WO2021132679A1 - Curable resin film, composite sheet, and method for manufacturing semiconductor chip - Google Patents

Curable resin film, composite sheet, and method for manufacturing semiconductor chip Download PDF

Info

Publication number
WO2021132679A1
WO2021132679A1 PCT/JP2020/049014 JP2020049014W WO2021132679A1 WO 2021132679 A1 WO2021132679 A1 WO 2021132679A1 JP 2020049014 W JP2020049014 W JP 2020049014W WO 2021132679 A1 WO2021132679 A1 WO 2021132679A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
semiconductor chip
curable resin
manufacturing
wafer
Prior art date
Application number
PCT/JP2020/049014
Other languages
French (fr)
Japanese (ja)
Inventor
智則 篠田
拓 根本
桜子 田村
友尭 森下
圭亮 四宮
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020227021695A priority Critical patent/KR20220122998A/en
Priority to JP2021567737A priority patent/JPWO2021132679A1/ja
Priority to CN202080090576.5A priority patent/CN114930504A/en
Publication of WO2021132679A1 publication Critical patent/WO2021132679A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/26Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the lamination process, e.g. release layers or pressure equalising layers
    • B32B2037/268Release layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Definitions

  • the present invention relates to a method for manufacturing a curable resin film, a composite sheet, and a semiconductor chip. More specifically, the present invention relates to a curable resin film, a composite sheet provided with the curable resin film, and a method for producing a semiconductor chip in which a curable resin film is provided as a protective film by using these. ..
  • the semiconductor chip is formed by laminating a semiconductor chip having bumps on the circuit surface and a substrate for mounting the semiconductor chip so that the circuit surface of the semiconductor chip and the substrate face each other. It is mounted on the substrate.
  • the semiconductor chip is usually obtained by fragmenting a semiconductor wafer having bumps on the circuit surface.
  • the semiconductor wafer provided with the bump may be provided with a protective film for the purpose of protecting the joint portion between the bump and the semiconductor wafer (hereinafter, also referred to as “bump neck”).
  • a protective film for the purpose of protecting the joint portion between the bump and the semiconductor wafer (hereinafter, also referred to as “bump neck”).
  • a laminate in which a supporting base material, an adhesive layer, and a thermosetting resin layer are laminated in this order is used as a bonding surface of the thermosetting resin layer.
  • a protective film is formed by pressing and sticking to the bump forming surface of a semiconductor wafer provided with bumps, and then heating and curing the thermosetting resin layer.
  • the present inventors can improve the strength of the semiconductor chip and protect it by providing the protective film provided for the purpose of protecting the bump neck not only on the bump forming surface of the semiconductor chip but also on the side surface.
  • the idea was that peeling of the film could be suppressed and an extremely rational structure could be constructed.
  • the present inventors have made extensive studies and have come up with a curable resin film capable of forming a protective film having excellent coating properties on both the bump forming surface and the side surface of the semiconductor chip. ..
  • the subject of the present invention is a curable resin film capable of forming a protective film having excellent coating properties on both the bump forming surface and the side surface of the semiconductor chip, a composite sheet provided with the curable resin film, and these. It is an object of the present invention to provide a method for manufacturing a semiconductor chip using (the curable resin film and the composite sheet).
  • the present invention relates to the following [1] to [14].
  • [1] A curable resin film used for forming a curable resin film as a protective film on both the bump-forming surface and the side surface of a semiconductor chip having a bump-forming surface having bumps and satisfying the following requirement (I). .. ⁇ Requirement (I)> Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the curable resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece is measured, and the strain of the test piece is 1.
  • X calculated by the following formula (i) when the storage elastic modulus of the test piece is Gc1 and the storage elastic modulus of the test piece is Gc300 when the strain of the test piece is 300%. The value is 19 or more and less than 10,000.
  • X Gc1 / Gc300 ... (i)
  • [3] Used for forming a cured resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface having bumps. It has a laminated structure in which a support sheet and a layer of a curable resin are laminated.
  • the curable resin film according to the above [1] or [2] is formed with a curable resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface provided with bumps. How to use it.
  • the composite sheet according to [3] above is used to form a cured resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface provided with bumps.
  • Method. [6] A method for manufacturing a semiconductor chip. The following steps (S1) to (S4) are included in this order.
  • Step (S1) A step of preparing a wafer for manufacturing a semiconductor chip, in which a groove portion as a planned division line is formed on the bump forming surface of a semiconductor wafer having a bump forming surface having bumps without reaching the back surface.
  • Step (S4) Wafer for producing a semiconductor chip with a first cured resin film (r1) is formed along the planned division line.
  • the following step (S-BG) is included after the step (S3) and before the step (S4), or in the step (S4).
  • the first curable resin (x1) the curable resin film according to the above [1] or [2] is used.
  • a method for manufacturing a semiconductor chip [7] In the step (S2), the first support sheet (Y1) and the layer (X1) of the first curable resin (x1) are laminated on the bump forming surface of the wafer for manufacturing semiconductor chips.
  • the step (S-BG) is included after the step (S2) and before the step (S3). In the step (S-BG), the back surface of the semiconductor chip manufacturing wafer is ground with the first composite sheet ( ⁇ 1) attached, and then the first composite sheet ( ⁇ 1) is used as the first support sheet.
  • step (S4) a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line.
  • the step (S-BG) is included after the step (S3) and before the step (S4).
  • the step (S3) was carried out without peeling the first support sheet (Y1) from the first composite sheet ( ⁇ 1).
  • the back surface of the semiconductor chip manufacturing wafer is ground with the first composite sheet ( ⁇ 1) attached, and then the first composite sheet ( ⁇ 1) is used as the first support sheet.
  • step (S4) a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line.
  • the step (S-BG) is included after the step (S3) and before the step (S4).
  • the first support sheet (Y1) is peeled off from the first composite sheet ( ⁇ 1).
  • a back grind sheet (b-BG) is attached to the surface of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1).
  • the back grind sheet (b-) is transferred from the semiconductor chip manufacturing wafer with the first cured resin film (r1). It is carried out by peeling off BG).
  • a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line. The method for manufacturing a semiconductor chip according to the above [7], which is carried out by cutting the semiconductor chip.
  • the step (S-BG) is included in the step (S4).
  • the first support sheet (Y1) is peeled off from the first composite sheet ( ⁇ 1).
  • a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line.
  • the width of the groove is 10 ⁇ m to 2000 ⁇ m, the above [6] to [ 12]
  • [14] The method for manufacturing a semiconductor chip according to any one of [6] to [13] above, wherein the depth of the groove is 30 ⁇ m to 700 ⁇ m.
  • a curable resin film capable of forming a protective film having excellent coating properties on both the bump forming surface and the side surface of the semiconductor chip, a composite sheet provided with the curable resin film, and these (the said). It is possible to provide a method for manufacturing a semiconductor chip using a curable resin film and the composite sheet).
  • the term "active ingredient” refers to a component contained in a target composition excluding a diluting solvent such as water or an organic solvent.
  • the weight average molecular weight and the number average molecular weight are polystyrene-equivalent values measured by a gel permeation chromatography (GPC) method.
  • GPC gel permeation chromatography
  • the lower limit value and the upper limit value described stepwise can be combined independently. For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the “favorable lower limit value (10)" and the “more preferable upper limit value (60)” are combined to obtain “10 to 60". You can also do it.
  • the curable resin film of the present invention is used to form a cured resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface having bumps, and meets the following requirement (I). Fulfill. ⁇ Requirement (I)> Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the curable resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece is measured, and the strain of the test piece is 1.
  • the test piece for measuring the storage elastic modulus is in the form of a film, and its planar shape is circular.
  • the test piece may be a single-layer curable resin film having a thickness of 1 mm, but in terms of ease of production, a plurality of the single-layer curable resin films having a thickness of less than 1 mm are laminated. It is preferable that the laminated film is composed of the above.
  • the thicknesses of the plurality of single layers of the curable resin film constituting the laminated film may be the same, all may be different, or only a part may be the same. All are preferably the same in that they are easy to make.
  • the "storage elastic modulus of the test piece” is a test piece of a resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz. It means the storage elastic modulus of the test piece corresponding to this strain when the strain is generated in.
  • the curable resin film according to one aspect of the present invention can form, for example, a composite sheet having a laminated structure in which a support sheet and a layer of the curable resin film are laminated.
  • the curable resin film (curable resin film of the present invention) for forming a curable resin film as a protective film on both the bump forming surface and the side surface of the semiconductor chip is “first cured”. Also referred to as “sexual resin film (x1)” or “first curable resin (x1)”. The cured resin film formed by curing the "first curable resin film (x1)” or the “first curable resin (x1)” is also referred to as the "first curable resin film (r1)". Further, a curable resin film for forming a curable resin film as a protective film on the surface (back surface) opposite to the bump forming surface of the semiconductor chip is a “second curable resin film (x2)” or “second curable resin film (x2)”.
  • the cured resin film formed by curing the “second curable resin film (x2)” or the “second curable resin (x2)” is also referred to as the “second curable resin film (r2)".
  • the composite sheet for forming the first cured resin film (r1) as a protective film on both the bump forming surface and the side surface of the semiconductor chip is referred to as "the first composite sheet ( ⁇ 1)”. Also called.
  • the "first composite sheet ( ⁇ 1)” has a laminated structure in which a "first support sheet (Y1)” and a “layer (X1) of a first curable resin (x1)" are laminated.
  • a composite sheet for forming a second cured resin film (r2) as a protective film on the back surface of the semiconductor chip is also referred to as a "second composite sheet ( ⁇ 2)".
  • the "second composite sheet ( ⁇ 2)” has a laminated structure in which a “second support sheet (Y2)” and a “layer (X2) of a second curable resin (x2)" are laminated.
  • FIG. 1 shows a schematic cross-sectional view of the first curable resin film (x1).
  • the main part may be enlarged and shown, and the dimensional ratio of each component is the same as the actual one. Is not always the case.
  • the first curable resin film (x1) shown in FIG. 1 includes a first release film 151 on one surface (sometimes referred to as a "first surface” in the present specification) x1a, and the first release film 151 is provided.
  • the second release film 152 is provided on the other surface (sometimes referred to as the "second surface” in the present specification) x1b opposite to the one surface x1a.
  • the first curable resin film (x1) having such a structure is suitable for storage as, for example, a roll.
  • Both the first release film 151 and the second release film 152 may be known.
  • the first release film 151 and the second release film 152 may be the same as each other or may be different from each other. Examples of cases where the first release film 151 and the second release film 152 are different include that the release force required for peeling from the first curable resin film (x1) is different.
  • first curable resin film (x1) shown in FIG. 1 either the first release film 151 or the second release film 152 is removed, and the resulting exposed surface becomes the surface to be attached to the object to be attached. Then, the other remaining of the first release film 151 and the second release film 152 is removed, and the generated exposed surface is attached with the first support sheet (Y1) for forming the first composite sheet ( ⁇ 1) described later. It becomes a face.
  • FIG. 1 shows an example in which the release film is provided on both sides (first surface x1a, second surface x1b) of the first curable resin film (x1)
  • the release film is the first. It may be provided only on one side of the monocurable resin film (x1), that is, only on the first side x1a or only on the second side x1b.
  • the first curable resin film (x1) may be either thermosetting or energy ray curable, and may have both thermosetting and energy ray curable properties.
  • the term "energy beam” means an electromagnetic wave or a charged particle beam having an energy quantum.
  • energy rays include ultraviolet rays, radiation, electron beams and the like.
  • Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet source.
  • the electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
  • energy ray curable means a property of being cured by irradiating with energy rays
  • non-energy ray curable is a property of not being cured by irradiating with energy rays.
  • the first curable resin film (x1) contains a resin component. Further, the first curable resin film (x1) may or may not contain a component other than the resin component together with the resin component.
  • a preferred embodiment of the first curable resin film (x1) is, for example, a resin component, a filler, and none of these (resin component and filler), and the first curable resin film (x1). ), And various additives having an effect of adjusting the storage elastic modulus.
  • Examples of the additive having the effect of adjusting the storage elastic modulus of the first curable resin film (x1) include a rheology control agent (thixotropic agent), a surfactant, and a silicone oil.
  • the first curable resin film (x1) is soft and is used for sticking to a sticking object having an uneven surface such as a wafer for forming a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line. Is suitable as. In the following description, the "wafer for manufacturing a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line" is also simply referred to as a "wafer for manufacturing a semiconductor chip".
  • the first curable resin film (x1) is pressed and attached to the bump forming surface of the wafer for manufacturing semiconductor chips, so that the first curable resin film (x1) is filled in the groove with good embedding property. To.
  • the first curable resin film (x1) is attached by pressing against the bump forming surface of the wafer for manufacturing semiconductor chips so that the bumps penetrate the first curable resin film (x1) and the bumps are formed.
  • the crown protrudes from the first curable resin film (x1).
  • the first curable resin film (x1) spreads between the bumps so as to cover the bumps, adheres to the bump forming surface, and covers the surface of the bump, particularly the surface of the portion near the bump forming surface, and the bump. Embed the base of. In this state, the residual first curable resin film (x1) is suppressed in the upper part including the crown of the bump.
  • the adhesion of the first cured resin film (r1) which is a cured product of the first curable resin film (x1), is naturally suppressed at the upper part of the bump. Further, the first curable resin film (x1) can easily maintain the area of the initial (before sticking) first curable resin film (x1) even after being stuck to the object to be stuck, and the initial (before sticking). The phenomenon that the area after application is larger than the area of the first curable resin film (x1) (hereinafter, also referred to as “protrusion”) is suppressed. Therefore, when the first curable resin film (x1) is attached to the bump-forming surface of the semiconductor chip-making wafer, poor embedding in the groove or the base of the pump is suppressed.
  • the first curable resin film (x1) when used, the first curable resin film (x1) and the first cured resin film (r1) which is a cured product thereof are provided on the bump forming surface. Therefore, it is possible to prevent the region other than the upper portion of the bump or the region near the bump on the bump forming surface from being unintentionally exposed (hereinafter, also referred to as “hajiki”). These effects are achieved when the X value defined in the above requirement (I) is 19 or more and less than 10,000.
  • the first curable resin film (x1) or the first curable resin film (r1) remains on the upper part of the bump is observed by, for example, observing the upper part of the bump with an optical microscope or a SEM (scanning electron microscope). It can be confirmed by acquiring the image data and the imaging data. Further, the presence or absence of protrusion of the first curable resin film (x1) can be visually observed or the like. Further, the presence or absence of repelling of the first curable resin film (x1) or the first curable resin film (r1) is determined by, for example, observing the bump forming surface with an optical microscope or SEM (scanning electron microscope) and acquiring imaging data. Can be confirmed by performing.
  • the amount of protrusion can be calculated by the following method. That is, the resin film in a protruding state is viewed in a plan view from above, and the maximum value of the length of the line segment connecting two different points on the outer circumference of the resin film at this time is obtained. Further, the value of the width of the resin film at the beginning (that is, before the protrusion occurs) at the position overlapping with the line segment showing the maximum value is obtained. Then, the amount of protrusion of the resin film can be calculated by subtracting the value of the width of the resin film from the maximum value of the length of the line segment.
  • FIG. 2 is a plan view for schematically explaining the amount of protrusion of the resin film when the plane shape of the resin film is circular.
  • the resin film 101 shown in FIG. 2 is in a state of being attached to the object to be attached 102 and protruding from the initial size.
  • Reference numeral 101' is a resin film of the initial size, which is shown for convenience in order to make it easier to understand the amount of protrusion.
  • the initial planar shape of the resin film 101' is circular here, but the planar shape of the resin film 101 that is in a protruding state is non-circular. However, this is an example, and the planar shape of the resin film 101 in the protruding state is not limited to that shown here.
  • the value D 0 of the width of the initial resin film 101'at the position overlapping with the line segment showing the maximum value (that is, before protruding) may be obtained.
  • the difference between D 1 and D 0 (D 1 ⁇ D 0 ) is the amount of protrusion.
  • the line segment showing the maximum value in the resin film 101 may pass through the center of the circle in the initial resin film 101'in a plan view, and in that case, at a position overlapping the line segment showing the maximum value.
  • the value of the width of the initial resin film 101' is the diameter of the resin film 101'.
  • the amount of protrusion of the resin film when the plane shape of the resin film is circular has been described with reference to the drawings, but the same method can be used when the plane shape is other than circular.
  • the amount of protrusion can be calculated.
  • the upper part of the bump penetrates the first curable resin film (x1) and protrudes, and the first curable resin
  • the degree of distortion of the curable resin film is large between the middle stage where the film (x1) begins to invade the groove and the final stage where the first curable resin film (x1) embeds the base of the bump and embeds the groove. different. More specifically, the strain of the first curable resin film (x1) in the middle stage is small, and the strain of the first curable resin film (x1) in the final stage is large.
  • the first curable resin film (x1) adopts Gc1 as the storage elastic modulus when the strain is small and Gc300 as the storage elastic modulus when the strain is large, so that Gc1 is high and Gc300 is low.
  • the upper limit of the X value defined in the above requirement (I) is preferably 5000 or less, more preferably 2000 or less. It is even more preferably 1000 or less, even more preferably 500 or less, even more preferably 300 or less, even more preferably 100 or less, and even more preferably 70 or less. Further, among the effects of the present invention, the X value defined in the above requirement (I) is preferably 25 or more, more preferably 25 or more, from the viewpoint of improving the embedding property in the groove portion of the wafer for manufacturing a semiconductor chip. Is 30 or more, more preferably 40 or more, even more preferably 50 or more, and even more preferably 60 or more.
  • Gc1 is not particularly limited as long as the X value defined in the above requirement (I) is 19 or more and less than 10,000.
  • Gc1 is preferably 1 ⁇ 10 4 to 1 ⁇ 10 6 Pa, and more preferably 3 ⁇ 10 4 to 7 ⁇ 10 5 Pa. It is more preferably 5 ⁇ 10 4 to 5 ⁇ 10 5 Pa.
  • Gc300 is not particularly limited as long as the X value is 19 or more and less than 10,000.
  • Gc300 is preferably less than 15,000 Pa and preferably 10,000 Pa or less from the viewpoint of improving the embedding property in the groove portion of the wafer for manufacturing semiconductor chips. Is more preferably 5,000 Pa or less, further preferably 4,000 Pa or less, and even more preferably 3,500 Pa or less.
  • Gc300 is preferably 100 Pa or more, more preferably 500 Pa or more, and further preferably 1,000 Pa or more.
  • the first curable resin film (x1) it is preferable that either or both of Gc1 and Gc300 satisfy the above range together with the X value specified in the above requirement (I).
  • the storage elastic modulus of the first curable resin film (x1) is not limited to the cases of Gc1 and Gc300, and by adjusting one or both of the types and contents of the components contained in the first curable resin film (x1). , Easy to adjust. For that purpose, one or both of the types and contents of the components contained in the composition for forming the first curable resin film (x1) may be adjusted. For example, when a composition for forming a first thermosetting resin film (x1-1-1), which will be described later, is used, the main contents of the polymer component (A), filler (D), etc. in this composition are included.
  • the storage elasticity of the first curable resin film (x1) can be easily adjusted.
  • increasing the content of one or both of the filler (D) and the additive (I) of the first curable resin film (x1) and the composition for forming the first curable resin film increases Gc1. It is easy to adjust to a value, and as a result, it is easy to adjust the X value to a large value.
  • the first curable resin film (x1) may be composed of one layer (single layer) or may be composed of a plurality of layers of two or more layers.
  • the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
  • a plurality of layers may be the same or different from each other
  • all layers may be the same or different.
  • All layers may be different, or only some layers may be the same
  • multiple layers are different from each other means “at least the constituent materials and thickness of each layer”. It means that one is different from each other.
  • the thickness of the first curable resin film (x1) further improves the embedding property of the semiconductor wafer for semiconductor chip fabrication into the groove from the viewpoint of improving the coating property on the bump-forming surface of the semiconductor wafer for semiconductor chip fabrication. From the viewpoint of Further, it is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 130 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 80 ⁇ m or less.
  • the "thickness of the layer (X1) of the first curable resin (x1)” means the thickness of the entire layer (X1), for example, the thickness of the layer (X1) composed of a plurality of layers. , Means the total thickness of all the layers that make up the layer (X1).
  • the "thickness of the first curable resin film (x1)” means the thickness of the entire first curable resin film (x1), and for example, the first curable resin film composed of a plurality of layers (1).
  • the thickness of x1) means the total thickness of all the layers constituting the first curable resin film (x1).
  • the first curable resin film (x1) can be formed by using a composition for forming a first curable resin film containing the constituent material.
  • the first curable resin film (x1) can be formed by applying a composition for forming a first curable resin film on the surface to be formed and drying it if necessary.
  • the ratio of the contents of the components that do not vaporize at room temperature in the composition for forming the first curable resin film is usually the same as the ratio of the contents of the components in the first curable resin film (x1).
  • room temperature means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • the first thermosetting resin film (x1-1) can be formed by using the first thermosetting resin film forming composition (x1-1-1), and the first energy ray-curable resin film (x1-2) can be formed. ) Can be formed by using the composition for forming a first energy ray-curable resin film (x1-2-1).
  • the y first curable resin film (r1) formed by the curing thereof.
  • the contribution of thermosetting of the first curable resin film (x1) is larger than the contribution of energy ray curing
  • the first curable resin film (x1) is treated as thermosetting.
  • the contribution of the first curable resin film (x1) to the energy ray curing is larger than the contribution of the thermosetting to the curing
  • the first curable resin film (x1) is energy ray cured. Treat as sex.
  • the composition for forming the first curable resin film may be coated by a known method, for example, spin coater, spray coater, air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater. , A method using various coaters such as a curtain coater, a die coater, a knife coater, a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the composition for forming a curable resin film are not particularly limited regardless of whether the first curable resin film (x1) is thermosetting or energy ray curable. However, when the composition for forming a first curable resin film contains a solvent described later, it is preferable to heat-dry it.
  • the composition for forming a curable resin film containing a solvent is preferably heat-dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
  • the composition for forming the first thermosetting resin film (x1-1-1) includes the composition itself and the first thermosetting resin film (x1-1) formed from the composition. It is preferable to heat-dry it so that it does not cure by heat.
  • thermosetting resin film (x1-1) and the first energy ray-curable resin film (x1-2) will be described in more detail.
  • thermosetting resin film (x1-1) When the first thermosetting resin film (x1-1) is cured to form the first cured resin film (r1) which is the cured product, the cured product fully exerts its function under the curing conditions.
  • the degree of curing is not particularly limited as long as the degree of curing is about the same, and it may be appropriately selected depending on the type of the first thermosetting resin film (x1-1), the intended use of the cured product, and the like.
  • the heating temperature of the first thermosetting resin film (x1-1) at the time of curing is preferably 100 to 200 ° C, more preferably 110 to 170 ° C, and particularly preferably 120 to 150 ° C. preferable.
  • the heating time during the thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 4 hours, and particularly preferably 1 to 3 hours.
  • composition for forming a first curable resin film (x1-1-1) examples include a polymer component (A), a thermosetting component (B), a filler (D), and an additive ( Composition for forming a first thermosetting resin film (x1-1-1) containing I) and (in this specification, it may be simply referred to as "composition (x1-1-1)"). And so on.
  • the polymer component (A) is a polymer compound for imparting film-forming property, flexibility, etc. to the first thermosetting resin film (x1-1).
  • the polymer component (A) has thermoplasticity and does not have thermosetting property.
  • a polymer compound also includes a product of a polycondensation reaction.
  • the polymer component (A) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one kind or two or more kinds. Well, when there are two or more kinds, the combination and ratio thereof can be arbitrarily selected.
  • polymer component (A) examples include polyvinyl acetal, acrylic resin, urethane resin, phenoxy resin, silicone resin, saturated polyester resin and the like.
  • the polymer component (A) is preferably polyvinyl acetal from the viewpoint of adjusting Gc300 to an appropriate value and facilitating the adjustment of the X value to an appropriate value.
  • polyvinyl acetal in the polymer component (A) examples include known ones. Among them, preferable polyvinyl acetals include, for example, polyvinyl formal, polyvinyl butyral, and the like, and polyvinyl butyral is more preferable. Examples of polyvinyl butyral include those having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3.
  • the weight average molecular weight (Mw) of polyvinyl acetal is preferably 5,000 to 200,000, more preferably 8,000 to 100,000.
  • the weight average molecular weight of polyvinyl acetal is in such a range, when the first thermosetting resin film (x1-1) is attached to the bump forming surface of the wafer for manufacturing semiconductor chips, the first thermosetting resin film (x1-1) is attached to the upper part of the bump.
  • the effect of suppressing repelling of (x1-1) and its cured product and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced.
  • the glass transition temperature (Tg) of polyvinyl acetal is preferably 40 to 80 ° C, more preferably 50 to 70 ° C.
  • Tg of polyvinyl acetal is in such a range, when the first thermosetting resin film (x1-1) is attached to the bump forming surface of the wafer for manufacturing semiconductor chips, the first heat on the upper part of the bump is applied.
  • the effect of suppressing the residual of the curable resin film (x1-1), the effect of suppressing the protrusion of the first thermosetting resin film (x1-1), and the first thermosetting resin film (x1) on the bump forming surface. -1) and the effect of suppressing repelling of the cured product and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced.
  • the ratio of three or more types of monomers constituting the polyvinyl acetal can be arbitrarily selected.
  • the acrylic resin in the polymer component (A) examples include known acrylic polymers.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 5,000 to 1,000,000, and more preferably 8,000 to 800,000.
  • Mw weight average molecular weight of the acrylic resin
  • the first thermosetting resin film (x1-1) is attached to the upper part of the bump.
  • the effect of suppressing repelling of (x1-1) and its cured product and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced.
  • the glass transition temperature (Tg) of the acrylic resin is preferably -50 to 70 ° C, more preferably -30 to 60 ° C.
  • Tg of the acrylic resin is in such a range, when the first thermosetting resin film (x1-1) is attached to the bump forming surface of the wafer for manufacturing semiconductor chips, the first heat on the upper part of the bump is obtained.
  • the effect of suppressing the residual of the curable resin film (x1-1), the effect of suppressing the protrusion of the first thermosetting resin film (x1-1), the first thermosetting resin film (x1) on the bump forming surface. -1) and the effect of suppressing repelling of the cured product and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced.
  • the glass transition temperature (Tg) of the acrylic resin can be calculated by using the Fox formula.
