WO2020237696A1 - 一种薄膜光伏电池的制造方法及薄膜光伏电池 - Google Patents

一种薄膜光伏电池的制造方法及薄膜光伏电池 Download PDF

Info

Publication number
WO2020237696A1
WO2020237696A1 PCT/CN2019/089809 CN2019089809W WO2020237696A1 WO 2020237696 A1 WO2020237696 A1 WO 2020237696A1 CN 2019089809 W CN2019089809 W CN 2019089809W WO 2020237696 A1 WO2020237696 A1 WO 2020237696A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
metal auxiliary
front electrode
auxiliary electrode
photovoltaic cell
Prior art date
Application number
PCT/CN2019/089809
Other languages
English (en)
French (fr)
Inventor
眭斌
张为苍
赵云
李源
张文进
杨亮
Original Assignee
信利半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信利半导体有限公司 filed Critical 信利半导体有限公司
Publication of WO2020237696A1 publication Critical patent/WO2020237696A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of photovoltaic cell manufacturing, and more specifically to a method for manufacturing a thin film photovoltaic cell and a thin film photovoltaic cell.
  • thin film photovoltaic cells are applied to display modules (such as wearable electronic products), and the principle of light conversion electricity is used to power the display modules.
  • Technology is being used more and more widely.
  • the present invention provides a method for manufacturing a thin film photovoltaic cell and a thin film photovoltaic cell.
  • the auxiliary electrode is connected to the front electrode by contacting the auxiliary electrode.
  • the area of the connection part between the metal auxiliary electrode and the front electrode can be determined according to the effective photovoltaic conversion area, which can prevent the effect of excessive front electrode resistance on photovoltaic conversion efficiency, thereby improving the efficiency of the entire thin-film photovoltaic cell.
  • a method for manufacturing thin-film photovoltaic cells including the following steps: providing a transparent substrate, and facing the transparent substrate toward the side of the display module for the front electrode, light absorption layer and back electrode
  • the film-forming etching also includes the step of film-forming and etching the metal auxiliary electrode, wherein the metal auxiliary electrode is in contact with the front electrode and the metal auxiliary electrode is insulated from the back electrode.
  • the manufacturing method of the thin film photovoltaic cell includes the following steps:
  • Step S1 providing a transparent substrate, and forming a metal auxiliary electrode with the transparent substrate facing one side of the display module;
  • Step S2 the metal auxiliary electrode is exposed by coating and imaging and chemically etched
  • Step S3 forming a front electrode on the transparent substrate, at this time the metal auxiliary electrode is at least partially formed under the front electrode;
  • Step S4 performing chemical vapor deposition of a light absorption layer on the front electrode
  • Step S5 Perform physical vapor deposition of the back electrode on the light absorption layer to form a film
  • Step S6 imaging the back electrode and the light absorption layer after cleaning
  • Step S7 performing chemical etching on the front electrode after applying glue, exposing and imaging;
  • Step S8 Film or glue the outermost protective layer.
  • the manufacturing method of the thin film photovoltaic cell includes the following steps:
  • Step S1 Provide a transparent substrate, and form the front electrode with the transparent substrate facing one side of the display module;
  • Step S2 performing chemical vapor deposition of a light absorption layer on the front electrode
  • Step S3 performing physical vapor deposition film formation, imaging, and etching on the back electrode on the light absorption layer;
  • Step S4 directly dry-etch the light absorbing layer and remove the photoresist film
  • Step S5 After the front electrode is coated, exposed and imaged, the photoresist is removed after chemical etching;
  • Step S6 forming a film on the insulating layer to prevent the connection of the gate bus line on the front electrode with the back electrode from causing a short circuit;
  • Step S7 forming a film on the metal auxiliary electrode, imaging, etching, and photoresist release treatment
  • Step S8 forming a film on the outermost protective layer.
  • the manufacturing method of the thin film photovoltaic cell includes the following steps:
  • Step S1 Provide a transparent substrate, and perform film formation and imaging etching of the front electrode on the transparent substrate toward the side of the display module;
  • Step S2 performing chemical vapor deposition of a light absorption layer on the front electrode
  • Step S3 Perform back electrode physical vapor deposition film formation and imaging etching on the light absorbing layer, forming a number of openings during the process of etching the non-photoresist protection area by the metal etching solution, and then directly resist the photoresist Dry etching the light absorbing layer so that the front electrode remains in the hole;
  • Step S4 forming an insulating layer on the back electrode
  • Step S5 forming a film on the metal auxiliary electrode, the metal auxiliary electrode being in contact with the front electrode through the opening;
  • Step S6 the metal auxiliary electrode is exposed by coating and imaging and chemically etched.
  • a thin-film photovoltaic cell is arranged on one side of the display surface of a display module, and comprises a transparent substrate and a photovoltaic unit arranged on the transparent substrate and facing the display module;
  • the photovoltaic unit includes The front electrode on the transparent substrate, the light absorbing layer provided on the front electrode, and the back electrode provided on the light absorbing layer; further comprising a metal auxiliary electrode in contact with the front electrode, and for protecting the back electrode ,
  • the light absorbing layer, the front electrode and the protective layer of the metal auxiliary electrode, the metal auxiliary electrode is in contact with the front electrode and used as a gate bus or reduces the resistance of the front electrode.
  • the metal auxiliary electrode is at least partially formed on the lower surface of the front electrode, and the metal auxiliary electrode is formed on one or both sides of the front electrode.
  • the surface of the metal auxiliary electrode in contact with the front electrode is at least partly an inclined surface facing away from the metal auxiliary electrode.
  • the metal auxiliary electrode is formed on the upper surface of the front electrode, and an insulating layer is further provided between the metal auxiliary electrode and the back electrode.
  • the light absorbing layer and the back electrode are arranged on the front electrode at intervals, and each of the light absorbing layer and the back electrode is also covered with an insulating layer, and several insulating layers are formed between the insulating layers. A hole is formed, and the metal auxiliary electrode is in contact with the front electrode through the hole.
  • an anti-reflection layer is further provided on the lower surface of the metal auxiliary electrode.
  • the auxiliary electrode By contacting and connecting the front electrode with an auxiliary electrode, the auxiliary electrode is used as a gate bus or the resistance of the front electrode is reduced, the area of the connection part between the metal auxiliary electrode and the front electrode can be determined according to the effective photovoltaic conversion area, which can prevent The effect of excessive front electrode resistance on photovoltaic conversion efficiency, thereby improving the efficiency of the entire thin-film photovoltaic cell.
  • Fig. 1 is a schematic diagram of the planar structure of a thin film photovoltaic cell applied to a display module in the present invention
  • Embodiment 1 of the thin film photovoltaic cell of the present invention
  • Embodiment 2 is a schematic cross-sectional structure diagram of Embodiment 2 of the thin-film photovoltaic cell of the present invention.
  • Embodiment 3 is a schematic cross-sectional structure diagram of Embodiment 3 of the thin-film photovoltaic cell of the present invention.
  • Embodiment 4 is a schematic cross-sectional structure diagram of Embodiment 4 of the thin-film photovoltaic cell of the present invention.
  • the terms “installed”, “connected”, “connected”, “fixed”, “set” and other terms should be understood in a broad sense.
  • it can be a fixed connection or It can be detachably connected or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can also be the internal communication of two components or the interaction between two components .
