WO2021136017A1 - 中冷器的主板、中冷器及中冷器的制造方法 - Google Patents

中冷器的主板、中冷器及中冷器的制造方法 Download PDF

Info

Publication number
WO2021136017A1
WO2021136017A1 PCT/CN2020/138370 CN2020138370W WO2021136017A1 WO 2021136017 A1 WO2021136017 A1 WO 2021136017A1 CN 2020138370 W CN2020138370 W CN 2020138370W WO 2021136017 A1 WO2021136017 A1 WO 2021136017A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
housing
intercooler
main board
shell
Prior art date
Application number
PCT/CN2020/138370
Other languages
English (en)
French (fr)
Inventor
李天�
汤平强
谢建
刘伟锋
谢先龙
姚斌
闵富海
陈宇涛
Original Assignee
浙江银轮机械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江银轮机械股份有限公司 filed Critical 浙江银轮机械股份有限公司
Publication of WO2021136017A1 publication Critical patent/WO2021136017A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/10Arrangements for sealing the margins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means

Definitions

  • the present disclosure relates to the technical field of heat exchange equipment, and in particular to a main board of an intercooler, an intercooler, and a manufacturing method of the intercooler.
  • the intercooler is used to reduce the temperature of the supercharged high-temperature air to reduce the thermal load of the engine, increase the intake air volume, and then increase the power of the engine.
  • the functions of mechanical equipment are becoming more and more diversified, and there are more and more functional originals in the mechanical equipment.
  • the installation space available for the corresponding components is getting smaller and smaller.
  • the medium used in the mechanical equipment The cooler often needs to be miniaturized design.
  • the miniaturization of the intercooler usually means that the heat exchange core has to be reduced, thereby sacrificing the heat exchange performance of the intercooler, which makes it difficult to ensure the heat exchange performance of the intercooler while adapting to the size of the external installation space.
  • the purpose of the present disclosure includes, for example, providing a main board of an intercooler to improve the shortcomings of the prior art. Its structure and assembly are simple, and the heat exchange of the intercooler can be increased without changing the volume of the entire intercooler. performance.
  • the objective of the present disclosure also includes providing an intercooler, which includes the main board of the intercooler and has all the functions of the main board of the intercooler.
  • the purpose of the present disclosure also includes providing a method for manufacturing an intercooler, which can ensure that the heat exchange performance of the intercooler is increased while the volume of the entire intercooler remains unchanged.
  • the embodiment of the present disclosure provides a main board of an intercooler, the main board is used to connect the core and the chamber of the intercooler, and the main board is formed on the main board for the core to penetrate through the main board to extend A through channel into the chamber.
  • the inner wall of the through channel is a plane used for affixing and sealing connection with the outer wall of the core body.
  • the beneficial effects of this technical solution include: usually the core body is a rectangular parallelepiped or cube structure, the through channel has four inner walls correspondingly, and the four inner walls are all attached to the core; by making the inner wall of the through channel a plane, the main board can be increased in the core body.
  • the area covered by the upper cover increases the connection strength between the main board and the core and the overall strength of the core itself.
  • the inner wall of the through channel can also play a role in the core and the main board. The role of relative motion to guide.
  • the embodiment of the present disclosure also provides an intercooler, which includes the above-mentioned main board, which has all the functions of the main board of the intercooler.
  • it includes a core and a chamber connected by the main board, and the core passes through the main board through the through channel and extends into the chamber.
  • the beneficial effects of this technical solution include: allowing the core to penetrate the through channel and extend into the chamber, so that the space in the chamber can also be fully utilized, compared to the same volume in the prior art with a core and a chamber
  • the intercooler provided by the embodiment of the present disclosure has a larger-volume core and better heat exchange performance.
  • the core penetrates the main board in a first direction, and a connecting hole for connecting with an external pipeline is formed on the core, and the connecting hole is away from the core in the first direction. Set up on both sides of the edge.
  • the beneficial effect of this technical solution is that: that is, the position of the connecting hole in the first direction is located in the middle of the core or close to the middle of the core, because the connecting hole needs to be connected with the pipeline for conveying the medium,
  • the position of these pipes will limit the range of installation positions that the motherboard can choose on the core.
  • the connecting holes are arranged as far away as possible from the two sides of the core in the first direction, the installation of the motherboard The position can have a wider range of options, and the positional relationship between the core body, the main board and the chamber body can be more flexibly selected according to the size of the external installation space of the intercooler.
  • the core body penetrates the main board in a first direction
  • the core body includes a shell having a first shell and a second shell.
  • the butt joint is formed with a seam extending in the first direction, an air blocking part penetrating the seam is formed on the first housing, and an air blocking part is formed on the second housing for accommodating the air blocking part
  • the groove portion, the main board covers the air blocking portion.
  • the beneficial effects of this technical solution include: when the shell has an air leakage problem at the joint, the air blocking part penetrates the joint so that the air blocking part can block the leaked airflow in the first direction.
  • the main board covers the air blocking portion and the main board covers the gap, so that the airflow is difficult to leak from the gap.
  • the core includes a sealing element located inside the housing, the sealing element covers the seam and the air barrier, and the sealing element is connected to the housing at the seam. Sealed connection.
  • the sealing element makes it difficult for the airflow to leak at the joint, especially at the position where the above-mentioned air blocking part and the groove part are matched
  • the main board and the sealing part are used to simultaneously protect the air blocking part and the groove part.
  • the gap between them is sealed to reduce the possibility of air leakage in the direction perpendicular to the joint. When the air flows along the joint, it will be blocked by the protrusions and grooves, thereby reducing gas leakage. Possibility.
  • the core has a chip located inside the housing, the sealing member is the chip, the chip has a flange, and the flange is hermetically connected to the housing at the seam .
  • the chip is an indispensable component, and by using the chip as a sealing part, the cost of arranging other parts as the sealing part can be avoided; specifically, the flanging can be used. It is welded with the first shell, the second shell and the gas barrier to achieve sealing.
  • the core has a side plate located inside the shell, and the sealing member is the side plate.
  • the beneficial effects of this technical solution include: when the above-mentioned chip is used as a sealing element, although the cost can be reduced, it is necessary to ensure that the flanging of the chip has a certain size in the third direction to ensure that the flanging can cover the seam and the air barrier. This increases the size of the chip in the third direction. When multiple chips are stacked into a core, the size of the core in the third direction is also increased to a certain extent.
  • the core includes a shell, and the outer wall of the shell is flat.
  • the core body can be a cuboid or cube structure
  • the shell has four outer walls.
  • the outer wall is flat to increase the contact area between the shell and the main board, thereby increasing the connection strength between the main board and the core.
  • the outer wall of the shell can also play a role in guiding the relative movement of the core body and the main board.
  • the embodiment of the present disclosure further provides a method for manufacturing an intercooler, the intercooler includes a core and a main board, a through channel is formed on the main board, and the through channel penetrates the main board, the method includes:
  • the main board is sleeved on the core body through the through passage, and the core body passes through the main board through the through passage.
  • the core body has a shell and a plurality of chip components installed inside the shell, and the shell includes a first shell and a second shell;
  • the method includes:
  • the first shell and the second shell are butted to form the shell.
  • the beneficial effects of the technical solution include: it enables each chip assembly and the shell to form an integral body first, and then assembles with the main board through the integral body, which makes the assembly more convenient.
  • the first shell has a first edge
  • the second shell has a second edge
  • the first shell and the second shell pass through the first edge and the second edge.
  • the edges are butt-joined, and one of the first edge and the second edge is formed with an air blocking portion, and the other is formed with a groove portion;
  • the connecting the first housing and the second housing to form the housing includes:
  • the beneficial effects of this technical solution include: when the first housing is docked with the second housing, the air blocking part and the groove part are coordinated and positioned, which improves the assembly accuracy and assembly efficiency of the intercooler; and, due to the first edge After being butted with the second edge, a seam is formed between the first edge and the second edge.
  • the air blocking part penetrates through the seam to cooperate with the groove part.
  • the air blocking part and the concave The groove can block the air flow in the extending direction of the seam, thereby alleviating the degree of gas leakage.
  • the intercooler includes a seal located inside the outer shell, and the first shell and the second shell are formed between the first edge and the second edge after being butted. seam;
  • the method further includes:
  • the housing and the sealing element are hermetically connected at the seam.
  • the sealing member is one of the chip components.
  • the beneficial effects of this technical solution include: This reduces the possibility of air leakage at the joints after the intercooler is assembled, and, since the chip assembly is an indispensable part in the core, it is sealed compared to other parts specially provided. For the seam, the cost of sealing the seam is lower by sealingly connecting the shell and the chip component at the seam.
  • the sealing element is a side plate
  • the method further includes:
  • the method further includes:
  • the shell and the side plate are hermetically connected at the seam.
  • the beneficial effects of this technical solution include: when chip components are used as the sealing seam, although the cost can be reduced, it is necessary to ensure that the flanging of the chip has a certain width to ensure that the flanging can cover the seam, which increases the size of the chip When multiple chips are stacked into a core body, the size of the core body is also increased to a certain extent. By adopting side plates and sealing the seams, the size of the flanging can be appropriately reduced, thereby reducing the size of the core body. The size is conducive to the miniaturization of the intercooler.
  • the method further includes:
  • the main board covers the air blocking portion and the groove portion.
  • the beneficial effects of this technical solution include: when the main board covers the air blocking part from the outside of the housing, the first housing, the second housing, the air blocking part and the groove part can be tightly connected as a whole, so that the first housing It is difficult for the body and the second shell to move relative to each other, so that the joints are less likely to cause gas leakage gaps, and the possibility of air leakage of the intercooler is reduced.
  • the chip assembly includes a first chip and a second chip, the first chip has a first board surface and a first flange formed on the first board surface, and the second chip has a fourth board Surface and a second flange formed on the fourth board surface;
  • the method further includes:
  • the first plate surface and the fourth plate surface are arranged opposite to each other, so that the first flange and the second flange overlap, so that the extension direction of the first flange is the same as that of the second flange.
  • the extending direction of the flanging is the flow direction of the cooled medium flowing through the first chip.
  • the beneficial effects of this technical solution include: through the overlap of the first flanging and the second flanging, not only the connection between the first chip and the second chip can be realized, but also, during the process of connecting the first chip and the second chip The relative position between the first chip and the second chip can also be positioned, which improves assembly accuracy and assembly efficiency.
  • a seam is formed after the first housing and the second housing are butted;
  • the method further includes:
  • the shell and the first flange or the second flange are connected in a sealed manner at the seam.
  • the beneficial effects of this technical solution include: by using the first flanging or the second flanging to seal the seam, the structure of the chip assembly itself is utilized to seal the seam with other components, and the cost is lower.
  • a raised portion is formed on the first board surface, an in-group positioning portion is formed at the raised portion, the second chip has a fourth board surface, and the second chip has a fourth board surface on the fourth board surface.
  • a positioning protrusion in the group is formed on the upper surface;
  • the method further includes:
  • the first board surface and the fourth board surface are arranged opposite to each other, and the positioning protrusion in the group is matched with the positioning portion in the group for positioning.
  • the beneficial effects of this technical solution include: when assembling the chip assembly, the positioning portion in the assembly and the positioning protrusion within the assembly are coordinated and positioned, which improves the accuracy and efficiency of assembly.
  • the method further includes:
  • a blocking portion is formed on the first flange so that the blocking portion protrudes toward the middle of the first plate surface in a direction perpendicular to the first flange.
  • the beneficial effects of this technical solution include: when the assembled intercooler is in use, since the two sides of the chip are mostly cooling medium inlets and outlets, the cooled medium and the cooling medium are mainly concentrated in the middle of the chip, but the cooled medium is flowing through In the core body, part of the cooled medium flow often flows through the position between the cooling medium inlet and outlet and the first flange, causing this part of the cooled medium to be unable to exchange heat, which reduces the heat exchange performance of the intercooler.
  • the above-mentioned blocking part is formed on the first flange, so that the formed blocking part can block the cooled medium to a certain extent, reducing the amount of cooled medium flowing into the cooling medium inlet and outlet between the first flange, and then Improve the heat exchange performance of the intercooler.
  • the first chip has a third flange formed on the first board surface and extending perpendicular to the first flange
  • the second chip has a third flange formed on the first board surface and extending perpendicularly to the fourth board surface.
  • a fourth flange extending from the second flange
  • the method further includes:
  • the third flange and the fourth flange are overlapped.
  • the beneficial effects of this technical solution include: through the overlap between the third flanging and the fourth flanging, not only the connection between the first chip and the second chip is facilitated, but also the first chip can be protected during assembly.
  • the function of positioning with the second chip improves the assembly efficiency and accuracy; and the third and fourth flanges can also form a certain barrier to the cooling medium that will flow into the first flange and the inlet and outlet of the cooling medium, thereby improving The heat exchange performance of the intercooler.
  • the chip assembly includes a first chip and a second chip that are stacked, the first chip has a second board set away from the second chip, and the second chip has a
  • the chip is provided with a third board surface, a first inter-group positioning portion is formed on the second board surface, and a second inter-group positioning portion is formed on the third board surface;
  • the stacking each of the chip components in the first housing includes:
  • the beneficial effects of this technical solution include: positioning the stack between the chip assemblies by matching the first inter-group positioning portion with the second inter-group positioning portion, thereby improving the efficiency and accuracy of assembly.
  • the first inter-group positioning portion is an inter-group positioning protrusion.
  • the chip assembly includes a first chip and a second chip that are stacked, the first chip has a second board set away from the second chip, and the second chip has a
  • the chip is provided with a third plate surface.
  • a first high-temperature cooling liquid flow channel and a first low-temperature cooling liquid flow channel recessed into the second plate surface are formed on the second plate surface.
  • a second high temperature cooling liquid flow channel and a second low temperature cooling liquid flow channel recessed into the third plate surface are formed thereon;
  • the stacking each of the chip components in the first housing includes:
  • the beneficial effects of this technical solution include: this makes the first high-temperature cooling liquid flow channel and the second high-temperature cooling liquid flow channel form a closed high-temperature cooling liquid flow channel, and the first low-temperature cooling liquid flow channel and the second low-temperature cooling liquid flow channel form a closed high-temperature cooling liquid flow channel.
  • a closed low-temperature coolant flow channel is formed between the channels.
  • the widths of the first high-temperature cooling liquid flow channel, the first low-temperature cooling liquid flow channel, the second high-temperature cooling liquid flow channel, and the second low-temperature cooling liquid flow channel are the same.
  • the beneficial effects of this technical solution include: in the embodiment of the present disclosure, the widths of the first high-temperature cooling liquid flow channel, the first low-temperature cooling liquid flow channel, the second high-temperature cooling liquid flow channel, and the second low-temperature cooling liquid flow channel
  • the size is the same. While the sizes of the high temperature coolant flow channel and the low temperature coolant flow channel meet certain heat exchange requirements, the thermal load of the low temperature radiator and the resistance to the coolant in the high temperature coolant flow channel are limited to a lower level. Level.
  • a first heat insulation hole is formed between the first high temperature cooling liquid flow channel and the first low temperature cooling liquid flow channel on the first chip, and the first heat insulation hole is formed on the second chip.
  • a second heat insulation hole is formed between the two high-temperature cooling liquid flow channels and the second low-temperature cooling liquid flow channel;
  • the stacking each of the chip components in the first housing further includes:
  • the first heat insulation hole on one of the two adjacent chip assemblies overlaps the second heat insulation hole on the other chip assembly.
  • this technical solution makes the first heat insulation hole and the second heat insulation hole uncovered, and avoids the heat insulation between the high temperature cooling liquid flow channel and the low temperature cooling liquid flow channel on a chip assembly.
  • the hole is thermally isolated, but the heat insulation effect is reduced by the connection of another chip component, so that the thermal isolation effect of the heat insulation hole on the low-temperature coolant flow channel and the high-temperature coolant flow channel is guaranteed to a certain extent.
  • the core includes a first cover plate and a second cover plate;
  • the method further includes:
  • the method further includes:
  • each chip component is mounted between the first cover plate and the second cover plate, and each chip component is mounted on the first cover plate and the second cover plate.
  • the first cover plate and the second cover plate can cover the first heat insulation hole and the second heat insulation hole, reducing the possibility of air leakage through the first heat insulation hole and the second heat insulation hole.
  • the main board of the intercooler, the intercooler and the manufacturing method of the intercooler provided by the present disclosure, when the intercooler is assembled, because the main board does not have corrugated strips, the core can pass through the through channels on the main board. It penetrates the main board and extends into the chamber, so that the space in the chamber is effectively used.
  • the installation position of the main board on the core can be appropriately determined according to the size of the external installation space during assembly, and the core, main board and chamber can be assembled After becoming an intercooler, the intercooler can adapt to the size of the external installation space.
  • the heat exchange performance is also ensured; moreover, the same is due to the core
  • the body can penetrate the main board and extend into the chamber.
  • FIG. 1 is a partial three-dimensional structural diagram of an embodiment of an intercooler provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a three-dimensional structure of an implementation of a motherboard provided by an embodiment of the disclosure
  • FIG. 3 is a schematic diagram of a three-dimensional structure of an embodiment of a housing provided by an embodiment of the disclosure
  • FIG. 4 is a schematic side view of an embodiment of a housing provided by an embodiment of the disclosure.
  • Fig. 5 is a partial enlarged schematic diagram of A in Fig. 4;
  • FIG. 6 is a schematic diagram of an implementation manner in which the air blocking part and the groove part cooperate with the embodiment of the disclosure
  • FIG. 7 is a schematic diagram of another implementation of the air blocking portion and the groove portion provided by the embodiment of the disclosure.
  • FIG. 8 is a schematic partial front view of an embodiment of an intercooler provided by an embodiment of the disclosure.
  • Fig. 9 is a partial enlarged schematic diagram of B in Fig. 8.
  • FIG. 10 is a schematic partial front view of another embodiment of an intercooler provided by an embodiment of the disclosure.
  • Fig. 11 is a partial enlarged schematic diagram of C in Fig. 10;
  • FIG. 12 is a partial three-dimensional structure diagram of an embodiment of a core provided by an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of a three-dimensional structure of an implementation of a chip assembly provided by an embodiment of the disclosure.
  • Fig. 14 is a schematic view of the three-dimensional structure of Fig. 13 from another angle;
  • Fig. 15 is a schematic top view of Fig. 14;
  • Figure 16 is a cross-sectional view at D-D in Figure 15;
  • FIG. 17 is a schematic structural diagram of an implementation manner in which a first chip of one chip assembly and a second chip of another chip assembly cooperate with two adjacent chip assemblies provided by an embodiment of the disclosure;
  • Figure 18 is a partial enlarged cross-sectional view at E in Figure 17;
  • FIG. 19 is a schematic diagram of a three-dimensional structure of an implementation of a first chip provided by an embodiment of the disclosure.
  • FIG. 20 is a schematic top view of an implementation of a first chip provided by an embodiment of the present disclosure.
  • FIG. 21 is a schematic top view of another implementation of the first chip provided by an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of the three-dimensional structure of FIG. 19 from another angle;
  • FIG. 23 is a schematic diagram of a three-dimensional structure of an implementation manner of a second chip provided by an embodiment of the disclosure.
  • 30 to 34 are schematic flow diagrams of an embodiment of the method for manufacturing an intercooler provided by the embodiments of the disclosure.
  • Icon 100-main board; 110-through channel; 111-inner wall; 200-core; 210-shell; 211-first shell; 212-second shell; 213-joint; 214-air barrier; 214a -Edge; 214b-curved guide surface; 215-gap; 216-gap; 220-chip assembly; 221-first chip; 221a-second board surface; 221b-positioning protrusion between groups; 221c-first high temperature cooling Liquid flow channel; 221ca-first end; 221d-first low-temperature cooling liquid flow channel; 221da-second end; 221e-protruding part; 221f-blocking part; 221g-first flanging; 221h-third flanging 221i-positioning part in the group; 221j-first board surface; 221k-first heat insulation hole; 221l-through hole; 222-second chip; 222a-fourth flanging; 222b-second f
  • the fixed connection can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a connection between two components.
  • the fixed connection can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a connection between two components.
  • this embodiment provides an intercooler.
  • the intercooler has a main board 100, which is used to connect the core 200 and the chamber of the intercooler.
  • a through channel 110 is formed on the main board 100 for the core body 200 to penetrate the main board 100 to extend into the chamber.
  • the main board 100 used in the intercooler generally has corrugated strips. After the intercooler is assembled, the corrugated strips are located between the chamber body and the core body 200 to intersperse and fix the cooling pipe or increase the entire core body 200 after the main board 100 is installed.
  • the corrugated strip plays the above-mentioned role, it also limits the relative position between the main board 100, the chamber body and the core body 200. Therefore, the current improvement of the intercooler to adapt it to a small external installation space is generally achieved by reducing the volume of the core 200 to sacrifice heat exchange performance.
  • the heat exchange performance of the intercooler needs to be increased, the volume of the core body 200 needs to be increased, and the volume of the intercooler correspondingly increases, which makes it difficult to install the increased intercooler in the original installation position. .
  • the main board 100 of the intercooler provided by the embodiment of the present disclosure, when the intercooler is assembled, because the main board 100 does not have corrugated strips, the core 200 can penetrate the main board 100 and extend into the through channel 110 on the main board 100.
  • the space in the chamber is effectively used, so that the installation position of the main board 100 on the core 200 can be appropriately determined according to the size of the external installation space during assembly, so that the core 200, the main board 100 and the chamber can be assembled
