本发明的一种同步脱氮除磷的复合功能材料制备方法,各组分混合造球后,得到的球型滤料在500-600℃煅烧4-8小时;温度低于500℃会导致成品强度不够,而温度高于600℃容易导致矿物材料结构塌陷,失去对氮磷的去除效果。
(5)本发明的一种同步脱氮除磷的复合功能材料,稀土组分的重量占比为0.5~5%;稀土组分为氧化镧或氢氧化镧;稀土组分氧化镧(La 2O 3)和氢氧化镧(La(OH) 3)颗粒可使吸附剂表现出优良的尺寸化效应,而且大大提高本发明对磷的吸附性能。
附图说明
图1为本发明的复合功能材料1的SEM电镜扫描图;
图2为本发明的复合功能材料2的SEM电镜扫描图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例;而且,各个实施例之间不是相对独立的,根据需要可以相互组合,从而达到更优的效果。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种同步脱氮除磷的复合功能材料的制备方法,将粉状的氮吸附组分、渗透组分、粘结组分和稀土组分混合得到混合料,其中稀土组分在混合料中的质量占比为0.5~5%;将混合料在造粒机中造粒,得到球型滤料,煅烧后得到成品滤料。值得说明的是,所使用的 稀土组分的粒度比氮吸附组分的粒度大,且稀土组分的粒度比粘结组分的粒度大。稀土组分在造球过程中起到“骨架”和“球核”的作用,能促进母球形成和生球强度的提高,也能使得稀土组分能起到更好的磷去除效果;而氮吸附组分和粘结组分,由于表面能大,属于黏结性颗粒,能显著提高生球强度。本发明的详细的制备步骤为:
S100、将氮吸附组分、渗透组分、粘结组分和稀土组分破碎;其中,氮吸附组分粒度为75~110μm;粘结组分粒度为75~110μm;渗透组分粒度为250~420μm;稀土组分粒度为250~420μm;破碎的方法使用细磨或研磨,可以得到所需粒度的方法即可;
S200、将步骤S100粉碎后的粉料按照如下质量比混合均匀:氮吸附组分为40~60%、渗透组分为1~5%、粘结组分为35~50%、稀土组分为0.5~5%,将混合的混合料加入造粒机中滚动至球型,得到球型滤料;
S300、将步骤S200得到的球型滤料在500-600℃煅烧4-8小时,得到成品滤料,进一步说明,温度低于500℃会导致成品强度不够,而温度高于600℃容易导致矿物材料结构塌陷,失去对氮磷的去除效果。
本发明还包括一种同步脱氮除磷的复合功能材料,由氮吸附组分、粘结组分、渗透组分和稀土组分组成。本发明的成品滤料BET比表面积为20-30m 2/g,吸附能力强,脱氮去磷效果好。其中,氮吸附组分的重量占比为40~60%、渗透组分的重量占比为1~5%、粘结组分的重量占比为35~50%、稀土组分的重量占比为0.5~5%。由于稀土氧化物的加入,对成品滤料的强度有较大的影响,为确保成品滤料的强度,粘结组分的含量必须大于35%以上。值得说明的是,氮吸附组分为斜发沸石或丝光沸石,渗透组分为硅藻土或活性炭,粘结组分为凹凸棒土或高岭土,稀土组分为氧化镧或氢氧化镧。氮吸附组分在复合功能材料中主要起着容纳滞留氨氮的作用;粘结组分主要起着塑性成球造粒的作用,使材料具有一定的强度;稀土组分材料主要起着容纳滞留磷酸盐的作用;渗透组分在复合功能材料制备过程中主要起造孔的功能,使复合功能材料的内外吸附孔位联通,增加对氮、磷污染物的滞留容纳能力,不仅如此,渗透组分选用硅藻土时,可以显著增强复合功能材料孔隙率,提高复合功能材料的比表面积,增大污染物与材料表面的接触。
稀土组分具有去除磷酸盐的效果,镧元素的浓度对于去除污水中的磷至关重要。本发明直接采用氧化镧或氢氧化镧的颗粒物进行负载,可以解决镧负荷量受限制的问题。氧化镧(La 2O 3)和氢氧化镧(La(OH) 3)颗粒可使吸附剂表现出优良的尺寸化效应,而且大大提高其对磷的吸附性能。氧化镧是一种化学性质不稳定的氧化物,能够与水反应生成氢氧化镧,再由氢氧化镧对磷酸根进行吸附。其反应式如下:
