WO2021139064A1 - 低副瓣天线 - Google Patents

低副瓣天线 Download PDF

Info

Publication number
WO2021139064A1
WO2021139064A1 PCT/CN2020/090584 CN2020090584W WO2021139064A1 WO 2021139064 A1 WO2021139064 A1 WO 2021139064A1 CN 2020090584 W CN2020090584 W CN 2020090584W WO 2021139064 A1 WO2021139064 A1 WO 2021139064A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation source
reference ground
substrate
planar
sidelobe antenna
Prior art date
Application number
PCT/CN2020/090584
Other languages
English (en)
French (fr)
Inventor
邹高迪
邹新
邹明志
Original Assignee
深圳迈睿智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010028140.5A external-priority patent/CN111162382A/zh
Priority claimed from CN202010027375.2A external-priority patent/CN111129755A/zh
Priority claimed from CN202010312935.9A external-priority patent/CN111474589A/zh
Priority claimed from CN202010364339.5A external-priority patent/CN111478032A/zh
Priority claimed from CN202010364315.XA external-priority patent/CN111416208A/zh
Application filed by 深圳迈睿智能科技有限公司 filed Critical 深圳迈睿智能科技有限公司
Publication of WO2021139064A1 publication Critical patent/WO2021139064A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the invention relates to the field of microwave detection, in particular to a low sidelobe antenna for microwave detection.
  • microwave detection technology has unique advantages in behavior detection and presence detection technology. It can detect moving objects without infringing on people’s privacy, so it has a wide range of
  • due to the lack of effective restraint and control methods for electromagnetic radiation that is, the shape adjustment method of electromagnetic radiation coverage, including the suppression of electromagnetic radiation corresponding to the side lobe, microwave detection technology is in practical application The adaptability to different application scenarios is limited.
  • the actual detection space of the existing microwave detection technology is difficult to control, which makes it difficult for the existing microwave detection technology to adapt to the selection of different target detection spaces, and due to the target Environmental interference in the actual detection space outside the detection space, including the action interference in the actual detection space outside the target detection space, electromagnetic interference, and self-excited interference caused by the electromagnetic shielding environment, especially the actual detection space outside the target detection space
  • the environmental interference in the electromagnetic radiation coverage corresponding to the side lobe also causes the existing microwave detection technology to have poor stability in anti-interference ability in different application scenarios.
  • the existing microwave detection technology mainly adopts a microwave detection module with a cylindrical radiation source structure and a microwave detection module with a planar radiation source structure.
  • the microwave detection module with the cylindrical radiation source structure has a radiation space corresponding to its electromagnetic radiation coverage.
  • the columnar radiation source structure The installation position of the microwave detection module is usually lowered to reduce or avoid the detection dead zone formed by the radiation dead zone of the corresponding radiation space in the space between the microwave detection module and the ground.
  • the microwave detection module of the cylindrical radiation source structure is relative to the plane.
  • the microwave detection module of the radiation source structure has a larger side lobe, and the microwave detection module of the cylindrical radiation source structure is more susceptible to environmental interference in the actual detection space outside the target detection space. That is to say, the detection distance of the existing microwave detection module with a cylindrical radiation source structure in actual use is much smaller than the detection distance matching its gain size, and has poor applicability compared to a microwave detection module with a planar radiation source structure. Therefore, the existing microwave detection technology mostly uses microwave detection modules with a planar radiation source structure.
  • the microwave detection module 10P includes a plane radiation source 12P and a reference ground 11P, wherein the plane radiation source 12P and the reference ground 11P are spaced apart parallel to each other, and the projection of the plane radiation source 12P on the reference ground 11P is located on the reference ground 11P.
  • a radiation gap 13P is formed between the plane radiating source 12P and the reference ground 11P, so when the plane radiating source 12P is fed, the plane radiating source 12P can be coupled with the reference ground 11P.
  • a radiation space 100P is formed from the radiation gap 13P with the axis perpendicular to the physical center point of the planar radiation source 12P as the central axis, wherein the radiation space 100P corresponds to the electromagnetic radiation coverage of the microwave detection module 10P of the planar radiation source structure It corresponds to the actual detection space of the microwave detection module 10P with the planar radiation source structure.
  • the direction from the reference ground 11P to the planar radiation source 12P is the detection direction of the microwave detection module 10P of the planar radiation source structure.
  • the projection surface on the corresponding target detection surface tends to be circular, that is, the microwave detection module 10P with the planar radiation source structure is suitable for the target detection space required by the circular target detection surface and the square target detection surface.
  • the circular target detection surface and the square target detection surface require most of the target detection space, so the microwave detection module 10P with the planar radiation source structure has certain adaptability to the target detection space in practical applications.
  • the microwave detection module 10P with the planar radiation source structure is difficult to adapt to more target detection spaces. Select and resist the environmental interference of the actual detection space outside the corresponding target detection space. For example, the microwave detection module 10P with the planar radiation source structure is difficult to adapt to the target detection space where the target detection surface is a narrow aisle, and resists the target detection space outside the target detection space.
  • the environmental interference in the actual detection space includes motion interference in the actual detection space outside the target detection space, electromagnetic interference, and self-excited interference caused by the electromagnetic shielding environment, especially in the actual detection space outside the target detection space.
  • the current microwave detection technology is difficult to stably adapt to the selection and resistance of different target detection spaces.
  • An object of the present invention is to provide a low sidelobe antenna, wherein the low sidelobe antenna has a target detection direction and can form a radiation space in which the direction opposite to the target detection direction is suppressed, that is, the The generation of a side lobe of the radiation space in a non-target detection space correspondingly reduces the electromagnetic radiation of the low side lobe antenna in the non-target detection space in the opposite direction of the target detection direction, which is beneficial to Avoid motion interference and electromagnetic interference in the non-target detection space in the reverse direction of the target detection direction, and improve the adaptability of the low sidelobe antenna to the non-target detection space and the corresponding target detection space. Reliability of detection.
  • Another object of the present invention is to provide a low side lobe antenna, wherein the generation of the side lobe of the low side lobe antenna is suppressed, which is beneficial to avoid the electromagnetic radiation corresponding to the side lobe in the non Multiple reflections in the target detection space cause self-excitation interference of the low sidelobe antenna, thereby improving the adaptability of the low sidelobe antenna to the non-target detection space and the detection reliability of the corresponding target detection space .
  • Another object of the present invention is to provide a low sidelobe antenna, wherein based on the idea of balancing the stray near-field radiation of the low sidelobe antenna, the potential distribution of the low sidelobe antenna in a polarization direction is weakened and The potential distribution in a non-polarized direction is enhanced, so as to avoid the potential distribution of the low-sidelobe antenna from being too concentrated in the polarization direction, correspondingly to balance the overall electric field coupling intensity distribution of the low-sidelobe antenna, thereby balancing all
  • the stray near-field radiation of the low sidelobe antenna further suppresses the generation of the sidelobe, while maintaining the electric field coupling energy of the low sidelobe antenna and maintaining the gain of the low sidelobe antenna.
  • Another object of the present invention is to provide a low sidelobe antenna, wherein the low sidelobe antenna includes a planar radiation source and a reference ground, wherein the planar radiation source and the reference ground are spaced apart in parallel with each other, wherein
  • the planar radiation source has a feeding point deviated from its physical center point, and the connection direction from the feeding point of the planar radiation source to its physical center point is the polarization direction, and the non-polar
  • the polarization direction is the direction perpendicular to the polarization direction on the plane radiation source, the distance direction from the reference ground to the plane radiation source is the target detection direction, and the direction of the plane radiation source is defined by the
  • the two opposite sides of the polarization direction are two polarization sides, and the two opposite sides of the plane radiation source passing through the non-polarization direction are defined as two non-polarization sides.
  • the polarization edge is recessed toward the physical center point of the plane radiation source and is set inwardly, so that when the plane radiation source is fed from the feeding point, the two points of the plane radiation source are
  • the non-polarized side is concavely arranged, and the side length of the non-polarized side is increased to correspond to a state in which the potential distribution of the non-polarized side is enhanced and the potential distribution of the polarized side is weakened, so In order to avoid the potential distribution of the planar radiation source being too concentrated on the polarization edge, the overall electric field coupling intensity distribution of the low sidelobe antenna is correspondingly balanced.
  • Another object of the present invention is to provide a low side-lobe antenna, wherein the two non-polarized sides of the planar radiation source are concavely arranged, and the side length of the non-polarized side is increased to correspond to the enhanced effect.
  • the concave structure design is also beneficial to enhance the electric field coupling strength between the two ends of each non-polarized side, so as to balance the plane in the non-polarized direction.
  • the electric field coupling intensity distribution between the radiation source itself and the reference ground correspondingly balances the electric field coupling intensity distribution of the low sidelobe antenna in the non-polarized direction, thereby suppressing the generation of the sidelobe.
  • Another object of the present invention is to provide a low sidelobe antenna, wherein the potential distribution of the non-polarized side is adjusted by designing the concave shape and size of the non-polarized side of the planar radiation source, Therefore, the proportion of the electric field coupling energy of the low-sidelobe antenna in the non-polarized direction allows the design based on the concave shape and size of the non-polarized side of the planar radiation source to be adjusted, and all of them are adjusted accordingly.
  • the radiation angle of the radiation space in the non-polarized direction is beneficial to improve the adaptability of the low sidelobe antenna to the target detection space required by different detection surfaces.
  • Another object of the present invention is to provide a low sidelobe antenna, in which the concave shape and size of the non-polarized side of the planar radiation source are designed, and the reference ground is set on the non-polarized side.
  • the dimension design of the direction, the low sidelobe antenna in the electric field coupling energy of the non-polarization direction, the electric field coupling energy ratio between the planar radiation source itself and the reference ground can be adjusted, so as to be based on
  • the difference in the electric field coupling direction between the planar radiation source itself and the reference ground further adjusts the radiation angle of the radiation space in the non-polarized direction, thereby helping to improve the low sidelobe antenna's detection of different
  • the adaptability of the target detection space required by the surface is to provide a low sidelobe antenna, in which the concave shape and size of the non-polarized side of the planar radiation source are designed, and the reference ground is set on the non-polarized side.
  • Another object of the present invention is to provide a low sidelobe antenna, wherein the two non-polarized edges of the planar radiating source are recessed, and the recessed portion of the planar radiating source corresponds to the reference
  • the ground can be coupled with the corresponding non-polarized edge of the planar radiation source to reduce the size requirement on the reference ground in the non-polarized direction.
  • the size setting is consistent with the maximum size of the planar radiation source, so as to reduce the size of the low sidelobe antenna while suppressing the generation of the sidelobe and maintaining the gain of the low sidelobe antenna.
  • Another object of the present invention is to provide a low sidelobe antenna, wherein the two non-polarized edges of the planar radiation source are recessed, so as to reduce the perimeter while maintaining the planar radiation source.
  • the size of the planar radiation source is reduced, thereby reducing the size of the low-side-lobe antenna while suppressing the generation of the side-lobe and maintaining the gain of the low-side-lobe antenna.
  • Another object of the present invention is to provide a low sidelobe antenna, wherein the low sidelobe antenna further includes at least one auxiliary radiation source, wherein the auxiliary radiation source and the planar radiation source are respectively equidistant from the reference ground.
  • Space wherein the auxiliary radiation source and the planar radiation source are arranged and electrically connected along the line connecting the physical center point of the planar radiation source and the feeding point, so that the planar radiation source When the feeding point is fed, it is set based on the distance between the planar radiation source and the adjacent auxiliary radiation source, and the number setting of the auxiliary radiation source and the distance between the adjacent auxiliary radiation sources
  • the radiation space is formed based on beam synthesis and has a beam angle that is narrowed and adjusted in the polarization direction, so that the low sidelobe antenna is suitable for the target detection space required by the narrow and long target detection surface. It is beneficial to improve the adaptability of the low sidelobe antenna to the target detection space required by different detection surfaces.
  • Another object of the present invention is to provide a low sidelobe antenna, wherein due to the arrangement of the auxiliary radiation source, the electric field coupling energy of the low sidelobe antenna in the non-polarized direction is further improved, wherein the reference ground
  • the distance parameter D1 between the side corresponding to the non-polarized side of the planar radiation source and the corresponding non-polarized side of the planar radiation source satisfies D1 ⁇ /32, where ⁇ is the corresponding The wavelength parameter of the feeding frequency, so as to balance the electric field coupling intensity distribution between the planar radiation source itself and the reference ground in the non-polarized direction, correspondingly to balance the low sidelobe antenna in the non-polar direction.
  • the electric field coupling intensity distribution in the chemical direction thereby suppressing the generation of the side lobes.
  • Another object of the present invention is to provide a low-sidelobe antenna, wherein the low-sidelobe antenna further includes a radiation source substrate, a reference ground substrate and a shielding cover, wherein the planar radiation source is carried in the form of a metal layer.
  • the radiation source substrate, wherein the reference ground is carried on the reference ground substrate in the form of a metal layer, wherein the radiation source substrate and the reference ground substrate are attached to correspondingly form the planar radiation source and the reference ground substrate.
  • the ground is separated by the radiation source substrate, wherein the reference ground substrate is attached to the radiation source substrate and abutted against the shielding cover on the basis of the structure, by welding the shielding cover to
  • the method of the radiation source substrate can form a stable connection structure relationship among the shielding cover, the radiation source substrate, and the reference ground substrate, which simplifies the manufacturing process of the low sidelobe antenna, thereby providing It is beneficial to the production of the low sidelobe antenna.
  • Another object of the present invention is to provide a low sidelobe antenna, wherein the reference ground substrate is attached to the radiation source substrate and abutted against the shielding cover on the basis of the structure, by the shielding cover
  • the method of soldering to the radiation source substrate can avoid the reflow fixing process between the radiation source substrate and the reference ground substrate in the laminating gap that is attached to each other, which is beneficial to improve the plane radiation source and the With reference to the electrical stability of the medium between the ground, while simplifying the manufacturing process of the low sidelobe antenna, it is beneficial to improve the consistency and stability of the low sidelobe antenna.
  • the low sidelobe antenna includes:
  • a planar radiation source wherein the planar radiation source and the reference ground are spaced apart parallel to each other, wherein the planar radiation source has a feeding point deviated from its physical center point, and the planar radiation source is The physical center point from the feeding point to the planar radiation source is a polarization direction, and a direction perpendicular to the polarization direction in the planar radiation source is a non-polarization direction, where the plane is defined
  • the two opposite sides of the radiation source passing through the non-polarized direction are two non-polarized sides, wherein the two non-polarized sides of the planar radiation source are recessed toward the physical center point of the planar radiation source and are inside. Concave setting.
  • the two opposite sides that define the plane radiation source passing through the polarization direction are two polarization sides, wherein the side length of the polarization side is a parameter a, and the non-polarization side
  • the side length is a parameter b, where the parameter a and the parameter b satisfy ⁇ /8 ⁇ a ⁇ /2 and ⁇ /8 ⁇ b ⁇ /2, respectively, where ⁇ is the wavelength parameter corresponding to the feeding frequency.
  • the distance between the corresponding polarization edge of the planar radiation source and the side edge of the reference ground is The distance is a parameter D3, and in the direction from the physical center point of the planar radiation source to the feeding point, the distance between the corresponding polarization edge of the planar radiation source and the side of the reference ground is The parameter D4, wherein the numerical range of the parameter D3 and the parameter D4 satisfies: D3 ⁇ /64 or D4 ⁇ /64.
  • the size of the reference ground in the non-polarized direction is consistent with the maximum size of the planar radiation source in the non-polarized direction.
  • the plane radiation source is electrically connected to the reference ground due to its physical center point.
  • the low sidelobe antenna further includes a radiation source substrate, a reference ground substrate and a shielding cover, wherein the planar radiation source is carried on the radiation source substrate in the form of a metal layer, wherein the The reference ground is carried on the reference ground substrate in the form of a metal layer, wherein when the reference ground substrate is attached to the radiation source substrate and abutted against the shielding cover, the shielding cover and the The radiation source substrate is welded and fixed, corresponding to a state where the plane radiation source and the reference ground are separated by the radiation source substrate, the reference ground substrate is clamped and fixed to the radiation source substrate and the shielding cover The structural relationship between.
  • the radiation source substrate has a first copper-clad layer and a second copper-clad layer respectively disposed on two opposite sides of the radiation source substrate, and the reference ground substrate is provided with a metal layer , wherein the metal layer and the second copper clad layer are conductively bonded and reflow soldering is avoided in the inter-bonded layer gap, correspondingly forming a state where the reference ground substrate and the radiation source substrate are bonded In this way, the plane radiation source is formed on the first copper-clad layer and the reference ground is formed on the metal layer, thereby forming the plane radiation source and the reference ground separated by the radiation source substrate stable state.
