WO2021135099A1 - 大麻二酚的纯化方法 - Google Patents

大麻二酚的纯化方法 Download PDF

Info

Publication number
WO2021135099A1
WO2021135099A1 PCT/CN2020/098375 CN2020098375W WO2021135099A1 WO 2021135099 A1 WO2021135099 A1 WO 2021135099A1 CN 2020098375 W CN2020098375 W CN 2020098375W WO 2021135099 A1 WO2021135099 A1 WO 2021135099A1
Authority
WO
WIPO (PCT)
Prior art keywords
cannabidiol
liquid chromatography
column
high performance
organic solvent
Prior art date
Application number
PCT/CN2020/098375
Other languages
English (en)
French (fr)
Inventor
赵建强
张大兵
高向云
石坚
贾坤
李枝玲
Original Assignee
江苏汉邦科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏汉邦科技有限公司 filed Critical 江苏汉邦科技有限公司
Publication of WO2021135099A1 publication Critical patent/WO2021135099A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/685Processes comprising at least two steps in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/82Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the invention relates to a purification method of cannabidiol, in particular to a method for large-scale purification of cannabidiol by using preparative high-performance liquid chromatography.
  • Cannabis sativa L is an annual herb of the Moraceae family, also known as hemp, hemp, hemp, mountain silk seedling, and jute. It has important agricultural and medicinal values and is widely cultivated all over the world. The free cultivation and cultivation of cannabis is strictly prohibited in our country. However, due to its special economic value and easy cultivation characteristics, the area of cannabis cultivation has always been increasing worldwide.
  • the seeds of hemp are rich in nutrients, containing 20%-25% protein, 20%-30% carbohydrates and 10%-15% soluble fiber.
  • the main active ingredient in cannabis is cannabionids.
  • cannabinoids which are mainly used for multiple sclerosis, motor neuropathy, and chronic intractable pain in certain neurological diseases. And drug-induced vomiting. In addition, it also has a certain effect on glaucoma, asthma and cardiovascular diseases.
  • Tetrahydrocannabional (THC) and cannabidiol (Cannabidiol, CBD) are the main chemical components contained in cannabis.
  • THC is considered to be the most important active substance in cannabis. It has neurological activity and can be used to treat vomiting caused by cancer. But THC has hallucinogenic effects, which has become the only reason why cannabis is banned in many countries.
  • CBD can hinder the effect of THC on the human nervous system, and has anti-spasm, anti-rheumatoid arthritis, anti-anxiety and other pharmacological activities.
  • CBD has become a new hot spot in cannabis research.
  • Most of the existing extraction processes for cannabidiol are microwave extraction, macroporous resin separation, open silica gel column chromatography, and microporous membrane separation.
  • the existing purification method has the disadvantages of complicated operation, long production process cycle, poor separation effect, large amount of waste liquid, low purity, heavy color, and low recovery rate. Therefore, there is still a need for large-scale separation and purification methods for cannabidiol with simple operation, high product purity, and good repeatability.
  • An object of the present invention is to provide a method with simple operation, high product purity, good repeatability, and suitable for industrial separation and purification of cannabidiol.
  • the invention provides a preparative high performance liquid chromatography method for purifying cannabidiol.
  • the present invention provides a preparative high performance liquid chromatography method for large-scale purification of cannabidiol using a dynamic axial compression column or a static pre-packed chromatographic column.
  • the present invention provides the following technical solutions:
  • a method for purifying cannabidiol characterized in that it comprises the step of purifying cannabidiol by preparative high performance liquid chromatography, wherein the chromatographic column used in the preparative high performance liquid chromatography is a dynamic axial compression column or Statically preloaded chromatographic column.
  • the method according to technical solution 1 or 2 characterized in that the preparative high performance liquid chromatography is normal phase liquid chromatography or reversed phase liquid chromatography, wherein in normal phase liquid chromatography, The chromatographic column uses silica gel packing; in reversed-phase liquid chromatography, the chromatographic column uses C18, C8 or polymer packing, for example, a polymer packing with styrene-divinylbenzene as the skeleton.
  • the particle size of the silica gel filler is 10 ⁇ m-100 ⁇ m, such as 10 ⁇ m-60 ⁇ m or 10 ⁇ m-30 ⁇ m; the particle size of C18, C8 or polymer filler is 10 ⁇ m-65 ⁇ m, such as 10 ⁇ m-50 ⁇ m Or 10 ⁇ m-30 ⁇ m.
  • the mobile phase in normal phase liquid chromatography, is composed of C 5-7 alkanes and other organic solvents, wherein the other organic solvents are selected from ethyl acetate, Dichloromethane, ethanol, methanol and propanol; in reversed-phase liquid chromatography, the mobile phase is an aqueous solution of an organic solvent, and the organic solvent is a fatty alcohol or a nitrile compound, preferably a C 1-6 fatty alcohol or C 1 -6 Nitriles.
  • Figure 1 is a liquid chromatographic analysis diagram of the crude extract of cannabidiol in Example 1
  • Figure 2 is a normal phase preparative high performance liquid chromatogram of cannabidiol of Example 1
  • 3A and 3B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 1
  • Figure 4 is a liquid chromatographic analysis diagram of the crude extract of cannabidiol in Example 2.
  • Figure 5 is a normal phase preparative high performance liquid chromatogram of cannabidiol of Example 2
  • 6A and 6B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 2.
  • Figure 7 is a normal-phase preparative high performance liquid chromatogram of cannabidiol of Example 3.
  • Figure 9 is a normal phase preparative high performance liquid chromatogram of cannabidiol of Example 4.
  • 10A and 10B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 4.
  • Figure 11 is a normal phase preparative high performance liquid chromatogram of cannabidiol of Example 5
  • Figure 13 is a normal phase preparative high performance liquid chromatogram of cannabidiol of Example 6
  • Figure 15 is a reverse phase preparative high performance liquid chromatogram of cannabidiol of Example 7
  • 16A and 16B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 7
  • Figure 17 is a reverse phase preparative high performance liquid chromatogram of cannabidiol of Example 8.
  • 18A and 18B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 8.
  • Figure 19 is a reverse phase preparative high performance liquid chromatogram of cannabidiol of Example 9
  • Figure 21 is a reverse phase preparative high performance liquid chromatogram of cannabidiol of Example 10.
  • Example 22A and 22B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 10.
  • Figure 23 is a reverse phase preparative high performance liquid chromatogram of cannabidiol of Example 11.
  • 24A and 24B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 11.
  • Figure 25 is a reverse phase preparative high performance liquid chromatogram of cannabidiol of Example 12
  • 26A and 26B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 12
  • Figure 27 is a reverse phase preparative high performance liquid chromatogram of cannabidiol of Example 13
  • 28A and 28B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 13
  • Figure 29 is a reverse phase preparative high performance liquid chromatogram of cannabidiol of Example 14
  • 30A and 30B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 14
  • Figure 31 is a reverse phase preparative high performance liquid chromatogram of cannabidiol of Example 15
  • 32A and 32B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 15
  • Figure 33 is a reverse phase preparative high performance liquid chromatogram of cannabidiol of Example 16.
  • 34A and 34B are liquid chromatographic analysis diagrams of the light yellow oily substance of cannabidiol in Example 16
  • 35A and 34B are the liquid chromatographic analysis diagrams of the pure cannabidiol of Example 16.
  • the invention provides a method for purifying cannabidiol by using preparative high performance liquid chromatography.
  • the chromatographic column used in the preparative high performance liquid chromatography of the present invention is a dynamic axial compression column or a static pre-packed chromatographic column.
  • the preparative high performance liquid chromatography of the present invention can be normal phase chromatography or reverse phase chromatography.
  • the methods of the invention include the following steps:
  • the crude extract of cannabidiol can be extracted from cannabis plants, which can be purchased or prepared according to known methods.
  • cannabis plants which can be purchased or prepared according to known methods.
  • Enzyme-assisted solvent method for extracting cannabidiol from hemp leaves China Brewing, 2016 Vol. 35, No. 4, pages 79-82
  • Canbis from hemp leaves Study on the extraction process of phenol by thermal reflux method” (Gao Zhe, China Oils and Fats, 2019 Vol. 44, Issue 3, pp. 107-111).
  • These documents are incorporated herein by reference in their entirety.
  • the content of cannabidiol in the crude extract of cannabidiol is not particularly limited.
  • the content of cannabidiol in the crude cannabidiol extract raw material can generally be 10%-55%, preferably 20%-40%, preferably 30%-50%, More preferably, it is 40%-55%.
  • known methods such as analytical high performance liquid chromatography can be used to determine the content of cannabidiol in the crude cannabidiol extract.
  • the crude cannabidiol crude extract material is dissolved in a suitable solvent to prepare the cannabidiol crude extract solution to be purified.
  • the crude cannabidiol extract is completely dissolved in an organic solvent, and the insoluble matter is removed by filtration before use.
  • the insoluble matter is removed with a microporous filter membrane for use.
  • the chromatographic column used in the method of the present invention is a dynamic axial compression column or a static pre-packed chromatographic column to realize the industrial separation and purification of cannabidiol via a high sample load.
  • Any suitable dynamic axial compression column or static preloaded chromatographic column is used in the method of the present invention.
  • commercially available products can be used, such as but not limited to the dynamic axial compression column or static preloaded column provided by Jiangsu Hanbang Technology Co., Ltd. Chromatographic column.
  • a dynamic axial compression column with an inner diameter of 50-1600mm and an effective column length of 250-1500mm or a static pre-packed chromatographic column can be used.
  • isocratic elution is used, which is beneficial to simplifying and shortening the purification process and improving the yield.
  • the purity of the combined fractions collected in step (2) of the method of the present invention can reach more than 99.5%, and the yield is greater than 90%.
  • the post-treatment step may include reduced-pressure concentration and drying treatment.
  • the post-treatment step may further include crystallization treatment.
  • a known method such as analytical high performance liquid chromatography can be used to determine the content of cannabidiol in the product obtained in step (2) and/or step (3).
  • analytical high performance liquid chromatography can be used to perform the purity analysis of the crude cannabidiol extract raw material and the purified cannabidiol product obtained in step (2) and step (3), for example, using an external standard curve method. Determine the content of cannabidiol.
  • the analytical high performance liquid chromatography method reported in the literature can be used to analyze the content of cannabidiol.