La 2O 3+3H 2O→2La(OH) 3
Figure PCTCN2020130064-appb-000001
Figure PCTCN2020130064-appb-000002
Figure PCTCN2020130064-appb-000003
实施例1
在本实施例中,配比50%重量比的丝光沸石,40%重量比的凹凸棒土,5%重量比的硅藻土粉体,5%重量比的氧化镧。沸石和凹凸棒土粉碎至200目(即粒径为75μm),硅藻土粉碎至50目(即粒径为270μm),充分混合均匀,在造粒机中边加水边滚动,制成粒径为5mm左右的球型滤料,在500℃温度下煅烧4小时,制成同步脱氮除磷的复合功能材料1。复合功能材料1特征为BET=28.45m 2/g,颗粒强度43.15N/颗,SEM电镜扫描图如图1所示。
通过上述制备方法,无需使用稀土溶液,显著提高了稀土成分的负载量,增强了成品滤料的磷吸附效果;并且将混合料在造粒机中造粒,得到球型滤料,煅烧后得到成品滤料,通过将粉状稀土组分与其他组分直接煅烧,简化了滤料处理工艺,并采用了球型造粒,大大提高了材料的强度,可以直接投加到天然水体中使用。
将成品滤料投入初始氨氮浓度为5mg/L、磷酸盐浓度为5mg/L的地表水中,投料比1:20(滤料:水)。经历24小时的平衡吸附后,如表1所示,表1为投入复合功能材料1时氮磷在不同时间阶段浓度变化情况。采用本发明制备而成的复合功能材料1,稀土组分含量高,氨氮的去除率达到82.20%,磷酸盐的去除率达到98.60%,不仅解决了其它生物固化材料对磷吸附效果不明显的问题,还达到了氮磷的同步吸附。通过上述氧化镧的使用及其重量占比控制,可使复合功能材料1表现出优良的尺寸化效应,而且大大提高本发明对磷的吸附性能。
表1投入复合功能材料1时氮磷浓度变化情况
Figure PCTCN2020130064-appb-000004
实施例2
本实施例的基本内容同实施例1,其不同之处在于:配比58%重量比的斜发沸石,35%重量比的凹凸棒土,5%重量比的硅藻土粉体,2%重量比的氢氧化镧。沸石和凹凸棒土粉碎至200目(即粒径为75μm),硅藻土粉碎至50目(即粒径为270μm),充分混合均匀,在造粒机中边加水边滚动,制成粒径5mm左右的球型滤料,在600℃温度下煅烧6小时,制成同步脱氮除磷的复合功能材料2。复合功能材料2特征为BET=20.86m 2/g,颗粒强度68.21N/颗,SEM电镜扫描图如图2所示。
通过上述制备方法,无需使用稀土溶液,显著提高了稀土成分的负载量,增强了成品滤 料的磷吸附效果;并且将混合料在造粒机中造粒,得到球型滤料,煅烧后得到成品滤料,通过将粉状稀土组分与其他组分直接煅烧,简化了滤料处理工艺,并采用了球型造粒,大大提高了材料的强度,可以直接投加到天然水体中使用。
将成品滤料投入初始氨氮浓度为5mg/L、磷酸盐浓度为5mg/L的地表水中,投料比1:20(滤料:水)。经历24小时的平衡吸附后,如表2所示,表2为投入复合功能材料2时氮磷在不同时间阶段的浓度变化情况。采用本发明制备而成的复合功能材料2,稀土组分含量高,比表面积大,颗粒强度大。氨氮的去除率达到78.60%,磷酸盐的去除率达到98.45%,不仅解决了其它生物固化材料对磷吸附效果不明显的问题,还达到了氮磷的同步吸附。通过上述氢氧化镧的使用及其重量占比控制,可使复合功能材料2表现出优良的尺寸化效应,而且大大提高本发明对磷的吸附性能。
表2投入复合功能材料2时氮磷浓度变化情况
Figure PCTCN2020130064-appb-000005
上面结合实施例对本发明作了详细的说明,但是所属技术领域的技术人员能够理解,在不脱离本发明宗旨的前提下,还可以对上述实施例中的各个具体参数进行变更,形成多个具体的实施例,均为本发明的常见变化范围,在此不再一一详述。