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the present invention provides a method for manufacturing thin-film photovoltaic cells, in which the thin-film photovoltaic cells are arranged on one side of the display surface of the display module to provide power for the display module, which can be formed in the display module
  • the frame area of the group (the ring area shown in Figure 1) can also be formed in the visible area of the display module (the inner circle area shown in Figure 1), or the frame area and the visible area can be set at the same time
  • the thin-film photovoltaic cell is formed in the visible area, the normal display of the display module can be ignored.
  • the thin-film photovoltaic cell of the present invention includes a transparent substrate 10 and a photovoltaic unit disposed on the transparent substrate 10 and facing the display module; the photovoltaic unit includes a front electrode 20 disposed on the transparent substrate 10, The light absorbing layer 30 on the front electrode 20 and the back electrode 40 on the light absorbing layer 30 are provided.
  • the thin film photovoltaic cell of the embodiment of the present invention also includes a metal auxiliary electrode 50 in contact with the front electrode 20, and a metal auxiliary electrode 50 for protecting the back electrode 40, the light absorbing layer 30, the front electrode 20, and the metal auxiliary electrode 50 from being oxidized or scratched.
  • the protective layer 60, where the metal auxiliary electrode 50 is in contact with the front electrode 20, serves as a gate bus or reduces the resistance of the front electrode 20.
  • the area of the connecting portion between the metal auxiliary electrode 50 and the front electrode 20 can be determined according to the effective photovoltaic conversion area, which can prevent the excessive resistance of the front electrode 20 from affecting the photovoltaic conversion efficiency, thereby improving the efficiency of the entire thin film photovoltaic cell.
  • the manufacturing method of the thin film photovoltaic cell according to the first embodiment of the present invention includes the following steps:
  • Step S1 providing a transparent substrate 10, and forming a metal auxiliary electrode 50 on the transparent substrate 10 toward the side of the display module.
  • the film structure of the metal auxiliary electrode 50 may be a first Mo layer, a metal layer, and a second Mo layer stacked on the transparent substrate 10 in sequence, wherein the metal layer may be conductive such as Al, Ag, Au, Cu, etc.
  • the first Mo layer can improve the adhesion between the intermediate metal layer and the transparent substrate 10, and the second Mo layer can play a protective role.
  • the second Mo layer can also use a metal with less activity.
  • the film forming temperature of the metal auxiliary electrode 50 is 40° C. to 230° C., and the thickness may be 500 A for the first Mo layer, 2000 A to 5000 A for the metal layer, and 500 A for the second Mo layer.
  • an anti-reflection layer of SiNx can be plated before the metal auxiliary electrode 50 is formed, or molybdenum oxide can be used. Ferrous metal replaces the metal auxiliary electrode 50, reducing the light reflection effect of the thin film photovoltaic cell device in use.
  • the metal auxiliary electrode may be formed by physical vapor deposition or other methods, but is not limited to this.
  • Step S2 the metal auxiliary electrode 50 is imaged and chemically etched after exposure to glue.
  • the laser etching method can also be used for imaging, which is a conventional technology and will not be repeated.
  • Step S3 forming a film of the front electrode 20 on the transparent substrate 10, at this time the metal auxiliary electrode 50 is at least partially formed under the front electrode 20.
  • the metal auxiliary electrode 50 is used to reduce the current loop resistance and maximize the efficiency of the thin film photovoltaic cell device.
  • it further includes the step of texturing the front electrode 20 to form an uneven plane to improve solar energy absorption.
  • the front electrode 20 can be made of one or a combination of AZO, ITO and other materials.
  • the AZO is in contact with the light absorption layer 30 to reduce contact resistance.
  • the film forming temperature of AZO is 200-350°C.
  • the film thickness is between 300nm-1000nm; ITO can be formed at room temperature, and the film thickness is 500A-3000A, preferably at a temperature of 235°C and above. Annealing can reduce the resistance of ITO.
  • Step S4 performing chemical vapor deposition of the light absorption layer 30 on the front electrode 20 to form a film.
  • the light absorbing layer 30 is divided into a P layer, an I layer and an N layer, wherein the thickness of the P layer is 10 nm-30 nm, the film forming temperature is 190° C.-210° C., the I layer is 200 nm to 500 nm, and the film forming temperature is 190°C. °C-210°C, N layer 20 nm -30nm, film forming temperature 170°C-190°C.
  • Hydrogen dilution ratio H2/SiH4 600;
  • the I layer uses two gases, SiH4 and H2, with a ratio of 1:10, a deposition pressure of 2500 mtorr, and a deposition power of 30w-500w.
  • Step S5 Perform physical vapor deposition (PVD) film formation of the back electrode 40 on the light absorption layer 30.
  • the film forming temperature of the back electrode 40 is 40°C-180°C, and the film thickness is 3000A-4000A. It is also possible to use a weakly active metal such as Mo on the metal layer of the back electrode 40 to protect the back electrode 40.
  • Step S6 imaging the back electrode 40 and the light absorption layer 30 after cleaning.
  • an Al etching solution can be used to etch the imaging back electrode 40; then, a dry etching machine is used to etch the light absorption layer 30.
  • the photoresist is not demolded before the dry etching and the dry etching is directly performed, thereby saving the process steps.
  • Step S7 the front electrode 20 is exposed and imaged with glue and then chemically etched.
  • the image of the front electrode 20 can be performed by chemical etching.
  • the width of the front electrode 20 is wider than the width of the light absorbing layer 30 to ensure an effective photovoltaic conversion area.
  • Step S8 forming or gluing the outermost protective layer 60, preferably using SiNx film formation or organic protective glue screen printing.
  • the metal auxiliary electrode 50 when the metal auxiliary electrode 50 is formed only on one side of the front electrode 20, the metal auxiliary electrode 50 can be used as a gate bus of the front electrode 20; when the metal auxiliary electrode 50 is formed on the front When the electrodes 20 are on both sides, the metal auxiliary electrode 50 on one side is used as the gate bus of the front electrode 20, and the metal auxiliary electrode 50 on the other side can reduce the resistance of the front electrode 20, and both can be protected
  • the metal in the layer 60 is connected or connected in the form of an arch bridge near the binding position, and the back electrode 40 is separated by an insulating layer 70 in the middle.
  • the metal auxiliary electrodes 50 are arranged on both sides of the front electrode 20, which improves the efficiency of reducing resistance, can widen the area of the light absorption layer 30, and increase the laying area of the thin film photovoltaic cell.
  • the surface of the metal auxiliary electrode 50 in contact with the front electrode 20 is at least partly an inclined surface facing away from the metal auxiliary electrode 50, that is, the metal auxiliary electrode 50 has an inclined angle, which is beneficial to the front electrode 20.
  • the film formation will not break due to the presence of vertical angles or chamfers.
  • the inclination angle of the metal auxiliary electrode 50 is 70° or less.
  • the back electrode 40 and the light absorbing layer 30 are on the same vertical line, and the inclination starting point of the auxiliary electrode does not have to be aligned with the light absorbing layer 30.
  • the difference between the second embodiment of the present invention and the first embodiment is that the front electrode 20 is formed first, and then the metal auxiliary electrode 50 is formed. At this time, the metal auxiliary electrode 50 is formed on the front electrode 20. Upper surface.
  • Step S1 Provide a transparent substrate 10, and form the front electrode 20 on the transparent substrate 10 toward the side of the display module.
  • it further includes the step of texturing the front electrode 20 to form an uneven plane to improve solar energy absorption.
  • Step S2 performing chemical vapor deposition of the light absorption layer 30 on the front electrode 20 to form a film.
