WO2024051434A1 - 一种圆极化天线、通信设备及圆极化天线制造方法 - Google Patents

一种圆极化天线、通信设备及圆极化天线制造方法 Download PDF

Info

Publication number
WO2024051434A1
WO2024051434A1 PCT/CN2023/112017 CN2023112017W WO2024051434A1 WO 2024051434 A1 WO2024051434 A1 WO 2024051434A1 CN 2023112017 W CN2023112017 W CN 2023112017W WO 2024051434 A1 WO2024051434 A1 WO 2024051434A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed
circularly polarized
polarized antenna
arm
feed port
Prior art date
Application number
PCT/CN2023/112017
Other languages
English (en)
French (fr)
Inventor
薛富林
龙佳
Original Assignee
上海移远通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海移远通信技术股份有限公司 filed Critical 上海移远通信技术股份有限公司
Publication of WO2024051434A1 publication Critical patent/WO2024051434A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces

Definitions

  • the present application relates to the field of antenna technology, specifically, to a circularly polarized antenna, communication equipment and a circularly polarized antenna manufacturing method.
  • a circularly polarized antenna When a circularly polarized antenna is used as a receiving antenna, it can transmit and receive linearly polarized waves in any direction. On the one hand, it can reduce signal loss, and on the other hand, it can eliminate the polarization distortion caused by the Faraday rotation effect of the ionosphere. Therefore, circularly polarized antennas are widely used. Used in radio frequency identification (RFID), satellite communications and global positioning system (Global Positioning System, GPS) fields.
  • RFID radio frequency identification
  • satellite communications Global Positioning System, GPS
  • the purpose of this application is to provide a circularly polarized antenna, communication equipment and a circularly polarized antenna manufacturing method to solve the problems of poor performance such as narrow beam and low gain of existing circularly polarized antennas.
  • this application provides a circularly polarized antenna, including:
  • a feed network board the feed network board is provided with a plurality of feed ports
  • a plurality of array arms are coupled and connected to the feed network board through the feed port;
  • a support component connected to the feed network board
  • a reflective plate connected to the support assembly, with perforations provided on the reflective plate
  • the radio frequency connection component passes through the through hole and is connected to the feed network board.
  • the feed port includes: a first feed port, a second feed port, a third feed port and a fourth feed port;
  • the feed screen plate has a first side and a second side opposite to the first side;
  • the portions of the first feed port and the second feed port located on the first surface are connected through a first phase-shifted microstrip;
  • the portions of the third feed port and the fourth feed port located on the second surface are connected through a second phase-shifting microstrip.
  • the radio frequency connection component includes: an outer conductor and a core wire, and the core wire is provided in the outer conductor;
  • the first feed port is provided with a main feed hole at one end located on the first surface
  • the third feed port is provided with a grounding hole at one end located on the second surface, and the outer conductor passes through The perforation allows the end of the core wire extending out of the outer conductor to pass through the ground terminal hole and the main feed hole in sequence, and is connected to the feed network board.
  • the support component includes: a plurality of support columns
  • a plurality of connectors are provided on the reflective plate
  • the feed screen plate is provided with a plurality of connection holes, one end of the support column passes through the connection hole and is connected to the feed screen plate, and the other end of the support column is connected to the connector.
  • each of the array arms includes: a first arm and a second arm, and the connection between the first arm and the second arm forms a preset opening angle; wherein,
  • the first arm is coupled to the feed network board through the feed port;
  • the second arm extends outward along the feed screen plate.
  • connection between the radio frequency connection component and the through hole is fixedly connected through an installation piece.
  • the antenna further includes:
  • the cover body is connected to the reflection plate, and the feed screen plate, the array arm, and the support assembly are all located in the cover body.
  • this application provides a method for manufacturing a circularly polarized antenna, including:
  • the radio frequency connection component passes through the reflection plate and is connected to the feed network plate.
  • the present application provides a communication device, including the circularly polarized antenna according to any one of the first aspects of the embodiments of the present application, and a body, where the circularly polarized antenna is provided on the body.
  • the beneficial effects of this application are: the structure of the circularly polarized antenna of this application is simple, stable, and easy to assemble. The loss of radiation energy of the circularly polarized antenna is reduced, its performance is improved, and its gain is also improved. .
  • Figure 1 is a schematic structural diagram of a circularly polarized antenna provided by an embodiment of the present application
  • Figure 2 is an exploded schematic diagram of a circularly polarized antenna provided by an embodiment of the present application