  • a straight line defining the physical center point of the planar radiation source on the planar radiation source is an energy balance line
  • the radiation source substrate is in contact with the
  • Two welding grooves are provided at the side positions corresponding to the energy balance line, wherein the shielding cover is fixed to the radiation source substrate by welding to the corresponding welding grooves in a state of abutting against the reference ground substrate .
  • the shielding cover extends from its cover edge to form two welding arms corresponding to the welding grooves, wherein the shielding cover is in a state of abutting against the reference ground substrate with the welding arms
  • the method of being welded to the corresponding welding groove is welded to the radiation source substrate.
  • the size of the radiation source substrate in the non-polarization direction is set to be larger than the inner diameter of the shield in the non-polarization direction.
  • the radiation source substrate is provided with two pads, wherein the two pads are covered on the groove wall of the corresponding soldering groove and are electrically connected to the second pad of the radiation source substrate.
  • the pad is conductively connected to the metal layer of the reference ground substrate through the second copper clad layer, wherein the radiation source substrate is in the soldering groove through the pad and If the shielding cover is welded and fixed, the shielding cover is conductively connected to the reference ground to be grounded.
  • the pad is formed by a metallization via process to cover the groove wall of the soldering groove, and at the same time, a conductive connection relationship between the pad and the second copper clad layer is formed .
  • the plane radiation is sourced from the physical center point thereof and is electrically connected to the second copper clad layer by a metallization via process, so as to pass through the second copper clad layer and the
  • the conductive bonding of the reference ground forms the electrical connection of the plane radiation from the physical center point and the reference ground.
  • the shield of the shielding cover passing through the polarization direction is recessed to form two mounting grooves, wherein the two opposite ends of the reference ground substrate passing through the polarization direction correspond to Two mounting arms are extended to form, wherein the mounting arms of the reference ground substrate protrude from the shielding cover in the corresponding mounting grooves to abut against the shielding cover.
  • the mounting arm of the reference ground substrate is in a state where the corresponding mounting groove protrudes from the shielding cover, a part of the reference ground substrate excluding the mounting arm sinks into the shielding cover.
  • the shielding case wherein the portion of the reference ground substrate that sinks into the shielding case is set to have a shape and size matching the shielding case to correspond to the portion of the reference ground substrate that sinks into the shielding case.
  • the side edge is close to the inner peripheral side of the shield case and is surrounded by the shield case.
  • the size of the reference ground substrate in the non-polarization direction is set to be consistent with the size of the reference ground in the non-polarization direction, so as to correspond to the circumference of the reference ground. Along the state of being close to the inner peripheral side of the shield case.
  • the size of the radiation source substrate in the polarization direction is set to be consistent with the size of the shield in the polarization direction, corresponding to the second copper clad layer in the polarization direction.
  • the size of the polarization direction is set to be consistent with the size of the shielding cover in the polarization direction.
  • the reference ground substrate is provided with at least one solder terminal on each mounting arm on the side where the metal layer is provided, for use as the power access and signal of the low sidelobe antenna. Lead out the port.
  • the low sidelobe antenna further includes at least one auxiliary radiation source, wherein the auxiliary radiation source and the planar radiation source are respectively equidistant from the reference ground, and the auxiliary radiation source And the planar radiation source are arranged and electrically connected along the line connecting the physical center point of the planar radiation source and the feeding point, wherein the planar radiation source is between the adjacent auxiliary radiation source
  • the distance parameter D2 in the polarization direction satisfies ⁇ /8 ⁇ D2 ⁇ /2, wherein the side of the reference ground corresponding to the non-polarized side of the planar radiation source and the non-polarized side
  • the distance parameter D1 between the edges in the non-polarization direction satisfies D1 ⁇ /32.
  • the planar radiation source and the adjacent auxiliary radiation source are electrically connected via a microstrip impedance line, wherein the microstrip impedance line is along the feed of the planar radiation source
  • the connection line between the point and the physical center point is set to correspond to a state where the auxiliary radiation source and the plane radiation source are electrically connected along the line between the physical center point of the plane radiation source and the feeding point , Wherein the length parameter L of the microstrip impedance line satisfies ⁇ /8 ⁇ L ⁇ /2.
  • the line width parameter W of the microstrip impedance line satisfies 0.05mm ⁇ W ⁇ 3.2mm.
  • the number of the auxiliary radiation source is greater than one, and the planar radiation source and the adjacent auxiliary radiation source are along the line connecting the physical center point of the planar radiation source and the feeding point Are arranged and electrically connected, and between adjacent auxiliary radiation sources along the line between the physical center point of the planar radiation source and the feeding point are arranged and electrically connected to form a corresponding The auxiliary radiation source and the planar radiation source are arranged and electrically connected along the line connecting the physical center point of the planar radiation source and the feeding point.
  • each of the auxiliary radiation sources is preferably arranged along the line connecting the physical center point of the planar radiation source and the feeding point on the same side of the planar radiation source.
  • FIG. 1A is a schematic structural diagram of a microwave detection module with a conventional planar radiation source structure.
  • FIG. 1B is a radiation pattern diagram of the conventional microwave detection module with the planar radiation source structure.
  • FIG. 2A is a schematic structural diagram of a low sidelobe antenna according to an embodiment of the present invention.
  • Fig. 2B is a radiation pattern of the low sidelobe antenna according to the above-mentioned embodiment of the present invention.
  • FIG. 3A is a schematic structural diagram of the low sidelobe antenna according to an optimized embodiment of the above-mentioned embodiment of the present invention.
  • FIG. 3B is a radiation pattern of the low sidelobe antenna according to the above-mentioned optimized embodiment of the present invention.
  • FIG. 4A is a schematic structural diagram of the low sidelobe antenna according to a modified embodiment of the above-mentioned embodiment of the present invention.
  • Fig. 4B is a radiation pattern of the low sidelobe antenna according to the above-mentioned modified embodiment of the present invention.
  • FIG. 5 is a three-dimensional structural diagram of a further optimized structure of the low sidelobe antenna according to the above-mentioned optimized embodiment of the present invention.
  • FIG. 6 is a three-dimensional exploded structural schematic diagram of a further optimized structure of the low sidelobe antenna according to the above-mentioned optimized embodiment of the present invention.
  • the term “a” should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of an element may be one, and in another embodiment, the number of the element The number can be multiple, and the term “one” cannot be understood as a restriction on the number.
  • the structure and radiation pattern of a low sidelobe antenna 10 according to an embodiment of the present invention are respectively illustrated, wherein the low sidelobe antenna 10 has a target detection Direction (corresponding to the Z-axis direction in Fig. 2A and Fig. 2B) and can be formed in the opposite direction of the target detection direction compared to Fig. 1B to suppress a radiation space 100, that is, relative to the existing planar radiation source
  • the microwave detection module 10P of the structure suppresses a side lobe 101 of the radiation space 100 located in a non-target detection space (corresponding to the plane defined by the X axis and the Y axis in FIG.
  • the radiation space 100 is in The generation of the portion in the opposite direction of the target detection direction) correspondingly reduces the electromagnetic radiation of the low sidelobe antenna 10 in the non-target detection space in the opposite direction of the target detection direction, thereby facilitating Avoid motion interference and electromagnetic interference in the non-target detection space in the reverse direction of the target detection direction, and improve the adaptability of the low sidelobe antenna 10 to the non-target detection space and the corresponding target detection space The reliability of detection.
  • the electromagnetic radiation corresponding to the side lobe 101 is caused by multiple reflections in the non-target detection space.
  • the self-excited interference phenomenon of the low sidelobe antenna 10 can be avoided, which further improves the adaptability of the low sidelobe antenna 10 to the non-target detection space and the detection reliability of the corresponding target detection space.
  • the unbalanced degree of the stray near-field radiation of the low side-lobe antenna 10 is related to that of the side-lobe 101.
  • the corresponding electromagnetic radiation energy, that is, balancing the stray near-field radiation of the low sidelobe antenna 10 is beneficial to suppress the generation of the sidelobe 101.
  • the present invention is based on balancing the stray near-field radiation of the low sidelobe antenna 10
  • the microwave detection module 10P of the existing planar radiation source structure On the basis of the potential distribution of the microwave detection module 10P of the existing planar radiation source structure, by enhancing the potential distribution of the low sidelobe antenna 10 in a non-polarized direction, compared with the existing planar radiation source structure
  • the microwave detection module 10P weakens the potential distribution of the low sidelobe antenna 10 in a polarization direction (corresponding to the Y-axis direction in FIGS.
  • the polarization direction is too concentrated, which correspondingly balances the overall electric field coupling intensity distribution of the low sidelobe antenna 10, that is, reduces the gap between the maximum value and the minimum value of the overall electric field coupling intensity of the low sidelobe antenna 10.
  • the stray near-field radiation of the low sidelobe antenna 10 associated with the initial electric field coupling strength is balanced, which is beneficial to suppress the generation of the sidelobe 101.
  • the gain of the low sidelobe antenna 10 can be maintained relative to the microwave detection module 10P of the existing planar radiation source structure.
  • the low sidelobe antenna 10 includes a reference ground 11 and a plane radiation source 12, wherein the plane radiation source 12 and the reference ground 11 are spaced apart in parallel with each other, wherein the plane radiation source 12 has A feed point 122 deviated from its physical center point 121, then the plane radiation source 12 uses the direction of the connection line from the feed point 122 to the physical center point 121 as the polarization direction, and the plane
  • the direction perpendicular to the polarization direction on the radiation source 12 is the non-polarization direction
  • the distance direction from the reference ground 11 to the plane radiation source 12 is the target detection direction
  • the plane radiation is defined
  • the two opposite sides of the source 12 passing through the polarization direction are two polarizing sides 123, and the two opposite sides passing through the non-polarization direction of the planar radiation source 12 are defined as two non-polarizing sides 124.
  • the two non-polarized edges 124 of the planar radiation source 12 are recessed toward the physical center point 121 of the planar radiation source 12 to be concavely arranged, wherein when the planar radiation source 12 is fed at the feeding point 122 During electricity, the plane radiation source 12 interacts with the reference ground 11 to generate the radiation space 100, that is, the radiation space 100 corresponds to the electromagnetic radiation coverage of the low sidelobe antenna 10, wherein the radiation space 100 has the side lobe 101 located in the opposite direction of the target detection direction with the plane radiation source 12 (corresponding to the plane where the X-axis and Y-axis are located in FIG.
  • the two non-polarized sides 124 of 12 are concavely arranged, the side length of the non-polarized side 124 is increased, and the potential distribution corresponding to the non-polarized side 124 is enhanced and the polarized side 123
  • the reduced potential distribution of the planar radiation source 12 avoids the potential distribution of the planar radiation source 12 from being too concentrated on the polarization edge 123, and correspondingly balances the overall electric field coupling intensity distribution of the low sidelobe antenna 10, thereby balancing all
  • the stray near-field radiation of the low sidelobe antenna 10 further suppresses the generation of the sidelobe 101 in the radiation space 100, and at the same time maintains the electric field coupling energy of the low sidelobe antenna 10.
  • the gain of the low sidelobe antenna 10 is described.
  • the electric field coupling strength between the two ends of each non-polarized side 124 is not only enhanced due to the enhanced potential distribution of the non-polarized side 124, but also due to the concave structure design.
  • the electric field coupling strength between the two ends of each of the non-polarized sides 124 is further enhanced, so that the balance in the non-polarized direction
  • the electric field coupling intensity distribution between the planar radiation source 12 itself (that is, between the two ends of the non-polarized edges 124) and the reference ground 11 prevents the low sidelobe antenna 10 from being placed on the non-polarized side.
  • the electric field coupling energy in the polarization direction is excessively concentrated on the electric field coupling between the non-polarized side 124 of the planar radiation source 12 and the reference ground 11, which correspondingly balances the low sidelobe antenna 10 in the non-polarized side.
  • the electric field coupling intensity distribution in the polarization direction further suppresses the generation of the side lobe 101 by balancing the stray near-field radiation of the low side lobe antenna 10.
  • the potential distribution of the non-polarized side 124 can be adjusted, so the low sidelobe antenna 10
  • the proportion of the electric field coupling energy in the non-polarized direction allows adjustment based on the design of the concave shape and size of the non-polarized side 124 of the planar radiation source 12, so as to adjust the radiation space accordingly
  • the radiation angle of 100 in the non-polarized direction is beneficial to improve the adaptability of the low sidelobe antenna 10 to the target detection space required by different detection surfaces.
  • the non-polarized direction of the low sidelobe antenna 10 there is an electric field coupling between the two ends of each non-polarized side 124 of the planar radiation source 12, and the planar radiation
  • the electric field coupling between the source 12 and the reference ground 11 is based on the design of the concave shape and size of the non-polarized edge 124 of the planar radiation source 12, and the reference ground 11 on the
  • the size design of the non-polarization direction, the low sidelobe antenna 10 in the non-polarization direction electric field coupling energy, the electric field coupling energy ratio between the planar radiation source 12 itself and the reference ground 11 can be It is adjusted so that the radiation angle of the radiation space 100 in the non-polarized direction is further adjusted based on the difference in the electric field coupling direction between the planar radiation source 12 itself and the reference ground 11, thereby facilitating improvement
  • the low sidelobe antenna 10 has adaptability to target detection space required by different detection surfaces.
  • the planar radiation source 12 is grounded at the physical center point 121 thereof.
  • the planar radiation source 12 is grounded in a manner of being electrically connected to the reference ground 11 at the physical center point, so as to reduce the power of the planar radiation source 12
  • the ground impedance method improves the quality factor (ie Q value) of the low sidelobe antenna 10, correspondingly narrowing the bandwidth of the low sidelobe antenna 10, thereby helping to improve the anti-interference of the low sidelobe antenna 10 performance.
  • the side length parameter of the polarized side 123 of the planar radiation source 12 is a
  • the side length parameter of the non-polarized side 124 is b
  • the parameter a and the parameter b respectively satisfy ⁇ /8 ⁇ a ⁇ /2 and ⁇ /8 ⁇ b ⁇ /2, where ⁇ is the wavelength parameter corresponding to the feeding frequency, so as to help satisfy the low sidelobe antenna 10 impedance matching, and to ensure that the planar radiation source 12 has a circumference greater than or equal to ⁇ /2 and generates an initial polarization to radiate electromagnetic energy to the outside when it is fed.
  • the planar radiation source 12 The side length parameter a of the polarized side 123 and the side length parameter b of the non-polarized side 124 tend to ⁇ /4 within an error range of 20%, so that the planar radiation source 12 has The circumference tends to ⁇ , which is beneficial to improve the radiation efficiency of the low sidelobe antenna 10.
  • the size of the planar radiation source 12 is reduced while maintaining a corresponding perimeter, that is, the The concave design of the non-polarized side 124 of the planar radiation source 12 suppresses the generation of the side lobe 101 and maintains the gain of the low side lobe antenna 10 at the same time is beneficial to reduce the low side lobe antenna 10 size of.
  • the concave arrangement of the two non-polarized edges 124 of the planar radiation source 12 corresponds to increasing the size of the reference ground 11 relative to the planar radiation source 12 in the non-polarized direction, That is, the reference ground 11 corresponding to the concave portion of the planar radiation source 12 can be coupled with the corresponding non-polarized edge 124 of the planar radiation source 12 to reduce the interference in the non-polarized direction.
  • the size requirement of the reference ground 11 is so as to reduce the size of the low side lobe antenna 10 while suppressing the generation of the side lobe 101 and maintaining the gain of the low side lobe antenna 10.
  • the side lobe 101 of the low side lobe antenna 10 is suppressed, and at the same time, the side lobe 101 of the low side lobe antenna 10 is suppressed.
  • the gain can be maintained, and it is advantageous to reduce the size of the low sidelobe antenna 10.
  • the reference ground 11 is in the polarization direction and the non-polarization direction and the plane radiation source
  • the position and size relationship between 12 is diverse, and the present invention is not limited to this.
  • FIGS. 3A and 3B of the accompanying drawings of the specification of the present invention the structure and radiation pattern of the low sidelobe antenna 10 according to an optimized embodiment of the above-mentioned embodiment of the present invention are respectively illustrated, wherein Compared with the low sidelobe antenna 10 corresponding to FIGS. 2A and 2B, in this optimized embodiment of the present invention, in order to achieve the optimization purpose of reducing the size of the low sidelobe antenna 10, the reference ground The size of 11 in the non-polarization direction is reduced. Specifically, in this optimized embodiment of the present invention, the size of the reference ground 11 in the non-polarized direction is consistent with the maximum size of the planar radiation source 12 in this direction.
  • the size of the planar radiation source 12 of the low sidelobe antenna 10 is reduced based on the concave design of the non-polarized edge 124, and the reference ground 11 is in the non-polarized direction.
  • the size is kept consistent with the maximum size of the planar radiation source 12 in this direction and is reduced, so that the size of the low sidelobe antenna 10 is reduced compared with the microwave detection module 10P of the existing planar radiation source structure. small.
  • the "reference ground 11 dimension in the non-polarized direction and the plane The description that the maximum dimension of the radiation source 12 in this direction remains the same” should be understood as “the plane radiation source 12 and the reference ground 11 are spaced apart in parallel to each other, and the plane radiation source 12 is located on the reference ground.