  • Tg of the monomer for inducing the structural unit used at this time the value described in the polymer data handbook or the adhesive handbook can be used.
  • the monomer constituting the acrylic resin may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • acrylic resin for example, a polymer of one kind or two or more kinds of (meth) acrylic acid esters; Copolymers of two or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like; One or more (meth) acrylic acid esters, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, etc. Examples thereof include the copolymer of.
  • (meth) acrylic acid is a concept that includes both “acrylic acid” and “methacrylic acid”.
  • (meth) acrylate is a concept that includes both “acrylate” and “methacrylate”, and is a "(meth) acryloyl group”. Is a concept that includes both an "acryloyl group” and a “methacryloyl group”.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and (meth).
  • N-butyl acrylate isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylate Heptyl, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, Undecyl (meth) acrylate, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecy
  • a glycidyl group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate; Hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxyprop
  • the acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
  • the functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound without a cross-linking agent (F).
  • F cross-linking agent
  • the ratio of the content of the polymer component (A) to the total mass of the first thermosetting resin film (x1-1) is 5 to 25% by mass regardless of the type of the polymer component (A). It is preferably 5 to 15% by mass, and more preferably 5 to 15% by mass.
  • thermosetting component (B) is a component for having thermosetting property and heat-curing the first thermosetting resin film (x1-1) to form a hard cured product.
  • the composition (x1-1-1) and the first thermosetting resin film (x1-1) contain only one type of thermosetting component (B), or two or more types. In the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
  • thermosetting component (B) examples include epoxy-based thermosetting resins, polyimide resins, and unsaturated polyester resins.
  • the thermosetting component (B) is preferably an epoxy-based thermosetting resin.
  • the epoxy-based thermosetting resin is composed of an epoxy resin (B1) and a thermosetting agent (B2).
  • the epoxy-based thermosetting resin contained in the composition (x1-1-1) and the first thermosetting resin film may be only one type, two or more types, or two or more types. If, the combination and ratio thereof can be arbitrarily selected.
  • Epoxy resin (B1) examples include known ones, such as polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolac epoxy resin, and dicyclopentadiene type epoxy resin.
  • Biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, and other bifunctional or higher functional epoxy compounds can be mentioned.
  • the epoxy resin (B1) may be an epoxy resin having an unsaturated hydrocarbon group.
  • Epoxy resins having unsaturated hydrocarbon groups have higher compatibility with acrylic resins than epoxy resins having no unsaturated hydrocarbon groups. Therefore, by using an epoxy resin having an unsaturated hydrocarbon group, for example, the reliability of a package obtained by using a first thermosetting resin film (x1-1) tends to be improved.
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy group of the polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction of (meth) acrylic acid or a derivative thereof.
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (vinyl group), a 2-propenyl group (allyl group), a (meth) acryloyl group, and a (meth) group. Examples thereof include an acrylamide group, and an acryloyl group is preferable.
  • the number average molecular weight of the epoxy resin (B1) is not particularly limited, but is the curability of the first thermosetting resin film (x1-1) and the cured product of the first thermosetting resin film (x1-1). From the viewpoint of strength and heat resistance, it is preferably 300 to 30,000, more preferably 400 to 10,000, and particularly preferably 500 to 3,000.
  • the epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1,000 g / eq, more preferably 200 to 800 g / eq.
  • epoxy resin (B1) one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
  • thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
  • thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with epoxy groups in one molecule.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group is annealed, and the like, and the phenolic hydroxyl group, an amino group, or an acid group is annealed. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • thermosetting agents (B2) examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolak-type phenol resins, dicyclopentadiene-based phenol resins, and aralkylphenol resins.
  • examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter, may be abbreviated as "DICY”) and the like.
  • the thermosetting agent (B2) may have an unsaturated hydrocarbon group.
  • the thermosetting agent (B2) having an unsaturated hydrocarbon group is, for example, a compound in which a part of the hydroxyl group of the phenol resin is replaced with a group having an unsaturated hydrocarbon group, which is not suitable for the aromatic ring of the phenol resin. Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
  • the unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
  • thermosetting agents (B2) the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene type phenol resin, and aralkyl type phenol resin is 300 to 30,000. Is preferable, 400 to 10,000 is more preferable, and 500 to 3,000 is particularly preferable.
  • the molecular weight of the non-resin component such as biphenol and dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (B2) one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
  • the content of the thermosetting agent (B2) is based on 100 parts by mass of the content of the epoxy resin (B1). It is preferably 0.1 to 500 parts by mass, more preferably 1 to 200 parts by mass, and is, for example, 5 to 150 parts by mass, 10 to 100 parts by mass, or 15 to 75 parts by mass. You may.
  • the content of the thermosetting agent (B2) is at least the lower limit value, the curing of the first thermosetting resin film (x1-1) becomes easier to proceed.
  • the content of the thermosetting agent (B2) is not more than the upper limit value, the moisture absorption rate of the first thermosetting resin film (x1-1) is reduced, for example, the first thermosetting resin film (1). The reliability of the package obtained by using x1-1) is further improved.
  • the content of the thermosetting component (B) (for example, the epoxy resin (B1) and the thermosetting agent (B2))
  • the total content) is preferably 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
  • the content of the thermosetting component (B) is in such a range, when the first thermosetting resin film (x1-1) is attached to the bump forming surface of the semiconductor chip manufacturing wafer, the bumps are formed.
  • thermosetting resin film (x1-1) The effect of suppressing the repelling of the thermosetting resin film (x1-1) and its cured product, and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced, and A hard cured product can be formed. Further, the content of the thermosetting component (B) may be appropriately adjusted according to the type of the polymer component (A) from the viewpoint that such an effect can be obtained more remarkably.
  • the content of the thermosetting component (B) in the composition (x1-1-1) and the first thermosetting resin film (x1-1). is preferably 600 to 1,000 parts by mass, more preferably 650 to 1,000 parts by mass, and 650 to 950 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). Is particularly preferable.
  • the X value can be adjusted more easily by adjusting the amount of the filler (D) in the composition (x1-1-1) and the first thermosetting resin film (x1-1). Further, by adjusting the amount of the filler (D) in the composition (x1-1-1) and the first thermosetting resin film (x1-1), the first thermosetting resin film (x1-1) can be adjusted. ), The coefficient of thermal expansion of the cured product can be adjusted more easily. For example, the coefficient of thermal expansion of the cured product of the first thermosetting resin film (x1-1) is optimized for the object to be formed of the cured product. By doing so, the reliability of the package obtained by using the first thermosetting resin film (x1-1) is further improved. Further, by using the first thermosetting resin film (x1-1) containing the filler (D), the moisture absorption rate of the cured product of the first thermosetting resin film (x1-1) can be reduced. It is also possible to improve heat dissipation.
  • the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride and the like; spherical beads of these inorganic fillers; surface modification of these inorganic fillers. Goods; Single crystal fibers of these inorganic fillers; Glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • the filler (D) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be of only one type or of two or more types. When there are two or more types, their combinations and ratios can be arbitrarily selected.
  • the ratio of the content of the filler (D) to the total mass of the thermosetting resin film (x1-1)) is preferably 5 to 45% by mass, more preferably 5 to 40% by mass. It is preferably 5 to 30% by mass, and more preferably 5 to 30% by mass.
  • Gc1 By adjusting the type or amount of the additive (I) in the composition (x1-1-1) and the first thermosetting resin film (x1-1), Gc1 can be appropriately adjusted to obtain the X value. Can be adjusted more easily.
  • examples of the additive (I) preferable in that the X value can be adjusted more easily include a rheology control agent, a surfactant, a silicone oil and the like.
  • examples of the rheology control agent include polyhydroxycarboxylic acid esters, polyvalent carboxylic acids, and polyamide resins.
  • examples of the surfactant include modified siloxane, acrylic polymer and the like.
  • examples of the silicone oil include aralkyl-modified silicone oil and modified polydimethylsiloxane, and examples of the modifying group include an aralkyl group; a polar group such as a hydroxy group; and a group having an unsaturated bond such as a vinyl group and a phenyl group. Can be mentioned.
  • additive (I) examples include other general-purpose additives such as plasticizers, antistatic agents, antioxidants, gettering agents, ultraviolet absorbers, and tackifiers, in addition to the above. ..
  • the additive (I) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one kind or two or more kinds. When there are two or more types, their combinations and ratios can be arbitrarily selected.
  • the content of the additive (I) of the composition (x1-1-1) and the first thermosetting resin film (x1-1) is not particularly limited, and can be appropriately adjusted according to the type and purpose thereof.
  • the ratio of the content of the additive (I) to the total mass of the first thermosetting resin film (x1-1) in the first thermosetting resin film (x1-1)) is 0.5 to 10 mass. %, More preferably 0.5 to 7% by mass, and even more preferably 0.5 to 5% by mass.
  • the composition (x1-1-1) and the first thermosetting resin film (x1-1) may contain a curing accelerator (C).
  • the curing accelerator (C) is a component for adjusting the curing rate of the composition (x1-1-1).
  • Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole.
  • 2-Phenyl-4-methylimidazole 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and other imidazoles (one or more hydrogen atoms other than hydrogen atoms) (Imidazole substituted with an organic group); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (phosphine in which one or more hydrogen atoms are substituted with an organic group); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylborone salts such as tetraphenylborate.
  • the curing accelerator (C) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one type or two or more types. Well, when there are two or more types, their combinations and ratios can be arbitrarily selected.
  • the content of the curing accelerator (C) in the composition (x1-1-1) and the first thermosetting resin film (x1-1) is the thermosetting component (x1-1-1).
  • the content of B) is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass.
  • the content of the curing accelerator (C) is at least the lower limit value, the effect of using the curing accelerator (C) is more remarkable.
  • the highly polar curing accelerator (C) is a first thermosetting resin film (x1-) under high temperature and high humidity conditions. In 1), the effect of suppressing segregation by moving to the adhesion interface side with the adherend becomes high, and the reliability of the package obtained by using, for example, the first thermosetting resin film (x1-1) is enhanced. The sex is improved.
  • the composition (x1-1-1) and the first thermosetting resin film (x1-1) may contain a coupling agent (E).
  • a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesiveness and adhesion of the first thermosetting resin film (x1-1) to the adherend can be improved. Can be improved. Further, by using the coupling agent (E), the cured product of the first thermosetting resin film (x1-1) is improved in water resistance without impairing the heat resistance.
  • the coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional groups of the polymer component (A), the thermosetting component (B), and the like, and is preferably a silane coupling agent. More preferred.
  • Preferred silane coupling agents include, for example, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2-.
  • the coupling agent (E) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one kind or two or more kinds. Well, when there are two or more types, their combinations and ratios can be arbitrarily selected.
  • the content of the coupling agent (E) in the composition (x1-1-1) and the first thermosetting resin film (x1-1) is the polymer component (A).
  • the total content of the thermosetting component (B) of 100 parts by mass, preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and 0.1. It is particularly preferable that the amount is up to 5 parts by mass.
  • the content of the coupling agent (E) is equal to or higher than the lower limit, the dispersibility of the filler (D) in the resin can be improved, and the first thermosetting resin film (x1-1) can be attached.
  • the effect of using the coupling agent (E) such as improvement of adhesiveness to an object, can be obtained more remarkably.
  • the content of the coupling agent (E) is not more than the upper limit value, the generation of outgas is further suppressed.
  • the composition (X1- 1-1) and the first thermosetting resin film (x1-1) may contain a cross-linking agent (F).
  • the cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) with another compound to cross-link the polymer component (A). The initial adhesive force and cohesive force of x1-1) can be adjusted.
  • cross-linking agent (F) examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based cross-linking agent (a cross-linking agent having a metal chelate structure), an aziridine-based cross-linking agent (a cross-linking agent having an aziridinyl group), and the like. Can be mentioned.
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as "aromatic polyvalent isocyanate compound and the like". (May be abbreviated); trimerics such as the aromatic polyvalent isocyanate compound, isocyanurates and adducts; terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the like with a polyol compound. And so on.
  • the "adduct” is a low content of the aromatic polyhydric isocyanate compound, the aliphatic polyvalent isocyanate compound or the alicyclic polyvalent isocyanate compound, and ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a molecularly active hydrogen-containing compound.
  • the adduct body include a xylylene diisocyanate adduct of trimethylolpropane, which will be described later.
  • the "terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the terminal portion of the molecule.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4.
  • organic polyvalent imine compound examples include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxyamide), trimethylolpropane-tri- ⁇ -aziridinyl propionate, and tetramethylolmethane.
  • examples thereof include -tri- ⁇ -aziridinyl propionate, N, N'-toluene-2,4-bis (1-aziridinecarboxyamide) triethylene melamine and the like.
  • the cross-linking agent (F) When an organic multivalent isocyanate compound is used as the cross-linking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A).
  • the cross-linking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, the reaction between the cross-linking agent (F) and the polymer component (A) causes the first thermosetting resin film (x1).
  • the crosslinked structure can be easily introduced into -1).
  • the cross-linking agent (F) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one kind or two or more kinds. When there are two or more types, their combinations and ratios can be arbitrarily selected.
  • the content of the cross-linking agent (F) in the composition (x1-1-1) is 0.01 to 100 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). It is preferably 20 parts by mass, more preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass.
  • the content of the cross-linking agent (F) is at least the lower limit value, the effect of using the cross-linking agent (F) is more remarkable.
  • the content of the cross-linking agent (F) is not more than the upper limit value, the excessive use of the cross-linking agent (F) is suppressed.
  • the composition (x1-1-1) and the first thermosetting resin film (x1-1) may contain an energy ray-curable resin (G). Since the first thermosetting resin film (x1-1) contains the energy ray-curable resin (G), the characteristics can be changed by irradiation with energy rays.
  • the energy ray-curable resin (G) is obtained by polymerizing (curing) an energy ray-curable compound.
  • the energy ray-curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate-based compounds having a (meth) acryloyl group are preferable.
  • acrylate-based compound examples include trimethylolpropantri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol monohydroxypenta (meth).
  • the weight average molecular weight of the energy ray-curable compound is preferably 100 to 30,000, more preferably 300 to 10,000.
  • the energy ray-curable compound used for polymerization one type may be used alone, or two or more types may be used in combination. When there are two or more energy ray-curable compounds used for polymerization, their combinations and ratios can be arbitrarily selected.
  • the content of the energy ray-curable resin (G) is 1 to 95% by mass based on the total amount of the active ingredient of the composition (x1-1-1). It is preferably 5 to 90% by mass, more preferably 10 to 85% by mass.
  • composition (x1-1-1) and the first thermosetting resin film (x1-1) contain the energy ray-curable resin (G)
  • the polymerization reaction of the energy ray-curable resin (G) is efficient.
  • the composition (x1-1-1) and the first thermosetting resin film (x1-1) may contain a photopolymerization initiator (H).
  • photopolymerization initiator (H) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4.
  • photopolymerization initiator (H) one type may be used alone, or two or more types may be used in combination. When there are two or more photopolymerization initiators (H), their combinations and ratios can be arbitrarily selected.
  • the content of the photopolymerization initiator (H) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the content of the energy ray-curable resin (G). It is preferably 1 to 10 parts by mass, more preferably 2 to 5 parts by mass.
  • composition (x1-1-1) and the first thermosetting resin film (x1-1) are the above-mentioned polymer component (A) and the thermosetting component (x1-1) within a range that does not impair the effects of the present invention.
  • B curing accelerator (C), filler (D), coupling agent (E), cross-linking agent (F), energy ray-curable resin (G), and photopolymerization initiator (H).
  • the additive (I), and other components that do not correspond to any of the above may be contained.
  • the other components contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one kind or two or more kinds. When there are two or more types, their combinations and ratios can be arbitrarily selected.
  • the contents of the other components of the composition (x1-1-1) and the first thermosetting resin film (x1-1) are not particularly limited and may be appropriately selected depending on the intended purpose.
  • the composition (x1-1-1) preferably further contains a solvent.
  • the solvent-containing composition (x1-1-1) has good handleability.
  • the solvent is not particularly limited, but preferred ones are, for example, hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples thereof include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
  • the solvent contained in the composition (x1-1-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. it can.
  • solvents contained in the composition (x1-1-1) include, for example, methyl ethyl ketone and the like from the viewpoint that the components contained in the composition (x1-1-1) can be mixed more uniformly. ..
  • the content of the solvent in the composition (x1-1-1) is not particularly limited, and may be appropriately selected depending on, for example, the type of component other than the solvent.
  • the first thermosetting resin film forming composition (x1-1-1) is obtained by blending each component for constituting the composition.
  • the order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
  • the method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
  • the temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • First energy ray curable resin film (x1-2) The cured product fully exerts its function under the curing conditions when the first energy ray-curable resin film (x1-2) is cured to form the first cured resin film (r1) which is the cured product.
  • the degree of curing is not particularly limited, and may be appropriately selected depending on the type of the first energy ray-curable resin film (x1-2), the intended use of the cured product, and the like.
  • the illuminance of the energy ray at the time of curing the first energy ray curable resin film (x1-2) is preferably 180 to 280 mW / cm 2.
  • the amount of light of the energy rays at the time of curing is preferably 450 to 1000 mJ / cm 2.
  • the first energy ray-curable resin film forming composition (x1-2-1) includes, for example, an energy ray-curable component (a), a filler, and an additive. Examples thereof include a composition for forming a sex resin film (x1-2-1) (in the present specification, it may be simply referred to as "composition (x1-2-1)").
  • the energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and is a component for imparting film-forming property, flexibility, and the like to the first energy ray-curable resin film (x1-2). But also.
  • the energy ray-curable component (a) is preferably uncured, preferably sticky, and more preferably uncured and sticky.
  • Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000, and an energy ray-curable group. Examples thereof include a compound (a2) having a molecular weight of 100 to 80,000.
  • the polymer (a1) may be at least partially crosslinked by a crosslinking agent or may not be crosslinked.
  • polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000 examples include an acrylic polymer having a functional group capable of reacting with a group of another compound (a).
  • Examples of the functional group capable of reacting with a group of another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than the hydrogen atom. Group), epoxy group and the like.
  • the functional group is preferably a group other than a carboxy group.
  • the functional group is preferably a hydroxyl group.
  • the acrylic polymer (a11) having a functional group examples include those obtained by copolymerizing an acrylic monomer having the functional group and an acrylic monomer having no functional group, and other than these monomers. Further, a monomer other than the acrylic monomer (non-acrylic monomer) may be copolymerized. Further, the acrylic polymer (a11) may be a random copolymer or a block copolymer.
  • acrylic monomer having a functional group examples include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth).
  • (Meta) hydroxyalkyl acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic unsaturated such as vinyl alcohol and allyl alcohol Examples thereof include alcohol (unsaturated alcohol having no (meth) acrylic skeleton).
  • Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having ethylenically unsaturated bonds) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, and citracon.
  • Ethylene unsaturated dicarboxylic acids such as acids (dicarboxylic acids having ethylenically unsaturated bonds); anhydrides of the ethylenically unsaturated dicarboxylic acids; (meth) acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate and the like. Be done.
  • the acrylic monomer having the functional group is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, and more preferably a hydroxyl group-containing monomer.
  • the acrylic monomer having the functional group constituting the acrylic polymer (a11) may be only one kind, two or more kinds, and when two or more kinds, a combination thereof and The ratio can be selected arbitrarily.
  • acrylic monomer having no functional group examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n- (meth) acrylate.
  • acrylic monomer having no functional group examples include an alkoxyalkyl group such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate.
  • (Meta) acrylic acid ester (meth) acrylic acid ester having an aromatic group, including (meth) acrylic acid aryl ester such as (meth) phenyl acrylic acid; non-crosslinkable (meth) acrylamide and its derivatives; Examples thereof include (meth) acrylic acid esters having a non-crosslinkable tertiary amino group such as (meth) acrylic acid N, N-dimethylaminoethyl and (meth) acrylic acid N, N-dimethylaminopropyl.
  • the acrylic monomer having no functional group constituting the acrylic polymer (a11) may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • non-acrylic monomer examples include olefins such as ethylene and norbornene; vinyl acetate; and styrene.
  • the non-acrylic monomer constituting the acrylic polymer (a11) may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
  • the ratio (content) of the amount of the structural unit derived from the acrylic monomer having a functional group to the total amount of the structural unit constituting the acrylic polymer (a11) is 0.1 to 50% by mass. It is preferably 1 to 40% by mass, more preferably 3 to 30% by mass, and particularly preferably 3 to 30% by mass.
  • the content of the sex group can be easily adjusted to a preferable range in the degree of curing of the cured product of the first energy ray-curable resin film (x1-2).
  • the acrylic polymer (a11) constituting the acrylic resin (a1-1) may be of only one type, may be of two or more types, and when there are two or more types, a combination thereof and The ratio can be selected arbitrarily.
  • the ratio of the content of the acrylic resin (a1-1) to the total content of the components other than the solvent is preferably 1 to 40% by mass, more preferably 2 to 30% by mass, and 3 to 20% by mass. % Is particularly preferable.
  • the energy ray-curable compound (a12) is one or more selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). It is preferable that the group has an isocyanate group, and more preferably the group has an isocyanate group.
  • the energy ray-curable compound (a12) has an isocyanate group as the group, for example, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
  • the energy ray-curable compound (a12) preferably has 1 to 5 energy ray-curable groups in one molecule, and more preferably 1 to 2 groups.
  • Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, and 1,1- (bisacryloyloxymethyl).
  • Ethyl isocyanate Acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate;
  • Examples thereof include an acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound with a polyol compound and a hydroxyethyl (meth) acrylate.
  • the energy ray-curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
  • the energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
  • the ratio of the content of the energy ray-curable group derived from the energy ray-curable compound (a12) to the content of the functional group derived from the acrylic polymer (a11) in the acrylic resin (a1-1). is preferably 20 to 120 mol%, more preferably 35 to 100 mol%, and particularly preferably 50 to 100 mol%.
  • the content ratio is in such a range, the adhesive force of the cured product of the energy ray-curable resin film (x1-2) becomes larger.
  • the energy ray-curable compound (a12) is a monofunctional compound (having one group in one molecule)
  • the upper limit of the content ratio is 100 mol%.
  • the energy ray-curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule)
  • the upper limit of the content ratio may exceed 100 mol%.
  • the weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 2,000,000, more preferably 300,000 to 1,500,000.
  • the above-mentioned monomer described as constituting the acrylic polymer (a11) when the polymer (a1) is at least partially crosslinked by a cross-linking agent A monomer that does not correspond to any of the above and has a group that reacts with the cross-linking agent may be polymerized and cross-linked at the group that reacts with the cross-linking agent, or the energy ray-curable compound (a12). ), Which may be crosslinked in the group that reacts with the functional group.
  • the polymer (a1) contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may be only one kind, or two or more kinds. In the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
  • a compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 examples include a group containing an energy ray-curable double bond, and preferred ones are.
  • (Meta) Acryloyl group, vinyl group and the like can be mentioned.
  • the compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray-curable group, an epoxy resin having an energy ray-curable group, and an energy ray-curable group.
  • Examples include phenol resin.
  • examples of the low molecular weight compound having an energy ray-curable group include polyfunctional monomers or oligomers, and acrylate compounds having a (meth) acryloyl group are preferable.
  • examples of the acrylate-based compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4.
  • Bifunctional (meth) acrylate Tris (2- (meth) acryloxyethyl) isocyanurate, ⁇ -caprolactone-modified tris- (2- (meth) acryloxyethyl) isocyanurate, ethoxylated glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol poly (meth) acrylate, dipentaerythritol hexa
  • Polyfunctional (meth) acrylates such as meta) acrylates; Examples thereof include polyfunctional (meth) acrylate oligomers such as
  • an epoxy resin having an energy ray-curable group and a phenol resin having an energy ray-curable group are described in, for example, paragraph 0043 of "Japanese Patent Laid-Open No. 2013-194102". Can be used. Such a resin also corresponds to a resin constituting a thermosetting component described later, but is treated as the compound (a2) in the present invention.
  • the weight average molecular weight of the compound (a2) is preferably 100 to 30,000, more preferably 300 to 10,000.
  • the compound (a2) contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may be only one kind or two or more kinds. Well, when there are two or more types, their combinations and ratios can be arbitrarily selected.
  • composition (x1-2-1) and the first energy ray-curable resin film (x1-2) contain the compound (a2) as the energy ray-curable component (a), they are further energy ray-curable. It is also preferable to contain the polymer (b) having no group.
  • the polymer (b) may be at least partially crosslinked by a crosslinking agent or may not be crosslinked.
  • the polymer (b) having no energy ray-curable group examples include an acrylic polymer, a phenoxy resin, a urethane resin, a polyester, a rubber resin, and an acrylic urethane resin.
  • the polymer (b) is preferably an acrylic polymer (hereinafter, may be abbreviated as "acrylic polymer (b-1)").
  • the acrylic polymer (b-1) may be a known one, and may be, for example, a homopolymer of one kind of acrylic monomer or a copolymer of two or more kinds of acrylic monomers. It may be a copolymer of one or more kinds of acrylic monomers and one or more kinds of monomers other than the acrylic monomers (non-acrylic monomers).
  • acrylic monomer constituting the acrylic polymer (b-1) examples include (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth) acrylic acid ester, and hydroxyl group-containing. Examples thereof include (meth) acrylic acid ester and (meth) acrylic acid ester containing a substituted amino group.
  • the "substituted amino group" is as described above.
  • the above-described acrylic monomer having no functional group (alkyl group constituting the alkyl ester) constituting the acrylic polymer (a11) has one carbon number.
  • the same as (meth) acrylic acid alkyl ester, etc., which has a chain structure of to 18) can be mentioned.
  • Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid isobornyl and (meth) acrylic acid dicyclopentanyl; (Meta) Acrylic acid aralkyl esters such as benzyl (meth) acrylic acid; (Meta) Acrylic acid cycloalkenyl ester such as (meth) acrylic acid dicyclopentenyl ester; Examples thereof include (meth) acrylic acid cycloalkenyloxyalkyl ester such as (meth) acrylic acid dicyclopentenyloxyethyl ester.
  • Examples of the glycidyl group-containing (meth) acrylic acid ester include glycidyl (meth) acrylic acid.
  • Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxy (meth) acrylate. Examples thereof include propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • Examples of the substituted amino group-containing (meth) acrylic acid ester include N-methylaminoethyl (meth) acrylic acid.