  • Figure 3 is a schematic structural diagram of the first side of the feed network board provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of the second side of the feed network board provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an array arm provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a reflective plate provided by an embodiment of the present application.
  • Figure 7 is a schematic flow chart of a circularly polarized antenna manufacturing method provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of the return loss of a circularly polarized antenna provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the simulated axial ratio of a circularly polarized antenna provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the radiation direction of a circularly polarized antenna provided by an embodiment of the present application.
  • horizontal does not imply a requirement that the component be absolutely horizontal or overhanging, but may be slightly tilted.
  • “horizontal” only means that its direction is more horizontal than “vertical”. It does not mean that the structure must be completely horizontal, but can be slightly tilted.
  • the terms "setting”, “installation”, “connecting” and “connecting” should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • a circularly polarized antenna 1 includes: a feed plate 10, a plurality of array arms 20, a support component 30, a reflector 40, and a radio frequency connection component 50; wherein, the feed plate 10 is provided with There are multiple feed ports 100.
  • the array arm 20 is coupled to the feed network plate 10 through the feed ports 100.
  • the support component 30 is connected to the feed network board 10.
  • the reflection plate 40 is connected to the support component 30.
  • the reflection plate 40 is provided with perforations. 400.
  • the radio frequency connection component 50 passes through the through hole 400 and is connected to the feed network board 10.
  • the shape of the feed screen plate 10 may be one of a rectangular, circular, or rhombus structure. In this embodiment, the shape of the feed screen plate 10 is preferably a rhombus.
  • the material of the feed screen board 10 is preferably PCB material.
  • the feed port 100 includes four, which are arranged in a counterclockwise direction: a first feed port 101, a second feed port 102, a third feed port 103, and a fourth feed port.
  • the electrical ports 104 are respectively arranged in directions along the four diagonal corners of the diamond-shaped feed network plate 10 .
  • the phase shifts of the first feed port 101 , the second feed port 102 , the third feed port 103 and the fourth feed port 104 increase in sequence, and the increase amplitudes are the same.
  • the structure of the first feed port 101, the second feed port 102, and the third feed port 103 is a copper-clad microstrip structure.
  • the feed screen plate 10 has a first side 110 and a second side 120 opposite to the first side.
  • the portions of the first feed port 101 and the second feed port 102 located on the first surface 110 are connected through the first phase-shifting microstrip 130 (as shown in FIG. 3 ).
  • the parts of the third feed port 103 and the fourth feed port 104 located on the second surface 120 are connected through the second phase-shifting microstrip 140 (as shown in Figure 4).
  • the first phase-shifting microstrip 130 and the second phase-shifting microstrip 140 have an arc-shaped structure.
  • the first surface 110 is the upper surface
  • the second surface 120 is the lower surface.
  • the first side 110 may be a lower surface
  • the second side 120 may be an upper surface.
  • the first feed port 101 is provided with a main feed hole 1011 at one end on the first surface 110
  • the third feed port 103 is provided with a ground terminal at one end on the second surface 120 . Hole 1301.
  • the radio frequency connection component 50 includes: an outer conductor 500 and a core wire 510.
  • the core wire 510 is arranged in the outer conductor 500.
  • the outer conductor 500 passes through the through hole 400, so that the end of the core wire 510 extending out of the outer conductor 500 passes through the ground port hole 1301 in turn.
  • the main feed hole 1011 is connected with the feed network plate 10 .
  • the end of the outer conductor 500 is connected to the ground port hole 1301 .
  • Each array arm 20 includes: a first arm 210 and a second arm 220 .
  • the connection between the first arm 210 and the second arm 220 forms a preset opening angle.
  • the first arm 210 is coupled with the feed network plate 10 through the feed port 100; the second arm 220 extends outward along the feed network plate 10.
  • the connection between the first arm 210 and the second arm 220 forms an opening angle, so that the array arm 20 forms an L-shaped structure in the overall structure.
  • each array arm 20 is connected to the first feed port 101 and the second feed port respectively. 102.
  • the positions of the third feed port 103 and the fourth feed port 104 are correspondingly coupled and connected.
  • the number of array arms 20 can be specifically set according to the structure of the feed network board 10 .
  • the number of array arms 20 includes but is not limited to four.
  • the array arm 20 can be made of copper or other metal materials.
  • the connection method between the feed screen plate 10 and the array arm 20 may be one of screw connection, adhesion or welding.
  • the feed screen plate 10 and the array arm 20 may be connected through screws.
  • Two first via holes 150 are provided in the first feed port 101 , the second feed port 102 , the third feed port 103 and the fourth feed port 104 .