  • the intercooler can adapt to the size of the external installation space.
  • the heat exchange performance is also ensured; and also because the core 200 can penetrate the main board 100 and extend into the chamber, cooling during assembly
  • the core body 200 with a larger length can be used to increase the heat exchange performance of the intercooler while keeping the volume of the entire intercooler unchanged.
  • the intercooler provided by the embodiment of the present disclosure, after the relative positions of the main board 100, the core body 200 and the chamber body are determined, they can be connected as a whole by a process such as brazing.
  • the inner wall 111 of the through channel 110 is a plane used for abutting and sealing connection with the outer wall of the core body 200.
  • the core body 200 is a cuboid or cube structure
  • the through channel 110 has four inner walls 111 correspondingly, and the four inner walls 111 are all attached to the core body 200; by making the inner wall 111 of the through channel 110 flat, the main board 100 can be increased in the core.
  • the area covered on the body 200 further increases the strength of the connection between the main board 100 and the core 200 and the overall strength of the core 200 itself.
  • the inner wall 111 of the through channel 110 is also It can play a role in guiding the relative movement of the core 200 and the main board 100.
  • the intercooler provided by the embodiment of the present disclosure includes the above-mentioned main board 100 of the intercooler.
  • the core 200 When the intercooler is assembled, the core 200 can penetrate the main board 100 and extend into the chamber, so that the space of the chamber can be effectively used, and the main board 100 can be appropriately determined in the core 200 according to the size of the external installation space during assembly.
  • the upper installation position further enables the intercooler to adapt to the size of the external installation space after the core body 200, the main board 100 and the chamber body are assembled into an intercooler.
  • the heat exchange performance is also ensured; and also because the core 200 can penetrate the main board 100 and extend into the chamber, cooling during assembly
  • the core body 200 with a larger length can be used to increase the heat exchange performance of the intercooler while keeping the volume of the entire intercooler unchanged.
  • the intercooler provided by the embodiment of the present disclosure includes a core body 200 and a chamber body connected by a main board 100, and the core body 200 penetrates the main board 100 through a through channel 110 and extends into the chamber body.
  • the core 200 penetrates the through channel 110 and extends into the chamber, so that the space in the chamber can also be fully utilized.
  • the present disclosure implements The intercooler provided in the example has a larger core body 200 and better heat exchange performance.
  • the core 200 can penetrate the main board 100, when assembling the intercooler, the position of the main board 100 on the core 200 can be appropriately selected according to the external installation space or other reasons.
  • the core 200 can only be The main board 100 is fixedly connected and does not penetrate the main board 100.
  • the core 200 penetrates the main board 100 in the first direction, and a connecting hole 250 for connecting with an external pipeline is formed on the core 200.
  • the connecting hole 250 is far away from the core 200 in the first direction. Set up the edges on both sides. That is, the position of the connecting hole 250 in the first direction is located at or near the middle of the core 200. Because the connecting hole 250 needs to be connected with the pipe for conveying the medium, when the main board 100 is installed on the core 200, the position of these pipes will limit the range of the installation position that the main board 100 can choose on the core 200.
  • the installation position of the main board 100 can be selected in a larger range, and the core body 200, the core body 200, and the core body 200 can be selected more flexibly according to the size of the external installation space of the intercooler.
  • the core body 200 penetrates the main board 100 in the first direction.
  • the core 200 includes a housing 210 having a first housing 211 and a second housing 212.
  • a joint 213 extending in the first direction is formed at the joint of the first housing 211 and the second housing 212, and an air blocking portion 214 penetrating the joint 213 is formed on the first housing 211.
  • a groove portion for accommodating the air blocking portion 214 is formed on the second housing 212, and the main board 100 covers the air blocking portion 214.
  • the first housing 211, the seam 213, and the second housing 212 are sequentially arranged in the third direction; the air blocking portion 214 extends in the third direction, or the extending direction of the air blocking portion 214 is inclined relative to the third direction .
  • the seam 213 formed by the butting of the first housing 211 and the second housing 212 is a seam 213 with a larger length on the housing 210. The risk of leakage of the seam 213 is relatively large, and the air-blocking part will be blocked.
  • the seam 214 is arranged at the seam 213 formed by the butting of the first housing 211 and the second housing 212 to better play its wind-shielding effect, and the effect of alleviating gas leakage is more obvious; optionally, the third direction and the first The direction is vertical; of course, in other embodiments, the seam 213 may be the structure of other seams that may exist on the housing 210.
  • each air blocking part 214 is distributed in the first direction.
  • the air blocking portion 214 can effectively block the leaking air flow.
  • the number of air blocking parts 214 may be 2 to 5, for example, there may be 2 or 3; of course, in other embodiments, the air blocking part 214 may also be one.
  • the air blocking portion 214 and the first housing 211 are integrally formed.
  • a connection mark can appear at the position where the air blocking portion 214 is connected to the first housing 211, thereby avoiding the possibility that gas may leak from the connection mark;
  • the molding makes the position where the air blocking part 214 is formed on the first housing 211 stronger, which reduces the risk of the air blocking part 214 being broken at its molding position; moreover, the integral molding reduces the steps of installing the air blocking part 214, so that The production process is simplified and the production efficiency is improved.
  • the air blocking portion 214 may be a protrusion structure 222k formed on the first housing 211, and the protrusion structure 222k may be a sheet-shaped, plate-shaped, or block-shaped structure.
  • the air blocking portion 214, the first housing 211, and the second housing 212 may be separately formed and then connected.
  • the separately produced air blocking portion 214 may be welded to the corresponding joint 213.
  • the first housing 211 and the second housing 212, or the air blocking portion 214 is fixed to the corresponding first housing 211 and the second housing 212 at the joint 213 by a threaded connection.
  • the two side edges of the air blocking portion 214 in the first direction are attached to the inner wall 111 of the groove portion.
  • the two side edges of the air blocking portion 214 extend straight in the third direction.
  • a gap 216 that may cause gas leakage appears at the joint 213 between the first housing 211 and the second housing 212, it means that the first housing 211 and the second housing 212 have relative movement in the third direction.
  • the first housing 211 and the second When the housing 212 produces relative movement in the third direction, the side edges 214a of the air blocking portion 214 in the first direction are always attached to the inner wall 111 of the groove portion, which makes the air flow (especially along the seam 213) The airflow flowing in the longitudinal direction is difficult to leak from between the air blocking part 214 and the groove part, and the blocking effect of the leaked gas is improved.
  • the edges 214a on both sides of the air blocking portion 214 in the first direction can also be disposed relatively inclined.
  • the end surface of the air blocking portion 214 away from the first housing 211 in the third direction is an arc-shaped guide surface 214b.
  • the baffle portion 214 When the baffle portion 214 is inserted into the above-mentioned groove portion, it can be guided by the arc-shaped guide surface 214b, thereby improving assembly efficiency.
  • the arc-shaped guide surface 214b In order to realize the guiding effect of the arc-shaped guide surface 214b, the arc-shaped guide surface 214b is in the third direction. It protrudes in a direction away from the first housing 211; of course, in other embodiments, the arc-shaped guide surface 214b may also be formed by an inclined surface inclined relative to the third direction.
  • the core 200 includes a sealing element located inside the housing 210, the sealing element covers the seam 213 and the air blocking portion 214, and the sealing element is hermetically connected with the housing 210 at the seam 213.
  • the sealing element makes it difficult for airflow to leak at the joint 213, especially at the position where the air blocking part 214 and the groove part are matched, the main board 100 and the sealing element simultaneously control the gap between the air blocking part 214 and the groove part. 215 is sealed to reduce the possibility of air leakage in the direction perpendicular to the seam 213. When the air flow flows along the seam 213, it will be blocked by the protrusions and grooves, thereby reducing the risk of air leakage. possibility.
  • the core 200 has a chip located inside the housing 210, the sealing member is a chip, the chip has a flange, and the flange is hermetically connected with the housing 210 at the seam 213.
  • the chip is an indispensable component.
  • the core 200 has a side plate located on the inner side of the housing 210, and the seal is the side plate 260.
  • the seal is the side plate 260.
  • the side plate 260 as a sealing member, there is no need to flange to cover the seam 213 and the air blocking portion 214, and the size of the flanging in the third direction can be appropriately reduced, thereby reducing the core 200 in the third direction.
  • the size is conducive to the miniaturization of the intercooler.
  • the core 200 includes an outer shell 210, and the outer wall of the outer shell 210 is flat.
  • the core body 200 can be a rectangular parallelepiped or cube structure, the housing 210 has four outer walls correspondingly, and the outer wall is flat to increase the contact area between the housing 210 and the main board 100, thereby increasing the connection strength between the main board 100 and the core 200; at the same time, When the core 200 penetrates the through channel 110, the outer wall of the housing 210 can also play a role in guiding the relative movement of the core 200 and the main board 100.
  • the main board 100 is sleeved on the core body 200 through the through channel 110, and the chamber body and the core body 200 are connected through the main board 100.
  • the main board 100 and the housing 210 of the core 200 need to be sealed.
  • the main board 100 covers the air blocking portion 214 from the outside of the housing 210, the first housing 211, the second housing 212, and the air blocking portion 214 can be tightly connected as a whole, and the first housing 211 and the second housing 211 can be tightly connected as a whole. It is difficult for the housing 212 to move relative to each other, so that the gap 216 that causes gas leakage is less likely to appear at the joint 213, and the possibility of air leakage of the intercooler is reduced.
  • the seal covers the air blocking portion 214 from the inner side of the housing 210, and the main board 100 covers the air blocking portion 214 from the outer side of the housing 210, if the first housing 211 and the second housing 212 produce relative movement, and a gap 216 is created at the joint 213.
  • the gas In the direction perpendicular to the joint 213, the gas will be blocked by the sealing member, the main board 100 and the gas baffle 214, so that the air flow Cannot flow in this direction; and the air flow flowing along the joint 213 will be blocked by the air blocking portion 214, and then through the structure formed by the main board 100, the sealing member and the air blocking portion 214, a gap 216 appears at the joint 213 When blocking the gas in the intercooler, it is difficult for the gas to leak from the intercooler.
  • each of the above-mentioned gaps 215 is communicated through the above-mentioned gap 216, and a small channel is formed between the main board 100 and the sealing member, and the airflow needs to flow through the small channel.
  • the medium flow can flow out from the intercooler for a long distance, and the flow rate is gradually reduced due to the blocking of the air baffles 214 and the grooves during the flow of the air flow, and it is difficult to flow out from the intercooler in the end.
  • both side edges 214a of the gas blocking portion 214 in the first direction are attached to the inner wall 111 of the groove portion at the same time, the possibility of the above-mentioned gap 215 between the gas blocking portion 214 and the groove portion is avoided, and the gas It is more difficult to leak from the joint 213 and achieve the effect of sealing gas.
  • the chip has a first flange 221g and a first plate surface 221j for contact with the cooled medium.
  • 221g is formed on the first plate surface 221j and extends in the first direction.
  • a convex portion 221e On the first plate surface 221j is formed a convex portion 221e and a cooling medium flow channel.
  • the convex portion 221e is located in the second direction between the first flange 221g and the cooled medium flow channel.
  • a blocking portion 221f for blocking the cooled medium is formed between the convex portions 221e.
  • the first direction is the extending direction of the cooled medium flow channel, and the second direction is parallel to the first plate surface 221j and perpendicular to the first direction.
  • the cooling medium and the cooled medium in the embodiments of the present disclosure may be liquid or gas; the above-mentioned raised portion 221e can be used for fixed connection with the raised portion 221e on the adjacent chip, and can also be used for connecting with the raised portion 221e on the adjacent chip. Cooperate with positioning parts in the group.
  • both ends of the chip in the second direction can be formed with protrusions 221e, and a flow channel for the cooled medium is formed between the two protrusions 221e arranged in the second direction. It is generally a high-temperature gas, and therefore, the flow channel of the cooled medium is generally a gas flow channel 240.
  • a blocking portion 221f is formed between the first flange 221g and the convex portion 221e, so as to deviate from the flow path of the cooled medium, it is wound between the first flange 221g and the convex portion 221e. It is blocked by the cooling medium, thereby reducing the proportion of the cooling medium that deviates from the flow of the cooling medium, so that the cooled medium and the cooling medium can exchange heat more fully, and the heat exchange performance of the intercooler is improved.
  • one end of the blocking portion 221f is connected to the first flange 221g, and the other end is connected to the protrusion 221e.
  • the blocking portion 221f most of the cooled medium flowing between the first flange 221g and the protrusion 221e can be blocked by the blocking portion 221f, which further reduces the proportion of the cooled medium flowing away from the flow path of the cooled medium.
  • the blocking portion 221f is formed on the first flange 221g.
  • the blocking portion 221f is a slat-shaped structure perpendicular to the first plate surface 221j, or the blocking portion 221f is a slat-shaped structure arranged obliquely with respect to the first plate surface 221j.
  • the contour of the slat-shaped structure can be cut on the first flanging 221g, and then the slat-shaped structure is bent between the first flanging 221g and the protrusion 221e, which is difficult to process. relatively low.
  • the blocking portion 221f is a groove body, the notch of the groove body is formed in the first flange 221g, and the groove bottom of the groove body extends to the protrusion 221e.
  • the groove body can be formed by stamping on the first flange 221g, and the flow of the cooled medium is blocked by the outer wall of the groove body; the groove body may contact the first flange 221g at multiple points at the notch, so that the blocking portion 221f is in contact with the first flange 221g.
  • connection strength between the first flanges 221g is relatively strong, and it is not easily deformed under the impact of the cooling medium, which improves the ability of the blocking portion 221f to block the cooling medium, and further reduces the flow of the cooled medium that deviates from the flow path of the cooling medium.
  • the proportion of it; and the tank body can be stamped and formed, and the manufacturing process is relatively simple.
  • the groove body is a V-shaped groove body or a U-shaped groove body.
  • each blocking portion 221f is distributed in the first direction.
  • This can form a multi-level barrier to the cooling medium flowing between the convex portion 221e and the first flange 221g, which effectively reduces the proportion of the cooling medium that deviates from the flow of the cooling medium flow path.
  • at least one blocking portion 221f may correspond to each protrusion 221e.
  • the chip has a third flange 221h extending in the second direction, the third flange 221h is formed on the first plate surface 221j, and the third flange 221h is located between the first flange 221g and the first flange 221g in the first direction.
  • the coolant flow channels Between the coolant flow channels. Through the third flange 221h, before the cooled medium flows into the core 200, the cooled medium that is going to flow between the convex portion 221e and the first flange 221g can be blocked first, thereby reducing the inflow of the convex portion 221e and the first flange 221g.
  • the proportion of the cooling medium between the flanges 221g reduces the proportion of the cooling medium that deviates from the flow path of the cooling medium.
  • the third flange 221h of the first chip may be overlapped with the third flange 221h of the other chip, thereby positioning the assembly between the chips. .
  • the projection of the third flange 221h in the first direction covers the convex portion 221e and the blocking portion 221f.
  • the proportion of the cooling medium is not limited to any one of the cooling medium.
  • the third flange 221h is connected to the first flange 221g in a sealed manner. This makes it difficult for the cooled medium to flow from between the first flange 221g and the third flange 221h into between the convex portion 221e and the first flange 221g, thereby reducing the deviation from being occupied by the cooling medium flowing through the cooling medium flow path. proportion.
  • the intercooler has a chip assembly 220.
  • the chip assembly 220 includes a first chip 221 and a second chip 222 that are superimposed on each other.
  • the first chip 221 is the above-mentioned chip, and the first chip 221 and the second chip 222 pass through the first chip 221 and the second chip 222.
  • One flange 221g overlapped.
  • the chip assembly 220 provided by the embodiment of the present disclosure adopts the chip provided by the embodiment of the present disclosure.
  • a blocking portion 221f between the first flange 221g and the convex portion 221e, it prevents deviation from the flow path of the cooled medium.
  • the cooling medium between the first flange 221g and the convex portion 221e is blocked, thereby reducing the proportion of the cooled medium that deviates from the flow path of the cooling medium, so that the cooled medium and the cooling medium can be exchanged more fully. Heat, improve the heat exchange performance of the intercooler.
  • the second chip 222 has a second flange 222b that overlaps the first flange 221g, and the second flange 222b is located in the second direction facing the first flange 221g.
  • a through hole 2211 through which the blocking portion 221f penetrates is formed on the second flange 222b. This enables the protrusion 221e not only to play a role in blocking the cooling medium, but also to position the relative position between the first chip 221 and the second chip 222 when assembling the chip assembly 220, thereby improving the accuracy of assembly And assembly efficiency.
  • the second chip 222 has a second flange 222b overlapped with the first flange 221g, and the second flange 222b is located on the side of the first flange 221g away from the protrusion 221e in the second direction.
  • This enables the protrusion 221e not only to function as a barrier to the cooling medium, but also it is not necessary to form a through hole 2211 through which the blocking portion 221f penetrates on the second flange 222b, which simplifies the process steps for processing the through hole 2211. Improve production efficiency.
  • the blocking portion 221f is a groove body, the notch of the groove body is formed in the first flange 221g, the groove bottom of the groove body extends to the protrusion 221e, and the second flange 222b is formed with a groove extending into the groove body Support 222i.
  • This enables the blocking portion 221f to be strongly supported by the supporting portion 222i when it is impacted by the cooled medium, which reduces the deformation degree of the blocking portion 221f under the impact, and thus can better block the inflow of the convex portion 221e and the first
  • the cooled medium between the flanges 221g reduces the proportion of the cooled medium that deviates from the flow path of the cooled medium.
  • the first chip 221 has a third flange 221h extending in the second direction, the third flange 221h is formed on the first plate surface 221j, and the second chip 222 is formed with the third flange 221h. Then the fourth flange 222a.
  • the bearing capacity of the third flange 221h under the impact of the cooling medium can be increased, and the probability of deformation of the third flange 221h under the impact can be reduced;
  • the fourth flange 222a is overlapped with the third flange 221h, which can also position the relative positions of the first chip 221 and the second chip 222 when assembling the chip assembly 220, thereby improving assembly accuracy and efficiency.
  • the first chip 221 has a second board surface 221a disposed away from the second chip 222, and the first chip 221 has a first inter-group positioning portion formed on the second board surface 221a.
  • the first inter-group positioning portion is an inter-group positioning protrusion 221b protruding from the second plate surface 221a.
  • the inter-group positioning protrusions 221b on the chip assembly 220 can cooperate with the adjacent chip assembly 220 for positioning, so as to improve the assembly efficiency and assembly accuracy of the core 200.
  • the second chip 222 has a third board surface 222c that is set away from the first chip 221, and a second group for mating with the inter-group positioning protrusions 221b of the adjacent chip assembly 220 is formed on the third board surface 222c. Between positioning portion 222d.
  • the second inter-set positioning portion 222d further improves the assembly efficiency and assembly accuracy of the core 200.
  • the second inter-group positioning portion 222d can also be a convex structure 222k, and the first inter-group positioning portion is a through-hole structure, so that the convex structure 222k cooperates with the through-hole structure to perform two phases. Positioning between adjacent chip components 220.
  • the inter-group positioning protrusion 221b is formed on the protrusion 221e. This improves the utilization rate of the position occupied by the protrusion 221e, and provides more sufficient space for arranging other structures on the first chip 221.
  • the inter-group positioning protrusion 221b has a port facing the second chip 222, the port forms an in-group positioning portion 221i, and the second chip 222 is formed with an in-group positioning protrusion that cooperates with the in-group positioning portion 221i 222h.
  • the inter-group positioning protrusion 221b can be a groove body with a notch located on the protrusion 221e, and an intra-group positioning portion 221i is formed at the notch, so that the intra-group positioning portion can be formed while positioning the protrusion 221b between processing groups 221i, improved production efficiency.
  • the chip has a first flow channel and a second flow channel that are distributed in a first direction and extend in a second direction;
  • a heat insulation part for thermally isolating the first flow channel and the second flow channel is formed between the first flow channel and the second flow channel in the first direction, and the first direction is perpendicular to the second direction.
  • the heat insulation part is the first heat insulation hole 221k
  • the heat insulation part is the second heat insulation hole 222j.
  • the extension of the first flow channel and the second flow channel may be a straight extension or a zigzag extension.
  • the chip provided by the embodiment of the present disclosure is a board, and the above-mentioned first direction and the second direction are two extending directions of the board perpendicular to each other.
  • the first flow channel can be the first high temperature coolant flow channel 221c
  • the second flow channel can be the first low temperature coolant flow channel 221d
  • the chip is the second chip 222
  • the The first flow channel is the second high temperature cooling liquid flow channel 222e
  • the second flow channel is the second low temperature cooling liquid flow channel 222f; preferably, the first chip 221 and the second chip 222 are formed with heat insulation parts.
  • the low temperature in the low-temperature cooling fluid channel is relative to the high temperature in the high-temperature cooling channel; similarly, the high temperature in the high-temperature cooling channel is relative to the low temperature in the low-temperature cooling channel.
  • the chip provided by the present disclosure can effectively isolate the first flow channel and the second flow channel by thermally isolating the first flow channel and the second flow channel by providing a heat insulation part between the first flow channel and the second flow channel, thereby reducing the heat exchange between the cooling liquids in different flow channels. In this way, it alleviates the problem that the coolant in each coolant flow channel in the multi-stage intercooler is prone to strong heat exchange.
  • the current front-end cooling module of the engine generally includes a low-temperature radiator, a high-temperature radiator, and a condenser.
  • the low-temperature radiator, the high-temperature radiator and the condenser have to be stacked in the direction of the ambient air flow for heat dissipation, which increases the wind resistance of the front-end module and affects the front-end module The heat transfer capacity.
  • the multi-stage intercooler adopts the chip provided by the embodiment of the present disclosure, since the degree of heat exchange between the coolants in different flow channels is reduced, the thermal load of the low-temperature radiator is reduced, thereby effectively reducing the low-temperature radiator.
  • the multi-stage intercooler in the embodiment of the present disclosure includes a two-stage intercooler, a three-stage, or even more-stage intercooler.
  • the heat insulation part is a through hole.
  • the first flow channel and the second flow channel are separated by the through hole, and the heat exchange between the first flow channel and the second flow channel through the chip's own material is reduced as much as possible, thereby reducing the degree of heat exchange.