  • Step S3 Perform physical vapor deposition film formation, imaging, and etching of the back electrode 40 on the light absorption layer 30.
  • Step S4 directly dry-etch the light absorbing layer 30 and remove the photoresist film.
  • Step S5 the front electrode 20 is exposed and imaged with glue, followed by chemical etching, and then the photoresist is removed.
  • Step S6 forming a film on the insulating layer 70 to prevent the gate bus on the front electrode 20 from being connected to the back electrode 40 and causing a short circuit.
  • the insulating layer 70 can be made of organic materials, and the angle with the front electrode 20 should be controlled within 80 degrees to prevent the metal auxiliary electrode 50 from being disconnected due to the steep angle during film formation.
  • the insulating layer 70 may be provided on the periphery of the front electrode 20 at the same time to protect the front electrode 20, as shown in FIG. 3, because if the metal auxiliary electrode 50 is chemically etched, the etching solution can etch The front electrode 20 is dropped, and the insulating layer 70 is there to protect the front electrode 20 from being etched.
  • Step S7 forming a film on the metal auxiliary electrode 50, imaging, etching, and photoresist release processing.
  • Step S8 forming a film or applying glue to the outermost protective layer 60, preferably using S iNx film formation or organic protective glue and other materials for protection.
  • the width of the front electrode 20 described in this embodiment can be determined according to actual conditions, but the area between it and the adjacent backless electrode 40 will be completely covered by a cover plate etc. during assembly. It is an invisible area and does not have transparency. The photovoltaic conversion area is visible.
  • the metal auxiliary electrode 50 may be directly connected to the light absorption layer 30, or may be spaced apart from the light absorption layer 30, and is not specifically limited.
  • the imaging and etching condition parameters of the back electrode 40 and the metal auxiliary electrode 50 are the same as those in the first embodiment, and therefore will not be described in detail.
  • the metal auxiliary electrode 50 can also extend from both sides of the front electrode 20 to the upper surface of the insulating layer 70 and then contact each other.
  • the method of manufacturing the thin film photovoltaic cell is first The light absorption layer 30, the back electrode 40, and the insulating layer 70 are formed, and then the metal auxiliary electrode 50 is formed.
  • extension of the metal auxiliary electrode 50 on the upper surface of the insulating layer 70 may be linear or sheet-shaped, and is not specifically limited.
  • the metal auxiliary electrode 50 at the edge of the inner frame of the frame area may be a discontinuous ring shape, that is, the metal auxiliary electrode 50 has a smaller dot shape or several squares.
  • the dot-shaped or square-shaped metal auxiliary electrode 50 is connected to the outermost gate bus (also can be understood as the outermost metal auxiliary electrode 50). This distribution can make it invisible to the naked eye and improve the display module’s reliability. The peripheral display effect of the viewing zone.
  • the difference between the third embodiment of the present invention and the second embodiment is that it also includes the step of opening the light absorbing layer 30, the back electrode 40, and the insulating layer 70.
  • the metal auxiliary electrode 50 passes through the hole and the front electrode 20 Connect to further reduce the resistance of the front electrode 20.
  • Step S1 Provide a transparent substrate 10, and perform film formation and imaging etching of the front electrode 20 on the transparent substrate 10 toward the side of the display module.
  • it further includes the step of texturing the front electrode 20 to form an uneven plane to improve solar energy absorption.
  • Step S2 performing chemical vapor deposition of the light absorption layer 30 on the front electrode 20 to form a film.
  • Step S3 Perform physical vapor deposition film formation and imaging etching of the back electrode 40 on the light absorbing layer 30, forming a plurality of openings during the etching process of the non-photoresist protection area by the metal etching solution, and then proceed to retain the photoresist
  • the light absorbing layer 30 is directly dry-etched, so that the front electrode 20 remains in the hole.
  • Step S4 forming an insulating layer 70 on the back electrode 40.
  • the insulating layer 70 is made of organic materials such as organic photoresist, it can be directly exposed with light in the opening area to form an opening, thus forming a hole from the insulating layer 70 down to the front electrode 20;
  • the insulating layer 70 is made of non-metallic materials such as SiNx, dry etching is performed.
  • Step S5 forming a film on the metal auxiliary electrode 50, the metal auxiliary electrode 50 being in contact with the front electrode 20 through the opening.
  • Step S6 the metal auxiliary electrode 50 is imaged and chemically etched after exposure to glue.
  • the metal auxiliary electrode 50 is in contact with the front electrode 20 through an opening to reduce resistance.
  • the metal auxiliary electrode 50 can also be formed on one side of the front electrode 20 and used as a gate bus.
  • the auxiliary electrode 50 can also extend from the opening to the upper surface of the insulating layer 70 to be connected to each other, so that the resistance reduction effect is better.
  • the metal auxiliary electrode 50 may not be formed on the outer side surface of the front electrode 20, that is, not connected to the front electrode 20, and the entire auxiliary electrode is distributed on the insulating layer 70, so that the edge of the thin-film photovoltaic cell device is connected to photovoltaic conversion There will be no color difference in the ring, because from the front view, the outermost area does not have the light absorbing layer 30, and there will be a certain color difference from the area with the light absorbing layer 30.
  • the openings are irregularly distributed on the photovoltaic conversion ring.
  • the openings can be circular areas with a diameter of less than 10um, or square areas with a side length of 10um. Above, in terms of satisfying macroscopic vision, these holes will not form color or visual difference. Generally, the effect below 8um is better. If the distribution of holes is seen macroscopically, it will affect the visual effect of the device.
  • the film forming condition parameters of the front electrode 20, the photovoltaic layer, the back electrode 40, the metal auxiliary electrode 50, and the insulating layer 70 described in the third embodiment of the present invention, and the parameters of the front electrode 20, the photovoltaic layer, the back electrode 40, and the metal auxiliary electrode 50 The conditions and parameters of imaging and etching are the same as those in the first embodiment, so they will not be described in detail.
  • the fourth embodiment of the present invention provides a thin film photovoltaic cell.
  • the thin film photovoltaic cell is arranged on the side of the display surface of the display module and uses light energy to generate electricity to charge the display module.
  • the thin-film photovoltaic cell includes a transparent substrate 10 and a photovoltaic unit disposed on the transparent substrate 10 and facing the display module; the photovoltaic unit includes a front electrode 20 disposed on the transparent substrate 10, and The light absorbing layer 30 on the front electrode 20 and the back electrode 40 on the light absorbing layer 30 are provided.
  • the thin film photovoltaic cell of the embodiment of the present invention further includes a metal auxiliary electrode 50 in contact with the front electrode 20, and a protective layer 60 for protecting the back electrode 40, the light absorbing layer 30, the front electrode 20, and the metal auxiliary electrode 50.
  • the metal The auxiliary electrode 50 is connected in contact with the front electrode 20 to serve as a gate bus or to reduce the resistance of the front electrode 20.
  • the area of the connecting portion between the metal auxiliary electrode 50 and the front electrode 20 can be determined according to actual conditions, which can prevent the excessive resistance of the front electrode 20 from affecting the photovoltaic conversion efficiency, thereby improving the efficiency of the entire thin-film photovoltaic cell.
  • the widths of the back electrode 40 and the front electrode 20 are not necessarily the same, and the overlapping part between the two may be changed due to different processes, and it can also be designed to not overlap.