  • two second via holes 230 matching the first via holes 150 are provided at corresponding positions on the first arm 210 of the array arm 20 .
  • the rivets 240 pass through the second via holes 230 on the first arm 210 of the four array arms 20, the corresponding first via holes 150 of the first feed port 101, and the first through holes 150 of the second feed port 102.
  • the via hole 150 , the first via hole 150 of the third feed port 103 and the first via hole 150 of the fourth feed port 104 couple the array arm 20 with the feed port 100 .
  • the first feed port 101 and the third feed port 103 are respectively coupled with the first arms 210 of two of the array arms 20 to form a short arm.
  • the length of the arm 210 is about 0.22 ⁇ (where ⁇ represents the wavelength), forming a short arm dipole as a whole, so that the impedance of the array arm 20 is capacitive and the current phase lags behind; the second feed port 102 and the fourth feed port 104 are connected to
  • the first arms 210 of the other two array arms 20 are coupled and connected to form a long-arm dipole.
  • the length of the first arm 210 is about 0.27 ⁇ , so that the impedance of the array arms 20 is inductive and the current phase is advanced.
  • the third feed port 103 and the fourth feed port 103 are The portion of the port 104 located on the second surface 120 is connected through the second phase-shifting microstrip 140 to achieve a phase difference of 90°.
  • the current or voltage is The phase of the first feed port 101 is 0°, the phase of the second feed port 102 is 90°, the phase of the third feed port 103 is 180°, the phase of the fourth feed port 104 is 270°, and the phase of the four feed ports is 270°.
  • the electrical port 100 realizes phase relationships of 0°, 90°, 180°, and 270° in sequence. The phase shifts of the four feed ports 100 increase in sequence, and the increase amplitude is all 90°.
  • the polarization direction lags from the leading direction of the current. Rotation, thereby realizing the circular polarization characteristics of the antenna, causing the antenna to radiate electromagnetic waves.
  • the feed board 10 in this embodiment is configured to provide phase advance feed to the feed port 100 to achieve circular polarization of the antenna.
  • the reflective plate 40 is provided with a plurality of connectors 410 around the through hole 400 .
  • the reflective plate 40 is circular and made of metal.
  • the connectors 410 may be rivet studs.
  • the support assembly 30 includes: a plurality of support columns 300.
  • the support columns 300 are provided with a protruding thread structure at one end and a threaded mouth structure at the other end.
  • the number of support columns 300 can be set according to the structure of the feed network board 10 . In this embodiment, the number of support columns 300 is four.
  • the number of connecting pieces 410 corresponds to the number of supporting columns 300 .
  • the feed screen plate 10 is provided with a plurality of connection holes 160 , and the positions of the connection holes 160 correspond to the positions of the connectors 410 on the reflection plate 40 .
  • one end of the support column 300 with a protruding thread structure passes through the connection hole 160 on the feed screen plate 10, and is connected and fixed with the feed screen plate 10 through the nut 420.
  • the threaded opening at the other end of the support column 300 is threadedly connected to the connector 410 on the reflective plate 40 .
  • the outer conductor 500 and the core wire 510 on the radio frequency connection component 50 pass through the through holes 400 on the reflection plate 40 , so that the core wire 510 and the outer conductor 500 are connected and fixed to the feed network plate 10 .
  • connection between the radio frequency connection component 50 and the reflection plate 40 is fixed by an installation piece 60, so that the radio frequency connection assembly 50 and the reflection plate are connected through the support assembly 30 and the installation piece 60.
  • the fixed connection between the board 40 and the feed screen board 10 provides the stability of the circularly polarized antenna 1 .
  • a cover 70 is provided outside the feed screen plate 10, the array arm 20, and the support assembly 30.
  • the cover 70 and the reflection plate 40 can be connected and fixed through buckles, screws, or welding.
  • the support component 30, the rivets 240, the mounting parts 60, and the cover 70 are preferably made of insulating non-magnetic materials.
  • this application provides a method for manufacturing a circularly polarized antenna 1, including steps S210 to S240.
  • Step S210 Make the array arm 20.
  • the metal array arm 20 is manufactured so that the array arm 20 has a first arm 210 and a second arm 220 that are connected to each other at a certain opening angle.
  • the first arm 210 is pre-set with a second via hole 230 .
  • Step S220 Connect the array arm 20 to the feed screen board 10.
  • the first feed port 101 , the second feed port 102 , the third feed port 103 and the fourth feed port 104 are each provided with two first via holes 150 .
  • Two second via holes 230 matching the first via holes 150 are provided at corresponding positions on the arm 210 .
  • the rivets 240 pass through the second via holes 230 on the first arm 210 of the four array arms 20, the corresponding first via holes 150 of the first feed port 101, and the first through holes 150 of the second feed port 102.
  • the via hole 150 , the first via hole 150 of the third feed port 103 and the first via hole 150 of the fourth feed port 104 couple the array arm 20 with the feed port 100 .
