WO2023143104A1 - 双端馈电式差分天线 - Google Patents

双端馈电式差分天线 Download PDF

Info

Publication number
WO2023143104A1
WO2023143104A1 PCT/CN2023/071952 CN2023071952W WO2023143104A1 WO 2023143104 A1 WO2023143104 A1 WO 2023143104A1 CN 2023071952 W CN2023071952 W CN 2023071952W WO 2023143104 A1 WO2023143104 A1 WO 2023143104A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference ground
feed
strip
double
differential antenna
Prior art date
Application number
PCT/CN2023/071952
Other languages
English (en)
French (fr)
Inventor
邹高迪
孙毅
邹新
邹明志
Original Assignee
深圳迈睿智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈睿智能科技有限公司 filed Critical 深圳迈睿智能科技有限公司
Publication of WO2023143104A1 publication Critical patent/WO2023143104A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the invention relates to the field of microwave detection, in particular to a double-end feeding differential antenna.
  • microwave detection technology based on the principle of Doppler effect, as an important link between people and things, and between things and things, has unique advantages in behavior detection and presence detection technology, which can Detection of moving objects, such as human action features, moving features, and micro-movement features, and even human heartbeat and breathing feature information, thus has a wide range of application prospects.
  • the corresponding microwave detector is fed by an excitation signal to transmit a microwave beam corresponding to the frequency of the excitation signal to the target space, thereby forming a detection area in the target space, and receiving the microwave beam by the A reflection echo formed by reflection of a corresponding object in the detection area and transmit an echo signal corresponding to the frequency of the reflection echo to a frequency mixing detection unit, wherein the frequency mixing detection unit mixes the excitation signal and the the echo signal to output a Doppler intermediate frequency signal corresponding to the frequency/phase difference between the excitation signal and the echo signal, wherein based on the principle of the Doppler effect, the When the object is in a moving state, there is a certain frequency/phase difference between the echo signal and the excitation signal, and corresponding amplitude fluctuations appear in the Doppler intermediate frequency signal to feed back human activities.
  • the columnar antenna includes a columnar radiation source and a reference ground, wherein the reference ground is A radiation hole is provided, wherein the columnar radiation originates from one end thereof and extends straight to penetrate the reference ground vertically through the radiation hole in a state spaced from the reference ground, correspondingly naming this end as the columnar radiation source
  • the feed end of the columnar radiation source wherein the distance between the end of the columnar radiation source far away from the feed end and the reference ground is greater than or equal to a quarter of the electrical length of the wavelength, that is, the columnar radiation source has a distance equal to a quarter of the wavelength
  • the columnar radiation source can be coupled with the reference ground to emit the corresponding excitation signal frequency of the microwave beam, thereby forming the
  • planar antennas are widely used in existing microwave detectors due to their directional radiation characteristics.
  • the size of the plane is directly limited by the area of its reference ground.
  • the planar antenna has certain size requirements for its flat radiation source, the area of its reference ground is also satisfied on the basis of a structure larger than the area of its flat radiation source.
  • the plane size of the planar antenna in the direction of its reference ground is larger and depends on the size of the reference ground, while the columnar radiation source has a larger size in the direction perpendicular to the reference ground , it is difficult to apply to miniaturized usage scenarios.
  • An object of the present invention is to provide a double-ended feed differential antenna, wherein the double-ended feed differential antenna can reduce the area and integrity of the reference ground relative to the planar antenna and the cylindrical antenna while having directional radiation characteristics.
  • the double-end fed differential antenna has a significant miniaturization advantage compared with the planar antenna and the columnar antenna in structure.
  • Another object of the present invention is to provide a double-ended feed differential antenna, wherein the double-ended feed
  • the differential antenna adopts the phase difference feeding method to reduce the loss caused by the electric field coupling in the initial polarization process of the transmitting antenna, and the corresponding double-end fed differential antenna has higher emission efficiency and smaller minimum
  • the extreme value of the transmit power is conducive to reducing the transmit power of the double-end fed differential antenna under the same radiation gain requirement.
  • Another object of the present invention is to provide a double-ended feed differential antenna, wherein the double-ended feed differential antenna has a smaller minimum transmit power extreme value and when it is applied to microwave detection as a transmit antenna, it can By reducing the transmission power of the transmitting antenna, the signal strength of the corresponding microwave beam and the reflected echo is reduced, that is, the electromagnetic radiation energy density of the microwave beam and the reflected echo is reduced, and then it can Utilize the bottom noise suppression mechanism of the communication device to avoid the interference caused by the transmitting antenna to the corresponding communication device, and reduce or even remove the restriction of the installation position of the communication device in the installation environment on the installation position of the transmission antenna in the corresponding installation environment .
  • Another object of the present invention is to provide a dual-feed differential antenna, wherein by reducing the transmission power of the transmitting antenna, the signal strength of the microwave beam is reduced, so as to The loss caused by the penetration behavior of the concrete wall or glass of the structure is much greater than the loss caused by the propagation in the space.
  • the signal strength of the microwave beam is reduced and takes the form of a weak signal, it is used to define the target detection space
  • the absorption of the microwave beam in the weak signal form by the concrete wall or glass of the masonry structure forms an adaptive definition of the gradient boundary of the microwave beam in the weak signal form, corresponding to the detection space that does not limit the target
  • the state of the space form makes the effective detection space bounded by the concrete wall or glass of the masonry structure of the transmitting antenna match with the corresponding target detection space to improve the performance of the double-end fed differential antenna in microwave Adaptability to different target detection spaces in detection applications.
  • Another object of the present invention is to provide a dual-feed differential antenna, wherein by reducing the transmission power of the transmitting antenna, the signal strength of the microwave beam is reduced to a weak signal form, based on the The proportion of the loss generated by the reflection behavior of the microwave beam relative to the radiation energy of the microwave beam is increased, so as to avoid self-excited interference based on multiple reflection behaviors.
  • Another object of the present invention is to provide a dual-feed differential antenna, wherein by reducing the transmission power of the transmission antenna, the dependence of the immunity of the transmission antenna on the frequency bandwidth of the transmission antenna is lowered, correspondingly lowering the precision requirement on the transmitting antenna, which is beneficial to reducing the production cost of the transmitting antenna.
  • Another object of the present invention is to provide a double-ended feed differential antenna, wherein the double-ended feed
  • the differential antenna has a smaller minimum transmit power extreme value and when it is applied to microwave detection as a transmit antenna, it is beneficial to reduce the transmit power of the transmit antenna to the state of the target transmit power, ensuring that the transmit antenna is sensitive to the micro-signal form stable emission of the microwave beam.
  • Another object of the present invention is to provide a double-ended feed differential antenna, wherein the double-ended feed differential antenna includes a reference ground and two-shaped vibrator, wherein the access excitation of the two strip-shaped vibrator
  • the two ends of the signal are respectively the feeding ends of the two strip-shaped vibrators, and the two described strip-shaped vibrators extend from the two described feeding ends in the same lateral space of the reference ground and respectively have a ratio greater than or equal to 3/16 and The electrical length is less than or equal to 5/16 wavelength
  • the two strip-shaped vibrators respectively have a coupling section, wherein the end of the coupling section close to the feeding end of the strip-shaped vibrator to which it belongs is the coupling section
  • the two coupling sections extend from the proximal ends in the dislocation direction, and have a misalignment distance greater than or equal to ⁇ /256 and less than or equal to ⁇ /6, that is, any point on one of the coupling sections to the other A distance of the coupling section is greater than or equal to ⁇ /
  • a phase difference greater than 90° realizes a polarization form tending to linear polarization, and forms a coupling between the two coupling sections based on the structure of the two coupling sections extending from the proximal end in a dislocation direction, and based on the two coupling sections
  • the mutual coupling between the coupling sections forms a common resonant frequency point, that is, when the two-terminal feeding differential antenna is used as the transmitting antenna and the two feeding ends of the two strip oscillators are connected with a phase difference
  • the differential feeding of the transmitting antenna is realized in the polarization direction of the transmitting antenna tending to be linearly polarized, and the transmitting antenna is reduced in the state of ensuring the stable transmitting of the microwave beam.
  • the minimum transmission power extreme value of the antenna and then in the state of reducing the transmission power of the transmission antenna to the target transmission power, the stable transmission of the microwave beam in the
  • Another object of the present invention is to provide a dual-end feed differential antenna, wherein in the state of the dual-end feed differential antenna as the transmitting antenna, it is preferably based on the 180° phase difference between the transmitting antennas
  • the balanced differential feed in the state of ensuring the stable transmission of the microwave beam, reduces the minimum transmission power extreme value of the transmitting antenna, thereby reducing the transmission power of the transmitting antenna to be less than or equal to 0dBm or lower. Steady emission of said microwave beam in signal form.
  • the present invention provides a double-ended feed differential antenna
  • the double-ended feed differential antenna includes a reference ground and two strip-shaped oscillators, wherein the excitation signal is connected to the two strip-shaped oscillators
  • the two ends of the strip vibrator are respectively the feeding ends of the two strip vibrators, and the two strip vibrators are from the two feeding ends at the The same lateral space of the reference ground extends and has an electrical length greater than or equal to 3/16 and less than or equal to 5/16 wavelength
  • the two strip oscillators respectively have a coupling section, wherein the coupling section is close to its belonging One end of the feeding end of the strip vibrator is the proximal end of the coupling section, and the two coupling sections extend from the proximal ends in opposite directions so that the two feeding ends of the two strip vibrators A state in which the terminals are connected to excitation signals with a difference greater than 90° forms a coupling between the two coupling sections to realize differential feeding to the dual-end feeding differential antenna.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground in a direction vertically away from the reference ground, and are equidistant from the reference ground The positions extend toward each other, so as to form the proximal ends of the two coupling sections at this position.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground in a direction vertically away from the reference ground, and are equidistant from the reference ground. extending towards each other to form the coupling section, and extending in a direction vertically close to the reference ground.
