WO2021139332A1 - 一种集成薄膜太阳能电池的显示模组及其制备方法 - Google Patents

一种集成薄膜太阳能电池的显示模组及其制备方法 Download PDF

Info

Publication number
WO2021139332A1
WO2021139332A1 PCT/CN2020/124405 CN2020124405W WO2021139332A1 WO 2021139332 A1 WO2021139332 A1 WO 2021139332A1 CN 2020124405 W CN2020124405 W CN 2020124405W WO 2021139332 A1 WO2021139332 A1 WO 2021139332A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
film solar
solar cell
thin
Prior art date
Application number
PCT/CN2020/124405
Other languages
English (en)
French (fr)
Inventor
眭斌
谢雄才
杨亮
赵云
Original Assignee
信利半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信利半导体有限公司 filed Critical 信利半导体有限公司
Publication of WO2021139332A1 publication Critical patent/WO2021139332A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13324Circuits comprising solar cells

Definitions

  • the present invention relates to the field of display technology, and more specifically to a display module integrated with thin-film solar cells and a preparation method thereof.
  • Thin-film solar cells have the advantages of thin thickness, low cost, and high photoelectric conversion rate.
  • the thin-film solar cells are installed on the display screen.
  • On the outer protective cover there are also thin-film solar cells and display screens that are made separately and then pasted and fixed.
  • the present invention provides a simpler manufacturing process, lower manufacturing cost, reduced thickness of the display screen, and transparent wiring to ensure the display effect of the integrated thin-film solar cell display module and the display module. Preparation.
  • a display module integrated with thin-film solar cells includes a glass substrate, and the side of the glass substrate facing the light-emitting direction of the display module has a color resin display area and a black matrix area,
  • the black matrix area includes a thin film solar cell layer disposed on a glass substrate and a light shielding layer disposed on the thin film solar cell layer, and the color resin display area is provided with thin film solar cell traces, wherein the thin film solar cell layer
  • the front electrode and the back electrode of the wiring with the thin-film solar cell are both transparent electrodes.
  • the thin film solar cell layer includes a first front electrode layer, a first photovoltaic absorption layer, and a first back electrode layer that are sequentially stacked and arranged on a glass substrate, and the light shielding layer is arranged on the first back electrode layer;
  • the thin film solar cell trace includes a second front electrode layer, a second photovoltaic absorption layer and a second back electrode layer which are sequentially stacked and arranged on a glass substrate, and the thin film solar cell trace does not have a light-shielding layer.
  • the thin film solar cell traces can be selectively disconnected.
  • the outermost periphery of the black matrix area is further provided with a first metal auxiliary layer to reduce the resistance of the first front electrode layer and/or the first back electrode layer.
  • a second metal auxiliary layer is further provided at the intersection of the middle area of the black matrix area to reduce the resistance of the first front electrode layer and/or the first back electrode layer in this area.
  • the first photovoltaic absorbing layer is arranged in a part of the black matrix area, the first photovoltaic absorbing layer is not arranged in a part of the position, and the black matrix area without the first photovoltaic absorbing layer is arranged with a first metal layer and a first front electrode Layer connection, the first metal layer is insulated from the first back electrode layer.
  • it further includes a common electrode layer formed on the outer side of the color resin display area and the black matrix area, and the thin-film solar cell layer and the thin-film solar cell traces are also provided with a first front electrode.
  • the second metal layer is connected to the second front electrode layer, and the light shielding layer is also provided with a through hole to connect the common electrode layer with the second metal layer.
  • Step S1 forming a first front electrode layer and a second front electrode layer on a glass substrate;
  • Step S2 performing chemical vapor deposition film formation of the first photovoltaic absorption layer on the first front electrode layer, and performing chemical vapor deposition film formation of the second photovoltaic absorption layer on the second front electrode layer;
  • Step S3 forming a first back electrode layer on the first photovoltaic absorption layer and forming a second back electrode layer on the second photovoltaic absorption layer; both the first back electrode layer and the second back electrode layer Use transparent electrodes;
  • Step S4 After cleaning, the first back electrode layer and the second back electrode layer are imaged and etched, and then the first photovoltaic absorption layer and the second photovoltaic absorption layer are imaged and etched, and finally the first front electrode layer and the second back electrode layer are imagewise etched. 2. Perform imaging etching on the front electrode layer;
  • Step S5 preparing a light-shielding layer in the black matrix area by applying glue, exposing and developing;
  • Step S6 RGB sub-pixels are sequentially prepared by applying glue, exposing and developing, to form a color resin display area, and then a common electrode layer is plated on the outer leveling layer of the color resin display area and the black matrix area by physical vapor deposition.
  • the method further includes fabricating the second metal auxiliary layer at the intersection of the middle area of the black matrix area, and the first back electrode is wet-etched at one time by setting a mask at the intersection of the middle area of the black matrix area. Layer and dry etching the first photovoltaic absorption layer, the first front electrode layer is not etched, and then the first front electrode layer is led out by forming a second metal auxiliary layer.
  • it further includes fabricating a second metal layer on the first back electrode layer and the second back electrode layer, and an insulating layer is also fabricated between the second metal layer and the first back electrode layer and the second back electrode layer.
  • the light-shielding layer is exposed to form a through hole, and the common electrode layer is plated on the outer side of the color resin display area and the black matrix area, and the common electrode is directly connected to the second metal layer through the through hole.
  • the photoelectric conversion energy of the thin film solar cell can be increased, meeting the use of the display module, and effectively improving its standby or use time.
  • the integrated production of the light-shielding layer and the thin-film solar cell layer can make the production process simpler, lower the production cost, reduce the thickness of the display screen, and adopt transparent wiring to ensure the display effect;
  • the wiring of the thin film solar cell can be selectively disconnected, because the color of the second photovoltaic absorption layer itself is dark red, and the selective disconnection of the wiring of the thin film solar cell can reduce the impact on the color resin display area;
  • the outermost periphery of the black matrix area is also provided with a first metal auxiliary layer to reduce the resistance of the first front electrode layer and the first back electrode layer, improve the conversion efficiency of the thin film solar cell layer under strong light, and at the same time be beneficial to Leading out of the first front electrode layer and the first back electrode layer;
  • a second metal auxiliary layer is also provided at the intersection of the middle area of the black matrix area to reduce the resistance of the first front electrode layer and the first back electrode layer in this area;
  • the first photovoltaic absorbing layer is provided through part of the black matrix area, and the first photovoltaic absorbing layer is not provided in some locations.
  • the black matrix area without the first photovoltaic absorbing layer is provided with a first metal layer connected to the first front electrode layer , Used to further reduce the resistance of the first front electrode layer;
  • the thin film solar cell layer and the thin film solar cell traces are also provided with a second metal layer that is not connected to the first front electrode layer and the second front electrode layer, and the light shielding layer is also provided with through holes for common
  • the electrode layer is connected to the second metal layer for reducing the resistance of the common electrode layer.
  • FIG. 1 is a schematic diagram of the planar structure of the display module of the integrated thin-film solar cell of the present invention displaying the color resin display area, the black matrix area and the battery;
  • FIG. 2 is a schematic diagram of the side view structure of the display module of the integrated thin-film solar cell of the present invention displaying the color resin display area and the black matrix area;
  • FIG. 3 is a schematic side view of the structure of the thin film solar cell layer and the light shielding layer in the black matrix area in the display module of the integrated thin film solar cell of the present invention
  • FIG. 4 is a schematic side view of the structure of the wiring of the thin film solar cell in the color resin display area in the display module of the integrated thin film solar cell of the present invention
  • FIG. 5 is a schematic side view of the structure of the first metal auxiliary layer provided on the outermost periphery of the black matrix area in the display module of the integrated thin-film solar cell of the present invention