  • non-acrylic monomer constituting the acrylic polymer (b-1) examples include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
  • the polymer (b) having no energy ray-curable group, which is at least partially crosslinked by a cross-linking agent for example, a polymer (b) in which the reactive functional group in the polymer (b) has reacted with the cross-linking agent is used.
  • the reactive functional group may be appropriately selected depending on the type of the cross-linking agent and the like, and is not particularly limited.
  • the cross-linking agent is a polyisocyanate compound
  • examples of the reactive functional group include a hydroxyl group, a carboxy group, an amino group and the like, and among these, a hydroxyl group having high reactivity with an isocyanate group is preferable.
  • the reactive functional group include a carboxy group, an amino group, an amide group and the like, and among these, a carboxy group having high reactivity with an epoxy group is preferable. ..
  • the reactive functional group is preferably a group other than the carboxy group.
  • Examples of the polymer (b) having the reactive functional group and not having the energy ray-curable group include those obtained by polymerizing at least the monomer having the reactive functional group.
  • the acrylic polymer (b-1) one or both of the acrylic monomer and the non-acrylic monomer mentioned as the monomers constituting the acrylic polymer (b-1) may be those having the reactive functional group. ..
  • Examples of the polymer (b) having a hydroxyl group as a reactive functional group include those obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester, and in addition to this, the above-mentioned acrylic.
  • the monomer or non-acrylic monomer include those obtained by polymerizing a monomer in which one or more hydrogen atoms are substituted with the reactive functional group.
  • the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total amount of the structural units constituting the polymer (b) is 1 to 20. It is preferably by mass%, more preferably 2 to 10% by mass. When the ratio is in such a range, the degree of cross-linking in the polymer (b) becomes a more preferable range.
  • the weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is 10,000 to 2,000,000 from the viewpoint of improving the film-forming property of the composition (IV). It is preferably 100,000 to 1,500,000, and more preferably 100,000 to 1,500,000.
  • Only one type of polymer (b) having no energy ray-curable group contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may be used. However, there may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • compositions (x1-2-1) include those containing either or both of the polymer (a1) and the compound (a2).
  • the composition (x1-2-1) contains the compound (a2), it preferably also contains a polymer (b) having no energy ray-curable group.
  • the composition (x1-2-1) further contains the above (x1-2-1). It is also preferable to contain a1).
  • the composition (x1-2-1) does not contain the compound (a2), but contains both the polymer (a1) and the polymer (b) having no energy ray-curable group. May be good.
  • the composition (x1-2-1) contains the polymer (a1), the compound (a2), and the polymer (b) having no energy ray-curable group
  • the composition (x1-2-1) contains the polymer (a1), the compound (a2), and the polymer (b) having no energy ray-curable group
  • the content of the compound (a2) is 10 to 400 parts by mass with respect to 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray-curable group. It is preferably 30 to 350 parts by mass, and more preferably 30 to 350 parts by mass.
  • the ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total content of the components other than the solvent (That is, the total of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group with respect to the total mass of the film in the first energy ray-curable resin film (x1-2).
  • the content ratio is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass. When the ratio is in such a range, the energy ray curability of the first energy ray curable resin film (x1-2) becomes better.
  • the X value can be adjusted more easily by adjusting the amount of the filler in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2). Further, by adjusting the amount of the filler in the composition (x1-2-1) and the first energy ray curable resin film (x1-2), the first energy ray curable resin film (x1-2) The thermal expansion coefficient of the cured product can be adjusted more easily. For example, the thermal expansion coefficient of the cured product of the first energy ray-curable resin film (x1-2) is optimized for the object to be formed of the protective film. As a result, the reliability of the package obtained by using the first energy ray-curable resin film (x1-2) is further improved.
  • the moisture absorption rate of the cured product of the first energy ray-curable resin film (x1-2) can be reduced or heat can be dissipated. It can also improve sex.
  • the filler contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) is the composition (x1-1-1) and the first thermosetting property described above. It is the same as the filler (D) contained in the resin film (x1-1).
  • the inclusion of the filler in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) includes the composition (x1-1-1) and the first thermosetting resin film (x1-2). It may be the same as the mode of containing the filler (D) of x1-1).
  • the filler contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may be only one kind or two or more kinds. In the case of species or more, their combinations and ratios can be arbitrarily selected.
  • the ratio of the content of the filler to the total content of all the components other than the solvent that is, the first energy in the first energy ray-curable resin film (x1-2)
  • the ratio of the content of the filler to the total mass of the linear curable resin film (x1-2)) may be, for example, 5 to 45% by mass.
  • the X value can be adjusted more easily by adjusting the type or amount of the additive in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2).
  • the additives contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) are the composition (x1-1-1) and the first thermosetting property described above. It is the same as the additive (I) contained in the resin film (x1-2).
  • preferable additives in that the X value can be adjusted more easily include rheology control agents, surfactants, silicone oils and the like.
  • the mode of containing the additive of the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) is the composition (X1-1-1) and the first thermosetting resin film (x1-2). It may be the same as the mode of containing the additive (I) of x1-1).
  • composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may contain only one type of additive or two or more types of additives. In the case of species or more, their combinations and ratios can be arbitrarily selected.
  • the content of the additive in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) is not particularly limited, and can be appropriately adjusted according to the type and purpose thereof.
  • the ratio of the content of the additive to the total mass of the first energy ray-curable resin film (x1-2) in the linear curable resin film (x1-2)) is, for example, 0.5 to 10% by mass. There may be.
  • the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) contain the energy ray-curable component (a) and the filler as long as the effects of the present invention are not impaired.
  • the additive and other components that do not fall under any of the above may be contained.
  • the other components include thermosetting components, photopolymerization initiators, coupling agents, cross-linking agents and the like.
  • thermosetting component, photopolymerization initiator, coupling agent, and cross-linking agent in the composition (x1-2-1) are the thermosetting components (B) in the composition (x1-1-1), respectively.
  • the other components contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may be only one kind or two or more kinds. When there are two or more types, their combinations and ratios can be arbitrarily selected.
  • the contents of the other components of the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) are not particularly limited and may be appropriately selected depending on the intended purpose.
  • the composition (x1-2-1) preferably further contains a solvent.
  • the solvent-containing composition (x1-2-1) has good handleability.
  • Examples of the solvent contained in the composition (x1-2-1) include the same solvents contained in the composition (x1-1-1) described above.
  • the solvent contained in the composition (x1-2-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. it can.
  • the content of the solvent in the composition (x1-2-1) is not particularly limited, and may be appropriately selected depending on, for example, the type of component other than the solvent.
  • the composition for forming a first energy ray-curable resin film (x1-2-1) is obtained by blending each component for constituting the composition.
  • the first energy ray-curable resin film forming composition (x1-2-1) is the first thermosetting resin film forming composition described above, except that, for example, the types of compounding components are different. It can be manufactured by the same method as in the case of x1-1-1).
  • the first curable resin film (x1) can form the first composite sheet ( ⁇ 1) by laminating it with the first support sheet (Y1).
  • a configuration example of the first composite sheet ( ⁇ 1) is shown in FIG.
  • the first composite sheet ( ⁇ 1) has a layer (X1) of the first curable resin (x1) on one surface of the first support sheet (Y1). It is equipped.
  • the layer (X1) of the first curable resin (x1) is transported as a product package. Or, when the layer (X1) of the first curable resin (x1) is transported in the process, the layer (X1) of the first curable resin (x1) is stably supported and protected.
  • the first composite sheet ( ⁇ 1) is a base material 51, and the first support sheet (Y1) is first curable on one surface of the base material 51.
  • a layer (X1) of resin (x1) is provided.
  • the first composite sheet ( ⁇ 1) is an adhesive sheet in which a base material 51 and an adhesive layer 61 are laminated, like the first composite sheet ( ⁇ 1b) shown in FIG. , The pressure-sensitive adhesive layer 61 of the pressure-sensitive adhesive sheet and the layer (X1) of the first curable resin (x1) may be bonded together.
  • the first composite sheet ( ⁇ 1) has the base material 51, the intermediate layer 71, and the adhesive layer 61 in this order, as in the first composite sheet ( ⁇ 1c) shown in FIG.
  • the pressure-sensitive adhesive layer 61 of the pressure-sensitive adhesive sheet and the layer (X1) of the first curable resin (x1) may be bonded to each other.
  • the pressure-sensitive adhesive sheet in which the base material 51, the intermediate layer 71, and the pressure-sensitive adhesive layer 61 are laminated in this order can be suitably used as a back grind tape. That is, since the first composite sheet ( ⁇ 1c) shown in FIG. 6 has a back grind tape as the first support sheet (Y1), the layer (X1) of the first curable resin (x1) of the first composite sheet ( ⁇ 1c). ) And the bump-forming surface of the semiconductor chip-making wafer, and then the back surface of the semiconductor chip-making wafer is ground and thinned.
  • the first support sheet (Y1) functions as a support for supporting the first curable resin (x1).
  • the first support sheet (Y1) may be composed of only the base material 51, or is a laminate of the base material 51 and the pressure-sensitive adhesive layer 61 as shown in FIG.
  • the base material 51, the intermediate layer 71, and the pressure-sensitive adhesive layer 61 may be laminated in this order.
  • a laminate in which the base material 51, the intermediate layer 71, and the pressure-sensitive adhesive layer 61 are laminated in this order is suitable for use as a back grind sheet (b-BG).
  • the base material of the first support sheet (Y1), the pressure-sensitive adhesive layer and the intermediate layer that the first support sheet (Y1) may have will be described.
  • the base material is in the form of a sheet or a film, and examples of the constituent material thereof include the following various resins.
  • the resin constituting the base material include polyethylenes such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE); polypropylene, polybutene, polybutadiene, polymethylpentene, norbornene resin and the like.
  • Polyethylene other than polyethylene ethylene-based copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer, etc.
  • Polymer obtained by using ethylene as a monomer Vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer); Polystyrene; Polycycloolefin; Polymers such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, all aromatic polyesters in which all constituent units have an aromatic cyclic group; two or more kinds of polymers.
  • Vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer)
  • Polystyrene Polycycloolefin
  • Polymers such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, all aromatic polyesters in
  • Examples thereof include the polymer of the polyester; poly (meth) acrylic acid ester; polyurethane; polyurethane acrylate; polyimide; polyamide; polycarbonate; fluororesin; polyacetal; modified polyphenylene oxide; polyphenylene sulfide; polysulfone; polyether ketone and the like.
  • the resin constituting the base material for example, a polymer alloy such as a mixture of the polyester and other resins can be mentioned.
  • the polymer alloy of the polyester and the resin other than the polyester preferably has a relatively small amount of the resin other than the polyester.
  • the resin constituting the base material is, for example, a crosslinked resin in which one or more of the resins exemplified above are crosslinked; one or two of the resins exemplified so far. Modified resins such as ionomer using the above can also be mentioned.
  • the resin constituting the base material one type may be used alone, or two or more types may be used in combination.
  • the combination and ratio thereof can be arbitrarily selected.
  • the base material may be only one layer (single layer) or may have two or more layers.
  • the base material has a plurality of layers, the plurality of layers may be the same as or different from each other, and the combination of the plurality of layers is not particularly limited.
  • the thickness of the base material is preferably 5 ⁇ m to 1,000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, further preferably 15 ⁇ m to 300 ⁇ m, and even more preferably 20 ⁇ m to 150 ⁇ m.
  • the "thickness of the base material” means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material. means.
  • the base material has a high thickness accuracy, that is, a base material in which the variation in thickness is suppressed regardless of the part.
  • a base material in which the variation in thickness is suppressed regardless of the part.
  • materials having high thickness accuracy that can be used to form a base material include, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, and ethylene-vinyl acetate copolymers. And so on.
  • the base material contains various known additives such as fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and softeners (plasticizers). You may.
  • the base material may be transparent, opaque, colored depending on the purpose, or another layer may be vapor-deposited.
  • the first curable resin film (x1) is the first energy ray-curable resin film (x1-2) and the pressure-sensitive adhesive layer is an energy-curable pressure-sensitive adhesive layer, the base material has energy. It is preferable that the line is transmitted.
  • the base material can be produced by a known method.
  • a base material containing a resin can be produced by molding a resin composition containing the resin.
  • the pressure-sensitive adhesive layer is in the form of a sheet or a film and contains a pressure-sensitive adhesive.
  • the adhesive include acrylic resins (adhesives composed of resins having (meth) acryloyl groups), urethane resins (adhesives composed of resins having urethane bonds), and rubber resins (resins having a rubber structure).
  • acrylic resins acrylic resins (adhesives composed of resins having (meth) acryloyl groups), urethane resins (adhesives composed of resins having urethane bonds), and rubber resins (resins having a rubber structure).
  • silicone resin asdhesive made of resin having siloxane bond
  • epoxy resin as adhesive made of resin having epoxy group
  • polyvinyl ether adhesive resin such as polycarbonate and the like.
  • an acrylic resin is preferable.
  • the "adhesive resin” is a concept including both a resin having adhesiveness and a resin having adhesiveness.
  • a resin having adhesiveness for example, not only the resin itself has adhesiveness but also the resin itself has adhesiveness. It also includes a resin that exhibits adhesiveness when used in combination with other components such as additives, and a resin that exhibits adhesiveness due to the presence of a trigger such as heat or water.
  • the adhesive layer may be only one layer (single layer), or may be two or more layers.
  • the pressure-sensitive adhesive layer is a plurality of layers
  • the plurality of layers may be the same as or different from each other, and the combination of the plurality of layers is not particularly limited.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 5 ⁇ m to 500 ⁇ m, and even more preferably 10 ⁇ m to 100 ⁇ m.
  • the "thickness of the pressure-sensitive adhesive layer” means the thickness of the entire pressure-sensitive adhesive layer, and for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the sum of all the layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
  • the pressure-sensitive adhesive layer may be formed by using an energy ray-curable pressure-sensitive adhesive or may be formed by using a non-energy ray-curable pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer formed by using the energy ray-curable pressure-sensitive adhesive can easily adjust the physical properties before and after curing.
  • the intermediate layer is in the form of a sheet or a film, and the constituent material thereof may be appropriately selected depending on the intended purpose and is not particularly limited.
  • the purpose is to prevent the first cured resin film (r1) from being deformed by reflecting the shape of the bumps existing on the semiconductor surface on the protective film covering the semiconductor surface, it is intermediate.
  • Preferred constituent materials of the layer include urethane (meth) acrylate and the like because they have high unevenness-following property and the adhesiveness of the intermediate layer is further improved.
  • the intermediate layer may be only one layer (single layer), or may be two or more layers.
  • the intermediate layer is a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
  • the thickness of the intermediate layer can be appropriately adjusted according to the height of the bumps on the surface of the semiconductor to be protected, but it may be 50 ⁇ m to 600 ⁇ m because the influence of the bumps having a relatively high height can be easily absorbed. It is preferably 70 ⁇ m to 500 ⁇ m, more preferably 80 ⁇ m to 400 ⁇ m.
  • the "thickness of the intermediate layer” means the thickness of the entire intermediate layer, and for example, the thickness of the intermediate layer composed of a plurality of layers is the total thickness of all the layers constituting the intermediate layer. means.
  • the first composite sheet ( ⁇ 1) can be manufactured by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship.
  • the pressure-sensitive adhesive layer or the intermediate layer is laminated on the base material when the first support sheet (Y1) is manufactured
  • the pressure-sensitive adhesive composition or the composition for forming the intermediate layer is coated on the base material.
  • the pressure-sensitive adhesive layer or the intermediate layer can be laminated by drying or irradiating with energy rays.
  • the coating method include a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a roll knife coating method, a blade coating method, a die coating method, and a gravure coating method.
  • the thermosetting resin composition (x1-1-1) is further laminated on the pressure-sensitive adhesive layer. It is possible to directly form the layer (X1) of the first curable resin (x1) by applying 1) or the energy ray-curable resin composition (x1-2-1).
  • the pressure-sensitive adhesive composition may be applied on the intermediate layer to directly form the pressure-sensitive adhesive layer. It is possible.
  • the composition is further applied on the layer formed from the composition to form a new layer. Is possible to form.
  • the layer to be laminated afterwards is formed in advance on another release film using the composition, and the side of the formed layer that is in contact with the release film is different from the side. It is preferable to form a laminated structure of two continuous layers by laminating the exposed surface on the opposite side with the exposed surface of the remaining layers that have already been formed. At this time, it is preferable that the composition is applied to the peeled surface of the peeling film.
  • the release film may be removed if necessary after the laminated structure is formed.
  • the second composite sheet ( ⁇ 2) is not particularly limited as long as it has a structure capable of forming a protective film on the back surface of the semiconductor wafer, and for example, the same structure as the first composite sheet ( ⁇ 1) may be adopted. it can. Therefore, the second curable resin film (x2) contained in the second composite sheet ( ⁇ 2) may have the same material and composition as the first curable resin film (x1) described above. However, since there are generally no bumps or grooves on the back surface of the semiconductor wafer and the semiconductor wafer is smooth, satisfying the requirement (I) in the first curable resin film (x1) requires the second curable resin film (x2). It is not required for it. Therefore, in the second curable resin film (x2), the X value may be 18 or less, or 10,000 or more.
  • the second curable resin film (x2) is used from the viewpoint of improving the visibility of the print formed by the laser marking, making the grinding marks on the back surface of the semiconductor chip less visible, and improving the design of the semiconductor chip.
  • the composition for forming the second curable resin film (x2) for forming the second curable resin film (x2) preferably contains a colorant (J).
  • the colorant (J) include known ones such as inorganic pigments, organic pigments, and organic dyes.
  • organic pigments and organic dyes examples include aminium pigments, cyanine pigments, merocyanine pigments, croconium pigments, squalium pigments, azulenium pigments, polymethine pigments, naphthoquinone pigments, pyrylium pigments, and phthalocyanines.
  • examples of the inorganic pigments include carbon black, cobalt pigments, iron pigments, chromium pigments, titanium pigments, vanadium pigments, zirconium pigments, molybdenum pigments, ruthenium pigments, platinum pigments, and ITO ( Examples thereof include indium tin oxide) dyes and ATO (antimons tin oxide) dyes.
  • the colorant (J) contained in the second curable resin film (x2) and the composition for forming the second curable resin film may be only one kind or two or more kinds. When there are two or more colorants (J), their combinations and ratios can be arbitrarily selected.
  • the content of the colorant (J) in the second curable resin film (x2) may be appropriately adjusted according to the intended purpose.
  • the second curable resin film (r2) which is a cured product formed by curing the second curable resin film (x2), may be printed by laser irradiation. The print visibility can be adjusted by adjusting the content of the colorant (J) of the second curable resin (x2) and adjusting the light transmission of the protective film.
  • the design of the protective film can be improved and the grinding marks on the back surface of the semiconductor wafer can be made difficult to see.
  • the total content of all the components other than the solvent (second curable resin film) is 0. It is preferably 1 to 10% by mass, more preferably 0.1 to 7.5% by mass, and particularly preferably 0.1 to 5% by mass.
  • the content of the colorant (J) is at least the lower limit value, the effect of using the colorant (J) can be obtained more remarkably. Further, when the content of the colorant (J) is not more than the upper limit value, an excessive decrease in the light transmittance of the second curable resin film (x2) is suppressed.
  • the colorant (J) may also be contained in the above-mentioned first curable resin film (x1) and the composition for forming the first curable resin film.
  • the content of the colorant (J) is within the range in which the level of transparency that can ensure the visibility of the planned division line is ensured. The amount is preferably within.
  • the second support sheet (Y2) included in the second composite sheet ( ⁇ 2) may have the same configuration as the first support sheet (Y1) described above.
  • the second support sheet (Y2) may be composed of only the base material 51 as shown in FIG. 4, like the first support sheet (Y1), and is a group as shown in FIG. It may be a pressure-sensitive adhesive sheet in which the material 51 and the pressure-sensitive adhesive layer 61 are laminated, or may be a pressure-sensitive adhesive sheet in which the base material 51, the intermediate layer 71, and the pressure-sensitive adhesive layer 61 are laminated as shown in FIG. ..
  • the base material, the intermediate layer, and the pressure-sensitive adhesive layer of the second support sheet (Y2) may have the same structure and material as the base material, the intermediate layer, and the pressure-sensitive adhesive layer of the first support sheet (Y1). Good.
  • the first curable resin film (x1) forms a cured resin film (first cured resin film (r1)) as a protective film on both the bump forming surface and the side surface of the semiconductor chip having a bump forming surface having bumps. Used to do. More specifically, the first curable resin film (x1) is bumped by a method for manufacturing a semiconductor chip, which will be described later, using a wafer for manufacturing a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line. It is used to form a cured resin film (first cured resin film (r1)) as a protective film on both the bump forming surface and the side surface of the semiconductor chip having the bump forming surface.
  • the second curable resin film (x2) is used to form a cured resin film (second cured resin film (r2)) as a protective film on the back surface of a semiconductor chip having a bump forming surface having bumps.
  • the first curable resin film (x1) is a step of a method for manufacturing a semiconductor chip, which will be described later, using a wafer for manufacturing a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line. In T), it is used to form a cured resin film (second cured resin film (r2)) as a protective film on the back surface of a semiconductor chip having a bump forming surface having bumps.
  • the first composite sheet ( ⁇ 1) is for forming a cured resin film (first cured resin film (r1)) as a protective film on both the bump forming surface and the side surface of the semiconductor chip having a bump forming surface having bumps.
  • the first composite sheet ( ⁇ 1) is provided with bumps by a method for manufacturing a semiconductor chip, which will be described later, using a wafer for manufacturing a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line. It is used to form a cured resin film (first cured resin film (r1)) as a protective film on both the bump forming surface and the side surface of the semiconductor chip having the bump forming surface.
  • the second composite sheet ( ⁇ 2) is used to form a cured resin film (second cured resin film (r2)) as a protective film on the back surface of a semiconductor chip having a bump forming surface having bumps. More specifically, the second composite sheet ( ⁇ 2) is a step (T) of a method for manufacturing a semiconductor chip, which will be described later, using a wafer for manufacturing a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line. In, it is used to form a cured resin film (second cured resin film (r2)) as a protective film on the back surface of a semiconductor chip having a bump forming surface having bumps.
  • FIG. 7 shows a schematic process diagram of the method for manufacturing a semiconductor chip of the present invention.
  • the method for manufacturing a semiconductor chip of the present invention is roughly a step of preparing a wafer for manufacturing a semiconductor chip (S1), a step of attaching a first composite sheet ( ⁇ 1) (S2), and a first curable resin (x1). Including a step of curing (S3) and a step of individualizing (S4), and further including a step of grinding the back surface of the wafer for manufacturing a semiconductor chip (S-BG).
  • the first curable resin film (x1) may be used, but from the viewpoint of improving handleability, the first composite sheet ( ⁇ 1) may be used. It is preferable to use it.
  • the method for manufacturing a semiconductor chip uses the first composite sheet ( ⁇ 1) and includes the following steps (S1) to (S4) in this order.
  • Step (S1) A step of preparing a wafer for manufacturing a semiconductor chip, in which a groove portion as a planned division line is formed on the bump forming surface of a semiconductor wafer having a bump forming surface having bumps without reaching the back surface.
  • step (S2) and before the step (S3) After the step (S3) and before the step (S4), or in the step (S4), the following step (S-BG) is included.
  • the manufacturing method including the above steps, not only the bump forming surface but also the side surface is covered with the first cured resin film (r1), which is excellent in strength and also prevents the first cured resin film (r1) as a protective film from peeling off. A semiconductor chip that is unlikely to occur can be obtained.
  • coated means that a first cured resin film (r1) is formed along the shape of the semiconductor chip on at least the bump forming surface and the side surface of one semiconductor chip. That is, the present invention is clearly different from the sealing technique of confining a plurality of semiconductor chips in a resin.
  • the semiconductor chip of the present invention will be described in detail for each step.
  • the "semiconductor chip” is also simply referred to as a "chip”
  • the “semiconductor wafer” is also simply referred to as a "wafer”.
  • Step (S1) A top view of an example of the semiconductor wafer prepared in the step (S1) is shown in FIG. 8, and a schematic cross-sectional view is shown in FIG.
  • a groove portion 13 as a planned division line is formed on the bump forming surface 11a of the semiconductor wafer 11 having the bump forming surface 11a including the bump 12 without reaching the back surface 11b, for manufacturing a semiconductor chip.
  • Wafer 10 is prepared. In FIG. 8, bumps are not shown.
  • the shape of the bump 12 is not particularly limited, and may be any shape as long as it can be brought into contact with and fixed to an electrode or the like on a substrate for mounting the chip.
  • the bump 12 is spherical, but the bump 12 may be a spheroid.
  • the spheroid may be, for example, a spheroid stretched in the direction perpendicular to the bump forming surface 11a of the wafer 11, or may be pulled horizontally to the bump forming surface 11a of the wafer 11. It may be a stretched spheroid.
  • the bump 12 may have a pillar shape.
  • the height of the bump 12 is not particularly limited and may be appropriately changed according to design requirements. For example, it is 30 ⁇ m to 300 ⁇ m, preferably 60 ⁇ m to 250 ⁇ m, and more preferably 80 ⁇ m to 200 ⁇ m.
  • the "height of the bump 12" means the height at the portion existing at the highest position from the bump forming surface 11a when focusing on one bump.
  • the number of bumps 12 is also not particularly limited, and may be appropriately changed according to design requirements.
  • the wafer 11 is, for example, a semiconductor wafer in which circuits such as wirings, capacitors, diodes, and transistors are formed on the surface.
  • the material of the wafer is not particularly limited, and examples thereof include silicon wafers, silicon carbide wafers, compound semiconductor wafers, glass wafers, and sapphire wafers.
  • the size of the wafer 11 is not particularly limited, but is usually 8 inches (diameter 200 mm) or more, preferably 12 inches (diameter 300 mm) or more from the viewpoint of improving batch processing efficiency.
  • the shape of the wafer is not limited to a circle, and may be a square shape such as a square or a rectangle. In the case of a square wafer, the size of the wafer 11 is preferably such that the length of the longest side is equal to or larger than the above size (diameter) from the viewpoint of increasing batch processing efficiency.
  • the thickness of the wafer 11 is not particularly limited, but from the viewpoint of facilitating the suppression of warpage due to shrinkage when the first curable resin (x1) is cured, the amount of grinding of the back surface 11b of the wafer 11 is suppressed in a later step. From the viewpoint of shortening the time required for backside grinding, it is preferably 100 ⁇ m to 1,000 ⁇ m, more preferably 200 ⁇ m to 900 ⁇ m, and further preferably 300 ⁇ m to 800 ⁇ m.