  • the array arm 20 and the feed screen plate 10 form an antenna radiator through coupling, which reduces the welding process, achieves good radiation performance, and reduces the size of the antenna.
  • Step S230 Connect the feed screen plate 10 and the reflection plate 40 through the support assembly 30.
  • one end of the support column 300 with a protruding thread structure passes through the connection hole 160 on the feed screen plate 10 and is connected and fixed with the feed screen plate 10 through the nut 420.
  • the threaded opening at the other end of the support column 300 is connected to the reflection
  • the connector 410 on the plate 40 is threaded and fixed.
  • the reflection plate 40 and the feed screen plate 10 are connected through the support assembly 30 .
  • Step S240 The radio frequency connection component 50 passes through the reflection plate 40 and is connected to the feed network board 10.
  • the outer conductor 500 on the radio frequency connection component 50 passes through the through hole 400, so that the end of the core wire 510 extending out of the outer conductor 500 passes through the ground terminal hole 1301 and the main feed hole 1011 in sequence, and is connected to the feed network board 10.
  • the end of the outer conductor 500 is connected to the ground port hole 1301 , thereby achieving a fixed connection between the core wire 510 and the outer conductor 500 and the feed network plate 10 .
  • the connection between the radio frequency connection component 50 and the through hole 400 is then fixed through the mounting member 60 .
  • the structure of the circularly polarized antenna 1 manufactured by the above method is simple, stable, and easy to assemble.
  • the spatial medium of the entire circularly polarized antenna 1 is almost air, which reduces the loss of radiation energy of the circularly polarized antenna 1 in the absence of a medium. To a certain extent, the performance is improved and its gain is also improved.
  • the circularly polarized antenna 1 of the present application can be used in technical fields such as drones, surveying and mapping, and RTK (Real-time kinematic).
  • the size and operating frequency band of the circularly polarized antenna 1 can be adjusted accordingly to form two array arms 20.
  • the lengths of the first arm 210 are 0.22 ⁇ and 0.27 ⁇ respectively; in addition, the adjustment of the opening angle at the connection point of the first arm 210 and the second arm 220 of the array arm 20 can appropriately reduce the space size of the upper part of the antenna, and achieve good results.
  • the size of the circularly polarized antenna 1 is reduced; secondly, by adjusting the arc perimeter of the first phase-shifting microstrip 130 and the second phase-shifting microstrip 140, the phase of the feed port 100 can be realized and impedance adjustment; by adjusting the height of the support column 300, the adjusted height of the support column 300 is 0.3 ⁇ , the operating frequency point and beam width can be adjusted; in addition, by adjusting the main feed hole 1011 pin and the ground terminal The width of the pin of the hole 1301. When the width of the pin of the main feed hole 1011 and the pin of the ground port hole 1301 is wider, the impedance becomes smaller, thereby realizing the adjustment of the impedance of the circularly polarized antenna 1. Using the above adjustment and optimization method, the gain, intensity, etc. of the circularly polarized antenna 1 can be significantly improved.
  • circularly polarized antenna 1 is used as an example for simulation testing, and the simulation data shown in Figure 8 is obtained. From the simulation data results, it can be seen that when the frequency return loss value is ⁇ -15dB, it indicates that the antenna performance is good. Return loss is good. Take frequency point 1 (902MHz), frequency point 2 (915MHz), and frequency point 3 (928MHz) with an operating bandwidth in the range of 820-1200MHz. The return loss values of the three frequency points are all less than -15dB, that is, this application is implemented. The performance of the circularly polarized antenna 1 manufactured in the example is good.
  • An embodiment of the present application provides a communication device.
  • the communication device includes a body and the circularly polarized antenna 1 described in any of the above embodiments.
  • the circularly polarized antenna 1 is installed on the body.
  • the circularly polarized antenna 1 is provided with an array arm 20 structure with different resonant frequencies on the feed plate 10, which realizes circular polarization characteristics, has a simple structure, beautiful appearance, stability, high performance, and is easy to install. advantage.
  • the above-mentioned communication equipment includes but is not limited to drones, remote controls connected to drones, surveying and mapping equipment, RTK (Real-time kinematic, real-time dynamic) equipment and other equipment that can perform wireless communication.
  • RTK Real-time kinematic, real-time dynamic
  • the structure of the circularly polarized antenna is simple, stable and easy to assemble.
  • the loss of radiation energy of the circularly polarized antenna is reduced and the performance is improved. Gain is also improved.
  • the circularly polarized antenna and communication equipment provided by this application can be applied in various communication systems.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请涉及一种圆极化天线、通信设备及圆极化天线制造方法,其中,圆极化天线包括:馈网板,馈网板上设有多个馈电口;多个阵子臂,通过馈电口与馈网板耦合连接;支撑组件,与馈网板连接;反射板,与支撑组件连接,反射板上设有穿孔;射频连接组件,穿过穿孔,与馈网板连接。本申请的圆极化天线的结构简单、稳固,易装配,圆极化天线的辐射能量的损耗程度降低,性能得以提高,其增益也得以提高。