  • the projection of 11 is located within the reference ground 11. Based on the structure, the size of the reference ground 11 in the non-polarized direction and the maximum size of the planar radiation source 12 in that direction are allowed to have a size smaller than Equal to the difference of ⁇ /32.
  • the size of the reference ground 11 in the non-polarized direction is reduced, and the electric field coupling energy of the low sidelobe antenna 10 in the non-polarized direction is
  • the proportion of the electric field coupling energy of the plane radiation source 12 itself is increased, and the proportion of the electric field coupling energy between the plane radiation source 12 and the reference ground 11 is reduced, that is, the low sidelobe antenna 10
  • the degree of the radiation space 100 and the direction opposite to the target detection direction maintain the suppression of the side lobe 101.
  • the structure and radiation of the low sidelobe antenna 10 according to a modified embodiment of the above-mentioned embodiment of the present invention are adapted to meet the needs of a long and narrow detection surface.
  • the directional diagrams are respectively illustrated, where in this modified embodiment of the present invention, based on the idea of combining a combined beam in the polarization direction and enhancing the electric field coupling energy of the low sidelobe antenna 10 in the non-polarization direction,
  • the angle of the radiation space 100 in the polarization direction is compressed, so that the radiation space 100 in the target detection direction has a narrow and long projection surface that is narrowed and adjusted in the polarization direction, so that the The low sidelobe antenna 10 can be applied to a target detection space that requires a long and narrow detection surface.
  • the low sidelobe antenna 10 further includes at least one auxiliary radiation source 13, wherein the planar radiation source 12 and the auxiliary radiation source 13 are respectively connected to the reference ground 11 Are arranged at equal intervals, wherein the auxiliary radiation source 13 and the planar radiation source 12 are arranged and electrically connected along the line connecting the physical center point 121 of the planar radiation source 12 and the feeding point 122.
  • each of the auxiliary radiation sources 13 has the same polarization direction as the planar radiation source 12, according to the The distance setting between the planar radiation source 12 and the adjacent auxiliary radiation source 13, and the number setting of the auxiliary radiation source 13 and the distance setting between the adjacent auxiliary radiation sources 13, the low sidelobe antenna 10 can form the radiation space 100 compressed and adjusted in the polarization direction based on beam synthesis.
  • the radiation space 100 correspondingly enhances the gain of the low sidelobe antenna 10 based on beam synthesis, that is, the overall electric field coupling energy of the low sidelobe antenna 10 The density is increased.
  • the reference ground The distance parameter between the side edge corresponding to the non-polarized side 124 of the planar radiation source 12 and the corresponding non-polarized side 124 of the planar radiation source 12 in the non-polarized direction of 11 D1 is set to satisfy D1 ⁇ /32, so that by ensuring the minimum size of the reference ground 11 in the non-polarized direction, the plane radiation source 12 is guaranteed to be on the two non-polarized edges within a certain range.
  • the maximum electric field coupling strength between the two ends is too strong, correspondingly to avoid causing the stray near-field radiation of the low sidelobe antenna 10 to be unbalanced, and then based on balancing the electric field of the low sidelobe antenna 10 in the non-polarized direction
  • the distribution of the coupling strength balances the stray near-field radiation of the low sidelobe antenna 10 to achieve the purpose of suppressing the generation of the sidelobe 101.
  • the number of the auxiliary radiation source 13 is one, and the auxiliary radiation source 13 is located along one side of the planar radiation source 12 passing through the polarization direction.
  • the polarization direction is set, that is, the plane radiation source 12 and the auxiliary radiation source 13 are arranged in sequence along the polarization direction, wherein the plane radiation source 12 and the auxiliary radiation source 13 are between The distance parameter D2 in the polarization direction satisfies ⁇ /8 ⁇ D2 ⁇ /2, so as to ensure the electric field coupling energy between the planar radiation source 12 and the auxiliary radiation source 13 and the reference ground 11, respectively, And maintain the phase difference of the radiation beams formed by the plane radiation source 12 and the auxiliary radiation source 13 respectively coupled with the reference ground 11 within the range of 180°, so that the auxiliary radiation source 13 has a phase difference with the plane radiation
  • the polarization direction of the source 12 is in the same direction, it is advantageous to combine the radiation beams formed by coupling the planar radiation source 12 and the auxiliary radiation source 13 with
  • planar radiation source 12 and the auxiliary radiation source 13 are sequentially arranged along the reverse direction of the polarization direction, which is not limited in the present invention.
  • the planar radiation source 12 and the auxiliary radiation source 13 are electrically connected via a microstrip impedance line 14, wherein the microstrip impedance line 14 is along the pole
  • the direction is connected between the planar radiation source 12 and the auxiliary radiation source 13, so as to form the auxiliary radiation source 13 and the planar radiation source 12 along the physical center point 121 of the planar radiation source 12 and the
  • the wire of the feeding point 122 is arranged and electrically connected, wherein the length parameter of the microstrip impedance line 14 is L, then the parameter L corresponds to the parameter D2 satisfying ⁇ /8 ⁇ L ⁇ /2.
  • the line width parameter of the microstrip impedance line 14 is W, wherein the parameter W satisfies 0.05mm ⁇ W ⁇ 3.2mm, so that the microstrip impedance line satisfies ⁇ /8 ⁇ L ⁇ /
  • the selection based on the parameter W can meet the impedance matching requirement of the low sidelobe antenna 10 at the same time.
  • the microstrip impedance line 14 is connected between the planar radiation source 12 and the auxiliary radiation source 13 along the polarization direction, wherein the impedance matching is based on the purpose of ⁇ /8 ⁇ L ⁇ /2
  • the end of the microstrip impedance line 14 connected to the planar radiation source 12 is allowed to extend to the interior of the planar radiation source 12 to
  • the planar radiation source 12 is formed with a feeding slot 125, so as to form a structural relationship of L>D2.
  • the line length of the microstrip impedance line 14 is fine-tuned within the range of ⁇ /8 ⁇ L ⁇ /2, and the microstrip impedance line 14 is connected to the auxiliary radiation source.
  • One end of 13 is allowed to extend to the inside of the auxiliary radiation source 13 and an auxiliary feed slot 131 is formed in the auxiliary radiation source, thereby forming a structural relationship of L>D2.
  • the planar radiation source 12 and the auxiliary radiation source 13 In order to ensure the electric field coupling energy between the planar radiation source 12 and the auxiliary radiation source 13 and the reference ground 11, respectively, the planar radiation source 12 and the auxiliary radiation source 13
  • the distance parameter D2 of the polarization direction satisfies D2 ⁇ /8, in order to maintain the phase difference of the radiation beams formed by the plane radiation source 12 and the auxiliary radiation source 13 respectively coupled with the reference ground 11 within the range of 180°
  • the length parameter of the microstrip impedance line 14 satisfies L ⁇ /2, which is based on the fact that the microstrip impedance line 14 is connected to the plane radiation source 12 and the auxiliary radiation source 13 along the polarization direction.
  • the structural relationship between the parameter D2 and the parameter L satisfies ⁇ /8 ⁇ D2 ⁇ /2 and ⁇ /8 ⁇ L ⁇ /2 on the basis of L ⁇ D2, respectively.
  • the number of the auxiliary radiation source 13 is multiple, and each of the auxiliary radiation source 13 and the planar radiation source 12 along the physical of the planar radiation source 12
  • the line connecting the central point 121 and the feeding point 122 is arranged and electrically connected, that is, the planar radiation source 12 and the adjacent auxiliary radiation source 13 are along the physical central point 121 of the planar radiation source 12
  • the connection line with the feeding point 122 is arranged and electrically connected, and between the adjacent auxiliary radiation sources 13 along the physical center point 121 of the planar radiation source 12 and the feeding point 122
  • the wires are arranged and electrically connected, so as to form the connection between the auxiliary radiation source 13 and the planar radiation source 12 along the physical center point 121 of the planar radiation source 12 and the feeding point 122.
  • each of the auxiliary radiation sources 13 is preferably on the same side of the planar radiation source 12 along the physical center point 121 of the planar radiation source 12 and the The wires of the feeding points 122 are arranged, and are further electrically connected to the adjacent auxiliary radiation sources 13, so that when the planar radiation source 12 is fed at the feeding points 122, each The auxiliary radiation source 13 has a polarization direction in the same direction as the planar radiation source 12, and the distance parameter between the adjacent auxiliary radiation sources 13 in the polarization direction corresponds to the parameter D2, which is greater than or equal to ⁇ /8 and the range less than or equal to ⁇ /2.
  • the auxiliary radiation source 13 is further recessed through the two opposite sides of the non-polarization direction, so that the auxiliary radiation source 13 has Under the same perimeter limit requirements of the planar radiation source 12, the auxiliary radiation source 13 is maintained at the corresponding perimeter requirements while reducing the area of the auxiliary radiation source 13 and enhancing the auxiliary radiation source 13 in the non-polarized state.
  • the planar radiation source 12 is grounded at the physical center point 121.
  • the planar radiation source 12 is The physical center point 121 is grounded in a manner of being electrically connected to the reference ground 11, so that the quality factor of the low sidelobe antenna 10 (ie, the quality factor of the low sidelobe antenna 10) is improved by reducing the impedance of the planar radiation source 12 to the ground.
  • Q value corresponding to the narrowing of the bandwidth of the low sidelobe antenna 10, thereby helping to improve the anti-interference performance of the low sidelobe antenna 10.
  • the low sidelobe antenna 10 further includes a radiation source substrate 15, a reference ground substrate 16 and a shielding cover 17, wherein the planar radiation source 12 is made of metal
  • the radiation source substrate 15 is carried in the form of a layer, wherein the reference ground 11 is carried on the reference ground substrate 16 in the form of a metal layer, and the radiation source substrate 15 is attached to the reference ground substrate 16 to correspond to A state where the plane radiation source 12 and the reference ground 11 are separated by the radiation source substrate 15 is formed, wherein the reference ground substrate 16 is attached to the radiation source substrate 15 and abuts against the Based on the structure of the shielding cover 17, the shielding cover 17 is welded to the radiation source substrate 15, so as to form a stable relationship between the shielding cover 17, the radiation source substrate 15 and the reference ground substrate 16.
  • the structural relationship of the connection simplifies the manufacturing process of the low sidelobe antenna 10, thereby facilitating the production of the low sidelobe antenna 10.
  • the radiation source substrate 15 has a first copper-clad layer 151 and a second copper-clad layer 152 respectively disposed on opposite sides of the radiation source substrate 15, wherein the reference ground substrate 16 is provided with a metal Layer 161, wherein the metal layer 161 is conductively attached to the second copper-clad layer 152 of the radiation source substrate 15, and the first copper-clad layer 151 of the radiation source substrate 15 forms the plane
  • the radiation source 12 and the metal layer 161 of the reference ground substrate 16 form the reference ground 11, so as to form a state where the planar radiation source 12 and the reference ground 11 are separated by the radiation source substrate 15 .
  • a straight line defining the plane radiation source 12 passing through the physical center point 121 of the plane radiation source 12 is an energy balance line, wherein the radiation source substrate 15 is between and Two welding grooves 153 are provided on the side corresponding to the energy balance line, wherein the shielding cover 17 is welded to the corresponding welding groove 153 in a state in which the shielding cover 17 is in contact with the reference ground substrate 16.
  • the radiation source substrate 15 is fixed.
  • the reference ground substrate 16 is attached to The radiation source substrate 15 and the state of being abutted against the shielding cover 17 are fixed by welding the radiation source substrate 15 between the welding groove 153 and the shielding cover 17 to form the radiation source substrate 15.
  • the shielding cover 17 extends from its cover edge to form two welding arms 171 corresponding to the welding grooves 153, wherein the shielding cover 17 is in a state of abutting the reference ground substrate 16 with the welding arms 171
  • the arm 171 is welded to the radiation source substrate 15 in such a way that the arm 171 is welded to the corresponding welding groove 153.
  • the size of the radiation source substrate 15 in the non-polarization direction is preferably set to be larger than the inner diameter of the shielding cover 17 in the non-polarization direction, so as to facilitate the welding of the welding arm
  • the way 171 extends into the welding groove 153 realizes the positioning of the radiation source substrate 15 before the radiation source substrate 15 and the shielding cover 17 are welded and fixed, thereby facilitating the automation of the low sidelobe antenna 10
  • the consistency and stability of the low sidelobe antenna 10 are manufactured and improved.
  • the radiation source substrate 15 is provided with two pads 1531, wherein the two pads 1531 are covered on the walls of the corresponding welding groove 153 and electrically connected to the radiation source substrate 15
  • the second copper clad layer 152, the pad 1531 is conductively connected to the metal layer 161 of the reference ground substrate 16 via the second copper clad layer 152, so that when the radiation source substrate 15 is on the
  • the shielding cover 17 is conductively connected to the reference ground 11 to be grounded, so as to enhance a shield formed by the shielding cover 17
  • the electromagnetic shielding effect of the space 170 is beneficial to improve the anti-interference performance of the low sidelobe antenna 10.
  • the pad 1531 is formed by a process of metallizing a via to cover the groove wall of the welding groove 153, so as to facilitate the formation of the pad 1531 while forming the pad and
  • the conductive connection between the second copper clad layers 152 is beneficial to simplify the manufacturing process of the low sidelobe antenna 10.
  • the shielding cover 17 is recessed along the polarization direction to form two mounting grooves 172, wherein the two opposite ends of the reference ground substrate 16 passing through the polarization direction extend correspondingly Two mounting arms 162 protruding from the shielding cover 17 are formed, wherein the reference ground substrate 16 is positioned in the target detection direction in a state where the mounting arms 162 protrude from the corresponding mounting grooves 172 beyond the shielding cover 17 Abut the shielding cover 17 so that when the shielding cover 17 is welded to the radiation source substrate 15, the reference ground substrate 16 is clamped and fixed to the shielding cover 17 and the radiation source The state between the substrates 15.
  • the reference ground substrate 16 abuts the shielding cover 17 in such a way that the two mounting arms 162 are erected in the mounting groove 172, then the reference ground substrate 16 is attached to the shield cover 17
  • the shielding cover 17 is welded to the radiation source substrate 15, that is, through the shielding cover 17 and
  • the welding and fixing between the radiation source substrate 15 can form a stable connection relationship among the radiation source substrate 15, the reference ground substrate 16, and the shielding cover 17, so as to avoid the radiation source substrate
  • the second copper clad layer 152 of 15 and the metal layer 161 of the reference ground substrate 16 are fixed to each other in the interlayer gap by a traditional reflow soldering process, which is beneficial to improve the plane radiation source
  • the electrical stability of the medium between 12 and the reference ground 11 simplifies the manufacturing process of the low sidelobe antenna 10 and at the same time helps to improve the consistency and stability of the low sidelobe antenna 10.
  • the reference ground base plate 16 is mounted on the mounting arm 162 by the mounting arm 162.
  • the state in which the groove 172 abuts the shield cover 17 forms a state in which the part of the reference ground substrate 16 except for the mounting arm 162 sinks into the shield space 170 of the shield cover 17, wherein the reference ground substrate
  • the part of 16 sunk into the shielding space 170 is preferably set to have a shape and size matching the shielding cover 17 to correspond to the side edges of the part that forms the reference ground substrate 16 except for the mounting arm 162.
  • the direction improves the shielding effect of the shielding space 170 between the electromagnetic radiation corresponding to the side lobe 101 and the outside.
  • the size of the reference ground substrate 16 in the non-polarization direction is preferably the same as that of the reference ground 11, so as to correspondingly form the circumference of the reference ground 11 and the inner portion of the shielding cover 17.
  • the peripheral side is close to each other, while reducing the size of the reference ground substrate 16 and reducing the size of the low sidelobe antenna 10, it also improves the electromagnetic shielding characteristics of the shielding space 170 in the target detection direction. Therefore, it is beneficial to improve the shielding effect of the shielding space 170 between the electromagnetic radiation corresponding to the side lobe 101 and the outside in the target detection direction, thereby improving the anti-interference performance of the low side lobe antenna 10 .
  • the size of the radiation source substrate 15 in the polarization direction is preferably set to be consistent with the size of the shielding cover 17 in this direction, so that the second copper clad layer 152 is in the polarization direction.
  • the size of the direction is allowed to be set to be consistent with the size of the shielding cover 17 in this direction, so that the periphery of the reference ground 11 and the inside of the shielding cover 17 are electromagnetically enclosed by the second copper-clad layer 152.
  • the gaps/pores formed between the peripheral sides due to the existing process precision and processing methods further enhance the electromagnetic shielding characteristics of the shielding space 170 in the target detection direction, thereby helping to improve the resistance of the low sidelobe antenna 10 Interference performance.
  • the reference ground substrate 16 is provided with at least one welding terminal 1621 on each mounting arm 162 on the side where the metal layer 161 is provided for use as the electrical energy of the low sidelobe antenna 10. Access and signal extraction ports, and at the same time, since the welding terminal 1621 and the metal layer 161 are arranged on the same side of the reference ground substrate 16, they have the function of being equivalent to the reference ground 11, so as to facilitate the The polarization direction reduces the size requirement of the reference ground 11, which is correspondingly beneficial to reducing the size of the reference ground substrate 16 in the polarization direction and reducing the size of the low sidelobe antenna 10.
  • the corresponding polarization edge 123 of the planar radiation source 12 is between the side of the reference ground 11
  • the distance between the two is the parameter D3
  • the corresponding polarization edge 123 of the planar radiation source 12 is relative to the reference ground 11
  • the distance between the sides of is the parameter D4, wherein the value range of the parameter D3 and the parameter D4 meets: D3 ⁇ /64 or D4 ⁇ /64, so as to ensure that the plane radiation source 12 is in the
  • the feeding point 122 it can interact with the reference ground 11 to generate probing microwaves with an initial polarization direction, so as to ensure the gain of the low sidelobe antenna 10 and at the same time be beneficial in the polarization direction.
  • the size of the reference ground 11 and the reference ground substrate 16 is reduced to reduce the size of the low sidelobe antenna 10.
  • planar radiation source 12 is electrically connected to the second copper clad layer 152 at the physical center point 121 in the form of metallized vias, so that the second copper clad layer 152 is connected to the second copper clad layer 152.
  • the electrical bonding of the metal layer 161 forms a state where the planar radiation source 12 is grounded at the physical center point 121, which is beneficial to simplify the structure and the structure where the planar radiation source 12 is grounded at the physical center point 121. Craft.