  • the width of the front electrode 20 is determined according to specific conditions, but the area adjacent to the backless electrode 40 will be completely covered by a cover plate etc. during assembly, which is an invisible area and does not have transparency.
  • the thin-film photovoltaic cell of the present invention can be applied to the frame area of the display module (to form a photovoltaic conversion ring), and can also be applied to the visible area of the display module, and thin-film photovoltaic cells can be provided in both the frame area and the visible area.
  • the thin-film photovoltaic cell should not affect the display effect of the visible area.
  • the thin-film photovoltaic cell can be made into a fine linear or grid-like shape. Thin-film photovoltaic cells in the shape of a grid or grid are invisible to the naked eye.
  • the outer dimensions of the thin film photovoltaic cell are not specifically limited.
  • the metal auxiliary electrode 50 is at least partially formed on the lower surface of the front electrode 20, and the metal auxiliary electrode 50 is formed on one or both sides of the front electrode 20.
  • the metal auxiliary electrode 50 causes more light reflection on the incident light surface due to strong reflection.
  • the lower surface of the metal auxiliary electrode 50 is also provided with an anti-reflection layer.
  • the SiNx material can be used, or black metal materials such as molybdenum oxide can be used to cover the metal auxiliary electrode 50 and reduce the light reflection effect of the thin-film photovoltaic cell device during use.
  • the surface of the metal auxiliary electrode 50 in contact with the front electrode 20 is at least partly an inclined surface facing away from the metal auxiliary electrode 50, that is, the metal auxiliary electrode 50 has an inclination angle (preferably less than 70°), which is beneficial to the front
  • the film formation of the electrode 20 will not break due to a vertical angle or chamfering.
  • the back electrode 40 and the light absorbing layer 30 are on the same vertical line, and the inclination starting point of the auxiliary electrode does not have to be aligned with the light absorbing layer 30.
  • the metal auxiliary electrode 50 When the metal auxiliary electrode 50 is formed only on one side of the front electrode 20, the metal auxiliary electrode 50 can be used as a gate bus of the front electrode 20; when the metal auxiliary electrode 50 is formed on both sides of the front electrode 20 At this time, the metal auxiliary electrode 50 formed on the outside of the front electrode 20 is used as the gate bus of the front electrode 20, and the metal auxiliary electrode 50 formed on the inside of the front electrode 20 can reduce the resistance of the front electrode 20.
  • the metal auxiliary electrodes 50 are arranged on both sides of the front electrode 20, which improves the efficiency of reducing resistance, can widen the area of the light absorption layer 30, and increase the laying area of the thin film photovoltaic cell.
  • the metal auxiliary electrode 50 is formed on the upper surface of the front electrode 20, and an insulating layer 70 is also provided between the metal auxiliary electrode 50 and the back electrode 40, so The insulating layer 70 is used to prevent the metal auxiliary electrode 50 and the back electrode 40 from being conducted to form a short circuit.
  • the metal auxiliary electrode 50 may be formed on one side or both sides of the front electrode 20. When the metal auxiliary electrodes 50 are formed on both sides of the front electrode 20, the metal auxiliary electrodes 50 on both sides can be extended to be connected to each other, so that the resistance of the front electrode 20 can be effectively reduced.
  • the extension of the metal auxiliary electrode 50 may be all extended so that the extended part is formed into a sheet shape, or may be a short stretch of which is formed into a thin line shape.
  • the insulating layer 70 may be provided on the periphery of the front electrode 20 at the same time to protect the front electrode 20.
  • the metal auxiliary electrode 50 may also extend from both sides of the front electrode 20 to the upper surface of the insulating layer 70 and then be in contact with each other.
  • extension of the metal auxiliary electrode 50 on the upper surface of the insulating layer 70 may be linear or sheet-shaped, and is not specifically limited.
  • the metal auxiliary electrode 50 at the edge of the inner frame of the frame area may be a discontinuous ring shape, that is, the metal auxiliary electrode 50 has a smaller dot shape or several squares.
  • the dot-shaped or square-shaped metal auxiliary electrode 50 is connected to the outermost gate bus (also can be understood as the outermost metal auxiliary electrode 50). This distribution can make it invisible to the naked eye and improve the display module’s reliability. The peripheral display effect of the viewing zone.
  • the light absorbing layer 30 and the back electrode 40 are arranged on the front electrode 20 at intervals, and each of the light absorbing layer 30 and the back electrode 40 is also covered with an insulating layer 70, a plurality of openings are formed between the insulating layers 70, and the metal auxiliary electrode 50 is in contact with the front electrode 20 through the openings.
  • the back electrode 40 can be connected to each other to form a grid or sheet shape. The number of openings can be a large number and can be randomly distributed.
  • the metal auxiliary electrode 50 may be formed on the outer side of the front electrode 20 and used as a gate bus line, or may not be formed on the outer side surface of the front electrode 20, so that there will be no color difference, because from the front view , The outermost area does not have the light absorbing layer 30, and there is a certain color difference from the area having the light absorbing layer 30.
  • the metal with high conductivity is used as the metal auxiliary electrode 50, which is distributed on the outermost periphery of the frame area and is connected to the front electrode 20.
  • the area of the connection part ie the width of the electrode line
  • the area of the connection part is determined by the total photovoltaic conversion area.
  • the front electrode 20 and the back electrode 40 can be directly used as electrodes without adding other conductive materials such as silver paste, which shortens the process flow and improves the product yield.
  • this patent details the preparation process of amorphous silicon, the light absorption layer 30 of this structure is also suitable for crystalline silicon, GaAs, CIGS or various combinations of photovoltaic layers.
  • the shape and structure formed by the thin-film photovoltaic cell can be changed according to the shape requirements of the device, and is not limited to the circular ring shown in the present invention, but can also be square or polygonal.
  • the metal auxiliary electrode 50 can be replaced by a metal oxide such as AZO, ITO, or a stack of metal oxide and metal. Since the opening diameter is small and the front electrode 20 has an uneven shape after texturing, these will make it difficult to form a metal film. Therefore, adding a layer of metal oxide under the metal is beneficial to the formation of the metal auxiliary electrode 50. Improve the efficiency of thin film photovoltaic cells.
  • a metal oxide such as AZO, ITO, or a stack of metal oxide and metal. Since the opening diameter is small and the front electrode 20 has an uneven shape after texturing, these will make it difficult to form a metal film. Therefore, adding a layer of metal oxide under the metal is beneficial to the formation of the metal auxiliary electrode 50. Improve the efficiency of thin film photovoltaic cells.
  • the front electrode 20 may use high transmittance metal oxides such as AZO, Ito, SnO, or transparent materials such as graphene, carbon nanotubes, and nanometals.
  • metal oxides such as AZO, Ito, SnO, or transparent materials such as graphene, carbon nanotubes, and nanometals.
  • the back electrode 40 can be made of metals such as Al, Mo, Ag, Cu, Au, or a combination of these metals, and can also be made of the same metal oxide and graphene as the front electrode 20.
  • the material of the metal auxiliary electrode 50 in the embodiment of the present invention may be the same as the material of the back electrode 40, and it is preferable to use a metal with good conductivity.
  • the ring pattern area shown in the embodiment of the present invention does not display the electrode shape bound to the FPC display, and the electrode shape can be designed according to actual needs.