  • two of the coupling sections extend from the proximal end in a misalignment direction, and have a misalignment distance greater than or equal to ⁇ /256 and less than or equal to ⁇ /6, that is, any of the coupling sections on one of the coupling sections
  • the distance from one point to another coupling section is greater than or equal to ⁇ /256 and less than or equal to ⁇ /6, where ⁇ is a wavelength parameter corresponding to the frequency of the excitation signal.
  • the two coupling sections of the two bar vibrators extend from the proximal end in parallel misalignment directions towards each other.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground in a direction vertically away from the reference ground, and are equidistant from the reference ground The positions extend toward each other in dislocation directions parallel to each other, so as to form the proximal ends of the two coupling sections at this position.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground in a direction vertically away from the reference ground, and are equidistant from the reference ground
  • the positions of the coupling sections are extended toward each other in dislocation directions parallel to each other to form the coupling section, and extend in a direction vertically close to the reference ground.
  • the middle of one of the coupling sections is electrically connected to the middle of the other coupling section.
  • the coupling section has a cross-sectional area change along the cross-sectional direction of the strip vibrator.
  • the two strip vibrators are on the same side of the reference ground from the two feed terminals
  • the space sequence extends vertically away from the reference ground, extends back in a direction parallel to each other at a position equidistant from the reference ground, extends vertically away from the reference ground, and is at a distance from the reference ground Equidistant positions extend toward each other in dislocation directions parallel to each other to form the coupling section.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground in a direction vertically away from the reference ground, and are equidistant from the reference ground.
  • the positions extend backward in dislocation directions parallel to each other, extend vertically away from the reference ground, extend oppositely in dislocation directions parallel to each other at positions equidistant from the reference ground to form the coupling section, and vertically approach the reference ground. The above reference place extends.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground in a direction vertically away from the reference ground, and are equidistant from the reference ground.
  • the coupling sections are formed by extending towards each other in dislocation directions parallel to each other, extending in a direction perpendicular to the reference ground, and extending towards each other again in dislocation directions parallel to each other at a position equidistant from the reference ground.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground in a direction vertically away from the reference ground, and are equidistant from the reference ground.
  • the positions extend backward in dislocation directions parallel to each other, extend vertically away from the reference ground, and extend oppositely in dislocation directions parallel to each other at positions equidistant from the reference ground to form the coupling section, and vertically approach the reference ground. extending in the direction of the reference ground, and extending towards each other again in mutually parallel dislocation directions at a position equidistant from the reference ground.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground in a direction vertically away from the reference ground, and at different distances from the reference ground
  • the positions of the two coupling segments extend toward each other in dislocation directions parallel to each other to form the coupling segments, wherein the lengths of the two coupling segments are not limited to be the same.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space of the reference ground in a direction vertically away from the reference ground, and then are equidistant from the reference ground.
  • the positions are sequentially bent to extend oppositely in mutually parallel misalignment directions, bent to extend toward each other in mutually parallel misalignment directions to form the coupling section, and bent again to extend oppositely in mutually parallel misalignment directions .
  • the two coupling segments of the two strip vibrators extend toward each other in dislocation and staggered directions from the proximal end.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground in a direction vertically away from the reference ground, and are equidistant from the reference ground the location of The dislocations away from the reference ground and opposite to each other extend in staggered directions to form the coupling section.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground in a direction vertically away from the reference ground, and are equidistant from the reference ground.
  • the coupling section is formed by extending oppositely in a dislocation staggered direction away from the reference ground and opposite to each other, and extends in a direction vertically away from the reference ground at a position equidistant from the reference ground.
  • the double-ended feed differential antenna further includes a circuit substrate and an antenna substrate, wherein the reference ground is carried on the circuit substrate, and the two strip-shaped oscillators are in the form of strip wires carried on the antenna substrate.
  • the two strip-shaped vibrators extend from the two feed ends in the same lateral space sequence of the reference ground to form a feed section vertically away from the reference ground, and
  • the equidistant positions of the reference grounds extend toward each other in dislocation directions parallel to each other to form the coupling section, and extend in a direction vertically close to the reference ground to form a tuning section
  • the double-ended feed differential antenna further includes a circuit A substrate and an antenna substrate, wherein the reference ground is carried on the circuit substrate, and the two strip-shaped oscillators are carried on two opposite surfaces of the antenna substrate in the form of strip wires.
  • At least one end of the two coupling sections is chamfered.
  • the end position of the antenna substrate corresponding to the chamfered end of the coupling section is chamfered.
  • the length of the feed section is 1.5mm within the error range of ⁇ 20%, and the coupling The length of the segment is 8.4mm within ⁇ 20% and the length of the tuned segment is 0.7mm within ⁇ 20%.
  • the length of the feed section is 1.77mm within the error range of ⁇ 20%
  • the The length of the coupling section is 7mm within the error range of ⁇ 20%
  • the length of the tuning section is 1.1mm within the error range of ⁇ 20%.
  • the position where the antenna substrate is close to the reference ground is hollowed out.
  • the double-ended feed differential antenna further includes two pads arranged on the circuit substrate, wherein each of the pads is set at a corresponding position of each of the feed ends, and the An isolation area is provided between the reference ground and each of the pads to realize electrical isolation between the reference ground and the pads, wherein the two strip-shaped vibrators are welded and fixed on the corresponding feed terminals. the pad.
  • the antenna substrate has at least one insertion portion extending from one edge thereof and protruding from the edge, wherein the circuit
  • the substrate has a fixing through hole adapted to be inserted by the insertion portion, wherein the antenna substrate is plugged and fixed to the circuit substrate in a state where the insertion portion is inserted into the fixing through hole.
  • the antenna substrate has at least two insertion parts extending from one edge thereof and protruding from the edge, wherein the The circuit substrate has a fixing through hole adapted to be inserted by the insertion portion, wherein the antenna substrate is plugged and fixed to the circuit substrate in a state where the insertion portion is inserted into the fixing through hole.
  • the antenna substrate has two insertion parts extending from one edge thereof and protruding from the edge, wherein the circuit substrate There are two fixing through holes suitable for being inserted by the insertion part, wherein the antenna substrate is plugged and fixed to the circuit substrate in the state where the insertion part is inserted into the fixing through hole, and is correspondingly formed to be carried on the
  • the two strip-shaped vibrators of the antenna substrate extend from the feeding end and are embedded in the fixing through hole.
  • FIG. 1A is a schematic structural diagram of a dual-feed differential antenna according to an embodiment of the present invention.
  • FIG. 1B is a simulation effect diagram of the double-end fed differential antenna of the above-mentioned embodiment.
  • FIG. 2 is a schematic structural diagram of a double-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 3A is a schematic structural diagram of a dual-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 3B is a simulation effect diagram of the double-end fed differential antenna of the above-mentioned embodiment.
  • FIG. 4A is a schematic structural diagram of a dual-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 4B is a simulation effect diagram of the double-end fed differential antenna of the above-mentioned embodiment.
  • FIG. 5A is a schematic structural diagram of a dual-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 5B is a simulation effect diagram of the double-end fed differential antenna of the above-mentioned embodiment.
  • FIG. 6 is a schematic structural diagram of a double-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a dual-feed differential antenna according to another embodiment of the present invention.
  • FIG. 8A is a schematic structural diagram of a double-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 8B is a simulation effect diagram of the double-end fed differential antenna of the above-mentioned embodiment.
  • FIG. 9 is a schematic structural diagram of a double-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 10A is a schematic structural diagram of a dual-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 10B is a simulation effect diagram of the double-end fed differential antenna of the above-mentioned embodiment.
  • FIG. 11 is a schematic structural diagram of a double-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 12A is a schematic structural diagram of a double-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 12B is a schematic structural diagram of a dual-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a dual-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a double-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 15A is a schematic structural diagram of a dual-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 15B is a side view of the double-end fed differential antenna according to the above-mentioned embodiment of the present invention.
  • FIG. 16A is a schematic structural diagram of a dual-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 16B is a dimension diagram of the double-end fed differential antenna according to the above-mentioned embodiment of the present invention.
  • FIG. 16C is a dimensional diagram of the antenna substrate of the dual-feed differential antenna according to the above-mentioned embodiment of the present invention.
  • FIG. 17A is a schematic structural diagram of a double-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 17B is a side view of the dual-feed differential antenna according to the above-mentioned embodiment of the present invention.
  • FIG. 18A is a schematic structural diagram of a dual-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 18B is a side view of the dual-feed differential antenna according to the above-mentioned embodiment of the present invention.
  • FIG. 18C is a dimension diagram of the double-end fed differential antenna according to the above-mentioned embodiment of the present invention.
  • FIG. 18D is a dimensional diagram of the antenna substrate of the dual-feed differential antenna according to the above-mentioned embodiment of the present invention.