  • the heat-insulating portion in addition to making the heat-insulating portion a through hole, can also be made of a material with poor thermal conductivity, especially compared to the material used to make the chip, the thermal conductivity is worse. It can also reduce the degree of heat exchange between coolants in different flow channels.
  • the heat insulation part is a strip hole extending in the second direction.
  • This can reduce the size of the heat-insulating part in the first direction as much as possible, and on the premise that the heat-insulating part has a better heat-insulating effect, the increase in chip width caused by the heat-insulating part can be reduced, and the chip And the core 200 formed by the chip can maintain a small size.
  • the heat insulation portion may also be square, circular or other shapes.
  • each heat insulation part is distributed in the second direction.
  • part of the chip's own material will remain between the two adjacent heat insulation parts.
  • the chip can still maintain good integrity and strength, and avoid the damage caused by the addition of the heat insulation part as much as possible.
  • the chip of the heat insulation part is easy to break, which reduces the strength of the chip.
  • one end of the chip is formed with a first liquid inlet and a first liquid outlet
  • the first flow channel is a U-shaped flow channel to communicate the first liquid inlet and the first liquid outlet.
  • a second liquid inlet and a second liquid outlet are formed on the other end of the chip in the second direction, and the second flow channel is a U-shaped flow channel to communicate the second liquid inlet and the second liquid outlet.
  • the second flow channel is also a U-shaped flow channel, which can make full use of the space on the chip, increase the length of the second flow channel, and increase the cooling in the second flow channel. The time of liquid flow enables the cooling liquid to fully absorb heat and further improve the heat exchange efficiency.
  • the end of the first flow channel away from the first liquid inlet is the first end 221ca, and the position of the first end 221ca corresponds to the position of the second liquid inlet and/or the second liquid outlet .
  • This further extends the length of the first flow channel increases the time for the cooling liquid to flow in the first flow channel, makes the cooling liquid absorb more heat, and further improves the heat exchange efficiency; moreover, the first flow channel extends in the second direction to and The corresponding position of the second liquid inlet and/or the second liquid outlet allows the chip to be covered by the flow channel as much as possible and exchange heat with the coolant, reducing the thermal stress of the material due to the high local temperature of the chip. The possibility of big problems.
  • the end of the second flow channel away from the second liquid inlet is the second end 221da, and the position of the second end 221da is the same as the position of the first liquid inlet and/or the first liquid outlet.
  • This prolongs the length of the second flow channel increases the time for the coolant to flow in the second flow channel, and further improves the heat exchange efficiency; at the same time, it further enables the chip to be covered by the flow channel as much as possible, thereby further reducing Due to the high local temperature of the chip, the material thermal stress is relatively large.
  • the size of the first flow channel in the first direction is equal to the size of the first liquid inlet in the first direction
  • the size of the second flow channel in the first direction is equal to the size of the second liquid inlet in the first direction.
  • the coolant is flowing in from the first liquid inlet In the first flow path, uneven flow field distribution will occur, resulting in vortexes in the first flow path. Due to the unstable pressure difference between the inside and outside of the vortex, pressure pulses will be continuously generated when the vortex acts on the chip, which may cause the problem of chip erosion failure.
  • the size of the first flow channel in the first direction is equal to the size of the first liquid inlet in the first direction, and the coolant is flowing from the first liquid inlet When flowing into the first flow channel, the possibility of uneven flow field distribution can be minimized, thereby reducing the risk of chip erosion failure.
  • the size of the second flow channel in the first direction is equal to the size of the second liquid inlet in the first direction, which can also reduce chip erosion failure. risks of.
  • the size of the first flow channel in the first direction may be larger or smaller than the size of the first liquid inlet in the first direction; And/or, at the junction of the second flow channel and the second liquid inlet, the size of the second flow channel in the first direction is larger or smaller than the size of the second liquid inlet in the first direction.
  • the size of the first flow channel in the first direction is the same as the size of the second flow channel.
  • the low-temperature radiator is more sensitive to the heat load. Increasing the width of the low-temperature coolant flow channel will increase the heat load of the low-temperature radiator, which requires a larger volume of the low-temperature radiator. If the volume exceeds a certain limit, it will be difficult to arrange the front-end modules.
  • the high-temperature radiator is more sensitive to the resistance of the coolant. It is necessary to increase the width of the high-temperature coolant channel as much as possible to reduce the resistance to the coolant in the high-temperature coolant channel.
  • the high-temperature coolant flow channel cannot be widened indefinitely.
  • the size of the first flow channel in the first direction is the same as the size of the second flow channel. While the sizes of the first flow channel and the second flow channel meet a certain heat exchange requirement, the low-temperature radiator The thermal load and the resistance to the coolant in the high-temperature coolant flow channel are limited to a low level.
  • one of the first flow channel and the second flow channel is a high temperature cooling liquid flow channel, and the other is a low temperature cooling liquid flow channel.
  • the core 200 includes a chip unit, a first cover 230 and a second cover.
  • the chip unit includes at least two chip assemblies 220 stacked in the third direction.
  • a first cover 230 is installed at one end of the chip unit in the third direction, and a second cover 230 is installed at the other end to cover and seal the heat insulation part.
  • a gas circulation channel 240 is formed between two adjacent chip assemblies 220; that is, a gas circulation channel 240 and a coolant flow channel are respectively formed on both sides of the same chip in the third direction to realize the core body. Heat exchange between gas and coolant in 200.
  • the sealing member may preferably be a plate member, and may also be in the shape of a strip or a block.
  • this embodiment also provides a method for manufacturing an intercooler.
  • the intercooler includes a core 200 and a main board 100.
  • a through channel 110 is formed on the main board 100, and the through channel 110 penetrates the main board 100.
  • the method includes :
  • the main board 100 is sleeved on the core 200 through the through channel 110, and the core 200 is inserted through the main board 100 through the through channel 110.
  • the manufacturing method of the intercooler allows the core 200 to penetrate the main board 100 through the through channel during the manufacturing of the intercooler, so that the core 200 can penetrate the main board 100 and extend into the chamber, so that the space of the chamber is covered by Effective use, the installation position of the main board 100 on the core 200 can be appropriately determined according to the size of the external installation space during assembly, so that after the core 200, the main board 100 and the chamber are assembled into an intercooler, the intercooler can be Adapt to the size of the external installation space.
  • the heat exchange performance is also ensured; moreover, the same is because the core 200 penetrates the main board 100 and extends into the chamber, using the internal Space, when assembling the intercooler, a core body 200 with a larger length can be used to increase the heat exchange performance of the intercooler while ensuring that the volume of the entire intercooler remains unchanged.
  • the core body 200 has a housing 210 and a plurality of chip components 220 installed inside the housing 210, and the housing 210 includes a first housing 211 and a second housing 212;
  • the method includes:
  • the first housing 211 and the second housing 212 are docked to form a housing 210.
  • each chip assembly 220 and the housing 210 may first form a whole, and then assemble with the main board 100 through the whole, which makes the assembly more convenient.
  • the plurality of chip components 220 may be at least two chip components 220, for example, two chip components 220, three chip components 220, four chip components 220, and so on.
  • the first housing 211 and the second housing 212 provided by the embodiment of the present disclosure are U-shaped housings, and the first housing 211 and the second housing 212 are connected to form a rectangular or square cylindrical shell 210.
  • the first housing 211 has a first edge
  • the second housing 212 has a second edge.
  • the first housing 211 and the second housing 212 are connected by the first edge and the second edge.
  • An air blocking portion 214 is formed on one of the upper and second edges, and a groove portion is formed on the other;
  • Connecting the first housing 211 and the second housing 212 to form a housing 210 includes:
  • the air blocking portion 214 and the groove portion are positioned and matched, so that the first housing 211 and the second housing 212 are butted to form a housing 210.
  • the air baffle portion 214 and the groove portion are coordinated and positioned to improve the assembling accuracy and assembling efficiency of the intercooler. Moreover, since the first edge and the second edge are butted to form a seam 213 between the first edge and the second edge, the air blocking portion 214 penetrates through the seam 213 to cooperate with the groove portion, and when a gas leak occurs at the seam 213 The air blocking portion 214 and the groove portion can block the air flow in the extending direction of the joint 213, thereby alleviating the degree of gas leakage.
  • the intercooler includes a seal located inside the housing 210, and a seam 213 is formed between the first edge and the second edge after the first housing 211 and the second housing 212 are butted;
  • the method further includes:
  • the housing 210 and the sealing member are hermetically connected.
  • the sealing member is one of the chip components 220.
  • the seal is a side plate 260;
  • the method further includes:
  • the method further includes:
  • the housing 210 and the side plate 260 are hermetically connected at the seam 213.
  • the chip assembly 220 is used as the sealing seam 213, although the cost can be reduced, it is necessary to ensure that the flanging of the chip has a certain width to ensure that the flanging can cover the seam 213, which increases the size of the chip.
  • the size of the core 200 is also increased to a certain extent.
  • the method further includes:
  • the main board 100 covers the air blocking portion 214 and the groove portion.
  • the main board 100 covers the air blocking portion 214 from the outside of the housing 210, the first housing 211, the second housing 212, the air blocking portion 214 and the groove portion can be tightly connected as a whole, so that the first housing 211 It is difficult to produce relative movement with the second housing 212, so that the gap 216 that causes gas leakage is not easy to appear at the joint 213, and the possibility of air leakage of the intercooler is reduced.
  • the sealing member covers the air barrier 214 from the inner side of the housing 210
  • the main board 100 covers the outer side of the housing 210
  • the air baffle 214 if the first housing 211 and the second housing 212 move relative to each other, and a gap 216 is generated at the joint 213, the gas will be affected by the sealing element and the main board in the direction perpendicular to the joint 213.
  • 100 and the baffle 214 prevent the airflow from flowing in this direction, while the airflow flowing along the joint 213 is blocked by the baffle 214 and the groove, and then passes through the main board 100, the seal, and the baffle.
  • the structure formed by the air part 214 and the groove part blocks the gas in the intercooler when a gap 216 appears at the joint 213, making it difficult for gas to leak from the intercooler;
  • each of the above-mentioned gaps 215 is communicated through the above-mentioned gap 216, and a small channel is formed between the main board 100 and the sealing member, and the airflow needs to flow through the small channel.
  • the medium flow can flow out from the intercooler for a long distance, and the flow rate is gradually reduced due to the blocking of the air baffles 214 and the grooves during the flow of the air flow, and it is difficult to flow out from the intercooler in the end.
  • the chip assembly 220 includes a first chip 221 and a second chip 222.
  • the first chip 221 has a first board surface 221j and a first flange 221g formed on the first board surface 221j
  • the second chip 222 has a first board surface 221j.
  • the method further includes:
  • the first plate surface 221j and the fourth plate surface 222g are arranged oppositely, so that the first flange 221g overlaps with the second flange 222b, so that the extension direction of the first flange 221g and the extension direction of the second flange 222b are The flow direction of the cooled medium flowing through the first chip 221.
  • first flange 221g and the second flange 222b By overlapping the first flange 221g and the second flange 222b, not only the connection between the first chip 221 and the second chip 222 can be realized, but also the connection between the first chip 221 and the second chip 222 can be realized.
  • the relative position between the first chip 221 and the second chip 222 is positioned to improve assembly accuracy and assembly efficiency.
  • a seam 213 is formed after the first housing 211 and the second housing 212 are butted;
  • the method further includes:
  • the housing 210 is sealedly connected to the first flange 221g or the second flange 222b.
  • the structure of the chip assembly 220 itself is used to seal the seam 213 with other components, which reduces the cost.
  • a convex portion 221e is formed on the first plate surface 221j, an in-group positioning portion 221i is formed at the convex portion 221e, and the second chip 222 has a fourth plate surface 222g on the fourth plate surface 222g A positioning protrusion 222h in the group is formed;
  • the method further includes:
  • the first board surface 221j and the fourth board surface 222g are arranged opposite to each other, and the positioning protrusion 222h in the group is matched with the positioning portion 221i in the group for positioning.
  • the in-group positioning portion 221i and the in-group positioning protrusion 222h are matched and positioned, which improves the accuracy and efficiency of assembly.
  • the method further includes:
  • the blocking portion 221f is formed on the first flange 221g so that the blocking portion 221f extends toward the middle of the first plate surface 221j in a direction perpendicular to the first flange 221g.
  • the cooled medium and the cooling medium are mainly concentrated in the middle of the chip, but when the cooled medium flows through the core 200, there is often part The flow of the cooled medium flows from the position between the inlet and outlet of the cooling medium and the first flange 221g, which results in that this part of the cooled medium cannot exchange heat, which reduces the heat exchange performance of the intercooler.
  • the above-mentioned blocking portion 221f is formed on the first flange 221g, so that the formed blocking portion 221f can block the cooled medium to a certain extent, reducing the inflow of the cooling medium between the inlet and outlet of the cooling medium and the first flange 221g.
  • the amount of cooling medium improves the heat exchange performance of the intercooler.
  • the first chip 221 has a third flange 221h formed on the first surface 221j and extending perpendicular to the first flange 221g
  • the second chip 222 has a third flange 221h formed on the fourth surface 222g and perpendicular to the second flange.
  • the fourth flange 222a extending from the side 222b;
  • the method further includes:
  • the third flange 221h is overlapped with the fourth flange 222a.
  • the overlap between the third flange 221h and the fourth flange 222a not only facilitates the connection between the first chip 221 and the second chip 222, but also helps the first chip 221 and the second chip 222 to be connected during assembly.
  • the positioning of the chip 222 improves the assembly efficiency and accuracy; and the third flange 221h and the fourth flange 222a can also form a certain barrier to the cooled medium that will flow into the first flange 221g and the inlet and outlet of the cooling medium. Improve the heat exchange performance of the intercooler.
  • the chip assembly 220 includes a first chip 221 and a second chip 222 that are stacked.
  • the first chip 221 has a second board 221a that is set away from the second chip 222
  • the second chip 222 has a second board that is set away from the first chip 221.
  • On the third board surface 222c a first inter-group positioning portion is formed on the second board surface 221a, and a second inter-group positioning portion 222d is formed on the third board surface 222c;
  • Stacking each chip assembly 220 in the first housing 211 includes:
  • the two adjacent chip assemblies 220 are positioned through the first inter-group positioning portion on one of the chip assemblies 220 and the second inter-group positioning portion 222d on the other chip assembly 220 to position each chip assembly 220 Stacked in the first housing 211.
  • the first inter-group positioning portion is an inter-group positioning protrusion 221b.
  • the second inter-group positioning portion 222d can also be a convex structure 222k, and the first inter-group positioning portion is a through-hole structure, so that the convex structure 222k cooperates with the through-hole structure to perform two phases. Positioning between adjacent chip components 220.
  • the chip assembly 220 includes a first chip 221 and a second chip 222 that are stacked.
  • the first chip 221 has a second board surface 221 a disposed away from the second chip 222
  • the second chip 222 has a third board surface 222 c disposed away from the first chip 221.
  • a first high temperature cooling liquid flow path 221c and a first low temperature cooling liquid flow path 221d recessed into the second plate surface 221a are formed on the second plate surface 221a, and a concave third plate surface is formed on the third plate surface 222c
  • Stacking each chip assembly 220 in the first housing 211 includes:
  • first high-temperature cooling liquid flow passage 221c and the second high-temperature cooling liquid flow passage 222e form a closed high-temperature cooling liquid flow passage
  • first low-temperature cooling liquid flow passage 221d and the second low-temperature cooling liquid flow passage 222f are formed between A closed low-temperature coolant flow channel.
  • the low temperature in the low-temperature cooling fluid channel is relative to the high temperature in the high-temperature cooling channel.
  • the high temperature in the high-temperature cooling channel is relative to the low temperature in the low-temperature cooling channel.
  • the widths of the first high-temperature cooling liquid flow channel 221c, the first low-temperature cooling liquid flow channel 221d, the second high-temperature cooling liquid flow channel 222e, and the second low-temperature cooling liquid flow channel 222f are the same.
  • the low-temperature radiator is more sensitive to the heat load. Increasing the width of the low-temperature coolant flow channel will increase the heat load of the low-temperature radiator, which requires a larger volume of the low-temperature radiator. If the volume exceeds a certain limit, it will cause difficulties in the layout of front-end modules. At the same time, the high-temperature radiator is more sensitive to the resistance of the coolant. It is necessary to increase the width of the high-temperature coolant flow channel as much as possible to reduce the resistance to the coolant in the high-temperature coolant flow channel, but theoretically, the high-temperature coolant flow channel cannot be increased indefinitely width.
  • the widths of the first high-temperature cooling liquid channel 221c, the first low-temperature cooling liquid channel 221d, the second high-temperature cooling liquid channel 222e, and the second low-temperature cooling liquid channel 222f are the same. While the dimensions of the coolant flow channel and the low-temperature coolant flow channel meet certain heat exchange requirements, the thermal load of the low-temperature radiator and the resistance to the coolant in the high-temperature coolant flow channel are limited to a low level.
  • a first heat insulation hole is formed between the first high-temperature cooling liquid flow channel 221c and the first low-temperature cooling liquid flow channel 221d on the first chip 221, and a second high-temperature cooling liquid flow channel is formed on the second chip 222
  • a second heat insulation hole 222j is formed between 222e and the second low-temperature coolant flow channel 222f;
  • Stacking each chip assembly 220 in the first housing 211 further includes:
  • the first heat insulation hole on one chip assembly 220 and the second heat insulation hole 222j on the other chip assembly 220 are overlapped between two adjacent chip assemblies 220.
  • the core 200 includes a first cover 230 and a second cover;
  • the method further includes:
  • the method further includes:
  • each chip assembly 220 is stacked on the first cover 230
  • the second cover is stacked on the chip assembly 220 so that each chip assembly 220 is located between the first cover 230 and the second cover.
  • each chip assembly 220 is installed between the first cover plate 230 and the second cover plate, and each chip assembly 220 is installed between the first cover plate 230 and the second cover plate, it can pass through the first cover plate 230 and the second cover plate.
  • the cover plate 230 and the second cover plate cover the first heat insulation hole and the second heat insulation hole 222j, and reduce the possibility of air leakage through the first heat insulation hole and the second heat insulation hole 222j.
  • intercooler including:
  • the first inlet nozzle 400, the second inlet nozzle 600, the first outlet nozzle, the second outlet nozzle 500, the first water chamber 300 and the second water chamber are formed on the first housing 211.
  • the liquid pipe installation hole and the first liquid outlet pipe installation hole are formed on the second housing 212 with a second liquid inlet pipe installation hole and a second liquid outlet pipe installation hole, a first liquid inlet installation hole and a second liquid inlet installation hole
  • the holes are all arranged on a plane parallel to the first cover 230 of the housing 210;
  • the manufacturing method of the intercooler, before stacking each chip assembly 220 in the first housing 211 further includes:
  • first liquid inlet nozzle 400 Connect the first liquid inlet nozzle 400 to the first water chamber 300, install the first water chamber 300 at the first liquid inlet pipe installation hole, and form an L-shaped cavity in the first water chamber 300, so that the first liquid inlet
  • the extension direction of the connecting pipe 400 is parallel to the first cover 230;
  • the present disclosure also provides a specific application example of the manufacturing method of the intercooler, which specifically includes the following steps:
  • the housing assembly process may also include S14, the content of S14 can be omitted, and whether to execute S14 may specifically depend on whether S342 is subsequently executed.
  • the specific content of S14 may be:
  • the chip assembly 220 needs to be assembled in advance.
  • the assembly process of the chip assembly 220 can be specifically divided into the following five steps from S21 to S25:
  • the blocking portion 221f is formed on the first flange 221g so that the blocking portion 221f protrudes toward the middle of the first plate surface 221j in a direction perpendicular to the first flange 221g.
  • the first plate surface 221j and the fourth plate surface 222g are arranged opposite to each other, and the positioning protrusion 222h in the group is matched with the positioning portion 221i in the group for positioning.
  • the process of assembling the core 200 can be specifically divided into the following four steps from S31 to S34:
  • S31 can be implemented through the following three subdivision steps S311 to S313:
  • S311 Position the two adjacent chip components 220 through the inter-group positioning protrusion 221b on one of the chip components 220 and the second inter-group positioning portion 222d on the other chip component 220 to position each chip
  • the assembly 220 is stacked in the first housing 211.
  • S312 Overlap the first high-temperature coolant flow channel 221c on one of the chip components 220 between the two adjacent chip components 220 and the second high-temperature coolant flow channel 222e on the other chip component 220, and overlap one of them
  • the first low-temperature cooling fluid channel 221d on the chip assembly 220 overlaps with the second low-temperature cooling fluid channel 222f on the other chip assembly 220.
  • S313 Overlap the first heat insulation hole 222j on one of the chip components 220 between the two adjacent chip components 220 and the second heat insulation hole 222j on the other chip component 220.
  • step 33 may be: positioning and matching the air blocking portion 214 and the groove portion, so that the first housing 211 and the second housing 212 are docked to form the housing 210.
  • the sealing element is located on the inside of the housing 210. If the sealing element is one of the chip components 220, the specific implementation process of S34 is: S341: the housing 210 and the first flange 221g at the seam 213 Or the second flange 222b is connected in a sealed manner.
  • S342 sealingly connect the housing 210 and the side plate 260 at the joint 213. That is, if the seal is the side plate 260, S14 needs to be performed during the aforementioned housing assembly process to ensure that the housing 210 and the side plate 260 can be successfully sealed and connected.
  • the main board 100 After the core body 200 is assembled, the main board 100 needs to be placed on the core body 200, and the chamber body is connected to the main board 100 to finally manufacture the intercooler.
  • the installation process of the main board 100 and the chamber body can be specified by the following steps achieve:
  • S42 Cover the main board 100 on the air blocking portion 214 and the groove portion.
  • the present disclosure provides a main board of an intercooler, an intercooler, and a manufacturing method of the intercooler.
  • the main board of the intercooler can make full use of the space in the chamber. On the one hand, it can reduce the overall volume of the intercooler without affecting its heat exchange performance while ensuring that the volume of the core remains unchanged; on the other hand, it can ensure the entire When the volume of the intercooler remains unchanged, a larger core is used to increase the heat exchange performance of the intercooler.
  • Such a main board and intercooler have the characteristics of simple design, good space utilization, and high heat exchange efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种中冷器的主板、中冷器及中冷器的制造方法。中冷器的主板(100)用于连接中冷器的芯体(200)和室体,在主板(100)上形成被配置为芯体(200)贯穿主板(100)以伸入室体内的贯通通道。本发明的目的包括针对目前中冷器在适应外部安装空间大小的同时,难以保证换热性能的问题,提供一种中冷器的主板(100)、中冷器及中冷器的制造方法。