Abstract

本发明公开了一低副瓣天线,其中所述低副瓣天线具有一目标探测方向并能够形成在所述目标探测方向的反向方向被抑制的一辐射空间,即抑制了所述辐射空间的位于一非目标探测空间的一副波瓣的产生,对应减小了所述低副瓣天线在所述目标探测方向的反向方向于所述非目标探测空间的电磁辐射,有利于在所述目标探测方向的反向方向避免所述非目标探测空间的动作干扰和电磁干扰,提高了所述低副瓣天线对所述非目标探测空间的适应性,和对相应目标探测空间的探测的可靠性。

Description

低副瓣天线 技术领域
本发明涉及微波探测领域,特别涉及用于微波探测的一低副瓣天线。
背景技术
微波探测技术作为人与物,物与物之间相联的重要枢纽在行为探测和存在探测技术中具有独特的优势,其能够在不侵犯人隐私的情况下,探测出活动物体,因而具有广泛的应用前景,然而由于缺乏对电磁辐射的有效约束和控制手段,即对电磁辐射覆盖范围的形状调整手段,包括对与副波瓣相对应的电磁辐射的抑制手段,微波探测技术在实际应用中于不同应用场景的适应能力有限。具体地,由于缺乏对电磁辐射的有效约束和控制手段,现有的微波探测技术的实际探测空间难以控制,由此造成现有的微波探测技术难以适应于不同目标探测空间的选择,并由于目标探测空间之外的实际探测空间的环境干扰,包括目标探测空间之外的实际探测空间的动作干扰、电磁干扰以及因电磁屏蔽环境造成的自激干扰,尤其是目标探测空间之外的实际探测空间中与副波瓣相对应的电磁辐射覆盖范围的环境干扰,同时造成现有的微波探测技术于不同应用场景的抗干扰能力的稳定性差。
现有的微波探测技术主要采用柱状辐射源结构的微波探测模块和平面辐射源结构的微波探测模块,其中由于柱状辐射源结构的微波探测模块的与其电磁辐射覆盖范围相对应的辐射空间具有辐射死区,在实际使用中,如在垂直探测应用中,当将柱状辐射源结构的微波探测模块安装于吊顶、天花板以及棚顶等垂直方向应用于垂直向下的探测时,该柱状辐射源结构的微波探测模块安装位通常被降低以减小或避免相应辐射空间的辐射死区在该微波探测模块和地面之间的空间形成的探测死区,同时由于柱状辐射源结构的微波探测模块相对于平面辐射源结构的微波探测模块具有较大的副波瓣,柱状辐射源结构的微波探测模块更易受到目标探测空间之外的实际探测空间的环境干扰。也就是说,现有的柱状辐射源结构的微波探测模块在实际使用中的探测距离远小于与其增益大小相匹配的探测距离,并且相对于平面辐射源结构的微波探测模块具有较差的适用性和稳定性,因此,现有的微波探测技术多采用平面辐射源结构的微波探测模块。
具体地,参考本发明的说明书附图之图1A和1B所示,现有的平面辐射源结构的微波探测模块10P的结构原理和相应的辐射方向图分别被示意,其中该平面辐射源结构的微波探测模块10P包括一平面辐射源12P和一参考地面11P,其中该平面辐射源12P与该参考地面11P相互平行地被间隔设置,且该平面辐射源12P在该参考地面11P的投影位于该参考地面11P之内,则该平面辐射源12P和该参考地面11P之间形成有一辐射缝隙13P,如此则在该平面辐射源12P被馈电时,该平面辐射源12P能够与该参考地面11P耦合而自该辐射缝隙13P以垂直于该平面辐射源12P的物理中心点的轴线为中心轴形成一辐射空间100P,其中该辐射空间100P对应于该平面辐射源结构的微波探测模块10P的电磁辐射覆盖范围而与该平面辐射源结构的微波探测模块10P的实际探测空间相对应。在实际使用中,该参考地面11P至该平面辐射源12P方向为该平面辐射源结构的微波探测模块10P的探测方向,对应该辐射空间100P在图中的Z轴方向,可知,该辐射空间100P于该方向在相应目标探测面的投射面趋于圆形,即该平面辐射源结构的微波探测模块10P适用于圆形目标探测面和方形目标探测面需求的目标探测空间,其中由于实际应用中圆形目标探测面和方形目标探测面需求的目标探测空间居多,因此该平面辐射源结构的微波探测模块10P对实际应用中的目标探测空间具有一定的适应性。然而由于缺乏对该辐射空间100P的有效约束和控制手段,包括对该辐射空间100P于相应目标探测面的投射面形状调整和在该探测方向的距离的调整,以及以该平面辐射源12P为界于该探测方向的反向方向对该辐射空间100P的抑制,对应于对该辐射空间100P的副波瓣101P的抑制,该平面辐射源结构的微波探测模块10P难以适应更多的目标探测空间的选择和抵抗相应目标探测空间之外的实际探测空间的环境干扰,如该平面辐射源结构的微波探测模块10P难以适应目标探测面为狭长过道的目标探测空间,和抵抗该目标探测空间之外的实际探测空间的环境干扰,包括该目标探测空间之外的实际探测空间的动作干扰、电磁干扰,以及因电磁屏蔽环境造成的自激干扰,尤其是目标探测空间之外的实际探测空间中与该副波瓣101P相对应的电磁辐射覆盖范围的环境干扰。
综上所述,由于缺乏对电磁辐射的有效约束和控制手段,包括对与副波瓣相对应的电磁辐射的抑制手段,目前的微波探测技术难以稳定地适应于不同目标探测空间的选择和抵抗相应目标探测空间之外的实际探测空间的环境干扰。因此, 获取对相应微波探测模块的辐射空间的形状的有效调整手段,包括对与副波瓣相对应的电磁辐射的抑制手段,不仅有利于提高微波探测技术于不同应用场景的适应能力,同时有利于提高微波探测技术于相应应用场景的抗干扰能力和稳定性。
发明内容
本发明的一个目的在于提供一低副瓣天线,其中所述低副瓣天线具有一目标探测方向并能够形成在所述目标探测方向的反向方向被抑制的一辐射空间,即抑制了所述辐射空间的位于一非目标探测空间的一副波瓣的产生,对应减小了所述低副瓣天线在所述目标探测方向的反向方向于所述非目标探测空间的电磁辐射,有利于在所述目标探测方向的反向方向避免所述非目标探测空间的动作干扰和电磁干扰,提高了所述低副瓣天线对所述非目标探测空间的适应性,和对相应目标探测空间的探测的可靠性。
本发明的另一目的在于提供一低副瓣天线,其中所述低副瓣天线的所述副波瓣的产生被抑制,有利于避免与所述副波瓣相对应的电磁辐射在所述非目标探测空间的多次反射造成所述低副瓣天线的自激干扰,从而提高了所述低副瓣天线对所述非目标探测空间的适应性,和对相应目标探测空间的探测的可靠性。
本发明的另一目的在于提供一低副瓣天线,其中基于平衡所述低副瓣天线的杂散近场辐射的思想,所述低副瓣天线在一极化方向的电位分布被减弱和在一非极化方向的电位分布被增强,如此以避免所述低副瓣天线的电位分布在所述极化方向过于集中,对应平衡所述低副瓣天线的整体电场耦合强度分布,从而平衡所述低副瓣天线的杂散近场辐射,进而抑制所述副波瓣的产生,同时维持所述低副瓣天线的电场耦合能量而维持所述低副瓣天线的增益。
本发明的另一目的在于提供一低副瓣天线,其中所述低副瓣天线包括一平面辐射源和一参考地面,其中所述平面辐射源与所述参考地面相互平行地被间隔设置,其中所述平面辐射源具有偏离于其物理中心点的一馈电点,则所述平面辐射源的所述馈电点至其物理中心点的连线方向为所述极化方向,所述非极化方向为所述平面辐射源上垂直于所述极化方向的方向,所述参考地面至所述平面辐射源的距离方向为所述目标探测方向,其中定义所述平面辐射源的经所述极化方向的两相对侧边为两极化边,定义所述平面辐射源的经所述非极化方向的两相对侧边为两非极化边,其中所述平面辐射源的两所述非极化边朝向所述平面辐射源的物 理中心点凹陷而被内凹设置,如此以在所述平面辐射源于所述馈电点被馈电时,基于对所述平面辐射源的两所述非极化边的内凹设置,所述非极化边的边长被增大而对应形成所述非极化边的电位分布被增强和所述极化边的电位分布被减弱的状态,如此以避免所述平面辐射源的电位分布过于集中于所述极化边,对应平衡所述低副瓣天线的整体电场耦合强度分布。
本发明的另一目的在于提供一低副瓣天线,其中所述平面辐射源的两所述非极化边被内凹设置,则所述非极化边的边长被增大而对应增强所述非极化边的电位分布的同时,内凹的结构设计还有利于增强各所述非极化边的两端之间的电场耦合强度,如此以在所述非极化方向平衡所述平面辐射源自身和与所述参考地面之间的电场耦合强度分布,对应平衡所述低副瓣天线在所述非极化方向的电场耦合强度分布,从而抑制所述副波瓣的产生。
本发明的另一目的在于提供一低副瓣天线,其中通过对所述平面辐射源的所述非极化边的内凹形状和尺寸的设计,所述非极化边的电位分布被调整,则所述低副瓣天线在所述非极化方向的电场耦合能量占比允许基于对所述平面辐射源的所述非极化边的内凹形状和尺寸的设计被调整,对应调整了所述辐射空间在所述非极化方向的辐射角度,从而有利于提高所述低副瓣天线对不同探测面需求的目标探测空间的适应性。
本发明的另一目的在于提供一低副瓣天线,其中通过对所述平面辐射源的所述非极化边的内凹形状和尺寸的设计,和对所述参考地面在所述非极化方向的尺寸设计,所述低副瓣天线在所述非极化方向的电场耦合能量中,所述平面辐射源自身和与所述参考地面之间的电场耦合能量比例能够被调整,如此以基于所述平面辐射源自身和与所述参考地面之间的电场耦合方向的不同进一步调整所述辐射空间在所述非极化方向的辐射角度,从而有利于提高所述低副瓣天线对不同探测面需求的目标探测空间的适应性。
本发明的另一目的在于提供一低副瓣天线,其中所述平面辐射源的两所述非极化边被内凹设置,则所述平面辐射源被内凹的部分所对应的所述参考地面能够与所述平面辐射源的相应所述非极化边耦合而在所述非极化方向降低了对所述参考地面的尺寸要求,如在所述非极化方向将所述参考地面的尺寸设置与所述平面辐射源的最大尺寸保持一致,如此以在抑制所述副波瓣的产生和维持所述低副瓣天线的增益的同时有利于减小所述低副瓣天线的尺寸。
本发明的另一目的在于提供一低副瓣天线,其中所述平面辐射源的两所述非极化边被内凹设置,如此以在维持所述平面辐射源具有相应周长的基础下降低了所述平面辐射源的尺寸,从而在抑制所述副波瓣的产生和维持所述低副瓣天线的增益的同时有利于减小所述低副瓣天线的尺寸。
本发明的另一目的在于提供一低副瓣天线,其中所述低副瓣天线进一步包括至少一辅助辐射源,其中所述辅助辐射源和所述平面辐射源分别与所述参考地面等距相间隔,其中所述辅助辐射源和所述平面辐射源沿所述平面辐射源的物理中心点与所述馈电点的连线被排布和被电性相连,如此以在所述平面辐射源于所述馈电点被馈电时,基于所述平面辐射源与相邻所述辅助辐射源之间的距离设置,和所述辅助辐射源的数量设置以及相邻所述辅助辐射源之间的距离设置,所述辐射空间基于波束合成而形成并具有在所述极化方向被窄化调整的波束角,如此以使得所述低副瓣天线适用于狭长目标探测面需求的目标探测空间而有利于提高所述低副瓣天线对不同探测面需求的目标探测空间的适应性。
本发明的另一目的在于提供一低副瓣天线,其中由于所述辅助辐射源的设置,所述低副瓣天线在所述非极化方向的电场耦合能量被进一步提高,其中所述参考地面的与所述平面辐射源的所述非极化边相对应的侧边和所述平面辐射源的相应所述非极化边之间的距离参数D1满足D1≥λ/32,其中λ为对应馈电频率的波长参数,如此以在所述非极化方向平衡所述平面辐射源自身和与所述参考地面之间的电场耦合强度分布,对应平衡所述低副瓣天线在所述非极化方向的电场耦合强度分布,从而抑制所述副波瓣的产生。
本发明的另一目的在于提供一低副瓣天线,其中所述低副瓣天线进一步包括一辐射源基板,一参考地基板以及一屏蔽罩,其中所述平面辐射源以金属层形式承载于所述辐射源基板,其中所述参考地面以金属层形式被承载于所述参考地基板,其中所述辐射源基板与所述参考地基板相贴合以对应形成所述平面辐射源与所述参考地面被所述辐射源基板相间隔的状态,其中在所述参考地基板被贴合于所述辐射源基板和被抵接于所述屏蔽罩的结构基础上,通过将所述屏蔽罩焊接于所述辐射源基板的方式,能够形成所述屏蔽罩、所述辐射源基板以及所述参考地基板三者之间稳定连接的结构关系,简化了所述低副瓣天线的制造工艺,从而有利于所述低副瓣天线的生产制造。
本发明的另一目的在于提供一低副瓣天线,其中在所述参考地基板被贴合于 所述辐射源基板和被抵接于所述屏蔽罩的结构基础上,通过将所述屏蔽罩焊接于所述辐射源基板的方式,能够避免所述辐射源基板与所述参考地基板之间在相互贴合的层隙内的回流焊固定工序,有利于提高所述平面辐射源和所述参考地面之间的介质的电学稳定性,从而在简化所述低副瓣天线的制造工艺的同时,有利于提高所述低副瓣天线的一致性和稳定性。
为实现以上至少一目的,本发明提供一低副瓣天线,所述低副瓣天线包括:
一参考地面;和
一平面辐射源,其中所述平面辐射源与所述参考地面相互平行地被间隔设置,其中所述平面辐射源具有偏离于其物理中心点的一馈电点,其中在所述平面辐射源以所述馈电点至所述平面辐射源的物理中心点为一极化方向,和在所述平面辐射源以垂直于所述极化方向的方向为一非极化方向,其中定义所述平面辐射源的经所述非极化方向的两相对侧边为两非极化边,其中所述平面辐射源的两所述非极化边朝向所述平面辐射源的物理中心点凹陷而被内凹设置。
在一实施例中,其中定义所述平面辐射源的经所述极化方向的两相对侧边为两极化边,其中所述极化边的边长为参数a,所述非极化边的边长为参数b,其中所述参数a和所述参数b分别满足λ/8≤a≤λ/2和λ/8≤b≤λ/2,其中λ为对应馈电频率的波长参数。
在一实施例中,其中在所述平面辐射源的所述馈电点至所述物理中心点方向,所述平面辐射源的相应所述极化边与所述参考地面的侧边之间的距离为参数D3,在所述平面辐射源的所述物理中心点至所述馈电点方向,所述平面辐射源的相应所述极化边与所述参考地面的侧边之间的距离为参数D4,其中所述参数D3和所述参数D4的数值范围满足:D3≥λ/64或D4≥λ/64。
在一实施例中,其中所述参考地面在所述非极化方向的尺寸与所述平面辐射源的在所述非极化方向的最大尺寸保持一致。
在一实施例中,其中所述平面辐射源于其物理中心点被电性连接于所述参考地面。
在一实施例中,其中所述低副瓣天线进一步包括一辐射源基板,一参考地基板以及一屏蔽罩,其中所述平面辐射源以金属层形式承载于所述辐射源基板,其中所述参考地面以金属层形式被承载于所述参考地基板,其中在所述参考地基板被贴合于所述辐射源基板和被抵接于所述屏蔽罩的状态,所述屏蔽罩与所述辐射 源基板相焊接固定,对应以所述平面辐射源与所述参考地面被所述辐射源基板相间隔的状态形成所述参考地基板被夹持固定于所述辐射源基板和所述屏蔽罩之间的结构关系。
在一实施例中,其中所述辐射源基板具有分别被设置于所述辐射源基板相对两面的一第一覆铜层和一第二覆铜层,其中所述参考地基板被设置有一金属层,其中所述金属层与所述第二覆铜层导电贴合和在相互贴合的层隙内避免采用回流焊固定,对应形成所述参考地基板与所述辐射源基板相贴合的状态,如此以于所述第一覆铜层形成所述平面辐射源和于所述金属层形成所述参考地面,从而形成所述平面辐射源与所述参考地面被所述辐射源基板相间隔的稳定状态。
在一实施例中,其中在所述非极化方向,定义所述平面辐射源上经所述平面辐射源的物理中心点的直线为一能量平衡线,其中所述辐射源基板在与所述能量平衡线相对应的侧面位置被设置有两焊接槽,其中所述屏蔽罩在与所述参考地基板相抵接的状态以被焊接于相应所述焊接槽的方式与所述辐射源基板相固定。
在一实施例中,其中所述屏蔽罩自其罩沿延伸形成有对应于所述焊接槽的两焊接臂,其中所述屏蔽罩在与所述参考地基板相抵接的状态以所述焊接臂被焊接于相应所述焊接槽的方式被焊接于所述辐射源基板。
在一实施例中,其中所述辐射源基板在所述非极化方向的尺寸被设置大于所述屏蔽罩在所述非极化方向的内径。
在一实施例中,其中所述辐射源基板被设置有两焊盘,其中两所述焊盘被覆盖于对应的所述焊接槽的槽壁并导电连接于所述辐射源基板的所述第二覆铜层,则所述焊盘经所述第二覆铜层被导电连接于所述参考地基板的所述金属层,其中所述辐射源基板于所述焊接槽经所述焊盘与所述屏蔽罩相焊接固定,则所述屏蔽罩导电连接于所述参考地面而被接地。