  • FIG. 19A is a schematic structural diagram of a dual-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 19B is a side view of the dual-feed differential antenna according to the above-mentioned embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a dual-feed differential antenna according to another embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a double-end fed differential antenna according to another embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of a double-end fed differential antenna according to another embodiment of the present invention.
  • the term “a” should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of an element can be one, while in another embodiment, the number of the element
  • the quantity can be multiple, and the term “a” cannot be understood as a limitation on the quantity.
  • the differential feeding of the transmitting antenna is combined to reduce the The minimum transmit power extreme value
  • the present invention provides a dual-end feed differential antenna 10, to use the dual-end feed differential antenna 10 as the state of the transmit antenna in microwave detection applications, reducing the minimum minimum power of the transmit antenna
  • the extreme value of the transmission power is used to ensure the stable transmission of the microwave beam in the form of a micro-signal when the transmission power of the transmission antenna is reduced to the target transmission power.
  • the double-ended feed differential antenna 10 includes a reference ground 11 and two strip-shaped oscillators 12, wherein the two ends of the access excitation signals of the two strip-shaped oscillators 12 are respectively two The feed end 121 of the strip vibrator 12, the two strip vibrator 12 extend from the two feed ends 121 in the same lateral space of the reference ground 11 and have a diameter greater than or equal to 3/16 and less than or equal to 5/16 wavelength electrical length, wherein the two strip vibrators 12 respectively have a coupling section 122, wherein one end of the coupling section 122 close to the feeding end 121 of the strip vibrator 12 to which it belongs is The proximal end of the coupling section 122, the two coupling sections 122 extend in opposite directions from the proximal end, so that the double-end fed differential antenna 10 acts as the transmitting antenna on the two strip dipoles
  • the two feed terminals 121 of 12 are connected to the excitation signal with a phase difference greater than 90° and are fed with a
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in a direction vertically away from the reference ground 11, and at a distance from the reference ground 11.
  • the positions equidistant from the reference ground 11 extend towards each other, so as to form the proximal ends of the two coupling sections 122 at this position.
  • Figure 1B it is the simulation effect diagram of the double-end fed differential antenna of this structure. As shown in the figure, under the condition of the excitation source frequency of 5.8G, the simulation results show that the directional radiation direction has a radiation gain of 4.89dB and the directional radiation effect is good.
  • the S11 curve presents an obvious resonant frequency point around 5.8GHz and can match the 5.8GHz ISM working frequency band; the loss of the S11 curve at the resonant frequency point is as low as -15dB and has a wider bandwidth.
  • the main frequency can still maintain a low loss, thereby improving the anti-interference ability and meeting the basic work requirements of microwave detection.
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in a direction vertically away from the reference ground 11, and at a distance from the reference ground 11 11 are equidistant from each other to form the coupling section 122 , and extend in a direction vertically close to the reference ground 11 .
  • the two coupling sections 122 extend from the proximal end in the misalignment direction, and have a misalignment distance greater than or equal to ⁇ /256 and less than or equal to ⁇ /6, that is, one of the coupling sections 122
  • the distance between any point on the above coupling section 122 is greater than or equal to ⁇ /256 and less than or equal to ⁇ /6, where ⁇ is a wavelength parameter corresponding to the frequency of the excitation signal.
  • the two coupling segments 122 of the two bar vibrators 12 extend from the proximal ends in parallel misalignment directions.
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in a direction vertically away from the reference ground 11, and at a distance from the reference ground 11.
  • the positions equidistant from the reference ground 11 extend toward each other in dislocation directions parallel to each other, so as to form two The proximal end of the coupling section 122.
  • Figure 3B it is the simulation effect diagram of the double-end fed differential antenna of this structure.
  • the simulation results show that the directional radiation direction has a radiation gain as high as 6.49dB, and the directional radiation
  • the S11 curve presents an obvious resonant frequency point around 5.8GHz and can match the 5.8GHz ISM working frequency band; the loss of the S11 curve at the resonant frequency point is as low as -26.7dB and has a wider bandwidth.
  • the main frequency can still maintain a low loss, thereby improving the anti-interference ability and ensuring the stable transmission of the microwave beam in the form of a micro signal by the transmitting antenna.
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in a direction vertically away from the reference ground 11, and at a distance from the reference ground 11
  • the positions equidistant from 11 extend toward each other in offset directions parallel to each other to form the coupling section 122 , and extend in a direction perpendicular to the reference ground 11 .
  • Figure 4B it is the simulation effect diagram of the dual-end fed differential antenna of this structure. As shown in the figure, under the condition of the excitation source frequency of 5.8G, compared with the structure of Figure 3A, the simulation results show that the radiation gain in the directional radiation direction is further Improve, up to 6.95dB.
  • the S11 curve presents an obvious resonant frequency point around 5.8GHz and can match the ISM working frequency band of 5.8GHz; the loss of the S11 curve at the resonant frequency point has increased compared with the structure in Figure 3A, but it is still as low as -19.5dB Loss and wide bandwidth, when affected by the external environment, even if the frequency shifts, the main frequency can still maintain a low loss, thereby improving the anti-interference ability, and can ensure that the transmitting antenna is sensitive to the micro-signal form of the microwave Steady launch of the beam.
  • FIG. 5A on the basis of the structure of the dual-feed differential antenna shown in FIG. 4A , one of the coupling sections 122 is electrically connected in the middle to the middle of the other coupling section 122 .
  • Figure 5B it is the simulation effect diagram of the double-end fed differential antenna of this structure. Compared with the simulation effect of Figure 4A, the radiation gain in the directional radiation direction is slightly reduced, but it still has a high 6.7dB. At that time, the S11 curve is at the resonance frequency point. The loss is further reduced from -19.5dB to -21.6dB. In this way, this structure provides a means to further reduce the loss at the resonant frequency point.
  • the coupling section 122 has a cross-sectional area change along the cross-sectional direction of the strip vibrator 12 .
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in a direction vertically away from the reference ground 11 , at a distance from the reference ground 11 Equidistant positions extend back in parallel to each other in misalignment directions, vertically away from the reference ground 11
  • the coupling section 122 is formed by extending towards each other, and extending towards each other in offset directions parallel to each other at a position equidistant from the reference ground 11 .
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in a direction vertically away from the reference ground 11 , and at a distance from the reference ground 11 Equidistant positions extend back in parallel dislocation directions, extend vertically away from the reference ground 11, and extend oppositely in mutually parallel dislocation directions at positions equidistant from the reference ground 11 to form the coupling section 122 , and extending in a direction vertically close to the reference ground 11.
  • Figure 8B it is the simulation effect diagram of the double-end fed differential antenna of this structure.
  • the simulation results show that the radiation gain in the directional radiation direction is reduced, but the S11 curve presents an obvious resonant frequency point around 5.8GHz.
  • the loss of the S11 curve at the resonant frequency point is significantly lower than that of the structure in Figure 4A, from -19.6dB to -57.1dB, and has a wider bandwidth.
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in the direction vertically away from the reference ground 11 , at a distance from the reference ground 11 Equidistant positions extend toward each other in dislocation directions parallel to each other to form the coupling section 122, extend in a direction vertically close to the reference ground 11, and face again in dislocation directions parallel to each other at positions equidistant from the reference ground 11 extend.
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in a direction vertically away from the reference ground 11 , at a distance from the reference ground 11
  • Equidistant positions extend back in parallel dislocation directions, extend vertically away from the reference ground 11, and extend oppositely in mutually parallel dislocation directions at positions equidistant from the reference ground 11 to form the coupling section 122 , extend in a direction vertically close to the reference ground 11 , and extend toward each other again in mutually parallel dislocation directions at a position equidistant from the reference ground 11 .
  • Figure 10B it is the simulation effect diagram of the dual-end fed differential antenna of this structure.
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in a direction vertically away from the reference ground 11, and at a distance from the reference ground 11 11 positions with different distances extend toward each other in dislocation directions parallel to each other to form the coupling section 122, which
  • the lengths of the two coupling sections 122 are not limited to be the same.
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space of the reference ground 11 first in a direction vertically away from the reference ground 11, and then at a distance from the reference ground 11.
  • 11 equidistant positions which are sequentially bent to extend oppositely in the dislocation directions parallel to each other, are bent to extend oppositely in the dislocation directions parallel to each other to form the coupling section 122, and are bent again to be parallel to each other.
  • the dislocation directions extend in opposite directions.
  • Figure 12B it is the simulation effect diagram of the dual-end fed differential antenna of this structure.
  • the two coupling sections 122 of the two bar vibrators 12 extend toward each other in a dislocation and staggered direction from the proximal end.
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in a direction vertically away from the reference ground 11, and at a distance from the reference ground 11.
  • the coupling sections 122 are formed by the ground 11 equidistant from the reference ground 11 and extending towards each other in staggered and staggered directions.
  • the two strip-shaped vibrators 12 extend from the two feed ends 121 in the same lateral space sequence of the reference ground 11 in a direction vertically away from the reference ground 11 , and at a distance from the reference ground 11
  • the coupling sections 122 are formed at equidistant positions away from the reference ground 11 and extend oppositely in opposite staggered directions, and extend vertically away from the reference ground 11 at positions equidistant from the reference ground 11 .
  • the double-ended feed differential antenna has a variety of structural forms, and the end of the coupling section 122 close to the feed end 121 of the strip vibrator 12 to which it belongs is the end.
  • the extension direction of each coupling section 122 is not limited to a fixed extension direction, that is, in this
  • the two coupling sections 122 extend from the proximal end in a dynamic opposite direction to form the curved coupling section 122, and can also be used in the double-end fed differential antenna 10 as