Description

中冷器的主板、中冷器及中冷器的制造方法
相关申请的交叉引用
本公开要求于2019年12月31日提交中国专利局的申请号为201911412865.8、名称为“中冷器的主板、中冷器及中冷器的制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及热交换设备技术领域,尤其涉及一种中冷器的主板、中冷器及中冷器的制造方法。
背景技术
中冷器用于降低增压后的高温空气温度、以降低发动机的热负荷,提高进气量,进而增加发动机的功率。目前,机械设备功能越来越多样化,机械设备内的功能原件也越来越多,相应的各部件所能利用的安装空间越来越小,为了适应安装空间,机械设备中所采用的中冷器常需进行小型化设计。
发明人在研究中发现,传统的中冷器至少存在以下缺点:
目前,中冷器的小型化通常意味着不得不减小换热芯体,进而牺牲中冷器的换热性能,这使得中冷器在适应外部安装空间大小的同时,难以保证换热性能。
发明内容
本公开的目的包括,例如,提供了一种中冷器的主板,改善现有技术的不足,其结构和装配简单,能够保证整个中冷器体积不变的情况下增加中冷器的换热性能。
本公开的目的还包括,提供了一种中冷器,其包括所述的中冷器的主板,其具有该中冷器的主板的全部功能。
本公开的目的还包括,提供了一种中冷器的制造方法,其能够保障整个中冷器体积不变的情况下增加中冷器的换热性能。
本公开的实施例是这样实现的:
本公开的实施例提供了一种中冷器的主板,所述主板用于连接所述中冷器的芯体和室体,在所述主板上形成有供所述芯体贯穿所述主板以伸入所述室体内的贯通通道。
可选的,所述贯通通道的内壁为用于与所述芯体的外壁贴合且密封连接的平面。
该技术方案的有益效果包括:通常芯体为长方体或正方体结构,贯通通道相应的具有四个内壁,四个内壁均与芯体贴合;通过使贯通通道的内壁为平面则能增加主板在芯体上覆盖的面积,进而增加主板与芯体之间的连接强度以及芯体自身的整体强度,同时,在芯体贯穿贯通通道的过程中,贯通通道的内壁还能起到对芯体与主板的相对运动进行导向的作用。
本公开的实施例还提供一种中冷器,其包括上述提到的主板,其具有该中冷器的主板的全部功能。
可选的,包括通过所述主板相连的芯体和室体,所述芯体通过所述贯通通道贯穿所述主板并伸入所述室体内。
该技术方案的有益效果包括:使芯体贯穿所述贯通通道并伸入所述室体内,使室体内的空间也能够得到充分利用,相对于现有技术中相同体积的并带有芯体和室体的中冷器,本公开实施例所提供的中冷器具有更大体积的芯体,换热性能更佳。
可选的,所述芯体在第一方向上贯穿所述主板,在所述芯体上形成有用于与外界管道连接的连接孔,所述连接孔远离所述芯体在所述第一方向上的两侧边缘设置。
该技术方案的有益效果在于:也即是,连接孔在第一方向上的位置位于所述芯体的中部或靠近所述芯体的中部设置,因连接孔要与输送介质的管道相连接,在芯体上安装主板时,这些管道的位置就会限制主板在芯体上能够选择的安装位置的范围,当连接孔尽量远离芯体在第一方向上的两侧边缘设置时,主板的安装位置就能有较大范围的选择余地,进而可以根据中冷器外部安装空间的大小更灵活的选择芯体、主板及室体之间的位置关系。
可选的,所述芯体在第一方向上贯穿所述主板,所述芯体包括具有第一壳体和第二壳体的外壳,在所述第一壳体与所述第二壳体对接处形成在第一方向上延伸的接缝,在所述第一壳体上形成有贯穿所述接缝的挡气部,在所述第二壳体上形成有用于容纳所述挡气部的凹槽部,所述主板覆盖所述挡气部。
该技术方案的有益效果包括:当外壳在接缝处出现漏气问题时,由于该挡气部贯穿接缝,使挡气部能够在第一方向上对泄露的气流形成阻挡,当泄露的气流流入挡气部与凹槽部之间的间隙时,由于主板覆盖挡气部,使主板覆盖上述间隙,使气流难以从上述间隙处泄露。
可选的,所述芯体包括位于所述外壳的内侧的密封件,所述密封件覆盖所述接缝和所述挡气部,且所述密封件在所述接缝处与所述外壳密封连接。
该技术方案的有益效果包括:通过该密封件使气流难以在接缝处泄露,特别是在上述挡气部与凹槽部配合的位置,通过主板与密封件同时对挡气部与凹槽部之间的间隙进行密封,降低了气流在垂直于接缝的方向上出现泄露的可能,而当气流沿接缝流动时,又会受到凸起部与凹槽部的阻挡,进而减小气体泄露的可能性。
可选的,所述芯体具有位于所述外壳的内侧的芯片,所述密封件为所述芯片,所述芯片具有翻边,所述翻边在所述接缝处与所述外壳密封连接。
该技术方案的有益效果包括:在芯体中,芯片是必不可少的部件,通过使芯片为密封件,则能够避免另设其他部件为密封件所带来的成本;具体的,翻边可与第一壳体和第二壳体以及挡气部焊接实现密封。
可选的,所述芯体具有位于所述外壳的内侧的侧板,所述密封件为所述侧板。
该技术方案的有益效果包括:当采用上述芯片作为密封件时,虽然能够降低成本,但需要保证芯片的翻边在第三方向上具有一定尺寸,以保证翻边能够覆盖接缝和挡气部,这增大了芯片在第三方向上的尺寸,当多个芯片堆叠成芯体后,也在一定程度上增大了芯体在第三方向上的尺寸,而通过使上述侧板为密封件,则无需翻边覆盖接缝和挡气部,可适当的减小翻边的在第三方向上的尺寸,进而减小芯体在第三方向上的尺寸,有利于中冷器的小型化。
可选的,所述芯体包括外壳,所述外壳的外壁为平面。
该技术方案的有益效果包括:可使芯体为长方体或正方体结构,外壳相应具有四个外壁,外壁为平面则能够增大外壳与主板接触面积,进而增加主板与芯体之间的连接强度,同时,在芯体贯穿贯通通道的过程中,外壳的外壁还能起到对芯体与主板的相对运动进行导向的作用。
本公开的实施例还提供一种中冷器的制造方法,所述中冷器包括芯体和主板,在所述主板上形成贯通通道,所述贯通通道贯穿所述主板,所述方法包括:
将所述主板通过所述贯通通道套装在所述芯体上,且使所述芯体通过所述贯通通道贯穿所述主板。
可选的,所述芯体具有外壳以及安装在所述外壳的内侧的多个芯片组件,所述外壳包括第一壳体和第二壳体;
在所述将所述主板通过所述贯通通道套装在所述芯体上,且使所述芯体通过所述贯通通道贯穿所述主板之前,包括:
将各所述芯片组件堆叠在所述第一壳体内;
将所述第一壳体与所述第二壳体对接形成所述外壳。
该技术方案的有益效果包括:这使得各芯片组件以及外壳能够首先形成一个整体,在通过该整体与主板装配,使装配更加便利。
可选的,所述第一壳体具有第一边缘,所述第二壳体具有第二边缘,所述第一壳体与所述第二壳体通过所述第一边缘和所述第二边缘进行对接,在所述第一边缘上和第二边缘中一者上形成有挡气部、在另一者上形成有凹槽部;
所述将所述第一壳体与所述第二壳体对接形成所述外壳,包括:
对所述挡气部与所述凹槽部进行定位配合,以使所述第一壳体与所述第二壳体对接形成所述外壳。
该技术方案的有益效果包括:在第一壳体与第二壳体对接时,通过挡气部与凹槽部配合定位,提高了中冷器的装配精度以及装配效率;而且,由于第一边缘与第二边缘对接后在所述第一边缘与所述第二边缘之间形成接缝,挡气部贯穿接缝与凹槽部配合,当接缝处出现气体泄露时,挡气部与凹槽部能够在接缝的延伸方向上对气流形成阻挡,进而缓解气体泄露的程度。
可选的,所述中冷器包括位于所述外壳的内侧的密封件,所述第一壳体与所述第二壳体对接后在所述第一边缘与所述第二边缘之间形成接缝;
在所述将所述第一壳体与所述第二壳体对接形成所述外壳之后,还包括:
在所述接缝处将所述外壳与所述密封件密封连接。
该技术方案的有益效果包括:这降低了中冷器装配后在接缝处出现漏气的可能。
可选的,所述密封件为各所述芯片组件中的某一个。
该技术方案的有益效果包括:这降低了中冷器装配后在接缝处出现漏气的可能,并且,由于在芯体中,芯片组件为必不可少的部件,相对于专门设置其他部件密封接缝,采用在接缝处将外壳与芯片组件密封连接的方式密封接缝成本更低。
可选的,所述密封件为侧板;
在所述将各所述芯片组件堆叠在所述第一壳体内之前,还包括:
将侧板安装在所述第一壳体内;
在所述将所述第一壳体与所述第二壳体对接形成所述外壳之后,还包括:
在所述接缝处将所述外壳与所述侧板密封连接。
该技术方案的有益效果包括:当采用芯片组件作密封接缝时,虽然能够降低成本,但需要保证芯片的翻边具有一定宽度,以保证翻边能够覆盖接缝,这增大了芯片的尺寸,当多个芯片堆叠成芯体后,也在一定程度上增大了芯体的尺寸,而通过采用侧板,密封接缝,可适当的减小翻边的尺寸,进而减小芯体的尺寸,有利于中冷器的小型化。
可选的,在所述将所述主板通过所述贯通通道套装在所述芯体上,且使所述芯体通过所述贯通通道贯穿所述主板之后,还包括:
将所述主板覆盖于所述挡气部和所述凹槽部。
该技术方案的有益效果包括:当主板从外壳的外侧覆盖挡气部时,使第一壳体、第二壳体及挡气部和凹槽部能够紧密的连接为一个整体,使第一壳体和第二壳体难以产生相对运动,进而使接缝处不易出现导致气体泄露的缝隙,降低了中冷器漏气的可能性。
可选的,所述芯片组件包括第一芯片和第二芯片,所述第一芯片具有第一板面和形成于该第一板面的第一翻边,所述第二芯片具有第四板面和形成于该第四板面的第二翻边;
在所述将各所述芯片组件堆叠在所述第一壳体内之前,还包括:
将所述第一板面和所述第四板面相对设置,使所述第一翻边与所述第二翻边搭接,以使所述第一翻边的延伸方向和所述第二翻边的延伸方向为流过所述第一芯片的被冷却介质的流向。
该技术方案的有益效果包括:通过第一翻边与第二翻边搭接,不但能够实现第一芯片与第二芯片之间的连接,而且,在第一芯片与第二芯片连接的过程中还能够对第一芯片与第二芯片之间的相对位置进行定位,提高装配精度和装配效率。
可选的,所述第一壳体与所述第二壳体对接后形成接缝;
在所述将所述第一壳体与所述第二壳体对接形成所述外壳之后,还包括:
在所述接缝处将所述外壳与所述第一翻边或所述第二翻边密封连接。
该技术方案的有益效果包括:通过采用第一翻边或第二翻边密封接缝,利用了芯片组件自身结构相对于另外利用其它部件密封接缝,成本更低。
可选的,在所述第一板面上形成有凸起部,在所述凸起部处形成有组内定位部,所述第二芯片具有第四板面,在所述第四板面上形成有组内定位凸起;
在所述将各所述芯片组件堆叠在所述第一壳体内之前,还包括:
将所述第一板面和所述第四板面相对设置,将所述组内定位凸起与所述组内定位部配合进行定位。
该技术方案的有益效果包括:在组装芯片组件时,使组内定位部与组内定位凸起配合定位,提高了装配的精确度及 装配效率。
可选的,在所述将所述第一板面和所述第四板面相对设置,使所述第一翻边与所述第二翻边搭接之前,还包括:
在所述第一翻边上成型阻挡部,以使所述阻挡部在垂直于所述第一翻边的方向上向所述第一板面的中部伸出。
该技术方案的有益效果包括:组装完成后的中冷器在使用时,由于芯片两侧多为冷却介质进出口,被冷却介质与冷却介质主要集中在芯片的中部,但被冷却介质在流过芯体时,常有部分被冷却介质流从冷却介质进出口与第一翻边之间的位置流过,导致这部分被冷却介质无法换热,降低了中冷器的换热性能,而在第一翻边上成型上述阻挡部,则使成型后的阻挡部能在一定程度上对被冷却介质形成阻挡,减少流入冷却介质进出口与第一翻边之间的被冷却介质的量,进而提高中冷器的换热性能。
可选的,所述第一芯片具有形成于所述第一板面并垂直于所述第一翻边延伸的第三翻边,所述第二芯片具有形成于所述第四板面并垂直于所述第二翻边延伸的第四翻边;
在所述将各所述芯片组件堆叠在所述第一壳体内之前,还包括:
将所述第三翻边与所述第四翻边搭接。
该技术方案的有益效果包括:通过第三翻边与第四翻边之间的搭接,不但便于第一芯片与第二芯片之间的连接,而且在装配时还能起到对第一芯片与第二芯片进行定位的作用,提高了装配效率和精度;且第三翻边和第四翻边还可以对要流入第一翻边与冷却介质进出口的被冷却介质形成一定阻挡,进而提高中冷器的换热性能。
可选的,所述芯片组件包括叠置的第一芯片和第二芯片,所述第一芯片具有背离所述第二芯片设置的第二板面,所述第二芯片具有背离所述第一芯片设置的第三板面,在所述第二板面上形成有第一组间定位部,在所述第三板面上形成有第二组间定位部;
所述将各所述芯片组件堆叠在所述第一壳体内,包括:
将相邻的两个所述芯片组件之间通过其中一个所述芯片组件上的所述第一组间定位部与另一个所述芯片组件上的所述第二组间定位部配合进行定位,以将各所述芯片组件堆叠在所述第一壳体内。
该技术方案的有益效果包括:通过使第一组间定位部与第二组间定位部配合对各芯片组件之间的堆叠进行定位,提高了装配的效率和精度。
可选的,所述第一组间定位部为组间定位凸起。
可选的,所述芯片组件包括叠置的第一芯片和第二芯片,所述第一芯片具有背离所述第二芯片设置的第二板面,所述第二芯片具有背离所述第一芯片设置的第三板面,在所述第二板面上形成有凹入所述第二板面的第一高温冷却液流道和第一低温冷却液流道,在所述第三板面上形成有凹入所述第三板面的第二高温冷却液流道和第二低温冷却液流道;
所述将各所述芯片组件堆叠在所述第一壳体内,包括:
将相邻的两个所述芯片组件之间其中一个所述芯片组件上的所述第一高温冷却液流道与另一个所述芯片组件上的所述第二高温冷却液流道重叠,且将其中一个所述芯片组件上的所述第一低温冷却液流道与另一个所述芯片组件上的所述第二低温冷却液流道重叠。
该技术方案的有益效果包括:这使得第一高温冷却液流道与第二高温冷却液流道形成一个闭合的高温冷却液流道,且第一低温冷却液流道与第二低温冷却液流道之间形成一个闭合的低温冷却液流道。
可选的,所述第一高温冷却液流道、第一低温冷却液流道、第二高温冷却液流道和第二低温冷却液流道的宽度尺寸相同。
该技术方案的有益效果包括:在本公开实施例中使所述第一高温冷却液流道、第一低温冷却液流道、第二高温冷却液流道和第二低温冷却液流道的宽度尺寸相同,在使高温冷却液流道和低温冷却液流道的尺寸满足一定换热需求的同时,使低温散热器的热负荷及高温冷却液流道内对冷却液的阻力限制在一个较低的水平。
可选的,在所述第一芯片上所述第一高温冷却液流道与所述第一低温冷却液流道之间形成有第一隔热孔,在所述第二芯片上所述第二高温冷却液流道与所述第二低温冷却液流道之间形成有第二隔热孔;
所述将各所述芯片组件堆叠在所述第一壳体内,还包括:
将相邻的两个所述芯片组件之间其中一个所述芯片组件上的所述第一隔热孔与另一个所述芯片组件上的所述第二隔热孔重叠。
该技术方案的有益效果包括:这使得第一隔热孔和第二隔热孔均未被覆盖,避免了在一个芯片组件上高温冷却液流道与低温冷却液流道之间虽然通过隔热孔热隔离,但又通过另一个芯片组件连接导致隔热效果下降的问题,进而使隔热孔对低温冷却液流道与高温冷却液流道热隔离的效果的到一定保证。
可选的,所述芯体包括第一盖板和第二盖板;
在所述将各所述芯片组件堆叠在所述第一壳体内之前,还包括:
将所述第一盖板安装在所述第一壳体内;
在所述将各所述芯片组件堆叠在所述第一壳体内之后,还包括:
将各所述芯片组件堆叠于所述第一盖板后,将所述第二盖板叠置于所述芯片组件,以使各芯片组件位于所述第一盖板与所述第二盖板之间。
该技术方案的有益效果包括:这实现了在将各芯片组件安装于所述第一盖板与所述第二盖板之间,而将各芯片组件安装于所述第一盖板与所述第二盖板之间,则能够通过第一盖板和第二盖板覆盖第一隔热孔和第二隔热孔,降低气流通过第一隔热孔和第二隔热孔泄露的可能。
与现有的技术相比,本公开实施例的技术方案可以达到以下有益效果,例如:
综上所述,本公开所提供的中冷器的主板、中冷器及中冷器的制造方法,在中冷器装配时,由于主板不具有楞条使芯体通过主板上的贯通通道能够贯穿主板并伸入室体内,使室体内的空间被有效利用,就可在装配时根据外部安装空间的大小适当的确定主板在芯体上的安装位置,进而使芯体、主板与室体组装成中冷器后,中冷器能够适应外部安装空间的大小,同时,由于在减小中冷器整体体积时不必改变芯体的体积,因此也保证了换热性能;而且,同样是由于芯体能 够贯穿主板并伸入室体内,在装配中冷器时,可采用长度较大的芯体,在保证整个中冷器体积不变的情况下增加中冷器的换热性能。
本公开的附加技术特征及其优点将在下面的描述内容中阐述地更加明显,或通过本公开的具体实践可以了解到。
附图说明
为了更清楚地说明本公开具体实施方式的技术方案,下面将对具体实施方式描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的中冷器的一种实施方式的部分立体结构示意图;
图2为本公开实施例提供的主板的一种实施方式的立体结构示意图;
图3为本公开实施例提供的外壳的一种实施方式的立体结构示意图;
图4为本公开实施例提供的外壳的一种实施方式的侧视结构示意图;
图5为图4中A处的局部放大示意图;
图6为本公开实施例提供的挡气部与凹槽部配合的一种实施方式的示意图;
图7为本公开实施例提供的挡气部与凹槽部配合的另一种实施方式的示意图;
图8为本公开实施例提供的中冷器的一种实施方式的部分主视结构示意图;
图9为图8中B处的局部放大示意图;
图10为本公开实施例提供的中冷器的另一种实施方式的部分主视结构示意图;