Description

一种圆极化天线、通信设备及圆极化天线制造方法
相关申请的交叉引用
本申请要求于2022年09月09日提交中国专利局的申请号为202211105255.5、名称为“一种圆极化天线、通信设备及圆极化天线制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,具体而言,涉及一种圆极化天线、通信设备及圆极化天线制造方法。
背景技术
圆极化天线作接收天线时,可以收发任意方向的线极化波,一方面可降低信号遗漏,另一方面可消除由电离层法拉第旋转效应引起的极化畸变,因此圆极化天线被广泛应用于射频识别(RFID)、卫星通信及全球定位系统(Global Positioning System,GPS)领域。
然而,现有的圆极化天线普遍存在波宽窄,相对单元增益偏低、轴比不好,体积大,相对成本高的问题,极大影响了RFID系统的大阅读量,大覆盖范围的性能优势。
申请内容
本申请的目的是提供一种圆极化天线、通信设备及圆极化天线制造方法,用以解决现有圆极化天线波束窄、增益偏低等性能差的问题。
本申请的实施例是这样实现的:
第一方面,本申请提供一种圆极化天线,包括:
馈网板,所述馈网板上设有多个馈电口;
多个阵子臂,通过所述馈电口与所述馈网板耦合连接;
支撑组件,与所述馈网板连接;
反射板,与所述支撑组件连接,所述反射板上设有穿孔;以及
射频连接组件,穿过所述穿孔,与所述馈网板连接。
于一实施例中,所述馈电口包括:第一馈电口、第二馈电口、第三馈电口以及第四馈电口;
所述馈网板具有第一面和与所述第一面相背的第二面;
所述第一馈电口、所述第二馈电口位于所述第一面上的部分通过第一移相微带连接;
所述第三馈电口、所述第四馈电口位于所述第二面上的部分通过第二移相微带连接。
于一实施例中,所述射频连接组件包括:外导体以及芯线,所述芯线设于所述外导体内;
所述第一馈电口位于所述第一面上的一端设有主馈孔,所述第三馈电口位于所述第二面上的一端设有接地端孔,所述外导体穿过所述穿孔,使所述芯线伸出所述外导体的端部依次穿过所述接地端孔以及所述主馈孔,与所述馈网板连接。
于一实施例中,所述支撑组件包括:多个支撑柱;
所述反射板上设有多个连接件;
所述馈网板上设有多个连接孔,所述支撑柱一端穿过所述连接孔与所述馈网板连接,所述支撑柱另一端与所述连接件连接。
于一实施例中,每个所述阵子臂包括:第一臂和第二臂,所述第一臂和所述第二臂连接处形成预设张角;其中,
所述第一臂通过所述馈电口与所述馈网板耦合连接;
所述第二臂沿所述馈网板向外延伸。
于一实施例中,所述阵子臂为偶数个,且呈十字对称分布。
于一实施例中,所述射频连接组件与所述穿孔的连接处通过安装件固定连接。
于一实施例中,所述天线还包括:
罩体,与所述反射板连接,所述馈网板、所述阵子臂、所述支撑组件均设于所述罩体内。
第二方面,本申请提供一种圆极化天线制造方法,包括:
制作阵子臂;
将所述阵子臂与馈网板进行连接;
通过支撑组件将所述馈网板与反射板进行连接;
射频连接组件穿过所述反射板,并与所述馈网板进行连接。
第三方面,本申请提供一种通信设备,包括如本申请实施例第一方面任一项所述的圆极化天线,以及本体,所述圆极化天线设于所述本体上。
本申请与现有技术相比的有益效果是:本申请的圆极化天线的结构简单、稳固,易装配,圆极化天线的辐射能量的损耗程度降低,性能得以提高,其增益也得以提高。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一实施例提供的圆极化天线的结构示意图;
图2为本申请一实施例提供的圆极化天线的爆炸示意图;
图3为本申请一实施例提供的馈网板第一面的结构示意图;
图4为本申请一实施例提供的馈网板第二面的结构示意图;
图5为本申请一实施例提供的阵子臂的结构示意图;
图6为本申请一实施例提供的反射板的结构示意图;
图7为本申请一实施例提供的圆极化天线制造方法的流程示意图;
图8为本申请一实施例提供的圆极化天线回波损耗示意图;
图9为本申请一实施例提供的圆极化天线仿真轴比示意图;
图10为本申请一实施例提供的圆极化天线辐射方向示意图。
图标:
1-圆极化天线;10-馈网板;100-馈电口;101-第一馈电口;1011-主馈孔;102-第二
馈电口;103-第三馈电口;1301-接地端孔;104-第四馈电口;110-第一面;120-第二面;130-第一移相微带;140-第二移相微带;150-第一过孔;160-连接孔;20-阵子臂;210-第一臂;220-第二臂;230-第二过孔;240-铆钉;30-支撑组件;300-支撑柱;40-反射板;400-穿孔;410-连接件;420-螺母;50-射频连接组件;500-外导体;510-芯线;60-安装件;70-罩体。
具体实施方式
术语“第一”、“第二”、“第三”等仅用于区分描述,并不表示排列序号,也不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本申请的描述中,需要说明的是,术语“内”、“外”、“左”、“右”、“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。
请参照图1、图2,一种圆极化天线1,包括:馈网板10、多个阵子臂20、支撑组件30、反射板40、射频连接组件50;其中,馈网板10上设有多个馈电口100,阵子臂20通过馈电口100与馈网板10耦合连接,支撑组件30与馈网板10连接,反射板40与支撑组件30连接,反射板40上设有穿孔400,射频连接组件50穿过穿孔400,与馈网板10连接。