在一实施例中,其中所述焊盘被设置以金属化过孔工艺形成而覆盖于所述焊接槽的槽壁,并同时形成所述焊盘与所述第二覆铜层的导电连接关系。
在一实施例中,其中所述平面辐射源于其所述物理中心点以金属化过孔工艺被电性连接于所述第二覆铜层,以经所述第二覆铜层与所述参考地面的导电贴合形成所述平面辐射源于所述物理中心点与所述参考地面的电性连接。
在一实施例中,其中所述屏蔽罩的经所述极化方向的罩沿被内凹设置而形成有两安装槽,其中所述参考地基板的经所述极化方向的两相对端对应延伸形成两 安装臂,其中所述参考地基板的所述安装臂于相应所述安装槽突出于所述屏蔽罩而与所述屏蔽罩相抵接。
在一实施例中,其中在所述参考地基板的所述安装臂于对应的所述安装槽突出于所述屏蔽罩的状态,所述参考地基板的除所述安装臂的部分沉入所述屏蔽罩,其中所述参考地基板的沉入所述屏蔽罩的部分被设置具有与所述屏蔽罩相匹配的形状尺寸以对应形成所述参考地基板的沉入所述屏蔽罩的部分的侧缘与所述屏蔽罩的内周侧相贴近而被所述屏蔽罩包围的状态。
在一实施例中,其中所述参考地基板在所述非极化方向的尺寸被设置与所述参考地面在所述非极化方向的尺寸保持一致,如此以对应形成所述参考地面的周沿与所述屏蔽罩的内周侧相贴近的状态。
在一实施例中,其中所述辐射源基板在所述极化方向的尺寸被设置与所述屏蔽罩在所述极化方向的尺寸保持一致,对应所述第二覆铜层在所述极化方向的尺寸被设置与所述屏蔽罩在该所述极化方向的尺寸保持一致。
在一实施例中,其中所述参考地基板于设置有所述金属层的一面在各所述安装臂分别被设置有至少一焊接端子以用作所述低副瓣天线的电能接入和信号引出端口。
在一实施例中,其中所述低副瓣天线进一步包括至少一辅助辐射源,其中所述辅助辐射源和所述平面辐射源分别与所述参考地面等距相间隔,其中所述辅助辐射源和所述平面辐射源沿所述平面辐射源的物理中心点与所述馈电点的连线被排布和被电性相连,其中所述平面辐射源与相邻所述辅助辐射源之间在所述极化方向的距离参数D2满足λ/8≤D2≤λ/2,其中所述参考地面的与所述平面辐射源的所述非极化边相对应的侧边和该非极化边之间在所述非极化方向的距离参数D1满足D1≥λ/32。
在一实施例中,其中所述平面辐射源和相邻所述辅助辐射源之间经由一微带阻抗线电性相连,其中所述微带阻抗线沿所述平面辐射源的所述馈电点与物理中心点的连线被设置,以对应形成所述辅助辐射源和所述平面辐射源沿所述平面辐射源的物理中心点与所述馈电点的连线被电性相连的状态,其中所述微带阻抗线的长度参数L满足λ/8≤L≤λ/2。
在一实施例中,其中所述微带阻抗线的线宽参数W满足0.05mm≤W≤3.2mm。
在一实施例中,其中所述辅助辐射源的数量大于一个,其中所述平面辐射源与相邻所述辅助辐射源沿所述平面辐射源的物理中心点与所述馈电点的连线被排布和被电性相连,且相邻所述辅助辐射源之间沿所述平面辐射源的物理中心点与所述馈电点的连线被排布和被电性相连,以对应形成所述辅助辐射源和所述平面辐射源沿所述平面辐射源的物理中心点与所述馈电点的连线被排布和被电性相连的状态。
在一实施例中,其中各所述辅助辐射源优在所述平面辐射源的同一侧沿所述平面辐射源的物理中心点与所述馈电点的连线被排布。
附图说明
图1A为现有的平面辐射源结构的微波探测模块的结构示意图。
图1B为现有的所述平面辐射源结构的微波探测模块的辐射方向图。
图2A为依本发明的一实施例的一低副瓣天线的结构示意图。
图2B为依本发明的上述实施例的所述低副瓣天线的辐射方向图。
图3A为依本发明的上述实施例的一优化实施例的所述低副瓣天线的结构示意图。
图3B为依本发明的上述优化实施例的所述低副瓣天线的辐射方向图。
图4A为依本发明的上述实施例的一变形实施例的所述低副瓣天线的结构示意图。
图4B为依本发明的上述变形实施例的所述低副瓣天线的辐射方向图。
图5为依本发明的上述优化实施例的所述低副瓣天线的进一步优化结构的立体结构示意图。
图6为依本发明的上述优化实施例的所述低副瓣天线的进一步优化结构的立体分解结构示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参考本发明的说明书附图之图2A和图2B,根据本发明的一实施例的一低副瓣天线10的结构和辐射方向图分别被示意,其中所述低副瓣天线10具有一目标探测方向(对应于图2A和图2B中Z轴方向)并能够形成在所述目标探测方向的反向方向相较于附图1B被抑制的一辐射空间100,即相对于现有的平面辐射源结构的微波探测模块10P抑制了所述辐射空间100的位于一非目标探测空间的一副波瓣101(对应图2B中以X轴和Y轴所界定平面为界,所述辐射空间100的在所述目标探测方向的反向方向的部分)的产生,对应减小了所述低副瓣天线10在所述目标探测方向的反向方向于所述非目标探测空间的电磁辐射,从而有利于在所述目标探测方向的反向方向避免所述非目标探测空间的动作干扰和电磁干扰,提高了所述低副瓣天线10对所述非目标探测空间的适应性,和对相应目标探测空间的探测的可靠性。
值得一提的是,所述低副瓣天线10的所述副波瓣101的产生被抑制,则与所述副波瓣101相对应的电磁辐射在所述非目标探测空间的多次反射造成的所述低副瓣天线10的自激干扰现象能够被避免,进一步提高了所述低副瓣天线10对所述非目标探测空间的适应性,和对相应目标探测空间的探测的可靠性。
进一步地,基于对所述辐射空间100的所述副波瓣101的产生机制的探索,所述低副瓣天线10的杂散近场辐射的不平衡程度关联于与所述副波瓣101相对应的电磁辐射能量,即平衡所述低副瓣天线10的杂散近场辐射有利于抑制所述副波瓣101的产生,本发明基于平衡所述低副瓣天线10的杂散近场辐射的思想,在现有平面辐射源结构的微波探测模块10P的电位分布基础上,通过增强所述低副瓣天线10在一非极化方向的电位分布的方式,相对于现有平面辐射源结构的微波探测模块10P弱化了所述低副瓣天线10在一极化方向(对应图2A和图2B 中Y轴方向)的电位分布,避免了所述低副瓣天线10的电位分布在所述极化方向过于集中,对应平衡了所述低副瓣天线10的整体电场耦合强度分布,即缩小了所述低副瓣天线10的整体电场耦合强度的最大值与最小值之间的差距,则所述低副瓣天线10的关联于初始电场耦合强度的杂散近场辐射被平衡,进而有利于抑制所述副波瓣101的产生,同时由于所述低副瓣天线10的整体电场耦合能量被维持而使得所述低副瓣天线10的增益相对于现有平面辐射源结构的微波探测模块10P能够被维持。
具体地,所述低副瓣天线10包括一参考地面11和一平面辐射源12,其中所述平面辐射源12与所述参考地面11相互平行地被间隔设置,其中所述平面辐射源12具有偏离于其物理中心点121的一馈电点122,则在所述平面辐射源12以所述馈电122点至所述物理中心点121的连线方向为所述极化方向,所述平面辐射源12上垂直于所述极化方向的方向为所述非极化方向,其中所述参考地面11至所述平面辐射源12的距离方向为所述目标探测方向,其中定义所述平面辐射源12的经所述极化方向的两相对侧边为两极化边123,定义所述平面辐射源12的经所述非极化方向的两相对侧边为两非极化边124,其中所述平面辐射源12的两所述非极化边124朝向所述平面辐射源12的物理中心点121凹陷而被内凹设置,其中当所述平面辐射源12于所述馈电点122被馈电时,所述平面辐射源12与所述参考地面11相互作用而产生所述辐射空间100,即所述辐射空间100对应所述低副瓣天线10的电磁辐射覆盖范围,其中所述辐射空间100具有以所述平面辐射源12(对应图2B中X轴和Y轴所在平面)为界位于所述目标探测方向的反向方向的所述副波瓣101,又基于对所述平面辐射源12的两所述非极化边124的内凹设置,所述非极化边124的边长被增大而对应形成所述非极化边124的电位分布被增强和所述极化边123的电位分布被减弱的状态,避免了所述平面辐射源12的电位分布过于集中于所述极化边123,对应平衡了所述低副瓣天线10的整体电场耦合强度分布,从而平衡了所述低副瓣天线10的杂散近场辐射,进而抑制了所述辐射空间100中的所述副波瓣101的产生,同时维持了所述低副瓣天线10的电场耦合能量而维持了所述低副瓣天线10的增益。
值得一提的是,各所述非极化边124的两端之间的电场耦合强度除因所述非极化边124的电位分布被增强而被增强外,还由于内凹的结构设计有利于各所述非极化边124的两端之间的电场耦合,各所述非极化边124的两端之间的电场耦 合强度被进一步增强,如此以在所述非极化方向平衡所述平面辐射源12自身(即各所述非极化边124的两端之间)和与所述参考地面11之间的电场耦合强度分布,避免了所述低副瓣天线10在所述非极化方向的电场耦合能量过度集中于所述平面辐射源12的所述非极化边124与所述参考地面11之间的电场耦合,对应平衡了所述低副瓣天线10在所述非极化方向的电场耦合强度分布,从而以平衡所述低副瓣天线10的杂散近场辐射的方式进一步抑制了所述副波瓣101的产生。
可以理解的是,基于所述平面辐射源12的所述非极化边124的内凹形状和尺寸的设计,所述非极化边124的电位分布能够被调整,则所述低副瓣天线10在所述非极化方向的电场耦合能量占比允许基于对所述平面辐射源12的所述非极化边124的内凹形状和尺寸的设计被调整,如此以对应调整所述辐射空间100在所述非极化方向的辐射角度,从而有利于提高所述低副瓣天线10对不同探测面需求的目标探测空间的适应性。
进一步地,在所述低副瓣天线10的所述非极化方向,同时存在所述平面辐射源12的各所述非极化边124的两端之间的电场耦合,以及所述平面辐射源12与所述参考地面11之间的电场耦合,则基于对所述平面辐射源12的所述非极化边124的内凹形状和尺寸的设计,和对所述参考地面11在所述非极化方向的尺寸设计,所述低副瓣天线10在所述非极化方向的电场耦合能量中,所述平面辐射源12自身和与所述参考地面11之间的电场耦合能量比例能够被调整,如此以基于所述平面辐射源12自身和与所述参考地面11之间的电场耦合方向的不同进一步调整所述辐射空间100在所述非极化方向的辐射角度,从而有利于提高所述低副瓣天线10对不同探测面需求的目标探测空间的适应性。
特别地,在本发明的这个实施例中,所述平面辐射源12于其所述物理中心点121被接地。具体地,在本发明的这个实施例中,所述平面辐射源12以于所述物理中心点与所述参考地面11电性相连的方式被接地,如此以通过降低所述平面辐射源12的对地阻抗的方式,提高所述低副瓣天线10的品质因数(即Q值),对应缩窄所述低副瓣天线10的带宽,从而有利于提高所述低副瓣天线10的抗干扰性能。
进一步地,在本发明的这个实施例中,所述平面辐射源12的所述极化边123的边长参数为a,所述非极化边124的边长参数为b,其中所述参数a和所述参数b分别满足λ/8≤a≤λ/2和λ/8≤b≤λ/2,其中λ为对应馈电频率的波长参 数,如此以有利于满足所述低副瓣天线10的阻抗匹配,和保障所述平面辐射源12具有大于等于λ/2的周长而在被馈电时产生初始的极化地向外界辐射电磁能量,其中优选地,所述平面辐射源12的所述极化边123的边长参数a和所述非极化边124的边长参数b在20%的误差范围内趋于λ/4,如此以使得所述所述平面辐射源12具有趋于λ的周长而有利于提高所述低副瓣天线10的辐射效率。
值得一提的是,基于所述平面辐射源12的所述非极化边124的内凹设计,所述平面辐射源12在被维持具有相应周长的基础下的尺寸被降低,即所述平面辐射源12的所述非极化边124的内凹设计在抑制所述副波瓣101的产生和维持所述低副瓣天线10的增益的同时有利于减小所述低副瓣天线10的尺寸。
进一步地,对所述平面辐射源12的两所述非极化边124的内凹设置对应在所述非极化方向增大了所述参考地面11相对于所述平面辐射源12的尺寸,即所述平面辐射源12被内凹的部分所对应的所述参考地面11能够与所述平面辐射源12的相应所述非极化边124耦合而在所述非极化方向降低了对所述参考地面11的尺寸要求,如此以在抑制所述副波瓣101的产生和维持所述低副瓣天线10的增益的同时有利于减小所述低副瓣天线10的尺寸。
也就是说,基于所述平面辐射源12的所述非极化边124的内凹设计,所述低副瓣天线10的所述副波瓣101被抑制,同时所述低副瓣天线10的增益能够被维持,并有利于减小所述低副瓣天线10的尺寸。其中适应于不同的探测面需求的目标探测空间和对所述低副瓣天线10的不同尺寸要求,所述参考地面11在所述极化方向和所述非极化方向与所述平面辐射源12之间的位置和尺寸关系多样,本发明对此并不限制。
示例地,参考本发明的说明书附图之图3A和图3B所示,依本发明的上述实施例的一优化实施例的所述低副瓣天线10的结构和辐射方向图分别被示意,其中相较于图2A和图2B所对应的所述低副瓣天线10,在本发明的这个优化实施例中,为达到减小所述低副瓣天线10的尺寸的优化目的,所述参考地面11在所述非极化方向的尺寸被减小。具体地,在本发明的这个优化实施例中,所述参考地面11在所述非极化方向的尺寸与所述平面辐射源12的在该方向的最大尺寸保持一致。也就是说,所述低副瓣天线10的所述平面辐射源12的尺寸基于所述非极化边124的内凹设计被减小,同时所述参考地面11在所述非极化方向的尺寸与所述平面辐射源12在该方向的最大尺寸保持一致而被减小,如此以使得所 述低副瓣天线10的尺寸相较于现有的平面辐射源结构的微波探测模块10P被减小。
特别地,基于生产制造过程中产生的误差,和在满足所述低副瓣天线10的正常工作的结构基础上,对“所述参考地面11在所述非极化方向的尺寸与所述平面辐射源12在该方向的最大尺寸保持一致”的描述应当理解为在“所述平面辐射源12与所述参考地面11相互平行地被间隔设置,且所述平面辐射源12在所述参考地面11的投影位于所述参考地面11之内”这一结构基础上,所述参考地面11在所述非极化方向的尺寸与所述平面辐射源12在该方向的最大尺寸之间允许具有小于等于λ/32的差值。
进一步地,在本发明的这个优化实施例中,所述参考地面11在所述非极化方向的尺寸被减小,则所述低副瓣天线10在所述非极化方向的电场耦合能量中,所述平面辐射源12自身的电场耦合能量占比被提高,对应所述平面辐射源12与所述参考地面11之间的电场耦合能量占比被降低,即所述低副瓣天线10在所述非极化方向仍然存在所述平面辐射源12与所述参考地面11之间的电场耦合,从而在所述非极化方向相较于图2B所示意的辐射方向图微幅增大了所述辐射空间100的角度,和在所述目标探测方向的反向方向维持了对所述副波瓣101的抑制。
示例地,参考本发明的说明书附图之图4A和图4B所示,适应于狭长探测面需求,依本发明的上述实施例的一变形实施例的所述低副瓣天线10的结构和辐射方向图分别被示意,其中在本发明的这个变形实施例中,基于在所述极化方向合成波束结合在所述非极化方向增强所述低副瓣天线10的电场耦合能量的思想,所述辐射空间100在所述极化方向的角度被压缩,如此以使得所述辐射空间100在所述目标探测方向具有在所述极化方向被窄化调整的狭长型投射面,从而使得所述低副瓣天线10得以适用于狭长探测面需求的目标探测空间。
具体地,在本发明的这个变形实施例中,所述低副瓣天线10进一步包括至少一辅助辐射源13,其中所述平面辐射源12和所述辅助辐射源13分别与所述参考地面11等距相间隔地被设置,其中所述辅助辐射源13和所述平面辐射源12沿所述平面辐射源12的物理中心点121与所述馈电点122的连线被排布和被电性相连,如此以在所述平面辐射源12于所述馈电点122被馈电时,各所述辅助辐射源13具有与所述平面辐射源12同向的极化方向,则依所述平面辐射源12与相邻所述辅助辐射源13之间的距离设置,和所述辅助辐射源13的数量设 置以及相邻所述辅助辐射源13之间的距离设置,所述低副瓣天线10能够基于波束合成而形成在所述极化方向被压缩调整的所述辐射空间100。