图11为图10中C处的局部放大示意图;
图12为本公开实施例所提供的芯体的一种实施方式的部分立体结构示意图;
图13为本公开实施例所提供的芯片组件的一种实施方式的立体结构示意图;
图14为图13另一个角度的立体结构示意图;
图15为图14的俯视示意图;
图16为图15中D-D处的截面图;
图17为本公开实施例提供的相邻的两个芯片组件中一个芯片组件的第一芯片与另一个芯片组件的第二芯片配合的一种实施方式的结构示意图;
图18为图17中E处的局部放大剖视图;
图19为本公开实施例所提供的第一芯片的一种实施方式的立体结构示意图;
图20为本公开实施例所提供的第一芯片的一种实施方式的俯视结构示意图;
图21为本公开实施例所提供的第一芯片的另一种实施方式的俯视结构示意图;
图22为图19的另一个角度的立体结构示意图;
图23为本公开实施例所提供的第二芯片的一种实施方式的立体结构示意图;
图24至图29为本公开实施例所提供的芯片组件的六种实施方式的局部结构示意图;
图30至图34为本公开实施例所提供的中冷器的制造方法的一种实施方式的流程示意图。
图标:100-主板;110-贯通通道;111-内壁;200-芯体;210-外壳;211-第一壳体;212-第二壳体;213-接缝;214-挡气部;214a-边缘;214b-弧形导向面;215-间隙;216-缝隙;220-芯片组件;221-第一芯片;221a-第二板面;221b-组间定位凸起;221c-第一高温冷却液流道;221ca-第一端;221d-第一低温冷却液流道;221da-第二端;221e-凸起部;221f-阻挡部;221g-第一翻边;221h-第三翻边;221i-组内定位部;221j-第一板面;221k-第一隔热孔;221l-贯穿孔;222-第二芯片;222a-第四翻边;222b-第二翻边;222c-第三板面;222d-第二组间定位部;222e-第二高温冷却液流道;222f-第二低温冷却液流道;222g-第四板面;222h-组内定位凸起;222i-支撑部;222j-第二隔热孔;222k-凸起结构;230-第一盖板;240-气体流通通道;250-连接孔;260-侧板;300-第一水室;400-第一进液接管;500-第二出液接管;600-第二进液接管。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,若出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,若出现术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,若出现术语“水平”、“竖直”、“悬垂”等并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”等应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而 言,可以具体情况理解上述术语在本公开中的具体含义。
需要说明的是,在不冲突的情况下,本公开的实施例中的特征可以相互结合。
实施例1
如图1至图29所示,本实施例提供一种中冷器,如图1和图2所示,中冷器具有主板100,主板100用于连接中冷器的芯体200和室体,在主板100上形成有供芯体200贯穿主板100以伸入室体内的贯通通道110。
目前中冷器所采用的主板100一般带有楞条,中冷器组装后该楞条位于室体和芯体200之间,起到穿插固定冷却管或增加安装主板100后的芯体200整体强度的作用,但该楞条在起到上述作用的同时,也限制了主板100、室体与芯体200之间的相对位置。因此,目前改进中冷器使其适应外部较小安装空间,一般是通过减小芯体200体积以牺牲换热性能实现的。当需增加中冷器的换热性能时,则需在增大芯体200体积的同时,使中冷器的体积也相应增大,进而使体积增大的中冷器难以安装在原安装位上。
本公开的实施例所提供的中冷器的主板100,在中冷器装配时,由于主板100不具有楞条,如此使芯体200通过主板100上的贯通通道110能够贯穿主板100并伸入室体内,使室体内的空间被有效利用,从而就可在装配时根据外部安装空间的大小适当的确定主板100在芯体200上的安装位置,进而使芯体200、主板100与室体组装成中冷器后,中冷器能够适应外部安装空间的大小。同时,由于在减小中冷器整体体积时不必改变芯体200的体积,因此也保证了换热性能;而且,同样是由于芯体200能够贯穿主板100并伸入室体内,在装配中冷器时,可采用长度较大的芯体200,在保证整个中冷器体积不变的情况下增加中冷器的换热性能。本公开实施例所提供的中冷器,主板100与芯体200及室体的相对位置确定后,可采用钎焊等工艺连接为一体。
可选的,贯通通道110的内壁111为用于与芯体200的外壁贴合且密封连接的平面。通常芯体200为长方体或正方体结构,贯通通道110相应的具有四个内壁111,四个内壁111均与芯体200贴合;通过使贯通通道110的内壁111为平面则能增加主板100在芯体200上覆盖的面积,进而增加主板100与芯体200之间的连接强度以及芯体200自身的整体强度,同时,在芯体200贯穿贯通通道110的过程中,贯通通道110的内壁111还能起到对芯体200与主板100的相对运动进行导向的作用。
实施例2
本公开实施例所提供的中冷器,其包括上述的中冷器的主板100。
在中冷器装配时,使芯体200能够贯穿主板100并伸入室体内,使室体的空间被有效利用,就可在装配时根据外部安装空间的大小适当的确定主板100在芯体200上的安装位置,进而使芯体200、主板100与室体组装成中冷器后,中冷器能够适应外部安装空间的大小。同时,由于在减小中冷器整体体积时不必改变芯体200的体积,因此也保证了换热性能;而且,同样是由于芯体200能够贯穿主板100并伸入室体内,在装配中冷器时,可采用长度较大的芯体200,在保证整个中冷器体积不变的情况下增加中冷器的换热性能。
可选的,本公开实施例所提供的中冷器,包括通过主板100相连的芯体200和室体,芯体200通过贯通通道110贯穿主板100并伸入室体内。使芯体200贯穿贯通通道110并伸入室体内,使室体内的空间也能够得到充分利用,相对于现有技术中相同体积的并带有芯体200和室体的中冷器,本公开实施例所提供的中冷器具有更大体积的芯体200,换热性能更佳。当然,虽然芯体200能够贯穿主板100,但在装配中冷器时,主板100套装在芯体200上的位置可以根据外部安装空间或其他原因做适当选择,例如,可使芯体200仅与主板100固定连接而非贯穿主板100。
如图12所示,可选的,芯体200在第一方向上贯穿主板100,在芯体200上形成有用于与外界管道连接的连接孔250,连接孔250远离芯体200在第一方向上的两侧边缘设置。也即是,连接孔250在第一方向上的位置位于芯体200的中部或靠近芯体200的中部设置。因连接孔250要与输送介质的管道相连接,在芯体200上安装主板100时,这些管道的位置就会限制主板100在芯体200上能够选择的安装位置的范围,当连接孔250尽量远离芯体200在第一方向上的两侧边缘设置时,主板100的安装位置就能有较大范围的选择余地,进而可以根据中冷器外部安装空间的大小更灵活的选择芯体200、主板100及室体之间的位置关系。
如图1及图3至图9所示,可选的,芯体200在第一方向上贯穿主板100。芯体200包括具有第一壳体211和第二壳体212的外壳210。在第一壳体211与第二壳体212对接处形成在第一方向上延伸的接缝213,在第一壳体211上形成有贯穿接缝213的挡气部214。在第二壳体212上形成有用于容纳挡气部214的凹槽部,主板100覆盖挡气部214。当外壳210在接缝213处出现漏气问题时,由于该挡气部214贯穿接缝213,使挡气部214能够在第一方向上对泄露的气流形成阻挡,当泄露的气流流入挡气部214与凹槽部之间的间隙215时,由于主板100覆盖挡气部214,使主板100覆盖上述间隙215,使气流难以从上述间隙215处泄露。
可选的,第一壳体211、接缝213和第二壳体212在第三方向上依次排列;挡气部214在第三方向上延伸,或者挡气部214的延伸方向相对于第三方向倾斜。在外壳210上,第一壳体211与第二壳体212相互对接形成的接缝213为外壳210上长度较大接缝213,该接缝213出现泄漏的风险相对较大,将挡气部214设置在第一壳体211与第二壳体212相互对接形成的接缝213处能够更良好的发挥其挡风作用,缓解气体泄漏的效果更明显;可选的,第三方向与第一方向垂直;当然,其他实施例中,接缝213可以为外壳210上其他可能存在的接缝的结构处。
可选的,挡气部214有至少两个,各挡气部214在第一方向上分布。当气体从接缝213处泄漏时,不论是在第一方向还是在垂直于第一方向的方向上,挡气部214都能够对泄漏的气流产生有效阻挡,挡气部214有至少两个,对气流的阻挡效果更佳。挡气部214可为2至5个,例如可为2个或3个;当然,其他实施例中,挡气部214也可为一个。
可选的,挡气部214与第一壳体211一体成型。当挡气部214与第一壳体211一体成型时,就能够在挡气部214与第一壳体211连接的位置出现连接痕迹,进而避免了气体可能从该连接痕迹处泄漏的可能;一体成型使挡气部214成型于第一壳体211的位置强度较大,降低了挡气部214在其成型位置可能出现断裂的风险;而且,一体成型减少了安装挡气部214的步骤,使生产工艺简单化,提高了生产效率。挡气部214可为形成第一壳体211上的凸起结构222k,该凸起结构222k可为片状、板状或块状等结构。当然,其他实施例中,也可使挡气部214、第一壳体211和第二壳体212分别成型后再连接,例如可将单独生产的挡气部214焊接在接缝213处对应的第一壳体211和第二壳体212上,或通过螺纹 连接的方式将挡气部214固定在接缝213处对应的第一壳体211和第二壳体212上。
可选的,挡气部214在第一方向上的两侧边缘与凹槽部的内壁111贴合。这使得第一壳体211与第二壳体212拼接完成后,气流(特别是沿着接缝213的长度方向流动的气流)难以从挡气部214与凹槽部之间泄露,进而降低中冷器内气体泄露的风险;当然,其他实施例中,挡气部214在第一方向上的两侧边缘也可以不与凹槽部的内壁111贴合,使挡气部214与凹槽部的内壁111之间留有间隙215,并通过焊料或其他密封结构对该间隙215进行密封。
可选的,挡气部214的两侧边缘在第三方向上直线延伸。当第一壳体211与第二壳体212之间的接缝213处出现可能导致气体泄露的缝隙216时,说明第一壳体211与第二壳体212在第三方向上产生了相对运动。由于挡气部214在第一方向上的两侧边缘214a与凹槽部的内壁111贴合,且挡气部214的两侧边缘214a在第三方向上直线延伸,第一壳体211与第二壳体212在第三方向上产生相对运动时,挡气部214在第一方向上的两侧边缘214a始终与凹槽部的内壁111贴合,这就使得气流(特别是沿着接缝213的长度方向流动的气流)难以从挡气部214与凹槽部之间泄露,提升对泄露的气体的阻挡效果。当然,其他实施例中,也可使挡气部214在第一方向上的两侧边缘214a相对倾斜设置。
可选的,挡气部214在第三方向上远离第一壳体211的一端端面为弧形导向面214b。当挡气部214插入上述凹槽部时,可通过该弧形导向面214b进行导向,进而提高装配效率,为实现弧形导向面214b的导向作用,该弧形导向面214b为在第三方向上向远离第一壳体211的方向凸出;当然,其他实施例中,该弧形导向面214b也可由相对第三方向倾斜设置的斜面形成。
可选的,芯体200包括位于外壳210的内侧的密封件,密封件覆盖接缝213和挡气部214,且密封件在接缝213处与外壳210密封连接。通过该密封件使气流难以在接缝213处泄露,特别是在上述挡气部214与凹槽部配合的位置,通过主板100与密封件同时对挡气部214与凹槽部之间的间隙215进行密封,降低了气流在垂直于接缝213的方向上出现泄露的可能,而当气流沿接缝213流动时,又会受到凸起部与凹槽部的阻挡,进而减小气体泄露的可能性。
可选的,芯体200具有位于外壳210的内侧的芯片,密封件为芯片,芯片具有翻边,翻边在接缝213处与外壳210密封连接。在芯体200中,芯片是必不可少的部件,通过使芯片为密封件,则能够避免另设其他部件为密封件所带来的成本;具体的,翻边可与第一壳体211和第二壳体212以及挡气部214焊接实现密封;翻边可为本公开所提供的第一翻边221g或第二翻边222b。
可选的,芯体200具有位于外壳210的内侧的侧板,密封件为侧板260。当采用上述芯片作为密封件时,虽然能够降低成本,但需要保证芯片的翻边在第三方向上具有一定尺寸,以保证翻边能够覆盖接缝213和挡气部214,这增大了芯片在第三方向上的尺寸。当多个芯片堆叠成芯体200后,也在一定程度上增大了芯体200在第三方向上的尺寸。而通过使上述侧板260为密封件,则无需翻边覆盖接缝213和挡气部214,可适当的减小翻边的在第三方向上的尺寸,进而减小芯体200在第三方向上的尺寸,有利于中冷器的小型化。
可选的,芯体200包括外壳210,外壳210的外壁为平面。可使芯体200为长方体或正方体结构,外壳210相应具有四个外壁,外壁为平面则能够增大外壳210与主板100接触面积,进而增加主板100与芯体200之间的连接强度;同时,在芯体200贯穿贯通通道110的过程中,外壳210的外壁还能起到对芯体200与主板100的相对运动进行导向的作用。
本公开实施例所提供的中冷器中,主板100通过贯通通道110套装在芯体200上,室体与芯体200之间通过主板100连接。为了避免气流从主板100与芯体200之间泄露,主板100与芯体200的外壳210之间需要进行密封。当主板100从外壳210的外侧覆盖挡气部214时,使第一壳体211、第二壳体212及挡气部214能够紧密的连接为一个整体,且使第一壳体211和第二壳体212难以产生相对运动,进而使接缝213处不易出现导致气体泄露的缝隙216,降低了中冷器漏气的可能性。
当本公开实施例所提供的芯体200采用上述密封件时,即密封件从外壳210的内侧覆盖挡气部214,主板100从外壳210的外侧覆盖挡气部214时,如果第一壳体211与第二壳体212产生相对运动,并在接缝213处产生缝隙216,则在垂直于接缝213的方向上,气体会受到密封件、主板100和挡气部214的阻挡,使气流无法在该方向上流动;而沿着接缝213流动的气流则会受到挡气部214的阻挡,进而通过主板100、密封件和挡气部214形成的结构,在接缝213处出现缝隙216时对中冷器内的气体进行阻挡,使气体难以从中冷器中泄露。
当同时采用上述密封件,并使外壳210上形成凹槽部时,如果在接缝213处出现缝隙216并在挡气部214与凹槽部之间出现间隙215,则由于挡气部214以及凹槽部的阻挡,在上述缝隙216和间隙215中流动的气流的流动速度会逐渐减小,并最终难以从上述间隙215中泄露。特别是当挡气部214和凹槽部均相应的有至少两个时,各上述间隙215通过上述缝隙216连通,在主板100与密封件之间形成细小的通道,气流需在该细小的通道中流动很长距离才可能从中冷器中流出,而该在气流的流动过程中受到各挡气部214和凹槽部的阻挡,流速逐渐减小,最终难以从中冷器中流出。如果在同时使挡气部214在第一方向上的两侧边缘214a与凹槽部的内壁111贴合,则避免了挡气部214与凹槽部之间出现上述间隙215的可能,使气体更难以从接缝213处泄露,并达到密封气体的效果。
如图17至图19及图22至29所示,在本公开的一种实施方式中,芯片具有第一翻边221g和用于与被冷却介质接触的第一板面221j,第一翻边221g形成于第一板面221j并在第一方向上延伸。
在第一板面221j形成有凸起部221e和被冷却介质流道,凸起部221e在第二方向上位于第一翻边221g与被冷却介质流道之间,在第一翻边221g与凸起部221e之间形成有用于阻挡被冷却介质的阻挡部221f。
第一方向为被冷却介质流道的延伸方向,第二方向平行于第一板面221j并与第一方向垂直。
本公开实施例中的冷却介质和被冷却介质可以为液体,也可以为气体;上述凸起部221e可用于与相邻芯片上的凸起部221e固定连接,也可用于与相邻芯片上的组内定位部相配合。其他实施例中,可使芯片在第二方向上的两端均形成有凸起部221e,且在第二方向上排列的两个凸起部221e之间形成被冷却介质流道,被冷却介质一般为高温气体,因此,被冷却介质流道一般为气体流通通道240。
本公开实施例所提供的芯片,通过在第一翻边221g与凸起部221e之间形成阻挡部221f,对偏离被冷却介质流道而绕到第一翻边221g与凸起部221e之间的被冷却介质形成阻挡,进而减少偏离被冷却介质流道流动的被冷却介质所占的比例,使被冷却介质与冷却介质能够更充分的换热,提高中冷器的换热性能。