  • the transmitting antenna is connected to the two feeding ends 121 of the two strip vibrators 12 with an excitation signal with a difference greater than 90° and is fed with a phase difference, based on the two strip vibrators 12 and the reference ground
  • the coupling between 11 has a phase difference greater than 90° to realize a polarization form tending to linear polar
  • the two feed ends of the two strip dipoles 12 of the double-ended feed differential antenna 121 accesses the excitation signal with a phase difference greater than 90° and is fed by the phase difference
  • the two strip vibrators 12 respectively have the coupling section 122, which can reduce the minimum transmission power extreme value of the transmission antenna 10 and ensure The stable emission of the microwave beam in the form of micro-signals; and presents good radiation gain characteristics in directional radiation directions, and has an obvious resonance frequency point near the target operating frequency, and has a wide bandwidth.
  • the main frequency can still maintain a low loss, thereby improving the anti-interference ability.
  • the smaller rear lobe/side lobe is also beneficial to avoid self-excited interference based on multiple reflection behaviors, and further reduce the backward and lateral anti-interference capabilities.
  • the strip-shaped vibrator 12 is provided in the form of a microstrip line carried on a circuit board, and the present invention is not limited thereto, wherein the microstrip line refers to a microstrip line on a corresponding circuit board.
  • a strip-shaped/sheet-shaped conductor with a certain pattern is formed by metal patches or covered with copper foil.
  • the two strip-shaped dipoles 12 of the double-ended feed differential antenna 10 correspond to FIG.
  • the lateral space sequence extends vertically away from the reference ground 11 to form a feed section with the feed end 121 and the near end as ends, and the near end is at a position equidistant from the reference ground 11.
  • the ends extend toward each other in parallel misalignment directions to form the coupling section 122 , and extend in a direction perpendicular to the reference ground 11 to form a tuning section.
  • the double-ended feed differential antenna 10 also includes a circuit substrate 13 and an antenna substrate 14, the reference ground 11 is carried on one side of the circuit substrate 13, and the two strip-shaped vibrators 12 are connected with The shape of the wire is carried on the antenna substrate 14 .
  • the two strip dipoles 12 of the double-end fed differential antenna 10 are respectively carried on two opposite surfaces of the antenna substrate 14, so that the dielectric constant of the antenna substrate 14 is higher than that of air
  • the dielectric constant in the medium environment makes the actual physical size of the two strip-shaped oscillators 12 carried on the antenna substrate 14 under the setting of the corresponding wavelength electrical length be reduced, so that the double-terminal feeding type
  • the differential antenna further has significant miniaturization advantages in structure.
  • the antenna substrate 14 and the reference ground 11 are perpendicular to each other, and the two strip-shaped vibrators 12 are respectively carried on two opposite surfaces of the antenna substrate 14, which can be based on the coupling area between the two coupling sections 122. increase, increase the mutual coupling energy between the two coupling sections 122, thereby improving the dual The radiation gain of the end-fed differential antenna 10.
  • the strip vibrator 12 of the double-ended feed differential antenna 10 is carried on the antenna substrate 14, and each strip vibrator formed based on mass production errors and daily use The slight deformation of 12 hardly affects the working parameters of the double-end fed differential antenna 10, and accordingly the double-ended fed differential antenna 10 has good consistency and stability.
  • the double-ended feed differential antenna 10 further includes two pads disposed on the circuit substrate 13, wherein each pad is disposed on each The corresponding position of the feed end 121, and an isolation area 131 is set between the reference ground 11 and each of the pads, so as to realize the electrical isolation between the reference ground 11 and the pads.
  • the strip vibrator 12 is soldered and fixed to the corresponding pad at the corresponding feed end 121 to access the excitation signal with a difference of 180 degrees through the pad, so as to form mutual coupling between the two coupling sections 122 and a common
  • the resonant state is used to ensure the directional radiation of the double-end fed differential antenna.
  • the pad is connected to the pad with a 180-degree difference excitation signal through the form of a metallized via hole, wherein the pad is set as a conductive metal sheet, and the pad passes through the isolation region 131 Physically and electrically isolated from the reference ground 11, so as to realize differential feeding to the double-end feeding differential antenna.
  • the specific size of the double-ended feed differential antenna 10 is indicated, specifically, the feed
  • the length of the segment is 1.5mm within the error range of ⁇ 20%
  • the length of the coupling segment 122 is 8.4mm within the error range of ⁇ 20%
  • the length of the tuning segment is 0.7mm within the error range of ⁇ 20%.
  • the antenna substrate 14 has a length of 10.4 mm, a width of 1 mm, and a height of 2.5 mm within an error range of ⁇ 20%, so as to ensure the small volume of the double-ended feed differential antenna , to ensure the distance between the two strip-shaped vibrators 12 , thereby ensuring the performance stability and process stability of the double-end fed differential antenna 10 .
  • the dual-end feed differential antenna 10 illustrated in Figures 17A and 17B different from the dual-end feed differential antenna 10 illustrated in Figure 15A, the dual-end feed differential antenna 10 illustrated in Figures 17A and 17B , the side of the antenna substrate 14 close to the reference ground 11 is hollowed out to form the The positions corresponding to the two feeding ends 121 of the antenna substrate 14 are arranged at intervals, so that the size and occupied area of the double-ended feeding differential antenna 10 can be reduced, and the corresponding hollowed-out areas can be made as needed Other components and parts such as microwave chip are arranged, thus facilitate the circuit layout of the feeder line of described double-end feed type differential antenna 10, can also shorten the length of its feeder line, optimize the described double-end feed type differential antenna 10 radiation performance while enabling a reduction in the size of the corresponding microwave detectors,
  • the two strip-shaped vibrators 12 of the dual-end feed differential antenna 10 are The corresponding positions of the two ends of the coupling section 122 are also chamfered, because the near end 311 of the coupling section 122 and the far end 312 of the coupling section 122 are areas where the relative charge energy is relatively concentrated, so as to balance the The charge energy distribution of the strip vibrator 12 reduces additional distribution parameters of the antenna and improves the radiation gain and uniformity of the double-end fed differential antenna 10 .
  • the double-ended feed differential antenna 10 works in the frequency range of 5.725GHz-5.875GHz
  • the double-ended feed differential antenna The specific size of 10 is indicated, wherein the length of the feeding section is 1.77mm within the error range of ⁇ 20%, the length of the coupling section 122 is 7mm within the error range of ⁇ 20%, and the tuning section The length is 1.1mm within the error range of ⁇ 20%, and further, the antenna substrate 14 has a length of 8.6mm, a width of 1mm, and a height of 2.6mm within the error range of ⁇ 20%, so as to ensure that the double While the size of the end-fed differential antenna 10 is small, the distance between the two strip oscillators 12 is ensured to ensure the performance stability and process stability of the double-end fed differential antenna.
  • the uniformity of radiated energy reduces the influence of components arranged near the double-end fed differential antenna 10 in the corresponding microwave detector on the radiation performance of the double-ended fed differential antenna 10, thereby ensuring Radiation gain and radiation performance of the double-end fed differential antenna 10 .
  • the angle cut design of the antenna substrate 14 and the strip vibrator 12 may be a triangular structure, an irregular pattern structure, etc., which is not limited in the present invention.
  • the bar-shaped vibrator 12 is carried
  • the antenna substrate 14 is plugged and fixed on the circuit substrate 13, specifically, at the corresponding positions of the feeding ends 121 of the two strip vibrators 12, the antenna substrate 14 has a Two insertion portions 141 protrude from the edge.
  • the circuit substrate 13 has two fixing through holes 132, wherein the fixing through holes 132 have a structural form suitable for being inserted by the insertion part 141, so that the antenna substrate 14 can be inserted in its
  • the part 141 is inserted into the fixing through hole 132 and is plugged and fixed on the circuit substrate 13, and the two strip-shaped vibrators 12 carried on the antenna substrate 14 are correspondingly formed to extend and embed in the feeding end 121.
  • each feed end 121 is electrically isolated from the reference ground 11 based on each isolation region 131 in physical structure.
  • the edge where the insertion portion 141 is located is abutted against the insertion direction of the insertion portion 141.
  • the circuit substrate 13 can form a support for the antenna substrate 14, and at the same time limit the insertion part 141 based on the fixing through hole 132, so that the antenna substrate 14 is fixed on the antenna substrate 14.
  • the firmness of the circuit substrate 13 is further ensured to ensure the structural stability of the double-end fed differential antenna 10 .
  • the antenna substrate 14 is plugged and fixed on the circuit substrate 13 with the insertion portion 141 inserted into the fixing through hole 132, and the corresponding production process is more detailed.
  • the simplification is beneficial to realizing the automatic production of the double-end feeding differential antenna and improving the production efficiency of the double-end feeding differential antenna 10 .
  • the antenna substrate 14 is also plugged and fixed on the circuit substrate 13, which is different from the double-ended feed differential shown in FIG.
  • the plug-in fixing position of the antenna substrate 14 is not set at the feed ends 121 of the two strip-shaped oscillators 12 .
  • the antenna substrate 14 has at least one insertion portion 141 extending from one edge thereof and protruding from the edge, wherein the insertion portion 141 is arranged on the two feeding ends of the two strip-shaped vibrators 12 121, and do not coincide with the corresponding positions of the two feed ends 121, that is to say, the insertion part 141 is arranged on the antenna substrate 14 In the middle position, the insertion portion 141 is inserted and fixed to the reference ground 11 so as to form a structural form, but it does not affect the feeding form of the feeding end 121 .
  • at least two insertion parts 141 are provided, and at the same time, the insertion part 141 uses the dual-end feeding differential antenna The midline is symmetrical.
  • the antenna substrate 14 has at least two insertion portions 141 extending from one edge thereof and protruding from the edge, wherein the two insertion portions 141 are arranged on the two feeders of the two strip-shaped vibrators 12 . end 121, and does not coincide with the corresponding positions of the two feeding ends 121, that is to say, the insertion portion 141 is arranged at both ends of the antenna substrate 14 in the extending direction of the coupling section 122, And the two feeding ends 121 are staggered with each other, so as to form a structural form in which the insertion part 141 is plugged and fixed on the reference ground 11 , but does not affect the feeding form of the feeding end 121 .
  • at least two insertion parts 141 are provided, and at the same time, the insertion part 141 uses the dual-end feeding differential antenna
  • the midline is symmetrical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明提供一种双端馈电式差分天线,其包括参考地和两条形振子,其中以两所述条形振子的接入激励信号的两端分别为两所述条形振子的馈电端,两所述条形振子自两所述馈电端在所述参考地的同一侧向空间延伸并分别具有大于等于3/16且小于等于5/16波长电长度,其中两所述条形振子分别具有一耦合段,其中以所述耦合段的靠近其所属的所述条形振子的所述馈电端的一端为所述耦合段的近端,两所述耦合段自所述近端在相向方向延伸,以在于两所述条形振子的两所述馈电端接入相差大于90°的激励信号的激励信号的状态形成两所述耦合段之间的耦合而实现对所述双端馈电式差分天线的差分馈电。