  • a plurality of groove portions 13 are formed in a grid pattern as a planned division line when the semiconductor chip manufacturing wafer 10 is fragmented.
  • the plurality of groove portions 13 are notch grooves formed when the blade tip dicing method (Dicing Before Grinding) is applied, and are formed at a depth shallower than the thickness of the wafer 11, and the deepest portion of the groove portions 13 is the wafer 11. It is prevented from reaching the back surface 11b.
  • the plurality of groove portions 13 can be formed by dicing using a conventionally known wafer dicing device including a dicing blade or the like.
  • the plurality of groove portions 13 can also be formed by dicing using a laser or the like instead of a blade.
  • the plurality of groove portions 13 may be formed so that the semiconductor chip to be manufactured has a desired size and shape, and the groove portions 13 do not necessarily have to be formed in a grid pattern as shown in FIG.
  • the size of the semiconductor chip is usually about 0.5 mm ⁇ 0.5 mm to 1.0 mm ⁇ 1.0 mm, but is not limited to this size.
  • the width of the groove portion 13 is preferably 10 ⁇ m to 2,000 ⁇ m, more preferably 30 ⁇ m to 1,000 ⁇ m, still more preferably 40 ⁇ m to 500 ⁇ m, from the viewpoint of improving the embedding property of the first curable resin (x1). Even more preferably, it is 50 ⁇ m to 300 ⁇ m.
  • the depth of the groove portion 13 is adjusted according to the thickness of the wafer to be used and the required chip thickness, and is preferably 30 ⁇ m to 700 ⁇ m, more preferably 60 ⁇ m to 600 ⁇ m, and further preferably 100 ⁇ m to 500 ⁇ m.
  • the aspect ratio of the groove 13 may be 2 to 6, 2.5 to 5, or 3 to 5.
  • the semiconductor chip manufacturing wafer 10 prepared in the process (S1) is used in the process (S2).
  • Step (S2) The outline of the step (S2) is shown in FIG.
  • the first curable resin (x1) is pressed and attached to the bump forming surface 11a of the semiconductor chip manufacturing wafer 10.
  • the first curable resin (x1) is used by being laminated on a support sheet. Therefore, in the step (S2), a laminated structure in which the first support sheet (Y1) and the layer (X1) of the first curable resin (x1) are laminated on the bump forming surface 11a of the semiconductor chip manufacturing wafer 10 is formed.
  • the first composite sheet ( ⁇ 1) to be attached is attached by pressing the layer (X1) as a attachment surface.
  • the bump forming surface 11a of the semiconductor chip manufacturing wafer 10 is covered with the first curable resin (x1), and the groove portion formed in the semiconductor chip manufacturing wafer 10 is formed.
  • the first curable resin (x1) is embedded in 13.
  • the side surface of the semiconductor chip is formed when the semiconductor chip manufacturing wafer 10 is fragmented in the step (S4).
  • the portion to be formed can be coated with the first curable resin (x1). That is, the first cured resin film (r1) that covers the side surface of the semiconductor chip, which is necessary for improving the strength of the semiconductor chip and suppressing the peeling of the first cured resin film (r1) as the protective film. ) Can be formed by the step (S2).
  • the pressing force when the first composite sheet ( ⁇ 1) is attached to the wafer 10 for manufacturing a semiconductor chip is preferable from the viewpoint of improving the embedding property of the first curable resin (x1) in the groove portion 13. Is 1 kPa to 200 kPa, more preferably 5 kPa to 150 kPa, and even more preferably 10 kPa to 100 kPa.
  • the pressing force when the first composite sheet ( ⁇ 1) is attached to the semiconductor chip manufacturing wafer 10 may be appropriately changed from the initial stage to the final stage of the attachment. For example, from the viewpoint of improving the embedding property of the first curable resin (x1) in the groove portion 13, it is preferable to lower the pressing force at the initial stage of application and gradually increase the pressing force.
  • the first curable resin (x1) is a thermosetting resin
  • the groove portion of the first curable resin (x1) It is preferable to perform heating from the viewpoint of improving the embedding property in 13.
  • the first curable resin (x1) is a thermosetting resin
  • the fluidity of the first curable resin (x1) is temporarily increased by heating, and the first curable resin (x1) is cured by continuing heating. Therefore, by heating within the range in which the fluidity of the first curable resin (x1) is improved, the first curable resin (x1) can be easily spread over the entire groove portion 13, and the first curable resin (x1) can be easily distributed. Can be further improved in embedding property in the groove portion 13.
  • the specific heating temperature (pasting temperature) is preferably 50 ° C. to 150 ° C., more preferably 60 ° C. to 130 ° C., and even more preferably 70 ° C. to 110 ° C.
  • the heat treatment performed on the first curable resin (x1) is not included in the curing treatment of the first curable resin (x1).
  • the first composite sheet ( ⁇ 1) is attached to the wafer 10 for manufacturing a semiconductor chip, it is preferable to perform it in a reduced pressure environment.
  • the groove portion 13 becomes a negative pressure, and the first curable resin (x1) easily spreads over the entire groove portion 13.
  • the specific pressure in the reduced pressure environment is preferably 0.001 kPa to 50 kPa, more preferably 0.01 kPa to 5 kPa, and even more preferably 0.05 kPa to 1 kPa.
  • the thickness of the layer (X1) of the first curable resin (x1) in the first composite sheet ( ⁇ 1) further improves the embedding property of the first curable resin (x1) in the groove portion 13. From the viewpoint, it is preferably more than 30 ⁇ m and 200 ⁇ m or less, more preferably 60 ⁇ m to 150 ⁇ m, and further preferably 80 ⁇ m to 130 ⁇ m.
  • the layer (X1) of the first curable resin (x1) is composed of the first curable resin (x1), the above requirement (I) is satisfied. Therefore, since the X value is 19 or more and less than 10,000, when the first composite sheet ( ⁇ 1) is attached to the bump forming surface 11a of the semiconductor chip manufacturing wafer 10, the first curable resin on the upper part of the bump 12.
  • the effect of suppressing repelling of a certain first curable resin film (r1) is excellent, and the embedding property of the first curable resin (x1) in the groove 13 is also good.
  • the first support sheet (Y1) contained in the first composite sheet ( ⁇ 1) supports the first curable resin (x1) and also has a function as a back grind sheet.
  • the first support sheet (Y1) functions as a back grind sheet, and the back grind process is performed. It can be easy.
  • Step (S3), Step (S4), and Step (S-BG) By the steps up to the above step (S2), a laminated body in which the first composite sheet ( ⁇ 1) is attached to the wafer 10 for manufacturing a semiconductor chip and laminated is formed. It is preferable that the laminate is subjected to the step according to any one of the first to fourth embodiments described below, depending on the timing of carrying out the step (S-BG).
  • the steps (S3) and (S4) will be described with respect to the first to fourth embodiments, together with the explanation regarding the timing of carrying out the step (S-BG).
  • FIG. 7 shows a schematic view of the first embodiment.
  • the step (S-BG) is carried out. Specifically, as shown in FIG. 11 (1-a), the back surface 11b of the semiconductor chip manufacturing wafer 10 is ground with the first composite sheet ( ⁇ 1) attached. “BG” in FIG. 11 means back grind, and the same applies to the subsequent drawings. Next, as shown in (1-b) of FIG. 11, the first support sheet (Y1) is peeled from the first composite sheet ( ⁇ 1). The amount of grinding when grinding the back surface 11b of the semiconductor chip manufacturing wafer 10 may be at least an amount that exposes the bottom of the groove 13 of the semiconductor chip manufacturing wafer 10, but further grinding is performed for semiconductor chip manufacturing.
  • the first curable resin (x1) embedded in the groove 13 may be ground.
  • the first curable resin (x1) is a thermosetting resin and is cured in the step (S3).
  • the first support sheet (Y1) is not required to have heat resistance even when the heat treatment for the purpose is carried out. Therefore, the degree of freedom in designing the first support sheet (Y1) is improved.
  • Step (S3) After carrying out the step (S-BG), the step (S3) is carried out. Specifically, as shown in FIG. 11 (1-c), the first curable resin (x1) is cured to obtain a wafer 10 for manufacturing a semiconductor chip with the first curable resin film (r1). The first curable resin film (r1) formed by curing the first curable resin (x1) becomes stronger than the first curable resin (x1) at room temperature. Therefore, the bump neck is well protected by forming the first cured resin film (r1). Further, in the step (S4) shown in FIG. 11 (1-d), the side surface of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1) is also separated by the first cured resin film (r1). A semiconductor chip coated with r1) can be obtained, and a semiconductor chip having excellent strength can be obtained. Moreover, the peeling of the first cured resin film (r1) as the protective film is also suppressed.
  • the first curable resin (x1) can be cured by either thermosetting or curing by irradiation with energy rays, depending on the type of curable component contained in the first curable resin (x1). it can.
  • the curing temperature is preferably 100 to 200 ° C, more preferably 110 to 170 ° C, and particularly preferably 120 to 150 ° C.
  • the heating time during the thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 4 hours, and particularly preferably 1 to 3 hours.
  • the conditions for curing by energy ray irradiation are appropriately set depending on the type of energy ray to be used.
  • the illuminance is preferably 180 to 280 mW / cm 2 , and the amount of light is preferably 450. It is ⁇ 1000 mJ / cm 2 .
  • the first curable resin (x1) is preferably a thermosetting resin. That is, when the first curable resin (x1) is a thermosetting resin, the fluidity of the first curable resin (x1) is temporarily increased by heating, and the first curable resin (x1) is cured by continuing heating.
  • the first curable resin (x1) can be cured after the embedding property of the first curable resin (x1) in the groove portion 13 is improved. Further, from the viewpoint of shortening the curing time, the first curable resin (x1) is preferably an energy ray-curable resin. The details of the first curable resin (x1) for forming the first curable resin film (r1) will be described later.
  • Step (S4) After carrying out the step (S3), the step (S4) is carried out. Specifically, as shown in FIG. 11 (1-d), it is formed in the groove portion of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). Cut the part along the planned division line. The cutting can be appropriately carried out by adopting a conventionally known method such as blade dicing or laser dicing. As a result, it is possible to obtain a semiconductor chip 40 in which at least the bump forming surface 11a and the side surface are coated with the first cured resin film (r1).
  • the semiconductor chip 40 Since the bump forming surface 11a and the side surface of the semiconductor chip 40 are covered with the first cured resin film (r1), the semiconductor chip 40 has excellent strength. Further, since the bump forming surface 11a and the side surface are continuously covered with the first cured resin film (r1) without a break, the joint surface (interface) between the bump forming surface 11a and the first cured resin film (r1) is formed. , It is not exposed on the side surface of the semiconductor chip 40. Of the joint surface (interface) between the bump forming surface 11a and the first cured resin film (r1), the exposed portion exposed on the side surface of the semiconductor chip 40 tends to be the starting point of film peeling.
  • the semiconductor chip 40 of the present invention does not have the exposed portion, film peeling from the exposed portion is unlikely to occur in the process of cutting the wafer 10 for manufacturing the semiconductor chip to manufacture the semiconductor chip 40 or after the manufacturing. Therefore, the semiconductor chip 40 in which the peeling of the first cured resin film (r1) as the protective film is suppressed can be obtained.
  • the portion of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is cut along the planned division line.
  • the first cured resin film (r1) is transparent. Since the first cured resin film (r1) is transparent, the semiconductor wafer 11 can be seen through, so that the visibility of the planned division line is ensured. Therefore, it becomes easy to cut along the planned division line.
  • FIG. 4 shows a schematic view of the second embodiment.
  • Step (S3) In the second embodiment, first, the step (S3) is carried out. Specifically, as shown in (2-a) of FIG. 12, the first curable resin (x1) is cured with the first composite sheet ( ⁇ 1) attached, and the first curable resin film (r1) is cured. ) Is obtained. The first curable resin film (r1) formed by curing the first curable resin (x1) becomes stronger than the first curable resin (x1) at room temperature. Therefore, the bump neck is well protected by forming the first cured resin film (r1).
  • the semiconductor chip whose side surface is also covered with the first cured resin film (r1) by separating the wafer 10 for manufacturing the semiconductor chip with the first cured resin film (r1) into pieces. Can be obtained, and a semiconductor chip having excellent strength can be obtained. Moreover, the peeling of the first cured resin film (r1) as the protective film is also suppressed.
  • the curing method include the same curing methods as those described in the first embodiment.
  • the flow on the surface of the curable resin (x1) can be suppressed, and the flatness of the first cured resin film (r1) on the bump forming surface can be improved. Further, by curing the first curable resin (x1) before grinding the back surface 11b of the semiconductor chip manufacturing wafer 10, the warp of the semiconductor chip manufacturing wafer 10 is suppressed.
  • Step (S-BG) After carrying out the step (S3), the step (S-BG) is carried out.
  • the back surface 11b of the semiconductor chip manufacturing wafer 10 is ground with the first composite sheet ( ⁇ 1) attached.
  • the amount of grinding when grinding the back surface 11b of the semiconductor chip manufacturing wafer 10 may be at least an amount that exposes the bottom of the groove 13 of the semiconductor chip manufacturing wafer 10, but the semiconductor chip is further ground.
  • the first cured resin film (r1) embedded in the groove 13 may be ground together with the manufacturing wafer 10.
  • the first support sheet (Y1) is peeled from the first composite sheet ( ⁇ 1).
  • Step (S4) After carrying out the step (S-BG), the step (S4) is carried out in the same manner as in the first embodiment. Specifically, as shown in FIG. 12 (2-d), it is formed in the groove portion of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). Cut the part along the planned division line. The cutting can be appropriately carried out by adopting a conventionally known method such as blade dicing or laser dicing. As a result, it is possible to obtain a semiconductor chip 40 in which at least the bump forming surface 11a and the side surface are coated with the first cured resin film (r1).
  • the semiconductor chip 40 Since the bump forming surface 11a and the side surface of the semiconductor chip 40 are covered with the first cured resin film (r1), the semiconductor chip 40 has excellent strength. Further, for the reason described above, the semiconductor chip 40 in which the peeling of the first cured resin film (r1) as the protective film is suppressed can be obtained.
  • the third embodiment is common to the second embodiment in that the step (S-BG) is performed after the step (S3) and before the step (S4). However, it differs from the second embodiment in that a back grind sheet (b-BG) is used separately.
  • FIG. 13 shows a schematic view of the third embodiment.
  • step (S3) In the third embodiment, first, the step (S3) is performed, but before that, as shown in (3-a) of FIG. 13, the first composite sheet ( ⁇ 1) to the first support sheet (Y1) are formed. Peel off. Then, the step (S3) is carried out. Specifically, as shown in FIG. 13 (3-b), the first curable resin (x1) is cured to obtain a wafer 10 for manufacturing a semiconductor chip with the first curable resin film (r1). Examples of the curing method include the same curing methods as those described in the first embodiment.
  • the first curable resin (x1) is a thermosetting resin, and heat treatment for curing is carried out in the step (S3). Even if this is the case, the first support sheet (Y1) is not required to have heat resistance. Therefore, the degree of freedom in designing the first support sheet (Y1) is improved. Further, by curing the first curable resin (x1) before grinding the back surface 11b of the semiconductor chip manufacturing wafer 10, the warp of the semiconductor chip manufacturing wafer 10 is suppressed.
  • step (S-BG) After carrying out the step (S3), the step (S-BG) is carried out. Specifically, as shown in FIG. 13 (3-c), a back grind sheet (b) is formed on the surface of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). -BG) is attached. Next, as shown in (3-d) of FIG. 13, after grinding the back surface 11b of the semiconductor chip manufacturing wafer 10 with the back grind sheet (b-BG) attached, (3-e) of FIG. As shown in the above, the back grind sheet (b-BG) is peeled off from the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1).
  • the first curable resin (x1) is a thermosetting resin, and heat treatment for curing is carried out in the step (S3). Even in this case, the back grind sheet (b-BG) is not required to have heat resistance. Therefore, the degree of freedom in designing the back grind sheet (b-BG) is improved.
  • the amount of grinding when grinding the back surface 11b of the semiconductor chip manufacturing wafer 10 may be at least an amount that exposes the bottom of the groove 13 of the semiconductor chip manufacturing wafer 10, but the semiconductor chip is further ground.
  • the first cured resin film (r1) embedded in the groove 13 may be ground together with the manufacturing wafer 10.
  • step (S4) After carrying out the step (S-BG), the step (S4) is carried out in the same manner as in the first embodiment and the second embodiment. Specifically, as shown in FIG. 13 (3-f), it is formed in the groove portion of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). Cut the part along the planned division line. The cutting can be appropriately carried out by adopting a conventionally known method such as blade dicing or laser dicing. As a result, it is possible to obtain a semiconductor chip 40 in which at least the bump forming surface 11a and the side surface are coated with the first cured resin film (r1).
  • the semiconductor chip 40 Since the bump forming surface 11a and the side surface of the semiconductor chip 40 are covered with the first cured resin film (r1), the semiconductor chip 40 has excellent strength. Further, for the reason described above, the semiconductor chip 40 in which the peeling of the first cured resin film (r1) as the protective film is suppressed can be obtained.
  • FIG. 14 shows a schematic view of the fourth embodiment.
  • Step (S3) In the fourth embodiment, first, the step (S3) is performed, but before that, as shown in (4-a) of FIG. 14, the first composite sheet ( ⁇ 1) to the first support sheet (Y1) are formed. Peel off. Then, the step (S3) is carried out. Specifically, as shown in FIG. 14 (4-b), the first curable resin (x1) is cured to obtain a wafer 10 for manufacturing a semiconductor chip with the first curable resin film (r1). Examples of the curing method include the same curing methods as those described in the first embodiment.
  • the first curable resin (x1) is a thermosetting resin, and heat treatment for curing is carried out in the step (S3). Even if this is the case, the first support sheet (Y1) is not required to have heat resistance. Therefore, the degree of freedom in designing the first support sheet (Y1) is improved. Further, by curing the first curable resin (x1) before grinding the back surface 11b of the semiconductor chip manufacturing wafer 10, the warp of the semiconductor chip manufacturing wafer 10 is suppressed.
  • Step (S4) including Step (S-BG) After performing the step (S3), as shown in (4-c) of FIG. 14, the groove 13 of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). Make a cut along the planned division line in the part formed in.
  • the depth of cut is preferably a depth that reaches the deepest portion of the groove portion 13 from the viewpoint of facilitating individualization.
  • the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1) is fragmented along the notch.
  • the portion of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove 13 is modified along the planned division line.
  • a quality region may be formed.
  • the modified region can be formed by laser or plasma treatment or the like.
  • the step (S-BG) described later cracks are generated starting from the modified region, and the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1) is fragmented along the modified region. Will be done.
  • the step (S-BG) is carried out. Specifically, as shown in FIG.
  • a back grind sheet (b) is formed on the surface of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1).
  • -BG back grind sheet
  • the back surface 11b of the semiconductor chip manufacturing wafer 10 is ground with the back grind sheet (b-BG) attached.
  • the back grind sheet (b-BG) is peeled off from the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1).
  • the amount of grinding when grinding the back surface 11b of the semiconductor chip manufacturing wafer 10 may be at least an amount that exposes the bottom of the groove 13 of the semiconductor chip manufacturing wafer 10, but the semiconductor chip is further ground.
  • the first cured resin film (r1) embedded in the groove 13 may be ground together with the manufacturing wafer 10. Since the bump forming surface 11a and the side surface of the semiconductor chip 40 are covered with the first cured resin film (r1), the semiconductor chip 40 has excellent strength. Since the back grind sheet (b-BG) is not used in the step (S3), the first curable resin (x1) is a thermosetting resin, and heat treatment for curing is carried out in the step (S3). Even if this is the case, the back grind sheet (b-BG) is not required to have heat resistance. Therefore, the degree of freedom in designing the back grind sheet (b-BG) is improved.
  • a resin layer (Z1) for back grind may be formed instead of the first support sheet (Y1) or back grind sheet (b-BG). Specifically, after coating the surface of the first cured resin film (r1) with a fluid resin (z1) and also covering the bumps exposed from the first cured resin film (r1). By curing the resin (z1) to form a resin layer (Z1) for back grind, the grinding process can be performed as a substitute for the back grind sheet.
  • the resin layer (Z1) for back grind which is no longer needed after the step (S-BG), can be easily peeled off.
  • Step (T) In one aspect of the method for manufacturing a semiconductor chip of the present invention, it is preferable to further include the following step (T).
  • the manufacturing method according to the above embodiment it is possible to obtain a semiconductor chip 40 in which at least the bump forming surface 11a and the side surface are coated with the first cured resin film (r1). However, the back surface of the semiconductor chip 40 is exposed. Therefore, from the viewpoint of protecting the back surface of the semiconductor chip 40 and further improving the strength of the semiconductor chip 40, it is preferable to carry out the above step (T).
  • the step (T) preferably includes the following steps (T1) to the following steps (T2) in this order.
  • -Step (T1) Step of attaching the second curable resin (x2) to the back surface of the wafer for manufacturing semiconductor chips
  • Step (T2) The second curable resin (x2) is cured to cure the second curable resin.
  • Step of Forming Film (r2) In Step (T1), a second laminated body having a laminated structure in which a second support sheet (Y2) and a layer (X2) of a second curable resin (x2) are laminated. It is preferable to use ( ⁇ 2).
  • the step (T1) has a laminated structure in which a second support sheet (Y2) and a layer (X2) of a second curable resin (x2) are laminated on the back surface of a wafer for manufacturing a semiconductor chip. It is preferable that the two laminated bodies ( ⁇ 2) are attached with the layer (X2) as the attachment surface. In this case, the timing of peeling the second support sheet (Y2) from the second laminated body ( ⁇ 2) may be between the step (T1) and the step (T2), and after the step (T2). May be good.
  • the second support sheet (Y2) contained in the second composite sheet ( ⁇ 2) supports the second curable resin (x2) and also supports the second curable resin (x2). It is preferable that it also has a function as a dicing sheet.
  • the second composite sheet ( ⁇ 2) is attached to the back surface 11b of the semiconductor wafer 10 with the first cured resin film (r1) in the step (S4).
  • the second support sheet (Y2) functions as a dicing sheet when individualizing by dicing, so that dicing can be easily performed.
  • the step (S3) is carried out after the step (S-BG) as in the manufacturing method according to the first embodiment
  • the above step (T1) is carried out before the step (S3) is carried out.
  • the step (S3) and the step (T2) may be performed at the same time. That is, the first curable resin (x1) and the second curable resin (x2) may be cured at the same time at the same time. As a result, the number of curing treatments can be reduced.
  • the step (T) includes the following steps (T1-1) and the following steps (T1-2) in this order.
  • Step (T1-1) A step / step (x2) of attaching the second curable resin (x2) to the back surface of the wafer for manufacturing a semiconductor chip after the step (S-BG) and before the step (S4).
  • T1-2) A step of curing the second curable resin (x2) to form a second curable resin film (r2) before or after the step (S4).
  • the first curable resin In the step (S4), the first curable resin.
  • the step (T) includes the following steps (T2-1) and the following steps (T2-2) in this order.
  • Step / step (T2-2) of applying the second curable resin (x2) Step of curing the second curable resin (x2) to form a second curable resin film (r2) Further, a step (T2). ) Preferably include the following step (T2-3) before or after the step (T2-2).
  • One aspect of the method for manufacturing a semiconductor chip of the present invention may include other steps as long as the gist of the present invention is not deviated.
  • Examples of such a treatment include a wet etching treatment and a dry etching treatment on the bump forming surface after the formation of the protective film (first cured resin film (r1)).
  • Polymer component (A) (A) -1: Polyvinyl butyral having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3 ("Eslek BL-10" manufactured by Sekisui Chemical Industry Co., Ltd., weight average) Molecular weight 25,000, glass transition temperature 59 ° C.).
  • Thermosetting agent (B2) (B2) -1: Novolac type phenol resin ("BRG-556” manufactured by Showa Denko KK) (B2) -2: O-cresol type novolak resin ("Phenolite KA-1160” manufactured by DIC Corporation)
  • Curing accelerator (C) (C) -1 2-Phenyl-4,5-dihydroxymethylimidazole ("Curesol 2PHZ-PW” manufactured by Shikoku Chemicals Corporation)
  • Example 1 (1) Production of Composition (x1-1-1) for Forming First Thermosetting Resin Film Polymer Component (A) -1 (100 parts by mass), Epoxy Resin (B1) -1 (350 parts by mass), Epoxy resin (B1) -4 (270 parts by mass), (B2) -1 (190 parts by mass), curing accelerator (C) -1 (2 parts by mass), filler (D) -1 (90 parts by mass) , And the additive (I) -3 (9 parts by mass) are dissolved or dispersed in methyl ethyl ketone and stirred at 23 ° C. to obtain a thermosetting resin in which the total concentration of all components other than the solvent is 45% by mass. A film-forming composition (x1-1-1) was obtained.
  • the blending amounts of the components other than the solvent shown here are all the blending amounts of the target product containing no solvent.
  • Example 2 Comparative Examples 1 to 3
  • the composition for forming the first thermosetting resin film so that the types and contents of the components contained in the composition for forming the first thermosetting resin film (x1-1-1) are as shown in Table 1 described later.
  • a curable resin film (x1-1) was formed.
  • the description of "-" in the column of the contained component in Table 1 means that the composition for forming the first thermosetting resin film (x1-1-1) does not contain the component.
  • thermosetting resin film (x1) obtained above is placed in this place.
  • the test piece of -1) was placed, and the test piece was fixed to the installation location by pressing the measuring jig against the upper surface of the test piece. Then, under the conditions of a temperature of 90 ° C. and a measurement frequency of 1 Hz, the strain generated in the test piece was gradually increased in the range of 0.01% to 1000%, and the storage elastic modulus Gc of the test piece was measured. Then, the X value was calculated from the measured values of Gc1 and Gc300. The results are shown in Table 1.
  • thermosetting resin film (x1-1) was processed together with the release film into a circular shape having a diameter of 170 mm to prepare a test piece with the release film.
  • FIG. 15 is a plan view schematically showing a state in which the obtained laminate is viewed from above on the back grind tape side.
  • the obtained laminate 101 has a back grind tape 107, a test piece 120 (first thermosetting resin film (x1-1)), and a release film in this order. It is constructed by stacking in the vertical direction.