可选的,在第二方向上阻挡部221f的一端连接于第一翻边221g、另一端连接于凸起部221e。这样能够通过阻挡部221f阻挡大部分流向第一翻边221g与凸起部221e之间的被冷却介质,进一步减少了偏离被冷却介质流道流动的被冷却介质所占的比例。
可选的,阻挡部221f成型于第一翻边221g。这使阻挡部221f与第一翻边221g为一体成型结构,避免了阻挡部221f与第一翻边221g之间出现连接痕迹,并进一步避免了该连接痕迹对连接强度的影响,降低了在被冷却介质的冲击下阻挡部221f与第一翻边221g之间出现断裂的可能。
可选的,阻挡部221f为垂直于第一板面221j的板条状结构,或者阻挡部221f为相对于第一板面221j倾斜设置的板条状结构。加工时,可在第一翻边221g上切割出板条形结构的轮廓,然后在进行冲压,将是该板条形结构弯折至第一翻边221g与凸起部221e之间,加工难度相对较低。
可选的,阻挡部221f为槽体,槽体的槽口形成于第一翻边221g,槽体的槽底延伸至凸起部221e。该槽体可通过在第一翻边221g上冲压形成,通过槽体的外壁阻挡被冷却介质的流动;槽体在槽口处可有多点与第一翻边221g接触,使阻挡部221f与第一翻边221g之间的连接强度较大,在被冷却介质的冲击下不易变形,提高了阻挡部221f对被冷却介质阻挡的能力,进一步减少了偏离被冷却介质流道流动的被冷却介质所占的比例;且槽体可冲压成型,制造工艺相对简单。
可选的,槽体为V形槽体或U形槽体。
可选的,阻挡部221f至少有两个,各阻挡部221f在第一方向上分布。这可以对流向凸起部221e与第一翻边221g之间的被冷却介质形成多级阻挡,有效的减少偏离被冷却介质流道流动的被冷却介质所占的比例,当在第一方向上排列有多个阻挡部221f时,可使每个凸起部221e处至少对应有一个阻挡部221f。
可选的,芯片具有在第二方向上延伸的第三翻边221h,第三翻边221h形成于第一板面221j,且第三翻边221h在第一方向上位于第一翻边221g与被冷却介质流道之间。通过该第三翻边221h能够在被冷却介质流入芯体200之前,首先对欲流向凸起部221e与第一翻边221g之间的被冷却介质进行阻挡,减少了流入凸起部221e与第一翻边221g之间被冷却介质所占的比例,也就相应减少了偏离被冷却介质流道流动的被冷却介质所占的比例。本公开其他实施例中,还可以在安装芯体200时,使第一个芯片的第三翻边221h与另一个芯片的第三翻边221h进行搭接,进而对芯片之间的组装进行定位。
可选的,第三翻边221h在第一方向上的投影覆盖凸起部221e和阻挡部221f。这较大的增加了第三翻边221h的面积,进一步增加了对欲流向凸起部221e与第一翻边221g之间的被冷却介质的阻挡,减少了偏离被冷却介质流道流动的被冷却介质所占的比例。
可选的,第三翻边221h与第一翻边221g密封连接。这使得被冷却介质难以从第一翻边221g与第三翻边221h之间流入凸起部221e与第一翻边221g之间,进而减少了偏离被冷却介质流道流动的被冷却介质所占的比例。
可选的,中冷器具有芯片组件220,芯片组件220包括相互叠置的第一芯片221和第二芯片222,第一芯片221为上述的芯片,第一芯片221与第二芯片222通过第一翻边221g搭接。
本公开实施例所提供的芯片组件220,采用了本公开实施例所提供的芯片,通过在第一翻边221g与凸起部221e之间形成阻挡部221f,对偏离被冷却介质流道而绕到第一翻边221g与凸起部221e之间的被冷却介质形成阻挡,进而减少偏离被冷却介质流道流动的被冷却介质所占的比例,使被冷却介质与冷却介质能够更充分的换热,提高中冷器的换热性能。
如图25和图28所示,可选的,第二芯片222具有与第一翻边221g搭接的第二翻边222b,第二翻边222b在第二方向上位于第一翻边221g面向凸起部221e的一侧,在第二翻边222b上形成有供阻挡部221f贯穿的贯穿孔221l。这使得凸起部221e不但能够起到对被冷却介质形成阻挡的作用,而且还可以在组装芯片组件220时对第一芯片221与第二芯片222之间的相对位置进行定位,提高装配的精度及装配效率。
可选的,第二芯片222具有与第一翻边221g搭接的第二翻边222b,第二翻边222b在第二方向上位于第一翻边221g背离凸起部221e的一侧。这使得凸起部221e不但能够起到对被冷却介质形成阻挡的作用,而且无需在第二翻边222b上形成供阻挡部221f贯穿的贯穿孔221l,简化了加工该贯穿孔221l的工艺步骤,提高了生产效率。
可选的,阻挡部221f为槽体,槽体的槽口形成于第一翻边221g,槽体的槽底延伸至凸起部221e,在第二翻边222b上形成有伸入槽体的支撑部222i。这使得阻挡部221f在受到被冷却介质的冲击时,能够受到支撑部222i的较有力的支撑,减小阻挡部221f在冲击下的变形程度,进而能够较好的阻挡流入凸起部221e与第一翻边221g之间的被冷却介质,减少偏离被冷却介质流道流动的被冷却介质所占的比例。
可选的,第一芯片221具有在第二方向上延伸的第三翻边221h,第三翻边221h形成于第一板面221j,在第二芯片222上形成有与第三翻边221h搭接的第四翻边222a。通过该第四翻边222a与第三翻边221h连接,能够增加第三翻边221h在被冷却介质冲击下的承受能力,减小第三翻边221h在冲击下出现变形的几率;而且,通过该第四翻边222a与第三翻边221h搭接,还能够在组装芯片组件220时对第一芯片221和第二芯片222的相对位置进行定位,提高装配精度及效率。
可选的,第一芯片221具有背离第二芯片222设置的第二板面221a,第一芯片221具有形成于该第二板面221a的第一组间定位部。
可选的,第一组间定位部为凸出于第二板面221a的组间定位凸起221b。当进行芯体200的组装时,芯片组件220上的组间定位凸起221b可以与相邻的芯片组件220配合进行定位,以提高芯体200的装配效率及装配精度。
可选的,第二芯片222具有背离第一芯片221设置的第三板面222c,在第三板面222c上形成有用于与相邻芯片组件220的组间定位凸起221b配合的第二组间定位部222d。通过该第二组间定位部222d更进一步的提高芯体200的装配效率及装配精度。当然,如图18所示,第二组间定位部222d还可为凸起结构222k,第一组间定位部为通孔结构,使该凸起结构222k与通孔结构配合进而进行两个相邻芯片组件220之间的定位。
可选的,组间定位凸起221b形成于凸起部221e。这提高了凸起部221e所占据位置的利用率,为在第一芯片221上布置其他结构提供更充足的空间。
可选的,组间定位凸起221b具有面向第二芯片222设置的端口,该端口形成组内定位部221i,在第二芯片222上形成有与组内定位部221i配合的组内定位凸起222h。通过该组内定位部221i与组内定位凸起222h配合,可提高芯片组件 220的装配效率。可使组间定位凸起221b为槽口位于凸起部221e上的槽体,在该槽口处形成组内定位部221i,这样可在加工组间定位凸起221b的同时成型组内定位部221i,提高了生产效率。
本公开的一种实施方式中,芯片具有在第一方向上分布并在第二方向上延伸的第一流道和第二流道;
在第一方向上第一流道与第二流道之间形成有用于热隔离第一流道和第二流道的隔热部,第一方向与第二方向垂直。当隔热部位于第一芯片上时,隔热部为第一隔热孔221k,当隔热部位于第二芯片上时,隔热部为第二隔热孔222j。
具体地,第一流道和第二流道的延伸可以为直线延伸,也可以为曲折延伸。本公开实施例所提供的芯片为板件,上述第一方向和第二方向为该板件相互垂直的两个延伸方向。当芯片为第一芯片221时,可使第一流道为第一高温冷却液流道221c,使第二流道为第一低温冷却液流道221d;当芯片为第二芯片222时,可使第一流道为第二高温冷却液流道222e,使第二流道为第二低温冷却液流道222f;可优选地使第一芯片221和第二芯片222上均形成有隔热部。低温冷却液流道中低温是相对于高温冷却流道中的高温而言的;同样,高温冷却流道中的高温是相对于低温冷却流道中的低温而言的。
本公开所提供的芯片,通过在第一流道与第二流道之间设置隔热部,可有效将第一流道与第二流道热隔离,进而降低不同流道内冷却液之间热交换的程度,缓解多级中冷器中各冷却液流道内冷却液容易产生强烈热交换的问题。而且,目前发动机前端散热模块一般包括低温散热器、高温散热器和冷凝器。而由于低温散热器体积较大,为适应安装空间,低温散热器、高温散热器和冷凝器不得不在环境空气流动的方向叠层设置以进行散热,增大了前端模块的风阻且影响了前端模块的换热能力。多级中冷器采用本公开实施例所提供的芯片后,由于减小了不同流道内冷却液之间的换热程度,使低温散热器的热载荷降低,进而有效减小了低温散热器的体积;同时使一定安装空间内低温散热器与冷凝器能够并列设置后,再与高温散热器在环境空气流动的方向上叠层设置,将原来前端模块三层布置结构改为两层布置结构,有效降低风阻,并提高了前端模块的换热能力。本公开实施例中的多级中冷器包括二级中冷器、三级,甚至更多级的中冷器。
可选的,隔热部为通孔。通过通孔将第一流道与第二流道分离,尽可能减少第一流道与第二流道之间通过芯片自身材料进行的换热,进而降低换热程度。当然,其他实施例中,除使隔热部为通孔外,还可以使隔热部由导热性能较差的材料制成,特别是相较于制作芯片所采用的材料导热性能更差一些,同样能降低不同流道内冷却液之间的换热程度。
可选的,隔热部为在第二方向上延伸的条状孔。这能够尽可能减小隔热部在第一方向上的尺寸,在隔热部具有较好的隔热效果的前提下,减小由于隔热部所带来的芯片宽度的增加,进而使芯片及由芯片形成的芯体200能够保持较小的体型。当然,其他实施例中,隔热部也可以为正方形、圆形或其他形状。
可选的,隔热部至少有两个,各隔热部在第二方向上分布。这样在相邻的两个隔热部之间会保留部分芯片自身材料,在增设隔热部之后仍可使芯片保持较好的整体性及强度,尽可能避免由于增设了隔热部导致的在隔热部芯片容易断裂,使芯片强度降低的问题。
可选的,在第二方向上芯片的一端形成有第一进液口和第一出液口,第一流道为U形流道以连通第一进液口和第一出液口。使第一流道为U形流道能够充分利用芯片上的空间,增加第一流道的长度,进而增加冷却液流动的时间,使冷却液充分吸收热量,提高换热效率。
可选的,在第二方向上芯片的另一端形成有第二进液口和第二出液口,第二流道为U形流道以连通第二进液口和第二出液口。在使第一流道为U形流道的基础上,使第二流道也为U形流道,能够更充分利用芯片上的空间,增加第二流道的长度,进而增加第二流道中冷却液流动的时间,使冷却液充分吸收热量,进一步提高换热效率。
可选的,在第二方向上第一流道远离第一进液口的一端为第一端221ca,第一端221ca的位置与第二进液口和/或第二出液口的位置相对应。这进一步延长了第一流道的长度,增加了冷却液在第一流道内流动的时间,使冷却液吸收更多热量,进一步提高了换热效率;而且,使第一流道在第二方向延伸至与第二进液口和/或第二出液口相对应的位置,使芯片尽可能多的被流道覆盖并与冷却液进行热交换,减小芯片因局部温度较高,出现材料热应力较大问题的可能。
可选的,在第二方向上第二流道远离第二进液口的一端为第二端221da,第二端221da的位置与第一进液口和/或第一出液口的位置相对应。这延长了第二流道的长度,增加了冷却液在第二流道内流动的时间,进一步提高了换热效率;同时,进一步使芯片能够尽可能多的被流道覆盖,进而进一步较小了芯片因局部温度较高,出现材料热应力较大问题的情况。
可选的,在第一流道与第一进液口的连接处,第一流道在第一方向上的尺寸等于第一进液口在第一方向上的尺寸;
和/或,在第二流道与第二进液口的连接处,第二流道在第一方向上的尺寸等于第二进液口在第一方向上的尺寸。
如果在第一流道与第一进液口的连接处,第一流道在第一方向上的尺寸小于第一进液口在第一方向上的尺寸,则冷却液在从第一进液口流入第一流道时,会出现流场分布不均匀的情况,致使在第一流道内产生涡旋。由于涡旋内外产生不稳定的压力差,当涡旋作用在芯片上时就会持续的产生压力脉冲,进而可能导致芯片冲蚀失效的问题。
而使在第一流道与第一进液口的连接处,第一流道在第一方向上的尺寸等于第一进液口在第一方向上的尺寸,则冷却液在从第一进液口流入第一流道时能够尽可能减小出现流场分布不均匀的问题的可能,进而降低芯片冲蚀失效的风险。进一步的,使在第二流道与第二进液口的连接处,第二流道在第一方向上的尺寸等于第二进液口在第一方向上的尺寸同样可以降低芯片冲蚀失效的风险。
当然,其他实施例中,也可使在第一流道与第一进液口的连接处,第一流道在第一方向上的尺寸大于或小于第一进液口在第一方向上的尺寸;和/或,在第二流道与第二进液口的连接处,第二流道在第一方向上的尺寸大于或小于第二进液口在第一方向上的尺寸。
可选的,在第一方向上第一流道的尺寸与第二流道的尺寸相同。在多级中冷器中,低温散热器的对热负荷比较敏感,增加低温冷却液流道的宽度将增大低温散热器热负荷,从而需要更大体积的低温散热器,若低温散热器的体积超过一定限度,将造成前端模块布置困难;同时高温散热器对冷却液的阻力比较敏感,需要尽可能增大高温冷却液流道的宽度以降低高温冷却液流道内对冷却液的阻力,但理论上高温冷却液流道不可能无限度加宽。在本公开实施例中使在第一方向上第一流道的尺寸与第二流道的尺寸相同,在使第一流道和第二流道的尺寸满足一定换热需求的同时,使低温散热器的热负荷及高温冷却液流道内对冷却液的阻力限制在一个较低的水平。其中,第一流道和第二流道中一者为高温冷却液流道,另一者则为低温冷却液流道。
可选的,芯体200包括芯片单元、第一盖板230和第二盖板。芯片单元包括至少两个在第三方向上堆叠的芯片组件220。在第三方向上芯片单元的一端安装第一盖板230、另一端安装第二盖板,以覆盖并密封隔热部。在芯体200内,相邻两个芯片组件220之间形成有气体流通通道240;即同一片芯片在第三方向上的两侧分别形成有气体流通通道240和冷却液流道,进而实现芯体200内气体与冷却液之间的换热。当在芯片上形成有隔热部时,特别是隔热部为通孔时,芯体200内各气体流通通道240之间会通过该隔热部连通,采用上述密封件将隔热部覆盖,则能起到密封的作用,降低气体从隔热部流出芯体200的风险。密封件可优选为板件,也可以为条状或块状。
实施例3
如图30至图34,本实施例也提供一种中冷器的制造方法,中冷器包括芯体200和主板100,在主板100上形成贯通通道110,贯通通道110贯穿主板100,方法包括:
将主板100通过贯通通道110套装在芯体200上,且使芯体200通过贯通通道110贯穿主板100。
本公开所提供的中冷器的制造方法,通过在制造中冷器时使芯体200通过贯穿通道贯穿主板100,使芯体200能够贯穿主板100并伸入室体内,使室体的空间被有效利用,就可在装配时根据外部安装空间的大小适当的确定主板100在芯体200上的安装位置,进而使芯体200、主板100与室体组装成中冷器后,中冷器能够适应外部安装空间的大小。同时,由于在减小中冷器整体体积的同时不必改变芯体200的体积,因此也保证了换热性能;而且,同样是由于芯体200贯穿主板100并伸入室体内,利用室体内的空间,在装配中冷器时,可采用长度较大的芯体200,在保证整个中冷器体积不变的情况下增加中冷器的换热性能。
可选的,芯体200具有外壳210以及安装在外壳210的内侧的多个芯片组件220,外壳210包括第一壳体211和第二壳体212;
在将主板100通过贯通通道110套装在芯体200上,且使芯体200通过贯通通道110贯穿主板100之前,包括:
将各芯片组件220堆叠在第一壳体211内;
将第一壳体211与第二壳体212对接形成外壳210。
这使得各芯片组件220以及外壳210能够首先形成一个整体,在通过该整体与主板100装配,使装配更加便利。其中,多个芯片组件220可为至少两个芯片组件220,例如两个芯片组件220、三个芯片组件220、四个芯片组件220等等。本公开实施例所提供的第一壳体211和第二壳体212为U形壳体,第一壳体211与第二壳体212对接后形成长方形筒体或正方形筒体结构的外壳210。
可选的,第一壳体211具有第一边缘,第二壳体212具有第二边缘,第一壳体211与第二壳体212通过第一边缘和第二边缘进行对接,在第一边缘上和第二边缘中一者上形成有挡气部214、在另一者上形成有凹槽部;
将第一壳体211与第二壳体212对接形成外壳210,包括:
对挡气部214与凹槽部进行定位配合,以使第一壳体211与第二壳体212对接形成外壳210。
在第一壳体211与第二壳体212对接时,通过挡气部214与凹槽部配合定位,提高了中冷器的装配精度以及装配效率。而且,由于第一边缘与第二边缘对接后在第一边缘与第二边缘之间形成接缝213,挡气部214贯穿接缝213与凹槽部配合,当接缝213处出现气体泄露时,挡气部214与凹槽部能够在接缝213的延伸方向上对气流形成阻挡,进而缓解气体泄露的程度。