  • FIG. 6 is a schematic diagram of a planar structure hollowed out at the intersection of the middle area in the black matrix area of the display module of the integrated thin-film solar cell of the present invention
  • Fig. 7 is a schematic side view of the structure at A-A in Fig. 6;
  • FIG. 8 is a schematic side view of the structure in which the first photovoltaic absorption layer is not provided and the first metal layer is provided in the black matrix area of the display module of the integrated thin-film solar cell of the present invention
  • FIG. 9 is a schematic side view of the structure of the connection between the common electrode layer and the second metal layer in the display module of the integrated thin-film solar cell of the present invention.
  • FIG. 10 is a process flow diagram of the method for manufacturing the display module of the integrated thin-film solar cell of the present invention.
  • first”, “second”, and “third” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first”, “second”, and “third” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed”, “set” and other terms should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection. It can be detachably connected or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediate medium, and it can also be the internal communication of two components or the interaction relationship between two components .
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • an embodiment of the present invention provides a display module integrated with thin film solar cells, including a glass substrate 10, and the side of the glass substrate 10 facing the light emitting direction of the display module has a color resin display area 100
  • the black matrix area 200 includes a thin film solar cell layer 210 provided on the glass substrate 10 and a light shielding layer 220 provided on the thin film solar cell layer 210
  • the color resin display area 100 is provided with a thin film
  • the solar cell wiring 110 wherein the front electrode and the back electrode of the thin-film solar cell layer 210 and the thin-film solar cell wiring 110 are both transparent electrodes.
  • the thin-film solar cell layer 210 described in conjunction with FIGS. 3 to 4 includes a first front electrode layer 211, a first photovoltaic absorption layer 212, and a first back electrode layer 213 that are sequentially stacked on the glass substrate 10.
  • the layer 220 is disposed on the first back electrode layer 213, and the thin film solar cell trace 110 includes a second front electrode layer 111, a second photovoltaic absorption layer 112, and a second back electrode layer 113 that are sequentially stacked on the glass substrate 10
  • the thin-film solar cell wiring 110 is not provided with a light-shielding layer 220, and the second back electrode layer 113 is made of transparent material so that the thin-film solar cell wiring 110 is invisible to the naked eye in the color resin display area 100, which effectively reduces the impact on the color resin. The influence of the display effect of the display area 100.
  • the width of the thin film solar cell trace 110 is preferably less than 60nm, which is invisible to the naked eye, and the angle of the thin film solar cell trace 110 should not produce moiré with the color resin display.
  • the color resin display area can be determined according to the needs of the display effect.
  • the number of traces 110 It should be understood that when the display module does not have the black matrix area 200, the display module can all use the thin-film solar cell wiring 110 to form semi-transparent solar cells for supplying power to the display module.
  • the thin film solar cell layer 210 is provided in the black matrix area 200 and the thin film solar cell wiring 110 is provided in the color resin display area 100, which can increase the photoelectric conversion energy of the thin film solar cell, satisfy the use of the display module, and effectively improve its standby Or use time.
  • the light-shielding layer 220 and the thin-film solar cell layer 210 can be integrated to make the manufacturing process simpler, lower the manufacturing cost, reduce the thickness of the display screen, and use transparent wiring to ensure the display effect.
  • the thin-film solar cell layer 210 and the light-shielding layer 220 of the black matrix area 200 in the present invention are equivalent to the light-shielding area of the color filter substrate, which can effectively avoid the display contrast reduction caused by light leakage.
  • External natural light enters the display module, and the light passes through the first front electrode layer 211 and the second front electrode layer 111, and irradiates the first photovoltaic absorption layer 212 and the second photovoltaic absorption layer 112 to generate photoelectric conversion.
  • the thin film solar cell wiring 110 in the color resin display area 100, can be selectively disconnected according to the brightness requirements of the display screen, because the color of the second photovoltaic absorption layer 112 itself is Dark red, selectively disconnecting the thin film solar cell wiring 110 can reduce the impact on the color resin display area 100. It should be understood that each thin-film solar cell trace 110 should be connected to the thin-film solar cell layer 210 to form an effective battery function.
  • the thin-film solar cell wiring 110 and the thin-film solar cell layer 210 may be a single-junction thin-film solar cell structure or a multi-junction thin-film solar cell structure, and the present invention is not specifically limited.
  • the side surface of the first front electrode layer 211 facing the first light absorbing layer can also be fabricated by chemical texturing or MOCVD to improve the absorption of light by the first light absorbing layer.
  • the side surface of the second front electrode layer 111 facing the second light absorption layer may also be textured by a chemical texturing process or MOCVD method to improve the absorption of light by the second light absorption layer.
  • the light-shielding layer 220 is made of black resin and other materials, which is usually similar to the black matrix material used on a conventional color filter substrate.
  • the light-shielding layer 220 can also be made of black metal and other materials, which can prevent the light generated by the backlight from being reflected back to the array substrate, causing the thin film transistor to absorb light and affecting the display effect.
  • the outermost periphery of the black matrix area 200 is further provided with a first metal auxiliary layer 214 to reduce the first front electrode layer 211 and/or the first back electrode layer 213
  • the resistance of the thin film solar cell layer 210 improves the conversion efficiency of the thin film solar cell layer 210 under strong light, and at the same time facilitates the extraction of the first front electrode layer 211 and the first back electrode layer 213.
  • the width of the edge of the black matrix area 200 may be greater than the width of the middle position of the black matrix area 200, so as to improve the conversion efficiency of the thin film solar cell layer 210.
  • the metal auxiliary layer of the first front electrode layer 211 should be insulated and separated from the metal auxiliary layer of the first back electrode layer 213 by the insulating layer 20 to avoid short circuits.
  • the first metal auxiliary layer 214 can respectively serve as the total positive and negative gate bus lines to draw out the positive and negative electrodes of the solar cell.
  • the black matrix area 200 in the middle area has a larger resistance, so the cross position of the middle area of the black matrix area 200
  • a second metal auxiliary layer 215 is also provided there to reduce the resistance of the first front electrode layer 211 and/or the first back electrode layer 213 in this area, and the second metal auxiliary layer 215 can be led out to be connected to the gate bus.
  • the second metal auxiliary layer 215 can be connected to the first front electrode layer 211 by partially hollowing out the first light absorbing layer and the first back electrode layer 213 at the crossing position, and/or the second metal auxiliary layer 215 It is connected to the first back electrode layer 213, and the second metal auxiliary layer 215 connected to the first front electrode layer 211 and the second metal auxiliary layer 215 connected to the first back electrode layer 213 are insulated and spaced apart.
  • the black matrix area 200 is provided with the first photovoltaic absorption layer 212 in some locations, and the first photovoltaic absorption layer 212 is not provided in some locations, and the black matrix area 200 without the first photovoltaic absorption layer 212 is provided with the first metal
  • the layer 216 is connected to the first front electrode layer 211 to further reduce the resistance of the first front electrode layer 211.
  • the first metal layer 216 is insulated from the first back electrode layer 213 and can extend to the first photovoltaic absorption layer 212 above.
  • the position where the first photovoltaic absorbing layer 212 is not provided is the narrower position of the black matrix area 200, and the first photovoltaic absorbing layer 212 may not be provided every 500um distance.
  • the actual distance is selected according to the actual use of the ambient light intensity. .
  • the insulating layer 20 may be made of organic materials or inorganic materials such as SiNx.
  • the display module further includes a common electrode layer 300 formed on the outer sides of the color resin display area 100 and the black matrix area 200, and the thin film solar cell layer 210 and thin film solar