  • the release film is removed from the obtained laminate, and the newly generated exposed surface of the test piece (in other words, the surface of the test piece opposite to the side on which the back grind tape is provided) is removed.
  • the test piece was attached to the surface of the silicon wafer by crimping it onto one surface of the silicon wafer having a diameter of 12 inches.
  • the test piece was attached using a pasting device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation), table temperature: 90 ° C., pasting speed: 2 mm / sec, pasting pressure: 0.
  • the first thermosetting resin film (x1-1) was heated under the conditions of 5 MPa and roller sticking height: ⁇ 200 ⁇ m.
  • the maximum value of the length of the line segment connecting two different points on the outer circumference thereof is measured, and the measured value (the line segment) is measured.
  • the amount of protrusion (mm) of the test piece in other words, the first thermosetting resin film (x1-1)
  • Table 1 When the amount of protrusion was 170 mm, it was determined that there was no change in shape from the original test piece and no protrusion had occurred. On the other hand, when the amount of protrusion exceeds 170 mm, it is determined that the shape has changed from the original test piece and the protrusion has occurred.
  • the first composite sheet ( ⁇ 1) is attached using a pasting device (roller type laminator, Lintec Corporation "RAD-3510 F / 12") at a table temperature of 90 ° C., a sticking speed of 2 mm / sec, and sticking.
  • the first composite sheet ( ⁇ 1) was heated under the conditions of pressure: 0.5 MPa and roller attachment height: ⁇ 200 ⁇ m.
  • the first support sheet (Y1) was removed from the first thermosetting resin film (x1-1) using a multi-wafer mounter (“RAD-2700 F / 12” manufactured by Lintec Corporation), and the first thermosetting property was obtained.
  • the resin film (x1-1) was exposed.
  • SEM scanning electron microscope
  • VE-9700 manufactured by KEYENCE CORPORATION
  • the surface of the bump of the semiconductor wafer is formed from a direction perpendicular to the bump forming surface of the semiconductor wafer and an angle of 60 °. was observed, and the presence or absence of a residue of the first thermosetting resin film (x1-1) on the upper part of the bump was confirmed.
  • SEM scanning electron microscope
  • VE-9700 manufactured by KEYENCE CORPORATION
  • thermosetting resin film attached to the semiconductor wafer was subjected to a pressure oven (“RAD-9100” manufactured by Lintec Co., Ltd.) at a temperature of 130 ° C., a time of 2 hours, and a furnace pressure of 0.
  • the first thermosetting resin film (x1-1) was heat-cured by heat-treating under a heating condition of 5 MPa.
  • an optical microscope (“VHX-1000” manufactured by KEYENCE CORPORATION), a laminate of a cured product (first cured resin film (r1)) of the first thermosetting resin film (x1-1) and a semiconductor wafer. The whole was observed from the cured product side.
  • -Attaching device Fully automatic laminating machine (manufactured by Lintec Corporation, product name "RAD-3510") ⁇ Roller pressure: 0.5MPa ⁇ Roller height: -400 ⁇ m -Attachment speed: 5 mm / sec -Attachment temperature: 90 ° C
  • a wafer for producing a semiconductor chip to which the first thermosetting resin film (x1-1) is attached is attached.
  • the first cured resin film (r1) was formed by heating at 130 ° C. for 4 hours and curing.
  • the wafer for manufacturing a semiconductor chip is cut from the half-cut forming surface toward the back surface, and the embedding property of the first cured resin film (r1) in the groove portion of the half-cut portion is checked with an optical microscope (Keyence's "VHX-1000”. ”) was observed.
  • the evaluation criteria for implantability were as follows. S: The shape of the first cured resin film (r1) is not distorted, and the embedding property is the best. A: Although the shape of the first cured resin film (r1) is slightly distorted near the entrance of the groove, the embedding property is good. B: Implantability is poor.
  • Results Table 1 shows the components contained in the first thermosetting resin film forming composition (x1-1-1) and the evaluation results.
  • FIG. 16 shows the result (drawing substitute photograph) of "3-5. Evaluation of embedding property in the groove".

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dicing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing a curable resin film with which it is possible to form a protective film having excellent coverage on the side surfaces and bump formation surface of a semiconductor chip. In order to overcome the aforesaid problem, the present invention provides a curable resin film that satisfies requirement (I) below and is used to form a cured resin film serving as a protective film on the side surfaces and bump formation surface of a semiconductor chip, the bump-formation surface having bumps provided thereon. <Requirement (I)> A test piece of the curable resin film having a diameter of 25 mm and a thickness of 1 mm is subjected to strain at a temperature of 90°C and frequency of 1 Hz, and the storage elastic modulus of the test piece is measured. The value of X calculated using formula (i) below is at least 19 and less than 10,000, where Gc1 is the storage elastic modulus of the test piece when the strain of the test piece is 1% and Gc300 is the storage elastic modulus of the test piece when the strain of the test piece is 300%. Formula (i) X=Gc1/Gc300

Description

硬化性樹脂フィルム、複合シート、及び半導体チップの製造方法Manufacturing method for curable resin film, composite sheet, and semiconductor chip
 本発明は、硬化性樹脂フィルム、複合シート、及び半導体チップの製造方法に関する。更に詳述すると、本発明は、硬化性樹脂フィルム及び当該硬化性樹脂フィルムを備える複合シート、並びにこれらを利用することにより、硬化樹脂膜が保護膜として設けられている半導体チップを製造する方法に関する。 The present invention relates to a method for manufacturing a curable resin film, a composite sheet, and a semiconductor chip. More specifically, the present invention relates to a curable resin film, a composite sheet provided with the curable resin film, and a method for producing a semiconductor chip in which a curable resin film is provided as a protective film by using these. ..
 近年、いわゆるフェースダウン方式と呼ばれる実装法を用いた半導体装置の製造が行われている。フェースダウン方式においては、回路面にバンプを備える半導体チップと、当該半導体チップ搭載用の基板とを、当該半導体チップの回路面と当該基板とが対向するように積層することによって、当該半導体チップを当該基板上に搭載する。
 なお、当該半導体チップは、通常、回路面にバンプを備える半導体ウエハを個片化して得られる。
In recent years, semiconductor devices have been manufactured using a mounting method called a so-called face-down method. In the face-down method, the semiconductor chip is formed by laminating a semiconductor chip having bumps on the circuit surface and a substrate for mounting the semiconductor chip so that the circuit surface of the semiconductor chip and the substrate face each other. It is mounted on the substrate.
The semiconductor chip is usually obtained by fragmenting a semiconductor wafer having bumps on the circuit surface.
 バンプを備える半導体ウエハには、バンプと半導体ウエハとの接合部分(以下、「バンプネック」ともいう)を保護する目的で、保護膜が設けられることがある。
 例えば、特許文献1及び特許文献2では、支持基材と、粘着剤層と、熱硬化性樹脂層とがこの順で積層された積層体を、熱硬化性樹脂層を貼り合わせ面にして、バンプを備える半導体ウエハのバンプ形成面に押圧して貼付した後、当該熱硬化性樹脂層を加熱して硬化させることで保護膜を形成している。
The semiconductor wafer provided with the bump may be provided with a protective film for the purpose of protecting the joint portion between the bump and the semiconductor wafer (hereinafter, also referred to as “bump neck”).
For example, in Patent Document 1 and Patent Document 2, a laminate in which a supporting base material, an adhesive layer, and a thermosetting resin layer are laminated in this order is used as a bonding surface of the thermosetting resin layer. A protective film is formed by pressing and sticking to the bump forming surface of a semiconductor wafer provided with bumps, and then heating and curing the thermosetting resin layer.
特開2015-092594号公報Japanese Unexamined Patent Publication No. 2015-092594 特開2012-169484号公報Japanese Unexamined Patent Publication No. 2012-169484
 近年、電子機器などのIC組込み製品の小型化及び薄型化が進むにつれ、半導体チップの薄型化もさらに要求されつつある。しかしながら、半導体チップが薄くなると、半導体チップの強度が低下してしまう。そのため、例えば、半導体チップを搬送したり、半導体チップをパッケージ化する後工程を実施したりする際に、半導体チップが破損しやすくなるという問題がある。
 そこで、半導体ウエハのバンプ形成面に保護膜を形成し、バンプネックを保護するとともに、半導体チップの強度の向上を図ることが考えられる。しかし、半導体ウエハのバンプ形成面に保護膜を形成するだけでは、半導体チップの強度の向上は不十分である。また、当該保護膜は、膜剥がれを起こすことがある。
In recent years, as IC embedded products such as electronic devices have become smaller and thinner, there is a growing demand for thinner semiconductor chips. However, when the semiconductor chip becomes thin, the strength of the semiconductor chip decreases. Therefore, for example, there is a problem that the semiconductor chip is easily damaged when the semiconductor chip is transported or a post-process for packaging the semiconductor chip is carried out.
Therefore, it is conceivable to form a protective film on the bump forming surface of the semiconductor wafer to protect the bump neck and improve the strength of the semiconductor chip. However, simply forming a protective film on the bump-forming surface of the semiconductor wafer is not sufficient to improve the strength of the semiconductor chip. In addition, the protective film may cause film peeling.
 そこで、本発明者らは、バンプネックを保護する目的で設けられる保護膜を、半導体チップのバンプ形成面だけでなく側面にも設けることによって、半導体チップの強度を向上させることができると共に、保護膜の剥がれを抑制することができ、極めて合理的な構成を構築できることを着想した。かかる着想の下、本発明者らは鋭意検討を重ね、半導体チップのバンプ形成面及び側面の双方に対して被覆性に優れる保護膜を形成することのできる硬化性樹脂フィルムを創出するに至った。 Therefore, the present inventors can improve the strength of the semiconductor chip and protect it by providing the protective film provided for the purpose of protecting the bump neck not only on the bump forming surface of the semiconductor chip but also on the side surface. The idea was that peeling of the film could be suppressed and an extremely rational structure could be constructed. Based on this idea, the present inventors have made extensive studies and have come up with a curable resin film capable of forming a protective film having excellent coating properties on both the bump forming surface and the side surface of the semiconductor chip. ..
 したがって、本発明の課題は、半導体チップのバンプ形成面及び側面の双方に対して被覆性に優れる保護膜を形成することのできる硬化性樹脂フィルム、当該硬化性樹脂フィルムを備える複合シート、並びにこれら(当該硬化性樹脂フィルム及び当該複合シート)を利用した半導体チップの製造方法を提供することにある。 Therefore, the subject of the present invention is a curable resin film capable of forming a protective film having excellent coating properties on both the bump forming surface and the side surface of the semiconductor chip, a composite sheet provided with the curable resin film, and these. It is an object of the present invention to provide a method for manufacturing a semiconductor chip using (the curable resin film and the composite sheet).
 本発明者らは、鋭意検討を重ねた結果、硬化性樹脂フィルムが有する特定の物性値から算出されるパラメータに着目することで、上記課題を解決し得ることを見出し、本発明を完成するに至った。 As a result of diligent studies, the present inventors have found that the above problems can be solved by paying attention to the parameters calculated from the specific physical property values of the curable resin film, and complete the present invention. I arrived.
 すなわち、本発明は、下記[1]~[14]に関する。
 [1] バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜を形成するために用いられ、下記要件(I)を満たす、硬化性樹脂フィルム。
<要件(I)>
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記硬化性樹脂フィルムの試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが1%のときの前記試験片の貯蔵弾性率をGc1とし、前記試験片のひずみが300%のときの前記試験片の貯蔵弾性率をGc300としたときに、下記式(i)により算出されるX値が、19以上10,000未満である。
 X=Gc1/Gc300・・・・(i)
 [2] 前記要件(I)において、Gc300が15,000未満である、上記[1]に記載の硬化性樹脂フィルム。
 [3] バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜を形成するために用いられ、
 支持シートと硬化性樹脂の層とが積層された積層構造を有し、
 前記硬化性樹脂が、上記[1]又は[2]に記載の硬化性樹脂フィルムである、複合シート。
 [4] 上記[1]又は[2]に記載の硬化性樹脂フィルムを、バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜を形成するために使用する、使用方法。
 [5] 上記[3]に記載の複合シートを、バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜を形成するために使用する、使用方法。
 [6] 半導体チップの製造方法であって、
 下記工程(S1)~(S4)をこの順で含み、
・工程(S1):バンプを備えるバンプ形成面を有する半導体ウエハの前記バンプ形成面に、分割予定ラインとしての溝部が裏面に到達することなく形成されている半導体チップ作製用ウエハを準備する工程
・工程(S2):前記半導体チップ作製用ウエハの前記バンプ形成面に、第一硬化性樹脂(x1)を押圧して貼付し、前記半導体チップ作製用ウエハの前記バンプ形成面を前記第一硬化性樹脂(x1)で被覆すると共に、前記半導体チップ作製用ウエハに形成されている前記溝部に前記第一硬化性樹脂(x1)を埋め込む工程
・工程(S3):前記第一硬化性樹脂(x1)を硬化させて、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハを得る工程
・工程(S4):前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハを前記分割予定ラインに沿って個片化し、少なくとも前記バンプ形成面及び側面が前記第一硬化樹脂膜(r1)で被覆されている半導体チップを得る工程
 さらに、前記工程(S2)の後で且つ前記工程(S3)の前、前記工程(S3)の後で且つ前記工程(S4)の前、又は前記工程(S4)において、下記工程(S-BG)を含み、
・工程(S-BG):前記半導体チップ作製用ウエハの前記裏面を研削する工程
 前記第一硬化性樹脂(x1)として、上記[1]又は[2]に記載の硬化性樹脂フィルムを用いる、半導体チップの製造方法。
 [7] 前記工程(S2)は、前記半導体チップ作製用ウエハの前記バンプ形成面に、第一支持シート(Y1)と前記第一硬化性樹脂(x1)の層(X1)とが積層された積層構造を有する第一複合シート(α1)を、前記層(X1)を貼付面として押圧して貼付することで実施される、上記[6]に記載の半導体チップの製造方法。
 [8] 前記工程(S-BG)を、前記工程(S2)の後で且つ前記工程(S3)の前に含み、
 前記工程(S-BG)は、前記第一複合シート(α1)を貼付した状態で前記半導体チップ作製用ウエハの前記裏面を研削した後に、前記第一複合シート(α1)から前記第一支持シート(Y1)を剥離することにより実施され、
 前記工程(S4)は、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)のうち前記溝部に形成されている部分を、前記分割予定ラインに沿って切断することにより実施される、上記[7]に記載の半導体チップの製造方法。
 [9] 前記工程(S-BG)を、前記工程(S3)の後で且つ前記工程(S4)の前に含み、
 前記工程(S3)を、前記第一複合シート(α1)から前記第一支持シート(Y1)を剥離することなく実施し、
 前記工程(S-BG)は、前記第一複合シート(α1)を貼付した状態で前記半導体チップ作製用ウエハの前記裏面を研削した後に、前記第一複合シート(α1)から前記第一支持シート(Y1)を剥離することにより実施され、
 前記工程(S4)は、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)のうち前記溝部に形成されている部分を、前記分割予定ラインに沿って切断することにより実施される、上記[7]に記載の半導体チップの製造方法。
 [10] 前記工程(S-BG)を、前記工程(S3)の後で且つ前記工程(S4)の前に含み、
 前記工程(S2)の後で且つ前記工程(S3)の前に、前記第一複合シート(α1)から前記第一支持シート(Y1)を剥離し、
 前記工程(S-BG)は、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)の表面にバックグラインドシート(b-BG)を貼付し、前記バックグラインドシート(b-BG)を貼付した状態で前記半導体チップ作製用ウエハの前記裏面を研削した後、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハから前記バックグラインドシート(b-BG)を剥離することにより実施され、
 前記工程(S4)は、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)のうち前記溝部に形成されている部分を、前記分割予定ラインに沿って切断することにより実施される、上記[7]に記載の半導体チップの製造方法。
 [11] 前記工程(S-BG)を、前記工程(S4)において含み、
 前記工程(S2)の後で且つ前記工程(S3)の前に、前記第一複合シート(α1)から前記第一支持シート(Y1)を剥離し、
 前記工程(S4)は、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)のうち前記溝部に形成されている部分に、前記分割予定ラインに沿って切り込みを入れるか、又は前記分割予定ラインに沿って改質領域を形成した後、前記工程(S-BG)として、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)の表面にバックグラインドシート(b-BG)を貼付して、前記バックグラインドシート(b-BG)を貼付した状態で前記半導体チップ作製用ウエハの前記裏面を研削することにより実施される、上記[7]に記載の半導体チップの製造方法。
 [12] さらに、下記工程(T)を含む、上記[6]~[11]のいずれかに記載の半導体チップの製造方法。
・工程(T):前記半導体チップ作製用ウエハの前記裏面に、第二硬化樹脂膜(r2)を形成する工程
 [13] 前記溝部の幅が、10μm~2000μmである、上記[6]~[12]のいずれかに記載の半導体チップの製造方法。
 [14] 前記溝部の深さが、30μm~700μmである、上記[6]~[13]のいずれかに記載の半導体チップの製造方法。
That is, the present invention relates to the following [1] to [14].
[1] A curable resin film used for forming a curable resin film as a protective film on both the bump-forming surface and the side surface of a semiconductor chip having a bump-forming surface having bumps and satisfying the following requirement (I). ..
<Requirement (I)>
Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the curable resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece is measured, and the strain of the test piece is 1. X calculated by the following formula (i) when the storage elastic modulus of the test piece is Gc1 and the storage elastic modulus of the test piece is Gc300 when the strain of the test piece is 300%. The value is 19 or more and less than 10,000.
X = Gc1 / Gc300 ... (i)
[2] The curable resin film according to the above [1], wherein Gc300 is less than 15,000 in the requirement (I).
[3] Used for forming a cured resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface having bumps.
It has a laminated structure in which a support sheet and a layer of a curable resin are laminated.
A composite sheet in which the curable resin is the curable resin film according to the above [1] or [2].
[4] The curable resin film according to the above [1] or [2] is formed with a curable resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface provided with bumps. How to use it.
[5] The composite sheet according to [3] above is used to form a cured resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface provided with bumps. Method.
[6] A method for manufacturing a semiconductor chip.
The following steps (S1) to (S4) are included in this order.
Step (S1): A step of preparing a wafer for manufacturing a semiconductor chip, in which a groove portion as a planned division line is formed on the bump forming surface of a semiconductor wafer having a bump forming surface having bumps without reaching the back surface. Step (S2): The first curable resin (x1) is pressed and attached to the bump forming surface of the semiconductor chip manufacturing wafer, and the bump forming surface of the semiconductor chip manufacturing wafer is subjected to the first curability. A step / step (S3) of coating with a resin (x1) and embedding the first curable resin (x1) in the groove formed in the wafer for manufacturing a semiconductor chip: the first curable resin (x1). To obtain a wafer for manufacturing a semiconductor chip with a first cured resin film (r1) by curing: Step (S4): Wafer for producing a semiconductor chip with a first cured resin film (r1) is formed along the planned division line. A step of obtaining a semiconductor chip in which at least the bump forming surface and the side surface are coated with the first cured resin film (r1). Further, after the step (S2) and before the step (S3). The following step (S-BG) is included after the step (S3) and before the step (S4), or in the step (S4).
Step (S-BG): Step of grinding the back surface of the semiconductor chip manufacturing wafer As the first curable resin (x1), the curable resin film according to the above [1] or [2] is used. A method for manufacturing a semiconductor chip.
[7] In the step (S2), the first support sheet (Y1) and the layer (X1) of the first curable resin (x1) are laminated on the bump forming surface of the wafer for manufacturing semiconductor chips. The method for manufacturing a semiconductor chip according to the above [6], wherein the first composite sheet (α1) having a laminated structure is attached by pressing the layer (X1) as a attachment surface.
[8] The step (S-BG) is included after the step (S2) and before the step (S3).
In the step (S-BG), the back surface of the semiconductor chip manufacturing wafer is ground with the first composite sheet (α1) attached, and then the first composite sheet (α1) is used as the first support sheet. It is carried out by peeling off (Y1),
In the step (S4), a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line. The method for manufacturing a semiconductor chip according to the above [7], which is carried out by cutting the semiconductor chip.
[9] The step (S-BG) is included after the step (S3) and before the step (S4).
The step (S3) was carried out without peeling the first support sheet (Y1) from the first composite sheet (α1).
In the step (S-BG), the back surface of the semiconductor chip manufacturing wafer is ground with the first composite sheet (α1) attached, and then the first composite sheet (α1) is used as the first support sheet. It is carried out by peeling off (Y1),
In the step (S4), a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line. The method for manufacturing a semiconductor chip according to the above [7], which is carried out by cutting the semiconductor chip.
[10] The step (S-BG) is included after the step (S3) and before the step (S4).
After the step (S2) and before the step (S3), the first support sheet (Y1) is peeled off from the first composite sheet (α1).
In the step (S-BG), a back grind sheet (b-BG) is attached to the surface of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1). After grinding the back surface of the semiconductor chip manufacturing wafer with the back grind sheet (b-BG) attached, the back grind sheet (b-) is transferred from the semiconductor chip manufacturing wafer with the first cured resin film (r1). It is carried out by peeling off BG),
In the step (S4), a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line. The method for manufacturing a semiconductor chip according to the above [7], which is carried out by cutting the semiconductor chip.
[11] The step (S-BG) is included in the step (S4).
After the step (S2) and before the step (S3), the first support sheet (Y1) is peeled off from the first composite sheet (α1).
In the step (S4), a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line. After making a notch or forming a modified region along the planned division line, as the step (S-BG), the first wafer for manufacturing a semiconductor chip with the first cured resin film (r1). By attaching a back grind sheet (b-BG) to the surface of the cured resin film (r1) and grinding the back surface of the semiconductor chip manufacturing wafer with the back grind sheet (b-BG) attached. The method for manufacturing a semiconductor chip according to the above [7], which is carried out.
[12] The method for manufacturing a semiconductor chip according to any one of the above [6] to [11], further comprising the following step (T).
Step (T): Step of forming a second cured resin film (r2) on the back surface of the semiconductor chip manufacturing wafer [13] The width of the groove is 10 μm to 2000 μm, the above [6] to [ 12] The method for manufacturing a semiconductor chip according to any one of.
[14] The method for manufacturing a semiconductor chip according to any one of [6] to [13] above, wherein the depth of the groove is 30 μm to 700 μm.
 本発明によれば、半導体チップのバンプ形成面及び側面の双方に対して被覆性に優れる保護膜を形成することのできる硬化性樹脂フィルム、当該硬化性樹脂フィルムを備える複合シート、並びにこれら(当該硬化性樹脂フィルム及び当該複合シート)を利用した半導体チップの製造方法を提供することが可能となる。 According to the present invention, a curable resin film capable of forming a protective film having excellent coating properties on both the bump forming surface and the side surface of the semiconductor chip, a composite sheet provided with the curable resin film, and these (the said). It is possible to provide a method for manufacturing a semiconductor chip using a curable resin film and the composite sheet).
第一硬化性樹脂フィルム(x1)の断面模式図である。It is sectional drawing of the 1st curable resin film (x1). 樹脂フィルムの平面形状が円形である場合の、樹脂フィルムのはみ出し量を模式的に説明するための平面図である。It is a top view for schematically explaining the amount of protrusion of a resin film when the plane shape of a resin film is circular. 本発明の製造方法に用いる第一複合シート(α1)の構成を示す概略断面図である。It is a schematic cross-sectional view which shows the structure of the 1st composite sheet (α1) used in the manufacturing method of this invention. 第一複合シート(α1)の具体的構成の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the specific structure of the 1st composite sheet (α1). 第一複合シート(α1)の具体的構成の他の例を示す概略断面図である。It is the schematic sectional drawing which shows the other example of the specific structure of the 1st composite sheet (α1). 第一複合シート(α1)の具体的構成のさらに他の例を示す概略断面図である。It is the schematic sectional drawing which shows still another example of the specific structure of the 1st composite sheet (α1). 本発明の半導体チップの製造方法の工程概略図である。It is a process schematic diagram of the manufacturing method of the semiconductor chip of this invention. 工程(S1)にて準備する半導体チップ作製用ウエハの一例を示す上面図である。It is a top view which shows an example of the wafer for manufacturing a semiconductor chip prepared in a step (S1). 工程(S1)にて準備する半導体チップ作製用ウエハの一例を示す概略断面図である。It is a schematic cross-sectional view which shows an example of the wafer for manufacturing a semiconductor chip prepared in a step (S1). 工程(S2)の概略を示す図である。It is a figure which shows the outline of the process (S2). 第一実施形態に係る製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method which concerns on 1st Embodiment. 第二実施形態に係る製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method which concerns on 2nd Embodiment. 第三実施形態に係る製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method which concerns on 3rd Embodiment. 第四実施形態に係る製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method which concerns on 4th Embodiment. 第一熱硬化性樹脂フィルム(x1-1)のはみ出し量の測定時に作製した、第一熱硬化性樹脂フィルム(x1-1)を含む積層物を、模式的に示す平面図である。It is a top view which shows typically the laminate containing the 1st thermosetting resin film (x1-1) produced at the time of measuring the protrusion amount of the 1st thermosetting resin film (x1-1). 実施例1、2、及び比較例1における溝部の埋め込み性を示す断面観察結果を示す図面代用写真である。It is a drawing substitute photograph which shows the cross-sectional observation result which shows the embedding property of the groove part in Examples 1, 2 and Comparative Example 1.
 本明細書において、「有効成分」とは、対象となる組成物に含まれる成分のうち、水や有機溶媒等の希釈溶媒を除いた成分を指す。
 また、本明細書において、重量平均分子量及び数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
 また、本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
As used herein, the term "active ingredient" refers to a component contained in a target composition excluding a diluting solvent such as water or an organic solvent.
Further, in the present specification, the weight average molecular weight and the number average molecular weight are polystyrene-equivalent values measured by a gel permeation chromatography (GPC) method.
Further, in the present specification, with respect to a preferable numerical range (for example, a range such as content), the lower limit value and the upper limit value described stepwise can be combined independently. For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the "favorable lower limit value (10)" and the "more preferable upper limit value (60)" are combined to obtain "10 to 60". You can also do it.