特别地,在本发明的这个变形实施例中,所述辐射空间100基于波束合成形成而对应增强了所述低副瓣天线10的增益,即所述低副瓣天线10的的整体电场耦合能量密度被提高,在此基础上,为在所述非极化方向平衡所述低副瓣天线10的杂散近场辐射而维持对所述副波瓣101的产生的抑制作用,所述参考地面11的与所述平面辐射源12的所述非极化边124相对应的侧边和所述平面辐射源12的相应所述非极化边124之间在所述非极化方向的距离参数D1被设置满足D1≥λ/32,如此以通过在所述非极化方向保障所述参考地面11的最小尺寸的方式,在一定范围保障所述平面辐射源12于两所述非极化边124与所述参考地面11的电场耦合强度,从而避免所述平面辐射源12的两所述非极化边124的内凹设置造成所述平面辐射源12的各所述非极化边124的两端之间的最大电场耦合强度过于强大,对应避免造成所述低副瓣天线10的杂散近场辐射不平衡,进而基于平衡所述低副瓣天线10在所述非极化方向的电场耦合强度的分布的方式,平衡所述低副瓣天线10的杂散近场辐射,以达到抑制所述副波瓣101的产生的目的。
进一步地,在本发明的这个变形实施例中,所述辅助辐射源13的数量为一个,其中所述辅助辐射源13在所述平面辐射源12的经所述极化方向的其中一侧沿所述极化方向被设置,即所述平面辐射源12和所述辅助辐射源13沿所述极化方向被顺序排布,其中所述平面辐射源12与所述辅助辐射源13之间在所述极化方向的距离参数D2满足λ/8≤D2≤λ/2,如此以保障所述平面辐射源12和所述辅助辐射源13分别与所述参考地面11之间的电场耦合能量,并维持所述平面辐射源12和所述辅助辐射源13分别与所述参考地面11耦合形成的辐射波束的相位差于180°范围内,从而在所述辅助辐射源13具有与所述平面辐射源12同向的极化方向时,有利于所述平面辐射源12和所述辅助辐射源13分别与所述参考地面11耦合形成的辐射波束的合成。则所述辐射空间100允许基于波束合成而形成并具有在所述极化方向依所述参数D2的取值被压缩调整的波束角。
值得一提的是,在本发明的一些实施例中,所述平面辐射源12和所述辅助辐射源13沿所述极化方向的反向方向被顺序排布,本发明对此不作限制。
进一步地,在本发明的这个实施例中,所述平面辐射源12和所述辅助辐射 源13之间经由一微带阻抗线14电性相连,其中所述微带阻抗线14沿所述极化方向连接于所述平面辐射源12和所述辅助辐射源13之间,如此以形成所述辅助辐射源13和所述平面辐射源12沿所述平面辐射源12的物理中心点121与所述馈电点122的连线被排布和被电性相连的状态,其中所述微带阻抗线14的长度参数为L,则所述参数L对应于所述参数D2满足λ/8≤L≤λ/2。
特别地,所述微带阻抗线14的线宽参数为W,其中所述参数W满足0.05mm≤W≤3.2mm,如此以使得所述微带阻抗线在满足λ/8≤L≤λ/2的同时能够基于所述参数W的选择满足所述低副瓣天线10的阻抗匹配要求。
值得一提的是,所述参数L和所述参数D2之间具有L>D2的关系。具体地,所述微带阻抗线14沿所述极化方向连接于所述平面辐射源12和所述辅助辐射源13之间,其中基于阻抗匹配的目的在λ/8≤L≤λ/2的范围内对所述微带阻抗线14的线长的微调,所述微带阻抗线14的连接于所述平面辐射源12的一端允许向所述平面辐射源12的内部延伸而于所述平面辐射源12形成有一馈电槽125,如此以形成L>D2的结构关系。
同样地,基于阻抗匹配的目的在λ/8≤L≤λ/2的范围内对所述微带阻抗线14的线长的微调,所述微带阻抗线14的连接于所述辅助辐射源13的一端允许向所述辅助辐射源13的内部延伸而于所述辅助辐射源形成有一辅助馈电槽131,进而形成L>D2的结构关系。
也就是说,为保障所述平面辐射源12和所述辅助辐射源13分别与所述参考地面11之间的电场耦合能量,所述平面辐射源12与所述辅助辐射源13之间在所述极化方向的距离参数D2满足D2≥λ/8,为维持所述平面辐射源12和所述辅助辐射源13分别与所述参考地面11耦合形成的辐射波束的相位差于180°范围内,所述微带阻抗线14的长度参数为满足L≤λ/2,其中基于所述微带阻抗线14沿所述极化方向连接于所述平面辐射源12和所述辅助辐射源13之间的结构关系,所述参数D2和所述参数L在L≥D2的基础上分别满足λ/8≤D2≤λ/2和λ/8≤L≤λ/2。
可以理解的是,在本发明的一些实施例中,所述辅助辐射源13的数量为多个,其中各所述辅助辐射源13和所述平面辐射源12沿所述平面辐射源12的物理中心点121与所述馈电点122的连线被排布和被电性相连,即所述平面辐射源12与相邻所述辅助辐射源13沿所述平面辐射源12的物理中心点121与所述馈 电点122的连线被排布和被电性相连,且相邻所述辅助辐射源13之间沿所述平面辐射源12的物理中心点121与所述馈电点122的连线被排布和被电性相连,如此以形成所述辅助辐射源13和所述平面辐射源12沿所述平面辐射源12的物理中心点121与所述馈电点122的连线被排布和被电性相连的状态。
进一步地,当所述辅助辐射源13的数量大于一个时,各所述辅助辐射源13优选地在所述平面辐射源12的同一侧沿所述平面辐射源12的物理中心点121与所述馈电点122的连线被排布,和相邻的所述辅助辐射源13之间进一步电性相连,如此以在所述平面辐射源12于所述馈电点122被馈电时,各所述辅助辐射源13具有与所述平面辐射源12同向的极化方向,其中相邻所述辅助辐射源13之间在所述极化方向的距离参数对应于所述参数D2满足大于等于λ/8和小于等于λ/2的范围。
特别地,在本发明的这个变形实施例中,所述辅助辐射源13经所述非极化方向的两相对侧边进一步被内凹设置,如此以在所述辅助辐射源13具有与所述平面辐射源12相同的周长限制要求下,维持所述辅助辐射源13于相应周长要求的同时降低所述辅助辐射源13的面积,和增强所述辅助辐射源13于所述非极化方向与所述参考地面11的电场耦合以及所述辅助辐射源13的经所述非极化方向的侧边的两端之间的电场耦合,从而在所述非极化方向进一步增大所述辐射空间100的波束角。
同样地,在本发明的这个变形实施例中,所述平面辐射源12于所述物理中心点121被接地,具体地,在本发明的这个变形实施例中,所述平面辐射源12以于所述物理中心点121与所述参考地11电性相连的方式被接地,如此以通过降低所述平面辐射源12的对地阻抗的方式,提高所述低副瓣天线10的品质因数(即Q值),对应缩窄所述低副瓣天线10的带宽,从而有利于提高所述低副瓣天线10的抗干扰性能。
为进一步描述本发明,参考本发明的说明书附图之图5和图6所示,基于优化所述低副瓣天线10的结构和制造工艺的目的,依本发明的上述优化实施例的所述低副瓣天线10的进一步优化结构和细节被示意,其中所述低副瓣天线10进一步包括一辐射源基板15,一参考地基板16以及一屏蔽罩17,其中所述平面辐射源12以金属层形式承载于所述辐射源基板15,其中所述参考地面11以金属层形式被承载于所述参考地基板16,其中所述辐射源基板15与所述参考地基板 16相贴合以对应形成所述平面辐射源12与所述参考地面11被所述辐射源基板15相间隔的状态,其中在所述参考地基板16被贴合于所述辐射源基板15和被抵接于所述屏蔽罩17的结构基础上,所述屏蔽罩17被焊接于所述辐射源基板15,如此以形成所述屏蔽罩17、所述辐射源基板15以及所述参考地基板16三者之间稳定连接的结构关系,简化了所述低副瓣天线10的制造工艺,从而有利于所述低副瓣天线10的生产制造。
具体地,所述辐射源基板15具有分别被设置于所述辐射源基板15相对两面的一第一覆铜层151和一第二覆铜层152,其中所述参考地基板16被设置有一金属层161,其中所述金属层161被导电贴合于所述辐射源基板15的所述第二覆铜层152,则所述辐射源基板15的所述第一覆铜层151形成所述平面辐射源12,和所述参考地基板16的所述金属层161形成所述参考地面11,如此以形成所述平面辐射源12与所述参考地面11被所述辐射源基板15相间隔的状态。
进一步地,在所述非极化方向,定义所述平面辐射源12上经所述平面辐射源12的所述物理中心点121的直线为一能量平衡线,其中所述辐射源基板15在与所述能量平衡线相对应的侧面位置被设置有两焊接槽153,其中所述屏蔽罩17在与所述参考地基板16相抵接的状态以被焊接于相应所述焊接槽153的方式与所述辐射源基板15相固定,如以拖焊的方式形成所述辐射源基板15于所述焊接槽153与所述屏蔽罩17之间的焊接,则在所述参考地基板16被贴合于所述辐射源基板15和被抵接于所述屏蔽罩17的状态,经由所述辐射源基板15于所述焊接槽153与所述屏蔽罩17之间的焊接固定,形成所述辐射源基板15、所述参考地基板16以及所述屏蔽罩17三者之间稳定连接的关系。
具体地,所述屏蔽罩17自其罩沿延伸形成有对应于所述焊接槽153的两焊接臂171,其中所述屏蔽罩17在与所述参考地基板16相抵接的状态以所述焊接臂171被焊接于相应所述焊接槽153的方式被焊接于所述辐射源基板15。
值得一提的是,所述辐射源基板15在所述非极化方向的尺寸优选地被设置大于所述屏蔽罩17在所述非极化方向的内径,如此以有利于将所述焊接臂171伸入所述焊接槽153的方式在所述辐射源基板15与所述屏蔽罩17的相焊接固定前实现所述辐射源基板15的定位,从而有利于所述低副瓣天线10的自动化制造和提高所述低副瓣天线10的一致性和稳定性。
进一步地,所述辐射源基板15被设置有两焊盘1531,其中两所述焊盘1531 被覆盖于对应的所述焊接槽153的槽壁并导电连接于所述辐射源基板15的所述第二覆铜层152,则所述焊盘1531经所述第二覆铜层152被导电连接于所述参考地基板16的所述金属层161,如此以当所述辐射源基板15于所述焊接槽153经所述焊盘1531与所述屏蔽罩17相焊接固定时,所述屏蔽罩17导电连接于所述参考地面11而被接地,以能够增强所述屏蔽罩17形成的一屏蔽空间170的电磁屏蔽作用,从而有利于提高所述低副瓣天线10的抗干扰性能。
优选地,所述焊盘1531被设置以金属化过孔的工艺形成而覆盖于所述焊接槽153的槽壁,如此以有利于在以形成所述焊盘1531的同时形成所述焊盘与所述第二覆铜层152之间的导电连接,从而有利于简化所述低副瓣天线10的制造工艺。
详细地,所述屏蔽罩17的经所述极化方向的罩沿被内凹设置而形成有两安装槽172,其中所述参考地基板16的经所述极化方向的两相对端对应延伸形成有突出所述屏蔽罩17的两安装臂162,其中所述参考地基板16以所述安装臂162于对应的所述安装槽172突出于所述屏蔽罩17的状态在所述目标探测方向与所述屏蔽罩17相抵接,如此以当所述屏蔽罩17被焊接于所述辐射源基板15时,形成所述参考地基板16被夹持固定于所述屏蔽罩17和所述辐射源基板15之间的状态。
值得一提的是,其中所述参考地基板16以两所述安装臂162被架设于所述安装槽172的方式与所述屏蔽罩17相抵接,则在所述参考地基板16被贴合于所述辐射源基板15和被抵接于所述屏蔽罩17的连接关系的基础上,通过将所述屏蔽罩17焊接于所述辐射源基板15的方式,即通过所述屏蔽罩17和所述辐射源基板15之间的焊接固定,能够形成所述辐射源基板15、所述参考地基板16以及所述屏蔽罩17三者之间稳定连接的关系,如此以避免所述辐射源基板15的所述第二覆铜层152与所述参考地基板16的所述金属层161之间在相互贴合的层隙内以传统的回流焊工序相固定,有利于提高所述平面辐射源12和所述参考地面11之间的介质的电学稳定性,从而在简化所述低副瓣天线10的制造工艺的同时,有利于提高所述低副瓣天线10的一致性和稳定性。
进一步地,在所述参考地基板16的所述安装臂162于对应的所述安装槽172突出于所述屏蔽罩17的状态,所述参考地基板16以所述安装臂162于所述安装槽172与所述屏蔽罩17相抵接的状态形成所述参考地基板16的除所述安装臂 162的部分沉入所述屏蔽罩17的所述屏蔽空间170的状态,其中所述参考地基板16的沉入所述屏蔽空间170的部分优选地被设置具有与所述屏蔽罩17的相匹配的形状尺寸以对应形成所述参考地基板16的除所述安装臂162的部分的侧缘与所述屏蔽罩17的内周侧相贴近而被所述屏蔽罩17包围的状态,如此以有利于减小所述低副瓣天线10的尺寸,同时有利于在所述目标探测方向的反向方向提高所述屏蔽空间170对与所述副波瓣101相对应的电磁辐射和外界之间的屏蔽作用。
进一步地,为减小所述低副瓣天线10的尺寸,在前述“所述参考地面11在所述非极化方向的尺寸与所述平面辐射源12的在该方向最大尺寸保持一致”的结构基础上,所述参考地基板16在所述非极化方向的尺寸优选地与所述参考地面11保持一致,如此以对应形成所述参考地面11的周沿与所述屏蔽罩17的内周侧相贴近的状态,在减小所述参考地基板16的尺寸而减小所述低副瓣天线10的尺寸的同时,提高了所述屏蔽空间170在所述目标探测方向的电磁屏蔽特性,从而有利于在所述目标探测方向提高所述屏蔽空间170对与所述副波瓣101相对应的电磁辐射和外界之间的屏蔽作用,进而提高所述低副瓣天线10的抗干扰性能。
特别地,所述辐射源基板15在所述极化方向的尺寸优选地被设置与所述屏蔽罩17在该方向的尺寸保持一致,对应使得所述第二覆铜层152在所述极化方向的尺寸允许被设置与所述屏蔽罩17在该方向的尺寸保持一致,如此以藉由所述第二覆铜层152电磁封闭所述参考地面11的周沿与所述屏蔽罩17的内周侧之间因现有工艺精度和加工手段形成的缝隙/孔隙,从而进一步加强所述屏蔽空间170在所述目标探测方向的电磁屏蔽特性,进而有利于提高所述低副瓣天线10的抗干扰性能。
值得一提的是,所述参考地基板16于设置有所述金属层161的一面在各所述安装臂162分别被设置有至少一焊接端子1621以用作所述低副瓣天线10的电能接入和信号引出端口,并同时由于所述焊接端子1621与所述金属层161被设置于所述参考地基板16的同一侧而具有等效所述参考地面11的作用,如此以有利于在所述极化方向降低对所述参考地面11的尺寸要求,对应有利于降低所述参考地基板16在所述极化方向的尺寸而降低所述低副瓣天线10的尺寸。
具体地,在所述平面辐射源12的所述馈电点122至所述物理中心点121方 向,所述平面辐射源12的相应所述极化边123与所述参考地面11的侧边之间的距离为参数D3,在所述平面辐射源12的所述物理中心点121至所述馈电点122方向,所述平面辐射源12的相应所述极化边123与所述参考地面11的侧边之间的距离为参数D4,其中所述参数D3和所述参数D4的数值范围满足:D3≥λ/64或D4≥λ/64,如此以保障所述平面辐射源12于所述馈电点122被馈电时能够与所述参考地面11相互作用而产生具有初始极化方向的探测微波,从而在保障所述低副瓣天线10的增益的同时有利于在所述极化方向减小所述参考地面11和所述参考地基板16的尺寸而减小所述低副瓣天线10的尺寸。
进一步地,所述平面辐射源12于所述物理中心点121以金属化过孔的方式被电性连接于所述第二覆铜层152,以藉由所述第二覆铜层152与所述金属层161的电性贴合形成所述平面辐射源12于所述物理中心点121被接地的状态,从而有利于简化所述平面辐射源12于所述物理中心点121被接地的结构和工艺。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述无须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (23)

  1. 一低副瓣天线,其特征在于,包括:
    一参考地面;和
    一平面辐射源,其中所述平面辐射源与所述参考地面相互平行地被间隔设置,其中所述平面辐射源具有偏离于其物理中心点的一馈电点,其中在所述平面辐射源以所述馈电点至所述平面辐射源的物理中心点为一极化方向,和在所述平面辐射源以垂直于所述极化方向的方向为一非极化方向,其中定义所述平面辐射源的经所述非极化方向的两相对侧边为两非极化边,其中所述平面辐射源的两所述非极化边朝向所述平面辐射源的物理中心点凹陷而被内凹设置。
  2. 根据权利要求1所述的低副瓣天线,其中定义所述平面辐射源的经所述极化方向的两相对侧边为两极化边,其中所述极化边的边长为参数a,所述非极化边的边长为参数b,其中所述参数a和所述参数b分别满足λ/8≤a≤λ/2和λ/8≤b≤λ/2,其中λ为对应馈电频率的波长参数。
  3. 根据权利要求2所述的低副瓣天线,其中在所述平面辐射源的所述馈电点至所述物理中心点方向,所述平面辐射源的相应所述极化边与所述参考地面的侧边之间的距离为参数D3,在所述平面辐射源的所述物理中心点至所述馈电点方向,所述平面辐射源的相应所述极化边与所述参考地面的侧边之间的距离为参数D4,其中所述参数D3和所述参数D4的数值范围满足:D3≥λ/64或D4≥λ/64。
  4. 根据权利要求3所述的低副瓣天线,其中所述参考地面在所述非极化方向的尺寸与所述平面辐射源的在所述非极化方向的最大尺寸保持一致。
  5. 根据权利要求3所述的低副瓣天线,其中所述平面辐射源于其物理中心点被电性连接于所述参考地面。
  6. 根据权利要求1至5所述的低副瓣天线,其中所述低副瓣天线进一步包括一辐射源基板,一参考地基板以及一屏蔽罩,其中所述平面辐射源以金属层形式承载于所述辐射源基板,其中所述参考地面以金属层形式被承载于所述参考地基板,其中在所述参考地基板被贴合于所述辐射源基板和被抵接于所述屏蔽罩的状态,所述屏蔽罩与所述辐射源基板相焊 接固定,对应以所述平面辐射源与所述参考地面被所述辐射源基板相间隔的状态形成所述参考地基板被夹持固定于所述辐射源基板和所述屏蔽罩之间的结构关系。
  7. 根据权利要求6所述的低副瓣天线,其中所述辐射源基板具有分别被设置于所述辐射源基板相对两面的一第一覆铜层和一第二覆铜层,其中所述参考地基板被设置有一金属层,其中所述金属层与所述第二覆铜层导电贴合和在相互贴合的层隙内避免采用回流焊固定,对应形成所述参考地基板与所述辐射源基板相贴合的状态,如此以于所述第一覆铜层形成所述平面辐射源和于所述金属层形成所述参考地面,从而形成所述平面辐射源与所述参考地面被所述辐射源基板相间隔的稳定状态。
  8. 根据权利要求7所述的低副瓣天线,其中在所述非极化方向,定义所述平面辐射源上经所述平面辐射源的物理中心点的直线为一能量平衡线,其中所述辐射源基板在与所述能量平衡线相对应的侧面位置被设置有两焊接槽,其中所述屏蔽罩在与所述参考地基板相抵接的状态以被焊接于相应所述焊接槽的方式与所述辐射源基板相固定。
  9. 根据权利要求8所述的低副瓣天线,其中所述屏蔽罩自其罩沿延伸形成有对应于所述焊接槽的两焊接臂,其中所述屏蔽罩在与所述参考地基板相抵接的状态以所述焊接臂被焊接于相应所述焊接槽的方式被焊接于所述辐射源基板。
  10. 根据权利要求9所述的低副瓣天线,其中所述辐射源基板在所述非极化方向的尺寸被设置大于所述屏蔽罩在所述非极化方向的内径。
  11. 根据权利要求9所述的低副瓣天线,其中所述辐射源基板被设置有两焊盘,其中两所述焊盘被覆盖于对应的所述焊接槽的槽壁并导电连接于所述辐射源基板的所述第二覆铜层,则所述焊盘经所述第二覆铜层被导电连接于所述参考地基板的所述金属层,其中所述辐射源基板于所述焊接槽经所述焊盘与所述屏蔽罩相焊接固定,则所述屏蔽罩导电连接于所述参考地面而被接地。
  12. 根据权利要求11所述的低副瓣天线,其中所述焊盘被设置以金属化过孔工艺形成而覆盖于所述焊接槽的槽壁,并同时形成所述焊盘与所述第二覆铜层的导电连接关系。
  13. 根据权利要求7所述的低副瓣天线,其中所述平面辐射源于其所述物理中心点以金属化过孔工艺被电性连接于所述第二覆铜层,以经所述第二覆铜层与所述参考地面的导电贴合形成所述平面辐射源于所述物理中心点与所述参考地面的电性连接。
  14. 根据权利要求6所述的低副瓣天线,其中所述屏蔽罩的经所述极化方向的罩沿被内凹设置而形成有两安装槽,其中所述参考地基板的经所述极化方向的两相对端对应延伸形成两安装臂,其中所述参考地基板的所述安装臂于相应所述安装槽突出于所述屏蔽罩而与所述屏蔽罩相抵接。
  15. 根据权利要求14所述的低副瓣天线,其中在所述参考地基板的所述安装臂于对应的所述安装槽突出于所述屏蔽罩的状态,所述参考地基板的除所述安装臂的部分沉入所述屏蔽罩,其中所述参考地基板的沉入所述屏蔽罩的部分被设置具有与所述屏蔽罩相匹配的形状尺寸以对应形成所述参考地基板的沉入所述屏蔽罩的部分的侧缘与所述屏蔽罩的内周侧相贴近而被所述屏蔽罩包围的状态。
  16. 根据权利要求15所述的低副瓣天线,其中所述参考地基板在所述非极化方向的尺寸被设置与所述参考地面在所述非极化方向的尺寸保持一致,如此以对应形成所述参考地面的周沿与所述屏蔽罩的内周侧相贴近的状态。
  17. 根据权利要求16所述的低副瓣天线,其中所述辐射源基板在所述极化方向的尺寸被设置与所述屏蔽罩在所述极化方向的尺寸保持一致,对应所述第二覆铜层在所述极化方向的尺寸被设置与所述屏蔽罩在该所述极化方向的尺寸保持一致。
  18. 根据权利要求16所述的低副瓣天线,其中所述参考地基板于设置有所述金属层的一面在各所述安装臂分别被设置有至少一焊接端子以用作所述低副瓣天线的电能接入和信号引出端口。
  19. 根据权利要求2所述的低副瓣天线,其中所述低副瓣天线进一步包括至少一辅助辐射源,其中所述辅助辐射源和所述平面辐射源分别与所述参考地面等距相间隔,其中所述辅 助辐射源和所述平面辐射源沿所述平面辐射源的物理中心点与所述馈电点的连线被排布和被电性相连,其中所述平面辐射源与相邻所述辅助辐射源之间在所述极化方向的距离参数D2满足λ/8≤D2≤λ/2,其中所述参考地面的与所述平面辐射源的所述非极化边相对应的侧边和该非极化边之间在所述非极化方向的距离参数D1满足D1≥λ/32。
  20. 根据权利要求19所述的低副瓣天线,其中所述平面辐射源和相邻所述辅助辐射源之间经由一微带阻抗线电性相连,其中所述微带阻抗线沿所述平面辐射源的所述馈电点与物理中心点的连线被设置,以对应形成所述辅助辐射源和所述平面辐射源沿所述平面辐射源的物理中心点与所述馈电点的连线被电性相连的状态,其中所述微带阻抗线的长度参数L满足λ/8≤L≤λ/2。
  21. 根据权利要求20所述的低副瓣天线,其中所述微带阻抗线的线宽参数W满足0.05mm≤W≤3.2mm。
  22. 根据权利要求21所述的低副瓣天线,其中所述辅助辐射源的数量大于一个,其中所述平面辐射源与相邻所述辅助辐射源沿所述平面辐射源的物理中心点与所述馈电点的连线被排布和被电性相连,且相邻所述辅助辐射源之间沿所述平面辐射源的物理中心点与所述馈电点的连线被排布和被电性相连,以对应形成所述辅助辐射源和所述平面辐射源沿所述平面辐射源的物理中心点与所述馈电点的连线被排布和被电性相连的状态。
  23. 根据权利要求22所述的低副瓣天线,其中各所述辅助辐射源优在所述平面辐射源的同一侧沿所述平面辐射源的物理中心点与所述馈电点的连线被排布。
PCT/CN2020/090584 2020-01-10 2020-05-15 低副瓣天线 WO2021139064A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202010028140.5A CN111162382A (zh) 2020-01-10 2020-01-10 微型化微波探测装置和其制造方法
CN202010028140.5 2020-01-10
CN202010027375.2A CN111129755A (zh) 2020-01-10 2020-01-10 波束修整方法
CN202010027375.2 2020-01-10
CN202010312935.9A CN111474589A (zh) 2020-04-20 2020-04-20 微波探测模块及其制造方法
CN202010312935.9 2020-04-20
CN202010364339.5A CN111478032A (zh) 2020-04-30 2020-04-30 具有狭长探测面的微波探测模块
CN202010364339.5 2020-04-30
CN202010364315.XA CN111416208A (zh) 2020-04-30 2020-04-30 低副瓣天线和其探测方法
CN202010364315.X 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021139064A1 true WO2021139064A1 (zh) 2021-07-15