Description

双端馈电式差分天线 技术领域
本发明涉及微波探测领域,特别涉及一双端馈电式差分天线。
背景技术
随着物联网技术的发展,人工智能、智能家居、以及智能安防技术对于环境探测,特别是对于人的存在、移动以及微动的动作特征的探测准确性的需求越来越高,只有获取足够稳定的探测结果,才能够为智能终端设备提供准确的判断依据。其中基于多普勒效应原理的微波探测技术作为人与物,物与物之间相联的重要枢纽在行为探测和存在探测技术中具有独特的优势,其能够在不侵犯人隐私的情况下,探测出活动物体,比如人的动作特征、移动特征、以及微动特征,甚至是人的心跳和呼吸特征信息,因而具有广泛的应用前景。具体地,相应微波探测器被一激励信号馈电而发射对应所述激励信号的频率一微波波束至所述目标空间,进而于所述目标空间形成一探测区域,和接收所述微波波束被所述探测区域内的相应物体反射形成的一反射回波而传输对应所述反射回波频率的一回波信号至一混频检波单元,其中所述混频检波单元混频所述激励信号和所述回波信号而输出对应于所述激励信号和所述回波信号之间的频率/相位差异的一多普勒中频信号,其中基于多普勒效应原理,在反射所述微波波束的所述物体处于运动的状态时,所述回波信号与所述激励信号之间具有一定的频率/相位差异而于所述多普勒中频信号呈现相应的幅度波动以反馈人体活动。
现有的微波探测器依天线的结构主要分为采用柱状天线的微波探测器和采用平面天线的微波探测器,其中所述柱状天线包括一柱状辐射源和一参考地面,其中所述参考地面被设置有一辐射孔,其中所述柱状辐射源自其一端径直延伸以经所述辐射孔在与所述参考地面相互间隔的状态垂直穿透所述参考地面,对应命名该端为所述柱状辐射源的馈电端,其中所述柱状辐射源的远离所述馈电端的一端与所述参考地面之间具有大于等于四分之一波长电长度的距离,即所述柱状辐射源具有等于四分之一波长电长度的物理长度,对应在所述柱状辐射源于所述馈电端被相应的激励信号馈电时,所述柱状辐射源能够与所述参考地面耦合而发射对应所述激励信号的频率的所述微波波束,从而形成以所述柱状辐射源的轴线为 中心轴的一辐射空间,其中所述辐射空间为所述柱状天线发射的所述微波波束的覆盖范围,其中在相应激励信号的激励下,所述柱状辐射源的远离所述馈电端的一端的电流密度最大,则在所述参考地面的适宜面积设置下,所述柱状天线以所述参考地面为界的前后电磁辐射范围趋于一致而不具备定向辐射能力,并在所述柱状辐射源的两端的延伸方向形成有探测死区,对应所述辐射空间呈现以所述参考地面为界具有较大的后向波瓣,和以所述柱状辐射源的轴线为中心轴在所述柱状辐射源的两端的延伸方向具有内凹的探测死区,对应在实际应用中易造成所述柱状天线的所述探测区域无法与所述目标空间相匹配的状况,例如所述探测区域与所述目标空间部分交叉重合的状况,如此以在所述探测区域之外的所述目标空间无法被有效探测的状态,和/或在所述目标空间之外的所述探测区域存在环境干扰的状态,包括动作干扰、电磁干扰以及因电磁屏蔽环境造成的自激干扰,造成所述柱状天线探测精准度差和/或抗干扰性能差的问题,即所述柱状天线在实际应用中具有较差的探测稳定性而在实际应用中于不同应用场景的适应能力有限。
因此,基于定向辐射特性对探测精准度和/或抗干扰性能的有益性,平面天线由于具有定向辐射特性而被广泛使用于现有的微波探测器,其中所述平面天线在其参考地面方向的平面尺寸直接受限于其参考地面的面积,然而,由于所述平面天线对其平板辐射源具有一定的尺寸要求,以致其参考地面的面积在满足大于其平板辐射源的面积的结构基础上同样具有一定的尺寸要求,对应使得所述平面天线在其参考地面方向的平面尺寸相对于所述柱状天线在其参考地面方向的平面尺寸难以降低。也就是说,所述平面天线在其参考地面方向上的平面尺寸较大,并且依赖于所述参考地面的尺寸大小,同时所述柱状辐射源在垂直于参考地面的方向上具有较高的尺寸,难以应用于小型化的使用场景。
发明内容
本发明的一目的在于提供一种双端馈电式差分天线,其中所述双端馈电式差分天线在具备定向辐射特性的同时能够相对于平面天线和柱状天线降低对参考地面的面积和完整性的依赖,则相应所述双端馈电式差分天线在结构上相对于平面天线和柱状天线具有显著的微型化优势。
本发明的另一目的在于提供一种双端馈电式差分天线,其中所述双端馈电式 差分天线采用相差馈电的方式而能够降低其作为发射天线在初始极化过程中基于电场耦合作用产生的损耗,对应所述双端馈电式差分天线具有较高的发射效率和较小的最小发射功率极值,如此以在同等的辐射增益要求下有利于降低所述双端馈电式差分天线的发射功率。
本发明的另一目的在于提供一种双端馈电式差分天线,其中所述双端馈电式差分天线具有较小的最小发射功率极值而在作为发射天线被应用于微波探测时,能够通过降低所述发射天线的发射功率的方式,降低了相应所述微波波束和所述反射回波的信号强度,即降低了所述微波波束和所述反射回波的电磁辐射能量密度,进而能够利用通信装置自带的底噪抑制机制,避免所述发射天线对相应通信装置造成干扰而能够降低甚至解除安装环境内的通信装置的安装位置对所述发射天线于相应安装环境的安装位置的限制。
本发明的另一目的在于提供一种双端馈电式差分天线,其中通过降低所述发射天线的发射功率的方式,所述微波波束的信号强度被降低,以基于所述微波波束对砖石结构的混泥土墙壁或者玻璃的穿透行为产生的损耗远大于在空间内传播所产生的损耗的特性,在所述微波波束的信号强度被降低而呈弱信号形态的状态,利用界定目标探测空间的砖石结构的混泥土墙壁或者玻璃对弱信号形态的所述微波波束的吸收,形成对弱信号形态的所述微波波束的梯度边界的适应性界定,对应在不限制所述目标探测空间的空间形态的状态,使得所述发射天线的以砖石结构的混泥土墙壁或者玻璃为界的有效探测空间能够与相应所述目标探测空间相匹配而提高所述双端馈电式差分天线在微波探测应用中对不同目标探测空间的适应性。
本发明的另一目的在于提供一种双端馈电式差分天线,其中通过降低所述发射天线的发射功率的方式,所述微波波束的信号强度被降低而呈弱信号形态,则基于所述微波波束的反射行为所产生的损耗相对于所述微波波束的辐射能量的占比被提高,如此以能够避免基于多次反射行为所产生的自激干扰。
本发明的另一目的在于提供一种双端馈电式差分天线,其中通过降低所述发射天线的发射功率的方式,所述发射天线的抗扰度对所述发射天线的频带宽度的依赖性被降低,对应降低了对所述发射天线的精度要求而有利于降低所述发射天线的生产成本。
本发明的另一目的在于提供一种双端馈电式差分天线,其中所述双端馈电式 差分天线具有较小的最小发射功率极值而在作为发射天线被应用于微波探测时,有利于在降低所述发射天线的发射功率至目标发射功率的状态,保障所述发射天线对微信号形态的所述微波波束的稳定发射。
本发明的另一目的在于提供一种双端馈电式差分天线,其中所述双端馈电式差分天线包括一参考地面和两条形振子,其中以两所述条形振子的接入激励信号的两端分别为两所述条形振子的馈电端,两所述条形振子自两所述馈电端在所述参考地面的同一侧向空间延伸并分别具有大于等于3/16且小于等于5/16波长电长度,其中两所述条形振子分别具有一耦合段,其中以所述耦合段的靠近其所属的所述条形振子的所述馈电端的一端为所述耦合段的近端,两所述耦合段自所述近端在错位相向方向延伸,并具有大于等于λ/256且小于等于λ/6的错位距离,即其中一所述耦合段上的任一点至另一所述耦合段的距离大于等于λ/256且小于等于λ/6,其中λ为与所述激励信号的频率相对应的波长参数,如此以在所述双端馈电式差分天线作为所述发射天线于两所述条形振子的两所述馈电端接入相差大于90°的激励信号而被相差馈电的状态,基于两所述条形振子与所述参考地面之间的耦合具有大于90°的相差实现趋于线极化的极化形态,和基于两所述耦合段自所述近端在错位相向方向延伸的结构形态形成两所述耦合段之间的耦合,并基于两所述耦合段之间的相互耦合形成共同的谐振频点,即在以所述双端馈电式差分天线为所述发射天线于两所述条形振子的两所述馈电端接入相差大于90°的激励信号的状态,于所述发射天线的趋于线极化的极化方向实现对所述发射天线的差分馈电,在保障所述微波波束的稳定发射的状态降低所述发射天线的最小发射功率极值,进而在降低所述发射天线的发射功率至目标发射功率的状态保障微信号形态的所述微波波束的稳定发射。
本发明的另一目的在于提供一种双端馈电式差分天线,其中在所述双端馈电式差分天线作为所述发射天线的状态,优选地基于对所述发射天线趋于180°相差的平衡差分馈电,在保障所述微波波束的稳定发射的状态降低所述发射天线的最小发射功率极值,从而在降低所述发射天线的发射功率至小于等于0dBm或更低的状态保障微信号形态的所述微波波束的稳定发射。
根据本发明的一个方面,本发明提供一双端馈电式差分天线,所述双端馈电式差分天线包括一参考地和两条形振子,其中以两所述条形振子的接入激励信号的两端分别为两所述条形振子的馈电端,两所述条形振子自两所述馈电端在所述 参考地的同一侧向空间延伸并分别具有大于等于3/16且小于等于5/16波长电长度,其中两所述条形振子分别具有一耦合段,其中以所述耦合段的靠近其所属的所述条形振子的所述馈电端的一端为所述耦合段的近端,两所述耦合段自所述近端在相向方向延伸,以在于两所述条形振子的两所述馈电端接入相差大于90°的激励信号的状态形成两所述耦合段之间的耦合而实现对所述双端馈电式差分天线的差分馈电。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地等距离的位置相向延伸,以于该位置形成两所述耦合段的所述近端。
在一实施例中,两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地等距离的位置相向延伸形成所述耦合段,以及在垂直靠近所述参考地方向延伸。
在一实施例中,其中两所述耦合段自所述近端在错位相向方向延伸,并具有大于等于λ/256且小于等于λ/6的错位距离,即其中一所述耦合段上的任一点至另一所述耦合段的距离大于等于λ/256且小于等于λ/6,其中λ为与所述激励信号的频率相对应的波长参数。
在一实施例中,其中两所述条形振子的两所述耦合段自所述近端以相互平行的错位方向相向延伸。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地等距离的位置以相互平行的错位方向相向延伸,以于该位置形成两所述耦合段的所述近端。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段,以及在垂直靠近所述参考地方向延伸。
在一实施例中,其中一所述耦合段于其中部被电性连接于另一所述耦合段的中部。
在一实施例中,其中所述耦合段具有在所述条形振子的截面方向的截面面积变化。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧 向空间顺序在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向背向延伸,在垂直远离所述参考地方向延伸,以及在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向背向延伸,在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段,以及在垂直靠近所述参考地方向延伸。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段,在垂直靠近所述参考地方向延伸,以及在距所述参考地等距离的位置以相互平行的错位方向再次相向延伸。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向背向延伸,在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段,在垂直靠近所述参考地方向延伸,以及在距所述参考地等距离的位置以相互平行的错位方向再次相向延伸。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地不同距离的位置以相互平行的错位方向相向延伸形成所述耦合段,其中所述两所述耦合段的长度不限制相同。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间先在垂直远离所述参考地方向延伸,后在距所述参考地等距离的位置,顺序被弯折而在相互平行的错位方向反向延伸,被弯折而在相互平行的错位方向相向延伸形成所述耦合段,以及被再次弯折而在相互平行的错位方向相向延伸。
在一实施例中,其中两所述条形振子的两所述耦合段自所述近端以错位交错方向相向延伸。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地等距离的位置以 远离所述参考地且相向的错位交错方向相向延伸形成所述耦合段。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以远离所述参考地且相向的错位交错方向相向延伸形成所述耦合段,以及在距所述参考地等距离的位置在垂直远离所述参考地方向延伸。
在一实施例中,所述双端馈电式差分天线进一步包括一电路基板和一天线基板,其中所述参考地面被承载于所述电路基板,其中两所述条形振子以带状导线形态被承载于所述天线基板。
在一实施例中,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸形成一馈电段,和在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段,以及在垂直靠近所述参考地方向延伸形成一调谐段,其中所述双端馈电式差分天线进一步包括一电路基板和一天线基板,其中所述参考地面被承载于所述电路基板,其中两所述条形振子以带状导线形态被承载于所述天线基板的两相对面。
在一实施例中,其中两所述耦合段的至少一端被切角处理。
在一实施例中,其中所述天线基板的对应于所述耦合段的被切角处理的端部位置被切角处理。
在一实施例中,其中所述双端馈电式差分天线工作在5.725GHz-5.875GHz的频率范围内,所述馈电段的长度在±20%的误差范围内为1.5mm,所述耦合段的长度在±20%的误差范围内为8.4mm,所述调谐段的长度在±20%的误差范围内为0.7mm。