[硬化性樹脂フィルム(第一硬化性樹脂フィルム(x1))]
 本発明の硬化性樹脂フィルムは、バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜を形成するために用いられ、下記要件(I)を満たす。
<要件(I)>
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記硬化性樹脂フィルムの試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが1%のときの前記試験片の貯蔵弾性率をGc1とし、前記試験片のひずみが300%のときの前記試験片の貯蔵弾性率をGc300としたときに、下記式(i)により算出されるX値が、19以上10,000未満である。
 X=Gc1/Gc300・・・・(i)
[Curable resin film (first curable resin film (x1))]
The curable resin film of the present invention is used to form a cured resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface having bumps, and meets the following requirement (I). Fulfill.
<Requirement (I)>
Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the curable resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece is measured, and the strain of the test piece is 1. X calculated by the following formula (i) when the storage elastic modulus of the test piece is Gc1 and the storage elastic modulus of the test piece is Gc300 when the strain of the test piece is 300%. The value is 19 or more and less than 10,000.
X = Gc1 / Gc300 ... (i)
 貯蔵弾性率の測定を行う前記試験片は、フィルム状であり、その平面形状は円形である。
 前記試験片は、厚さ1mmの単層の前記硬化性樹脂フィルムであってもよいが、作製が容易である点では、厚さ1mm未満の単層の前記硬化性樹脂フィルムが複数枚積層されて構成された積層フィルムであることが好ましい。
 前記積層フィルムを構成する複数枚の単層の前記硬化性樹脂フィルムの厚さは、すべて同じであってもよいし、すべて異なっていてもよいし、一部のみ同じであってもよいが、作製が容易である点では、すべて同じであることが好ましい。
The test piece for measuring the storage elastic modulus is in the form of a film, and its planar shape is circular.
The test piece may be a single-layer curable resin film having a thickness of 1 mm, but in terms of ease of production, a plurality of the single-layer curable resin films having a thickness of less than 1 mm are laminated. It is preferable that the laminated film is composed of the above.
The thicknesses of the plurality of single layers of the curable resin film constituting the laminated film may be the same, all may be different, or only a part may be the same. All are preferably the same in that they are easy to make.
 なお、本明細書においては、前記Gc1及びGc300に限らず、「試験片の貯蔵弾性率」とは、「温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの樹脂フィルムの試験片にひずみを発生させたときの、このひずみに対応した試験片の貯蔵弾性率」を意味する。 In the present specification, not limited to the Gc1 and Gc300, the "storage elastic modulus of the test piece" is a test piece of a resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz. It means the storage elastic modulus of the test piece corresponding to this strain when the strain is generated in.
 本発明の一態様の硬化性樹脂フィルムは、例えば、支持シートと前記硬化性樹脂フィルムの層とが積層された積層構造を有する複合シートを構成することができる。 The curable resin film according to one aspect of the present invention can form, for example, a composite sheet having a laminated structure in which a support sheet and a layer of the curable resin film are laminated.
 本明細書中、半導体チップのバンプ形成面及び側面の双方に対して、保護膜としての硬化樹脂膜を形成するための硬化性樹脂フィルム(本発明の硬化性樹脂フィルム)を、「第一硬化性樹脂フィルム(x1)」又は「第一硬化性樹脂(x1)」ともいう。そして、「第一硬化性樹脂フィルム(x1)」又は「第一硬化性樹脂(x1)」を硬化して形成される硬化樹脂膜を、「第一硬化樹脂膜(r1)」ともいう。また、半導体チップのバンプ形成面とは反対側の面(裏面)に保護膜としての硬化樹脂膜を形成するための硬化性樹脂フィルムを、「第二硬化性樹脂フィルム(x2)」又は「第二硬化性樹脂(x2)」ともいう。そして、「第二硬化性樹脂フィルム(x2)」又は「第二硬化性樹脂(x2)」を硬化して形成される硬化樹脂膜を、「第二硬化樹脂膜(r2)」ともいう。
 また、本明細書中、半導体チップのバンプ形成面及び側面の双方に対して、保護膜としての第一硬化樹脂膜(r1)を形成するための複合シートを、「第一複合シート(α1)」ともいう。「第一複合シート(α1)」は、「第一支持シート(Y1)」と「第一硬化性樹脂(x1)の層(X1)」とが積層された積層構造を有する。
 また、半導体チップの裏面に保護膜としての第二硬化樹脂膜(r2)を形成するための複合シートを、「第二複合シート(α2)」ともいう。「第二複合シート(α2)」は、「第二支持シート(Y2)」と「第二硬化性樹脂(x2)の層(X2)」とが積層された積層構造を有する。
In the present specification, the curable resin film (curable resin film of the present invention) for forming a curable resin film as a protective film on both the bump forming surface and the side surface of the semiconductor chip is "first cured". Also referred to as "sexual resin film (x1)" or "first curable resin (x1)". The cured resin film formed by curing the "first curable resin film (x1)" or the "first curable resin (x1)" is also referred to as the "first curable resin film (r1)". Further, a curable resin film for forming a curable resin film as a protective film on the surface (back surface) opposite to the bump forming surface of the semiconductor chip is a "second curable resin film (x2)" or "second curable resin film (x2)". Also referred to as "dicurable resin (x2)". The cured resin film formed by curing the "second curable resin film (x2)" or the "second curable resin (x2)" is also referred to as the "second curable resin film (r2)".
Further, in the present specification, the composite sheet for forming the first cured resin film (r1) as a protective film on both the bump forming surface and the side surface of the semiconductor chip is referred to as "the first composite sheet (α1)". Also called. The "first composite sheet (α1)" has a laminated structure in which a "first support sheet (Y1)" and a "layer (X1) of a first curable resin (x1)" are laminated.
Further, a composite sheet for forming a second cured resin film (r2) as a protective film on the back surface of the semiconductor chip is also referred to as a "second composite sheet (α2)". The "second composite sheet (α2)" has a laminated structure in which a "second support sheet (Y2)" and a "layer (X2) of a second curable resin (x2)" are laminated.
 図1に、第一硬化性樹脂フィルム(x1)の断面模式図を示す。
 なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
FIG. 1 shows a schematic cross-sectional view of the first curable resin film (x1).
In addition, in the figure used in the following description, in order to make it easy to understand the features of the present invention, the main part may be enlarged and shown, and the dimensional ratio of each component is the same as the actual one. Is not always the case.
 図1に示す第一硬化性樹脂フィルム(x1)は、その一方の面(本明細書においては、「第1面」と称することがある)x1a上に第1剥離フィルム151を備え、前記第1面x1aとは反対側の他方の面(本明細書においては、「第2面」と称することがある)x1b上に第2剥離フィルム152を備えている。
 かかる構成を備える第一硬化性樹脂フィルム(x1)は、例えば、ロール状として保存するのに好適である。
The first curable resin film (x1) shown in FIG. 1 includes a first release film 151 on one surface (sometimes referred to as a "first surface" in the present specification) x1a, and the first release film 151 is provided. The second release film 152 is provided on the other surface (sometimes referred to as the "second surface" in the present specification) x1b opposite to the one surface x1a.
The first curable resin film (x1) having such a structure is suitable for storage as, for example, a roll.
 第1剥離フィルム151及び第2剥離フィルム152は、いずれも公知のものでよい。
 第1剥離フィルム151及び第2剥離フィルム152は、互いに同一であってもよく、異なっていてもよい。第1剥離フィルム151及び第2剥離フィルム152が異なる場合の例としては、第一硬化性樹脂フィルム(x1)から剥離させるときに必要な剥離力が異なること等が挙げられる。
Both the first release film 151 and the second release film 152 may be known.
The first release film 151 and the second release film 152 may be the same as each other or may be different from each other. Examples of cases where the first release film 151 and the second release film 152 are different include that the release force required for peeling from the first curable resin film (x1) is different.
 図1に示す第一硬化性樹脂フィルム(x1)は、第1剥離フィルム151及び第2剥離フィルム152のいずれか一方が取り除かれ、生じた露出面が、貼付対象物への貼付面となる。そして、第1剥離フィルム151及び第2剥離フィルム152の残りの他方が取り除かれ、生じた露出面が、後述する第一複合シート(α1)を構成するための第一支持シート(Y1)の貼付面となる。 In the first curable resin film (x1) shown in FIG. 1, either the first release film 151 or the second release film 152 is removed, and the resulting exposed surface becomes the surface to be attached to the object to be attached. Then, the other remaining of the first release film 151 and the second release film 152 is removed, and the generated exposed surface is attached with the first support sheet (Y1) for forming the first composite sheet (α1) described later. It becomes a face.
 なお、図1おいては、剥離フィルムが第一硬化性樹脂フィルム(x1)の両面(第1面x1a、第2面x1b)に設けられている例を示しているが、剥離フィルムは、第一硬化性樹脂フィルム(x1)のいずれか一方の面のみ、すなわち、第1面x1aのみ、又は第2面x1bのみに設けられていてもよい。 Although FIG. 1 shows an example in which the release film is provided on both sides (first surface x1a, second surface x1b) of the first curable resin film (x1), the release film is the first. It may be provided only on one side of the monocurable resin film (x1), that is, only on the first side x1a or only on the second side x1b.
 第一硬化性樹脂フィルム(x1)は、熱硬化性及びエネルギー線硬化性のいずれであってもよく、熱硬化性及びエネルギー線硬化性の両方の特性を有していてもよい。 The first curable resin film (x1) may be either thermosetting or energy ray curable, and may have both thermosetting and energy ray curable properties.
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味する。エネルギー線の例としては、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 また、本明細書において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
As used herein, the term "energy beam" means an electromagnetic wave or a charged particle beam having an energy quantum. Examples of energy rays include ultraviolet rays, radiation, electron beams and the like. Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet source. The electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
Further, in the present specification, "energy ray curable" means a property of being cured by irradiating with energy rays, and "non-energy ray curable" is a property of not being cured by irradiating with energy rays. Means.
 第一硬化性樹脂フィルム(x1)は、樹脂成分を含有する。
 また、第一硬化性樹脂フィルム(x1)は、樹脂成分と共に、樹脂成分以外の成分を含有していてもよいし、含有していなくてもよい。
 第一硬化性樹脂フィルム(x1)の好ましい態様としては、例えば、樹脂成分と、充填材と、これら(樹脂成分と充填材)のいずれにも該当せず、かつ第一硬化性樹脂フィルム(x1)の貯蔵弾性率の調節効果を有する各種添加剤と、が挙げられる。
The first curable resin film (x1) contains a resin component.
Further, the first curable resin film (x1) may or may not contain a component other than the resin component together with the resin component.
A preferred embodiment of the first curable resin film (x1) is, for example, a resin component, a filler, and none of these (resin component and filler), and the first curable resin film (x1). ), And various additives having an effect of adjusting the storage elastic modulus.
 第一硬化性樹脂フィルム(x1)の貯蔵弾性率の調節効果を有する前記添加剤としては、例えば、レオロジーコントロール剤(チキソトロピック剤)、界面活性剤、シリコーンオイル等が挙げられる。 Examples of the additive having the effect of adjusting the storage elastic modulus of the first curable resin film (x1) include a rheology control agent (thixotropic agent), a surfactant, and a silicone oil.
 第一硬化性樹脂フィルム(x1)は、軟質であり、バンプを備えるバンプ形成面及び分割予定ラインとしての溝部を有する半導体チップ作製用ウエハのように、凹凸面を有する貼付対象物への貼付用として好適である。
 なお、以降の説明では、「バンプを備えるバンプ形成面及び分割予定ラインとしての溝部を有する半導体チップ作製用ウエハ」のことを、単に「半導体チップ作製用ウエハ」ともいう。
 第一硬化性樹脂フィルム(x1)は、半導体チップ作製用ウエハのバンプ形成面に対して押圧して貼付することで、第一硬化性樹脂フィルム(x1)が良好な埋め込み性をもって溝部に充填される。
 また、第一硬化性樹脂フィルム(x1)は、半導体チップ作製用ウエハのバンプ形成面に対して押圧して貼付することで、バンプが第一硬化性樹脂フィルム(x1)を貫通し、バンプの頭頂部が第一硬化性樹脂フィルム(x1)から突出する。そして、第一硬化性樹脂フィルム(x1)は、バンプを覆うようにしてバンプ間に広がり、バンプ形成面と密着するとともに、バンプの表面、特にバンプ形成面の近傍部位の表面を覆って、バンプの基部を埋め込む。この状態で、バンプの頭頂部をはじめとする上部においては、第一硬化性樹脂フィルム(x1)の残存が抑制される。したがって、第一硬化性樹脂フィルム(x1)の硬化物である第一硬化樹脂膜(r1)も、バンプの上部においては、その付着が当然に抑制される。さらに、第一硬化性樹脂フィルム(x1)は、貼付対象物に貼付した後においても、当初(貼付前)の第一硬化性樹脂フィルム(x1)の面積が維持されやすく、当初(貼付前)の第一硬化性樹脂フィルム(x1)の面積よりも貼付後の面積が拡がる現象(以下、「はみ出し」ともいう)が抑制される。したがって、半導体チップ作製用ウエハのバンプ形成面に対して第一硬化性樹脂フィルム(x1)を貼付する際、溝部やパンプの基部への埋め込み不良等も抑制される。
 さらに、第一硬化性樹脂フィルム(x1)を用いた場合には、第一硬化性樹脂フィルム(x1)及びその硬化物である第一硬化樹脂膜(r1)がバンプ形成面に設けられた状態で、バンプの上部以外の領域、又は、バンプ形成面のバンプ近傍の領域が、意図せずに露出してしまうこと(以下、「ハジキ」ともいう)が抑制される。
 これらの効果は、上記要件(I)において規定されるX値が、19以上10,000未満であることにより奏される。
The first curable resin film (x1) is soft and is used for sticking to a sticking object having an uneven surface such as a wafer for forming a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line. Is suitable as.
In the following description, the "wafer for manufacturing a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line" is also simply referred to as a "wafer for manufacturing a semiconductor chip".
The first curable resin film (x1) is pressed and attached to the bump forming surface of the wafer for manufacturing semiconductor chips, so that the first curable resin film (x1) is filled in the groove with good embedding property. To.
Further, the first curable resin film (x1) is attached by pressing against the bump forming surface of the wafer for manufacturing semiconductor chips so that the bumps penetrate the first curable resin film (x1) and the bumps are formed. The crown protrudes from the first curable resin film (x1). Then, the first curable resin film (x1) spreads between the bumps so as to cover the bumps, adheres to the bump forming surface, and covers the surface of the bump, particularly the surface of the portion near the bump forming surface, and the bump. Embed the base of. In this state, the residual first curable resin film (x1) is suppressed in the upper part including the crown of the bump. Therefore, the adhesion of the first cured resin film (r1), which is a cured product of the first curable resin film (x1), is naturally suppressed at the upper part of the bump. Further, the first curable resin film (x1) can easily maintain the area of the initial (before sticking) first curable resin film (x1) even after being stuck to the object to be stuck, and the initial (before sticking). The phenomenon that the area after application is larger than the area of the first curable resin film (x1) (hereinafter, also referred to as “protrusion”) is suppressed. Therefore, when the first curable resin film (x1) is attached to the bump-forming surface of the semiconductor chip-making wafer, poor embedding in the groove or the base of the pump is suppressed.
Further, when the first curable resin film (x1) is used, the first curable resin film (x1) and the first cured resin film (r1) which is a cured product thereof are provided on the bump forming surface. Therefore, it is possible to prevent the region other than the upper portion of the bump or the region near the bump on the bump forming surface from being unintentionally exposed (hereinafter, also referred to as “hajiki”).
These effects are achieved when the X value defined in the above requirement (I) is 19 or more and less than 10,000.
 なお、バンプの上部における、第一硬化性樹脂フィルム(x1)又は第一硬化樹脂膜(r1)の残存の有無は、例えば、バンプの上部について、光学顕微鏡又はSEM(走査型電子顕微鏡)による観察や撮像データの取得を行うことにより、確認できる。
 また、第一硬化性樹脂フィルム(x1)はみ出しの有無は、目視等により観察することができる。
 さらに、第一硬化性樹脂フィルム(x1)又は第一硬化樹脂膜(r1)のハジキの有無は、例えば、バンプ形成面について、光学顕微鏡又はSEM(走査型電子顕微鏡)による観察や撮像データの取得を行うことにより、確認できる。
Whether or not the first curable resin film (x1) or the first curable resin film (r1) remains on the upper part of the bump is observed by, for example, observing the upper part of the bump with an optical microscope or a SEM (scanning electron microscope). It can be confirmed by acquiring the image data and the imaging data.
Further, the presence or absence of protrusion of the first curable resin film (x1) can be visually observed or the like.
Further, the presence or absence of repelling of the first curable resin film (x1) or the first curable resin film (r1) is determined by, for example, observing the bump forming surface with an optical microscope or SEM (scanning electron microscope) and acquiring imaging data. Can be confirmed by performing.
 なお、第一硬化性樹脂フィルム(x1)等の樹脂フィルムを貼付対象物に貼付したときに、はみ出しが生じた場合には、以下の方法によりはみ出し量を算出できる。
 すなわち、はみ出しが生じている状態の樹脂フィルムを、その上方から見下ろして平面視し、このときの前記樹脂フィルムの外周上の異なる二点間を結ぶ線分の長さの最大値を求める。さらに、この最大値を示す前記線分と重なる位置での、当初(すなわち、はみ出しが生じる前)の前記樹脂フィルムの幅の値を求める。そして、前記線分の長さの最大値から、前記樹脂フィルムの幅の値を減じることにより、前記樹脂フィルムのはみ出し量を算出できる。
If a resin film such as the first curable resin film (x1) is attached to the object to be attached and the protrusion occurs, the amount of protrusion can be calculated by the following method.
That is, the resin film in a protruding state is viewed in a plan view from above, and the maximum value of the length of the line segment connecting two different points on the outer circumference of the resin film at this time is obtained. Further, the value of the width of the resin film at the beginning (that is, before the protrusion occurs) at the position overlapping with the line segment showing the maximum value is obtained. Then, the amount of protrusion of the resin film can be calculated by subtracting the value of the width of the resin film from the maximum value of the length of the line segment.
 図2は、樹脂フィルムの平面形状が円形である場合の、前記樹脂フィルムのはみ出し量を模式的に説明するための平面図である。
 図2に示す樹脂フィルム101は、貼付対象物102に貼付された状態で、当初の大きさからはみ出した状態となっている。符号101’で示しているのは、当初の大きさの樹脂フィルムであり、はみ出し量を理解し易くするために、便宜的に示している。当初の樹脂フィルム101’の平面形状は、ここでは円形であるが、はみ出した状態となっている樹脂フィルム101の平面形状は、非円形である。ただし、これは一例であり、はみ出した状態となっている樹脂フィルム101の平面形状は、ここに示すものに限定されない。
FIG. 2 is a plan view for schematically explaining the amount of protrusion of the resin film when the plane shape of the resin film is circular.
The resin film 101 shown in FIG. 2 is in a state of being attached to the object to be attached 102 and protruding from the initial size. Reference numeral 101'is a resin film of the initial size, which is shown for convenience in order to make it easier to understand the amount of protrusion. The initial planar shape of the resin film 101'is circular here, but the planar shape of the resin film 101 that is in a protruding state is non-circular. However, this is an example, and the planar shape of the resin film 101 in the protruding state is not limited to that shown here.
 樹脂フィルム101のはみ出し量を求めるためには、樹脂フィルム101の外周1010上のうちの一点1010aと、これとは異なる他の一点1010bと、の間を結ぶ線分の長さDの最大値を求め、さらに、この最大値を示す前記線分と重なる位置での、当初(すなわち、はみ出す前)の樹脂フィルム101’の幅の値Dを求めればよい。DとDとの差(D-D)が、前記はみ出し量となる。
 樹脂フィルム101における、最大値を示す前記線分は、平面視にて、当初の樹脂フィルム101’における円の中心を通ることがあり、その場合、この最大値を示す前記線分と重なる位置での、当初の樹脂フィルム101’の幅の値は、樹脂フィルム101’の直径となる。
In order to obtain the amount of protrusion of the resin film 101, the maximum value of the length D 1 of the line segment connecting one point 1010a on the outer circumference 1010 of the resin film 101 and another point 1010b different from this point 1010a. , And further, the value D 0 of the width of the initial resin film 101'at the position overlapping with the line segment showing the maximum value (that is, before protruding) may be obtained. The difference between D 1 and D 0 (D 1 − D 0 ) is the amount of protrusion.
The line segment showing the maximum value in the resin film 101 may pass through the center of the circle in the initial resin film 101'in a plan view, and in that case, at a position overlapping the line segment showing the maximum value. The value of the width of the initial resin film 101'is the diameter of the resin film 101'.
 なお、ここでは、図面を参照して、樹脂フィルムの平面形状が円形である場合の、樹脂フィルムのはみ出し量について説明したが、平面形状が円形以外である場合にも、同様の方法で樹脂フィルムのはみ出し量を算出できる。 Here, the amount of protrusion of the resin film when the plane shape of the resin film is circular has been described with reference to the drawings, but the same method can be used when the plane shape is other than circular. The amount of protrusion can be calculated.
 第一硬化性樹脂フィルム(x1)を、半導体チップ作製用ウエハのバンプ形成面に貼付するときには、バンプ上部が第一硬化性樹脂フィルム(x1)を貫通して突出するとともに、第一硬化性樹脂フィルム(x1)が溝部に侵入し始める中盤段階と、第一硬化性樹脂フィルム(x1)がバンプの基部を埋め込むとともに、溝部を埋め込む終盤段階とでは、硬化性樹脂フィルムのひずみの程度は、大きく異なる。より具体的には、前記中盤段階での第一硬化性樹脂フィルム(x1)のひずみは小さく、前記終盤段階での第一硬化性樹脂フィルム(x1)のひずみは大きい。
 第一硬化性樹脂フィルム(x1)は、そのひずみが小さいときの貯蔵弾性率としてGc1を採用し、そのひずみが大きいときの貯蔵弾性率としてGc300を採用して、Gc1が高く、Gc300が低くなるようにして、上記要件(I)において規定されるX値(=Gc1/Gc300)を19以上10,000未満に規定することにより、先に説明した優れた効果を奏する。
When the first curable resin film (x1) is attached to the bump forming surface of the wafer for manufacturing semiconductor chips, the upper part of the bump penetrates the first curable resin film (x1) and protrudes, and the first curable resin The degree of distortion of the curable resin film is large between the middle stage where the film (x1) begins to invade the groove and the final stage where the first curable resin film (x1) embeds the base of the bump and embeds the groove. different. More specifically, the strain of the first curable resin film (x1) in the middle stage is small, and the strain of the first curable resin film (x1) in the final stage is large.
The first curable resin film (x1) adopts Gc1 as the storage elastic modulus when the strain is small and Gc300 as the storage elastic modulus when the strain is large, so that Gc1 is high and Gc300 is low. By defining the X value (= Gc1 / Gc300) defined in the above requirement (I) to be 19 or more and less than 10,000 in this way, the excellent effect described above can be obtained.
 第一硬化性樹脂フィルム(x1)は、本発明の効果をより発揮させやすくする観点から、上記要件(I)において規定されるX値の上限は、好ましくは5000以下、より好ましくは2000以下、更に好ましくは1000以下、より更に好ましくは500以下、更になお好ましくは300以下、一層好ましくは100以下、より一層好ましくは70以下である。
 また、本発明の効果の中でも、半導体チップ作製用ウエハの溝部への埋め込み性をより良好なものとする観点から、上記要件(I)において規定されるX値は、好ましくは25以上、より好ましくは30以上、更に好ましくは40以上、より更に好ましくは50以上、更になお好ましくは60以上である。
From the viewpoint of making the effect of the present invention more easily exhibited in the first curable resin film (x1), the upper limit of the X value defined in the above requirement (I) is preferably 5000 or less, more preferably 2000 or less. It is even more preferably 1000 or less, even more preferably 500 or less, even more preferably 300 or less, even more preferably 100 or less, and even more preferably 70 or less.
Further, among the effects of the present invention, the X value defined in the above requirement (I) is preferably 25 or more, more preferably 25 or more, from the viewpoint of improving the embedding property in the groove portion of the wafer for manufacturing a semiconductor chip. Is 30 or more, more preferably 40 or more, even more preferably 50 or more, and even more preferably 60 or more.
 第一硬化性樹脂フィルム(x1)において、Gc1は、上記要件(I)において規定されるX値が、19以上10000未満となる限り、特に限定されない。
 但し、本発明の効果をより発揮させやすくする観点から、Gc1は、1×10~1×10Paであることが好ましく、3×10~7×10Paであることがより好ましく、5×10~5×10Paであることが更に好ましい。
In the first curable resin film (x1), Gc1 is not particularly limited as long as the X value defined in the above requirement (I) is 19 or more and less than 10,000.
However, from the viewpoint of making it easier to exert the effect of the present invention, Gc1 is preferably 1 × 10 4 to 1 × 10 6 Pa, and more preferably 3 × 10 4 to 7 × 10 5 Pa. It is more preferably 5 × 10 4 to 5 × 10 5 Pa.
 第一硬化性樹脂フィルム(x1)において、Gc300は、X値が19以上10000未満となる限り、特に限定されない。
 但し、本発明の効果の中でも、半導体チップ作製用ウエハの溝部への埋め込み性をより良好なものとする観点から、Gc300は、15,000Pa未満であることが好ましく、10,000Pa以下であることがより好ましく、5,000Pa以下であることが更に好ましく、4,000Pa以下であることがより更に好ましく、3,500Pa以下であることが更になお好ましい。また、第一硬化性樹脂フィルム(x1)のハジキを抑制する観点から、Gc300は、100Pa以上であることが好ましく、500Pa以上であることがより好ましく、1,000Pa以上であることが更に好ましい。
In the first curable resin film (x1), Gc300 is not particularly limited as long as the X value is 19 or more and less than 10,000.
However, among the effects of the present invention, Gc300 is preferably less than 15,000 Pa and preferably 10,000 Pa or less from the viewpoint of improving the embedding property in the groove portion of the wafer for manufacturing semiconductor chips. Is more preferably 5,000 Pa or less, further preferably 4,000 Pa or less, and even more preferably 3,500 Pa or less. Further, from the viewpoint of suppressing repelling of the first curable resin film (x1), Gc300 is preferably 100 Pa or more, more preferably 500 Pa or more, and further preferably 1,000 Pa or more.
 第一硬化性樹脂フィルム(x1)においては、上記要件(I)で規定するX値と共に、Gc1及びGc300のいずれか一方又は双方が、上記範囲を満たすことが好ましい。 In the first curable resin film (x1), it is preferable that either or both of Gc1 and Gc300 satisfy the above range together with the X value specified in the above requirement (I).