  • “Analysis of Cannabidiol Content in Industrial Hemp Leaves” (Gao Baochang, Heilongjiang Science, 2018 Vol. 9, Issue 1, Pages 61-63) discloses a liquid chromatography analysis method for cannabidiol content, which consists of 78 The mobile phase composed of% methanol and 22% purified water was eluted isocratically, the detection wavelength was set to 220 nm, and the column temperature was 30°C. This document is incorporated herein by reference in its entirety.
  • the present invention provides a method for purifying cannabidiol using normal phase preparative high performance liquid chromatography, the method comprising:
  • step (1) the crude extract of cannabidiol is dissolved in an organic solvent to prepare a sample injection solution, wherein the organic solvent can be any of the mobile phases used in step (2) described below Solvent or a mixture of any two solvents.
  • the crude cannabidiol extract raw materials can be purchased or can be prepared according to known methods, wherein the content of cannabidiol is not particularly limited, for example, by weight, it can usually be 10%-55 %, preferably 20%-40%, preferably 30%-50%, more preferably 40%-55%.
  • the crude extract of cannabidiol is dissolved in an organic solvent (such as but not limited to n-hexane) at a ratio of 1g:2-10ml (that is, the crude extract of cannabidiol is in the organic solvent).
  • concentration in the solvent is 100-500mg/ml).
  • analytical high performance liquid chromatography for example, the above-mentioned "Analysis of Cannabidiol Content in Industrial Hemp Leaf” and other literature methods
  • analytical high performance liquid chromatography can be used to analyze the purity of the crude cannabidiol extract.
  • step (2) set the normal phase preparative high performance liquid chromatography conditions, especially the following settings:
  • the chromatographic column adopts a dynamic axial compression column or a static pre-packed chromatographic column.
  • the inner diameter of the chromatographic column can be 50-1600 mm, and the effective column length can be 250-1500 mm.
  • the filler in the chromatographic column is silica gel, and its particle size ranges from 10 ⁇ m to 100 ⁇ m, preferably from 10 ⁇ m to 60 ⁇ m, and more preferably from 10 ⁇ m to 30 ⁇ m.
  • Silica gel fillers are known in the art and can be obtained from commercial channels, such as but not limited to being purchased from Jiangsu Hanbang Technology Co., Ltd.
  • the sample load is 8%-15%, preferably 10-15% .
  • the mobile phase is composed of C 5-7 alkanes and other organic solvents, wherein the other organic solvents are selected from ethyl acetate, dichloromethane, ethanol, methanol, and propanol.
  • the other organic solvent is ethanol.
  • the other organic solvent is ethyl acetate.
  • the other organic solvent is dichloromethane.
  • isocratic elution is used, and the ratio of C 5-7 alkanes to other organic solvents in the mobile phase is 70:30 to 95:5, preferably 80:20 to 90:10 by volume.
  • the specific flow rate of the mobile phase during elution depends on factors such as the actual column diameter and the target yield of pure cannabidiol. In some exemplary embodiments, the flow rate of the mobile phase during elution is 40ml/min-50000ml/min.
  • the detection wavelength may be 228 nm.
  • fractions corresponding to the bands of cannabidiol are collected in sections, and the specific collection retention time period depends on the actual preparative chromatographic conditions used.
  • step (3) the fraction collected in step (2) is concentrated or dried under reduced pressure to obtain a pale yellow oil.
  • the obtained light yellow oil is further crystallized to obtain white crystals.
  • the obtained light yellow oil is crystallized in hexane or a mixed solvent of ethanol and hexane to obtain white needle-like crystals.
  • Analytical high performance liquid chromatography for example, the above-mentioned "Analysis of Cannabidiol Content in Industrial Hemp Leaf” and other literature methods
  • Analytical high performance liquid chromatography can be used to analyze the purity of the product obtained in step (2) and/or step (3).
  • the present invention provides a method for purifying cannabidiol using reverse-phase preparative high performance liquid chromatography, the method comprising:
  • step (1) the crude extract of cannabidiol is dissolved in an organic solvent to prepare a sample injection solution, and the organic solvent is the same as the organic solvent used in the mobile phase of step (2) described below.
  • crude cannabidiol extract raw materials can be purchased or can be prepared according to known methods, wherein the content of cannabidiol is not particularly limited, for example, by weight, usually It can be 10%-55%, preferably 20%-40%, preferably 30%-50%, more preferably 40%-55%.
  • the crude extract of cannabidiol is dissolved in an organic solvent at a ratio of 1 g: 2-10 ml (that is, the concentration of the crude extract of cannabidiol in the organic solvent is 100-500 mg/ ml), after complete dissolution (for example, ultrasonic treatment to complete dissolution), filter (for example, use a microporous filter membrane, such as a 0.45 ⁇ m microporous filter membrane) to remove insolubles, and set aside.
  • complete dissolution for example, ultrasonic treatment to complete dissolution
  • filter for example, use a microporous filter membrane, such as a 0.45 ⁇ m microporous filter membrane
  • analytical high performance liquid chromatography for example, the above-mentioned "Analysis of Cannabidiol Content in Industrial Hemp Leaf” and other literature methods
  • analytical high performance liquid chromatography can be used to analyze the purity of the crude cannabidiol extract.
  • step (2) set the conditions of reversed-phase preparative high performance liquid chromatography, especially the following settings:
  • the chromatographic column adopts a dynamic axial compression column or a static pre-packed chromatographic column.
  • the inner diameter of the chromatographic column can be 50-1600 mm, and the effective column length can be 250-1500 mm.
  • the packing in the chromatographic column adopts C18, C8 or polymer packing.
  • C18 or C8 fillers are known in the art and can be obtained from commercial sources, such as but not limited to being purchased from Jiangsu Hanbang Technology Co., Ltd.
  • the polymer filler is a polymer filler with styrene-divinylbenzene as the backbone.
  • the particle size of C18, C8 or polymer fillers ranges from 10 ⁇ m to 65 ⁇ m, preferably from 10 ⁇ m to 50 ⁇ m, and more preferably from 10 ⁇ m to 30 ⁇ m.
  • the sample loading is 5%-15%, preferably 8%-15 %, more preferably 10-15%.
  • the mobile phase is an aqueous solution of an organic solvent, wherein the organic solvent is selected from fatty alcohols or nitrile compounds, preferably C 1-6 fatty alcohols and C 1-6 nitrile compounds.
  • the organic solvent is preferably acetonitrile, more preferably methanol, and even more preferably ethanol.
  • isocratic elution is used, and the ratio of organic solvent to water in the mobile phase is 60:40 to 50:50 by volume, preferably 60:40 to 55:45.
  • the specific flow rate of the mobile phase during elution depends on factors such as the actual column diameter and the target yield of pure cannabidiol. In some exemplary embodiments, the flow rate of the mobile phase during elution is 50ml/min-40000ml/min.
  • the detection wavelength may be 220 nm.
  • fractions corresponding to the bands of cannabidiol are collected in sections, and the specific collection retention time period depends on the actual preparative chromatographic conditions used.
  • step (3) the fraction collected in step (2) is concentrated and dried under reduced pressure to obtain a pale yellow oil.
  • the obtained light yellow oil is further crystallized.
  • the obtained light yellow oil is crystallized in hexane or a mixed solvent of ethanol and hexane to obtain white needle-like crystals.
  • Analytical high performance liquid chromatography for example, the above-mentioned "Analysis of Cannabidiol Content in Industrial Hemp Leaf” and other literature methods
  • Analytical high performance liquid chromatography can be used to analyze the purity of the product obtained in step (2) and/or step (3).
  • the method of the present invention has the advantages that the crude cannabidiol extract can be directly used for preparation, a large amount of pretreatment is not required, the process is simple, easy to control, and the process technology is simple.
  • the method of the invention also has the advantage that the isocratic elution method is used, and cannabidiol with a purity of 99.5% or more can be obtained in one separation and preparation.
  • the method of the present invention is suitable for large-scale preparation and production, realizes the industrial separation and purification of cannabidiol through high sample loading, and has the application value of further industrial production.
  • the entire separation process is stable, reproducible, environmental protection, and the total separation yield is as high as 90% or more.
  • the raw materials of crude cannabidiol extract are prepared by referring to the method in the literature "Optimization of the technological conditions for extracting cannabidiol from hemp leaf by enzyme-assisted solvent method", China Brewing, 2016 Vol. 35 No. 4).
  • the method in the reference “Analysis and Research on the Content of Cannabidiol in Industrial Hemp Leaves” (Gao Baochang, Heilongjiang Science, 2018 Vol. 9, Issue 1, Page 61-63) was used to perform liquid chromatography on the content of cannabidiol in the purified product analysis.
  • the dynamic axial compression column, static pre-packed chromatographic column, normal phase silica gel packing and reverse phase C8 and C18 packing were all purchased from Jiangsu Hanbang Technology Co., Ltd.
  • the mobile phase is switched to 100% dichloromethane and rinsed for 30 minutes.
  • the impurities are flushed out and one is separated.
  • the elution time is 270 min.
  • the collected fractions were concentrated under reduced pressure to obtain 14.7 g of a light yellow oil with a purity of 99.52%.
  • 1 g oil: 6 ml crystallization solvent (n-hexane: ethanol 8:1 (V/V))
  • the oil was crystallized Crystallized in a solvent to obtain 13.3 g of white crystals, with a yield of 95% and a loading amount of 10%.
  • the purity of cannabidiol was 99.56% (see Figures 3A and 3B).
  • V:V the flow rate during the elution
  • the detection wavelength of the ultraviolet detector is 220nm
  • the collection For the fraction with a retention time of 90-130min, when the cannabidiol is eluted, the mobile phase is switched to 100% methanol and washed for 30min to flush out the impurities. A separation cycle ends, and the elution time is 160min.
  • the collected fractions were concentrated under reduced pressure to obtain 289.33 g of a light yellow oil with a purity of 99.50%.
  • the mobile phase is switched to 100% ethanol and rinsed for 30 min to flush out the impurities.
  • a separation cycle ends, and the elution time is 220 min.
  • the collected fractions were concentrated under reduced pressure to obtain 2280 g of a light yellow oil with a purity of 99.57%.
  • the oil was added to the crystallization solvent.
  • 2052 g of white crystals were obtained, the yield was 95%, the loading amount was 6%, and the purity of cannabidiol was 99.79% by liquid chromatography analysis (see Figures 22A and 22B).
  • a separation cycle ends, and the elution time is 179min.
  • the collected fractions were concentrated under reduced pressure to obtain 3200 g of a light yellow oil with a purity of 99.50%.
  • 1 g oil: 10 ml crystallization solvent (n-hexane: ethanol 10:1 (V/V))
  • the oil was added to the crystallization solvent
  • 2880 g of white crystals were obtained, the yield was 96%, and the loading amount was 15%.
  • the purity of cannabidiol was 99.54% (see Figures 30A and 30B).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本发明涉及用于纯化大麻二酚的方法,其包括使用正相或反相制备型高效液相色谱法纯化大麻二酚的步骤,所述制备型高效液相色谱法采用动态轴向压缩柱或者静态预装色谱柱。本发明方法具有操作简便,产品纯度高、适合大麻二酚的大规模分离纯化、收率高等优点。

Description

大麻二酚的纯化方法 发明领域
本发明涉及大麻二酚的纯化方法,特别涉及采用制备型高效液相色谱大规模纯化大麻二酚的方法。
背景技术
大麻(Cannabis sativa L)为桑科一年生草本植物,又名麻、汉麻、火麻、山丝苗、黄麻,具有重要的农用及药用价值,世界各地都有广泛的栽培。在我国大麻是严禁自由种植和栽培的,然而由于其特殊的经济价值和容易栽培等特性,在世界范围内大麻种植面积始终有增无减。大麻的种子营养成分丰富,含有20%-25%的蛋白质、20%-30%的碳水化合物和10%-15%可溶性纤维。因大麻具有润燥、滑肠、通淋、活血作用,中医用治疗肠燥便秘、消渴、热淋、风痹、痢疾、月经不调、疥疮、癣癞等病。
大麻中的主要活性成分是大麻素类化合物(cannabionids),目前已知天然大麻素有70多种,主要用于某些神经系统疾病中的多发性硬化症、运动性神经疾病、慢性顽固性疼痛和药源性呕吐。另外,对青光眼、哮喘和心血管疾病也有一定作用。四氢大麻酚(tetrahydrocannabional,THC)和大麻二酚(cannabidiol,CBD)是大麻中含有的主要化学成分。其中THC被认为是大麻中最重要的活性物质,具有神经活性,可用于治疗癌症引起的呕吐。但THC具有致幻作用,这成为许多国家禁种大麻的唯一原因。但随着人们对大麻的深入研究,发现CBD能阻碍THC对人体神经系统的影响,并具有抗痉挛、抗风湿性关节炎、抗焦虑等药理活性。
目前,CBD成为大麻研究新的热点。目前对从大麻粗提物中分离大麻二酚的研究较少,对大麻二酚的大规模分离纯化方法的研究也较少。大麻二酚现有的提取工艺大多是微波提取、大孔树脂分离、开放硅胶柱色谱、微孔滤膜分离等。现有的纯化方法存在着操作繁琐、生成工艺周期长、分离效果差、产生的废液多及纯度不高、颜色较重、回收率低等缺陷。因此,对于操作简单、产品纯度高、可重复性好的大麻二酚的大规模分离纯化方法仍存在着需求。
发明内容
本发明的一个目的在于提供一种操作简单、产品纯度高、可重复性好、适合于工业化分 离纯化大麻二酚的方法。
本发明提供用于纯化大麻二酚的制备型高效液相色谱方法。尤其本发明提供用于大规模纯化大麻二酚的采用动态轴向压缩柱或者静态预装色谱柱的制备型高效液相色谱方法。本发明提供以下技术方案:
1、用于纯化大麻二酚的方法,其特征在于包括使用制备型高效液相色谱法纯化大麻二酚的步骤,所述制备型高效液相色谱法采用的色谱柱为动态轴向压缩柱或静态预装色谱柱。
2、根据技术方案1所述的方法,其特征在于包括以下步骤:
(1)提供大麻二酚粗提物溶液;
(2)使用制备型高效液相色谱法对所述大麻二酚粗提物溶液进行纯化,分段收集大麻二酚对应谱带的馏分;和
(3)将收集到的大麻二酚馏分进行后处理,得到大麻二酚纯品。
3、根据技术方案1或2所述的方法,其特征在于所述制备型高效液相色谱法为正相液相色谱法或反相液相色谱法,其中正相液相色谱法中,所述色谱柱使用硅胶填料;反相液相色谱法中,所述色谱柱使用C18、C8或聚合物填料,所述聚合物填料例如是以苯乙烯-二乙烯苯为骨架的聚合物填料。
4、根据技术方案3的方法,其特征在于硅胶填料的粒度为10μm-100μm,例如为10μm-60μm或10μm-30μm;C18、C8或聚合物填料的粒度为10μm-65μm,例如为10μm-50μm或10μm-30μm。
5、根据技术方案3或4所述的方法,其特征在于正相液相色谱法中,流动相由C 5-7烷烃和其它有机溶剂组成,其中所述其它有机溶剂选自乙酸乙酯、二氯甲烷、乙醇、甲醇和丙醇;反相液相色谱法中,流动相为有机溶剂的水溶液,所述有机溶剂为脂肪醇或腈类化合物,优选为C 1-6脂肪醇或C 1-6腈类化合物。
6、根据技术方案3-5中任一项所述的方法,其特征在于在反相液相色谱法中使用的流动相中,有机溶剂为甲醇、乙醇或乙腈。
7、根据技术方案3-6中任一项所述的方法,其特征在于在正相液相色谱法中使用的流动相中,按体积计,C 5-7烷烃与其它有机溶剂的比率为70:30至95:5,例如80:20至90:10;在反相液相色谱法中使用的流动相中,按体积计,有机溶剂与水的比率为60:40至50:50,例如60:40至55:45。
8、根据技术方案3-7中任一项所述的方法,其特征在于按大麻二酚粗提物占色谱柱的实际填料装填量的重量百分计,正相液相色谱法中的载样量为8%-15%,反相液相色谱法中的载样量为5%-15%。
9、根据技术方案1-8中任一项所述的方法,其特征在于所述制备型高效液相色谱法采用等度洗脱。
10、根据技术方案1-9中任一项所述的方法,其特征在于所述色谱柱的内径为50-1600mm,有效柱长为250-1500mm。
11、根据技术方案2-10中任一项所述的方法,其特征在于通过将大麻二酚粗提取物溶于有机溶剂中,过滤除去不溶物来提供大麻二酚粗提物进样溶液,其中在正相液相色谱法中,所述有机溶剂为流动相中的任一种溶剂或者任何两种溶剂的混合物;在反相液相色谱法中,所述有机溶剂为流动相中使用的有机溶剂。
12、根据技术方案2-11中任一项所述的方法,其特征在于所述后处理包括减压浓缩干燥、以及结晶处理。
附图说明
图1是实施例1的大麻二酚粗提物的液相色谱分析图
图2是实施例1的大麻二酚的正相制备型高效液相色谱图
图3A和3B是实施例1的大麻二酚纯品的液相色谱分析图
图4是实施例2的大麻二酚粗提物的液相色谱分析图
图5是实施例2的大麻二酚的正相制备型高效液相色谱图
图6A和6B是实施例2的大麻二酚纯品的液相色谱分析图
图7是实施例3的大麻二酚的正相制备型高效液相色谱图
图8A和8B是实施例3的大麻二酚纯品的液相色谱分析图
图9是实施例4的大麻二酚的正相制备型高效液相色谱图
图10A和10B是实施例4的大麻二酚纯品的液相色谱分析图
图11是实施例5的大麻二酚的正相制备型高效液相色谱图
图12A和12B是实施例5的大麻二酚纯品的液相色谱分析图
图13是实施例6的大麻二酚的正相制备型高效液相色谱图
图14A和14B是实施例6的大麻二酚纯品的液相色谱分析图
图15是实施例7的大麻二酚的反相制备型高效液相色谱图
图16A和16B是实施例7的大麻二酚纯品的液相色谱分析图
图17是实施例8的大麻二酚的反相制备型高效液相色谱图
图18A和18B是实施例8的大麻二酚纯品的液相色谱分析图
图19是实施例9的大麻二酚的反相制备型高效液相色谱图
图20A和20B是实施例9的大麻二酚纯品的液相色谱分析图
图21是实施例10的大麻二酚的反相制备型高效液相色谱图
图22A和22B是实施例10的大麻二酚纯品的液相色谱分析图
图23是实施例11的大麻二酚的反相制备型高效液相色谱图
图24A和24B是实施例11的大麻二酚纯品的液相色谱分析图
图25是实施例12的大麻二酚的反相制备型高效液相色谱图
图26A和26B是实施例12的大麻二酚纯品的液相色谱分析图
图27是实施例13的大麻二酚的反相制备型高效液相色谱图
图28A和28B是实施例13的大麻二酚纯品的液相色谱分析图
图29是实施例14的大麻二酚的反相制备型高效液相色谱图
图30A和30B是实施例14的大麻二酚纯品的液相色谱分析图
图31是实施例15的大麻二酚的反相制备型高效液相色谱图
图32A和32B是实施例15的大麻二酚纯品的液相色谱分析图
图33是实施例16的大麻二酚的反相制备型高效液相色谱图
图34A和34B是实施例16的大麻二酚淡黄色油状物的液相色谱分析图
图35A和34B是实施例16的大麻二酚纯品的液相色谱分析图
具体实施方式
本发明提供使用制备型高效液相色谱法纯化大麻二酚的方法。本发明所述制备型高效液相色谱法采用的色谱柱为动态轴向压缩柱或静态预装色谱柱。本发明所述制备型高效液相色谱法可以是正相色谱法,也可以是反相色谱法。
在一些实施方案中,本发明方法包括以下步骤:
(1)提供大麻二酚粗提物溶液;
(2)使用正相或反相制备型高效液相色谱法对大麻二酚粗提物溶液进行进一步纯化,分段收集大麻二酚对应谱带的馏分;和
(3)将收集到的大麻二酚馏分进行后处理,得到大麻二酚纯品。
本发明方法中,大麻二酚粗提物原料可提取自大麻类植物,其可购买得到或根据已知方法来制备。例如但不限于根据参考文献《酶辅助溶剂法提取火麻叶中大麻二酚工艺条件的优化》(中国酿造,2016年第35卷第4期79-82页)或《火麻叶中大麻二酚的热回流法提取工艺研究》(高哲,中国油脂,2019年第44卷第3期107-111页)中公开的方法来制备。通过引用将这些文献以其整体并入本文。大麻二酚粗提物原料中的大麻二酚含量不受特别限制。在示例性的实施方案中,按重量计算,大麻二酚粗提物原料中的大麻二酚含量通常可以为10%-55%,优选为20%-40%、优选为30%-50%,更优选为40%-55%。需要时,可以采用诸如分析型高效液相色谱法之类的已知方法来测定大麻二酚粗提物原料中的大麻二酚的含量。取决于所采用的具体制备型高效液相色谱条件,将大麻二酚粗提物原料溶解于合适的溶剂中,制成待纯化处理的大麻二酚粗提物溶液。示例性实施方案中,使大麻二酚粗提物完全溶解于有机溶剂中,过滤去除不溶物后备用。在一种非限制性实施方案中,将使大麻二酚粗提物超声处理至完全溶解后,用微孔滤膜除去不溶物,备用。
典型的实施方案中,本发明方法中使用的色谱柱为动态轴向压缩柱或者静态预装色谱柱,以经由高载样量实现大麻二酚的工业化分离纯化。本发明方法中使用任何合适的动态轴向压缩柱或者静态预装色谱柱,例如可采用市售商品,例如但不限于由江苏汉邦科技有限公司所提供的动态轴向压缩柱或者静态预装色谱柱。通常可使用内径为50-1600mm,有效柱长为250-1500mm的动态轴向压缩柱或者静态预装色谱柱。
在本发明制备型高效液相色谱法的特别实施方案中,使用等度洗脱,这有利于促进简化缩短纯化过程,提高收率。
本发明方法步骤(2)收集的合并后的馏分的纯度最高可达99.5%以上,收率大于90%。
可采用本领域已知的任何合适的后处理对步骤(2)分离得到的大麻二酚馏分进行处理,以得到最终的产品。在示例性实施方案中,后处理步骤可包括减压浓缩干燥处理。优选地,后处理步骤可进一步包括结晶处理。示例性的实施方案中,可使浓缩干燥所得到的大麻二酚产品在己烷或乙醇与己烷的混合溶剂中结晶,例如但不限于在乙醇:正己烷=0-1:4-10(按体积计)的溶剂中结晶。
可以采用诸如分析型高效液相色谱法之类的已知方法来测定步骤(2)和/或步骤(3)中得到的产品中的大麻二酚的含量。
示例性实施方案中,可采用分析型高效液相色谱进行大麻二酚粗提物原料以及步骤(2)和步骤(3)中得到的大麻二酚纯化产品的纯度分析,例如用外标曲线法测定其中大麻二酚的含量。
举例而言,可参照文献报道的分析型高效液相色谱方法进行大麻二酚含量分析。例如《工业大麻叶中大麻二酚含量分析研究》(高宝昌,黑龙江科学,2018年第9卷第1期第61-63页)中公开了大麻二酚含量的液相色谱分析方法,其中由78%甲醇和22%纯化水组成的流动相进行等度洗脱,设置检测波长为220nm,柱温为30℃。通过引用将该文献以其整体并入本文。
在一个具体的方面,本发明提供使用正相制备型高效液相色谱法纯化大麻二酚的方法,该方法包括:
(1)提供大麻二酚粗提物溶液;
(2)使用正相制备型高效液相色谱法对步骤(1)提供的大麻二酚粗提物溶液进行进一步纯化,分段收集大麻二酚对应谱带的馏分;和
(3)将收集到的大麻二酚馏分进行后处理,得到大麻二酚纯品。
步骤(1)中,将大麻二酚粗提取物溶于有机溶剂中,以制备进样溶液,其中所述有机溶剂可为下文描述的步骤(2)中所使用的流动相中的任一种溶剂或者任何两种溶剂的混合物。如上文所描述的,大麻二酚粗提取物原料可以购买得到或可以根据已知方法制备,其中大麻二酚的含量不受特别限制,举例而言,按重量计,通常可以为10%-55%,优选为20%-40%、优选为30%-50%,更优选为40%-55%。在一些示例性的实施方案中,将大麻二酚粗提物按1g:2-10ml的比例溶于有机溶剂(例如但不限于正己烷)中(即,大麻二酚的粗提物在该有机溶剂中的浓度为100-500mg/ml),完全溶解后,过滤除去不溶物,备用。
任选地,可采用分析型高效液相色谱(例如以上提及的《工业大麻叶中大麻二酚含量分析研究》等文献方法)对大麻二酚粗提取物进行纯度分析。
步骤(2)中,对正相制备型高效液相色谱条件进行设置,尤其进行如下设置:
色谱柱采用动态轴向压缩柱或者静态预装色谱柱,如上文所描述的,该色谱柱的内径可为50-1600mm,有效柱长可为250-1500mm。色谱柱中的填料采用硅胶,其粒度范围为10μm-100μm,优选为10μm-60μm,更优选为10μm-30μm。硅胶填料为本领域已知的,可获得自商业渠道,例如但不限于购自江苏汉邦科技有限公司。
按大麻二酚粗提物占色谱柱(动态轴向压缩柱或者静态预装色谱柱)的实际填料装填量的重量百分计,载样量为8%-15%,优选为10-15%。
流动相由C 5-7烷烃和其它有机溶剂组成,其中所述其它有机溶剂选自乙酸乙酯、二氯甲烷、乙醇、甲醇和丙醇。优选的实施方案中,所述其它有机溶剂为乙醇。更优选的实施方案中,所述其它有机溶剂为乙酸乙酯。甚至更优选的实施方案中,所述其它有机溶剂为二氯甲烷。优选的实施方案中,采用等度洗脱,按体积计,流动相中的C 5-7烷烃与其它有机溶剂的比率为70:30至95:5,优选为80:20至90:10。洗脱时流动相的具体流速取决于实际使用的色谱柱柱径以及大麻二酚纯品的目标产量等因素。一些示例性实施方案中,洗脱时流动相的流速为40ml/min-50000ml/min。
使用紫外检测器进行在线监测。示例性实施方案中,检测波长可为228nm。
分段收集大麻二酚对应谱带的馏分,具体的收集保留时间段取决于实际使用的制备色谱条件。
步骤(3)中,将步骤(2)收集的馏分减压浓缩或干燥,得到淡黄色油状物。
优选地,将所得到的淡黄色油状物进一步结晶得到白色晶体。在优选的实施方案中,如上文所讨论的,将所得到的淡黄色油状物在己烷或乙醇与己烷的混合溶剂中结晶得到白色针状结晶体。
可采用分析型高效液相色谱(例如以上提及的《工业大麻叶中大麻二酚含量分析研究》等文献方法)对步骤(2)和/或步骤(3)中得到的产品进行纯度分析。
在另一个具体的方面,本发明提供使用反相制备型高效液相色谱法纯化大麻二酚的方法,该方法包括:
(1)提供大麻二酚粗提物溶液;
(2)使用反相制备型高效液相色谱法对步骤(1)提供的大麻二酚粗提物溶液进行进一步纯化,分段收集大麻二酚对应谱带的馏分;和
(3)将收集到的大麻二酚馏分进行后处理,得到大麻二酚纯品。
步骤(1)中,将大麻二酚粗提取物溶于有机溶剂中,以制备进样溶液,所述有机溶剂与以下描述的步骤(2)的流动相中使用的有机溶剂相同。如上文所描述的,如上文所描述的,大麻二酚粗提取物原料可以购买得到或可以根据已知方法制备,其中大麻二酚的含量不受特别限制,举例而言,按重量计,通常可以为10%-55%,优选为20%-40%、优选为30%-50%,更优选为40%-55%。在一些示例性的实施方案中,将大麻二酚粗提物按1g:2-10ml的比例溶于有机溶剂中(即,大麻二酚的粗提物在有机溶剂中的浓度为100-500mg/ml),完全溶解(例如超声处理至完全溶解)后,过滤(例如用微孔滤膜,例如0.45μm的微孔滤膜)除去不溶物,备用。
任选地,可采用分析型高效液相色谱(例如以上提及的《工业大麻叶中大麻二酚含量分析研究》等文献方法)对大麻二酚粗提取物进行纯度分析。
步骤(2)中,对反相制备型高效液相色谱条件进行设置,尤其进行如下设置:
色谱柱采用动态轴向压缩柱或者静态预装色谱柱,如上文所描述的,该色谱柱的内径可为50-1600mm,有效柱长可为250-1500mm。色谱柱中的填料采用C18、C8或聚合物填料。C18或C8填料是本领域已知的,可获得自商业渠道,例如但不限于购自江苏汉邦科技有限公司。在示例性的实施方案中,聚合物填料是以苯乙烯-二乙烯苯为骨架的聚合物填料。C18、C8或聚合物的填料的粒度范围为10μm-65μm,优选为10μm-50μm,更优选为10μm-30μm。
按大麻二酚粗提物占色谱柱(动态轴向压缩柱或者静态预装色谱柱)的实际填料装填量的重量百分计,载样量为5%-15%,优选为8%-15%,更优选为10-15%。
流动相为有机溶剂的水溶液,其中有机溶剂选自为脂肪醇或腈类化合物,优选为C 1-6脂肪醇和C 1-6腈类化合物。在示例性实施方案中,有机溶剂优选为乙腈、更优选为甲醇,甚至更优选为乙醇。优选的实施方案中,采用等度洗脱,按体积计,流动相中的有机溶剂与水的比率为60:40至50:50,优选为60:40至55:45。洗脱时流动相的具体流速取决于实际使用的色谱柱柱径以及大麻二酚纯品的目标产量等因素。一些示例性实施方案中,洗脱时流动相的流速为50ml/min-40000ml/min。
使用紫外检测器进行在线监测。示例性实施方案中,检测波长可为220nm。
分段收集大麻二酚对应谱带的馏分,具体的收集保留时间段取决于实际使用的制备色谱条件。
步骤(3)中,将步骤(2)收集的馏分减压浓缩干燥,得到淡黄色油状物。
优选地,将所得到的淡黄色油状物进一步结晶。在优选的实施方案中,如上文所讨论的,将所得到的淡黄色油状物在己烷或乙醇与己烷的混合溶剂中结晶得到白色针状结晶体。
可采用分析型高效液相色谱(例如以上提及的《工业大麻叶中大麻二酚含量分析研究》等文献方法)对步骤(2)和/或步骤(3)中得到的产品进行纯度分析。
本发明方法的优点在于可直接采用粗提的大麻二酚提取物来制备,不需要大量的前处理,过程简单、易控制,工艺技术简单。本发明方法的优点还在于使用等度洗脱的方式,一次分离制备就可以得到纯度高达99.5%或以上的大麻二酚。本发明方法适用于大规模制备生产,经由高载样量实现大麻二酚的工业化分离纯化,具有进一步产业化生产的应用价值,整个分离工艺稳定,重现性好,环保、分离总收率高达90%或以上。
以下通过实施例进一步阐述本发明,应理解,以下实施例不意欲以任何方式限制本发明。
以下实施例中,参照文献《酶辅助溶剂法提取火麻叶中大麻二酚工艺条件的优化》中国酿造,2016年第35卷第4期)中的方法制备大麻二酚粗提物原料。参考文献《工业大麻叶中大麻二酚含量分析研究》(高宝昌,黑龙江科学,2018年第9卷第1期第61-63页)中的方法对纯化产品中的大麻二酚含量进行液相色谱分析。所采用的动态轴向压缩柱、静态预装色谱柱、正相硅胶填料以及反相C8和C18填料均购自江苏汉邦科技有限公司。
实施例1
取大麻二酚含量为20%的70g粗提物,用20ml正己烷溶解并过滤后,以30ml/min的流速注入采用Φ50型动态轴向压缩柱的制备型液相色谱系统,柱填充尺寸为Φ50×500mm,填料为正相硅胶,粒径为30μm,按正己烷:二氯甲烷=70:30(V:V)进行等度洗脱,洗脱时的流速为45ml/min,紫外可见光检测器的检测波长为228nm,收集保留时间在142-240min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的二氯甲烷,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为270min。将收集的馏分减压浓缩,得到14.7g纯度为99.52%的淡黄色油状物,按1g油状物:6ml结晶溶剂(正己烷:乙醇=8:1(V/V)),使油状物在结晶溶剂中结晶,得到13.3g白色晶体,收率为95%,载样量为10%,经液相色谱分析,大麻二酚的纯度为99.56%(参见图3A和3B)。
实施例2
取大麻二酚含量为20%的25g粗提物,用50ml正己烷溶解并过滤后,以50ml/min的流速注入采用Φ50型动态轴向压缩柱的制备型液相色谱系统,柱填充尺寸为Φ50×500mm,填料为正相硅胶,粒径为30μm,按正己烷:二氯甲烷=70:30(V:V)进行等度洗脱,洗脱时的流速为45ml/min,紫外可见光检测器的检测波长为228nm,收集保留时间在142~240min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的二氯甲烷,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为270min。将收集的馏分减压浓缩,得到5.16g纯度为99.50%的淡黄色油状物,按1g油状物:10ml结晶溶剂(正己烷:乙醇=10:0.5(V/V)),使油状物在结晶溶剂中结晶,得到4.75g白色晶体,收率为95%,载样量为5%,经液相色谱分析,大麻二酚的纯度为99.56%(参见图6A和6B)。
实施例3
取大麻二酚含量为10%的70g粗提物,用50ml正己烷溶解并过滤后,以30ml/min的流速泵入采用Φ50型动态轴向压缩柱的制备型液相色谱系统,柱填充尺寸为Φ50×500mm,填料为正相硅胶,粒径为60μm,按正己烷:乙酸乙酯=80:20(V:V)进行等度洗脱,洗脱时的流速为60ml/min,紫外检测器的检测波长为228nm,收集保留时间在104-216min的馏分,当大麻二酚洗脱完毕后,流动相切换成100%的乙酸乙酯,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为242min。将收集的馏分减压浓缩,得到7.31g纯度99.53%的淡黄色油状物,按1g油状物:8ml结晶溶剂(正己烷:乙醇=9:1(V/V)),使油状物在结晶溶剂中结晶,得到6.58g白色晶体,收率为94%,载样量为10%,经液相色谱分析,大麻二酚的纯度为99.63%(参见图8A和8B)。
实施例4
取大麻二酚含量为10%的20000g粗提物,用35840ml正己烷溶解并过滤后,以10000ml/min的流速泵入采用Φ800型静态预装色谱柱的制备型液相色谱系统,柱填充尺寸为Φ800×800mm,填料为正相硅胶,粒径为60μm,按正己烷:乙酸乙酯=80:20(V:V)进行等度洗脱,洗脱时的流速为12800ml/min,紫外检测器的检测波长为228nm,收集保留时间在104~216min的馏分,当大麻二酚洗脱完毕后,流动相切换成100%的乙酸乙酯,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为242min。将收集的馏分减压浓缩,得到2065.93g纯度为99.51%的淡黄色油状物,按1g油状物:10ml结晶溶剂(正己烷:乙醇=7:1(V/V)),使油状物在结晶溶剂中结晶,得到1880g白色晶体,收率为94%,载样量为10%,经液相色 谱分析,大麻二酚的纯度为99.63%(参见图10A和10B)。
实施例5
取大麻二酚含量为40%的1800g粗提物,用1000ml正己烷溶解并过滤后,以500ml/min的流速泵入采用Φ200型动态轴向压缩柱的制备型液相色谱系统,柱填充尺寸为Φ200×600mm,填料为正相硅胶,粒径为45μm,按正己烷:乙醇=95:5(V:V)进行等度洗脱,洗脱时的流速为800ml/min,紫外检测器的检测波长为228nm,收集保留时间在117-277min的馏分,当大麻二酚洗脱完毕后,流动相切换成100%乙醇,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为239min,将收集的馏分减压浓缩,得到720g纯度为99.54%的淡黄色油状物,按1g油状物:5ml结晶溶剂(正己烷:乙醇=9.5:1(V/V)),使油状物在结晶溶剂中结晶,得到648g白色晶体,收率为90%,载样量13%,经液相色谱分析,大麻二酚的纯度为99.79%(参见图12A和12B)。
实施例6
取大麻二酚含量为40%的12150g粗提物,用40000ml正己烷溶解并过滤后,以35000ml/min的流速泵入采用Φ1200型动态轴向压缩柱的制备型液相色谱系统,柱填充尺寸为Φ1200×600mm,填料为正相硅胶,粒径为100μm,按正己烷:乙醇=95:5(V:V)进行等度洗脱,洗脱时的流速为40000ml/min,紫外检测器的检测波长为228nm,收集保留时间在117~277min的馏分,当大麻二酚洗脱完毕后,流动相切换成100%乙醇,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为239min,将收集的馏分减压浓缩,得到4860g纯度为99.51%的淡黄色油状物,按1g油状物:10ml(正己烷:乙醇=9:0.1(V/V)),使油状物在结晶溶剂中结晶,得到4374g白色晶体,收率为90%,载样量13%,经液相色谱分析,大麻二酚的纯度为99.79%(参见图14A和14B)。
实施例7
取大麻二酚含量为50%的9000g粗提物,加入30L甲醇溶解并过滤后,以10L/min的流速注入采用Φ800型动态轴向压缩柱的制备型液相色谱系统,柱填充尺寸为Φ800×250mm,填料为C18,粒径为20μm,按甲醇:水=60:40(V:V)进行等度洗脱,洗脱时的流速为15L/min,紫外检测器的检测波长为220nm,收集保留时间在90-130min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的甲醇,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为160min。将收集的馏分减压干燥,得到4666.6g纯度为99.50%的淡黄色油状物按1g油状物:10ml结晶溶剂(正己烷:乙醇=8:1(V/V)),使油状物在结晶溶剂中结晶,得到4200g 白色晶体,收率为93.33%,载样量10%,经液相色谱分析,大麻二酚的纯度为99.56%(参见图16A和16B)。
实施例8
取大麻二酚含量为50%的560g粗提物,加入2500ml甲醇溶解并过滤后,以500ml/min的流速注入采用Φ200型动态轴向压缩柱的制备液相色谱系统,柱填充尺寸为Φ200×250mm,填料为C18,粒径为20μm,按甲醇:水=60:40(V:V)进行等度洗脱,洗脱时的流速为800ml/min,紫外检测器的检测波长为220nm,收集保留时间在90~130min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的甲醇,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为160min。将收集的馏分减压浓缩,得到289.33g纯度为99.50%的淡黄色油状物,按1g油状物:10ml结晶溶剂(正己烷:乙醇=10:1(V/V)),使油状物在结晶溶剂中结晶,得到260.4g白色晶体,收率为93%,载样量10%,经液相色谱分析,大麻二酚的纯度为99.56%(参见图18A和18B)。
实施例9
取大麻二酚含量为50%的450g粗提物,用1500ml乙腈溶解并过滤后,以30ml/min的流速注入采用Φ50型静态预装色谱柱的制备液相色谱系统,柱填充尺寸为Φ50×500mm,填料为C18,粒径为10μm,按乙腈:水=52:48(V:V)进行等度洗脱,洗脱时的流速为50ml/min,紫外检测器的检测波长为220nm,收集保留时间在92~149min的馏分,当大麻二酚洗脱完毕后,流动相切换成100%乙腈,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为235min。将收集的馏分减压浓缩,得到235g纯度为95.59%的淡黄色油状物。按1g油状物:10ml结晶溶剂(正己烷:乙醇=5:0.1(V/V)),使油状物在结晶溶剂中结晶,得到211.5g白色针状晶体,收率为94%,载样量为9%,经液相色谱分析,大麻二酚的纯度为99.89%(参见图20A和20B)。
实施例10
取大麻二酚含量为40%的5400g粗提物,加入10800ml乙醇溶解并过滤后,以10000ml/min的流速注入采用Φ800型动态轴向压缩柱的制备型液相色谱系统,柱填充尺寸为Φ800×250mm,填料为C8,粒径为30μm,按乙醇:水=55:45(V:V)进行等度洗脱,洗脱时的流速为15000ml/min,紫外检测器的检测波长为220nm,收集保留时间在100~190min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的乙醇,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为220min。将收集的馏分减压浓缩,得到2280g纯度为99.57%的淡黄色油状物,按1g油状物:10ml结晶溶剂(正己烷:乙醇=4:0.5(V/V)),使油状物在 结晶溶剂中结晶,得到2052g白色晶体,收率为95%,载样量为6%,经液相色谱分析,大麻二酚的纯度为99.79%(参见图22A和22B)。
实施例11
取大麻二酚含量为55%的30000g粗提物,加入60000ml乙醇溶解并过滤后,以28000ml/min的流速注入采用Φ1200型静态预装色谱柱的制备型液相色谱系统,柱填充尺寸为Φ1200×250mm,填料为C18,粒径为60μm,按乙醇:水=52:48(V:V)进行等度洗脱,洗脱时的流速为36000ml/min,紫外可见光检测器的检测波长为220nm,收集保留时间在100~240min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的乙醇,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为270min。将收集的馏分减压浓缩,得到16866.6g纯度为99.55%的淡黄色油状物,按1g油状物:10ml结晶溶剂(正己烷:乙醇=6:0.8(V/V)),使油状物在结晶溶剂中结晶,得到15180g白色晶体,收率为92%,载样量为15%,经液相色谱分析,大麻二酚的纯度为99.65%(参见图24A和24B)。
实施例12
取大麻二酚含量为30%的800g粗提物,加入2400ml乙醇溶解并过滤后,以800ml/min的流速注入采用Φ200型静态预装色谱柱的制备型液相色谱系统,柱填充尺寸为Φ200×250mm,填料为聚合物填料DIAION TM HP20SS(购自日本三菱化学株式会社),粒径为50μm,按乙醇:水=54:46(V:V)进行等度洗脱,洗脱时的流速为1000ml/min,紫外可见光检测器的检测波长为220nm,收集保留时间在100~240min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的乙醇,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为270min。将收集的馏分减压干燥,得到256.06g纯度为99.53%的淡黄色油状物,按1g油状物:10ml结晶溶剂(正己烷:乙醇=8:1(V/V)),使油状物在结晶溶剂中结晶,得到230.46g白色晶体,收率为96.03%,载样量为14%,经液相色谱分析,大麻二酚的纯度为99.83%(参见图26A和26B)。
实施例13
取大麻二酚含量为25%的5000g粗提物,加入12500ml甲醇溶解并过滤后,以80000ml/min的流速注入采用Φ600型动态轴向压缩柱的制备型液相色谱系统,柱填充尺寸为Φ600×250mm,填料为C8,粒径为10μm,按甲醇:水=60:40(V:V)进行等度洗脱,洗脱时的流速为10000ml/min,紫外检测器的检测波长为220nm,收集保留时间在80~119min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的甲醇,并冲洗30min,将后杂冲出,一 个分离周期结束,洗脱时间为149min。将收集的馏分减压浓缩,得到1297.22g纯度为99.51%的淡黄色油状物,按1g油状物:10ml结晶溶剂(正己烷:乙醇=8:0.5(V/V)),使油状物在结晶溶剂中结晶,得到1167.5g白色晶体,收率为93.4%,载样量为10%,经液相色谱分析,大麻二酚的纯度为99.82%(参见图28A和28B)。
实施例14
取大麻二酚含量为10%的30000g粗提物,加入60000ml乙醇溶解并过滤后,以30000ml/min的流速注入采用Φ1200型动态轴向压缩柱的制备型液相色谱系统,填充尺寸为Φ1200×250mm,填料为C8,粒径为60μm,按乙醇:水=52:48(V:V)进行等度洗脱,洗脱时的流速为40000ml/min,紫外检测器的检测波长为220nm,收集保留时间在89~149min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的乙醇,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为179min。将收集的馏分减压浓缩,得到3200g纯度为99.50%的淡黄色油状物,按1g油状物:10ml结晶溶剂(正己烷:乙醇=10:1(V/V)),使油状物在结晶溶剂中结晶,得到2880g白色晶体,收率为96%,载样量为15%,经液相色谱分析,大麻二酚的纯度为99.54%(参见图30A和30B)。
实施例15
取大麻二酚含量为10%的5000g粗提物,加入17000ml甲醇溶解并过滤后,以60000ml/min的流速注入采用Φ600型静态预装色谱柱的制备型液相色谱系统,柱填充尺寸为Φ600×250mm,填料为聚合物填料DIAION TM HP20SS(购自日本三菱化学株式会社),其粒径为30μm,按甲醇:水=60:40(V:V)进行等度洗脱,洗脱时的流速为9500ml/min,紫外可见光检测器的检测波长为220nm,收集保留时间在92~167min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的甲醇,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为197min。将收集的馏分减压干燥,得到513.33纯度为99.52%的淡黄色油状物,按1g油状物:10ml结晶溶剂(正己烷:乙醇=10:1(V/V)),使油状物在结晶溶剂中结晶,得到462g白色晶体,收率为92.4%,载样量为10%,经液相色谱分析,大麻二酚的纯度为99.60%(参见图32A和32B)。
实施例16
取大麻二酚含量为45%的12000g粗提物,加入30000ml乙醇溶解并过滤后,以800ml/min的流速注入采用Φ1200型静态预装色谱柱的制备型液相色谱系统,柱填充尺寸为Φ1200×250mm,填料为聚合物填料DIAION TM HP20SS(购自日本三菱化学株式会社),其粒 径为10μm,按乙醇:水=58:42(V:V)进行等度洗脱,洗脱时的流速为38000ml/min,紫外可见光检测器的检测波长为220nm,收集保留时间在76~142min的馏分,当大麻二酚洗脱完毕后,将流动相切换成100%的乙醇,并冲洗30min,将后杂冲出,一个分离周期结束,洗脱时间为172min。将收集的馏分减压干燥,得到5628g淡黄色油状物。经液相色谱分析,该淡黄色油状物中大麻二酚的纯度为的99.57%(参见图34A和34B)。按1g油状物:10ml结晶溶剂(正己烷:乙醇=9:0.5(V/V)),使油状物在结晶溶剂中结晶,得到5065.2g白色晶体,收率为93.8%,载样量为6%,经液相色谱分析,大麻二酚的纯度为99.66%(参见图35A和35B)。

Claims (12)

  1. 用于纯化大麻二酚的方法,其特征在于包括使用制备型高效液相色谱法纯化大麻二酚的步骤,所述制备型高效液相色谱法采用的色谱柱为动态轴向压缩柱或静态预装色谱柱。
  2. 根据权利要求1所述的方法,其特征在于包括以下步骤:
    (1)提供大麻二酚粗提物溶液;
    (2)使用制备型高效液相色谱法对所述大麻二酚粗提物溶液进行纯化,分段收集大麻二酚对应谱带的馏分;和
    (3)将收集到的大麻二酚馏分进行后处理,得到大麻二酚纯品。
  3. 根据权利要求1或2所述的方法,其特征在于所述制备型高效液相色谱法为正相液相色谱法或反相液相色谱法,其中正相液相色谱法中,所述色谱柱使用硅胶填料;反相液相色谱法中,所述色谱柱使用C18、C8或聚合物填料。
  4. 根据权利要求3的方法,其特征在于硅胶填料的粒度为10μm-100μm;C18、C8或聚合物填料的粒度为10μm-65μm。
  5. 根据权利要求3或4所述的方法,其特征在于正相液相色谱法中,流动相由C 5-7烷烃和其它有机溶剂组成,其中所述其它有机溶剂选自乙酸乙酯、二氯甲烷、乙醇、甲醇和丙醇;反相液相色谱法中,流动相为有机溶剂的水溶液,所述有机溶剂为脂肪醇或腈类化合物。
  6. 根据权利要求3-5中任一项所述的方法,其特征在于在反相液相色谱法中使用的流动相中,有机溶剂为甲醇、乙醇或乙腈。
  7. 根据权利要求3-6中任一项所述的方法,其特征在于在正相液相色谱法中使用的流动相中,按体积计,C 5-7烷烃与其它有机溶剂的比率为70:30-95:5;在反相液相色谱法中使用的流动相中,按体积计,有机溶剂与水的比率为60:40至50:50。
  8. 根据权利要求3-7中任一项所述的方法,其特征在于按大麻二酚粗提物占色谱柱的实际填料装填量的重量百分计,正相液相色谱法中的载样量为8%-15%,反相液相色谱法中的载样量为5%-15%。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于所述制备型高效液相色谱法采用等度洗脱。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于所述色谱柱的内径为50-1600mm, 有效柱长为250-1500mm。
  11. 根据权利要求2-10中任一项所述的方法,其特征在于通过将大麻二酚粗提取物溶于有机溶剂中,过滤除去不溶物来提供大麻二酚粗提物进样溶液,其中在正相液相色谱法中,所述有机溶剂为流动相中的任一种溶剂或者任何两种溶剂的混合物;在反相液相色谱法中,所述有机溶剂为流动相中使用的有机溶剂。
  12. 根据权利要求2-11中任一项所述的方法,其特征在于所述后处理包括减压浓缩干燥、以及结晶处理。
PCT/CN2020/098375 2019-12-31 2020-06-28 大麻二酚的纯化方法 WO2021135099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911408122.3A CN111039761B (zh) 2019-12-31 2019-12-31 大麻二酚的纯化方法
CN201911408122.3 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135099A1 true WO2021135099A1 (zh) 2021-07-08

Family

ID=70241662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098375 WO2021135099A1 (zh) 2019-12-31 2020-06-28 大麻二酚的纯化方法

Country Status (2)

Country Link
CN (1) CN111039761B (zh)
WO (1) WO2021135099A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039761B (zh) * 2019-12-31 2021-01-15 江苏汉邦科技有限公司 大麻二酚的纯化方法
US10981849B1 (en) * 2020-02-20 2021-04-20 Sci Pharmtech Inc. Method for preparing cannabinoids
CN115504864A (zh) * 2021-06-07 2022-12-23 南通新世元生物科技有限公司 从工业大麻中获取高纯度大麻二酚的方法
CN115490574A (zh) * 2021-06-17 2022-12-20 北京创新通恒科技有限公司 一种从大麻浸膏中提纯高纯大麻二酚的方法
CN115724724A (zh) * 2022-11-23 2023-03-03 黑龙江省科学院大庆分院 一种动态轴向压缩柱纯化系统洗脱液结晶制备高纯大麻二酚的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851480A (zh) * 2019-04-03 2019-06-07 凤阳县小岗村永和营养保健品有限公司 一种采用动态轴向压缩柱制备高纯度大麻二酚的方法
CN110283048A (zh) * 2019-06-28 2019-09-27 云南翰谷生物科技有限公司 大麻二酚晶体的制备方法
CN110467521A (zh) * 2019-08-22 2019-11-19 哈尔滨工业大学 一种以工业大麻为原料的大麻二酚(cbd)分离纯化方法
CN111039761A (zh) * 2019-12-31 2020-04-21 江苏汉邦科技有限公司 大麻二酚的纯化方法
CN210855904U (zh) * 2019-03-21 2020-06-26 大连博迈科技发展有限公司 一种cbd提取装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10239808B1 (en) * 2016-12-07 2019-03-26 Canopy Holdings, LLC Cannabis extracts
CN107337586B (zh) * 2017-08-28 2020-09-04 黑龙江省科学院大庆分院 一种从汉麻中提取纯化大麻二酚的方法
CN108083989B (zh) * 2018-01-10 2021-04-16 烟台汉麻生物技术有限公司 一种高纯度大麻二酚的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210855904U (zh) * 2019-03-21 2020-06-26 大连博迈科技发展有限公司 一种cbd提取装置
CN109851480A (zh) * 2019-04-03 2019-06-07 凤阳县小岗村永和营养保健品有限公司 一种采用动态轴向压缩柱制备高纯度大麻二酚的方法
CN110283048A (zh) * 2019-06-28 2019-09-27 云南翰谷生物科技有限公司 大麻二酚晶体的制备方法
CN110467521A (zh) * 2019-08-22 2019-11-19 哈尔滨工业大学 一种以工业大麻为原料的大麻二酚(cbd)分离纯化方法
CN111039761A (zh) * 2019-12-31 2020-04-21 江苏汉邦科技有限公司 大麻二酚的纯化方法

Also Published As

Publication number Publication date
CN111039761B (zh) 2021-01-15
CN111039761A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2021135099A1 (zh) 大麻二酚的纯化方法
CN107337586B (zh) 一种从汉麻中提取纯化大麻二酚的方法
WO2020119001A1 (zh) 一种利用高速逆流色谱分离纯化制备大麻二酚的方法
CN102976909B (zh) 一种从生姜中提取纯化6-姜酚的方法
CN104372045A (zh) 一种高纯度萝卜硫素的制备方法
CN102924537B (zh) 从罗布麻叶中同时制备金丝桃苷和异槲皮苷的方法
CN112939742B (zh) 一种大麻素的提取纯化方法
CN103664842A (zh) 一种穿心莲内酯的连续色谱分离方法
CN101955479A (zh) 一种从竹叶中提取荭草苷的方法
CN103159807B (zh) 一种桑枝提取物及其制备方法
CN103304611A (zh) 一种从瓜蒌皮中分离纯化3种黄酮苷的方法
CN107929367B (zh) 离子交换法从钩吻中分离制备钩吻生物碱的方法
CN102432419B (zh) 从紫茎泽兰中提取分离β-榄香烯的方法
CN101422723B (zh) 半枝莲中黄酮类抗肿瘤活性成分的提取方法
CN104844547A (zh) 一种芦荟苷的高效提取和分级纯化方法
CN102250183B (zh) 一种以人参花蕾为原材料制备高纯度人参皂苷Re的方法
CN102389456A (zh) 一种提取蓝萼香茶菜总二萜或蓝萼甲素的方法
CN108191933B (zh) 一种以土茯苓为原料制备新落新妇苷的方法
CN107669728B (zh) 一种治疗前列腺增生的油菜花粉总甾醇及其制备方法
CN106860631B (zh) 一种高效分离纯化酸枣仁皂苷的方法
CN101863882B (zh) 一种分离提纯草胡椒素b的方法
CN115894582A (zh) 一种从桑枝中一次提取桑皮苷a和氧化白藜芦醇的方法
CN103288898A (zh) 新芒果苷对照品提取纯化分离方法
CN116098930B (zh) 一种制取高纯度杜仲叶总黄酮的分离富集方法及应用
CN102911239A (zh) 一种苦玄参苷ia的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909469

Country of ref document: EP

Kind code of ref document: A1