在一实施例中,其中所述双端馈电式差分天线被工作在5.725GHz-5.875GHz的频率范围内,所述馈电段的长度在±20%的误差范围内为1.77mm,所述耦合段的长度在±20%的误差范围内为7mm,所述调谐段的长度在±20%的误差范围内为1.1mm。
在一实施例中,其中天线基板靠近参考地面的位置被挖空处理。
在一实施例中,其中所述双端馈电式差分天线进一步包括设置在所述电路基板的两焊盘,其中各所述焊盘被设置于各所述馈电端的相应位置,同时所述参考地面和各所述焊盘之间设置一隔离区,以实现所述参考地面和所述焊盘之间的电气隔离,其中两所述条形振子于相应所述馈电端被焊接固定于所述焊盘。
在一实施例中,其中在两所述条形振子的两所述馈电端之间,所述天线基板具有自其一边沿延伸而凸出于该边沿的至少一插入部,其中所述电路基板具有适于被所述插入部插入的固定通孔,其中所述天线基板以所述插入部插入所述固定通孔的状态被插装固定于所述电路基板。
在一实施例中,其中在所述天线基板的位于所述耦合段的延伸方向的两端,所述天线基板具有自其一边沿延伸而凸出于该边沿的至少两插入部,其中所述电路基板具有适于被所述插入部插入的固定通孔,其中所述天线基板以所述插入部插入所述固定通孔的状态被插装固定于所述电路基板。
在一实施例中,其中在两所述条形振子的两所述馈电端的相应位置,所述天线基板具有自其一边沿延伸而凸出于该边沿的两插入部,其中所述电路基板具有适于被所述插入部插入的两固定通孔,其中所述天线基板以所述插入部插入所述固定通孔的状态被插装固定于所述电路基板,对应形成被承载于所述天线基板的两所述条形振子于所述馈电端延伸嵌入所述固定通孔的结构形态。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
附图说明
图1A为依本发明的一实施例的双端馈电式差分天线的结构示意图。
图1B为上述实施例的所述双端馈电式差分天线的仿真效果图。
图2为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图3A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图3B为上述实施例的所述双端馈电式差分天线的仿真效果图。
图4A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图4B为上述实施例的所述双端馈电式差分天线的仿真效果图。
图5A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图5B为上述实施例的所述双端馈电式差分天线的仿真效果图。
图6为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图7为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图8A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图8B为上述实施例的所述双端馈电式差分天线的仿真效果图。
图9为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图10A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图10B为上述实施例的所述双端馈电式差分天线的仿真效果图。
图11为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图12A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图12B为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图13为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图14为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图15A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图15B为依本发明的上述实施例的所述双端馈电式差分天线的侧视图。
图16A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图16B为依本发明的上述实施例的所述双端馈电式差分天线的尺寸图。
图16C为依本发明的上述实施例的所述双端馈电式差分天线的天线基板的尺寸图。
图17A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图17B为依本发明的上述实施例的所述双端馈电式差分天线的侧视图。
图18A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图18B为依本发明的上述实施例的所述双端馈电式差分天线的侧视图。
图18C为依本发明的上述实施例的所述双端馈电式差分天线的尺寸图。
图18D为依本发明的上述实施例的所述双端馈电式差分天线的天线基板的尺寸图。
图19A为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图19B为依本发明的上述实施例的所述双端馈电式差分天线的侧视图。
图20为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图21为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
图22为依本发明的另一实施例的双端馈电式差分天线的结构示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参考本发明的说明书附图之图1A至图22所示,基于在微波探测应用中降低发射天线的自身介质损耗的方式,组合以对所述发射天线的差分馈电,降低所述发射天线的最小发射功率极值,本发明提供一双端馈电式差分天线10,以在微波探测应用中采用所述双端馈电式差分天线10作为所述发射天线的状态,降低所述发射天线的最小发射功率极值,以在降低所述发射天线的发射功率至目标发射功率的状态保障微信号形态的所述微波波束的稳定发射。
对应于图1A至图22,所述双端馈电式差分天线10包括一参考地面11和两条形振子12,其中以两所述条形振子12的接入激励信号的两端分别为两所述条形振子12的馈电端121,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间延伸并分别具有大于等于3/16且小于等于5/16波长电长度,其中两所述条形振子12分别具有一耦合段122,其中以所述耦合段122的靠近其所属的所述条形振子12的所述馈电端121的一端为所述耦合段122的近端,两所述耦合段122自所述近端在相向方向延伸,如此以在所述双端馈电式差分天线10作为所述发射天线于两所述条形振子12的两所述馈电端121接入相差大于90°的激励信号而被相差馈电的状态,基于两所述条形振子12与所述参考 地面11之间的耦合具有大于90°的相差实现趋于线极化的极化形态,和基于两所述耦合段122自所述近端在相向方向延伸的结构形态形成两所述耦合段122之间的耦合,并基于两所述耦合段122之间的相互耦合形成共同的谐振频点,即在以所述双端馈电式差分天线10为所述发射天线于两所述条形振子12的两所述馈电端121接入相差大于90°的激励信号的状态,于所述发射天线的趋于线极化的极化方向实现对所述发射天线的差分馈电,在保障所述微波波束的稳定发射的状态降低所述发射天线的最小发射功率极值,进而在降低所述发射天线的发射功率至目标发射功率的状态保障微信号形态的所述微波波束的稳定发射。
具体地,对应于图1A,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,和在距所述参考地面11等距离的位置相向延伸,以于该位置形成两所述耦合段122的所述近端。对应图1B,为该结构的双端馈电式差分天线仿真效果图,如图所示,在激励源频率为5.8G条件下,仿真结果显示定向辐射方向具有4.89dB的辐射增益定向辐射效果良好,S11曲线在5.8GHz附近呈现明显的谐振频点而能够与5.8GHz的ISM工作频段相匹配;S11曲线在谐振频点的损耗低至-15dB以下并有较宽的带宽,当受到外界环境影响时,即使频率偏移,主频依然可以保持较低的损耗,从而提高抗干扰能力,满足微波探测的基本工作需求。
对应于图2,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,和在距所述参考地面11等距离的位置相向延伸形成所述耦合段122,以及在垂直靠近所述参考地面11方向延伸。
对应于图3A至图22,两所述耦合段122自所述近端在错位相向方向延伸,并具有大于等于λ/256且小于等于λ/6的错位距离,即其中一所述耦合段122上的任一点至另一所述耦合段122的距离大于等于λ/256且小于等于λ/6,其中λ为与所述激励信号的频率相对应的波长参数。
具体地,对应于图3A至图12B,两所述条形振子12的两所述耦合段122自所述近端以相互平行的错位方向相向延伸。
其中,对应于图3A,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,和在距所述参考地面11等距离的位置以相互平行的错位方向相向延伸,以于该位置形成两所 述耦合段122的所述近端。对应图3B,为该结构的双端馈电式差分天线仿真效果图,如图所示,在激励源频率为5.8G条件下,仿真结果显示定向辐射方向具有高达6.49dB的辐射增益,定向辐射效果良好,S11曲线在5.8GHz附近呈现明显的谐振频点而能够与5.8GHz的ISM工作频段相匹配;S11曲线在谐振频点的损耗低至-26.7dB以下并有较宽的带宽,当受到外界环境影响时,即使频率偏移,主频依然可以保持较低的损耗,从而提高抗干扰能力,能够保障所述发射天线对微信号形态的所述微波波束的稳定发射。
对应于图4A,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,和在距所述参考地面11等距离的位置以相互平行的错位方向相向延伸形成所述耦合段122,以及在垂直靠近所述参考地面11方向延伸。对应图4B,为该结构的双端馈电式差分天线仿真效果图,如图所示,在激励源频率为5.8G条件下,相对于图3A的结构,仿真结果显示定向辐射方向辐射增益进一步提高,高达6.95dB。同时后瓣/副瓣进一步缩小,有利于降低自激,进一步降低后向和侧向的抗干扰能力。S11曲线在5.8GHz附近呈现明显的谐振频点而能够与5.8GHz的ISM工作频段相匹配;S11曲线在谐振频点的损耗相对图3A的结构,有所增加,但是依然具有低至-19.5dB损耗并有较宽的带宽,当受到外界环境影响时,即使频率偏移,主频依然可以保持较低的损耗,从而提高抗干扰能力,能够保障所述发射天线对微信号形态的所述微波波束的稳定发射。
对应于图5A,在图4A所示意的所述双端馈电式差分天线的结构基础上,其中一所述耦合段122于其中部被电性连接于另一所述耦合段122的中部。对应图5B,为该结构的双端馈电式差分天线仿真效果图,相对图4A的仿真效果,定向辐射方向辐射增益略有降低,但依然具有高达6.7dB,当时S11曲线在谐振频点的损耗则由-19.5dB进一步降低为-21.6dB。这样,该结构方式提供了一种进一步降低谐振频点的损耗的手段。
对应于图6,在图4A所示意的所述双端馈电式差分天线的结构基础上,所述耦合段122具有在所述条形振子12的截面方向的截面面积变化。
对应于图7,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,在距所述参考地面11等距离的位置以相互平行的错位方向背向延伸,在垂直远离所述参考地面11方 向延伸,以及在距所述参考地面11等距离的位置以相互平行的错位方向相向延伸形成所述耦合段122。
对应于图8A,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,在距所述参考地面11等距离的位置以相互平行的错位方向背向延伸,在垂直远离所述参考地面11方向延伸,在距所述参考地面11等距离的位置以相互平行的错位方向相向延伸形成所述耦合段122,以及在垂直靠近所述参考地面11方向延伸。对应图8B,为该结构的双端馈电式差分天线仿真效果图,如图所示,在激励源频率为5.8G条件下,相对于图4A的结构,仿真结果显示定向辐射方向辐射增益有所降低,但是S11曲线在5.8GHz附近呈现明显的谐振频点S11曲线在谐振频点的损耗相对图4A的结构显著降低,由-19.6dB降低至-57.1dB,并且有较宽的带宽,当受到外界环境影响时,即使频率偏移,主频依然可以保持较低的损耗,从而提高抗干扰能力,有利于进一步提高微波探测的抗干扰性能。
对应于图9,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,在距所述参考地面11等距离的位置以相互平行的错位方向相向延伸形成所述耦合段122,在垂直靠近所述参考地面11方向延伸,以及在距所述参考地面11等距离的位置以相互平行的错位方向再次相向延伸。
对应于图10A,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,在距所述参考地面11等距离的位置以相互平行的错位方向背向延伸,在垂直远离所述参考地面11方向延伸,在距所述参考地面11等距离的位置以相互平行的错位方向相向延伸形成所述耦合段122,在垂直靠近所述参考地面11方向延伸,以及在距所述参考地面11等距离的位置以相互平行的错位方向再次相向延伸。对应图10B,为该结构的双端馈电式差分天线仿真效果图,如图所示,在激励源频率为5.8G条件下,定向辐射方向辐射增益较好,但是S11曲线在5.8GHz附近呈现明显的谐振频点S11曲线在谐振频点的损耗等基本符合微波探测的需求。