 第一硬化性樹脂フィルム(x1)の貯蔵弾性率は、Gc1及びGc300の場合に限らず、第一硬化性樹脂フィルム(x1)の含有成分の種類及び含有量の一方又は双方を調節することで、容易に調節できる。そのためには、第一硬化性樹脂フィルム(x1)を形成するための組成物中の含有成分の種類及び含有量の一方又は双方を調節すればよい。例えば、後述する第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)を用いる場合には、この組成物中の重合体成分(A)、充填材(D)等の、主たる含有成分の種類及び含有量の一方又は双方を調節し、レオロジーコントロール剤、界面活性剤、及びシリコーンオイル等から選択される1種以上の添加剤(I)の種類及び含有量の一方又は双方を調節することで、第一硬化性樹脂フィルム(x1)の貯蔵弾性率を容易に調節できる。
 例えば、第一硬化性樹脂フィルム(x1)及び第一硬化性樹脂フィルム形成用組成物の前記充填材(D)及び添加剤(I)の一方又は双方の含有量を増大させると、Gc1を大きな値に調節しやすく、その結果としてX値を大きな値に調節しやすい。
The storage elastic modulus of the first curable resin film (x1) is not limited to the cases of Gc1 and Gc300, and by adjusting one or both of the types and contents of the components contained in the first curable resin film (x1). , Easy to adjust. For that purpose, one or both of the types and contents of the components contained in the composition for forming the first curable resin film (x1) may be adjusted. For example, when a composition for forming a first thermosetting resin film (x1-1-1), which will be described later, is used, the main contents of the polymer component (A), filler (D), etc. in this composition are included. Adjust one or both of the type and content of the component, and adjust one or both of the type and content of one or more additives (I) selected from rheology control agents, surfactants, silicone oils, and the like. By doing so, the storage elasticity of the first curable resin film (x1) can be easily adjusted.
For example, increasing the content of one or both of the filler (D) and the additive (I) of the first curable resin film (x1) and the composition for forming the first curable resin film increases Gc1. It is easy to adjust to a value, and as a result, it is easy to adjust the X value to a large value.
 第一硬化性樹脂フィルム(x1)は、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよい。第一硬化性樹脂フィルム(x1)が複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The first curable resin film (x1) may be composed of one layer (single layer) or may be composed of a plurality of layers of two or more layers. When the first curable resin film (x1) is composed of a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
 本明細書においては、第一硬化性樹脂フィルム(x1)の場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよいし、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。 In the present specification, not only in the case of the first curable resin film (x1), "a plurality of layers may be the same or different from each other" means "all layers may be the same or different". "All layers may be different, or only some layers may be the same", and "multiple layers are different from each other" means "at least the constituent materials and thickness of each layer". It means that one is different from each other.
 第一硬化性樹脂フィルム(x1)の厚さは、半導体チップ作製用半導体ウエハのバンプ形成面に対する被覆性の向上の観点、半導体チップ作製用半導体ウエハの溝部への埋め込み性を更に良好なものとする観点から、好ましくは10μm以上、より好ましくは20μm以上、更に好ましくは30μm以上、より更に好ましくは30μm超である。また、好ましくは200μm以下、より好ましくは150μm以下、更に好ましくは130μm以下、より更に好ましくは100μm以下、更になお好ましくは80μm以下である。
 ここで、「第一硬化性樹脂(x1)の層(X1)の厚さ」とは、層(X1)全体の厚さを意味し、例えば、複数層からなる層(X1)の厚さとは、層(X1)を構成するすべての層の合計の厚さを意味する。
 ここで、「第一硬化性樹脂フィルム(x1)の厚さ」とは、第一硬化性樹脂フィルム(x1)全体の厚さを意味し、例えば、複数層からなる第一硬化性樹脂フィルム(x1)の厚さとは、第一硬化性樹脂フィルム(x1)を構成するすべての層の合計の厚さを意味する。
The thickness of the first curable resin film (x1) further improves the embedding property of the semiconductor wafer for semiconductor chip fabrication into the groove from the viewpoint of improving the coating property on the bump-forming surface of the semiconductor wafer for semiconductor chip fabrication. From the viewpoint of Further, it is preferably 200 μm or less, more preferably 150 μm or less, still more preferably 130 μm or less, still more preferably 100 μm or less, still more preferably 80 μm or less.
Here, the "thickness of the layer (X1) of the first curable resin (x1)" means the thickness of the entire layer (X1), for example, the thickness of the layer (X1) composed of a plurality of layers. , Means the total thickness of all the layers that make up the layer (X1).
Here, the "thickness of the first curable resin film (x1)" means the thickness of the entire first curable resin film (x1), and for example, the first curable resin film composed of a plurality of layers (1). The thickness of x1) means the total thickness of all the layers constituting the first curable resin film (x1).
<第一硬化性樹脂フィルム形成用組成物>
 第一硬化性樹脂フィルム(x1)は、その構成材料を含有する第一硬化性樹脂フィルム形成用組成物を用いて形成できる。例えば、第一硬化性樹脂フィルム(x1)は、その形成対象面に第一硬化性樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることで、形成できる。第一硬化性樹脂フィルム形成用組成物における、常温で気化しない成分同士の含有量の比率は、通常、第一硬化性樹脂フィルム(x1)における前記成分同士の含有量の比率と同じとなる。本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
<Composition for forming a first curable resin film>
The first curable resin film (x1) can be formed by using a composition for forming a first curable resin film containing the constituent material. For example, the first curable resin film (x1) can be formed by applying a composition for forming a first curable resin film on the surface to be formed and drying it if necessary. The ratio of the contents of the components that do not vaporize at room temperature in the composition for forming the first curable resin film is usually the same as the ratio of the contents of the components in the first curable resin film (x1). In the present specification, "room temperature" means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
 第一熱硬化性樹脂フィルム(x1-1)は、第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)を用いて形成でき、第一エネルギー線硬化性樹脂フィルム(x1-2)は、第一エネルギー線硬化性樹脂フィルム形成用組成物(x1-2-1)を用いて形成できる。なお、本明細書においては、第一硬化性樹脂フィルム(x1)が、熱硬化性及びエネルギー線硬化性の両方の特性を有する場合、その硬化により形成されるy第一硬化樹脂膜(r1)に対して、第一硬化性樹脂フィルム(x1)の熱硬化の寄与が、エネルギー線硬化の寄与よりも大きい場合には、第一硬化性樹脂フィルム(x1)を熱硬化性のものとして取り扱う。反対に、その硬化に対して、第一硬化性樹脂フィルム(x1)のエネルギー線硬化の寄与が、熱硬化の寄与よりも大きい場合には、第一硬化性樹脂フィルム(x1)をエネルギー線硬化性のものとして取り扱う。 The first thermosetting resin film (x1-1) can be formed by using the first thermosetting resin film forming composition (x1-1-1), and the first energy ray-curable resin film (x1-2) can be formed. ) Can be formed by using the composition for forming a first energy ray-curable resin film (x1-2-1). In the present specification, when the first curable resin film (x1) has both thermosetting and energy ray curable properties, the y first curable resin film (r1) formed by the curing thereof. On the other hand, when the contribution of thermosetting of the first curable resin film (x1) is larger than the contribution of energy ray curing, the first curable resin film (x1) is treated as thermosetting. On the contrary, when the contribution of the first curable resin film (x1) to the energy ray curing is larger than the contribution of the thermosetting to the curing, the first curable resin film (x1) is energy ray cured. Treat as sex.
 第一硬化性樹脂フィルム形成用組成物の塗工は、公知の方法で行えばよく、例えば、スピンコーター、スプレーコーター、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。 The composition for forming the first curable resin film may be coated by a known method, for example, spin coater, spray coater, air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater. , A method using various coaters such as a curtain coater, a die coater, a knife coater, a screen coater, a Meyer bar coater, and a kiss coater.
 第一硬化性樹脂フィルム(x1)が熱硬化性及びエネルギー線硬化性のいずれであるかによらず、硬化性樹脂フィルム形成用組成物の乾燥条件は、特に限定されない。ただし、第一硬化性樹脂フィルム形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。そして、溶媒を含有する硬化性樹脂フィルム形成用組成物は、例えば、70~130℃で10秒~5分の条件で、加熱乾燥させることが好ましい。ただし、第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)は、この組成物自体と、この組成物から形成された第一熱硬化性樹脂フィルム(x1-1)と、が熱硬化しないように、加熱乾燥させることが好ましい。 The drying conditions of the composition for forming a curable resin film are not particularly limited regardless of whether the first curable resin film (x1) is thermosetting or energy ray curable. However, when the composition for forming a first curable resin film contains a solvent described later, it is preferable to heat-dry it. The composition for forming a curable resin film containing a solvent is preferably heat-dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example. However, the composition for forming the first thermosetting resin film (x1-1-1) includes the composition itself and the first thermosetting resin film (x1-1) formed from the composition. It is preferable to heat-dry it so that it does not cure by heat.
 以下、第一熱硬化性樹脂フィルム(x1-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)について、さらに詳細に説明する。 Hereinafter, the first thermosetting resin film (x1-1) and the first energy ray-curable resin film (x1-2) will be described in more detail.
<第一熱硬化性樹脂フィルム(x1-1)>
 第一熱硬化性樹脂フィルム(x1-1)を硬化させて、その硬化物である第一硬化樹脂膜(r1)を形成するとき、その硬化条件は、硬化物が十分にその機能を発揮する程度の硬化度となる限り、特に限定されず、第一熱硬化性樹脂フィルム(x1-1)の種類、前記硬化物の用途等に応じて、適宜選択すればよい。
 第一熱硬化性樹脂フィルム(x1-1)の硬化時の加熱温度は、100~200℃であることが好ましく、110~170℃であることがより好ましく、120~150℃であることが特に好ましい。そして、前記熱硬化時の加熱時間は、0.5~5時間であることが好ましく、0.5~4時間であることがより好ましく、1~3時間であることが特に好ましい。
<First thermosetting resin film (x1-1)>
When the first thermosetting resin film (x1-1) is cured to form the first cured resin film (r1) which is the cured product, the cured product fully exerts its function under the curing conditions. The degree of curing is not particularly limited as long as the degree of curing is about the same, and it may be appropriately selected depending on the type of the first thermosetting resin film (x1-1), the intended use of the cured product, and the like.
The heating temperature of the first thermosetting resin film (x1-1) at the time of curing is preferably 100 to 200 ° C, more preferably 110 to 170 ° C, and particularly preferably 120 to 150 ° C. preferable. The heating time during the thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 4 hours, and particularly preferably 1 to 3 hours.
<第一硬化性樹脂フィルム形成用組成物(x1-1-1)>
 第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)としては、例えば、重合体成分(A)と、熱硬化性成分(B)と、充填材(D)と、添加剤(I)と、を含有する第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)(本明細書においては、単に「組成物(x1-1-1)」と称することがある)等が挙げられる。
<Composition for forming a first curable resin film (x1-1-1)>
Examples of the composition for forming the first thermosetting resin film (x1-1-1) include a polymer component (A), a thermosetting component (B), a filler (D), and an additive ( Composition for forming a first thermosetting resin film (x1-1-1) containing I) and (in this specification, it may be simply referred to as "composition (x1-1-1)"). And so on.
(重合体成分(A))
 重合体成分(A)は、第一熱硬化性樹脂フィルム(x1-1)に造膜性や可撓性等を付与するための重合体化合物である。重合体成分(A)は、熱可塑性を有し、熱硬化性を有しない。なお、本明細書において重合体化合物には、重縮合反応の生成物も含まれる。
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)が含有する重合体成分(A)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Polymer component (A))
The polymer component (A) is a polymer compound for imparting film-forming property, flexibility, etc. to the first thermosetting resin film (x1-1). The polymer component (A) has thermoplasticity and does not have thermosetting property. In addition, in this specification, a polymer compound also includes a product of a polycondensation reaction.
The polymer component (A) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one kind or two or more kinds. Well, when there are two or more kinds, the combination and ratio thereof can be arbitrarily selected.
 重合体成分(A)としては、例えば、ポリビニルアセタール、アクリル樹脂、ウレタン樹脂、フェノキシ樹脂、シリコーン樹脂、飽和ポリエステル樹脂等が挙げられる。
 これらの中でも、重合体成分(A)は、Gc300を適切な値に調節してX値を適切な値に調節しやすくする観点から、ポリビニルアセタールであることが好ましい。
Examples of the polymer component (A) include polyvinyl acetal, acrylic resin, urethane resin, phenoxy resin, silicone resin, saturated polyester resin and the like.
Among these, the polymer component (A) is preferably polyvinyl acetal from the viewpoint of adjusting Gc300 to an appropriate value and facilitating the adjustment of the X value to an appropriate value.
 重合体成分(A)における前記ポリビニルアセタールとしては、公知のものが挙げられる。
 なかでも、好ましいポリビニルアセタールとしては、例えば、ポリビニルホルマール、ポリビニルブチラール等が挙げられ、ポリビニルブチラールがより好ましい。
 ポリビニルブチラールとしては、下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するものが挙げられる。
Examples of the polyvinyl acetal in the polymer component (A) include known ones.
Among them, preferable polyvinyl acetals include, for example, polyvinyl formal, polyvinyl butyral, and the like, and polyvinyl butyral is more preferable.
Examples of polyvinyl butyral include those having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3.
Figure JPOXMLDOC01-appb-C000001

 (式中、l、m及びnは、それぞれ独立に1以上の整数である。)
Figure JPOXMLDOC01-appb-C000001

(In the formula, l, m, and n are each independently an integer of 1 or more.)
 ポリビニルアセタールの重量平均分子量(Mw)は、5,000~200,000であることが好ましく、8,000~100,000であることがより好ましい。ポリビニルアセタールの重量平均分子量がこのような範囲であることで、半導体チップ作製用ウエハのバンプ形成面に第一熱硬化性樹脂フィルム(x1-1)を貼付したときに、バンプの上部での第一熱硬化性樹脂フィルム(x1-1)の残存を抑制する効果、第一熱硬化性樹脂フィルム(x1-1)のはみ出しを抑制する効果、バンプ形成面上での第一熱硬化性樹脂フィルム(x1-1)及びその硬化物のハジキを抑制する効果、並びに溝部への第一熱硬化性樹脂フィルム(x1-1)の埋め込み性の向上効果が、より高くなる。 The weight average molecular weight (Mw) of polyvinyl acetal is preferably 5,000 to 200,000, more preferably 8,000 to 100,000. When the weight average molecular weight of polyvinyl acetal is in such a range, when the first thermosetting resin film (x1-1) is attached to the bump forming surface of the wafer for manufacturing semiconductor chips, the first thermosetting resin film (x1-1) is attached to the upper part of the bump. The effect of suppressing the residual of the thermosetting resin film (x1-1), the effect of suppressing the protrusion of the first thermosetting resin film (x1-1), the first thermosetting resin film on the bump forming surface. The effect of suppressing repelling of (x1-1) and its cured product and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced.
 ポリビニルアセタールのガラス転移温度(Tg)は、40~80℃であることが好ましく、50~70℃であることがより好ましい。ポリビニルアセタールのTgがこのような範囲であることで、半導体チップ作製用ウエハのバンプ形成面に第一熱硬化性樹脂フィルム(x1-1)を貼付したときに、バンプの上部での第一熱硬化性樹脂フィルム(x1-1)の残存を抑制する効果、第一熱硬化性樹脂フィルム(x1-1)のはみ出しを抑制する効果、バンプ形成面上での第一熱硬化性樹脂フィルム(x1-1)及びその硬化物のハジキを抑制する効果、並びに溝部への第一熱硬化性樹脂フィルム(x1-1)の埋め込み性の向上効果が、より高くなる。 The glass transition temperature (Tg) of polyvinyl acetal is preferably 40 to 80 ° C, more preferably 50 to 70 ° C. When the Tg of polyvinyl acetal is in such a range, when the first thermosetting resin film (x1-1) is attached to the bump forming surface of the wafer for manufacturing semiconductor chips, the first heat on the upper part of the bump is applied. The effect of suppressing the residual of the curable resin film (x1-1), the effect of suppressing the protrusion of the first thermosetting resin film (x1-1), and the first thermosetting resin film (x1) on the bump forming surface. -1) and the effect of suppressing repelling of the cured product and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced.
 ポリビニルアセタールを構成する3種以上のモノマーの比率は任意に選択できる。 The ratio of three or more types of monomers constituting the polyvinyl acetal can be arbitrarily selected.
 重合体成分(A)における前記アクリル樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル樹脂の重量平均分子量(Mw)は、5,000~1,000,000であることが好ましく、8,000~800,000であることがより好ましい。アクリル樹脂の重量平均分子量がこのような範囲であることで、半導体チップ作製用ウエハのバンプ形成面に第一熱硬化性樹脂フィルム(x1-1)を貼付したときに、バンプの上部での第一熱硬化性樹脂フィルム(x1-1)の残存を抑制する効果、第一熱硬化性樹脂フィルム(x1-1)のはみ出しを抑制する効果、バンプ形成面上での第一熱硬化性樹脂フィルム(x1-1)及びその硬化物のハジキを抑制する効果、並びに溝部への第一熱硬化性樹脂フィルム(x1-1)の埋め込み性の向上効果が、より高くなる。
Examples of the acrylic resin in the polymer component (A) include known acrylic polymers.
The weight average molecular weight (Mw) of the acrylic resin is preferably 5,000 to 1,000,000, and more preferably 8,000 to 800,000. When the weight average molecular weight of the acrylic resin is in such a range, when the first thermosetting resin film (x1-1) is attached to the bump forming surface of the wafer for manufacturing semiconductor chips, the first thermosetting resin film (x1-1) is attached to the upper part of the bump. The effect of suppressing the residual of the thermosetting resin film (x1-1), the effect of suppressing the protrusion of the first thermosetting resin film (x1-1), the first thermosetting resin film on the bump forming surface. The effect of suppressing repelling of (x1-1) and its cured product and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced.
 アクリル樹脂のガラス転移温度(Tg)は、-50~70℃であることが好ましく、-30~60℃であることがより好ましい。アクリル樹脂のTgがこのような範囲であることで、半導体チップ作製用ウエハのバンプ形成面に第一熱硬化性樹脂フィルム(x1-1)を貼付したときに、バンプの上部での第一熱硬化性樹脂フィルム(x1-1)の残存を抑制する効果、第一熱硬化性樹脂フィルム(x1-1)のはみ出しを抑制する効果、バンプ形成面上での第一熱硬化性樹脂フィルム(x1-1)及びその硬化物のハジキを抑制する効果、並びに溝部への第一熱硬化性樹脂フィルム(x1-1)の埋め込み性の向上効果が、より高くなる。 The glass transition temperature (Tg) of the acrylic resin is preferably -50 to 70 ° C, more preferably -30 to 60 ° C. When the Tg of the acrylic resin is in such a range, when the first thermosetting resin film (x1-1) is attached to the bump forming surface of the wafer for manufacturing semiconductor chips, the first heat on the upper part of the bump is obtained. The effect of suppressing the residual of the curable resin film (x1-1), the effect of suppressing the protrusion of the first thermosetting resin film (x1-1), the first thermosetting resin film (x1) on the bump forming surface. -1) and the effect of suppressing repelling of the cured product and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced.
 アクリル樹脂が2種以上の構成単位を有する場合には、そのアクリル樹脂のガラス転移温度(Tg)は、Foxの式を用いて算出できる。このとき用いる、前記構成単位を誘導するモノマーのTgとしては、高分子データ・ハンドブック又は粘着ハンドブックに記載されている値を使用できる。 When the acrylic resin has two or more kinds of structural units, the glass transition temperature (Tg) of the acrylic resin can be calculated by using the Fox formula. As the Tg of the monomer for inducing the structural unit used at this time, the value described in the polymer data handbook or the adhesive handbook can be used.
 アクリル樹脂を構成するモノマーは、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The monomer constituting the acrylic resin may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 アクリル樹脂としては、例えば、1種又は2種以上の(メタ)アクリル酸エステルの重合体;
 (メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される2種以上のモノマーの共重合体;
 1種又は2種以上の(メタ)アクリル酸エステルと、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーと、の共重合体等が挙げられる。
As the acrylic resin, for example, a polymer of one kind or two or more kinds of (meth) acrylic acid esters;
Copolymers of two or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like;
One or more (meth) acrylic acid esters, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, etc. Examples thereof include the copolymer of.
 本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語につても同様であり、例えば、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念であり、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念である。 In the present specification, "(meth) acrylic acid" is a concept that includes both "acrylic acid" and "methacrylic acid". The same applies to terms similar to (meth) acrylic acid, for example, "(meth) acrylate" is a concept that includes both "acrylate" and "methacrylate", and is a "(meth) acryloyl group". Is a concept that includes both an "acryloyl group" and a "methacryloyl group".
 アクリル樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。
Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and (meth). N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylate Heptyl, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, Undecyl (meth) acrylate, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecyl (meth) acrylate , (Meta) hexadecyl acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, octadecyl (meth) acrylate (stearyl (meth) acrylate), and other alkyl groups that make up the alkyl ester are carbon. (Meta) acrylic acid alkyl ester having a chain structure of 1 to 18;
(Meta) Acrylic acid cycloalkyl esters such as (meth) acrylate isobornyl, (meth) acrylate dicyclopentanyl;
(Meta) Acrylic acid aralkyl esters such as benzyl (meth) acrylic acid;
(Meta) Acrylic acid cycloalkenyl ester such as (meth) acrylic acid dicyclopentenyl ester;
(Meta) Acrylic acid cycloalkenyloxyalkyl ester such as (meth) acrylic acid dicyclopentenyloxyethyl ester;
(Meta) acrylate imide;
A glycidyl group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate;
Hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth) ) Hydroxyl-containing (meth) acrylic acid esters such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylate;
Examples thereof include substituted amino group-containing (meth) acrylic acid esters such as N-methylaminoethyl (meth) acrylic acid. Here, the "substituted amino group" means a group in which one or two hydrogen atoms of the amino group are substituted with a group other than the hydrogen atom.
 アクリル樹脂は、ビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル樹脂の前記官能基は、後述する架橋剤(F)を介して他の化合物と結合してもよいし、架橋剤(F)を介さずに他の化合物と直接結合していてもよい。アクリル樹脂が前記官能基により他の化合物と結合することで、例えば、第一熱硬化性樹脂フィルム(x1-1)を用いて得られたパッケージの信頼性が向上する傾向がある。 The acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group. The functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound without a cross-linking agent (F). When the acrylic resin is bonded to another compound by the functional group, for example, the reliability of the package obtained by using the first thermosetting resin film (x1-1) tends to be improved.
 組成物(x1-1-1)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合(すなわち、第一熱硬化性樹脂フィルム(x1-1)における、第一熱硬化性樹脂フィルム(x1-1)の総質量に対する、重合体成分(A)の含有量の割合)は、重合体成分(A)の種類によらず、5~25質量%であることが好ましく、5~15質量%であることがより好ましい。 In the composition (x1-1-1), the ratio of the content of the polymer component (A) to the total content of all the components other than the solvent (that is, in the first thermosetting resin film (x1-1)). The ratio of the content of the polymer component (A) to the total mass of the first thermosetting resin film (x1-1) is 5 to 25% by mass regardless of the type of the polymer component (A). It is preferably 5 to 15% by mass, and more preferably 5 to 15% by mass.
(熱硬化性成分(B))
 熱硬化性成分(B)は、熱硬化性を有し、第一熱硬化性樹脂フィルム(x1-1)を熱硬化させて、硬質の硬化物を形成するための成分である。
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)が含有する熱硬化性成分(B)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Thermosetting component (B))
The thermosetting component (B) is a component for having thermosetting property and heat-curing the first thermosetting resin film (x1-1) to form a hard cured product.
The composition (x1-1-1) and the first thermosetting resin film (x1-1) contain only one type of thermosetting component (B), or two or more types. In the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
 熱硬化性成分(B)としては、例えば、エポキシ系熱硬化性樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂等が挙げられる。
 これらの中でも、熱硬化性成分(B)は、エポキシ系熱硬化性樹脂であることが好ましい。
Examples of the thermosetting component (B) include epoxy-based thermosetting resins, polyimide resins, and unsaturated polyester resins.
Among these, the thermosetting component (B) is preferably an epoxy-based thermosetting resin.
・エポキシ系熱硬化性樹脂
 エポキシ系熱硬化性樹脂は、エポキシ樹脂(B1)及び熱硬化剤(B2)からなる。
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルムが含有するエポキシ系熱硬化性樹脂は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
-Epoxy-based thermosetting resin The epoxy-based thermosetting resin is composed of an epoxy resin (B1) and a thermosetting agent (B2).
The epoxy-based thermosetting resin contained in the composition (x1-1-1) and the first thermosetting resin film may be only one type, two or more types, or two or more types. If, the combination and ratio thereof can be arbitrarily selected.
・エポキシ樹脂(B1)
 エポキシ樹脂(B1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。
・ Epoxy resin (B1)
Examples of the epoxy resin (B1) include known ones, such as polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolac epoxy resin, and dicyclopentadiene type epoxy resin. Biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, and other bifunctional or higher functional epoxy compounds can be mentioned.
 エポキシ樹脂(B1)は、不飽和炭化水素基を有するエポキシ樹脂であってもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、例えば、第一熱硬化性樹脂フィルム(x1-1)を用いて得られたパッケージの信頼性が向上する傾向がある。 The epoxy resin (B1) may be an epoxy resin having an unsaturated hydrocarbon group. Epoxy resins having unsaturated hydrocarbon groups have higher compatibility with acrylic resins than epoxy resins having no unsaturated hydrocarbon groups. Therefore, by using an epoxy resin having an unsaturated hydrocarbon group, for example, the reliability of a package obtained by using a first thermosetting resin film (x1-1) tends to be improved.
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。
 また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。
Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy group of the polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction of (meth) acrylic acid or a derivative thereof.
Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
The unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (vinyl group), a 2-propenyl group (allyl group), a (meth) acryloyl group, and a (meth) group. Examples thereof include an acrylamide group, and an acryloyl group is preferable.