Family

ID=76787690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090584 WO2021139064A1 (zh) 2020-01-10 2020-05-15 低副瓣天线

Country Status (1)

Country Link
WO (1) WO2021139064A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613977B1 (en) * 2001-02-01 2003-09-02 Apple Computer, Inc. Apparatus and methods to contain radio frequency energy within a housing of an electronic device
CN1722516A (zh) * 2004-07-12 2006-01-18 株式会社东芝 宽带天线和具备该宽带天线的通信装置
CN104157980A (zh) * 2014-08-08 2014-11-19 电子科技大学 可重构微带八木天线
CN107331965A (zh) * 2017-07-19 2017-11-07 广东通宇通讯股份有限公司 低增益低旁瓣微基站天线
CN108682949A (zh) * 2018-06-11 2018-10-19 深圳迈睿智能科技有限公司 同一基板天线
CN109314315A (zh) * 2018-06-11 2019-02-05 深圳迈睿智能科技有限公司 具有抗干扰设置的天线及其制造方法
CN110518345A (zh) * 2019-08-26 2019-11-29 深圳迈睿智能科技有限公司 具有接地点的微波探测器及其制造方法
CN111129755A (zh) * 2020-01-10 2020-05-08 深圳迈睿智能科技有限公司 波束修整方法
CN111162382A (zh) * 2020-01-10 2020-05-15 深圳迈睿智能科技有限公司 微型化微波探测装置和其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613977B1 (en) * 2001-02-01 2003-09-02 Apple Computer, Inc. Apparatus and methods to contain radio frequency energy within a housing of an electronic device
CN1722516A (zh) * 2004-07-12 2006-01-18 株式会社东芝 宽带天线和具备该宽带天线的通信装置
CN104157980A (zh) * 2014-08-08 2014-11-19 电子科技大学 可重构微带八木天线
CN107331965A (zh) * 2017-07-19 2017-11-07 广东通宇通讯股份有限公司 低增益低旁瓣微基站天线
CN108682949A (zh) * 2018-06-11 2018-10-19 深圳迈睿智能科技有限公司 同一基板天线
CN109314315A (zh) * 2018-06-11 2019-02-05 深圳迈睿智能科技有限公司 具有抗干扰设置的天线及其制造方法
CN110518345A (zh) * 2019-08-26 2019-11-29 深圳迈睿智能科技有限公司 具有接地点的微波探测器及其制造方法
CN111129755A (zh) * 2020-01-10 2020-05-08 深圳迈睿智能科技有限公司 波束修整方法
CN111162382A (zh) * 2020-01-10 2020-05-15 深圳迈睿智能科技有限公司 微型化微波探测装置和其制造方法

Similar Documents

Publication Publication Date Title
JP2019208241A (ja) 電子回路を有する反射器および反射器を有するアンテナデバイス
CN108417998A (zh) 天线及其辐射单元
JP6195080B2 (ja) アンテナ装置
WO2023143104A1 (zh) 双端馈电式差分天线
JPWO2015151430A1 (ja) アンテナ、アレイアンテナ及び無線通信装置
US20240014566A1 (en) An antenna array
JP2015111763A (ja) 偏波ダイバーシチ用アンテナ及び無線通信装置
US20240039147A1 (en) Microwave-Doppler Detecting Module and Device Thereof
CN112864636A (zh) 超宽带金属Vivaldi双极化天线
JP6202281B2 (ja) アンテナ装置
CN109037895B (zh) 宽带宽角低剖面的紧耦合天线阵
US20220294116A1 (en) Radiation element for antenna and antenna including the radiation element
WO2021139064A1 (zh) 低副瓣天线
WO2024051434A1 (zh) 一种圆极化天线、通信设备及圆极化天线制造方法
CN206516756U (zh) 一种双频天线
WO2021003081A1 (en) Base station antenna including fabrey-perot cavities
CN111293414A (zh) 微波感应器
CN116885459A (zh) 内嵌式展宽角扫描相控阵天线设计方法
CN114937863B (zh) 一种双极化磁电偶极子天线
JP2007335981A (ja) 偏波ダイバーシチアンテナ装置
US8040288B2 (en) Dipole for hemispherical coverage antenna
JP2024501920A (ja) 円偏波アンテナ
CN110391504A (zh) 一种微带阵列天线
TW201526388A (zh) 雙指向性多輸入多輸出天線單元及其陣列
CN219833009U (zh) 一种天线单元、天线阵列及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911775

Country of ref document: EP

Kind code of ref document: A1