可选的,中冷器包括位于外壳210的内侧的密封件,第一壳体211与第二壳体212对接后在第一边缘与第二边缘之间形成接缝213;
在将第一壳体211与第二壳体212对接形成外壳210之后,还包括:
在接缝213处将外壳210与密封件密封连接。
这降低了中冷器装配后在接缝213处出现漏气的可能。
可选的,密封件为各芯片组件220中的某一个。
这降低了中冷器装配后在接缝213处出现漏气的可能,并且,由于在芯体200中,芯片组件220为必不可少的部件,相对于专门设置其他部件密封接缝213,采用在接缝213处将外壳210与芯片组件220密封连接的方式密封接缝213成本更低。
可选的,密封件为侧板260;
在将各芯片组件220堆叠在第一壳体211内之前,还包括:
将侧板260安装在第一壳体211内;
在将第一壳体211与第二壳体212对接形成外壳210之后,还包括:
在接缝213处将外壳210与侧板260密封连接。
当采用芯片组件220作密封接缝213时,虽然能够降低成本,但需要保证芯片的翻边具有一定宽度,以保证翻边能够覆盖接缝213,这增大了芯片的尺寸。当多个芯片堆叠成芯体200后,也在一定程度上增大了芯体200的尺寸。而通过采用侧板260,密封接缝213,可适当的减小翻边的尺寸,进而减小芯体200的尺寸,有利于中冷器的小型化。
可选的,在将主板100通过贯通通道110套装在芯体200上,且使芯体200通过贯通通道110贯穿主板100之后,还包括:
将主板100覆盖于挡气部214和凹槽部。
当主板100从外壳210的外侧覆盖挡气部214时,使第一壳体211、第二壳体212及挡气部214和凹槽部能够紧密的连接为一个整体,使第一壳体211和第二壳体212难以产生相对运动,进而使接缝213处不易出现导致气体泄露的缝隙216,降低了中冷器漏气的可能性。当本公开实施例所提供的芯体200采用上述芯片组件220或侧板260对接缝213进行密封时,即密封件从外壳210的内侧覆盖挡气部214,主板100从外壳210的外侧覆盖挡气部214时,如果第一壳体211与第二壳体212产生相对运动,并在接缝213处产生缝隙216,则在垂直于接缝213的方向上,气体会受到密封件、主板100和挡气部214的阻挡,使气流无法在该方向上流动,而沿着接缝213流动的气流则会受到挡气部214和凹槽部的阻挡,进而通过主板100、密封件、挡气部214和凹槽部形成的结构,在接缝213处出现缝隙216时对中冷器内的气体进行阻挡, 使气体难以从中冷器中泄露;
当同时采用上述密封件,并使外壳210上形成凹槽部时,如果在接缝213处出现缝隙216并在挡气部214和凹槽部之间出现间隙215,则由于挡气部214以及凹槽部的阻挡,在上述缝隙216和间隙215中流动的气流的流动速度会逐渐减小,并最终难以从上述间隙215中泄露。特别是当挡气部214和凹槽部均相应的有至少两个时,各上述间隙215通过上述缝隙216连通,在主板100与密封件之间形成细小的通道,气流需在该细小的通道中流动很长距离才可能从中冷器中流出,而该在气流的流动过程中受到各挡气部214和凹槽部的阻挡,流速逐渐减小,最终难以从中冷器中流出。
可选的,芯片组件220包括第一芯片221和第二芯片222,第一芯片221具有第一板面221j和形成于该第一板面221j的第一翻边221g,第二芯片222具有第四板面222g和形成于该第四板面222g的第二翻边222b;
在将各芯片组件220堆叠在第一壳体211内之前,还包括:
将第一板面221j和第四板面222g相对设置,使第一翻边221g与第二翻边222b搭接,以使第一翻边221g的延伸方向和第二翻边222b的延伸方向为流过第一芯片221的被冷却介质的流向。
通过第一翻边221g与第二翻边222b搭接,不但能够实现第一芯片221与第二芯片222之间的连接,而且,在第一芯片221与第二芯片222连接的过程中还能够对第一芯片221与第二芯片222之间的相对位置进行定位,提高装配精度和装配效率。
可选的,第一壳体211与第二壳体212对接后形成接缝213;
在将第一壳体211与第二壳体212对接形成外壳210之后,还包括:
在接缝213处将外壳210与第一翻边221g或第二翻边222b密封连接。
通过采用第一翻边221g或第二翻边222b密封接缝213,利用了芯片组件220自身结构相对于另外利用其它部件密封接缝213,成本更低。
可选的,在第一板面221j上形成有凸起部221e,在凸起部221e处形成有组内定位部221i,第二芯片222具有第四板面222g,在第四板面222g上形成有组内定位凸起222h;
在将各芯片组件220堆叠在第一壳体211内之前,还包括:
将第一板面221j和第四板面222g相对设置,将组内定位凸起222h与组内定位部221i配合进行定位。
在组装芯片组件220时,使组内定位部221i与组内定位凸起222h配合定位,提高了装配的精确度及装配效率。
可选的,在将第一板面221j和第四板面222g相对设置,使第一翻边221g与第二翻边222b搭接之前,还包括:
在第一翻边221g上成型阻挡部221f,以使阻挡部221f在垂直于第一翻边221g的方向上向第一板面221j的中部伸出。
组装完成后的中冷器在使用时,由于芯片两侧多为冷却介质进出口,被冷却介质与冷却介质主要集中在芯片的中部,但被冷却介质在流过芯体200时,常有部分被冷却介质流从冷却介质进出口与第一翻边221g之间的位置流过,导致这部分被冷却介质无法换热,降低了中冷器的换热性能。而在第一翻边221g上成型上述阻挡部221f,则使成型后的阻挡部221f能在一定程度上对被冷却介质形成阻挡,减少流入冷却介质进出口与第一翻边221g之间的被冷却介质的量,进而提高中冷器的换热性能。
可选的,第一芯片221具有形成于第一板面221j并垂直于第一翻边221g延伸的第三翻边221h,第二芯片222具有形成于第四板面222g并垂直于第二翻边222b延伸的第四翻边222a;
在将各芯片组件220堆叠在第一壳体211内之前,还包括:
将第三翻边221h与第四翻边222a搭接。
通过第三翻边221h与第四翻边222a之间的搭接,不但便于第一芯片221与第二芯片222之间的连接,而且在装配时还能起到对第一芯片221与第二芯片222进行定位的作用,提高了装配效率和精度;且第三翻边221h和第四翻边222a还可以对要流入第一翻边221g与冷却介质进出口的被冷却介质形成一定阻挡,进而提高中冷器的换热性能。
可选的,芯片组件220包括叠置的第一芯片221和第二芯片222,第一芯片221具有背离第二芯片222设置的第二板面221a,第二芯片222具有背离第一芯片221设置的第三板面222c,在第二板面221a上形成有第一组间定位部,在第三板面222c上形成有第二组间定位部222d;
将各芯片组件220堆叠在第一壳体211内,包括:
将相邻的两个芯片组件220之间通过其中一个芯片组件220上的第一组间定位部与另一个芯片组件220上的第二组间定位部222d配合进行定位,以将各芯片组件220堆叠在第一壳体211内。
通过使第一组间定位部与第二组间定位部222d配合对各芯片组件220之间的堆叠进行定位,提高了装配的效率和精度。
可选的,第一组间定位部为组间定位凸起221b。当然,如图23所示,第二组间定位部222d还可为凸起结构222k,第一组间定位部为通孔结构,使该凸起结构222k与通孔结构配合进而进行两个相邻芯片组件220之间的定位。
可选的,芯片组件220包括叠置的第一芯片221和第二芯片222。第一芯片221具有背离第二芯片222设置的第二板面221a,第二芯片222具有背离第一芯片221设置的第三板面222c。在第二板面221a上形成有凹入第二板面221a的第一高温冷却液流道221c和第一低温冷却液流道221d,在第三板面222c上形成有凹入第三板面222c的第二高温冷却液流道222e和第二低温冷却液流道222f;
将各芯片组件220堆叠在第一壳体211内,包括:
将相邻的两个芯片组件220之间其中一个芯片组件220上的第一高温冷却液流道221c与另一个芯片组件220上的第二高温冷却液流道222e重叠,且将其中一个芯片组件220上的第一低温冷却液流道221d与另一个芯片组件220上的第二低温冷却液流道222f重叠。
这使得第一高温冷却液流道221c与第二高温冷却液流道222e形成一个闭合的高温冷却液流道,且第一低温冷却液流道221d与第二低温冷却液流道222f之间形成一个闭合的低温冷却液流道。低温冷却液流道中低温是相对于高温冷却流道中的高温而言的,同样,高温冷却流道中的高温是相对于低温冷却流道中的低温而言的。
可选的,第一高温冷却液流道221c、第一低温冷却液流道221d、第二高温冷却液流道222e和第二低温冷却液流道222f的宽度尺寸相同。
在多级中冷器中,低温散热器的对热负荷比较敏感,增加低温冷却液流道的宽度将增大低温散热器热负荷,从而需要更大体积的低温散热器,若低温散热器的体积超过一定限度,将造成前端模块布置困难。同时高温散热器对冷却液的阻力比较敏感,需要尽可能增大高温冷却液流道的宽度以降低高温冷却液流道内对冷却液的阻力,但理论上高温冷却液流道不可能无限度加宽。在本公开实施例中使第一高温冷却液流道221c、第一低温冷却液流道221d、第二高温冷却液流道222e和第二低温冷却液流道222f的宽度尺寸相同,在使高温冷却液流道和低温冷却液流道的尺寸满足一定换热需求的同时,使低温散热器的热负荷及高温冷却液流道内对冷却液的阻力限制在一个较低的水平。
可选的,在第一芯片221上第一高温冷却液流道221c与第一低温冷却液流道221d之间形成有第一隔热孔,在第二芯片222上第二高温冷却液流道222e与第二低温冷却液流道222f之间形成有第二隔热孔222j;
将各芯片组件220堆叠在第一壳体211内,还包括:
将相邻的两个芯片组件220之间其中一个芯片组件220上的第一隔热孔与另一个芯片组件220上的第二隔热孔222j重叠。
这使得第一隔热孔和第二隔热孔222j均未被覆盖,避免了在一个芯片组件220上高温冷却液流道与低温冷却液流道之间虽然通过隔热孔热隔离,但又通过另一个芯片组件220连接导致隔热效果下降的问题,进而使隔热孔对低温冷却液流道与高温冷却液流道热隔离的效果的到一定保证。
可选的,芯体200包括第一盖板230和第二盖板;
在将各芯片组件220堆叠在第一壳体211内之前,还包括:
将第一盖板230安装在第一壳体内;
在将各芯片组件220堆叠在第一壳体211内之后,还包括:
将各芯片组件220堆叠于第一盖板230后,将第二盖板叠置于芯片组件220,以使各芯片组件220位于第一盖板230与第二盖板之间。
这实现了在将各芯片组件220安装于第一盖板230与第二盖板之间,而将各芯片组件220安装于第一盖板230与第二盖板之间,则能够通过第一盖板230和第二盖板覆盖第一隔热孔和第二隔热孔222j,降低气流通过第一隔热孔和第二隔热孔222j泄露的可能。
可选的,中冷器,包括:
第一进液接管400、第二进液接管600、第一出液接管、第二出液接管500、第一水室300和第二水室,在第一壳体211上形成有第一进液管安装孔和第一出液管安装孔,在第二壳体212上形成有第二进液管安装孔和第二出液管安装孔,第一进液安装孔和第二进液安装孔均设置在外壳210的平行于第一盖板230的平面上;
中冷器的制造方法,在将各芯片组件220堆叠在第一壳体211内之前,还包括:
将第一进液接管400与第一水室300连接,将第一水室300安装在第一进液管安装孔处并使第一水室300内形成L形腔,进而使第一进液接管400的延伸方向平行于第一盖板230;
将第二进液接管600与第二水室连接,将第二水室安装在第二进液管安装孔处并使第二水室内形成L形腔,进而使第二进液接管600的延伸方向平行于第一盖板230;
将第一出液接管与第一出液管安装孔连接,将第二出液管与第二出液管安装孔连接。
为了更进一步详细说明本公开的中冷器的制造方法的方案,本公开还提供一种中冷器的制造方法的具体应用实例,具体包括如下步骤:
(一)壳体组装
在壳体组装过程中,需要将进液管与对应的水室进行组装,并将出液接管与对应的出液管安装孔进行连接设置,具体可以划分为下述S11至S13的三个步骤:
S11:将第一进液接管400与第一水室300连接,将第一水室300安装在第一进液管安装孔处并使第一水室300内形成L形腔,进而使第一进液接管400的延伸方向平行于第一盖板230。
S12:将第二进液接管600与第二水室连接,将第二水室安装在第二进液管安装孔处并使第二水室内形成L形腔,进而使第二进液接管600的延伸方向平行于第一盖板230。
S13:将第一出液接管与第一出液管安装孔连接,将第二出液管与第二出液管安装孔连接。
可以理解的是,上述S11至S13的执行顺序仅为举例,根据实际应用情形,该三个步骤之间的执行顺序任意,当然也可以同时执行,本公开对此不做限定。
基于上述描述,在S13之后,壳体组装过程还可以包含有S14,该S14的内容可省,且是否执行S14具体可以取决于后续是否执行S342,该S14的具体内容可以为:
S14:将侧板260安装在第一壳体211内。
(二)芯片组件220组装
为了保证芯体200的顺利组装,在组装好壳体之后,还需要预先进行芯片组件220的组装,该芯片组件220的组装过程具体可以划分为下述S21至S25的五个步骤:
S21:在第一翻边221g上成型阻挡部221f,以使阻挡部221f在垂直于第一翻边221g的方向上向第一板面221j的中部伸出。
S22:将第一板面221j和第四板面222g相对设置,将组内定位凸起222h与组内定位部221i配合进行定位。
S23:将第一翻边221g与第二翻边222b搭接,以使第一翻边221g的延伸方向和第二翻边222b的延伸方向为流过第一芯片221的被冷却介质的流向。
S24:将第三翻边221h与第四翻边222a搭接。
S25:将第一盖板230安装在第一壳体211内。
(三)芯体200组装
芯体200组装的过程可以具体可以划分为下述S31至S34的四个步骤:
S31:将各芯片组件220堆叠在第一壳体211内。
基于上述描述,S31具体可以通过下述S311至S313这三个细分步骤来实现:
S311:将相邻的两个芯片组件220之间通过其中一个芯片组件220上的组间定位凸起221b与另一个芯片组件220上的第二组间定位部222d配合进行定位,以将各芯片组件220堆叠在第一壳体211内。
S312:将相邻的两个芯片组件220之间其中一个芯片组件220上的第一高温冷却液流道221c与另一个芯片组件220上的第二高温冷却液流道222e重叠,且将其中一个芯片组件220上的第一低温冷却液流道221d与另一个芯片组件220上的第二低温冷却液流道222f重叠。
S313:将相邻的两个芯片组件220之间其中一个芯片组件220上的第一隔热孔与另一个芯片组件220上的第二隔热孔222j重叠。
S32:将各芯片组件220堆叠于第一盖板230后,将第二盖板叠置于芯片组件220,以使各芯片组件220位于第一盖板230与第二盖板之间。
S33:将第一壳体211与第二壳体212对接形成外壳210。
具体来说,步骤33的具体实现方式可以为:对挡气部214与凹槽部进行定位配合,以使第一壳体211与第二壳体212对接形成外壳210。
S34:在接缝213处将外壳210与密封件密封连接。
在S34中,密封件位于外壳210的内侧,若该密封件为各芯片组件220中的某一个,则S34的具体实现过程为:S341:在接缝213处将外壳210与第一翻边221g或第二翻边222b密封连接。
以及,若密封件为侧板260,则S34的具体实现过程为:S342:在接缝213处将外壳210与侧板260密封连接。也即:若密封件为侧板260,则在前述壳体组装的过程中需要执行S14,以保证外壳210与侧板260之间能够顺利实现密封连接。
(四)主板100及室体安装
在芯体200组装之后,需要将主板100套装在芯体200上,并将室体连接于主板100,以最终制造完成中冷器,该主板100及室体安装的过程可以具体由下述步骤实现:
S41:将主板100通过贯通通道110套装在芯体200上,且使芯体200通过贯通通道110贯穿主板100。
S42:将主板100覆盖于挡气部214和凹槽部。
S43:将室体安装在主板100上。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性:
综上所述,本公开提供了一种中冷器的主板、中冷器和中冷器的制造方法。该中冷器的主板能够充分利用室体内的空间,一方面能够在保障芯体体积不变时,减小中冷器整体的体积而不会影响其换热性能;另一方面能够在保障整个中冷器体积不变时,采用更大的芯体而增加中冷器的换热性能。这样的主板和中冷器具有设计简单、空间利用率好、换热效率高的特点。

Claims (28)

  1. 中冷器的主板,所述主板用于连接所述中冷器的芯体和室体,其特征在于,在所述主板上形成有供所述芯体贯穿所述主板以伸入所述室体内的贯通通道。
  2. 根据权利要求1所述的中冷器的主板,其特征在于,所述贯通通道的内壁为配置为与所述芯体的外壁贴合且密封连接的平面。
  3. 中冷器,其特征在于,包括如权利要求1或2所述的主板。
  4. 根据权利要求3所述的中冷器,其特征在于,包括通过所述主板相连的芯体和室体,所述芯体通过所述贯通通道贯穿所述主板并伸入所述室体内。
  5. 根据权利要求4所述的中冷器,其特征在于,所述芯体在第一方向上贯穿所述主板,在所述芯体上形成有用于与外界管道连接的连接孔,所述连接孔远离所述芯体在所述第一方向上的两侧边缘设置。
  6. 根据权利要求4所述的中冷器,其特征在于,所述芯体在第一方向上贯穿所述主板,所述芯体包括具有第一壳体和第二壳体的外壳,在所述第一壳体与所述第二壳体对接处形成在第一方向上延伸的接缝,在所述第一壳体上形成有贯穿所述接缝的挡气部,在所述第二壳体上形成有用于容纳所述挡气部的凹槽部,所述主板覆盖所述挡气部。
  7. 根据权利要求6所述的中冷器,其特征在于,所述芯体包括位于所述外壳的内侧的密封件,所述密封件覆盖所述接缝和所述挡气部,且所述密封件在所述接缝处与所述外壳密封连接。
  8. 根据权利要求7所述的中冷器,其特征在于,所述芯体具有位于所述外壳的内侧的芯片,所述密封件为所述芯片,所述芯片具有翻边,所述翻边在所述接缝处与所述外壳密封连接。
  9. 根据权利要求7所述的中冷器,其特征在于,所述芯体具有位于所述外壳的内侧的侧板,所述密封件为所述侧板。
  10. 根据权利要求4-9中任意一项所述的中冷器,其特征在于,所述芯体包括外壳,所述外壳的外壁为平面。
  11. 中冷器的制造方法,所述中冷器包括芯体和主板,其特征在于,在所述主板上形成贯通通道,所述贯通通道贯穿所述主板,所述方法包括:
    将所述主板通过所述贯通通道套装在所述芯体上,且使所述芯体通过所述贯通通道贯穿所述主板。
  12. 根据权利要求11所述的中冷器的制造方法,其特征在于,所述芯体具有外壳以及安装在所述外壳的内侧的多个芯片组件,所述外壳包括第一壳体和第二壳体;
    在所述将所述主板通过所述贯通通道套装在所述芯体上,且使所述芯体通过所述贯通通道贯穿所述主板之前,包括:
    将各所述芯片组件堆叠在所述第一壳体内;
    将所述第一壳体与所述第二壳体对接形成所述外壳。
  13. 根据权利要求12所述的中冷器的制造方法,其特征在于,所述第一壳体具有第一边缘,所述第二壳体具有第二边缘,所述第一壳体与所述第二壳体通过所述第一边缘和所述第二边缘进行对接,在所述第一边缘上和第二边缘中一者上形成有挡气部、在另一者上形成有凹槽部;
    所述将所述第一壳体与所述第二壳体对接形成所述外壳,包括:
    对所述挡气部与所述凹槽部进行定位配合,以使所述第一壳体与所述第二壳体对接形成所述外壳。
  14. 根据权利要求13所述的中冷器的制造方法,其特征在于,所述中冷器包括位于所述外壳的内侧的密封件,所述第一壳体与所述第二壳体对接后在所述第一边缘与所述第二边缘之间形成接缝;
    在所述将所述第一壳体与所述第二壳体对接形成所述外壳之后,还包括:
    在所述接缝处将所述外壳与所述密封件密封连接。
  15. 根据权利要求14所述的中冷器的制造方法,其特征在于,所述密封件为各所述芯片组件中的某一个。
  16. 根据权利要求14所述的中冷器的制造方法,其特征在于,所述密封件为侧板;
    在所述将各所述芯片组件堆叠在所述第一壳体内之前,还包括:
    将侧板安装在所述第一壳体内;
    在所述将所述第一壳体与所述第二壳体对接形成所述外壳之后,还包括:
    在所述接缝处将所述外壳与所述侧板密封连接。
  17. 根据权利要求13所述的中冷器的制造方法,其特征在于,
    在所述将所述主板通过所述贯通通道套装在所述芯体上,且使所述芯体通过所述贯通通道贯穿所述主板之后,还包括:
    将所述主板覆盖于所述挡气部和所述凹槽部。
  18. 根据权利要求12所述的中冷器的制造方法,其特征在于,所述芯片组件包括第一芯片和第二芯片,所述第一芯片具有第一板面和形成于该第一板面的第一翻边,所述第二芯片具有第四板面和形成于该第四板面的第二翻边;
    在所述将各所述芯片组件堆叠在所述第一壳体内之前,还包括:
    将所述第一板面和所述第四板面相对设置,使所述第一翻边与所述第二翻边搭接,以使所述第一翻边的延伸方向和所述第二翻边的延伸方向为流过所述第一芯片的被冷却介质的流向。
  19. 根据权利要求18所述的中冷器的制造方法,其特征在于,所述第一壳体与所述第二壳体对接后形成接缝;
    在所述将所述第一壳体与所述第二壳体对接形成所述外壳之后,还包括:
    在所述接缝处将所述外壳与所述第一翻边或所述第二翻边密封连接。
  20. 根据权利要求18所述的中冷器的制造方法,其特征在于,在所述第一板面上形成有凸起部,在所述凸起部处形成有组内定位部,所述第二芯片具有第四板面,在所述第四板面上形成有组内定位凸起;
    在所述将各所述芯片组件堆叠在所述第一壳体内之前,还包括:
    将所述第一板面和所述第四板面相对设置,将所述组内定位凸起与所述组内定位部配合进行定位。
  21. 根据权利要求18所述的中冷器的制造方法,其特征在于,在所述将所述第一板面和所述第四板面相对设置,使所述第一翻边与所述第二翻边搭接之前,还包括:
    在所述第一翻边上成型阻挡部,以使所述阻挡部在垂直于所述第一翻边的方向上向所述第一板面的中部伸出。
  22. 根据权利要求18所述的中冷器的制造方法,其特征在于,所述第一芯片具有形成于所述第一板面并垂直于所述第一翻边延伸的第三翻边,所述第二芯片具有形成于所述第四板面并垂直于所述第二翻边延伸的第四翻边;
    在所述将各所述芯片组件堆叠在所述第一壳体内之前,还包括:
    将所述第三翻边与所述第四翻边搭接。
  23. 根据权利要求12所述的中冷器的制造方法,其特征在于,所述芯片组件包括叠置的第一芯片和第二芯片,所述第一芯片具有背离所述第二芯片设置的第二板面,所述第二芯片具有背离所述第一芯片设置的第三板面,在所述第二板面上形成有第一组间定位部,在所述第三板面上形成有第二组间定位部;
    所述将各所述芯片组件堆叠在所述第一壳体内,包括:
    将相邻的两个所述芯片组件之间通过其中一个所述芯片组件上的所述第一组间定位部与另一个所述芯片组件上的所述第二组间定位部配合进行定位,以将各所述芯片组件堆叠在所述第一壳体内。
  24. 根据权利要求23所述的中冷器的制造方法,其特征在于,所述第一组间定位部为组间定位凸起。
  25. 根据权利要求12-24中任意一项所述的中冷器的制造方法,其特征在于,所述芯片组件包括叠置的第一芯片和第二芯片,所述第一芯片具有背离所述第二芯片设置的第二板面,所述第二芯片具有背离所述第一芯片设置的第三板面,在所述第二板面上形成有凹入所述第二板面的第一高温冷却液流道和第一低温冷却液流道,在所述第三板面上形成有凹入所述第三板面的第二高温冷却液流道和第二低温冷却液流道;
    所述将各所述芯片组件堆叠在所述第一壳体内,包括:
    将相邻的两个所述芯片组件之间其中一个所述芯片组件上的所述第一高温冷却液流道与另一个所述芯片组件上的所述第二高温冷却液流道重叠,且将其中一个所述芯片组件上的所述第一低温冷却液流道与另一个所述芯片组件上的所述第二低温冷却液流道重叠。
  26. 根据权利要求25所述的中冷器的制造方法,其特征在于,所述第一高温冷却液流道、第一低温冷却液流道、第二高温冷却液流道和第二低温冷却液流道的宽度尺寸相同。
  27. 根据权利要求25所述的中冷器的制造方法,其特征在于,在所述第一芯片上所述第一高温冷却液流道与所述第一低温冷却液流道之间形成有第一隔热孔,在所述第二芯片上所述第二高温冷却液流道与所述第二低温冷却液流道之间形成有第二隔热孔;
    所述将各所述芯片组件堆叠在所述第一壳体内,还包括:
    将相邻的两个所述芯片组件之间其中一个所述芯片组件上的所述第一隔热孔与另一个所述芯片组件上的所述第二隔热孔重叠。
  28. 根据权利要求27所述的中冷器的制造方法,其特征在于,所述芯体包括第一盖板和第二盖板;
    在所述将各所述芯片组件堆叠在所述第一壳体内之前,还包括:
    将所述第一盖板安装在所述第一壳体内;
    在所述将各所述芯片组件堆叠在所述第一壳体内之后,还包括:
    将各所述芯片组件堆叠于所述第一盖板后,将所述第二盖板叠置于所述芯片组件,以使各芯片组件位于所述第一盖板与所述第二盖板之间。
PCT/CN2020/138370 2019-12-31 2020-12-22 中冷器的主板、中冷器及中冷器的制造方法 WO2021136017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911412865.8 2019-12-31
CN201911412865.8A CN111141164A (zh) 2019-12-31 2019-12-31 中冷器的主板、中冷器及中冷器的制造方法

Publications (1)

Publication Number Publication Date
WO2021136017A1 true WO2021136017A1 (zh) 2021-07-08

Family

ID=70522593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138370 WO2021136017A1 (zh) 2019-12-31 2020-12-22 中冷器的主板、中冷器及中冷器的制造方法

Country Status (2)

Country Link
CN (1) CN111141164A (zh)
WO (1) WO2021136017A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111042909A (zh) * 2019-12-31 2020-04-21 浙江银轮机械股份有限公司 外壳、芯体及中冷器
CN111141164A (zh) * 2019-12-31 2020-05-12 浙江银轮机械股份有限公司 中冷器的主板、中冷器及中冷器的制造方法
CN113204880B (zh) * 2021-05-07 2023-06-16 重庆科创职业学院 一种汽车风阻系数优化设计方法
CN113883923A (zh) * 2021-10-14 2022-01-04 浙江银轮机械股份有限公司 壳体、壳体组件及中冷器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202039976U (zh) * 2011-04-29 2011-11-16 浙江银轮机械股份有限公司 一种气室带水套结构的废气再循环冷却器
WO2015095523A1 (en) * 2013-12-20 2015-06-25 Modine Manufacturing Company Heat exchanger for cooling charge air
CN106438017A (zh) * 2016-12-20 2017-02-22 贵州贵航汽车零部件股份有限公司 多流程叉流式水冷中冷器
CN206054088U (zh) * 2016-08-29 2017-03-29 天津三电汽车空调有限公司 涡轮增压发动机进气冷却用空空中冷器
CN111042909A (zh) * 2019-12-31 2020-04-21 浙江银轮机械股份有限公司 外壳、芯体及中冷器
CN111141164A (zh) * 2019-12-31 2020-05-12 浙江银轮机械股份有限公司 中冷器的主板、中冷器及中冷器的制造方法
CN111173609A (zh) * 2020-03-03 2020-05-19 浙江银轮机械股份有限公司 密封件、密封组件及热交换器
CN211230612U (zh) * 2019-12-31 2020-08-11 浙江银轮机械股份有限公司 外壳、芯体及中冷器
CN211527179U (zh) * 2019-12-31 2020-09-18 浙江银轮机械股份有限公司 中冷器及其主板
CN211777697U (zh) * 2020-03-03 2020-10-27 浙江银轮机械股份有限公司 密封件、密封组件及热交换器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855604B1 (fr) * 2003-05-28 2008-09-26 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques comportant un element d'obturation des fuites du gaz a fefroidir.
DE102007031731B4 (de) * 2007-07-06 2009-04-16 Motorenfabrik Hatz Gmbh & Co. Kg Luftfilter zum direkten Anbau an einen Mehrzylinder-Verbrennungsmotor
CN106255862B (zh) * 2014-04-29 2019-03-01 达纳加拿大公司 具有多件式塑料壳体的增压空气冷却器
KR102230075B1 (ko) * 2015-02-16 2021-03-19 (주)다우정밀 냉각수 유로형 이지알 쿨러

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202039976U (zh) * 2011-04-29 2011-11-16 浙江银轮机械股份有限公司 一种气室带水套结构的废气再循环冷却器
WO2015095523A1 (en) * 2013-12-20 2015-06-25 Modine Manufacturing Company Heat exchanger for cooling charge air
CN206054088U (zh) * 2016-08-29 2017-03-29 天津三电汽车空调有限公司 涡轮增压发动机进气冷却用空空中冷器
CN106438017A (zh) * 2016-12-20 2017-02-22 贵州贵航汽车零部件股份有限公司 多流程叉流式水冷中冷器
CN111042909A (zh) * 2019-12-31 2020-04-21 浙江银轮机械股份有限公司 外壳、芯体及中冷器
CN111141164A (zh) * 2019-12-31 2020-05-12 浙江银轮机械股份有限公司 中冷器的主板、中冷器及中冷器的制造方法
CN211230612U (zh) * 2019-12-31 2020-08-11 浙江银轮机械股份有限公司 外壳、芯体及中冷器
CN211527179U (zh) * 2019-12-31 2020-09-18 浙江银轮机械股份有限公司 中冷器及其主板
CN111173609A (zh) * 2020-03-03 2020-05-19 浙江银轮机械股份有限公司 密封件、密封组件及热交换器
CN211777697U (zh) * 2020-03-03 2020-10-27 浙江银轮机械股份有限公司 密封件、密封组件及热交换器

Also Published As

Publication number Publication date
CN111141164A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2021136017A1 (zh) 中冷器的主板、中冷器及中冷器的制造方法
CN106918165B (zh) 一种换热装置
JP6261975B2 (ja) 発熱体収容装置
JP5882179B2 (ja) 外部マニホルドを備えた内部熱交換器
JP2008159440A (ja) 車両用バッテリ冷却システム
US10240515B2 (en) Heat exchanger, particularly motor vehicle engine charge air cooler
JP2014095492A (ja) 多板式オイルクーラ
US20140338873A1 (en) Stacked-Plate Heat Exchanger Including A Collector
US20110186274A1 (en) Plate heat exchanger
EP3037772B1 (en) Heat exchanger
JP2012199148A (ja) 電池温調装置
CN211527179U (zh) 中冷器及其主板
WO2021136437A1 (zh) 芯片、芯片组件、芯体及中冷器
WO2020238781A1 (zh) 板式换热器
KR101988992B1 (ko) 전기소자 냉각용 열교환기
WO2020258886A1 (zh) 板片、板片组件及热交换器
WO2017018431A1 (ja) 水冷エアークーラの取付構造
CN212296536U (zh) 机油冷却器
CN220021255U (zh) 进出口总成、换热板模组、电池包和车辆
CN218827444U (zh) 冷板换热器、电池包、热管理系统和车辆
CN214666291U (zh) 换热翅片和换热装置
CN214666290U (zh) 换热模组
CN217005457U (zh) 单体板式换热模块及板式换热芯组
CN220527111U (zh) 一种电池箱体结构
CN220931397U (zh) 厚膜水暖加热器和汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910630

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20910630

Country of ref document: EP

Kind code of ref document: A1