Claims (9)

  1. 一种同步脱氮除磷的复合功能材料的制备方法,其特征在于:将粉状的氮吸附组分、渗透组分、粘结组分和稀土组分混合得到混合料,其中稀土组分在混合料中的质量占比为0.5~5%;将混合料在造粒机中造粒,得到球型滤料,煅烧后得到成品滤料。
  2. 根据权利要求1所述的一种同步脱氮除磷的复合功能材料的制备方法,其特征在于:所述稀土组分的粒度比氮吸附组分的粒度大,且稀土组分的粒度比粘结组分的粒度大。
  3. 根据权利要求1或2所述的一种同步脱氮除磷的复合功能材料的制备方法,其特征在于:制备步骤为,
    S100、将氮吸附组分、渗透组分、粘结组分和稀土组分破碎;
    S200、将步骤S100破碎后的粉料按照如下质量比混合均匀:氮吸附组分为40~60%、渗透组分为1~5%、粘结组分为35~50%、稀土组分为0.5~5%,将混合后的混合料加入造粒机中滚动至球型,得到球型滤料;
    S300、将步骤S200得到的球型滤料在500-600℃煅烧4-8小时,得到成品滤料。
  4. 根据权利要求2所述的一种同步脱氮除磷的复合功能材料,其特征在于:所述S200中,氮吸附组分粒度为75~110μm;粘结组分粒度为75~110μm。
  5. 根据权利要求2或4所述的一种同步脱氮除磷的复合功能材料,其特征在于:所述S200中,渗透组分粒度为250~420μm;稀土组分粒度为250~420μm。
  6. 根据权利要求2所述的一种同步脱氮除磷的复合功能材料的制备方法,其特征在于:氮吸附组分为斜发沸石或丝光沸石;所述渗透组分为硅藻土或活性炭;所述粘结组分为凹凸棒土或高岭土。
  7. 一种同步脱氮除磷的复合功能材料,其特征在于:包括氮吸附组分、粘结组分、渗透组分和稀土组分,以权利要求1-6任意一项所述的制备方法制备而成,其中稀土组分的重量占比为0.5~5%;所述稀土组分为氧化镧或氢氧化镧。
  8. 根据权利要求7所述的一种同步脱氮除磷的复合功能材料,其特征在于:所述氮吸附组分的重量占比为40~60%、渗透组分的重量占比为1~5%、粘结组分的重量占比为35~50%。
  9. 根据权利要求7所述的一种同步脱氮除磷的复合功能材料,其特征在于:BET比表面积为20-30m 2/g。
PCT/CN2020/130064 2020-01-06 2020-11-19 一种同步脱氮除磷的复合功能材料及其制备方法 WO2021139416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010010835.0 2020-01-06
CN202010010835.0A CN111167403A (zh) 2020-01-06 2020-01-06 一种同步脱氮除磷的复合功能材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021139416A1 true WO2021139416A1 (zh) 2021-07-15