Abstract

一种薄膜光伏电池的制造方法及薄膜光伏电池,其中制造方法包括以下步骤:提供一透明基板(10),将透明基板(10)朝向显示模组的一侧进行前电极(20)、光吸收层(30)和背电极(40)的成膜刻蚀;还包括对金属辅助电极(50)的成膜刻蚀的步骤,其中金属辅助电极(50)与前电极(20)接触连接并金属辅助电极(50)与背电极(40)绝缘隔开。通过将前电极(20)接触连接有金属辅助电极(50),所述金属辅助电极(50)用作栅极总线或者减少前电极(20)的电阻,其可以防止前电极(20)电阻过大对光伏转换效率的影响,从而提高整个薄膜光伏电池的效率。

Description

一种薄膜光伏电池的制造方法及薄膜光伏电池 技术领域
本发明涉及光伏电池制造技术领域,更具体地涉及一种薄膜光伏电池的制造方法及薄膜光伏电池。
背景技术
随着人们对能源的需求越来越高及薄膜光伏电池技术的不断发展,将薄膜光伏电池应用在显示模组(例如可穿戴电子产品)上,利用光转换电的原理给显示模组供电的技术得到越来越广泛的应用。
由于可穿戴类电子产品不仅在户外或者强光环境下使用,更多时间是在室内或者弱光环境下使用,因此如何提升在弱光环境下的光电转换效率成为薄膜光伏电池制造技术的亟待解决的技术问题之一。
技术问题
为了解决所述现有技术的不足,本发明提供了一种薄膜光伏电池的制造方法及薄膜光伏电池,通过将前电极接触连接有辅助电极,所述辅助电极用作栅极总线或者减少前电极的电阻,所述金属辅助电极与前电极的连接部分面积可根据有效光伏转化面积而定,其可以防止前电极电阻过大对光伏转换效率的影响,从而提高整个薄膜光伏电池的效率。
技术解决方案
本发明所要达到的技术效果通过以下方案实现:一种薄膜光伏电池的制造方法,包括以下步骤:提供一透明基板,将透明基板朝向显示模组的一侧进行前电极、光吸收层和背电极的成膜刻蚀;还包括对金属辅助电极的成膜刻蚀的步骤,其中金属辅助电极与前电极接触连接并金属辅助电极与背电极绝缘隔开。
优选地,所述薄膜光伏电池的制造方法包括以下步骤:
步骤S1:提供一透明基板,将透明基板朝向显示模组的一侧进行金属辅助电极成膜;
步骤S2:将金属辅助电极经涂胶曝光后成像并化学刻蚀;
步骤S3:在所述透明基板上进行前电极成膜,此时所述金属辅助电极至少部分形成在前电极的下面;
步骤S4:在所述前电极上进行光吸收层化学气相沉积成膜;
步骤S5:在所述光吸收层上进行背电极物理气相沉积成膜;
步骤S6:清洗后对背电极和光吸收层进行成像;
步骤S7:对前电极进行涂胶曝光成像后进行化学刻蚀;
步骤S8:对最外层的保护层进行成膜或涂胶。
优选地,所述薄膜光伏电池的制造方法包括以下步骤:
步骤S1:提供一透明基板,将透明基板朝向显示模组的一侧进行前电极成膜;
步骤S2:在所述前电极上进行光吸收层化学气相沉积成膜;
步骤S3:在所述光吸收层上进行背电极物理气相沉积成膜、成像、刻蚀;
步骤S4:直接对光吸收层进行干刻蚀后脱光刻胶膜;
步骤S5:对前电极进行涂胶曝光成像后进行化学刻蚀后脱掉光刻胶;
步骤S6:对绝缘层进行成膜,用于防止前电极上的栅极总线与背电极连接导致短路;
步骤S7:对金属辅助电极成膜,成像、刻蚀,光刻胶脱模处理;
步骤S8:对最外层的保护层成膜。
优选地,所述薄膜光伏电池的制造方法包括以下步骤:
步骤S1:提供一透明基板,将透明基板朝向显示模组的一侧进行前电极成膜及成像蚀刻;
步骤S2:在所述前电极上进行光吸收层化学气相沉积成膜;
步骤S3:在所述光吸收层上进行背电极物理气相沉积成膜以及成像蚀刻,非光刻胶保护区域被金属刻蚀液蚀刻过程中形成若干个开孔,再进行保留光刻胶直接对光吸收层进行干刻蚀,这样孔内保留有前电极;
步骤S4:在所述背电极上进行绝缘层成膜;
步骤S5:对金属辅助电极进行成膜,所述金属辅助电极通过开孔与前电极接触;
步骤S6:将金属辅助电极经涂胶曝光后成像并化学刻蚀。
一种薄膜光伏电池,所述薄膜光伏电池设于显示模组的显示面一侧,包括透明基板和设于所述透明基板上且朝向显示模组布置的光伏单元;所述光伏单元包括设于所述透明基板上的前电极、设于所述前电极上的光吸收层和设有所述光吸收层上的背电极;还包括与前电极接触的金属辅助电极,以及用于保护背电极、光吸收层、前电极和金属辅助电极的保护层,所述金属辅助电极与前电极接触连接用作栅极总线或者减少前电极的电阻。
优选地,所述金属辅助电极至少部分形成在前电极的下表面,且所述金属辅助电极形成在前电极的一侧或者两侧。
优选地,所述金属辅助电极与前电极接触的面至少部分为背向金属辅助电极的斜面。
优选地,所述金属辅助电极形成在前电极的上表面,所述金属辅助电极与背电极之间还设有绝缘层。
优选地,所述光吸收层和背电极为若干个间隔设置在所述前电极上,每个所述光吸收层和背电极上还覆盖有绝缘层,所述绝缘层之间形成有若干个开孔,所述金属辅助电极通过开孔与前电极接触连接。
优选地,所述金属辅助电极的下表面还设有防反射层。
有益效果
本发明具有以下优点:
通过将前电极接触连接有辅助电极,所述辅助电极用作栅极总线或者减少前电极的电阻,所述金属辅助电极与前电极的连接部分面积可根据有效光伏转化面积而定,其可以防止前电极电阻过大对光伏转换效率的影响,从而提高整个薄膜光伏电池的效率。
附图说明
图1为本发明中一种薄膜光伏电池应用在显示模组上的平面结构示意图;
图2为本发明中薄膜光伏电池的实施方式一的剖视结构示意图;
图3为本发明中薄膜光伏电池的实施方式二的剖视结构示意图;
图4为本发明中薄膜光伏电池的实施方式三的剖视结构示意图;
图5为本发明中薄膜光伏电池的实施方式四的剖视结构示意图。
本发明的实施方式
下面结合附图和实施例对本发明进行详细的说明,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
结合图1-图5所示,本发明提供一种薄膜光伏电池的制造方法,其中薄膜光伏电池设于显示模组的显示面一侧用于为显示模组提供电力,其可以形成在显示模组的边框区(如图1所示的环形区域),也可以形成在显示模组的可视区(如图1所示的内圆区域),还可以是边框区和可视区同时设有该薄膜光伏电池,其形成在可视区时对显示模组的正常显示可以忽略不计。
本发明所述薄膜光伏电池包括透明基板10和设于所述透明基板10上且朝向显示模组布置的光伏单元;所述光伏单元包括设于所述透明基板10上的前电极20、设于所述前电极20上的光吸收层30和设有所述光吸收层30上的背电极40。本发明实施例的薄膜光伏电池还包括与前电极20接触的金属辅助电极50,以及用于保护背电极40、光吸收层30、前电极20和金属辅助电极50不被氧化或划伤等的保护层60,所述金属辅助电极50与前电极20接触连接用作栅极总线或者减少前电极20的电阻。
所述金属辅助电极50与前电极20的连接部分面积可根据有效光伏转化面积而定,其可以防止前电极20电阻过大对光伏转换效率的影响,从而提高整个薄膜光伏电池的效率。
实施例一
请对应参阅图2,本发明实施例一所述薄膜光伏电池的制造方法包括以下步骤:
步骤S1:提供一透明基板10,将透明基板10朝向显示模组的一侧进行金属辅助电极50成膜。
优选地,所述金属辅助电极50的膜层结构可以是第一Mo层、金属层、第二Mo层依次层叠设置在透明基板10上,其中金属层可以采用Al,Ag,Au,Cu等导电性好的材质,第一Mo层可以提高中间金属层与透明基板10的粘附力,第二Mo层可以起到保护作用,所述第二Mo层同样可以使用活性不强的金属,其中所述金属辅助电极50的成膜温度为40℃-230℃,厚度可以是第一Mo层为500A,金属层为2000A-5000A,第二Mo层为500A。所述金属层由于强反射作用,导致太阳入射光面在光照射时反射光强烈,为减小该现象,可以在金属辅助电极50成膜前镀有SiNx的防反射层,或使用氧化钼等黑色金属替代该金属辅助电极50,减小该薄膜光伏电池器件使用时的反光作用。所述金属辅助电极的成膜可以是物理气相沉积等方式镀膜,但不限于此。
步骤S2:将金属辅助电极50经涂胶曝光后成像并化学刻蚀。
优选地,Al蚀刻液的比例为HNO 3=3%,HPO 3=68%,CH 3COOH=16%,H 2O=13%。当然,也可以用激光刻蚀的方法成像,其为常规技术,不作赘述。