对应于图11,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,和在距所述参考地面11不同距离的位置以相互平行的错位方向相向延伸形成所述耦合段122,其 中所述两所述耦合段122的长度不限制相同。
对应于图12A,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间先在垂直远离所述参考地面11方向延伸,后在距所述参考地面11等距离的位置,顺序被弯折而在相互平行的错位方向反向延伸,被弯折而在相互平行的错位方向相向延伸形成所述耦合段122,以及被再次弯折而在在相互平行的错位方向相向延伸。对应图12B,为该结构的双端馈电式差分天线仿真效果图,如图所示,在激励源频率为5.8G条件下,定向辐射方向辐射增益较好,但是S11曲线在5.8GHz附近呈现明显的谐振频点S11曲线在谐振频点的损耗等也基本符合微波探测的需求。
对应于图13和图14,两所述条形振子12的两所述耦合段122自所述近端以错位交错方向相向延伸。具体对应于图13,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,和在距所述参考地面11等距离的位置以远离所述参考地面11且相向的错位交错方向相向延伸形成所述耦合段122。对应于图14,两所述条形振子12自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸,在距所述参考地面11等距离的位置以远离所述参考地面11且相向的错位交错方向相向延伸形成所述耦合段122,以及在距所述参考地面11等距离的位置在垂直远离所述参考地面11方向延伸。
值得一提的是,所述双端馈电式差分天线的结构形态多样,并在以所述耦合段122的靠近其所属的所述条形振子12的所述馈电端121的一端为所述耦合段122的近端时,在两所述耦合段122自所述近端以相向方向延伸的状态,各所述耦合段122的延伸方向不限制于固定不变的延伸方向,即在本发明的一些实施例中,两所述耦合段122自所述近端以动态相向的方向延伸而形成弯曲形态的所述耦合段122,并同样能够在所述双端馈电式差分天线10作为所述发射天线于两所述条形振子12的两所述馈电端121接入相差大于90°的激励信号而被相差馈电的状态,基于两所述条形振子12与所述参考地面11之间的耦合具有大于90°的相差实现趋于线极化的极化形态,和基于两所述耦合段122自所述近端在相向方向延伸的结构形态形成两所述耦合段122之间的耦合,并基于两所述耦合段122之间的相互耦合形成共同的谐振频点,本发明对此不作限制。
进一步地,由于双端馈电式差分天线的两所述条形振子12的两所述馈电端 121接入相差大于90°的激励信号而被相差馈电的状态,并且两所述条形振子12分别具有所述耦合段122,这样可降低所述发射天线10的最小发射功率极值,保障微信号形态的所述微波波束的稳定发射;并且呈现良好的定向辐射方向辐射增益特性,在目标工作频率附近也明显的谐振频点,并具有有较宽的带宽,当受到外界环境影响时,即使频率偏移,主频依然可以保持较低的损耗,从而提高抗干扰能力。另外,较小的后瓣/副瓣也有利于能够避免基于多次反射行为所产生的自激干扰,进一步降低后向和侧向的抗干扰能力等。
此外,在本发明的一些实施例中,所述条形振子12以被承载于电路板的微带线形态被设置,本发明对此不作限制,其中微带线指的是在相应电路板上通过金属贴片或者覆盖铜箔等方式形成带状/片状的并整体呈一定图案的导电体。
示例地,进一步参考本发明的说明书附图之图15A至图22所示,以图4A所示意的所述双端馈电式差分天线10的所述条形振子12的结构形态示例,在所述条形振子12以被承载于电路板的微带线形态被设置的状态,不同实施例的所述双端馈电式差分天线的结构形态被示意。
具体地,在本发明的这些实施例中,所述双端馈电式差分天线10的两所述条形振子12对应于图4A自两所述馈电端121在所述参考地面11的同一侧向空间顺序在垂直远离所述参考地面11方向延伸形成以所述馈电端121和所述近端为端的一馈电段,和以距所述参考地面11等距离的位置为所述近端在相互平行的错位方向相向延伸形成所述耦合段122,以及在垂直靠近所述参考地面11方向延伸形成一调谐段。其中,所述双端馈电式差分天线10还包括一电路基板13和一天线基板14,所述参考地面11被承载于所述电路基板13的一侧,两所述条形振子12以带状导线形态被承载于所述天线基板14。
近一步地,所述双端馈电式差分天线10的两所述条形振子12分别被承载于所述天线基板14的两相对面,以基于所述天线基板14的介电常数高于空气介质环境中的介电常数,使得被承载于所述天线基板14的两所述条形振子12在相应的波长电长度的设置下的实际物理尺寸被缩小,从而使得所述双端馈电式差分天线进一步在结构上具有显著的微型化优势。
优选的,所述天线基板14与所述参考地面11相互垂直,两所述条形振子12分别被承载于所述天线基板14的两相对面,能够基于两耦合段122之间的耦合面积的增加,增大两所述耦合段122之间的相互耦合的能量,以此提高所述双 端馈电式差分天线10的辐射增益。
值得一提的是,所述双端馈电式差分天线10的所述条形振子12被承载于所述天线基板14上,则基于批量生产误差和日常使用所形成的各所述条形振子12的轻度形变难以影响所述双端馈电式差分天线10的工作参数,相应所述双端馈电式差分天线10具有良好的一致性和稳定性。
进一步地,在图15A和15B所示例的实施例中,所述双端馈电式差分天线10还包括设置在所述电路基板13的两焊盘,其中各所述焊盘被设置于各所述馈电端121的相应位置,同时所述参考地面11和各所述焊盘之间设置一隔离区131,以实现所述参考地面11和所述焊盘之间的电气隔离,两所述条形振子12于相应所述馈电端121被焊接固定于相应所述焊盘以经所述焊盘接入相差180度的激励信号,以此形成两耦合段122之间相互耦合以及共同的谐振状态,以保障所述双端馈电式差分天线的定向辐射。其中所述焊盘通过金属化过孔的形态,将相差180度的激励信号接入所述焊盘,其中所述焊盘被设置为一导电金属片,所述焊盘通过所述隔离区131和所述参考地面11物理隔离和电气隔离,以实现对所述双端馈电式差分天线的差分馈电。
进一步地,参照本发明说明书附图之图16A至16C所示,基于图15A所示意的所述双端馈电式差分天线,由于所述耦合段122的两端为电荷能量相对较为集中的区域,将两所述条形振子12在所述耦合段122的至少一端的相应位置做切角处理,平衡所述条形振子12的电荷能量分布,减少天线额外的分布参数,提高所述双端馈电式差分天线10的辐射增益和均匀性。更进一步,在所述双端馈电式差分天线10工作在5.725GHz-5.875GHz的频率范围的状态,所述双端馈电式差分天线10的具体尺寸被示意,具体的,所述馈电段的长度在±20%的误差范围内为1.5mm,所述耦合段122的长度在±20%的误差范围内为8.4mm,所述调谐段的长度在±20%的误差范围内为0.7mm,更进一步,所述天线基板14在±20%的误差范围内具有10.4mm的长度,1mm的宽度,2.5mm的高度,以在保证所述双端馈电式差分天线的小体积的同时,保证两所述条形振子12之间的间距,进而保障所述双端馈电式差分天线10的性能稳定性以及工艺稳定性。
参照本发明说明书附图之图17A和17B所示,区别于图15A所示意的所述双端馈电式差分天线10,在图17A和17B所示意的所述双端馈电式差分天线10中,所述天线基板14的靠近所述参考地面11的一侧被挖空处理,以此形成所述 天线基板14的与两所述馈电端121的相对应的位置被间隔设置,从而能够降低所述双端馈电式差分天线10的尺寸和占用面积,相应的被挖空的区域可以根据需要设置微波芯片等其他元器件,从而方便所述双端馈电式差分天线10的馈电线路的电路布局,还能够缩短其馈电线路的长度,优化所述双端馈电式差分天线10的辐射性能,同时能够缩小相应微波探测器的尺寸,
参照本发明说明书附图之图18A至图18D所示,基于图17A所示意的所述双端馈电式差分天线,所述双端馈电式差分天线10的两所述条形振子12在所述耦合段122的两端的相应位置也做切角处理,由于所述耦合段122的近端311和所述耦合段122的远端312为相对电荷能量较为集中的区域,以此平衡所述条形振子12的电荷能量分布,减少天线额外的分布参数,提高所述双端馈电式差分天线10的辐射增益和均匀性。
特别的,参照本发明说明书附图之图18C和18D所示,在所述双端馈电式差分天线10工作在5.725GHz-5.875GHz的频率范围的状态,所述双端馈电式差分天线10的具体尺寸被示意,其中所述馈电段的长度在±20%的误差范围内为1.77mm,所述耦合段122的长度在±20%的误差范围内为7mm,所述调谐段的长度在±20%的误差范围内为1.1mm,更进一步,所述天线基板14在±20%的误差范围内具有8.6mm的长度,1mm的宽度,2.6mm的高度,以在保证所述双端馈电式差分天线10的小体积的同时,保证两所述条形振子12之间的间距,以保障所述双端馈电式差分天线的性能稳定性以及工艺稳定性。
参照本发明说明书附图之图19A和19B所示,基于图18A所示意的所述双端馈电式差分天线,所述天线基板14的对应于所述耦合段122的两端的位置进一步被切角处理以降低所述双端馈电式差分天线10的尺寸。相应的,在所述双端馈电式差分天线10的高度方向上被切角,使得两条形振子12的不同位置的介质分布是相同的,从而提高所述双端馈电式差分天线10辐射能量的均匀性,降低相应所述微波探测器中布局在所述双端馈电式差分天线10附近的元器件对所述双端馈电式差分天线10的辐射性能的影响,从而保证了所述双端馈电式差分天线10的辐射增益和辐射性能。其中对所述天线基板14和所述条形振子12的切角设计可以为三角形结构、不规则图形结构等,本发明对此不作限制。
更进一步,参照本发明说明书附图之图20所示,为了提高所述双端馈电式差分天线连接的稳定性,在图20所示意的实施例中,承载有所述条形振子12的 所述天线基板14被插接固定于所述电路基板13,具体地,在两所述条形振子12的所述馈电端121的相应位置,所述天线基板14具有自其一边沿延伸而凸出于该边沿的两插入部141。相应的,其中所述电路基板13具有两固定通孔132,其中所述固定通孔132具有适于被所述插入部141插入的结构形态,从而使得所述天线基板14能够以其所述插入部141插入所述固定通孔132的状态被插装固定于所述电路基板13,对应形成被承载于所述天线基板14的两所述条形振子12于所述馈电端121延伸嵌入所述固定通孔132内的结构形态,其中在所述天线基板14被插装固定于所述电路基板13的状态,所述参考地面11在各所述固定通孔132的周缘被开设具有隔离区131,从而在所述天线基板14被插装固定于所述电路基板13状态,各所述馈电端121基于各所述隔离区131而在物理结构上与所述参考地面11电性隔离。
值得一提的是,其中在所述天线基板14被插装固定于所述电路基板13的状态,所述插入部141所在的该边沿在所述插入部141的插入方向被抵接于所述电路基板13,则所述电路基板13能够形成对所述天线基板14的支撑,同时基于所述固定通孔132形成对所述插入部141的限位,提高所述天线基板14被固定于所述电路基板13的牢固程度,如此以进一步保障所述双端馈电式差分天线10的结构稳定性。
特别地,对应在相应的生产工序之中,所述天线基板14以其所述插入部141插入所述固定通孔132的状态被插装固定于所述电路基板13,则相应的生产工序更加简化,有利于实现所述双端馈电式差分天线的自动化生产和提高所述双端馈电式差分天线10的生产效率。
参照本发明说明书附图之图21所示,为了避免所述双端馈电式差分天线的馈电线路中通孔的应用,同时避免所述双端馈电式差分天线的馈电能量的泄漏,保证其天线的性能,在图21所示意的实施例中,所述天线基板14同样的被插接固定于所述电路基板13,区别于图20所示意的所述双端馈电式差分天线10,在图21所示意的所述双端馈电式差分天线10中,所述天线基板14的插接固定的位置不设置在两所述条形振子12的所述馈电端121。具体地,其中所述天线基板14具有自其一边沿延伸而凸出于该边沿的至少一插入部141,其中所述插入部141设置于两所述条形振子12的两所述馈电端121之间,且不与两所述馈电端121的相应位置重合,也就是说,所述插入部141设置在所述天线基板14的 中部位置,以此形成所述插入部141的插装固定于所述参考地面11的结构形态,但不影响所述馈电端121的馈电形态。特别的,为了增加所述双端馈电式差分天线10的结构平衡性和稳定性,所述插入部141设置为至少两个,同时所述插入部141以所述双端馈电式差分天线的中线对称。
参照本发明说明书附图之图22所示,为了避免所述双端馈电式差分天线的馈电线路中通孔的应用,同时避免所述双端馈电式差分天线的馈电能量的泄漏,保证其天线的性能,在图22所示意的实施例中,所述天线基板14同样的被插接固定于所述电路基板13,区别于图20和图21所示意的所述双端馈电式差分天线10,在图22所示意的所述双端馈电式差分天线10中,所述天线基板14的插接固定的位置不设置在两所述条形振子12的所述馈电端121,而是被设置在所述天线基板14的位于所述耦合段122的延伸方向的两端,以此提高所述双端馈电式差分天线的牢固程度,同时能够适用于不同的微波探测器的应用场景。具体地,其中所述天线基板14具有自其一边沿延伸而凸出于该边沿的至少两插入部141,其中两所述插入部141设置于两所述条形振子12的两所述馈电端121的附近,且不与两所述馈电端121的相应位置重合,也就是说,所述插入部141设置在所述天线基板14的位于所述耦合段122的延伸方向的两端,并且与两所述馈电端121相互错开,以此形成所述插入部141的插装固定于所述参考地面11的结构形态,但不影响所述馈电端121的馈电形态。特别的,为了增加所述双端馈电式差分天线10的结构平衡性和稳定性,所述插入部141设置为至少两个,同时所述插入部141以所述双端馈电式差分天线的中线对称。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述无须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式 可以有任何变形或修改。