于一实施例中,馈网板10的形状可以为矩形、圆形、菱形结构中的一种,本实施例中,馈网板10的形状优选为菱形。馈网板10材料优选为PCB材料。
请参照2、图3、图4,馈电口100包括四个,按照逆时针方向排列分别为:第一馈电口101、第二馈电口102、第三馈电口103以及第四馈电口104,分别设置在沿着菱形馈网板10的四个对角所在方向处。第一馈电口101、第二馈电口102、第三馈电口103以及第四馈电口104的移相相位依次增加,且增加幅度是相同的。其中,第一馈电口101、第二馈电口102、第三馈电口103结构为覆铜微带结构。
馈网板10具有第一面110和与第一面相背的第二面120。第一馈电口101、第二馈电口102位于第一面110上的部分通过第一移相微带130连接(如图3所示)。同理,第三馈电口103、第四馈电口104位于第二面120上的部分通过第二移相微带140连接(如图4)。第一移相微带130和第二移相微带140呈弧形结构。在图3和图4的示例中,第一面110为上表面,第二面120为下表面。在其它实施例中,第一面110可为下表面,第二面120可为上表面。
于一实施例中,请参照图3,第一馈电口101位于第一面110上的一端设有主馈孔1011,第三馈电口103位于第二面120上的一端设有接地端孔1301。
射频连接组件50包括:外导体500以及芯线510,芯线510设于外导体500内,外导体500穿过穿孔400,使芯线510伸出外导体500的端部依次穿过接地端孔1301以及主馈孔1011,与馈网板10连接。外导体500端部与接地端孔1301连接。
于一实施例中,请参照图5,每个阵子臂20包括:第一臂210和第二臂220,第一臂210和第二臂220连接处形成预设张角。其中,第一臂210通过馈电口100与馈网板10耦合连接;第二臂220沿馈网板10向外延伸。第一臂210和第二臂220连接处形成张角,使阵子臂20在整体结构上形成L型结构。通过调节第一臂210和第二臂220连接处的张角的大小,可优化圆极化天线1辐射波束的宽度。
本实施例中,阵子臂20设为偶数个,且呈十字对称分布于菱形馈网板10的四个对角上,每个阵子臂20分别与第一馈电口101、第二馈电口102、第三馈电口103以及第四馈电口104所在位置对应耦合连接。阵子臂20的设置个数具体可以根据馈网板10的结构进行设定。阵子臂20的个数包括但不限于四个。阵子臂20可由铜等金属材质制成。
馈网板10与阵子臂20的连接方式可以为螺钉连接、粘附或焊接中的一种。本实施例中,馈网板10与阵子臂20之间可通过螺钉连接。具体地,请参照图3、图4,第一馈电口101、第二馈电口102、第三馈电口103以及第四馈电口104上均设有两个第一过孔150。请参照图5,阵子臂20的第一臂210上对应位置处设有与第一过孔150配合的两个第二过孔230。通过铆钉240,分别穿过四个阵子臂20的第一臂210上的第二过孔230,以及对应的第一馈电口101的第一过孔150,第二馈电口102的第一过孔150,第三馈电口103的第一过孔150和第四馈电口104的第一过孔150,将阵子臂20与馈电口100进行耦合连接。
本申请中,请参照图2及图3、图4,第一馈电口101、第三馈电口103分别与其中两个阵子臂20的第一臂210耦合连接,形成短臂,第一臂210长度约为0.22λ(其中λ表示波长),整体形成一个短臂偶极子,使阵子臂20阻抗呈容性,电流相位滞后;第二馈电口102、第四馈电口104与另两个阵子臂20的第一臂210耦合连接,形成长臂偶极子,第一臂210长度约为0.27λ,使阵子臂20阻抗呈感性,电流相位超前。
由于第一馈电口101、第二馈电口102位于第一面110上的部分通过第一移相微带130连接,实现90°的相位差,第三馈电口103、第四馈电口104位于第二面120上的部分通过第二移相微带140连接,实现90°的相位差。当芯线510与馈网板10第一面110上的主馈孔1011进行连接,外导体500端部与馈网板10第二面120上的接地端孔1301进行连接,电流或电压在第一馈电口101的相位为0°,第二馈电口102的相位为90°,第三馈电口103的相位为180°,第四馈电口104的相位为270°,四个馈电口100依次实现0°、90°、180°、270°的相位关系,四个馈电口100的移相相位依次增加,且增加幅度均为90°,极化方向由电流的超前向滞后旋转,进而实现了天线的圆极化特征,使天线辐射出电磁波。本实施例中的馈网板10配置为对馈电口100做相位超前馈电以实现天线圆极化。
请参照图6,反射板40上在穿孔400四周设有多个连接件410,反射板40呈圆形,反射板40为金属材质,连接件410可以是压铆螺柱。
请参照图1、图2,支撑组件30包括:多个支撑柱300,支撑柱300一端设有凸出的螺纹结构,另一端设有螺纹口结构。支撑柱300的个数可根据馈网板10的结构设置,本实施例中,支撑柱300设为四个。连接件410与支撑柱300的个数对应一致。馈网板10上设有多个连接孔160,连接孔160的位置与反射板40上连接件410的位置对应一致。当需要将反射板40与馈网板10进行连接时,支撑柱300具有凸出的螺纹结构的一端穿过馈网板10上的连接孔160,并与馈网板10通过螺母420连接固定,支撑柱300另一端的螺纹口与反射板40上的连接件410进行螺纹连接固定。射频连接组件50上的外导体500连同芯线510穿过反射板40上的穿孔400,使芯线510以及外导体500与馈网板10连接固定。