步骤S3:在所述透明基板10上进行前电极20成膜,此时所述金属辅助电极50至少部分形成在前电极20的下面。所述金属辅助电极50用于减小电流回路电阻,最大限度提高该薄膜光伏电池器件效率。
可选的,还包括对前电极20制绒以形成凹凸不平的平面的步骤,以提高太阳能吸收。
具体地,所述前电极20可以采用AZO,ITO等材质的一种或组合,组合使用时,AZO与光吸收层30接触以减少接触电阻,其中AZO 的成膜温度为200-350℃,成膜厚度为300nm-1000nm之间;ITO可以采用常温成膜,膜厚为500A-3000A,优选采用235℃及以上的温度,退火以降低ITO电阻,对于AZO可以选择用低浓度HCl或碱性物质制绒形成凹凸不平的平面,以提高太阳能吸收。
步骤S4:在所述前电极20上进行光吸收层30化学气相沉积成膜。
具体地,所述光吸收层30分为P层、I层和N层,其中P层厚度为10nm-30nm,成膜温度为190℃-210℃, I层200 nm -500nm,成膜温度190℃-210℃,N层20 nm -30nm,成膜温度170℃-190℃。更有选的,所述P层分为P1和P2两层,其中P1: 使用气体,B2H6,SiH4,H2,B2H6:SiH4=1:2或者1:2.5,沉积压力为9000mtorr, 该压力保证P1位纳米晶硅,具有良好的导电性,沉积功率为700w-1400w,根据实际膜厚调整。氢稀释比H2/ SiH4=600;P2使用B2H6,CH4,SiH4,H2,B2H6:SiH4:CH4=1:3.75:2.5, 沉积压力为 2500mtor,沉积功率为80w-140w,氢稀释比H2/ SiH4=10。所述I层使用SiH4与H2两种气体,比例为1:10,沉积压力为2500mtorr,沉积功率30w-500w。所述N1使用PH3,SiH4与H2,PH3:SiH4= 1:1.5,沉积压力为1500mtor,沉积功率为90w-120w;氢稀释比H2/ SiH4=5.5。所述N2使用PH3,SiH4与H2,PH3:SiH4= 4:3,沉积压力为1500mtor,沉积功率为30-60w,氢稀释比H2/ SiH4=8。
步骤S5:在所述光吸收层30上进行背电极40物理气相沉积(PVD)成膜。优选地,所述背电极40的成膜温度为40℃-180℃,膜厚采用3000A-4000A。也可以同时在背电极40的金属层上面采用Mo等活性较弱的金属,起到保护背电极40的作用。
步骤S6:清洗后对背电极40和光吸收层30进行成像。该步骤中可以先选用Al刻蚀液刻蚀成像背电极40;接着投入干刻机台,刻蚀光吸收层30,所用气体(cl2:SF6=10),也可以选择Ar与SF6。这里主要是在干刻前不进行光刻胶的脱模处理而直接进行干刻,而节省工艺步骤。
步骤S7:对前电极20进行涂胶曝光成像后进行化学刻蚀,优选可以采用化学刻蚀的方式进行前电极20的成像。优选地,所述前电极20的宽度比光吸收层30的宽度更宽,以保证有效光伏转换区的面积。
步骤S8:对最外层的保护层60进行成膜或涂胶,优选可以利用SiNx成膜或有机保护胶丝印完成。
本实施例中,当所述金属辅助电极50仅形成在前电极20的一侧时,所述金属辅助电极50可用作前电极20的栅极总线;当所述金属辅助电极50形成在前电极20的两侧时,所述一侧的金属辅助电极50用作前电极20的栅极总线,另一侧的金属辅助电极50可以起到减少前电极20的电阻作用,两者可以通过保护层60内的金属进行连接或者在绑定位置处附近以拱桥的形式,将两者连接,中间用绝缘层70隔开以将背电极40隔开。且金属辅助电极50设置在前电极20的两侧,提高了降低电阻的效率,可以使光吸收层30的面积加宽,使薄膜光伏电池的铺设面积增加。
作为本发明实施例的进一步改进,所述金属辅助电极50与前电极20接触的面至少部分为背向金属辅助电极50的斜面,即金属辅助电极50具有一倾斜角度,这样有利于前电极20的成膜,不会因为垂直角度或倒角存在而断裂。优选地,所述金属辅助电极50的倾斜角度为70°以下。
应当理解的是,所述背电极40与光吸收层30在同一垂直线上,且辅助电极的倾斜开始点不一定要与光吸收层30对齐。
实施例二
请对应参阅图3,本发明实施例二与实施例一的区别在于先进行前电极20成膜,再进行金属辅助电极50成膜,此时,所述金属辅助电极50形成在前电极20的上表面。
本实施例二所述薄膜光伏电池的制造方法包括以下步骤:
步骤S1:提供一透明基板10,将透明基板10朝向显示模组的一侧进行前电极20成膜。
可选的,还包括对前电极20制绒以形成凹凸不平的平面的步骤,以提高太阳能吸收。
步骤S2:在所述前电极20上进行光吸收层30化学气相沉积成膜。
步骤S3:在所述光吸收层30上进行背电极40物理气相沉积成膜、成像、刻蚀。
步骤S4:直接对光吸收层30进行干刻蚀后脱光刻胶膜。
步骤S5:对前电极20进行涂胶曝光成像后进行化学刻蚀后脱掉光刻胶。
步骤S6:对绝缘层70进行成膜,用于防止前电极20上的栅极总线与背电极40连接导致短路。所述绝缘层70可以选用有机材料,与前电极20的角度应该控制在80度以内,用于防止金属辅助电极50成膜时由于角度太陡而断开。
此外,所述绝缘层70可以同时设置在前电极20的外围,用于保护所述前电极20,如图3所示,因为如果金属辅助电极50用化学刻蚀时,刻蚀液可以刻蚀掉前电极20, 该处绝缘层70是为了保护前电极20不被刻蚀。
步骤S7:对金属辅助电极50成膜,成像、刻蚀,光刻胶脱模处理。
步骤S8:对最外层的保护层60成膜或涂胶,优选可以利用S iNx成膜或有机保护胶等材料保护。
本实施例所述的前电极20宽度可根据实际情况而定,但其与相邻的无背电极40区域在组装时会被盖板等完全覆盖,为不可见区域,不存在透明性,只有光伏转换区是可见的。所述金属辅助电极50可以与光吸收层30直接连接,也可以与光吸收层30间隔开,不作具体限定。
应当理解的是,本发明实施例二所述的前电极20、光伏层、背电极40、金属辅助电极50、绝缘层70和保护层60的成膜条件参数,以及前电极20、光伏层、背电极40、金属辅助电极50的成像、刻蚀的条件参数与实施例一相同,因此不作赘述。
请对应参阅图4,本实施例中,所述金属辅助电极50还可自前电极20的两侧延伸至绝缘层70的上表面后相互接触连接,此时所述薄膜光伏电池的制作方法为先进行光吸收层30、背电极40及绝缘层70的成膜,再进行金属辅助电极50的成膜。
应当理解的是,所述金属辅助电极50在绝缘层70上表面的延伸可以是线状,也可以是片状,不作具体限定。
此外,所述薄膜光伏电池应用在边框区时,所述边框区的内框边缘的金属辅助电极50可以是不连续的环状,即金属辅助电极50为较小的点状或者若干个方块状,该点状或者方块状的金属辅助电极50与最外围的栅极总线(也可以理解为最外围的金属辅助电极50)连接,这样分布可以使肉眼不可见,提升显示模组的可视区的外围显示效果。
实施例三
请对应参阅图5,本发明实施例三与实施例二的区别在于还包括对光吸收层30、背电极40和绝缘层70开孔的步骤,所述金属辅助电极50通过孔与前电极20连接,以进一步减小前电极20的电阻。
本实施例三所述薄膜光伏电池的制造方法包括以下步骤:
步骤S1:提供一透明基板10,将透明基板10朝向显示模组的一侧进行前电极20成膜及成像蚀刻。
可选的,还包括对前电极20制绒以形成凹凸不平的平面的步骤,以提高太阳能吸收。
步骤S2:在所述前电极20上进行光吸收层30化学气相沉积成膜。
步骤S3:在所述光吸收层30上进行背电极40物理气相沉积成膜以及成像蚀刻,非光刻胶保护区域被金属刻蚀液蚀刻过程中形成若干个开孔,再进行保留光刻胶直接对光吸收层30进行干刻蚀,这样孔内保留有前电极20。
步骤S4:在所述背电极40上进行绝缘层70成膜。当所述绝缘层70选用有机光刻胶等有机材料时,可以用光在开孔区域直接曝光,形成开孔,这样就形成一个自绝缘层70往下至前电极20的孔;当所述绝缘层70采用SiNx等非金属材料时,则进行干刻蚀。
步骤S5:对金属辅助电极50进行成膜,所述金属辅助电极50通过开孔与前电极20接触。
步骤S6:将金属辅助电极50经涂胶曝光后成像并化学刻蚀。
本实施例三中,所述金属辅助电极50通过开孔与前电极20接触连接以减少电阻,所述金属辅助电极50还可以形成在前电极20的一侧用作栅极总线,所述金属辅助电极50还可从开孔中延伸至绝缘层70的上表面相互连接使减少电阻的效果更好。
本实施例三中,所述金属辅助电极50可以不形成在前电极20的外侧面,即不与前电极20连接,整个辅助电极分布在绝缘层70上,这样薄膜光伏电池器件边缘与光伏转换环就不会出现颜色的差异,因为从正面看,最外围的区域没有光吸收层30,与有光吸收层30的区域会有一定的颜色差异。
作为本发明实施例三的进一步改进,所述开孔无规律分布在光伏转换环上面,所述开孔可以是直径小于10um的圆形区,或边长为10um的方形区,在尺寸的规定上,满足宏观视觉上,这些孔不会形成颜色或视觉差异,一般8um以下效果较好。如果宏观上看到孔的分布,则会影响器件的视觉效果。
本发明实施例三所述的前电极20、光伏层、背电极40、金属辅助电极50和绝缘层70的成膜条件参数,以及前电极20、光伏层、背电极40、金属辅助电极50的成像、刻蚀的条件参数与实施例一相同,因此不作赘述。
实施例四
请参阅图1-图5,本发明实施例四提供一种薄膜光伏电池,该薄膜光伏电池设于显示模组的显示面一侧,利用光能发电给显示模组充电。所述薄膜光伏电池包括透明基板10和设于所述透明基板10上且朝向显示模组布置的光伏单元;所述光伏单元包括设于所述透明基板10上的前电极20、设于所述前电极20上的光吸收层30和设有所述光吸收层30上的背电极40。本发明实施例的薄膜光伏电池还包括与前电极20接触的金属辅助电极50,以及用于保护背电极40、光吸收层30、前电极20和金属辅助电极50的保护层60,所述金属辅助电极50与前电极20接触连接用作栅极总线或者减少前电极20的电阻。
所述金属辅助电极50与前电极20的连接部分面积可根据实际情况而定,其可以防止前电极20电阻过大对光伏转换效率的影响,从而提高整个薄膜光伏电池的效率。
本发明实施例中所述背电极40与前电极20的宽度不一定一致,两者之间的重合部分因工艺的不同会有所改变,也可设计成不重合。本发明实施例中所述前电极20的宽度根据具体情况而定,但与相邻的无背电极40区域在组装时会被盖板等完全覆盖,为不可见区域,不存在透明性。
本发明的薄膜光伏电池可以应用在显示模组的边框区(形成光伏转换环),也可以应用在显示模组的可视区,还可以在边框区和可视区均设有薄膜光伏电池,以提高光伏转换有效面积,当应用在可视区时,所述薄膜光伏电池以不影响可视区的显示效果为佳,例如可以将薄膜光伏电池做成细小的线性状或者栅格状,线性状或者栅格状的薄膜光伏电池使肉眼不可见。所述薄膜光伏电池的外形尺寸不作具体限制。
请参阅图2,作为本发明的一种实施方式,所述金属辅助电极50至少部分形成在前电极20的下表面,且所述金属辅助电极50形成在前电极20的一侧或者两侧。
优选地,所述金属辅助电极50由于强反射作用,导致入射光面光反射较多,为减小该现象,所述金属辅助电极50的下表面还设有防反射层,所述防反射层可以采用SiNx材质,或者使用氧化钼等黑色金属材质,用于遮盖金属辅助电极50,减小该薄膜光伏电池器件使用时的反光作用。
更优地,所述金属辅助电极50与前电极20接触的面至少部分为背向金属辅助电极50的斜面,即金属辅助电极50具有一倾斜角度(优选为70°以下),这样有利于前电极20的成膜,不会因为垂直角度或者倒角而断裂。
应当理解的是,所述背电极40与光吸收层30在同一垂直线上,且辅助电极的倾斜开始点不一定要与光吸收层30对齐。
当所述金属辅助电极50仅形成在前电极20的一侧时,所述金属辅助电极50可用作前电极20的栅极总线;当所述金属辅助电极50形成在前电极20的两侧时,形成在所述前电极20外侧的金属辅助电极50用作前电极20的栅极总线,形成在所述前电极20内侧的金属辅助电极50可以起到减少前电极20的电阻作用。且金属辅助电极50设置在前电极20的两侧,提高了降低电阻的效率,可以使光吸收层30的面积加宽,使薄膜光伏电池的铺设面积增加。
请参阅图3,作为本发明的另一种实施方式,所述金属辅助电极50形成在前电极20的上表面,所述金属辅助电极50与背电极40之间还设有绝缘层70,所述绝缘层70用于防止金属辅助电极50与背电极40导通形成短路。所述金属辅助电极50可以形成在前电极20的一侧或者两侧。当所述金属辅助电极50形成在前电极20的两侧时,所述两侧的金属辅助电极50可以延伸至相互连接设置,这样可以使前电极20的阻止有效降低。所述金属辅助电极50的延伸可以是全部延伸使延伸部分形成片状,也可以是其中的一小段延伸,延伸部分形成细线状。
更优地,所述绝缘层70可以同时设置在前电极20的外围,用于保护所述前电极20。
请对应参阅图4,本实施例中,所述金属辅助电极50还可自前电极20的两侧延伸至绝缘层70的上表面后相互接触连接。
应当理解的是,所述金属辅助电极50在绝缘层70上表面的延伸可以是线状,也可以是片状,不作具体限定。
此外,所述薄膜光伏电池应用在边框区时,所述边框区的内框边缘的金属辅助电极50可以是不连续的环状,即金属辅助电极50为较小的点状或者若干个方块状,该点状或者方块状的金属辅助电极50与最外围的栅极总线(也可以理解为最外围的金属辅助电极50)连接,这样分布可以使肉眼不可见,提升显示模组的可视区的外围显示效果。
请对应参阅图5,作为本发明的又一种实施方式,所述光吸收层30和背电极40为若干个间隔设置在所述前电极20上,每个所述光吸收层30和背电极40上还覆盖有绝缘层70,所述绝缘层70之间形成有若干个开孔,所述金属辅助电极50通过开孔与前电极20接触连接。优选地,所述金属辅助电极50从所述开孔延伸出后还可在背电极40上相互连接形成网格状或者片体状。所述开孔数量可以为大量且可以为无规则分布。
本实施方式中,所述金属辅助电极50可以形成在前电极20的外侧用作栅极总线,也可以不形成在前电极20的外侧面,这样就不会出现颜色的差异,因为从正面看,最外围的区域没有光吸收层30,与有光吸收层30的区域会有一定的颜色差异。
本发明实施例中,当所述薄膜光伏电池形成在显示模组的边框区时,将所述导电率高的金属作为金属辅助电极50,分布在边框区的最外围,与前电极20相连,连接部分面积(即电极线宽度)大小依据总的光伏转换面积而定。
本发明实施例中,所述前电极20和背电极40可以直接作为电极使用,不需要增加银浆等其他导电性好的材料,缩短工艺流程, 提高产品良率。虽然本专利详细了非晶硅的制备工艺,但是该结构所述光吸收层30同样适用晶体硅,GaAs,CIGS 或各种不同光伏层组合。
本发明实施例中,所述薄膜光伏电池形成的形状结构可以根据器件的形状需要而改变,不仅限于本发明中图示的圆环形,也可以是方形或者多边形等。
所述金属辅助电极50可以采用AZO,ITO等金属氧化物或金属氧化物及金属的叠层来代替。由于开孔径较小,而且经过制绒后, 前电极20为凹凸不平的形状, 这些都会造成金属成膜比较困难, 因此在金属下加一层金属氧化物有利于金属辅助电极50的成膜,提高薄膜光伏电池的效率。
所述前电极20为了保证自然光的透过率,其可采用AZO、Ito,SnO等高透过率金属氧化物,或者石墨烯,碳纳米管,纳米金属等透明物质。
所述背电极40可采用金属Al,Mo,Ag,Cu,Au等材质,或该金属的组合使用, 也可以使用与前电极20一样的金属氧化物及石墨烯等材质。
本发明实施例中所述金属辅助电极50的材质可以与背电极40的材质一致,均优选采用导电性好的金属。
本发明实施例所示的圆环图形区域没有显示与FPC显示绑定为的电极形状,其可以根据实际需要进行电极形状的设计。
最后需要说明的是,以上实施例仅用以说明本发明实施例的技术方案而非对其进行限制,尽管参照较佳实施例对本发明实施例进行了详细的说明,本领域的普通技术人员应当理解依然可以对本发明实施例的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明实施例技术方案的范围。

Claims (10)

  1. 一种薄膜光伏电池的制造方法,其特征在于,包括以下步骤:提供一透明基板,将透明基板朝向显示模组的一侧进行前电极、光吸收层和背电极的成膜刻蚀;还包括对金属辅助电极的成膜刻蚀的步骤,其中金属辅助电极与前电极接触连接并金属辅助电极与背电极绝缘隔开。
  2. 如权利要求1所述的一种薄膜光伏电池的制造方法,其特征在于,包括以下步骤:
    步骤S1:提供一透明基板,将透明基板朝向显示模组的一侧进行金属辅助电极成膜;
    步骤S2:将金属辅助电极经涂胶曝光后成像并化学刻蚀;
    步骤S3:在所述透明基板上进行前电极成膜,此时所述金属辅助电极至少部分形成在前电极的下面;
    步骤S4:在所述前电极上进行光吸收层化学气相沉积成膜;
    步骤S5:在所述光吸收层上进行背电极物理气相沉积成膜;
    步骤S6:清洗后对背电极和光吸收层进行成像;
    步骤S7:对前电极进行成像、刻蚀;
    步骤S8:对最外层的保护层进行成膜或涂胶。
  3. 如权利要求1所述的一种薄膜光伏电池的制造方法,其特征在于,包括以下步骤:
    步骤S1:提供一透明基板,将透明基板朝向显示模组的一侧进行前电极成膜;
    步骤S2:在所述前电极上进行光吸收层化学气相沉积成膜;
    步骤S3:在所述光吸收层上进行背电极物理气相沉积成膜、成像、刻蚀;
    步骤S4:直接对光吸收层进行干刻蚀后脱光刻胶;
    步骤S5:对前电极进行成像、刻蚀后脱掉光刻胶;
    步骤S6:对绝缘层进行成膜或涂胶,用于防止前电极上的栅极总线与背电极连接导致短路;
    步骤S7:对金属辅助电极成膜,成像、刻蚀,光刻胶脱模处理;
    步骤S8:对最外层的保护层成膜。
  4. 如权利要求1所述的一种薄膜光伏电池的制造方法,其特征在于,包括以下步骤:
    步骤S1:提供一透明基板,将透明基板朝向显示模组的一侧进行前电极成膜及成像蚀刻;
    步骤S2:在所述前电极上进行光吸收层化学气相沉积成膜;
    步骤S3:在所述光吸收层上进行背电极物理气相沉积成膜以及成像蚀刻,非光刻胶保护区域被金属刻蚀液蚀刻过程中形成开孔,再进行保留光刻胶直接对光吸收层进行干刻蚀,这样孔内保留有前电极;
    步骤S4:在所述背电极上进行绝缘层成膜;
    步骤S5:对金属辅助电极进行成膜,所述金属辅助电极通过开孔与前电极接触;
    步骤S6:将金属辅助电极经涂胶曝光后成像并化学刻蚀。
  5. 一种薄膜光伏电池,所述薄膜光伏电池设于显示模组的显示面一侧,其特征在于,包括透明基板和设于所述透明基板上且朝向显示模组布置的光伏单元;所述光伏单元包括设于所述透明基板上的前电极、设于所述前电极上的光吸收层和设有所述光吸收层上的背电极;还包括与前电极接触的金属辅助电极,以及用于保护背电极、光吸收层、前电极和金属辅助电极的保护层,所述金属辅助电极与前电极接触连接用作栅极总线或者减少前电极的电阻。
  6. 如权利要求5所述的一种薄膜光伏电池的制造方法,其特征在于,所述金属辅助电极至少部分形成在前电极的下表面,且所述金属辅助电极形成在前电极的一侧或者两侧。
  7. 如权利要求6所述的一种薄膜光伏电池的制造方法,其特征在于,所述金属辅助电极与前电极接触的面至少部分为背向金属辅助电极的斜面。
  8. 如权利要求5所述的一种薄膜光伏电池,其特征在于,所述金属辅助电极形成在前电极的上表面,所述金属辅助电极与背电极之间还设有绝缘层。
  9. 如权利要求5所述的一种薄膜光伏电池,其特征在于,所述光吸收层和背电极为若干个间隔设置在所述前电极上,每个所述光吸收层和背电极上还覆盖有绝缘层,所述绝缘层之间形成有若干个开孔,所述金属辅助电极通过开孔与前电极接触连接。
  10. 如权利要求5-9任一项所述的一种薄膜光伏电池,其特征在于,所述金属辅助电极的下表面还设有防反射层。
PCT/CN2019/089809 2019-05-31 2019-06-03 一种薄膜光伏电池的制造方法及薄膜光伏电池 WO2020237696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910472996.9A CN110277473B (zh) 2019-05-31 2019-05-31 一种薄膜光伏电池的制造方法及薄膜光伏电池
CN201910472996.9 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020237696A1 true WO2020237696A1 (zh) 2020-12-03

Family

ID=67961253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089809 WO2020237696A1 (zh) 2019-05-31 2019-06-03 一种薄膜光伏电池的制造方法及薄膜光伏电池

Country Status (2)

Country Link
CN (1) CN110277473B (zh)
WO (1) WO2020237696A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518079B (zh) * 2019-09-29 2024-05-07 信利半导体有限公司 一种光电转换率高的薄膜光伏电池及其制备工艺
WO2023035180A1 (zh) * 2021-09-09 2023-03-16 华为技术有限公司 一种太阳能电池器件及其制造方法、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100012173A1 (en) * 2005-12-14 2010-01-21 Korea Advanced Institute Of Science & Technology Integrated thin-film solar cell and method of manufacturing the same
CN101836301A (zh) * 2007-11-02 2010-09-15 周星工程股份有限公司 薄膜型太阳能电池及其制造方法
CN102394258A (zh) * 2011-11-18 2012-03-28 牡丹江旭阳太阳能科技有限公司 薄膜太阳电池高导电性前电极的制备方法
CN106165113A (zh) * 2014-02-06 2016-11-23 周星工程股份有限公司 具有改善的能见度的光伏装置及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107614A3 (en) * 2008-04-01 2010-11-03 Kisco Thin-film photovoltaic cell, thin-film photovoltaic module and method of manufacturing thin-film photovoltaic cell
US20130000720A1 (en) * 2011-01-31 2013-01-03 Fuji Electric Co., Ltd. Thin-film photovoltaic cell and method for manufacturing same
CN102832275A (zh) * 2012-09-06 2012-12-19 河南安彩高科股份有限公司 一种薄膜太阳能电池及其制作方法
KR101975522B1 (ko) * 2017-09-29 2019-05-07 한국에너지기술연구원 투광형 cigs계 박막 태양전지 및 그 제조방법
CN210040211U (zh) * 2019-05-31 2020-02-07 信利半导体有限公司 一种薄膜光伏电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100012173A1 (en) * 2005-12-14 2010-01-21 Korea Advanced Institute Of Science & Technology Integrated thin-film solar cell and method of manufacturing the same
CN101836301A (zh) * 2007-11-02 2010-09-15 周星工程股份有限公司 薄膜型太阳能电池及其制造方法
CN102394258A (zh) * 2011-11-18 2012-03-28 牡丹江旭阳太阳能科技有限公司 薄膜太阳电池高导电性前电极的制备方法
CN106165113A (zh) * 2014-02-06 2016-11-23 周星工程股份有限公司 具有改善的能见度的光伏装置及其制造方法

Also Published As

Publication number Publication date
CN110277473B (zh) 2024-03-26
CN110277473A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
US11495699B2 (en) Thin-film photovoltaic cell with high photoelectric conversion rate and preparation process thereof
KR20190055716A (ko) 이질 접합 태양 전지 및 그 제조 방법
TWI727728B (zh) 薄膜光伏電池串聯結構及薄膜光伏電池串聯的製備工藝
US20100258159A1 (en) Thin film type solar cell and method for manufacturing the same
US9818897B2 (en) Device for generating solar power and method for manufacturing same
JP6677801B2 (ja) 結晶シリコン系太陽電池およびその製造方法、ならびに太陽電池モジュール
JP2011023690A (ja) 選択エミッタ構造の電極パターンのアラインメント方法
WO2020237696A1 (zh) 一种薄膜光伏电池的制造方法及薄膜光伏电池
WO2019242550A1 (zh) 太阳能电池及其制作方法
WO2014189058A1 (ja) 太陽電池、太陽電池モジュール、太陽電池の製造方法、並びに太陽電池モジュールの製造方法
WO2021139332A1 (zh) 一种集成薄膜太阳能电池的显示模组及其制备方法
CN210040211U (zh) 一种薄膜光伏电池
TWM591259U (zh) 薄膜太陽能電池
CN103746014B (zh) 一种ito栅线太阳能电池及其制备方法
WO2019227804A1 (zh) 一种太阳能电池及其制备方法
JP3746410B2 (ja) 薄膜太陽電池の製造方法
JP2000114555A (ja) 薄膜太陽電池の製造方法
JP2013168605A (ja) 太陽電池の製造方法
JP2017045818A (ja) 裏面電極型太陽電池セルおよび裏面電極型太陽電池セルの製造方法
WO2017203751A1 (ja) 太陽電池及びその製造方法、並びに太陽電池パネル
CN203733812U (zh) 一种ito栅线太阳能电池
CN215163230U (zh) 一种单面或双面太阳能电池的图形化掩膜及太阳能电池
JP2001068709A (ja) 薄膜太陽電池
TWI581447B (zh) 異質接面太陽能電池結構及其製作方法
JPH03205879A (ja) 太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930596

Country of ref document: EP

Kind code of ref document: A1