Family

ID=70624169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130064 WO2021139416A1 (zh) 2020-01-06 2020-11-19 一种同步脱氮除磷的复合功能材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111167403A (zh)
WO (1) WO2021139416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111167403A (zh) * 2020-01-06 2020-05-19 南京大学 一种同步脱氮除磷的复合功能材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234792A (zh) * 2008-02-25 2008-08-06 南京大学 一种负载镧的氧化物的氧化铝去除水中氟离子的方法
CN101607192A (zh) * 2009-07-14 2009-12-23 昆明理工大学 一种稀土吸附剂成型的方法
US20100314252A1 (en) * 2009-06-16 2010-12-16 Snaper Alvin A Electrically enhanced aqueous filter and method therefor
CN106076252A (zh) * 2016-06-15 2016-11-09 北京建筑大学 一种利用水厂污泥制备同时脱氮除磷吸附剂的方法
CN108503045A (zh) * 2018-04-12 2018-09-07 昆明铜龙科技开发有限公司 复合高效净水剂及其制备方法
CN110508264A (zh) * 2019-07-16 2019-11-29 西安建筑科技大学 一种镧铁复合氧化物改性钢渣陶粒及其应用
CN111167403A (zh) * 2020-01-06 2020-05-19 南京大学 一种同步脱氮除磷的复合功能材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803274A (zh) * 2005-12-06 2006-07-19 昆明理工大学 一种污水脱氮除磷稀土吸附剂的制备方法
CN106673112A (zh) * 2017-02-03 2017-05-17 北京科泰兴达高新技术有限公司 一种脱氮除磷滤料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234792A (zh) * 2008-02-25 2008-08-06 南京大学 一种负载镧的氧化物的氧化铝去除水中氟离子的方法
US20100314252A1 (en) * 2009-06-16 2010-12-16 Snaper Alvin A Electrically enhanced aqueous filter and method therefor
CN101607192A (zh) * 2009-07-14 2009-12-23 昆明理工大学 一种稀土吸附剂成型的方法
CN106076252A (zh) * 2016-06-15 2016-11-09 北京建筑大学 一种利用水厂污泥制备同时脱氮除磷吸附剂的方法
CN108503045A (zh) * 2018-04-12 2018-09-07 昆明铜龙科技开发有限公司 复合高效净水剂及其制备方法
CN110508264A (zh) * 2019-07-16 2019-11-29 西安建筑科技大学 一种镧铁复合氧化物改性钢渣陶粒及其应用
CN111167403A (zh) * 2020-01-06 2020-05-19 南京大学 一种同步脱氮除磷的复合功能材料及其制备方法

Also Published As

Publication number Publication date
CN111167403A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
CN102701552B (zh) 一种底泥中氮固定化原位修复用的覆盖材料
CN108905999B (zh) 一种新型生物炭复合凝胶及其制备方法和用途
Pan et al. A new strategy to address the challenges of nanoparticles in practical water treatment: mesoporous nanocomposite beads via flash freezing
Sanguanpak et al. Porous metakaolin-based geopolymer granules for removal of ammonium in aqueous solution and anaerobically pretreated piggery wastewater
CN104628138A (zh) 一种高效脱氮除磷的人工湿地填料及其制备方法
CN113860911A (zh) 一种高熵铁氧体多孔陶瓷材料及其制备方法和应用
JP5981863B2 (ja) 粒状型環境用水処理剤およびそれを用いた有害物質に汚染された水の処理方法
CN109678249A (zh) 一种生态浮岛除磷复合基质及其制备方法
WO2021139416A1 (zh) 一种同步脱氮除磷的复合功能材料及其制备方法
CN107827197A (zh) 一种净水剂用海绵铁生产工艺
CN112121770A (zh) 一种用于重金属废水处理的污泥陶粒及制备方法
CN102500167B (zh) 用于水处理的核壳结构复合滤料及其制备方法
US20200338526A1 (en) Sorbents from iron-rich and aluminium-rich starting materials
CN113289502B (zh) 淀粉样蛋白纤维氧化铁复合膜的制备方法以及市政污水处理厂的尾水中磷酸盐的去除方法
CN104874353B (zh) 一种烧结碳棒
CN111875229A (zh) 一种污泥调理药剂及其制备方法和使用方法
CN105344318A (zh) 一种水质净化用活性炭复合材料及其制备方法
CN112108110A (zh) 一种基于天然沸石的脱氮除磷颗粒材料及其制备方法
CN111514844B (zh) 一种复合吸附除磷剂及其制备方法
CN111644144B (zh) 一种水体除磷磁性材料及其制备方法和应用
CN110734127B (zh) 一种碳复合纳米零价金属多孔功能材料、其制备方法及应用
CN109912295B (zh) 硅酸盐基生物滤料及其制备方法与应用
Xiong et al. Preparation of amino-bagasse/metakaolin based geopolymer hybrid microsphere as a low-cost and effective adsorbent for Cu (Ⅱ)
CN115739017B (zh) 一种介孔镧改性矿物基高效除磷陶粒制备方法及应用
CN114749142B (zh) 一种基于废混凝土和硅藻土的多孔除磷滤料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912871

Country of ref document: EP

Kind code of ref document: A1