为了进一步加强射频连接组件50与反射板40的连接稳定性,在射频连接组件50与穿孔400的连接处通过安装件60固定,从而通过支撑组件30、安装件60,实现射频连接组件50与反射板40、馈网板10的固定连接,提供了圆极化天线1的稳定性。
于一实施例中,在馈网板10、阵子臂20、支撑组件30外设有罩体70,罩体70与反射板40可通过卡扣、螺钉或焊接进行连接固定。
于一实施例中,支撑组件30、铆钉240、安装件60、罩体70均优选为绝缘无磁性材料。
请参照图7,本申请提供一种圆极化天线1制造方法,包括步骤S210-步骤S240。
步骤S210:制作阵子臂20。
本步骤中,制作金属阵子臂20,使阵子臂20具有相互连接成一定张角的第一臂210和第二臂220,第一臂210上预先设置第二过孔230。
步骤S220:将阵子臂20与馈网板10进行连接。
如前所述,第一馈电口101、第二馈电口102、第三馈电口103以及第四馈电口104上均设有两个第一过孔150,阵子臂20的第一臂210上对应位置处设有与第一过孔150配合的两个第二过孔230。通过铆钉240,分别穿过四个阵子臂20的第一臂210上的第二过孔230,以及对应的第一馈电口101的第一过孔150,第二馈电口102的第一过孔150,第三馈电口103的第一过孔150和第四馈电口104的第一过孔150,将阵子臂20与馈电口100进行耦合连接。阵子臂20与馈网板10通过耦合的行驶组成了天线辐射体,减少了焊接工艺,同时能够实现良好的辐射性能,缩小了天线的尺寸。
步骤S230:通过支撑组件30将馈网板10与反射板40进行连接。
如前所述,支撑柱300具有凸出的螺纹结构的一端穿过馈网板10上的连接孔160,并与馈网板10通过螺母420连接固定,支撑柱300另一端的螺纹口与反射板40上的连接件410进行螺纹连接固定。由此通过支撑组件30将反射板40与馈网板10进行连接。
步骤S240:射频连接组件50穿过反射板40,并与馈网板10进行连接。
如前所述,射频连接组件50上的外导体500穿过穿孔400,使芯线510伸出外导体500的端部依次穿过接地端孔1301以及主馈孔1011,与馈网板10连接,外导体500端部与接地端孔1301连接,从而实现芯线510以及外导体500与馈网板10的固定连接。射频连接组件50与穿孔400的连接处再通过安装件60进行固定。
采用上述方法制造的圆极化天线1的结构简单、稳固,易装配,整个圆极化天线1的空间介质几乎为空气,在无介质的状态下降低了圆极化天线1的辐射能量的损耗程度,性能得以提高,其增益也得以提高。本申请的圆极化天线1可应用于无人机、测绘、RTK(Real-time kinematic,实时动态)等技术领域。
本申请中,可通过调节四个L型阵子臂20的第一臂210和第二臂220的长度,对圆极化天线1的尺寸和工作频段进行相应的调整,形成的两对阵子臂20的第一臂210长度分别为0.22λ和0.27λ;此外,对阵子臂20的第一臂210和第二臂220连接处的张角的调整,可适当缩小天线上部的空间尺寸,在实现良好的辐性能的同时,缩小了圆极化天线1尺寸;其次,通过对第一移相微带130和第二移相微带140的弧形周长的调整,可实现对馈电口100相位和阻抗的调整;通过对支撑柱300的高度进行调整,调整的支撑柱300高度为0.3λ,可实现对工作频点和波束宽度的调整;另外,通过调节主馈孔1011引脚以及接地端孔1301引脚的宽度,当主馈孔1011引脚以及接地端孔1301引脚的宽度越宽,阻抗越小,从而实现对圆极化天线1的阻抗的调整。采用上述调整优化的方式,使圆极化天线1的增益、强度等得以显著提高。
本申请中以圆极化天线1为例进行仿真测试,得到如图8所示的仿真数据,由仿真数据结果可以看出,当频点回波损耗值<-15dB时,表明天线性能良好,回波损耗良好。取工作宽带在820-1200MHz范围内的频点1(902MHz)、频点2(915MHz)、频点3(928MHz),3个频点的回波损耗值均小于-15dB,即采用本申请实施例制造的圆极化天线1的性能良好。
请参照图9,当圆极化天线1的圆极化轴比<3时,表明圆极化特性良好。以频点1(902MHz)、频点2(915MHz)、频点3(928MHz)为例,3个频点的轴比分别为1.26、0.62、0.68,均小于3。
请参照图10,以频点2(915MHz)在球坐标系PHI=0°和PHI=90°两个切面方向为例,场强(增益)可达到6dB的高增益值,主波束朝向为-1.0deg,波束宽度为102.2deg,实现了宽波束的良好性能。
本申请实施例提供一种通信设备。通信设备包括本体和上述任一实施例所述的圆极化天线1。圆极化天线1安装在本体上。本申请实施例的通信设备中,圆极化天线1在馈网板10设置谐振频率不同的阵子臂20结构,实现了圆极化特性,具有结构简单、美观、稳固、高性能,便于安装的优点。
上述通信设备包括但不限于无人机、与无人机连接的遥控器、测绘设备、RTK(Real-time kinematic,实时动态)设备等可进行无线通信的设备。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请提供的圆极化天线、通信设备及圆极化天线制造方法,其圆极化天线的结构简单、稳固,易装配,圆极化天线的辐射能量的损耗程度降低,性能得以提高,其增益也得以提高。本申请提供的圆极化天线和通信设备能够应用于各种通信系统中。

Claims (10)

  1. 一种圆极化天线,其特征在于,包括:
    馈网板,所述馈网板上设有多个馈电口;
    多个阵子臂,通过所述馈电口与所述馈网板耦合连接;
    支撑组件,与所述馈网板连接;
    反射板,与所述支撑组件连接,所述反射板上设有穿孔;以及
    射频连接组件,穿过所述穿孔,与所述馈网板连接。
  2. 根据权利要求1所述的圆极化天线,其特征在于,所述馈电口包括:第一馈电口、第二馈电口、第三馈电口以及第四馈电口;
    所述馈网板具有第一面和与所述第一面相背的第二面;
    所述第一馈电口、所述第二馈电口位于所述第一面上的部分通过第一移相微带连接;
    所述第三馈电口、所述第四馈电口位于所述第二面上的部分通过第二移相微带连接。
  3. 根据权利要求2所述的圆极化天线,其特征在于,所述射频连接组件包括:外导体以及芯线,所述芯线设于所述外导体内;
    所述第一馈电口位于所述第一面上的一端设有主馈孔,所述第三馈电口位于所述第二面上的一端设有接地端孔,所述外导体穿过所述穿孔,使所述芯线伸出所述外导体的端部依次穿过所述接地端孔以及所述主馈孔,与所述馈网板连接。
  4. 根据权利要求1所述的圆极化天线,其特征在于,所述支撑组件包括:多个支撑柱;
    所述反射板上设有多个连接件;
    所述馈网板上设有多个连接孔,所述支撑柱一端穿过所述连接孔与所述馈网板连接,所述支撑柱另一端与所述连接件连接。
  5. 根据权利要求1所述的圆极化天线,其特征在于,每个所述阵子臂包括:第一臂和第二臂,所述第一臂和所述第二臂连接处形成预设张角;其中,
    所述第一臂通过所述馈电口与所述馈网板耦合连接;
    所述第二臂沿所述馈网板向外延伸。
  6. 根据权利要求1所述的圆极化天线,其特征在于,所述阵子臂为偶数个,且呈十字对称分布。
  7. 根据权利要求1所述的圆极化天线,其特征在于,所述射频连接组件与所述穿孔的连接处通过安装件固定连接。
  8. 根据权利要求1所述的圆极化天线,其特征在于,所述天线还包括:
    罩体,与所述反射板连接,所述馈网板、所述阵子臂、所述支撑组件均设于所述罩体内。
  9. 一种圆极化天线制造方法,其特征在于,包括:
    制作阵子臂;
    将所述阵子臂与馈网板进行连接;
    通过支撑组件将所述馈网板与反射板进行连接;
    射频连接组件穿过所述反射板,并与所述馈网板进行连接。
  10. 一种通信设备,其特征在于,包括如权利要求1至8任一项所述的圆极化天线,以及本体,所述圆极化天线设于所述本体上。
PCT/CN2023/112017 2022-09-09 2023-08-09 一种圆极化天线、通信设备及圆极化天线制造方法 WO2024051434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211105255.5 2022-09-09
CN202211105255.5A CN115579629A (zh) 2022-09-09 2022-09-09 一种圆极化天线、通信设备及圆极化天线制造方法

Publications (1)

Publication Number Publication Date
WO2024051434A1 true WO2024051434A1 (zh) 2024-03-14

Family

ID=84581258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112017 WO2024051434A1 (zh) 2022-09-09 2023-08-09 一种圆极化天线、通信设备及圆极化天线制造方法

Country Status (2)

Country Link
CN (1) CN115579629A (zh)
WO (1) WO2024051434A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115579629A (zh) * 2022-09-09 2023-01-06 合肥移瑞通信技术有限公司 一种圆极化天线、通信设备及圆极化天线制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474765A (zh) * 2013-09-16 2013-12-25 深圳大学 一种圆极化交叉偶极子天线及其制备方法
CN108711672A (zh) * 2018-04-28 2018-10-26 西安电子科技大学 一种极化可重构宽频带交叉偶极子天线
CN111446541A (zh) * 2020-04-10 2020-07-24 航天恒星科技有限公司 十字阵子圆极化天线
CN114300845A (zh) * 2022-01-18 2022-04-08 福州东日信息技术有限公司 一种双偶极子圆极化天线
CN115579629A (zh) * 2022-09-09 2023-01-06 合肥移瑞通信技术有限公司 一种圆极化天线、通信设备及圆极化天线制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474765A (zh) * 2013-09-16 2013-12-25 深圳大学 一种圆极化交叉偶极子天线及其制备方法
CN108711672A (zh) * 2018-04-28 2018-10-26 西安电子科技大学 一种极化可重构宽频带交叉偶极子天线
CN111446541A (zh) * 2020-04-10 2020-07-24 航天恒星科技有限公司 十字阵子圆极化天线
CN114300845A (zh) * 2022-01-18 2022-04-08 福州东日信息技术有限公司 一种双偶极子圆极化天线
CN115579629A (zh) * 2022-09-09 2023-01-06 合肥移瑞通信技术有限公司 一种圆极化天线、通信设备及圆极化天线制造方法

Also Published As

Publication number Publication date
CN115579629A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
CN107895846B (zh) 一种具有宽频带的圆极化贴片天线
JP2012065229A (ja) 誘電体導波管スロットアンテナ
WO2024051434A1 (zh) 一种圆极化天线、通信设备及圆极化天线制造方法
WO1999036991A1 (fr) Procede d'alimentation d'antenne plate, et antenne plate
WO2020244636A1 (zh) 一种双极化天线
KR20110107348A (ko) 소형 원형 편파 전방향 안테나
US20210367349A1 (en) Wide-beam planar backfire and bidirectional circularly-polarized antenna
CN110112561B (zh) 一种单极化天线
JP2002359515A (ja) M型アンテナ装置
US6486847B1 (en) Monopole antenna
WO2021244158A1 (zh) 双极化天线及客户前置设备
JP2001168637A (ja) クロスダイポールアンテナ
WO2019090927A1 (zh) 天线单元及天线阵列
US11532887B2 (en) Radiation element for antenna and antenna including the radiation element
US20110068982A1 (en) Circularly polarized antenna and manufacturing method thereof
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
US11967779B2 (en) Single-frequency circular polarization positioning antenna and wearable device
CN111162375A (zh) 一种宽带圆极化贴片天线
JP3777258B2 (ja) 平面アンテナ
CN116231297A (zh) 一种单层宽带全向圆极化天线
WO2023159345A1 (zh) 天线
CN111883920B (zh) 一种八臂螺旋天线
CN212062698U (zh) 天线装置和室内分布系统
CN110690559B (zh) 星载共形测控天线
CN111864345A (zh) 一种基站mimo天线单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862132

Country of ref document: EP

Kind code of ref document: A1