Claims (29)

  1. 双端馈电式差分天线,其特征在于,包括一参考地和两条形振子,其中以两所述条形振子的接入激励信号的两端分别为两所述条形振子的馈电端,两所述条形振子自两所述馈电端在所述参考地的同一侧向空间延伸并分别具有大于等于3/16且小于等于5/16波长电长度,其中两所述条形振子分别具有一耦合段,其中以所述耦合段的靠近其所属的所述条形振子的所述馈电端的一端为所述耦合段的近端,两所述耦合段自所述近端在相向方向延伸,以在于两所述条形振子的两所述馈电端接入相差大于90°的激励信号的状态形成两所述耦合段之间的耦合而实现对所述双端馈电式差分天线的差分馈电。
  2. 根据权利要求1所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地等距离的位置相向延伸,以于该位置形成两所述耦合段的所述近端。
  3. 根据权利要求1所述的双端馈电式差分天线,两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地等距离的位置相向延伸形成所述耦合段,以及在垂直靠近所述参考地方向延伸。
  4. 根据权利要求1所述的双端馈电式差分天线,其中两所述耦合段自所述近端在错位相向方向延伸,并具有大于等于λ/256且小于等于λ/6的错位距离,即其中一所述耦合段上的任一点至另一所述耦合段的距离大于等于λ/256且小于等于λ/6,其中λ为与所述激励信号的频率相对应的波长参数。
  5. 根据权利要求4所述的双端馈电式差分天线,其中两所述条形振子的两所述耦合段自所述近端以相互平行的错位方向相向延伸。
  6. 根据权利要求5所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地等距离的位置以相互平行的错位方向相向延伸,以于该位置形成两 所述耦合段的所述近端。
  7. 根据权利要求5所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段,以及在垂直靠近所述参考地方向延伸。
  8. 根据权利要求7所述的双端馈电式差分天线,其中一所述耦合段于其中部被电性连接于另一所述耦合段的中部。
  9. 根据权利要求7所述的双端馈电式差分天线,其中所述耦合段具有在所述条形振子的截面方向的截面面积变化。
  10. 根据权利要求5所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向背向延伸,在垂直远离所述参考地方向延伸,以及在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段。
  11. 根据权利要求5所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向背向延伸,在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段,以及在垂直靠近所述参考地方向延伸。
  12. 根据权利要求5所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段,在垂直靠近所述参考地方向延伸,以及在距所述参考地等距离的位置以相互平行的错位方向再次相向延伸。
  13. 根据权利要求5所述的双端馈电式差分天线,其中两所述条形振子自两所述 馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向背向延伸,在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段,在垂直靠近所述参考地方向延伸,以及在距所述参考地等距离的位置以相互平行的错位方向再次相向延伸。
  14. 根据权利要求5所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地不同距离的位置以相互平行的错位方向相向延伸形成所述耦合段,其中所述两所述耦合段的长度不限制相同。
  15. 根据权利要求5所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间先在垂直远离所述参考地方向延伸,后在距所述参考地等距离的位置,顺序被弯折而在相互平行的错位方向反向延伸,被弯折而在相互平行的错位方向相向延伸形成所述耦合段,以及被再次弯折而在相互平行的错位方向相向延伸。
  16. 根据权利要求4所述的双端馈电式差分天线,其中两所述条形振子的两所述耦合段自所述近端以错位交错方向相向延伸。
  17. 根据权利要求16所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,和在距所述参考地等距离的位置以远离所述参考地且相向的错位交错方向相向延伸形成所述耦合段。
  18. 根据权利要求16所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸,在距所述参考地等距离的位置以远离所述参考地且相向的错位交错方向相向延伸形成所述耦合段,以及在距所述参考地等距离的位置在垂直远离所述参考地方向延伸。
  19. 根据权利要求1至18中任一所述的双端馈电式差分天线,所述双端馈电式 差分天线进一步包括一电路基板和一天线基板,其中所述参考地面被承载于所述电路基板,其中两所述条形振子以带状导线形态被承载于所述天线基板。
  20. 根据权利要求7所述的双端馈电式差分天线,其中两所述条形振子自两所述馈电端在所述参考地的同一侧向空间顺序在垂直远离所述参考地方向延伸形成一馈电段,和在距所述参考地等距离的位置以相互平行的错位方向相向延伸形成所述耦合段,以及在垂直靠近所述参考地方向延伸形成一调谐段,其中所述双端馈电式差分天线进一步包括一电路基板和一天线基板,其中所述参考地面被承载于所述电路基板,其中两所述条形振子以带状导线形态被承载于所述天线基板的两相对面。
  21. 根据权利要求20所述的双端馈电式差分天线,其中两所述耦合段的至少一端被切角处理。
  22. 根据权利要求21所述的双端馈电式差分天线,其中所述天线基板的对应于所述耦合段的被切角处理的端部位置被切角处理。
  23. 根据权利要求20所述的双端馈电式差分天线,其中所述双端馈电式差分天线工作在5.725GHz-5.875GHz的频率范围内,所述馈电段的长度在±20%的误差范围内为1.5mm,所述耦合段的长度在±20%的误差范围内为8.4mm,所述调谐段的长度在±20%的误差范围内为0.7mm。
  24. 根据权利要求20所述的双端馈电式差分天线,其中所述双端馈电式差分天线被工作在5.725GHz-5.875GHz的频率范围内,所述馈电段的长度在±20%的误差范围内为1.77mm,所述耦合段的长度在±20%的误差范围内为7mm,所述调谐段的长度在±20%的误差范围内为1.1mm。
  25. 根据权利要求20所述的双端馈电式差分天线,其中天线基板靠近参考地面的位置被挖空处理。
  26. 根据权利要求20至25中任一所述的双端馈电式差分天线,其中所述双端馈电式差分天线进一步包括设置在所述电路基板的两焊盘,其中各所述焊盘被设置 于各所述馈电端的相应位置,同时所述参考地面和各所述焊盘之间设置一隔离区,以实现所述参考地面和所述焊盘之间的电气隔离,其中两所述条形振子于相应所述馈电端被焊接固定于所述焊盘。
  27. 根据权利要求26所述的双端馈电式差分天线,其中在两所述条形振子的两所述馈电端之间,所述天线基板具有自其一边沿延伸而凸出于该边沿的至少一插入部,其中所述电路基板具有适于被所述插入部插入的固定通孔,其中所述天线基板以所述插入部插入所述固定通孔的状态被插装固定于所述电路基板。
  28. 根据权利要求26所述的双端馈电式差分天线,其中在所述天线基板的位于所述耦合段的延伸方向的两端,所述天线基板具有自其一边沿延伸而凸出于该边沿的至少两插入部,其中所述电路基板具有适于被所述插入部插入的固定通孔,其中所述天线基板以所述插入部插入所述固定通孔的状态被插装固定于所述电路基板。
  29. 根据权利要求20至25中任一所述的双端馈电式差分天线,其中在两所述条形振子的两所述馈电端的相应位置,所述天线基板具有自其一边沿延伸而凸出于该边沿的两插入部,其中所述电路基板具有适于被所述插入部插入的两固定通孔,其中所述天线基板以所述插入部插入所述固定通孔的状态被插装固定于所述电路基板,对应形成被承载于所述天线基板的两所述条形振子于所述馈电端延伸嵌入所述固定通孔的结构形态。
PCT/CN2023/071952 2022-01-25 2023-01-12 双端馈电式差分天线 WO2023143104A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210086578.8 2022-01-25
CN202210086578 2022-01-25

Publications (1)

Publication Number Publication Date
WO2023143104A1 true WO2023143104A1 (zh) 2023-08-03

Family

ID=81904995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071952 WO2023143104A1 (zh) 2022-01-25 2023-01-12 双端馈电式差分天线

Country Status (2)

Country Link
CN (19) CN217332842U (zh)
WO (1) WO2023143104A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217332842U (zh) * 2022-01-25 2022-08-30 深圳迈睿智能科技有限公司 微波探测装置
CN115314069B (zh) * 2022-08-08 2023-10-13 慷智集成电路(上海)有限公司 全双工发射接收电路、解串电路芯片、电子设备及车辆
CN116315663A (zh) * 2023-05-11 2023-06-23 深圳芯盛思技术有限公司 一种基于差分发射差分接收方式的抗干扰型收发一体天线
CN117411575B (zh) * 2023-11-21 2024-10-18 上海剑桥科技股份有限公司 无线产品的干扰信号的定位方法、设备及计算机可读介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040080458A1 (en) * 2001-07-05 2004-04-29 Syuichi Sekine Antenna apparatus
US20090174607A1 (en) * 2007-12-24 2009-07-09 Beijing Lenovo Software Ltd. Antenna
CN104821426A (zh) * 2015-03-26 2015-08-05 南京邮电大学 一种环-振子组合天线
CN112768908A (zh) * 2020-12-29 2021-05-07 南通大学 差分介质谐振器天线与独立可控双通带滤波器的集成结构
CN113131202A (zh) * 2021-04-27 2021-07-16 深圳迈睿智能科技有限公司 半波回折式定向微波探测天线
WO2021204349A1 (en) * 2020-04-06 2021-10-14 Huawei Technologies Co., Ltd. Dual mode antenna arrangement
US20210344119A1 (en) * 2020-03-03 2021-11-04 Compal Electronics, Inc. Antenna structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727311A (en) * 1986-03-06 1988-02-23 Walker Charles W E Microwave moisture measurement using two microwave signals of different frequency and phase shift determination
US7068122B2 (en) * 2004-09-28 2006-06-27 Industrial Technology Research Institute Miniaturized multi-layer balun
US8089394B2 (en) * 2009-11-02 2012-01-03 Invention Planet, LLC Continuous-wave field disturbance sensing system
CN102522984B (zh) * 2011-12-31 2014-02-19 杭州士兰微电子股份有限公司 锁相环及其压控振荡电路
US8902109B2 (en) * 2012-02-05 2014-12-02 Auden Techno Corp. Communication device
WO2017052132A1 (ko) * 2015-09-25 2017-03-30 삼성전자 주식회사 무선 전력 송신기
US10129635B1 (en) * 2017-08-08 2018-11-13 Google Llc Antenna for a wearable audio device
CN207502725U (zh) * 2018-01-25 2018-06-15 西安飞芯电子科技有限公司 差分信号链路方式的激光外差探测系统
CN110398781A (zh) * 2019-08-05 2019-11-01 深圳迈睿智能科技有限公司 抗干扰微波探测模块及抗干扰方法
CN110579759A (zh) * 2019-09-06 2019-12-17 深圳迈睿智能科技有限公司 趋于即时响应的微波探测器及探测方法
CN110824464A (zh) * 2019-10-25 2020-02-21 深圳市海纳微传感器技术有限公司 一种微波传感器及智能探测装置
CN212729795U (zh) * 2020-04-15 2021-03-19 深圳市金安通电子有限公司 一种窄波束微带多普勒雷达生物体体动探测器
CN112510362A (zh) * 2020-09-25 2021-03-16 深圳迈睿智能科技有限公司 反相双馈电式微波探测模块
CN113889751B (zh) * 2021-04-27 2024-09-24 深圳迈睿智能科技有限公司 空间交错式一体收发分离微波探测天线
CN217332842U (zh) * 2022-01-25 2022-08-30 深圳迈睿智能科技有限公司 微波探测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040080458A1 (en) * 2001-07-05 2004-04-29 Syuichi Sekine Antenna apparatus
US20090174607A1 (en) * 2007-12-24 2009-07-09 Beijing Lenovo Software Ltd. Antenna
CN104821426A (zh) * 2015-03-26 2015-08-05 南京邮电大学 一种环-振子组合天线
US20210344119A1 (en) * 2020-03-03 2021-11-04 Compal Electronics, Inc. Antenna structure
WO2021204349A1 (en) * 2020-04-06 2021-10-14 Huawei Technologies Co., Ltd. Dual mode antenna arrangement
CN112768908A (zh) * 2020-12-29 2021-05-07 南通大学 差分介质谐振器天线与独立可控双通带滤波器的集成结构
CN113131202A (zh) * 2021-04-27 2021-07-16 深圳迈睿智能科技有限公司 半波回折式定向微波探测天线

Also Published As

Publication number Publication date
CN114624696A (zh) 2022-06-14
CN114624695A (zh) 2022-06-14
CN217332839U (zh) 2022-08-30
CN217820850U (zh) 2022-11-15
CN217332841U (zh) 2022-08-30
CN217332844U (zh) 2022-08-30
CN116148833A (zh) 2023-05-23
CN217332842U (zh) 2022-08-30
CN116231275A (zh) 2023-06-06
CN218331959U (zh) 2023-01-17
CN217820849U (zh) 2022-11-15
CN217766842U (zh) 2022-11-08
CN217332838U (zh) 2022-08-30
CN219811054U (zh) 2023-10-10
CN218727992U (zh) 2023-03-24
CN114624698A (zh) 2022-06-14
CN217360292U (zh) 2022-09-02
CN114624695B (zh) 2024-10-15
CN218958019U (zh) 2023-05-02
CN114624697A (zh) 2022-06-14
CN217332840U (zh) 2022-08-30
CN217332843U (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023143104A1 (zh) 双端馈电式差分天线
CN216773510U (zh) 定向微波探测天线
WO2022062208A1 (zh) 反相双馈电式微波探测模块
CN113839191B (zh) 空间交错式一体收发分离微波探测天线
WO2024139652A1 (zh) 天线装置与馈电网络组件
CN218602736U (zh) 5.8g微型微波探测天线
CN217239743U (zh) 抗干扰的微波探测天线
CN217427079U (zh) 错位微波探测天线
CN118487040B (zh) 基于微带贴片天线的双极化微波探测模块和装置
CN114883805B (zh) 一种具有前后比抑制的小型化天线单元及其阵列
CN221842003U (zh) 能够抑制频偏的半波回折式定向微波探测天线
CN216120757U (zh) 收发分离的微波探测天线
US20220342065A1 (en) Half-Wave Back-Folding Directional Microwave Detection Antenna
CN217239741U (zh) 错位正交的一体微波探测天线
CN212303899U (zh) 一种新型四模缝隙宽带天线
WO2024140152A1 (zh) 基站天线及基站系统
KR100449428B1 (ko) 타원 실린더형 복사체를 가지는 모노폴 안테나
CN118487040A (zh) 基于微带贴片天线的双极化微波探测模块和装置
KR20120085380A (ko) 미앤더 모노폴 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE