WO2021135055A1 - 可吸收金属器械 - Google Patents

可吸收金属器械 Download PDF

Info

Publication number
WO2021135055A1
WO2021135055A1 PCT/CN2020/092485 CN2020092485W WO2021135055A1 WO 2021135055 A1 WO2021135055 A1 WO 2021135055A1 CN 2020092485 W CN2020092485 W CN 2020092485W WO 2021135055 A1 WO2021135055 A1 WO 2021135055A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
thickness
support rod
hole
holes
Prior art date
Application number
PCT/CN2020/092485
Other languages
English (en)
French (fr)
Inventor
林文娇
曹瀚文
Original Assignee
元心科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元心科技(深圳)有限公司 filed Critical 元心科技(深圳)有限公司
Publication of WO2021135055A1 publication Critical patent/WO2021135055A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91575Adjacent bands being connected to each other connected peak to trough
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0004Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes

Definitions

  • the invention relates to the field of implantable medical devices, in particular to an absorbable metal device.
  • the most widely used materials include biodegradable polymers, magnesium-based alloys and iron-based alloys.
  • the degradable polymers polylactic acid is the most widely used. Its advantage is that it can be completely degraded and absorbed by the body, and its degradation products are carbon dioxide and water, which are friendly to the human body.
  • the disadvantage is that compared with metal-based devices, the mechanical properties of degradable polymer-based devices are insufficient. If the mechanical properties are the same as those of metal-based devices, the size of the degradable polymer-based devices needs to be larger than that of metal-based devices. The application of biodegradable polymer-based devices.
  • magnesium-based alloys and iron-based alloys are easy to process and shape, and have high mechanical strength.
  • corrosion rate of magnesium-based alloys in the human body is too fast. Only by increasing the size of magnesium-based alloy devices to meet the early mechanical implantation Performance, which will also limit the application of magnesium-based alloy equipment.
  • Iron-based materials are considered to be absorbable and safe metal materials, and iron-based devices have strong supporting power, so they have attracted much attention. However, iron-based absorbable devices have the problem of slow corrosion.
  • the absorbable implantable device when the absorbable implantable device has completed its intended use and the diseased part has healed and returned to normal form and function, it will be corroded or degraded without causing new biocompatibility problems.
  • a vascular stent is implanted into the blood vessel of a newborn or infant, if the implantation site is repaired and the vascular stent loses its mechanical properties later, the vascular stent will restrict the normal growth and development of the neonatal or infant’s blood vessels. .
  • the part where the vascular stent is located will become a new stenosis segment, which will cause adverse effects.
  • An absorbable metal device includes an absorbable metal substrate, a corrosion-inhibiting layer provided on the absorbable metal substrate and a corrosion-promoting layer covering the corrosion-inhibiting layer, and a part of the absorbable metal substrate is provided with a corrosion-inhibiting layer A plurality of through holes, the thickness of the part of the corrosion inhibition layer located in the plurality of through holes is smaller than the thickness of other parts of the corrosion inhibition layer; and/or the thickness of the corrosion promoting layer located in the plurality of through holes The thickness of the part of the hole is greater than the thickness of the other part of the corrosion promoting layer.
  • the absorbable metal substrate includes a plurality of wave-shaped ring structures arranged in an axial direction, each of the wave-shaped ring structures includes a plurality of support rods and a plurality of connecting rods, each of the support Both ends of the rod are respectively connected to two adjacent connecting rods to form the wave-shaped ring structure, and at least one of the support rods of each wave-shaped ring structure is provided with the plurality of through holes.
  • a plurality of through holes are formed on only one support rod of each wave-shaped ring structure, so that when the multiple wave-shaped ring structures are deconstructed from the part where the through holes are formed ,
  • the unfolding outline of the absorbable metal device is a rhombus or rectangle;
  • each wave-shaped ring structure has multiple support rods formed with multiple through holes, and the distribution rules of the multiple through holes on each support rod are the same, so that when the multiple wave-shaped ring structures are changed from When the part where the through hole is provided is deconstructed, the unfolding contour of the absorbable metal instrument is multiple rhombuses or multiple rectangles.
  • the hollow rate of each support rod provided with the through hole is 7% to 35%.
  • the thickness of the corrosion-inhibiting layer at the portion of the through hole ranges from 0.2 to 2 ⁇ m, and the thickness of the other parts of the corrosion-inhibiting layer ranges from 0.5 to 5 ⁇ m;
  • the thickness of the through hole part is in the range of 6-50 ⁇ m, and the thickness of the other part of the corrosion promoting layer is in the range of 3-30 ⁇ m.
  • a part of the above-mentioned absorbable metal device is provided with through holes, and the thickness of the corrosion inhibitor layer in the area where the through hole is opened is smaller than the thickness of the area without the through hole, and the thickness of the corrosion promotion layer in the area where the through hole is opened is greater than
  • the thickness of the area without the through hole is adjusted to adjust the corrosion rate of the area with the through hole to be greater than the corrosion rate of the area without the through hole, so that the area with the through hole is fractured preferentially, thereby realizing faster circumferential deconstruction.
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4.
  • FIG. 7 is a schematic diagram of an area of a corrosion-inhibiting layer or a corrosion-promoting layer at the through hole in an embodiment
  • FIG. 8 is a schematic diagram of another embodiment of the corrosion-inhibiting layer or the corrosion-promoting layer at the area of the through hole;
  • Fig. 9 is a schematic structural diagram of an absorbable metal device according to another embodiment.
  • FIG. 11 is a schematic diagram of the expanded structure of the wave-shaped ring structure of the absorbable metal device according to another embodiment after being deconstructed from the circumferential direction;
  • distal end is defined as the end far away from the operator during the operation
  • proximal end is defined as the end close to the operator during the operation.
  • Axial refers to the direction parallel to the line connecting the center of the distal end and the center of the proximal end of the medical device
  • radial refers to the direction perpendicular to the above-mentioned axis.
  • Cyrcumferential refers to the circumferential direction, that is, the direction around the axis of the lumen device.
  • the present disclosure provides an absorbable metal device that can be deconstructed relatively quickly.
  • an absorbable metal device 100 of an embodiment includes an absorbable metal base 10, and the absorbable metal base 10 includes a plurality of wave-shaped ring structures 110 arranged in an axial direction.
  • the wave-shaped ring structure 110 is a closed ring structure with wave crest and wave trough structures. Any two adjacent wave-shaped ring structures 110 are axially connected by the connecting member 120, so that a plurality of wave-shaped ring structures 11 arranged in the axial direction form a lumen structure.
  • each wave-shaped ring structure 110 includes a plurality of supporting rods 111 and a plurality of connecting rods 112.
  • the supporting rod 111 is substantially a bar-shaped rod
  • the connecting rod 112 is substantially an arc-shaped rod or an arch-shaped rod.
  • both ends of each supporting rod 111 are respectively connected to two adjacent connecting rods 112, and each connecting rod 112 is connected to two adjacent supporting rods 111 to form a wave-shaped ring structure 110.
  • one connecting rod 112 forms a wave crest
  • the other connecting rod 112 forms a wave trough.
  • each support rod 111 has an outer surface 1111, an inner surface 1112 opposite to the outer surface 1111, and two opposite side surfaces 1114 connecting the outer surface 1111 and the inner surface 1112.
  • the outer surface 1111 is the surface that abuts against the inner wall of the blood vessel
  • the inner surface 1112 is the surface that directly contacts the blood.
  • At least one support rod 111 of each wave-shaped ring structure 110 is provided with a plurality of through holes 1113.
  • the through hole 1113 penetrates the outer surface 1111 and the inner surface 112 of the support rod 111.
  • the through hole 1113 penetrates the two side surfaces 1114 of the support rod 111.
  • the connecting member 120 is approximately " ⁇ "-shaped. It should be noted that in other embodiments, the shape of the connecting member 120 is not limited to the " ⁇ " shape, which can ensure that the multiple wave-shaped ring structures 110 are axially connected without affecting any compression and expansion of the absorbable metal instrument 100. The shape of the connecting member 120 is suitable.
  • the thickness of the part of the corrosion-inhibiting layer 120 located in the through hole 1113 is less than the thickness of the other parts of the corrosion-inhibiting layer 120, and the thickness of the part of the corrosion-promoting layer 130 located in the through-hole 1113 is greater than that of the other parts of the corrosion-promoting layer 130.
  • the thickness of the part As shown in FIG. 7, the part of the corrosion-inhibiting layer 120 located in the through hole 1113 refers to the part of the corrosion-inhibiting layer 120 covering the region R of the support rod 111.
  • the portion of the corrosion-promoting layer 130 located in the through hole 1113 also refers to the portion of the corrosion-promoting layer 130 covering the region R of the corrosion-inhibiting layer 120.
  • the region R shown in FIG. 7 extends from one end to the other end of the support rod 111 in the width direction B of the support rod 111, and extends from the through hole 1113 at the extreme edge of one end in the length direction L.
  • the through hole 1113 to the extreme edge of the other end.
  • the corrosion-inhibiting layer 120 can isolate the absorbable metal base 10 from body fluids to a certain extent, so as to delay the corrosion of the absorbable metal base 10. As the corrosion-inhibiting layer 120 is consumed, the absorbing metal substrate 10 is exposed and corrodes quickly. Moreover, in the later stage of the implantation, as the corrosion-promoting layer 130 is consumed or degraded, the corrosion-promoting layer 130 can release corrosion-promoting substances to accelerate the corrosion of the absorbable metal substrate 10.
  • the corrosion rate of the absorbable metal base 10 at different stages of implantation is controlled by the corrosion inhibitor layer 120 and the corrosion-promoting layer 130, so as to prevent the absorbable metal base 10 from corroding too fast or make the absorbable metal base 10 complete in the early stage of implantation. Does not corrode. In addition, in the later stage of implantation, the absorbable metal base 10 can corrode quickly.
  • the thickness of the part of the corrosion-inhibiting layer 120 located in the through hole 1113 is smaller than the thickness of other parts of the corrosion-inhibiting layer 120, so that the part of the corrosion-inhibiting layer 120 located in the through hole 1113 is preferentially exhausted, so that the opening of the support rod 111 is opened.
  • the area of the hole 1113 is preferentially exposed.
  • the thickness of the part of the corrosion-promoting layer 130 located in the through hole 1113 is greater than the thickness of other parts of the corrosion-promoting layer 130, so that the concentration of the corrosion-promoting substance accumulated around the area of the support rod 111 where the through hole 1113 is opened is higher. It is possible to accelerate the corrosion of the area of the support rod 111 where the through hole 1113 is opened.
  • the absorbable metal device 100 can radially support the luminal tissue.
  • the supporting rod 111 plays the main supporting role.
  • a through hole 1113 is opened on the supporting rod 111, and the corrosion inhibitor layer 120 is formed in the area where the through hole 1113 is opened and the area without the through hole 1113.
  • the above-mentioned thickness difference causes the corrosion-promoting layer 130 to form the above-mentioned thickness difference in the area where the through hole 1113 is opened and the area without the through hole 1113, so that the area of the support rod 111 where the through hole 1113 is opened is preferred.
  • the support rod 111 is broken, the radial support force generated by the absorbable metal instrument 100 on the tissue is weakened or disappeared, so that the restraint of the tissue is released as soon as possible, so as to start normal development as soon as possible.
  • the low oxygen environment may cause the corrosion rate of the absorbable metal substrate 10 to slow down.
  • the through hole 1113, the corrosion inhibitor layer 120 and the corrosion promotion layer 130 are used to coordinate the corrosion rate to control the corrosion rate, so that the absorbable metal device 100 is applied to certain applications.
  • the corrosion rate of the absorbable metal matrix 10 still meets clinical needs.
  • the thickness of the part of the corrosion-inhibiting layer 120 located in the through hole 1113 is smaller than the thickness of the other parts of the corrosion-inhibiting layer 120, and the corrosion-promoting layer 130 is a coating with a uniform thickness, that is, the corrosion-promoting layer 130 is located in the through-hole.
  • the thickness of the part of the hole 1113 is equal to the thickness of the other part of the corrosion-promoting layer 130.
  • the corrosion-inhibiting layer 120 is a coating or plating layer with a uniform thickness, that is, the thickness of the area of the corrosion-inhibiting layer 120 located in the through hole 1113 is equal to the thickness of other areas.
  • the thickness of the portion of the corrosion-promoting layer 130 located in the through hole 1113 is greater than the thickness of other portions of the corrosion-promoting layer 130.
  • each wave-shaped ring structure 110 of the absorbable metal substrate 10 only the through holes 1113 are formed on the individual support rods 111, and the corrosion inhibitor layer 120 and the corrosion promotion layer 130 are as described above.
  • the thickness difference is set. As long as the support rod 111 formed with the through hole 1113 is preferentially broken, the absorbable metal base 10 can also be quickly deconstructed from the circumferential direction.
  • the through hole 1113 can increase the creeping area of the endothelial cells and increase the creeping path of the endothelial cells, which is beneficial to accelerate endothelialization and improve the firmness of the intimal coating, thereby reducing the risk of thrombosis and embolism.
  • the way of opening the through-holes 1113 can significantly reduce the surface coverage of the absorbable metal device 100 Therefore, the volume of the absorbable metal substrate 10 per unit tissue area (for example, unit blood vessel area) is significantly reduced.
  • Each support rod 111 of each wave-shaped ring structure 110 is provided with a plurality of through holes 1113, so that the effect of reducing the risk of thrombosis and embolism, increasing the corrosion rate and reducing the absorption period is better.
  • the edge of any one through hole 1113 and the edge of the support rod 111 The distance is L.
  • the edge of the support rod 111 mentioned above refers to the edge of the support rod 111 extending along the length direction L
  • the edge of the through hole 1113 refers to the edge closest to the edge of the support rod 111.
  • the value of L is less than 25 microns, it may cause breakage at the through hole 1113 during the expansion process of the absorbable metal device 100.
  • the arrangement of the multiple through holes 1113 on each support rod 111 is not limited to being arranged in a row, but is arranged in multiple rows and spaced along the length direction L of the support rod 111.
  • the distance between any two adjacent through holes 1113 is greater than or equal to 20 microns.
  • the sum of the apertures along the width direction B of the support rod 111 of the plurality of through holes 1113 arranged in the width direction B accounts for less than or equal to 57% of the width of the support rod 111, so as to prevent the through hole 1113 from being expanded during the expansion process. Fracture occurred.
  • the plurality of through holes 1113 are arranged randomly or irregularly on the support rod 111.
  • any one through hole 1113 on each support rod 111 of each wave ring structure 110 and a corresponding through hole 1113 on the corresponding support rod 111 of other wave ring structures 110 are located On the same straight line.
  • line II in Figure 11 is the axial center axis of the absorbable metal substrate 10) and Figure 12, each support rod 111 on each wave-shaped ring structure 110 is provided with four The through holes 1113, and the four through holes 1113 are arranged in a row along the length direction L of the support rod 111 at intervals.
  • the through holes 1113 are opened according to the above rules, so that each wave-shaped ring structure 110 is regularly fractured due to corrosion, ensuring that each wave-shaped ring structure 110 can lose its mechanical properties when it is broken, and release the restraint on the healed tissue as soon as possible .
  • the shape of the through holes 1113 is not limited, and may be regular or irregular.
  • the through hole 1113 may be a circular hole, a polygonal hole, or the like.
  • the volume of the absorbable metal matrix 10 per unit lumen tissue area is 6.4-36 ⁇ m.
  • the coverage rate of the absorbable metal substrate 10 in the nominal expanded state is 8-12%.
  • the above-mentioned luminal tissues are blood vessels and other luminal tissues.
  • the nominal state refers to the state in which the absorbable metal device 100 is expanded under nominal pressure.
  • Nominal pressure refers to the design pressure for expansion.
  • the volume of the absorbable metal matrix 10 per unit lumen tissue area can be considered as the volume of the hollow rectangular sheet material corresponding to the unit lumen tissue area.
  • the volume of the absorbable metal matrix 10 per unit lumen tissue area is 6.4-36 ⁇ m and the coverage is 8-12%, the absorption period, radial support performance and expansion performance of the absorbable metal device 100 can be considered.
  • the material of the absorbable metal base 10 is a zinc-based material
  • the material of the corrosion-inhibiting layer 120 is pure magnesium or a magnesium-based alloy.
  • the material of the absorbable metal base 10 is an iron-based material
  • the material of the corrosion-inhibiting layer 120 is pure zinc or zinc alloy
  • the material of the corrosion-promoting layer 130 is degradable polyester.
  • the difference between the thickness of the part of the corrosion-inhibiting layer 120 located in the through hole 1113 and the thickness of other parts of the corrosion-inhibiting layer 120 is in the range of 0.3 to 3 micrometers
  • the thickness of the part of the corrosion-promoting layer 130 located in the through-hole 1113 is equal to The thickness difference of other parts of the layer 130 ranges from 3 to 47 microns, so that the part of the absorbable metal base 10 where the through hole 1113 is opened can be preferentially broken, so that the absorbable metal base 10 can be quickly moved from the circumferential direction. Deconstruction.
  • a plurality of through holes 1113 are opened, and the thickness of the portion of the corrosion inhibitor layer 120 located in the plurality of through holes 1113 is small, which is beneficial to reduce the amount of metal iron and zinc materials, and is beneficial to reduce the structure Absorb the burden of metabolism and reduce biological risks.
  • the thickness of the support rod 111, the thickness of the corrosion-inhibiting layer 120 and the corrosion-promoting layer 130 are matched with the hollow rate of the support rod 111, so that the corrosion behavior of the absorbable metal device 100 meets the requirements of clinical use, that is, during the repair period of the disease It can maintain sufficient mechanical support performance, and after the repair of the lesion is completed, it can be deconstructed in the circumferential direction as soon as possible to lose the mechanical performance as soon as possible, release the restraint on the healed lesion as soon as possible, and make the healed lesion develop normally as soon as possible.
  • the thickness of the corrosion-inhibiting layer 120 is not uniform, and the thickness of the corrosion-promoting layer 130 is uniform, the difference between the thickness of the portion of the corrosion-inhibiting layer 120 located in the through hole 1113 and the thickness of other portions of the corrosion-inhibiting layer 120 The range is 0.3 to 3 microns.
  • the thickness of the corrosion promoting layer 130 is 3-50 microns.
  • the difference between the thickness of the part of the corrosion-promoting layer 130 located in the through hole 1113 and the thickness of other parts of the corrosion-promoting layer 130 ranges from 3 to 47 micrometers, the thickness of the corrosion inhibition layer 120 is 0.2-5 micrometers.
  • the position where the through hole 1113 is opened is not limited to the support rod 111.
  • the through hole 1113 can be opened at the location that needs to be fractured preferentially according to requirements, and corrosion inhibitor layers with different thicknesses can be arranged reasonably. 120 and the corrosion promoting layer 130.
  • the above-mentioned absorbable metal device 100 is a lumen device.
  • the absorbable metal device of the present disclosure is not limited to a lumen device, and any device that requires partial preferential rupture is applicable.
  • Electrochemical plating is used to form a corrosion-inhibiting layer on the stent substrate with through holes. During the plating process, the through holes are physically shielded.
  • the method of ultrasonic spraying is used to form a corrosion-promoting layer on the corrosion-inhibiting layer, and the spraying time is increased at the through hole.
  • the preparation of the stent of the comparative example does not require physical shielding and increase the spraying time.
  • M t The mass of the remaining stent matrix after corrosion
  • the stent is implanted into the branch of the left pulmonary artery. After a certain period of time, the blood vessel where the stent is located is taken out, soaked in glutaraldehyde (for example, 6h), dried, then cut along the axial direction, sprayed with gold, and measured by SEM to observe the endothelial coverage and endothelial coverage of the stent A rate of 98% and above is regarded as complete endothelialization.
  • glutaraldehyde for example, 6h
  • the distance between the edge of the through hole and the edge of the support rod is measured under a three-dimensional measuring microscope with an accuracy of 0.001mm;
  • S2 The surface area of the support rod, measured by CAD software.
  • a stent whose base material is an iron-based alloy with a carbon content of not more than 2.11wt.%.
  • the base includes a plurality of wave-shaped ring structures arranged in the axial direction.
  • Each support rod of the wave-shaped ring structure is provided with a plurality of A through hole.
  • a plurality of through holes are spaced and distributed in a row along the length direction of the support rod.
  • a plurality of through holes on axially opposed support rods of different wave-shaped ring structures are respectively connected to form a plurality of straight lines in the axial direction.
  • the distance between two adjacent through holes on each support rod is 20 microns.
  • the percentage of the aperture of any through hole along the width direction of the support rod to the width of the support rod is 57%.
  • the percentage of the aperture of any one through hole along the width direction of the support rod to the width of the support rod is 52%.
  • the shape of the through hole is circular.
  • the distance between the edge of the through hole and the edge of the support rod is 100 ⁇ m.
  • the hollow rate of each support rod is 10%.
  • the surface coverage of the stent is 10.5%
  • the wall thickness of the substrate is 110 ⁇ m
  • the volume of the stent per unit area of the blood vessel is 11.55 ⁇ m
  • the material of the corrosion-inhibiting layer is pure zinc.
  • the thickness of the part of the corrosion-inhibiting layer covering the through hole is 1 ⁇ m
  • the thickness of the other parts of the corrosion-inhibiting layer is 2.5 ⁇ m.
  • the material of the corrosion-promoting layer is polylactic acid
  • the thickness of the portion of the corrosion-promoting layer covering the through holes is 25 ⁇ m
  • the thickness of the other parts of the corrosion-promoting layer is 20 ⁇ m.
  • the shape of the through hole is circular.
  • the shortest distance between the edge of the through hole and the edge of the support rod is 25 ⁇ m.
  • the hollow rate of each support rod is 20%.
  • the surface coverage of the stent is 12%
  • the wall thickness of the substrate is 300 ⁇ m
  • the volume of the stent per unit area of the blood vessel is 36 ⁇ m
  • the material of the corrosion inhibitor is pure zinc.
  • the thickness of the part of the corrosion-inhibiting layer covering the through hole is 2 ⁇ m
  • the thickness of the other part of the corrosion-inhibiting layer is 5 ⁇ m.
  • the material of the corrosion-promoting layer is polylactic acid
  • the thickness of the part of the corrosion-promoting layer covering the through holes is 6 ⁇ m
  • the thickness of the other parts of the corrosion-promoting layer is 3 ⁇ m.
  • the shape of the through hole is triangular-like.
  • the distance between the edge of the through hole and the edge of the support rod is 25 ⁇ m.
  • the hollow rate of each support rod is 7%.
  • the surface coverage of the stent is 11%
  • the wall thickness of the matrix is 91 ⁇ m
  • the volume of the stent per unit area of the blood vessel is 10 ⁇ m
  • the material of the corrosion-inhibiting layer is pure zinc.
  • the thickness of the part of the corrosion-inhibiting layer covering the through hole is 1 ⁇ m
  • the thickness of the other parts of the corrosion-inhibiting layer is 2.5 ⁇ m.
  • the material of the corrosion-promoting layer is polylactic acid, and the thickness of the corrosion-promoting layer is 20 ⁇ m.

Abstract

一种可吸收金属器械(100),包括可吸收金属基体(10)和设置于可吸收金属基体(10)上的缓蚀层(120)及覆盖缓蚀层(120)的促腐蚀层(130),该可吸收金属基体(10)的部分区域上开设有多个通孔(1113),该缓蚀层(120)的位于多个通孔(1113)的部分的厚度小于该缓蚀层(120)的其他部分的厚度;和/或,该促腐蚀层(130)的位于多个通孔(1113)的部分的厚度大于该促腐蚀层(130)的其他部分的厚度。该可吸收金属器械(100)能够较快地解构。

Description

可吸收金属器械 技术领域
本发明涉及植入式医疗器械领域,特别是涉及一种可吸收金属器械。
背景技术
本部分提供的仅仅是与本公开相关的背景信息,其并不必然是现有技术。
目前,在可吸收植入式器械领域,应用最广泛的材料包括可降解聚合物、镁基合金与铁基合金。可降解聚合物中,以聚乳酸应用最为广泛,其优点是可完全降解并被机体吸收,且其降解产物为二氧化碳和水,对人体友好。其缺点在于,与金属基器械相比,可降解聚合物基器械的力学性能不足,若达到与金属基器械相同的力学性能,可降解聚合物基器械的尺寸需要比金属基器械大,这限制了可降解聚合物基器械的应用。镁基合金和铁基合金的优点是易加工塑形,机械强度大,但镁基合金在人体内的腐蚀速度太快,只能通过增大镁基合金器械的尺寸来满足植入早期的力学性能,这同样会限制镁基合金器械的应用。铁基材料被认为是可以吸收的、安全的金属材料,而且铁基器械具有较强的支撑力,因此备受关注。但是,铁基可吸收器械存在腐蚀缓慢的问题。
从临床应用的角度来说,当可吸收植入式器械完成了其预期用途,病变部位痊愈并恢复正常形态和功能后,在不引起新的生物相容性问题的前提下,因腐蚀或降解而导致器械失去力学性能以对植入部位不产生束缚作用的时间点越早越好,以避免器械过久地限制植入部位的正常发育。例如,当将血管支架植入新生儿或婴幼儿的血管中,如果植入部位修复完成后,血管支架失去力学性能的时间较晚,则血管支架会束缚新生儿或婴幼儿血管的正常生长发育。并且,当血管支架长期残留于血管中时,该血管支架所在的部位将成为新的狭窄段,从而产生不良影响。
发明内容
基于此,有必要提供一种能够较快地周向解构的可吸收金属器械。
一种可吸收金属器械,包括可吸收金属基体,还包括设置于可吸收金属基体上的缓蚀层及覆盖所述缓蚀层的促腐蚀层,所述可吸收金属基体的部分区域上开设有多个通孔,所述缓蚀层的位于所述多个通孔的部分的厚度小于所述缓蚀层的其他部分的厚度;和/或,所述促腐蚀层的位于所述多个通孔的部分的厚度大于所述促腐蚀层的其他部分的厚度。
在其中一个实施例中,所述可吸收金属基体包括多个沿轴向排列的波形环状结构,每个所述波形环状结构包括多个支撑杆和多个连接杆,每个所述支撑杆的两端分别连接相邻的两个所述连接杆而形成所述波形环状结构,每个所述波形环状结构的至少一个所述支撑杆上开设有所述多个通孔。
在其中一个实施例中,每个波形环状结构上仅有一个支撑杆上形成多个所述通孔,使当将所述多个波形环状结构从开设有所述通孔的部位解构时,所述可吸收金属器械的展开轮廓呈菱形或矩形;
或者,每个波形环状结构上有多个支撑杆上形成多个所述通孔,每个支撑杆上多个通孔的分布规律均相同,使当将所述多个波形环状结构从开设有所述通孔的部位解构时,所述可吸收金属器械的展开轮廓呈多个菱形或多个矩形。
在其中一个实施例中,开设有所述通孔的每个所述支撑杆的镂空率为7%~35%。
在其中一个实施例中,所述通孔的边缘与所述通孔所在的支撑杆的边缘的距离为25微米~100微米。
在其中一个实施例中,当每个支撑杆上多个通孔的分布规律均相同,使当将所述多个波形环状结构从开设有所述通孔的部位解构时,所述可吸收金属器械的展开轮廓呈一个或多个菱形,或呈一个或多个矩形时,任意相邻的两个通孔的距离大于或等于20微米,且任意一个通孔的沿所述支撑杆的宽度方向的孔径与所述支撑杆的宽度的百分比小于或等于≤57%;
或者,每个支撑杆上的多个通孔沿所述支撑杆的长度方向成多排分布,任意相邻的两个通孔的距离大于或等于20微米,且沿所述支撑杆的宽度方向的多个通孔的孔径之和与所述支撑杆的宽度的百分比小于或等于≤57%。
在其中一个实施例中,在名义扩张态下,单位管腔组织面积上的所述可吸收金属基体的体积为6.4~36μm,所述可吸收金属基体的覆盖率为8~12%。
在其中一个实施例中,所述缓蚀层的位于所述通孔部分的厚度与所述缓蚀层的其他部分的厚度的差值范围为0.3~3μm,所述促腐蚀层的位于所述通孔的部分的厚度与所述促腐蚀层的其他部位的厚度的差值范围为3~47μm。
在其中一个实施例中,所述缓蚀层的位于所述通孔部分的厚度范围为0.2~2μm,所述缓蚀层的其他部分的厚度范围为0.5~5μm;所述促腐蚀层的位于所述通孔部分的厚度范围为6~50μm,所述促腐蚀层的其他部分的厚度范围为3~30μm。
在其中一个实施例中,所述可吸收金属基体的材料为铁基材料,所述缓蚀层的材料为纯锌或锌合金,所述促腐蚀层的材料为聚酯。
上述可吸收金属器械的部分区域上开设有通孔,并且使缓蚀层在开设有通孔的区域的厚度小于没有通孔的区域的厚度以及促腐蚀层在开设有通孔的区域的厚度大于没有通孔的区域的厚度,以调节开设有通孔的区域的腐蚀速率大于没有通孔的区域的腐蚀速率,使得开设有通孔的区域优先断裂,从而实现较快地周向解构。
附图说明
图1为一实施方式的可吸收金属器械的结构示意图;
图2为一实施方式的波形环状结构的结构示意图;
图3为一实施方式的波形环状结构的支撑杆和连接杆的连接关系剖面示意图;
图4为一实施方式的波形环状结构的支撑杆和连接杆的连接关系示意图;
图5为沿图4的A-A线的剖面图;
图6为沿图4的B-B线的剖面图;
图7为一实施方式的缓蚀层或促腐蚀层在通孔处的区域示意图;
图8为另一实施方式的缓蚀层或促腐蚀层在通孔处的区域示意图;
图9为另一实施方式的可吸收金属器械的结构示意图;
图10为一实施方式的可吸收金属器械的波形环状结构从周向上解构后的展开结构示意图;
图11为另一实施方式的可吸收金属器械的波形环状结构从周向上解构后的展开结构示意图;
图12为图11的局部放大图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
在介入医疗器械领域,定义“远端”为手术过程中远离操作者的一端,定义“近端”为手术过程中靠近操作者的一端。“轴向”指平行于医疗器械远端中心和近端中心连线的方向,“径向”指垂直于上述轴向的方向。“周向”指圆周方向,即绕管腔器械的轴线方向。
本公开提供一种能够较快地解构的可吸收金属器械。
请参阅图1,一实施方式的可吸收金属器械100,包括可吸收金属基体10,可吸收金属基体10包括多个沿轴向排列的波形环状结构110。请一并参阅图2,波形环状结构110为具有波峰和波谷结构的闭合环状结构。任意相邻的两个波形环状结构110通过连接件120轴向相连,使得多个沿轴向排列的波形环状结构11形成管腔结构。
如图2所示,每个波形环状结构110包括多个支撑杆111和多个连接杆112。支撑杆111大致为条形杆,连接杆112大致为弧形杆或拱形杆。请一并参阅图3,每个支撑杆111的两端分别连接相邻的两个连接杆112,并且,每个连接杆112连接相邻的两个支撑杆111而形成波形环状结构110。其中,一个连接杆112形成波峰,另一个连接杆112形成波谷。
再次参阅图2,每个支撑杆111具有外表面1111、与外表面1111相对的内表面1112及连接外表面1111和内表面1112的两个相对的侧表面1114。当可吸收金属器械100为血管支架时,将可吸收金属器械100植入血管中后,外表面1111为与血管内壁抵接的表面,内表面1112为与血液直接接触的表面。每个波形环状结构110的至少一个支撑杆111上开设有多个通孔1113。通孔1113贯穿支撑杆111的外表面1111和内表面112。在另外的实施方式中,通孔1113贯穿支撑杆111的两个侧表面1114。
在一实施方式中,连接件120大致呈“Ω”状。需要说明的是,在其他实施方式中,连接件120的形状不限于“Ω”状,能够保证多个波形环状结构110轴向相连,且不影响可吸收金属器械100的压缩和扩张的任何形状的连接件120均适用。
请一并参阅图4、图5和图6,可吸收金属器械100还包括设置于可吸收金属基体10上的缓蚀层120和促腐蚀层130。其中,缓蚀层120覆盖可吸收金属基体10的全部表面,促腐蚀层130完全覆盖缓蚀层120。
在一实施方式中,缓蚀层120的位于通孔1113的部分的厚度小于缓蚀层120的其他部分的厚度,促腐蚀层130的位于通孔1113的部分的厚度大于促腐蚀层130的其他部分的厚度。如图7,缓蚀层120的位于通孔1113的部分是指缓蚀层120的覆盖支撑杆111的区域R的部分。促腐蚀层130的位于通孔1113的部分亦是指促腐蚀层130的覆盖缓蚀层120的区域R的部分。
需要说明的是,如图7所示的区域R在支撑杆111的宽度方向B上,从支撑杆111的一端延伸至另一端,在长度方向L上,从一端的最边缘的通孔1113延伸至另一端的最边缘的通孔1113。当支撑杆111上的长度方向L的两端的通 孔1113的分别位于支撑杆111的两端的边缘时,整个支撑杆111为该区域R,如图8所示。
当可吸收金属器械100被植入体内后,缓蚀层120能够在一定程度上隔离可吸收金属基体10与体液,以延缓可吸收金属基体10的腐蚀。随着缓蚀层120的消耗,可吸收金属基体10暴露出来而发生较快的腐蚀。并且,在植入的后期,随着促腐蚀层130的消耗或降解,促腐蚀层130能够释放出促腐蚀物质,以加速可吸收金属基体10的腐蚀。通过缓蚀层120和促腐蚀层130调控可吸收金属基体10在植入的不同阶段的腐蚀速率,以在植入的早期,避免可吸收金属基体10腐蚀过快或使可吸收金属基体10完全不腐蚀。并且,在植入的后期,可吸收金属基体10能够快速腐蚀。
缓蚀层120的位于通孔1113的部分的厚度小于缓蚀层120的其他部分的厚度,使得缓蚀层120的位于通孔1113的部分优先消耗殆尽,从而使支撑杆111的开设有通孔1113的区域优先暴露出来。并且,促腐蚀层130的位于通孔1113的部分的厚度大于促腐蚀层130的其他部分的厚度,使得支撑杆111的开设有通孔1113的区域周围所积累的促腐蚀物质的浓度较高,能够加快支撑杆111的开设有通孔1113的区域的腐蚀。因此,在植入的后期,支撑杆111的开设有通孔1113的区域能够较快地发生腐蚀,导致支撑杆111能够快速从通孔1113处断裂,从而使可吸收金属基体10快速地在周向上解构而失去力学性能,例如使可吸收金属基体10快速失去径向支撑性能,以使痊愈的病变部位所受到的束缚尽早被解除,以使痊愈的组织能够正常发育。
当将可吸收金属器械100植入管腔组织中后,可吸收金属器械100能够径向支撑管腔组织。每个波形环状结构110中,起主要支撑作用的是支撑杆111,在支撑杆111上开设通孔1113,并使缓蚀层120在开设通孔1113的区域和没有通孔1113的区域形成上文所述的厚度差,同时使促腐蚀层130在开设通孔1113的区域和没有通孔1113的区域形成上文所述的厚度差,使得支撑杆111的开设有通孔1113的区域优先断裂,支撑杆111一断裂,可吸收金属器械100对组织产生的径向支撑力减弱或消失,使得组织受到的束缚尽早地被解除,以尽早开始正常发育。
低氧环境可能会导致可吸收金属基体10的腐蚀速率变慢,采用通孔1113、缓蚀层120和促腐蚀层130协同以调控腐蚀速率的方式,使得将可吸收金属器械100应用于某些血氧含量较低的病变部位时,如肺动脉、膝下静脉等部位时,可吸收金属基体10的腐蚀速率仍然满足临床需求。
在另一实施方式中,缓蚀层120的位于通孔1113的部分的厚度小于缓蚀层120的其他部分的厚度,促腐蚀层130为厚度均一的涂层,即促腐蚀层130的位于通孔1113的部分的厚度与促腐蚀层130的其他部分的厚度的相等。通过使缓蚀层120的位于通孔1113的部分的厚度较低实现可吸收金属基体10的开设有通孔1113的区域优先断裂。并且促腐蚀层130的厚度均一,以调控整个可吸收金属基体10的可吸收周期。
在另一实施方式中,缓蚀层120为厚度均一的涂层或镀层,即缓蚀层120的位于通孔1113的区域的厚度与其他区域的厚度相等。促腐蚀层130的位于通孔1113的部分的厚度大于促腐蚀层130的其他部分的厚度。通过使促腐蚀层130的位于通孔1113的部分的厚度较大实现可吸收金属基体10的开设有通孔1113的区域优先断裂。并且,缓蚀层120的厚度均一,以调控整个可吸收基体10的整体的启动腐蚀的时间。
请参阅图9,在一实施方式中,可吸收金属基体10的每个波形环状结构110 中,仅个别支撑杆111上形成通孔1113,并且缓蚀层120和促腐蚀层130按上文所述的厚度差方式设置。只要形成有通孔1113的支撑杆111优先断裂,亦能使可吸收金属基体10能够从周向上快速解构。
在图1所示的实施方式中,每个波形环状结构110的每根支撑杆111上均开设有多个通孔1113。并且,缓蚀层120和促腐蚀层130按上述相应的厚度差要求设置,使得波形环状结构110在周向的解构更彻底,完全失去力学性能的时间较早,更有利于组织的正常发育。
并且,通孔1113可以增大内皮细胞的爬覆面积和增加内皮细胞的爬覆路径,有利于加速内皮化和提高内膜包覆的牢固度,从而降低血栓和栓塞风险。同时,在壁厚相等、波形环状结构110的具体结构相同和数量相等的条件下,相比于无通孔设计,开设有通孔1113的方式可以显著降低可吸收金属器械100的表面覆盖率,从而使得单位组织面积(例如,单位血管面积)的可吸收金属基体10的体积显著降低,单位组织面积上的可吸收金属基体10的体积越低,其腐蚀速率越快和吸收周期越短。每个波形环状结构110的每根支撑杆111上均开设有多个通孔1113,使得降低血栓和栓塞风险及提高腐蚀速率和降低吸收周期的效果更好。
请再次参阅图3,在一实施方式中,多个通孔1113的排列方式为多个通孔1113成一排、且间隔地沿着支撑杆111的长度方向L排列。
在一实施方式中,当多个通孔1113成一排、且间隔地沿着支撑杆111的长度方向L排列时,在宽度方向B上,任意一个通孔1113的边缘与支撑杆111的边缘的距离为L。上述支撑杆111的边缘是指支撑杆111的沿长度方向L延伸的边缘,通孔1113的边缘是指与该支撑杆111的边缘距离最近的边缘。当L的值小于25微米时,可能会导致在可吸收金属器械100的扩张过程中,通孔1113处发生断裂。当L的值大于100微米,会要求通孔1113自身的孔径较小,这会导致开设通孔1113所带来的优势变得不明显。因此,L的取值范围为25微米~100微米。
在一实施方式中,当多个通孔1113成一排、且间隔地沿着支撑杆111的长度方向L排列时,任意相邻的两个通孔1113的距离大于或等于20微米。并且,每个通孔1113的沿支撑杆111的宽度方向B的孔径大小占支撑杆111的宽度的百分比小于或等于57%,以避免扩张过程中,通孔1113处发生断裂。
在另外的实施方式中,每个支撑杆111上的多个通孔1113的排列方式不限于成一排地排列,而是成多排、且间隔地沿着支撑杆111的长度方向L排列。
在一实施方式中,当多个通孔1113成多排、且间隔地沿着支撑杆111的长度方向L排列时,任意相邻的两个通孔1113的距离大于或等于20微米。并且,沿宽度方向B排列的多个通孔1113的沿支撑杆111的宽度方向B的孔径之和占支撑杆111的宽度的百分比小于或等于57%,以避免扩张过程中,通孔1113处发生断裂。
在其他实施方式中,多个通孔1113在支撑杆111上无序地或无规律地排列。
在一实施方式中,无论每个支撑杆111上的多个通孔1113如何排列,开设有通孔1113的每个支撑杆111镂空率均为7%~35%。镂空率大于7%,以保证开设有通孔1113处的腐蚀速率比其他部分的腐蚀速率大,并且,能够增大内皮细胞的爬覆面积和增加内皮细胞的爬覆路径,同时有效降低可吸收金属器械100的表面覆盖率。镂空率小于35%,以保证支撑杆111具有足够的力学强度,避免在扩张过程中断裂。
需要说明的是,从优先腐蚀的角度上考虑,不同的波形环状结构110上的 支撑杆111上的通孔1113的排列规律可以相同,也可以不同。不同的波形环状结构110上的开设有通孔1113的支撑杆111的数量可以相同,也可以不同。但不同的波形环状结构110上的支撑杆111上的通孔1113的排列规律相同,有利于减少应力集中区域。
在一实施方式中,每个波形环状结构110上仅有一个支撑杆111上形成多个通孔1113,使当将多个波形环状结构1110从开设有通孔1113的部位解构时,可吸收金属器械100的展开轮廓呈菱形(如图10所示)或矩形。
根据波形环状结构110自身的结构及多个波形环状结构110的连接关系,在每个波形环状结构110的特定位置的一个支撑杆111上开设有多个通孔1113,并且,每个支撑杆111上的通孔1113的设置规律相同(即每个波形环状结构110的多个通孔1113与其所在的支撑杆111的相对位置关系和大小关系均相同),使当每个波形环状结构110从通孔1113处断裂或解构时,可吸收金属器械100的展开轮廓呈菱形或矩形。
在另一实施方式中,每个波形环状结构110上有多个支撑杆111上形成多个通孔1113,使当将多个波形环状结构110从开设有通孔1113的部位解构时,可吸收金属器械100的展开轮廓呈多个菱形或多个矩形。每个支撑杆111上的通孔1113的设置规律相同。
例如,在一实施方式中,每个波形环状结构110的每个支撑杆111上的任意一个通孔1113与其他的波形环状结构110的对应的支撑杆111上的对应的通孔1113位于同一直线上。例如,请一并参阅图11(图11中的I-I线为可吸收金属基体10的轴向中心轴线)和图12,每个波形环状结构110上的每个支撑杆111均开设有四个通孔1113,四个通孔1113间隔地、成一排沿着支撑杆111的长度方向L排列。四个通孔1113分别与其他波形环状结构110的对应的支撑杆111上的四个通孔1113分别连成4条直线a、b、c和d排列。其中,对应的支撑杆111是指在轴向上相对的支撑杆1111,例如图12所示的直线a、b、c和d所连起来的五个支撑杆111。当每个波形环状结构110从通孔1113处断裂时,可吸收金属器械100的展开轮廓呈多个矩形。
按上述规律开设通孔1113,使得每个波形环状结构110因腐蚀而有规律地断裂,保证每个波形环状结构110一断裂就能失去力学性能,尽早地解除对痊愈后的组织的束缚。
需要说明的是,在其他实施方式中,每个波形环状结构110的每个支撑杆111上的任意一个通孔1113与其他的波形环状结构110的对应的支撑杆111上的对应的通孔1113不一定严格地连城一直线,例如可以是轴向上呈波浪起伏的线,或锯齿状连线。任何能够满足所有的波形环状结构110从周向上断裂或解构时,可吸收金属器械100的展开轮廓呈多个菱形或多个矩形的通孔1113的开设规律均适用。
需要说明的是,无论同一支撑杆111上的多个通孔1113如何排列,每个波形环状结构110上开设有通孔1113的支撑杆111的数量为多少,不同的波形环状结构110上的通孔1113的分布、排列规律是否相同,通孔1113的形状均不限,可以为规则的或不规则的形状。例如,通孔1113可以为圆形孔、多边形孔等等。
在一实施方案中,通孔1113的边缘为倒圆角结构,倒圆角结构有利于进一步降低可吸收金属基体10的质量,并减少应力集中区域。
在一实施方式中,在名义扩张态下,单位管腔组织面积上的可吸收金属基体10的体积为6.4~36μm。名义扩张态下的可吸收金属基体10的覆盖率为8~12%。上述管腔组织为血管等其他管腔组织。其中,名义状态是指可吸收金属 器械100在受到名义压力扩张的状态。名义压力是指进行扩张的设计压力。
单位管腔组织面积上的可吸收金属基10的体积V的计算公式如下:
V=(π*D*L'*A)*T/(π*D*L')=AT。
其中,D为血管的内径,亦为可吸收金属基体10的扩张后的外径,L'为可吸收金属基体10扩张到其外径大小为D的状态下的长度,A为覆盖率,即可吸收金属基体10被扩张到外径为D后,该基体的和血管内壁直接接触的外表面积占该基体的外表面所在的圆柱面面积的百分比,T为可吸收金属基体10扩张到外径为D状态下的壁厚。
依据上述计算公式,单位管腔组织面积上的可吸收金属基体10的体积可以认为是单位管腔组织面积对应的镂空的长方形片状材料的体积。单位管腔组织面积对应的镂空的长方形片状材料的体积的越小,意味着该材料的腐蚀和吸收周期越短。当上述单位管腔组织面积上的可吸收金属基体10的体积为6.4~36μm和覆盖率为8~12%时,能够兼顾可吸收金属器械100的吸收周期、径向支撑性能和扩张性能。
在一实施方式中,可吸收金属基体10的壁厚大于80μm,即支撑杆111和连接杆112的厚度大于80μm。可吸收金属基体10的壁厚大于80μm,并与通孔1113、缓蚀层120和促腐蚀层130协同,以使可吸收金属基体10在修复期内具有足够的力学性能,在修复期结束后能够尽早解构。
在一实施方式中,可吸收金属基体10的材料为铁基材料、镁基材料或锌基材料。其中,铁基材料为纯铁或铁基合金,镁基材料为纯镁或镁基合金,锌基材料为纯锌或锌基合金。在一实施方式中,可吸收金属基体10的材料为含碳量不高于2.11wt.%的铁基合金。
在一实施方式中,缓蚀层120的材料为金属材料,且该金属材料的电负性小于可吸收金属基体10的材料的电负性,使得缓蚀层120的腐蚀早于可吸收金属基体10的腐蚀。
在一实施方式中,当可吸收金属基体10的材料为铁基材料,缓蚀层120的材料为纯锌、锌合金、纯镁或镁基合金。
在一实施方式中,当可吸收金属基体10的材料为锌基材料,缓蚀层120的材料为纯镁或镁基合金。
在一实施方式中,促腐蚀层130的材料为聚酯。聚酯降解能够产生酸性物质,酸性物质积累在可吸收金属基体10的周围,形成酸性环境。可吸收金属基体10在酸性环境下的腐蚀速率较快,因而在植入的后期,促腐蚀层130持续降解并持续释放酸性物质而促进可吸收金属基体10的腐蚀。
在一实施方式中,促腐蚀层130的材料为可降解聚酯、可降解聚酯与非可降解聚酯的物理共混物或至少一种形成可降解聚酯的单体与至少一种形成非可降解聚酯的单体的共聚物。
在一实施方式中,可降解聚酯选自聚乳酸、聚乙醇酸、聚丁二酸酯、聚(β-羟基丁酸酯)、聚已内酯、聚己二酸乙二醇酯、聚戊酸酯、聚羟基烷基醇酯和聚(苹果酸酯)中的任意一种或至少两种的物理共混物。或者,可降解聚酯为形成前述可降解聚酯的单体中的至少两种单体的共聚物。
在一实施方式中,非可降解聚酯选自淀粉、壳聚糖、纤维素、聚糖、聚糖及其衍生物、聚氨酯(PU)、聚碳酸酯、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯(PS)、聚丁烯、聚甲基丙烯酸丁酯(PBMA)和聚丙烯酰胺中的任意一种或至少两种的物理共混物。或者,非可降解聚酯为形成前述非可降解聚酯的单体中的至少两种单体的共聚物。
在一实施方式中,可吸收金属基体10的材料为铁基材料,缓蚀层120的材料为纯锌或锌合金,促腐蚀层130的材料为可降解聚酯。并且,缓蚀层120的位于通孔1113部分的厚度与缓蚀层120的其他部分的厚度的差值范围为0.3~3微米,促腐蚀层130的位于通孔1113的部分的厚度与促腐蚀层130的其他部位的厚度的差值范围为3~47微米,以使可吸收金属基体10的开设有通孔1113的部位能够优先断裂,从而使可吸收金属基体10能够较快地从周向上解构。
在其他条件相同的前提下,开设有多个通孔1113,且缓蚀层120的位于多个通孔1113部分的厚度的较小,有利于减少金属铁和锌材料的用量,有利于降低组织吸收代谢的负担,降低生物学风险。
在一实施方式中,支撑杆111的厚度为80~300微米,缓蚀层120的位于通孔1113部分的厚度范围为0.2~2微米,缓蚀层120的其他部分的厚度范围为0.5~5微米。促腐蚀层130的位于通孔1113部分的厚度范围为6~50微米,促腐蚀层130的其他部分的厚度范围为3~30微米。并且,开设有通孔1113的每个支撑杆111镂空率为7%~35%。通过支撑杆111的厚度、缓蚀层120及促腐蚀层130三者的厚度与支撑杆111的镂空率相匹配,使得可吸收金属器械100的腐蚀行为满足临床使用要求,即在病变修复期内能够保持足够力学支撑性能,并在病变部位修复完成后,能够尽快地在周向上解构,以尽快地失去力学性能,尽早解除对痊愈的病变部位的束缚,使痊愈的病变部位尽快地正常发育。
在一实施方式中,在扩张状态下,可吸收金属器械100的外径为5~18毫米,壁厚为80~300微米,并按上述方式设置缓蚀层120和促腐蚀层130,使得腐蚀速率不够快的可吸收金属器械100也能够应用于成长期的患者,例如婴幼儿、儿童,使得在完成修复后,可吸收金属器械100能够尽快地在通孔1113区域实现周向解构以尽早解除对组织的束缚,避免影响组织的生长发育。
需要说明的是,缓蚀层120的位于通孔1113部分的厚度范围为0.2~2微米,缓蚀层120的其他部分的厚度范围为0.5~5微米,是指位于通孔1113部分的厚度可以在0.2~2微米范围内任取一值,如取值为V1,其他部分的厚度可以在厚度范围为0.5~5微米任取一值,如取值V2,但仍需要保证V1小于V2。促腐蚀层130的位于通孔1113部分的厚度范围为6~50微米,促腐蚀层130的其他部分的厚度范围为3~30微米具有类似的意思,此处不再赘述。
需要说明的是,当缓蚀层120的厚度不均一,而促腐蚀层130的厚度均一时,缓蚀层120的位于通孔1113部分的厚度与缓蚀层120的其他部分的厚度的差值范围为0.3~3微米。促腐蚀层130的厚度为3~50微米。当促腐蚀层130的厚度不均一,而缓蚀层120的厚度均一时,促腐蚀层130的位于通孔1113的部分的厚度与促腐蚀层130的其他部位的厚度的差值范围为3~47微米,缓蚀层120的厚度为0.2~5微米。上述可吸收金属器械100的支撑杆111上开设有通孔1113,并且使缓蚀层120在开设有通孔1113的区域的厚度小于没有通孔1113的区域的厚度以及促腐蚀层130在开设有通孔1113的区域的厚度大于没有通孔1113的区域的厚度,以调节开设有通孔1113的区域的腐蚀速率大于没有通孔1113的区域的腐蚀速率,使得开设有通孔1113的区域优先断裂,从而实现较快地从周向上解构。
需要说明的是,开设有通孔1113的位置不限于支撑杆111,在其他实施方式中,可以根据需求,在需要优先断裂的部位开设通孔1113,并合理设置分别具有厚度差的缓蚀层120和促腐蚀层130。
上述可吸收金属器械100为冠状动脉血管支架、外周血管支架或脑血管支架等。
可吸收金属器械100可以采用本领域技术人员掌握的方法制备。例如,将中空的可吸收金属管件切割形成基体,然后在基体上开设通孔1113,形成可吸收金属基体10,然后采用电化学方法镀膜,形成缓蚀层120。制备缓蚀层120的过程中,可以采用物理遮挡通孔1113或其他方法,使位于通孔1113部分的缓蚀层120的厚度小于其他部位的厚度。进一步,采用喷涂或其他方法形成促腐蚀层130。在制备促腐蚀层130时,可以通过增加在通孔1113处的喷涂时间等方法,以使得促腐蚀层130在通孔1113处的厚度大于在没有通孔1113处的厚度。
需要说明的是,上述可吸收金属器械100为管腔器械。但本公开的可吸收金属器械不限于管腔器械,任何需要局部优先断裂的器械均适用。
以下以血管支架为例,通过具体实施例对本公开的可吸收金属器械进一步阐述。
一、以下具体实施例和对比例的支架的制备方法如下:
采用电化学方法的镀膜,以在形成有通孔的支架基体上形成有缓蚀层,镀膜过程中,通孔处进行物理遮挡。采用超声喷涂的方法在缓蚀层上形成促腐蚀层,通孔处增加喷涂时间。制备对比例的支架不需要进行物理遮挡和增加喷涂时间。
二、以下具体实施例的测试方法如下:
1、质量损失率的测定:植入前,支架的质量为M 0,在预定观察时间点将植入的支架从血管取出,浸泡在1mol/L的氢氧化钠溶液中使组织和缓蚀层消解,然后从氢氧化钠溶液中取出支架及其碎片,放入质量百分浓度的3%酒石酸中进行超声,使其表面的腐蚀产物和聚合物层全部脱落或溶解于质量百分浓度的3%的酒石酸的中,取出其中剩余未腐蚀的支架基体或其碎片,干燥称重,质量为M t。质量损失率按以下公式计算:
W=(|M t-M 0|)*100%/M 0
其中,W——质量损失率;
M t——腐蚀后剩余支架基体的质量;
M 0——支架的初始质量。
2、涂层厚度的测试方法:
2.1将需要测试涂层厚度的支架固定到样品台上,然后将样品台放到JFC-1600喷金设备中喷鉑金,喷完一次后旋转180度再喷一次,每面各喷80s,保证所有位置被喷到。
2.2将表面喷好金的支架垂直放置到按5:1的比例调配好的标乐常温树脂固化剂混合试剂中,要保持支架处于竖直状态,然后静置8个小时以上才可以脱离封样壳。
2.3将封好的样品用半自动磨抛机按照样品抛磨的程序进行抛磨,要将需要测量的样品截面抛光到无磨痕。将抛磨好的样品固定到扫描电镜的载物台上,在支架截面附近贴一条导电胶延伸到载物台边缘金属区域;将整个载物台放置到JFC-1600喷金设备中进行喷金20s。
2.4将喷好金的样品放到JSM-6510扫描电镜中,用2档将样品放大到尽可能大的倍数,并调节到最清晰的程度进行厚度测量,但是要保证整个支架杆截面都在视野范围内;每截面任取1个典型支架杆,每个支架杆按照每条边取1个涂层厚度点进行测量。可根据情况决定测试的截面数量,建议每个支架选测6个截面(典型的6个截面:支架远端、近端和中段的通孔与非通孔6个截面)。
3、内皮化速度测试:
将支架植入左肺动脉分支,一定时间后,取出支架所在的血管,用戊二醛 浸泡(如6h),干燥,然后沿轴向剪开,喷金,SEM测量观察支架内皮覆盖率,内皮覆盖率达98%及以上的情况视为完全内皮化。
4、支撑杆镂空率、通孔参数的测试方法:
通孔的边缘与支撑杆的边缘的距离,通过在精度达到0.001mm的三维测量显微镜下测量得到;
支撑杆镂空率为:(S1/S2)*100%
S1:通孔总表面积,通过CAD软件测量得到;
S2:支撑杆表面积,通过CAD软件测量得到。
实施例1
一种支架,其基体材料为碳含量不高于2.11wt.%的铁基合金,基体包括多个沿轴向排列的波形环状结构,波形环状结构的每个支撑杆上都开设有多个通孔。多个通孔沿支撑杆的长度方向间隔且成一排分布。并且,不同的波形环状结构的在轴向上相对的支撑杆上的多个通孔分别在轴向上连成多条直线。每个支撑杆上的相邻的两个通孔的距离为20微米。任意一个通孔的沿支撑杆的宽度方向的孔径与支撑杆的宽度的百分比为57%。通孔的形状为类三角形。通孔的边缘与支撑杆的边缘之间的最短距离为25μm。每个支撑杆的镂空率为20%。在名义扩张状态下,该支架的表面覆盖率为9%,基体的壁厚为110μm,单位血管面积的支架体积为9.9μm,缓蚀层的材料为纯锌。缓蚀层的覆盖通孔的部分的厚度为1μm,缓蚀层的其他部分的厚度为2.5μm。促腐蚀层的材料为聚乳酸,促腐蚀层的覆盖通孔的部分的厚度为25μm,促腐蚀层的其他部分的厚度为20μm。
将多个该批次的支架分别植入到多只猪的左肺动脉分支中,分别在植入后1个月和9月时取样分析,对1个月的样品进行SEM拍照,对9个月的样品进行CT拍照,1个月时已经完全内皮化,9个月时,支架大部分腐蚀断裂发生在支撑杆的通孔处,基本实现周向解构,且失重达到48.36%。
实施例2
一种支架,其基体材料为碳含量不高于2.11wt.%的铁基合金,基体包括多个沿轴向排列的波形环状结构,波形环状结构的每个支撑杆上都开设有多个通孔。多个通孔沿支撑杆的长度方向间隔且成一排分布。并且,不同的波形环状结构的在轴向上相对的支撑杆上的多个通孔分别在轴向上连成多条直线。每个支撑杆上的相邻的两个通孔的最短距离为25微米。任意一个通孔的沿支撑杆的宽度方向的孔径与支撑杆的宽度的百分比为47%。通孔的形状为圆形。通孔的边缘与支撑杆的边缘之间的距离为35μm。每个支撑杆的镂空率为20%。在名义扩张状态下,该支架的表面覆盖率为9%,基体的壁厚为110μm,单位血管面积的支架体积为9.9μm,缓蚀层的材料为纯锌。缓蚀层的覆盖通孔的部分的厚度为1μm,缓蚀层的其他部分的厚度为2.5μm。促腐蚀层的材料为聚乳酸,促腐蚀层的覆盖通孔的部分的厚度为25μm,促腐蚀层的其他部分的厚度为20μm。
将多个该批次的支架分别植入到多只猪的左肺动脉分支中,分别在植入后1个月和9月时取样分析,对1个月的样品进行SEM拍照,对9个月的样品进行CT拍照,1个月时已经完全内皮化,9个月时,支架大部分腐蚀断裂发生在支撑杆的通孔处,基本实现周向解构,且失重达到49.56%。
实施例3
一种支架,其基体材料为碳含量不高于2.11wt.%的铁基合金,基体包括多 个沿轴向排列的波形环状结构,波形环状结构的半数支撑杆上分别开设有多个通孔。多个通孔沿支撑杆的长度方向间隔且成一排分布。并且,不同的波形环状结构的在轴向上相对的支撑杆上的多个通孔分别在轴向上连成多条直线。每个支撑杆上的相邻的两个通孔的最短距离为30微米。任意一个通孔的沿支撑杆的宽度方向的孔径与支撑杆的宽度的百分比为52%。通孔的形状为圆形。通孔的边缘与支撑杆的边缘之间的距离为100μm。每个支撑杆的镂空率为10%。在名义扩张状态下,该支架的表面覆盖率为10.5%,基体的壁厚为110μm,单位血管面积的支架体积为11.55μm,缓蚀层的材料为纯锌。缓蚀层的覆盖通孔的部分的厚度为1μm,缓蚀层的其他部分的厚度为2.5μm。促腐蚀层的材料为聚乳酸,促腐蚀层的覆盖通孔的部分的厚度为25μm,促腐蚀层的其他部分的厚度为20μm。
将多个该批次的支架分别植入到多只猪的左肺动脉分支中,分别在植入后1个月和9月时取样分析,对1个月的样品进行SEM拍照,对9个月的样品进行CT拍照,1个月时已经完全内皮化,9个月时,支架大部分腐蚀断裂发生在支撑杆的通孔和连接件处,基本实现周向解构,且失重达到35.27%。
实施例4
一种支架,其基体材料为碳含量不高于2.11wt.%的铁基合金,基体包括多个沿轴向排列的波形环状结构,波形环状结构的一个支撑杆上分别开设有多个通孔。多个通孔沿支撑杆的长度方向间隔且成一排分布。并且,不同的波形环状结构的在轴向上相对的支撑杆上的多个通孔分别在轴向上连成多条直线。每个支撑杆上的相邻的两个通孔的距离为30微米。任意一个通孔的沿支撑杆的宽度方向的孔径与支撑杆的宽度的百分比为52%。通孔的形状为圆形。通孔的边缘与支撑杆的边缘之间的最短距离为25μm。每个支撑杆的镂空率为20%。在名义扩张状态下,该支架的表面覆盖率为12%,基体的壁厚为300μm,单位血管面积的支架体积为36μm,缓蚀层的材料为纯锌。缓蚀层的覆盖通孔的部分的厚度为2μm,缓蚀层的其他部分的厚度为5μm。促腐蚀层的材料为聚乳酸,促腐蚀层的覆盖通孔的部分的厚度为6μm,促腐蚀层的其他部分的厚度为3μm。
将多个该批次的支架分别植入到多只猪的左肺动脉分支中,分别在植入后1个月和9月时取样分析,对1个月的样品进行SEM拍照,对9个月的样品进行CT拍照,1个月没有完全内皮化,9个月时,支架大部分腐蚀断裂发生在支撑杆的通孔和连接件处,基本实现周向解构,且失重达到18.95%。
实施例5
一种支架,其基体材料为碳含量不高于2.11wt.%的铁基合金,基体包括多个沿轴向排列的波形环状结构,波形环状结构的每个支撑杆上都开设有多个通孔。多个通孔沿支撑杆的长度方向间隔且成一排分布。并且,不同的波形环状结构的在轴向上相对的支撑杆上的多个通孔分别在轴向上连成多条直线。每个支撑杆上的相邻的两个通孔的最短距离为20微米。任意一个通孔的沿支撑杆的宽度方向的孔径与支撑杆的宽度的百分比为57%。通孔的形状为类三角形。通孔的边缘与支撑杆的边缘之间的距离为25μm。每个支撑杆的镂空率为7%。在名义扩张状态下,该支架的表面覆盖率为11%,基体的壁厚为91μm,单位血管面积的支架体积为10μm,缓蚀层的材料为纯锌。缓蚀层的覆盖通孔的部分的厚度为1μm,缓蚀层的其他部分的厚度为2.5μm。促腐蚀层的材料为聚乳酸,促腐蚀层的覆盖通孔的部分的厚度为25μm,促腐蚀层的其他部分的厚度为20μm。
将多个该批次的支架分别植入到多只猪的左肺动脉分支中,分别在植入后1个月和9月时取样分析,对1个月的样品进行SEM拍照,对9个月的样品进行CT拍照,1个月时已经完全内皮化,9个月时,支架大部分腐蚀断裂发生在支撑杆的通孔处,基本实现周向解构,且失重达到47.28%。
实施例6
一种支架,其基体材料为碳含量不高于2.11wt.%的铁基合金,基体包括多个沿轴向排列的波形环状结构,波形环状结构的每个支撑杆上都开设有多个通孔。多个通孔沿支撑杆的长度方向间隔且成一排分布。并且,不同的波形环状结构的在轴向上相对的支撑杆上的多个通孔分别在轴向上连成多条直线。每个支撑杆上的相邻的两个通孔的最短距离为20微米。任意一个通孔的沿支撑杆的宽度方向的孔径与支撑杆的宽度的百分比为57%。通孔的形状为类三角形。通孔的边缘与支撑杆的边缘之间的距离为25μm。每个支撑杆的镂空率为35%。在名义扩张状态下,该支架的表面覆盖率为8%,基体的壁厚为80μm,单位血管面积的支架体积为6.4μm,缓蚀层的材料为纯锌。缓蚀层的覆盖通孔的部分的厚度为0.2μm,缓蚀层的其他部分的厚度为0.5μm。促腐蚀层的材料为聚乳酸,促腐蚀层的覆盖通孔的部分的厚度为50μm,促腐蚀层的其他部分的厚度为3μm。
将多个该批次的支架分别植入到多只猪的左肺动脉分支中,分别在植入后1个月和9月时取样分析,对1个月的样品进行SEM拍照,对9个月的样品进行CT拍照,1个月时已经完全内皮化,9个月时,支架大部分腐蚀断裂发生在支撑杆的通孔处,基本实现周向解构,且失重达到64.75%。
实施例7
一种支架,其基体材料为碳含量不高于2.11wt.%的铁基合金,基体包括多个沿轴向排列的波形环状结构,波形环状结构的每个支撑杆上都开设有多个通孔。多个通孔沿支撑杆的长度方向间隔且成一排分布。并且,不同的波形环状结构的在轴向上相对的支撑杆上的多个通孔分别在轴向上连成多条直线。每个支撑杆上的相邻的两个通孔的最短距离为20微米。任意一个通孔的沿支撑杆的宽度方向的孔径与支撑杆的宽度的百分比为57%。通孔的形状为类三角形。通孔的边缘与支撑杆的边缘之间的距离为25μm。每个支撑杆的镂空率为7%。在名义扩张状态下,该支架的表面覆盖率为11%,基体的壁厚为91μm,单位血管面积的支架体积为10μm,缓蚀层的材料为纯锌。缓蚀层的覆盖通孔的部分的厚度为1μm,缓蚀层的其他部分的厚度为2.5μm。促腐蚀层的材料为聚乳酸,促腐蚀层的厚度为20μm。
将多个该批次的支架分别植入到多只猪的左肺动脉分支中,分别在植入后1个月和9月时取样分析,对1个月的样品进行SEM拍照,对9个月的样品进行CT拍照,1个月时已经完全内皮化,9个月时,支架大部分腐蚀断裂发生在支撑杆的通孔处,基本实现周向解构,且失重达到45.36%。
实施例8
一种支架,其基体材料为碳含量不高于2.11wt.%的铁基合金,基体包括多个沿轴向排列的波形环状结构,波形环状结构的每个支撑杆上都开设有多个通孔。多个通孔沿支撑杆的长度方向间隔且成一排分布。并且,不同的波形环状结构的在轴向上相对的支撑杆上的多个通孔分别在轴向上连成多条直线。每个支撑杆上的相邻的两个通孔的最短距离为20微米。任意一个通孔的沿支撑杆的 宽度方向的孔径与支撑杆的宽度的百分比为57%。通孔的形状为类三角形。通孔的边缘与支撑杆的边缘之间的距离为25μm。每个支撑杆的镂空率为7%。在名义扩张状态下,该支架的表面覆盖率为11%,基体的壁厚为91μm,单位血管面积的支架体积为10μm,缓蚀层的材料为纯锌。缓蚀层的材料为纯锌,缓蚀层的厚度为2.5μm。促腐蚀层的材料为聚乳酸,促腐蚀层的覆盖通孔的部分的厚度为25μm,促腐蚀层的其他部分的厚度为20μm。
将多个该批次的支架分别植入到多只猪的左肺动脉分支中,分别在植入后1个月和9月时取样分析,对1个月的样品进行SEM拍照,对9个月的样品进行CT拍照,1个月时已经完全内皮化,9个月时,支架大部分腐蚀断裂发生在支撑杆的通孔处,基本实现周向解构,且失重达到45.63%。
对比例1
一种支架,其基体材料为碳含量不高于2.11wt.%的铁基合金,基体包括多个沿轴向排列的波形环状结构,波形环状结构的所有支撑杆均没有通孔。在名义扩张状态下,该支架的表面覆盖率为15%,基体的壁厚为85μm,单位血管面积的支架体积为12.75μm。缓蚀层的材料为纯锌,缓蚀层的厚度为2.5μm。促腐蚀层的材料为聚乳酸,促腐蚀层的厚度为25μm。
将多个该批次的支架分别植入到多只猪的左肺动脉分支中,分别在植入后1个月和9月时取样分析,对1个月的样品进行SEM拍照,对9个月的样品进行CT拍照,1个月时没有完全内皮化,9个月时,支架大部分腐蚀断裂发生在连接件处,没有实现周向解构,且失重达到28.18%。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种可吸收金属器械,包括可吸收金属基体,其特征在于,还包括设置于可吸收金属基体上的缓蚀层及覆盖所述缓蚀层的促腐蚀层,所述可吸收金属基体的部分区域上开设有多个通孔,所述缓蚀层的位于所述多个通孔的部分的厚度小于所述缓蚀层的其他部分的厚度;和/或,所述促腐蚀层的位于所述多个通孔的部分的厚度大于所述促腐蚀层的其他部分的厚度。
  2. 根据权利要求1所述的可吸收金属器械,其特征在于,所述可吸收金属基体包括多个沿轴向排列的波形环状结构,每个所述波形环状结构包括多个支撑杆和多个连接杆,每个所述支撑杆的两端分别连接相邻的两个所述连接杆而形成所述波形环状结构,每个所述波形环状结构的至少一个所述支撑杆上开设有所述多个通孔。
  3. 根据权利要求2所述的可吸收金属器械,其特征在于,每个波形环状结构上仅有一个支撑杆上形成多个所述通孔,使当将所述多个波形环状结构从开设有所述通孔的部位解构时,所述可吸收金属器械的展开轮廓呈菱形或矩形;
    或者,每个波形环状结构上有多个支撑杆上形成多个所述通孔,每个支撑杆上多个通孔的分布规律均相同,使当将所述多个波形环状结构从开设有所述通孔的部位解构时,所述可吸收金属器械的展开轮廓呈多个菱形或多个矩形。
  4. 根据权利要求2所述的可吸收金属器械,其特征在于,开设有所述通孔的每个所述支撑杆的镂空率为7%~35%。
  5. 根据权利要求2所述的可吸收金属器械,其特征在于,所述通孔的边缘与所述通孔所在的支撑杆的边缘的距离为25微米~100微米。
  6. 根据权利要求2所述的可吸收金属器械,其特征在于,当每个支撑杆上多个通孔的分布规律均相同,使当将所述多个波形环状结构从开设有所述通孔的部位解构时,所述可吸收金属器械的展开轮廓呈一个或多个菱形,或呈一个或多个矩形时,任意相邻的两个通孔的距离大于或等于20微米,且任意一个通孔的沿所述支撑杆的宽度方向的孔径与所述支撑杆的宽度的百分比小于或等于≤57%;
    或者,每个支撑杆上的多个通孔沿所述支撑杆的长度方向成多排分布,任意相邻的两个通孔的距离大于或等于20微米,且沿所述支撑杆的宽度方向的多个通孔的孔径之和与所述支撑杆的宽度的百分比小于或等于≤57%。
  7. 根据权利要求2所述的可吸收金属器械,其特征在于,在名义扩张态下,单位管腔组织面积上的所述可吸收金属基体的体积为6.4~36μm,所述可吸收金属基体的覆盖率为8~12%。
  8. 根据权利要求1所述的可吸收金属器械,其特征在于,所述缓蚀层的位于所述通孔部分的厚度与所述缓蚀层的其他部分的厚度的差值范围为0.3~3μm,所述促腐蚀层的位于所述通孔的部分的厚度与所述促腐蚀层的其他部位的厚度的差值范围为3~47μm。
  9. 根据权利要求1所述的可吸收金属器械,其特征在于,所述缓蚀层的位于所述通孔部分的厚度范围为0.2~2μm,所述缓蚀层的其他部分的厚度范围为0.5~5μm;所述促腐蚀层的位于所述通孔部分的厚度范围为6~50μm,所述促腐蚀层的其他部分的厚度范围为3~30μm。
  10. 根据权利要求1所述的可吸收金属器械,其特征在于,所述可吸收金属基体的材料为铁基材料,所述缓蚀层的材料为纯锌或锌合金,所述促腐蚀层的材料为聚酯。
PCT/CN2020/092485 2019-12-31 2020-05-27 可吸收金属器械 WO2021135055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911412829.1 2019-12-31
CN201911412829.1A CN113116615B (zh) 2019-12-31 2019-12-31 可吸收金属器械

Publications (1)

Publication Number Publication Date
WO2021135055A1 true WO2021135055A1 (zh) 2021-07-08

Family

ID=76687042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092485 WO2021135055A1 (zh) 2019-12-31 2020-05-27 可吸收金属器械

Country Status (2)

Country Link
CN (1) CN113116615B (zh)
WO (1) WO2021135055A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040249443A1 (en) * 2001-08-20 2004-12-09 Shanley John F. Expandable medical device for treating cardiac arrhythmias
CN102458315A (zh) * 2009-05-14 2012-05-16 波士顿科学医学有限公司 可生物消化的内假体
CN102525701A (zh) * 2010-12-21 2012-07-04 先健科技(深圳)有限公司 可吸收的血管支架
CN106581778A (zh) * 2015-10-14 2017-04-26 先健科技(深圳)有限公司 可吸收铁基合金植入医疗器械及其制备方法
CN106924822A (zh) * 2015-12-31 2017-07-07 先健科技(深圳)有限公司 可吸收铁基合金内固定植入医疗器械
CN109954171A (zh) * 2017-12-26 2019-07-02 先健科技(深圳)有限公司 可吸收植入式器械
CN110075369A (zh) * 2019-04-11 2019-08-02 复旦大学 运用多层设计调节降解速率的金属-高分子复合支架及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400114C (zh) * 2005-04-30 2008-07-09 中国科学院金属研究所 可控降解速率的生物医用植入材料及其应用
EP1834606B1 (en) * 2006-03-16 2013-04-24 CID S.p.A. Stents
DE102013004625A1 (de) * 2013-03-16 2014-09-18 Universitätsklinikum Freiburg Bioresorbierbarer Stent
CN104415403A (zh) * 2013-08-20 2015-03-18 苏州纳晶医药技术有限公司 一种可控降解的镁基金属材料
CN109966562B (zh) * 2017-12-27 2021-12-17 元心科技(深圳)有限公司 可吸收金属支架
CN108525022B (zh) * 2018-04-15 2019-02-26 烟台浩忆生物科技有限公司 一种快速定向生物降解止血夹及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040249443A1 (en) * 2001-08-20 2004-12-09 Shanley John F. Expandable medical device for treating cardiac arrhythmias
CN102458315A (zh) * 2009-05-14 2012-05-16 波士顿科学医学有限公司 可生物消化的内假体
CN102525701A (zh) * 2010-12-21 2012-07-04 先健科技(深圳)有限公司 可吸收的血管支架
CN106581778A (zh) * 2015-10-14 2017-04-26 先健科技(深圳)有限公司 可吸收铁基合金植入医疗器械及其制备方法
CN106924822A (zh) * 2015-12-31 2017-07-07 先健科技(深圳)有限公司 可吸收铁基合金内固定植入医疗器械
CN109954171A (zh) * 2017-12-26 2019-07-02 先健科技(深圳)有限公司 可吸收植入式器械
CN110075369A (zh) * 2019-04-11 2019-08-02 复旦大学 运用多层设计调节降解速率的金属-高分子复合支架及其制备方法和应用

Also Published As

Publication number Publication date
CN113116615B (zh) 2022-11-18
CN113116615A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
US20180161185A1 (en) Electrospun stents, flow diverters, and occlusion devices and methods of making the same
EP2384725B1 (de) Biokorrodierbares Implantat, bei dem eine Korrosion nach erfolgter Implantation durch einen externen Stimulus ausgelöst oder beschleunigt werden kann
JP7130817B2 (ja) 形状記憶ポリマ容器閉塞デバイス
Huang et al. Biomaterials and design in occlusion devices for cardiac defects: a review
CN103169556B (zh) 一种可显影的完全可降解支架及其制备方法
CN110269959A (zh) 可生物吸收的生物医学植入物
CN106581784B (zh) 可吸收铁基合金植入医疗器械
AU2005207046A1 (en) Endovascular treatment devices and methods
CN102397590B (zh) 一种生物可降解支架
Zhu et al. Animal experimental study of the fully biodegradable atrial septal defect (ASD) occluder
CN105287048A (zh) 覆膜支架
EP3563810A1 (en) Absorbable stent
Zhao et al. Development of a polycaprolactone/poly (p-dioxanone) bioresorbable stent with mechanically self-reinforced structure for congenital heart disease treatment
WO2021135056A1 (zh) 可吸收器械
Venkatraman et al. Bio-absorbable cardiovascular implants: status and prognosis
WO2021135055A1 (zh) 可吸收金属器械
JP2022517421A (ja) 生体吸収性フィラメントメディカルデバイス
CN106668952B (zh) 一种多涂层生物可降解金属支架及其制备方法
CN114340685A (zh) 由氧化纤维素构成的可膨胀的止血剂
JP2019505347A (ja) ステント留置術用繊維管状導管
CN113116595A (zh) 可吸收铁基器械
CN216439238U (zh) 封堵器
Sangiorgi et al. Nonbiodegradable expanded polytetrafluoroethylene-covered stent implantation in porcine peripheral arteries: histologic evaluation of vascular wall response compared with uncoated stents
CN214967134U (zh) 支架
Hwang et al. Fabrication of bioabsorbable polylactic-co-glycolic acid/polycaprolactone nanofiber coated stent and investigation of biodegradability in porcine animal model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911219

Country of ref document: EP

Kind code of ref document: A1