  • the battery wiring 110 is also provided with a second metal layer 217 that is not connected to the first front electrode layer 211 and the second front electrode layer 111, and the light shielding layer 220 is also provided with a through hole to allow the common electrode layer 300 to communicate with the second
  • the metal layer 217 is connected to reduce the resistance of the common electrode layer 300.
  • the diameter of the through hole is 3 ⁇ m-15 ⁇ m, which has the best performance.
  • the material of the common electrode layer 300 may be ITO or AZO. It should be understood that the display module of the embodiment of the present invention may not be provided with the common electrode layer 300.
  • the materials of the first front electrode layer 211, the first back electrode layer 213, the second front electrode layer 111, and the second back electrode layer 113 may all be AZO with high transmittance.
  • an embodiment of the present invention provides a method for manufacturing a display module integrated with thin-film solar cells described in Embodiment 1, including the following steps:
  • Step S1 forming the first front electrode layer 211 and the second front electrode layer 111 on the glass substrate 10; the film forming temperature is 170°C-350°C, and the film thickness is between 50nm-1000nm; the first front electrode layer
  • the surface of the 211 and the second front electrode layer 111 on the side away from the glass substrate 10 can be selected to be textured with low-concentration HCl or alkaline substances to form an uneven plane to improve the absorption of solar reflected light.
  • the first front electrode layer 211 and the second front electrode layer 111 both use transparent electrodes, which increase the transmittance and reduce the influence on the display effect. It should be understood that the first front electrode layer 211 and the second front electrode layer 111 may be formed by film formation at the same time, and the process is simpler.
  • Step S2 Perform chemical vapor deposition film formation of the first photovoltaic absorption layer 212 on the first front electrode layer 211, and perform chemical vapor deposition film formation of the second photovoltaic absorption layer 112 on the second front electrode layer 111.
  • the first photovoltaic absorption layer 212 and the second photovoltaic absorption layer 112 are also formed by film formation at the same time.
  • the first photovoltaic absorption layer 212 and the second photovoltaic absorption layer 112 are equally divided into a P layer, an I layer, and an N layer.
  • the thickness of the P layer is 10 nm-90 nm
  • the film forming temperature is 150° C.-280° C.
  • Step S3 forming a first back electrode layer 213 on the first photovoltaic absorption layer 212 and forming a second back electrode layer 113 on the second photovoltaic absorption layer 112;
  • the two back electrode layers 113 both adopt transparent electrodes, which have the effect of absorbing light on both sides, increasing the transmittance and reducing the influence on the display effect.
  • the first back electrode layer 213 and the second back electrode layer 113 are also formed by film formation at the same time.
  • Step S4 After cleaning, the first back electrode layer 213 and the second back electrode layer 113 are imagewise etched, and then the first photovoltaic absorption layer 212 and the second photovoltaic absorption layer 112 are imagewise etched, and finally the first front electrode layer is etched.
  • the electrode layer 211 and the second front electrode layer 111 are imaged and etched;
  • the first back electrode layer 213, the second back electrode layer 113, the first front electrode layer 211, and the second front electrode layer 111 can be chemically etched after exposure and imaging with glue; the first photovoltaic absorption layer 212, The second photovoltaic absorption layer 112 is etched in a dry etching manner.
  • the dry etching is performed directly without the release of the photoresist before the dry etching, thereby saving process steps.
  • Step S5 Prepare a light-shielding layer 220 in the black matrix area 200 by applying glue, exposing and developing, and covering the first back electrode layer 213 with a black resin by applying glue and exposing.
  • the black resin has a light-shielding function, and the light-shielding layer 220 passes through The width of the exposure control line makes the light shielding layer 220 larger than the thin-film solar cell layer 210 to avoid light leakage.
  • Step S6 RGB sub-pixels are prepared sequentially by applying glue, exposing and developing to form the color resin display area 100, and then the common electrode layer is plated on the outer leveling layer of the color resin display area 100 and the black matrix area 200 by means of physical vapor deposition 300.
  • the second embodiment of the present invention also includes the production of partial wiring disconnection in the color resin display area 100.
  • the disconnection is made by using a mask without photoresist formation.
  • the second back electrode is etched away, then the second light absorbing layer is etched away by dry etching, and the second front electrode is etched away by wet chemical etching. Because the color of the second photovoltaic absorption layer 112 itself is dark red, selectively disconnecting the thin film solar cell wiring 110 can reduce the impact on the color resin display area 100.
  • the second embodiment of the present invention also includes the production of the first auxiliary metal layer 214 at the outermost periphery of the black matrix area 200, and the first auxiliary metal layer 214 is formed by one-time film formation by physical vapor deposition.
  • This step also includes the production of an insulating layer 20 that insulates the first metal auxiliary layer 214 in contact with the first front electrode layer 211 and the first metal auxiliary layer 214 in contact with the first back electrode layer 213 Separate.
  • the first metal auxiliary layer 214 can reduce the resistance of the first front electrode layer 211 and the first back electrode layer 213, improve the conversion efficiency of the thin film solar cell layer 210 under strong light, and at the same time is beneficial to the first front electrode layer 211 and the first back electrode layer 213.
  • the first back electrode layer 213 is drawn out.
  • the insulating layer 20 When the insulating layer 20 is made of organic matter, it can be prepared by applying glue, exposing and developing, pad printing or silk printing, and the process is simpler. When the insulating layer 20 is protected by non-metals such as SiNx, SiO2, etc., it can be formed by chemical weather deposition (CVD) or magnetron sputtering, etc., and then exposed to yellow light to make the pattern and then dry-etched into the pattern.
  • CVD chemical weather deposition
  • magnetron sputtering etc.
  • the second metal auxiliary layer 215 is made at the intersection of the middle area of the black matrix area 200, and a mask is preset at the intersection of the middle area of the black matrix area 200. Plate, wet etching the first back electrode and dry etching the first photovoltaic absorber layer 212 at one time, the first front electrode is not etched, and then the first front electrode layer 211 is led out by forming a second metal auxiliary layer 215 to reduce resistance .
  • the second metal auxiliary layer 215 is used to reduce the resistance of the second front electrode layer 111 in the region.
  • the second embodiment of the present invention also includes the production of removing the first photovoltaic absorber layer 212 in the black matrix area 200. After the first back electrode is etched away, the exposed first photovoltaic absorber layer 212 is dry-etched After etching by the method, the first metal layer 216 is in contact with the first front electrode by coating. When the area of the display module is large enough, the resistance of the thin-film solar cell layer 210 has a great influence on the efficiency under strong light. The production of removing the first photovoltaic absorption layer 212 can reduce the resistance of the thin-film solar cell layer 210.
  • the method further includes fabricating a second metal layer 217 on the first back electrode layer 213 and the second back electrode layer 113.
  • the second metal layer 217 and the first back electrode layer 213 An insulating layer 20 is also formed between and the second back electrode layer 113.
  • the second metal layer 217 and the first metal auxiliary layer 214 can be formed by film formation at the same time, the light shielding layer 220 is exposed to form through holes, and the common electrode layer 300 is coated on the outside of the color resin display area 100 and the black matrix area 200 The rear common electrode is directly connected to the second metal layer 217 through the through hole.
  • the production of the second metal layer 217 is used to reduce the resistance of the common electrode layer 300.
  • the second embodiment of the present invention provides a method for manufacturing a display module integrated with a thin-film solar cell, which makes the manufacturing process of the display module simpler, lowers the manufacturing cost, improves the display effect and reduces the resistance of the battery.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种集成薄膜太阳能电池的显示模组及其制备方法,其中显示模组包括玻璃基板(10),玻璃基板(10)朝向显示模组发光方向的一侧具有彩色树脂显示区(100)和黑矩阵区(200),黑矩阵区(200)包括设置在玻璃基板(10)上的薄膜太阳能电池层(210)和设置在薄膜太阳能电池层(210)上的遮光层(220),彩色树脂显示区(100)内设有薄膜太阳能电池走线(110),其中薄膜太阳能电池层(210)和薄膜太阳能电池走线(110)的前电极和背电极均为透明电极。利用遮光层(220)与薄膜太阳能电池层(210)一体制作的方式可以使制作工艺更加简单,制作成本更低,降低显示屏的厚度,采用透明走线保证显示效果。

Description

一种集成薄膜太阳能电池的显示模组及其制备方法 技术领域
本发明涉及显示器技术领域,更具体地涉及一种集成薄膜太阳能电池的显示模组及其制备方法。
背景技术
随着电脑、显示器、穿戴设备等电子产品的使用越来越广泛,这类电子产品普遍存在的一个问题是:显示屏在显示过程中消耗大部分的能源,导致电池无法长时间工作,因此出现将薄膜太阳能电池应用在显示屏上可以有效提高显示屏的电池使用时长,薄膜太阳能电池具有厚度薄、成本低、光电转化率高等优点,现有技术中有通过将薄膜太阳能电池设置在显示屏最外层的保护盖板上,也有将薄膜太阳能电池与显示屏分别制作后再粘贴固定,这些现有的技术在制作工艺、制作成本、保证显示效果和显示屏的厚度降低上均没有足够的优势,仍可通过进一步改进简化制作工艺、成本、保证显示效果和达到降低显示屏厚度的目的。
技术解决方案
为了解决所述现有技术的不足,本发明提供了一种制作工艺更加简单,制作成本更低,降低显示屏的厚度,采用透明走线保证显示效果的集成薄膜太阳能电池的显示模组及其制备方法。
本发明所要达到的技术效果通过以下方案实现:一种集成薄膜太阳能电池的显示模组,包括玻璃基板,所述玻璃基板朝向显示模组发光方向的一侧具有彩色树脂显示区和黑矩阵区,所述黑矩阵区包括设置在玻璃基板上的薄膜太阳能电池层和设置在薄膜太阳能电池层上的遮光层,所述彩色树脂显示区内设有薄膜太阳能电池走线,其中所述薄膜太阳能电池层和薄膜太阳能电池走线的前电极和背电极均为透明电极。
优选地,所述薄膜太阳能电池层包括依次层叠设置在玻璃基板上的第一前电极层、第一光伏吸收层和第一背电极层,所述遮光层设置在第一背电极层上;所述薄膜太阳能电池走线包括依次层叠设置在玻璃基板上的第二前电极层、第二光伏吸收层和第二背电极层,所述薄膜太阳能电池走线上不设置遮光层。
优选地,在彩色树脂显示区,所述薄膜太阳能电池走线可选择性断开设置。
优选地,所述黑矩阵区的最外围还设有第一金属辅助层以减少第一前电极层和/或第一背电极层的电阻。
优选地,所述黑矩阵区的中间区域的交叉位置处还设有第二金属辅助层以减少该区域的第一前电极层和/或第一背电极层的电阻。
优选地,所述黑矩阵区的部分位置设置第一光伏吸收层,部分位置不设置第一光伏吸收层,不设置第一光伏吸收层的黑矩阵区设有第一金属层与第一前电极层连接,所述第一金属层与第一背电极层绝缘隔。
优选地,还包括公共电极层,所述公共电极层形成在彩色树脂显示区和黑矩阵区的外侧面,所述薄膜太阳能电池层和薄膜太阳能电池走线上还设有不与第一前电极层和第二前电极层连接的第二金属层,所述遮光层上还开设有通孔使公共电极层与第二金属层连接。
一种如上述所述的集成薄膜太阳能电池的显示模组的制备方法,其特征在于,包括以下步骤:
步骤S1:在玻璃基板上进行第一前电极层和第二前电极层成膜;
步骤S2:在所述第一前电极层进行第一光伏吸收层的化学气相沉积成膜,在第二前电极层上进行第二光伏吸收层的化学气相沉积成膜;
步骤S3:在所述第一光伏吸收层进行第一背电极层成膜和在第二光伏吸收层上进行第二背电极层成膜;所述第一背电极层和第二背电极层均采用透明电极;
步骤S4:清洗后先对第一背电极层和第二背电极层进行成像刻蚀 ,再对第一光伏吸收层和第二光伏吸收层进行成像刻蚀,最后对第一前电极层和第二前电极层进行成像刻蚀;
步骤S5:通过涂胶曝光显影的方式在黑矩阵区制备遮光层;
步骤S6: 依次通过涂胶曝光显影的方式制备RGB子像素,形成彩色树脂显示区, 然后在彩色树脂显示区和黑矩阵区的外侧找平层上用物理气相沉积的方式镀公共电极层。
优选地,还包括在黑矩阵区的中间区域的交叉位置进行第二金属辅助层的制作,在黑矩阵区的中间区域的交叉位置处通过预先设置掩膜版,一次性湿刻第一背电极层和干刻第一光伏吸收层,第一前电极层不进行刻蚀,然后通过成膜第二金属辅助层将第一前电极层引出。
优选地,还包括在第一背电极层和第二背电极层上进行第二金属层的制作,所述第二金属层与第一背电极层和第二背电极层之间还制作有绝缘层,所述遮光层通过曝光形成通孔,在彩色树脂显示区和黑矩阵区的外侧进行公共电极层镀膜后公共电极直接通过通孔与第二金属层连接。
有益效果
1、通过在黑矩阵区设置薄膜太阳能电池层和在彩色树脂显示区设置薄膜太阳能电池走线,可以提高薄膜太阳能电池的光电转换能量,满足显示模组的使用,有效提高其待机或使用时间。同时利用遮光层与薄膜太阳能电池层一体制作的方式可以使制作工艺更加简单,制作成本更低,降低显示屏的厚度,采用透明走线保证显示效果;
2、 通过薄膜太阳能电池走线可选择性断开设置,因为第二光伏吸收层本身的颜色呈暗红色,选择性断开薄膜太阳能电池走线可以减少对彩色树脂显示区的影响;
3、所述黑矩阵区的最外围还设有第一金属辅助层以减少第一前电极层和第一背电极层的电阻,提高薄膜太阳能电池层在强光下的转化效率,同时有利于第一前电极层和第一背电极层的引出;
4、通过将所述黑矩阵区的中间区域的交叉位置处还设有第二金属辅助层以减少该区域的第一前电极层和第一背电极层的电阻;
5、通过黑矩阵区的部分位置设置第一光伏吸收层,部分位置不设置第一光伏吸收层,不设置第一光伏吸收层的黑矩阵区设有第一金属层与第一前电极层连接,用于进一步减少第一前电极层的电阻;
6、通过将薄膜太阳能电池层和薄膜太阳能电池走线上还设有不与第一前电极层和第二前电极层连接的第二金属层,所述遮光层上还开设有通孔使公共电极层与第二金属层连接,用于减少公共电极层的电阻。
附图说明
图1为本发明集成薄膜太阳能电池的显示模组显示彩色树脂显示区、黑矩阵区及电池的平面结构示意图;
图2为本发明集成薄膜太阳能电池的显示模组显示彩色树脂显示区、黑矩阵区的侧视结构示意图;
图3为本发明集成薄膜太阳能电池的显示模组中黑矩阵区内的薄膜太阳能电池层和遮光层的侧视结构示意图;
图4为本发明集成薄膜太阳能电池的显示模组中彩色树脂显示区内的薄膜太阳能电池走线的侧视结构示意图;
图5为本发明集成薄膜太阳能电池的显示模组中黑矩阵区内最外围设有第一金属辅助层的侧视结构示意图;
图6为本发明集成薄膜太阳能电池的显示模组中黑矩阵区内中间区域的交叉位置处挖空的平面结构示意图;
图7为图6中A-A处的侧视结构示意图;
图8为本发明集成薄膜太阳能电池的显示模组中黑矩阵区不设置第一光伏吸收层和设置第一金属层的侧视结构示意图;
图9为本发明集成薄膜太阳能电池的显示模组中公共电极层与第二金属层连接的侧视结构示意图;
图10为本发明集成薄膜太阳能电池的显示模组的制备方法的工艺流程图。
本发明的实施方式
下面结合附图和实施例对本发明进行详细的说明,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
实施例一
结合图1-图2所示,本发明实施例提供一种集成薄膜太阳能电池的显示模组,包括玻璃基板10,所述玻璃基板10朝向显示模组发光方向的一侧具有彩色树脂显示区100和黑矩阵区200,所述黑矩阵区200包括设置在玻璃基板10上的薄膜太阳能电池层210和设置在薄膜太阳能电池层210上的遮光层220,所述彩色树脂显示区100内设有薄膜太阳能电池走线110,其中所述薄膜太阳能电池层210和薄膜太阳能电池走线110的前电极和背电极均为透明电极。
具体地,结合图3-图4所述薄膜太阳能电池层210包括依次层叠设置在玻璃基板10上的第一前电极层211、第一光伏吸收层212和第一背电极层213,所述遮光层220设置在第一背电极层213上,所述薄膜太阳能电池走线110包括依次层叠设置在玻璃基板10上的第二前电极层111、第二光伏吸收层112和第二背电极层113,所述薄膜太阳能电池走线110上不设置遮光层220,且第二背电极层113采用透明材质使得薄膜太阳能电池走线110在彩色树脂显示区100内肉眼不可见,有效降低了对彩色树脂显示区100的显示效果的影响。所述薄膜太阳能电池走线110的宽度优选为小于60nm,肉眼不可见,且薄膜太阳能电池走线110的角度应当不与彩色树脂显示产生摩尔纹,同时可以根据显示效果需要来决定彩色树脂显示区100域的薄膜太阳能电池走线110的分布的数量,对显示效果要求较高时,可以适当减少薄膜太阳能电池走线110的数量,相反,对显示效果要求不高时,可适当增加薄膜太阳能电池走线110的数量。应当理解的是,当所述显示模组没有黑矩阵区200时,则所述显示模组可全部采用薄膜太阳能电池走线110的方式形成半透明太阳能电池,用于对显示模组进行供电。
本发明通过在黑矩阵区200设置薄膜太阳能电池层210和在彩色树脂显示区100设置薄膜太阳能电池走线110,可以提高薄膜太阳能电池的光电转换能量,满足显示模组的使用,有效提高其待机或使用时间。同时利用遮光层220与薄膜太阳能电池层210一体制作的方式可以使制作工艺更加简单,制作成本更低,降低显示屏的厚度,采用透明走线保证显示效果。
如图所示,本发明中所述黑矩阵区200的薄膜太阳能电池层210与遮光层220相当于彩膜基板的遮蔽漏光区域,可有效避免看到漏光导致的显示屏对比度下降。外界自然光线向显示模组内入射,光线通过第一前电极层211和第二前电极层111,照射在第一光伏吸收层212和第二光伏吸收层112上产生光电转换。
作为本发明实施例的进一步改进,在彩色树脂显示区100,所述薄膜太阳能电池走线110可以根据显示屏的亮度要求进行可选择性断开设置,因为第二光伏吸收层112本身的颜色呈暗红色,选择性断开薄膜太阳能电池走线110可以减少对彩色树脂显示区100的影响。应当理解的是,每条薄膜太阳能电池走线110应当均与薄膜太阳能电池层210连接,形成有效电池作用。所述薄膜太阳能电池走线110和薄膜太阳能电池层210可以是单结薄膜太阳能电池结构,也可以是多结薄膜太阳能电池结构,本发明不作具体限定。
本发明实施例中,所述第一前电极层211朝向第一光吸收层的侧面还可以通过化学制绒处理或者MOCVD等方法制造绒面以提高第一光吸收层对光的吸收,所述第二前电极层111朝向第二光吸收层的侧面也可以通过化学制绒处理或者MOCVD等方法制造绒面以提高第二光吸收层对光的吸收。所述遮光层220采用黑色树脂等材质,通常与常规的彩膜基板上用的黑矩阵材料类似。所述遮光层220也可以采用黑色金属等材质,可以防止背光产生的光反射回阵列基板,导致薄膜晶体管吸光而影响显示效果。
结合图5所示,作为本发明实施例的进一步改进,所述黑矩阵区200的最外围还设有第一金属辅助层214以减少第一前电极层211和/或第一背电极层213的电阻,提高薄膜太阳能电池层210在强光下的转化效率,同时有利于第一前电极层211和第一背电极层213的引出。所述黑矩阵区200的边缘的宽度可以大于黑矩阵区200的中间位置的宽度,以便提高薄膜太阳能电池层210的转化效率。应当理解的是,所述第一前电极层211的金属辅助层应当与第一背电极层213的金属辅助层应当通过绝缘层20绝缘隔开,避免发生短路。所述第一金属辅助层214可以分别作为总的正负极栅极总线以引出太阳能电池的正负极。
结合图6-图7所示,作为本发明实施例的进一步改进,对于大面积的显示模组,中间区域的黑矩阵区200电阻较大,因此所述黑矩阵区200的中间区域的交叉位置处还设有第二金属辅助层215以减少该区域的第一前电极层211和/或第一背电极层213的电阻,所述第二金属辅助层215可以引出至与栅极总线连接。具体实现时,可以通过在交叉位置处局部挖空第一光吸收层和第一背电极层213使第二金属辅助层215与第一前电极层211连接,和/或第二金属辅助层215与第一背电极层213连接,与第一前电极层211连接的第二金属辅助层215和与第一背电极层213连接的第二金属辅助层215之间绝缘隔开设置。
结合图8所示,作为本发明实施例的进一步改进,当显示模组的面积足够大时,所述薄膜太阳能电池层210的电阻对强光下的效率影响很大,为了减轻薄膜太阳能电池层210的电阻,所述黑矩阵区200的部分位置设置第一光伏吸收层212,部分位置不设置第一光伏吸收层212,不设置第一光伏吸收层212的黑矩阵区200设有第一金属层216与第一前电极层211连接,用于进一步减少第一前电极层211的电阻,所述第一金属层216与第一背电极层213绝缘隔开,可延伸至第一光伏吸收层212的上方。优选地,不设置第一光伏吸收层212的位置为黑矩阵区200较窄的位置,可以每隔500um距离不设置第一光伏吸收层212,实际距离的选取根据实际使用环境光强增加或者减少。
本发明实施例中,所述绝缘层20可以是有机物或是SiNx等无机物制备而成。
结合图9所示,所述显示模组还包括公共电极层300,所述公共电极层300形成在彩色树脂显示区100和黑矩阵区200的外侧面,所述薄膜太阳能电池层210和薄膜太阳能电池走线110上还设有不与第一前电极层211和第二前电极层111连接的第二金属层217,所述遮光层220上还开设有通孔使公共电极层300与第二金属层217连接,用于减少公共电极层300的电阻。优选地,所述通孔的直径为3μm-15μm,性能最好。所述公共电极层300的材料可以是ITO或者AZO。应当理解的是,本发明实施例的显示模组还可以不设置公共电极层300。
本发明实施例中,所述第一前电极层211、第一背电极层213、第二前电极层111、第二背电极层113的材料可以均为AZO,透过率高。
实施例二
如图10所示,本发明实施例提供实施例一所述的一种集成薄膜太阳能电池的显示模组的制备方法,包括以下步骤:
步骤S1:在玻璃基板10上进行第一前电极层211和第二前电极层111成膜;成膜温度为170℃-350℃,成膜厚度为50nm-1000nm之间;第一前电极层211和第二前电极层111在远离玻璃基板10的一侧表面可以选择用低浓度HCl或碱性物质制绒形成凹凸不平的平面,以提高太阳能反射光的吸收。所述第一前电极层211和第二前电极层111均采用透明电极,提高透过率和减少对显示效果的影响。应当理解的是,所述第一前电极层211和第二前电极层111可以是同时成膜形成,工艺更简单。
步骤S2:在所述第一前电极层211进行第一光伏吸收层212的化学气相沉积成膜,在第二前电极层111上进行第二光伏吸收层112的化学气相沉积成膜。同理,所述第一光伏吸收层212和第二光伏吸收层112也为同时成膜形成。
具体地,所述第一光伏吸收层212和第二光伏吸收层112均分为P层、I层和N层,其中P层厚度为10nm-90nm,成膜温度为150℃-280℃, I层200 nm -700nm,成膜温度150℃-280℃,N层20 nm -80nm,成膜温度150℃-230℃。
步骤S3:在所述第一光伏吸收层212进行第一背电极层213成膜和在第二光伏吸收层112上进行第二背电极层113成膜;所述第一背电极层213和第二背电极层113均采用透明电极,起到双面吸收光的效果,提高透过率和减少对显示效果的影响。同理,所述第一背电极层213和第二背电极层113也为同时成膜形成。
步骤S4:清洗后先对第一背电极层213和第二背电极层113进行成像刻蚀 ,再对第一光伏吸收层212和第二光伏吸收层112进行成像刻蚀,最后对第一前电极层211和第二前电极层111进行成像刻蚀;
所述第一背电极层213、第二背电极层113、第一前电极层211、第二前电极层111可以采用涂胶曝光成像后进行化学刻蚀;所述第一光伏吸收层212、第二光伏吸收层112以采用干刻的方式进行刻蚀,这里主要是在干刻前不进行光刻胶的脱模处理而直接进行干刻,而节省工艺步骤。
步骤S5:通过涂胶曝光显影的方式在黑矩阵区200制备遮光层220,通过涂胶曝光的方式将黑色树脂覆盖在第一背电极层213上,黑色树脂起到遮光作用,遮光层220通过曝光控制线条宽度使遮光层220大于薄膜太阳能电池层210,避免漏光。
步骤S6: 依次通过涂胶曝光显影的方式制备RGB子像素,形成彩色树脂显示区100, 然后在彩色树脂显示区100和黑矩阵区200的外侧找平层上用物理气相沉积的方式镀公共电极层300。
作为本发明实施例二的进一步改进,还包括在彩色树脂显示区100进行部分走线断开的制作,所述断开处利用掩膜版不进行光刻胶形成,通过先化学湿刻蚀的方式刻蚀掉第二背电极,然后通过干刻的方式刻蚀掉第二光吸收层,再通过化学湿刻蚀的方式刻蚀掉第二前电极。因为第二光伏吸收层112本身的颜色呈暗红色,选择性断开薄膜太阳能电池走线110可以减少对彩色树脂显示区100的影响。
作为本发明实施例二的进一步改进,还包括在黑矩阵区200的最外围进行第一金属辅助层214的制作,所述第一金属辅助层214通过物理气相沉积方式一次性成膜形成。该步骤还包括绝缘层20的制作,所述绝缘层20使与第一前电极层211接触的第一金属辅助层214以及与第一背电极层213接触的第一金属辅助层214之间绝缘隔开。所述第一金属辅助层214可以减少第一前电极层211和第一背电极层213的电阻,提高薄膜太阳能电池层210在强光下的转化效率,同时有利于第一前电极层211和第一背电极层213的引出。
当绝缘层20采用有机物时,可以通过涂胶曝光显影、移印或丝印的方式制备,工艺更为简单。当绝缘层20采用SiNx、SiO2等非金属保护时,可通过采用化学气象沉积(CVD)或磁控溅射等方式来成膜,然后利用黄光线曝光做出图形后干刻蚀成图形。
作为本发明实施例二的进一步改进,还包括在黑矩阵区200的中间区域的交叉位置进行第二金属辅助层215的制作,在黑矩阵区200的中间区域的交叉位置处通过预先设置掩膜版,一次性湿刻第一背电极和干刻第一光伏吸收层212,第一前电极不进行刻蚀,然后通过成膜第二金属辅助层215将第一前电极层211引出以减少电阻。该第二金属辅助层215用于减少该区域的第二前电极层111的电阻。
作为本发明实施例二的进一步改进,还包括在黑矩阵区200内除去第一光伏吸收层212的制作,将第一背电极刻蚀掉后,暴露的第一光伏吸收层212用干刻蚀的方法刻蚀后,第一金属层216通过镀膜的方式与第一前电极接触连接。当显示模组的面积足够大时,所述薄膜太阳能电池层210的电阻对强光下的效率影响很大,该除去第一光伏吸收层212的制作可以减轻薄膜太阳能电池层210的电阻。
作为本发明实施例二的进一步改进,还包括在第一背电极层213和第二背电极层113上进行第二金属层217的制作,所述第二金属层217与第一背电极层213和第二背电极层113之间还制作有绝缘层20。所述第二金属层217与第一金属辅助层214可以同时成膜形成,所述遮光层220通过曝光形成通孔,在彩色树脂显示区100和黑矩阵区200的外侧进行公共电极层300镀膜后公共电极直接通过通孔与第二金属层217连接。该第二金属层217的制作用于减少公共电极层300的电阻。
本发明实施例二提供的一种集成薄膜太阳能电池的显示模组的制备方法使得显示模组的制作工艺更简便,制作成本更低,提高了显示效果和降低了电池的电阻。
最后需要说明的是,以上实施例仅用以说明本发明实施例的技术方案而非对其进行限制,尽管参照较佳实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当理解依然可以对本发明实施例的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明实施例技术方案的范围。

Claims (10)

  1. 一种集成薄膜太阳能电池的显示模组,包括玻璃基板,所述玻璃基板朝向显示模组发光方向的一侧具有彩色树脂显示区和黑矩阵区,其特征在于,所述黑矩阵区包括设置在玻璃基板上的薄膜太阳能电池层和设置在薄膜太阳能电池层上的遮光层,所述彩色树脂显示区内设有薄膜太阳能电池走线,其中所述薄膜太阳能电池层和薄膜太阳能电池走线的前电极和背电极均为透明电极。
  2. 如权利要求1所述的集成薄膜太阳能电池的显示模组,其特征在于,所述薄膜太阳能电池层包括依次层叠设置在玻璃基板上的第一前电极层、第一光伏吸收层和第一背电极层,所述遮光层设置在第一背电极层上;所述薄膜太阳能电池走线包括依次层叠设置在玻璃基板上的第二前电极层、第二光伏吸收层和第二背电极层,所述薄膜太阳能电池走线上不设置遮光层。
  3. 如权利要求1或2所述的集成薄膜太阳能电池的显示模组,其特征在于,在彩色树脂显示区,所述薄膜太阳能电池走线可选择性断开设置。
  4. 如权利要求1或2所述的集成薄膜太阳能电池的显示模组,其特征在于,所述黑矩阵区的最外围还设有第一金属辅助层以减少第一前电极层和/或第一背电极层的电阻。
  5. 如权利要求1或2所述的集成薄膜太阳能电池的显示模组,其特征在于,所述黑矩阵区的中间区域的交叉位置处还设有第二金属辅助层以减少该区域的第一前电极层和/或第一背电极层的电阻。
  6. 如权利要求1或2所述的集成薄膜太阳能电池的显示模组,其特征在于,所述黑矩阵区的部分位置设置第一光伏吸收层,部分位置不设置第一光伏吸收层,不设置第一光伏吸收层的黑矩阵区设有第一金属层与第一前电极层连接,所述第一金属层与第一背电极层绝缘隔。
  7. 如权利要求1或2所述的集成薄膜太阳能电池的显示模组,其特征在于,还包括公共电极层,所述公共电极层形成在彩色树脂显示区和黑矩阵区的外侧面,所述薄膜太阳能电池层和薄膜太阳能电池走线上还设有不与第一前电极层和第二前电极层连接的第二金属层,所述遮光层上还开设有通孔使公共电极层与第二金属层连接。
  8. 一种如权利要求1-7任一项所述的集成薄膜太阳能电池的显示模组的制备方法,其特征在于,包括以下步骤:
    步骤S1:在玻璃基板上进行第一前电极层和第二前电极层成膜;
    步骤S2:在所述第一前电极层进行第一光伏吸收层的化学气相沉积成膜,在第二前电极层上进行第二光伏吸收层的化学气相沉积成膜;
    步骤S3:在所述第一光伏吸收层进行第一背电极层成膜和在第二光伏吸收层上进行第二背电极层成膜;所述第一背电极层和第二背电极层均采用透明电极;
    步骤S4:清洗后先对第一背电极层和第二背电极层进行成像刻蚀 ,再对第一光伏吸收层和第二光伏吸收层进行成像刻蚀,最后对第一前电极层和第二前电极层进行成像刻蚀;
    步骤S5:通过涂胶曝光显影的方式在黑矩阵区制备遮光层;
    步骤S6: 依次通过涂胶曝光显影的方式制备RGB子像素,形成彩色树脂显示区, 然后在彩色树脂显示区和黑矩阵区的外侧找平层上用物理气相沉积的方式镀公共电极层。
  9. 如权利要求8所述的集成薄膜太阳能电池的显示模组的制备方法,其特征在于,还包括在黑矩阵区的中间区域的交叉位置进行第二金属辅助层的制作,在黑矩阵区的中间区域的交叉位置处通过预先设置掩膜版,一次性湿刻第一背电极层和干刻第一光伏吸收层,第一前电极层不进行刻蚀,然后通过成膜第二金属辅助层将第一前电极层引出。
  10. 如权利要求9所述的集成薄膜太阳能电池的显示模组的制备方法,其特征在于,还包括在第一背电极层和第二背电极层上进行第二金属层的制作,所述第二金属层与第一背电极层和第二背电极层之间还制作有绝缘层,所述遮光层通过曝光形成通孔,在彩色树脂显示区和黑矩阵区的外侧进行公共电极层镀膜后公共电极直接通过通孔与第二金属层连接。
PCT/CN2020/124405 2020-01-08 2020-10-28 一种集成薄膜太阳能电池的显示模组及其制备方法 WO2021139332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010018511.1 2020-01-08
CN202010018511.1A CN111081152A (zh) 2020-01-08 2020-01-08 一种集成薄膜太阳能电池的显示模组及其制备方法

Publications (1)

Publication Number Publication Date
WO2021139332A1 true WO2021139332A1 (zh) 2021-07-15

Family

ID=70322449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124405 WO2021139332A1 (zh) 2020-01-08 2020-10-28 一种集成薄膜太阳能电池的显示模组及其制备方法

Country Status (2)

Country Link
CN (1) CN111081152A (zh)
WO (1) WO2021139332A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081152A (zh) * 2020-01-08 2020-04-28 信利半导体有限公司 一种集成薄膜太阳能电池的显示模组及其制备方法
CN117475776A (zh) * 2023-12-27 2024-01-30 江苏天华汽车电子科技有限公司 电子模组和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050183764A1 (en) * 2004-02-21 2005-08-25 Han In-Taek Display device integrated with solar cells and method of fabricating the same
CN103760707A (zh) * 2014-01-09 2014-04-30 北京京东方光电科技有限公司 一种阵列基板、液晶显示面板及显示装置
CN109841662A (zh) * 2019-02-21 2019-06-04 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN110045536A (zh) * 2019-03-29 2019-07-23 武汉华星光电技术有限公司 彩膜基板和显示面板
CN110518079A (zh) * 2019-09-29 2019-11-29 信利半导体有限公司 一种光电转换率高的薄膜光伏电池及其制备工艺
CN111081152A (zh) * 2020-01-08 2020-04-28 信利半导体有限公司 一种集成薄膜太阳能电池的显示模组及其制备方法
CN210836906U (zh) * 2020-01-08 2020-06-23 信利半导体有限公司 一种集成薄膜太阳能电池的显示模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050183764A1 (en) * 2004-02-21 2005-08-25 Han In-Taek Display device integrated with solar cells and method of fabricating the same
CN103760707A (zh) * 2014-01-09 2014-04-30 北京京东方光电科技有限公司 一种阵列基板、液晶显示面板及显示装置
CN109841662A (zh) * 2019-02-21 2019-06-04 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN110045536A (zh) * 2019-03-29 2019-07-23 武汉华星光电技术有限公司 彩膜基板和显示面板
CN110518079A (zh) * 2019-09-29 2019-11-29 信利半导体有限公司 一种光电转换率高的薄膜光伏电池及其制备工艺
CN111081152A (zh) * 2020-01-08 2020-04-28 信利半导体有限公司 一种集成薄膜太阳能电池的显示模组及其制备方法
CN210836906U (zh) * 2020-01-08 2020-06-23 信利半导体有限公司 一种集成薄膜太阳能电池的显示模组

Also Published As

Publication number Publication date
CN111081152A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
US11056543B2 (en) Display panel and manufacturing method thereof
US11495699B2 (en) Thin-film photovoltaic cell with high photoelectric conversion rate and preparation process thereof
CN109285856B (zh) Led发光基板及其制作方法、显示装置
WO2020042235A1 (zh) 柔性oled显示面板
CN105652541B (zh) 阵列基板的制作方法及液晶显示面板
WO2020200168A1 (zh) Amoled显示屏、显示设备及移动终端
WO2015085722A1 (zh) 显示面板及显示装置
WO2021114471A1 (zh) 一种阵列基板及其制备方法、显示面板
WO2021139332A1 (zh) 一种集成薄膜太阳能电池的显示模组及其制备方法
CN112271197B (zh) 显示基板及其制备方法、显示装置
US11309445B2 (en) Thin-film photovoltaic cell series structure and preparation process of thin-film photovoltaic cell series structure
WO2019140753A1 (zh) 彩色滤光基板及其制作方法
CN211350671U (zh) 一种具有触控功能的太阳能电池
CN210836906U (zh) 一种集成薄膜太阳能电池的显示模组
KR20120022253A (ko) 전기영동 표시소자 및 그 제조방법
CN210325749U (zh) 一种阵列基板及显示面板
WO2021159737A1 (zh) 一种可挠曲的透明薄膜太阳能电池制作方法
WO2014015540A1 (zh) 具有嵌入式光伏电池的阵列基板的制作方法及其制得的阵列基板
WO2021189841A1 (zh) 一种具有触控功能的太阳能电池制造方法
TWI730701B (zh) 一種薄膜太陽能電池的製作方法及薄膜太陽能電池
WO2020237696A1 (zh) 一种薄膜光伏电池的制造方法及薄膜光伏电池
TWM591259U (zh) 薄膜太陽能電池
WO2021047007A1 (zh) 显示面板及显示面板的制作方法
JPWO2006109585A1 (ja) 導電層を備えた基板、表示装置および導電層を備えた基板の製造方法
WO2014047980A1 (zh) 薄膜晶体管主动装置的制作方法及制作的薄膜晶体管主动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912274

Country of ref document: EP

Kind code of ref document: A1