 エポキシ樹脂(B1)の数平均分子量は、特に限定されないが、第一熱硬化性樹脂フィルム(x1-1)の硬化性、並びに、第一熱硬化性樹脂フィルム(x1-1)の硬化物の強度及び耐熱性の点から、300~30,000であることが好ましく、400~10,000であることがより好ましく、500~3,000であることが特に好ましい。
 エポキシ樹脂(B1)のエポキシ当量は、100~1,000g/eqであることが好ましく、200~800g/eqであることがより好ましい。
The number average molecular weight of the epoxy resin (B1) is not particularly limited, but is the curability of the first thermosetting resin film (x1-1) and the cured product of the first thermosetting resin film (x1-1). From the viewpoint of strength and heat resistance, it is preferably 300 to 30,000, more preferably 400 to 10,000, and particularly preferably 500 to 3,000.
The epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1,000 g / eq, more preferably 200 to 800 g / eq.
 エポキシ樹脂(B1)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 As the epoxy resin (B1), one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
・熱硬化剤(B2)
 熱硬化剤(B2)は、エポキシ樹脂(B1)に対する硬化剤として機能する。
 熱硬化剤(B2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
・ Thermosetting agent (B2)
The thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
Examples of the thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with epoxy groups in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group is annealed, and the like, and the phenolic hydroxyl group, an amino group, or an acid group is annealed. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
 熱硬化剤(B2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、アラルキルフェノール樹脂等が挙げられる。
 熱硬化剤(B2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド(以下、「DICY」と略記することがある)等が挙げられる。
Among the thermosetting agents (B2), examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolak-type phenol resins, dicyclopentadiene-based phenol resins, and aralkylphenol resins.
Among the thermosetting agents (B2), examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter, may be abbreviated as "DICY") and the like.
 熱硬化剤(B2)は、不飽和炭化水素基を有していてもよい。
 不飽和炭化水素基を有する熱硬化剤(B2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
 熱硬化剤(B2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。
The thermosetting agent (B2) may have an unsaturated hydrocarbon group.
The thermosetting agent (B2) having an unsaturated hydrocarbon group is, for example, a compound in which a part of the hydroxyl group of the phenol resin is replaced with a group having an unsaturated hydrocarbon group, which is not suitable for the aromatic ring of the phenol resin. Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
The unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
 熱硬化剤(B2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等の樹脂成分の数平均分子量は、300~30,000であることが好ましく、400~10,000であることがより好ましく、500~3,000であることが特に好ましい。
 熱硬化剤(B2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。
Among the thermosetting agents (B2), the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene type phenol resin, and aralkyl type phenol resin is 300 to 30,000. Is preferable, 400 to 10,000 is more preferable, and 500 to 3,000 is particularly preferable.
The molecular weight of the non-resin component such as biphenol and dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
 熱硬化剤(B2)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 As the thermosetting agent (B2), one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)において、熱硬化剤(B2)の含有量は、エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましく、例えば、5~150質量部、10~100質量部、及び15~75質量部のいずれかであってもよい。熱硬化剤(B2)の前記含有量が前記下限値以上であることで、第一熱硬化性樹脂フィルム(x1-1)の硬化がより進行し易くなる。熱硬化剤(B2)の前記含有量が前記上限値以下であることで、第一熱硬化性樹脂フィルム(x1-1)の吸湿率が低減されて、例えば、第一熱硬化性樹脂フィルム(x1-1)を用いて得られたパッケージの信頼性がより向上する。 In the composition (x1-1-1) and the first thermosetting resin film (x1-1), the content of the thermosetting agent (B2) is based on 100 parts by mass of the content of the epoxy resin (B1). It is preferably 0.1 to 500 parts by mass, more preferably 1 to 200 parts by mass, and is, for example, 5 to 150 parts by mass, 10 to 100 parts by mass, or 15 to 75 parts by mass. You may. When the content of the thermosetting agent (B2) is at least the lower limit value, the curing of the first thermosetting resin film (x1-1) becomes easier to proceed. When the content of the thermosetting agent (B2) is not more than the upper limit value, the moisture absorption rate of the first thermosetting resin film (x1-1) is reduced, for example, the first thermosetting resin film (1). The reliability of the package obtained by using x1-1) is further improved.
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)において、熱硬化性成分(B)の含有量(例えば、エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量)は、重合体成分(A)の含有量100質量部に対して、600~1000質量部であることが好ましい。熱硬化性成分(B)の前記含有量がこのような範囲であることで、半導体チップ作製用ウエハのバンプ形成面に第一熱硬化性樹脂フィルム(x1-1)を貼付したときに、バンプの上部での第一熱硬化性樹脂フィルム(x1-1)の残存を抑制する効果、第一熱硬化性樹脂フィルム(x1-1)のはみ出しを抑制する効果、バンプ形成面上での第一熱硬化性樹脂フィルム(x1-1)及びその硬化物のハジキを抑制する効果、並びに溝部への第一熱硬化性樹脂フィルム(x1-1)の埋め込み性の向上効果が、より高くなり、かつ硬質な硬化物を形成できる。
 さらに、このような効果がより顕著に得られる点から、熱硬化性成分(B)の含有量は、重合体成分(A)の種類に応じて、適宜調節してもよい。
In the composition (x1-1-1) and the first thermosetting resin film (x1-1), the content of the thermosetting component (B) (for example, the epoxy resin (B1) and the thermosetting agent (B2)) The total content) is preferably 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). When the content of the thermosetting component (B) is in such a range, when the first thermosetting resin film (x1-1) is attached to the bump forming surface of the semiconductor chip manufacturing wafer, the bumps are formed. The effect of suppressing the residual of the first thermosetting resin film (x1-1) on the upper part of the above, the effect of suppressing the protrusion of the first thermosetting resin film (x1-1), the first on the bump forming surface. The effect of suppressing the repelling of the thermosetting resin film (x1-1) and its cured product, and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced, and A hard cured product can be formed.
Further, the content of the thermosetting component (B) may be appropriately adjusted according to the type of the polymer component (A) from the viewpoint that such an effect can be obtained more remarkably.
 例えば、重合体成分(A)が前記ポリビニルアセタールである場合、組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)において、熱硬化性成分(B)の含有量は、重合体成分(A)の含有量100質量部に対して、600~1,000質量部であることが好ましく、650~1,000質量部であることがより好ましく、650~950質量部であることが特に好ましい。 For example, when the polymer component (A) is the polyvinyl acetal, the content of the thermosetting component (B) in the composition (x1-1-1) and the first thermosetting resin film (x1-1). Is preferably 600 to 1,000 parts by mass, more preferably 650 to 1,000 parts by mass, and 650 to 950 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). Is particularly preferable.
(充填材(D))
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)中の充填材(D)の量を調節することで、前記X値をより容易に調節できる。また、組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)中の充填材(D)の量を調節することで、第一熱硬化性樹脂フィルム(x1-1)の硬化物の熱膨張係数を、より容易に調節でき、例えば、第一熱硬化性樹脂フィルム(x1-1)の硬化物の熱膨張係数を当該硬化物の形成対象物に対して最適化することで、第一熱硬化性樹脂フィルム(x1-1)を用いて得られたパッケージの信頼性がより向上する。また、充填材(D)を含有する第一熱硬化性樹脂フィルム(x1-1)を用いることにより、第一熱硬化性樹脂フィルム(x1-1)の硬化物の吸湿率を低減したり、放熱性を向上させたりすることもできる。
(Filler (D))
The X value can be adjusted more easily by adjusting the amount of the filler (D) in the composition (x1-1-1) and the first thermosetting resin film (x1-1). Further, by adjusting the amount of the filler (D) in the composition (x1-1-1) and the first thermosetting resin film (x1-1), the first thermosetting resin film (x1-1) can be adjusted. ), The coefficient of thermal expansion of the cured product can be adjusted more easily. For example, the coefficient of thermal expansion of the cured product of the first thermosetting resin film (x1-1) is optimized for the object to be formed of the cured product. By doing so, the reliability of the package obtained by using the first thermosetting resin film (x1-1) is further improved. Further, by using the first thermosetting resin film (x1-1) containing the filler (D), the moisture absorption rate of the cured product of the first thermosetting resin film (x1-1) can be reduced. It is also possible to improve heat dissipation.
 充填材(D)は、有機充填材及び無機充填材のいずれであってもよいが、無機充填材であることが好ましい。
 好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましい。
The filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride and the like; spherical beads of these inorganic fillers; surface modification of these inorganic fillers. Goods; Single crystal fibers of these inorganic fillers; Glass fibers and the like.
Among these, the inorganic filler is preferably silica or alumina.
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)が含有する充填材(D)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The filler (D) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be of only one type or of two or more types. When there are two or more types, their combinations and ratios can be arbitrarily selected.
 組成物(x1-1-1)において、溶媒以外の全ての成分の総含有量に対する充填材(D)の含有量の割合(すなわち、第一熱硬化性樹脂フィルム(x1-1)における、第一熱硬化性樹脂フィルム(x1-1)の総質量に対する、充填材(D)の含有量の割合)は、5~45質量%であることが好ましく、5~40質量%であることがより好ましく、5~30質量%であることがさらに好ましい。前記割合がこのような範囲であることで、半導体チップ作製用ウエハのバンプ形成面に第一熱硬化性樹脂フィルム(x1-1)を貼付したときに、バンプの上部での第一熱硬化性樹脂フィルム(x1-1)の残存を抑制する効果、第一熱硬化性樹脂フィルム(x1-1)のはみ出しを抑制する効果、バンプ形成面上での第一熱硬化性樹脂フィルム(x1-1)及びその硬化物のハジキを抑制する効果、並びに溝部への第一熱硬化性樹脂フィルム(x1-1)の埋め込み性の向上効果が、より高くなるとともに、上記の熱膨張係数を、さらに容易に調節できる。 In the composition (x1-1-1), the ratio of the content of the filler (D) to the total content of all the components other than the solvent (that is, in the first thermosetting resin film (x1-1)). The ratio of the content of the filler (D) to the total mass of the thermosetting resin film (x1-1)) is preferably 5 to 45% by mass, more preferably 5 to 40% by mass. It is preferably 5 to 30% by mass, and more preferably 5 to 30% by mass. When the ratio is in such a range, when the first thermosetting resin film (x1-1) is attached to the bump forming surface of the semiconductor chip manufacturing wafer, the first thermosetting property at the upper part of the bump is obtained. The effect of suppressing the residual of the resin film (x1-1), the effect of suppressing the protrusion of the first thermosetting resin film (x1-1), and the first thermosetting resin film (x1-1) on the bump forming surface. ) And the effect of suppressing repelling of the cured product, and the effect of improving the embedding property of the first thermosetting resin film (x1-1) in the groove are further enhanced, and the above-mentioned thermal expansion coefficient is further facilitated. Can be adjusted to.
(添加剤(I))
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)中の添加剤(I)の種類又は量を調節することで、Gc1を適切に調節して、前記X値をより容易に調節できる。
 なかでも、前記X値をより容易に調節できる点で好ましい添加剤(I)としては、例えば、レオロジーコントロール剤、界面活性剤、シリコーンオイル等が挙げられる。
(Additive (I))
By adjusting the type or amount of the additive (I) in the composition (x1-1-1) and the first thermosetting resin film (x1-1), Gc1 can be appropriately adjusted to obtain the X value. Can be adjusted more easily.
Among them, examples of the additive (I) preferable in that the X value can be adjusted more easily include a rheology control agent, a surfactant, a silicone oil and the like.
 より具体的には、前記レオロジーコントロール剤としては、例えば、ポリヒドロキシカルボン酸エステル、多価カルボン酸、ポリアミド樹脂等が挙げられる。
 前記界面活性剤としては、例えば、変性シロキサン、アクリル重合体等が挙げられる。
 前記シリコーンオイルとしては、例えば、アラルキル変性シリコーンオイル、変性ポリジメチルシロキサン等が挙げられ、変性基としては、アラルキル基;ヒドロキシ基等の極性基;ビニル基、フェニル基等の不飽和結合を有する基が挙げられる。
More specifically, examples of the rheology control agent include polyhydroxycarboxylic acid esters, polyvalent carboxylic acids, and polyamide resins.
Examples of the surfactant include modified siloxane, acrylic polymer and the like.
Examples of the silicone oil include aralkyl-modified silicone oil and modified polydimethylsiloxane, and examples of the modifying group include an aralkyl group; a polar group such as a hydroxy group; and a group having an unsaturated bond such as a vinyl group and a phenyl group. Can be mentioned.
 添加剤(I)としては、上記以外のものとして、例えば、可塑剤、帯電防止剤、酸化防止剤、ゲッタリング剤、紫外線吸収剤、粘着付与剤等の、他の各種汎用添加剤も挙げられる。 Examples of the additive (I) include other general-purpose additives such as plasticizers, antistatic agents, antioxidants, gettering agents, ultraviolet absorbers, and tackifiers, in addition to the above. ..
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)が含有する添加剤(I)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The additive (I) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one kind or two or more kinds. When there are two or more types, their combinations and ratios can be arbitrarily selected.
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)の添加剤(I)の含有量は、特に限定されず、その種類や目的に応じて、適宜調節できる。
 例えば、前記X値の調節が目的である場合には、組成物(x1-1-1)において、溶媒以外の全ての成分の総含有量に対する添加剤(I)の含有量の割合(すなわち、第一熱硬化性樹脂フィルム(x1-1)における、第一熱硬化性樹脂フィルム(x1-1)の総質量に対する、添加剤(I)の含有量の割合)は、0.5~10質量%であることが好ましく、0.5~7質量%であることがより好ましく、0.5~5質量%であることがさらに好ましい。
The content of the additive (I) of the composition (x1-1-1) and the first thermosetting resin film (x1-1) is not particularly limited, and can be appropriately adjusted according to the type and purpose thereof.
For example, when the purpose is to adjust the X value, the ratio of the content of the additive (I) to the total content of all the components other than the solvent (that is, that is, in the composition (x1-1-1)). The ratio of the content of the additive (I) to the total mass of the first thermosetting resin film (x1-1) in the first thermosetting resin film (x1-1)) is 0.5 to 10 mass. %, More preferably 0.5 to 7% by mass, and even more preferably 0.5 to 5% by mass.
(硬化促進剤(C))
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)は、硬化促進剤(C)を含有していてもよい。硬化促進剤(C)は、組成物(x1-1-1)の硬化速度を調整するための成分である。
 好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(1個以上の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(1個以上の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
(Curing accelerator (C))
The composition (x1-1-1) and the first thermosetting resin film (x1-1) may contain a curing accelerator (C). The curing accelerator (C) is a component for adjusting the curing rate of the composition (x1-1-1).
Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole. , 2-Phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and other imidazoles (one or more hydrogen atoms other than hydrogen atoms) (Imidazole substituted with an organic group); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (phosphine in which one or more hydrogen atoms are substituted with an organic group); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylborone salts such as tetraphenylborate.
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)が含有する硬化促進剤(C)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The curing accelerator (C) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one type or two or more types. Well, when there are two or more types, their combinations and ratios can be arbitrarily selected.
 硬化促進剤(C)を用いる場合、組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)において、硬化促進剤(C)の含有量は、熱硬化性成分(B)の含有量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。硬化促進剤(C)の前記含有量が前記下限値以上であることで、硬化促進剤(C)を用いたことによる効果がより顕著に得られる。硬化促進剤(C)の前記含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(C)が、高温・高湿度条件下で第一熱硬化性樹脂フィルム(x1-1)中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、例えば、第一熱硬化性樹脂フィルム(x1-1)を用いて得られたパッケージの信頼性がより向上する。 When the curing accelerator (C) is used, the content of the curing accelerator (C) in the composition (x1-1-1) and the first thermosetting resin film (x1-1) is the thermosetting component (x1-1-1). The content of B) is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass. When the content of the curing accelerator (C) is at least the lower limit value, the effect of using the curing accelerator (C) is more remarkable. When the content of the curing accelerator (C) is not more than the upper limit value, for example, the highly polar curing accelerator (C) is a first thermosetting resin film (x1-) under high temperature and high humidity conditions. In 1), the effect of suppressing segregation by moving to the adhesion interface side with the adherend becomes high, and the reliability of the package obtained by using, for example, the first thermosetting resin film (x1-1) is enhanced. The sex is improved.
(カップリング剤(E))
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)は、カップリング剤(E)を含有していてもよい。カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、第一熱硬化性樹脂フィルム(x1-1)の被着体に対する接着性及び密着性を向上させることができる。また、カップリング剤(E)を用いることで、第一熱硬化性樹脂フィルム(x1-1)の硬化物は、耐熱性を損なうことなく、耐水性が向上する。
(Coupling agent (E))
The composition (x1-1-1) and the first thermosetting resin film (x1-1) may contain a coupling agent (E). By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesiveness and adhesion of the first thermosetting resin film (x1-1) to the adherend can be improved. Can be improved. Further, by using the coupling agent (E), the cured product of the first thermosetting resin film (x1-1) is improved in water resistance without impairing the heat resistance.
 カップリング剤(E)は、重合体成分(A)、熱硬化性成分(B)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。
The coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional groups of the polymer component (A), the thermosetting component (B), and the like, and is preferably a silane coupling agent. More preferred.
Preferred silane coupling agents include, for example, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2-. (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino) Ethylamino) propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyl Examples thereof include dimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and imidazolesilane.
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)が含有するカップリング剤(E)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The coupling agent (E) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one kind or two or more kinds. Well, when there are two or more types, their combinations and ratios can be arbitrarily selected.
 カップリング剤(E)を用いる場合、組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)において、カップリング剤(E)の含有量は、重合体成分(A)及び熱硬化性成分(B)の総含有量100質量部に対して、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが特に好ましい。カップリング剤(E)の前記含有量が前記下限値以上であることで、充填材(D)の樹脂への分散性の向上や、第一熱硬化性樹脂フィルム(x1-1)の貼付対象物との接着性の向上など、カップリング剤(E)を用いたことによる効果がより顕著に得られる。カップリング剤(E)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。 When the coupling agent (E) is used, the content of the coupling agent (E) in the composition (x1-1-1) and the first thermosetting resin film (x1-1) is the polymer component (A). ) And the total content of the thermosetting component (B) of 100 parts by mass, preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and 0.1. It is particularly preferable that the amount is up to 5 parts by mass. When the content of the coupling agent (E) is equal to or higher than the lower limit, the dispersibility of the filler (D) in the resin can be improved, and the first thermosetting resin film (x1-1) can be attached. The effect of using the coupling agent (E), such as improvement of adhesiveness to an object, can be obtained more remarkably. When the content of the coupling agent (E) is not more than the upper limit value, the generation of outgas is further suppressed.
(架橋剤(F))
 重合体成分(A)として、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、組成物(X1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)は、架橋剤(F)を含有していてもよい。架橋剤(F)は、重合体成分(A)中の前記官能基を他の化合物と結合させて架橋するための成分であり、このように架橋することにより、第一熱硬化性樹脂フィルム(x1-1)の初期接着力及び凝集力を調節できる。
(Crosslinking agent (F))
When a polymer component (A) having a functional group such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, or an isocyanate group that can be bonded to another compound is used, the composition (X1- 1-1) and the first thermosetting resin film (x1-1) may contain a cross-linking agent (F). The cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) with another compound to cross-link the polymer component (A). The initial adhesive force and cohesive force of x1-1) can be adjusted.
 架橋剤(F)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(金属キレート構造を有する架橋剤)、アジリジン系架橋剤(アジリジニル基を有する架橋剤)等が挙げられる。 Examples of the cross-linking agent (F) include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based cross-linking agent (a cross-linking agent having a metal chelate structure), an aziridine-based cross-linking agent (a cross-linking agent having an aziridinyl group), and the like. Can be mentioned.
 前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、ウレタン結合を有するとともに、分子の末端部にイソシアネート基を有するプレポリマーを意味する。 Examples of the organic polyvalent isocyanate compound include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as "aromatic polyvalent isocyanate compound and the like". (May be abbreviated); trimerics such as the aromatic polyvalent isocyanate compound, isocyanurates and adducts; terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the like with a polyol compound. And so on. The "adduct" is a low content of the aromatic polyhydric isocyanate compound, the aliphatic polyvalent isocyanate compound or the alicyclic polyvalent isocyanate compound, and ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a molecularly active hydrogen-containing compound. Examples of the adduct body include a xylylene diisocyanate adduct of trimethylolpropane, which will be described later. Further, the "terminal isocyanate urethane prepolymer" means a prepolymer having a urethane bond and an isocyanate group at the terminal portion of the molecule.
 前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。 More specifically, as the organic polyvalent isocyanate compound, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4. , 4'-diisocyanate; diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Compounds in which one or more of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate are added to all or some hydroxyl groups of a polyol such as propane; lysine diisocyanate and the like can be mentioned.
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。 Examples of the organic polyvalent imine compound include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxyamide), trimethylolpropane-tri-β-aziridinyl propionate, and tetramethylolmethane. Examples thereof include -tri-β-aziridinyl propionate, N, N'-toluene-2,4-bis (1-aziridinecarboxyamide) triethylene melamine and the like.
 架橋剤(F)として有機多価イソシアネート化合物を用いる場合、重合体成分(A)としては、水酸基含有重合体を用いることが好ましい。架橋剤(F)がイソシアネート基を有し、重合体成分(A)が水酸基を有する場合、架橋剤(F)と重合体成分(A)との反応によって、第一熱硬化性樹脂フィルム(x1-1)に架橋構造を簡便に導入できる。 When an organic multivalent isocyanate compound is used as the cross-linking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A). When the cross-linking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, the reaction between the cross-linking agent (F) and the polymer component (A) causes the first thermosetting resin film (x1). The crosslinked structure can be easily introduced into -1).
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)が含有する架橋剤(F)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The cross-linking agent (F) contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one kind or two or more kinds. When there are two or more types, their combinations and ratios can be arbitrarily selected.
 架橋剤(F)を用いる場合、組成物(x1-1-1)において、架橋剤(F)の含有量は、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが特に好ましい。架橋剤(F)の前記含有量が前記下限値以上であることで、架橋剤(F)を用いたことによる効果がより顕著に得られる。架橋剤(F)の前記含有量が前記上限値以下であることで、架橋剤(F)の過剰使用が抑制される。 When the cross-linking agent (F) is used, the content of the cross-linking agent (F) in the composition (x1-1-1) is 0.01 to 100 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). It is preferably 20 parts by mass, more preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass. When the content of the cross-linking agent (F) is at least the lower limit value, the effect of using the cross-linking agent (F) is more remarkable. When the content of the cross-linking agent (F) is not more than the upper limit value, the excessive use of the cross-linking agent (F) is suppressed.
(エネルギー線硬化性樹脂(G))
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)は、エネルギー線硬化性樹脂(G)を含有していてもよい。
 第一熱硬化性樹脂フィルム(x1-1)が、エネルギー線硬化性樹脂(G)を含有していることにより、エネルギー線の照射によって特性を変化させることができる。
(Energy ray curable resin (G))
The composition (x1-1-1) and the first thermosetting resin film (x1-1) may contain an energy ray-curable resin (G).
Since the first thermosetting resin film (x1-1) contains the energy ray-curable resin (G), the characteristics can be changed by irradiation with energy rays.
 エネルギー線硬化性樹脂(G)は、エネルギー線硬化性化合物を重合(硬化)して得られたものである。エネルギー線硬化性化合物としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。 The energy ray-curable resin (G) is obtained by polymerizing (curing) an energy ray-curable compound. Examples of the energy ray-curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate-based compounds having a (meth) acryloyl group are preferable.
 アクリレート系化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の鎖状脂肪族骨格含有(メタ)アクリレート;ジシクロペンタニルジ(メタ)アクリレート等の環状脂肪族骨格含有(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;オリゴエステル(メタ)アクリレート;ウレタン(メタ)アクリレートオリゴマー;エポキシ変性(メタ)アクリレート;前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート;イタコン酸オリゴマー等が挙げられる。 Examples of the acrylate-based compound include trimethylolpropantri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol monohydroxypenta (meth). ) Acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate and other chain aliphatic skeleton-containing (meth) acrylate; dicyclo Cyclic aliphatic skeleton-containing (meth) acrylate such as pentanyldi (meth) acrylate; Polyalkylene glycol (meth) acrylate such as polyethylene glycol di (meth) acrylate; Oligoester (meth) acrylate; Urethane (meth) acrylate oligomer; Epoxy-modified (meth) acrylates; polyether (meth) acrylates other than the polyalkylene glycol (meth) acrylates; itaconic acid oligomers and the like can be mentioned.
 エネルギー線硬化性化合物の重量平均分子量は、100~30,000であることが好ましく、300~10,000であることがより好ましい。 The weight average molecular weight of the energy ray-curable compound is preferably 100 to 30,000, more preferably 300 to 10,000.
 重合に用いるエネルギー線硬化性化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。重合に用いるエネルギー線硬化性化合物が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the energy ray-curable compound used for polymerization, one type may be used alone, or two or more types may be used in combination. When there are two or more energy ray-curable compounds used for polymerization, their combinations and ratios can be arbitrarily selected.
 エネルギー線硬化性樹脂(G)を用いる場合の、エネルギー線硬化性樹脂(G)の含有量は、組成物(x1-1-1)の有効成分の全量基準で、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが更に好ましい。 When the energy ray-curable resin (G) is used, the content of the energy ray-curable resin (G) is 1 to 95% by mass based on the total amount of the active ingredient of the composition (x1-1-1). It is preferably 5 to 90% by mass, more preferably 10 to 85% by mass.
(光重合開始剤(H))
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)が、エネルギー線硬化性樹脂(G)を含有する場合、エネルギー線硬化性樹脂(G)の重合反応を効率よく進めるために、組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)は、光重合開始剤(H)を含有していてもよい。
(Photopolymerization Initiator (H))
When the composition (x1-1-1) and the first thermosetting resin film (x1-1) contain the energy ray-curable resin (G), the polymerization reaction of the energy ray-curable resin (G) is efficient. For good progress, the composition (x1-1-1) and the first thermosetting resin film (x1-1) may contain a photopolymerization initiator (H).
 光重合開始剤(H)としては、例えば、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルスルフィド、テトラメチルチウラムモノスルフィド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、1,2-ジフェニルメタン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、及び2-クロロアントラキノン等が挙げられる。 Examples of the photopolymerization initiator (H) include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4. -Diethylthioxanthone, 1-hydroxycyclohexylphenylketone, benzyldiphenylsulfide, tetramethylthium monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, 1,2-diphenylmethane, 2-hydroxy-2-methyl-1- [4- (1-Methylvinyl) phenyl] propanone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-chloroanthraquinone and the like can be mentioned.
 光重合開始剤(H)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。光重合開始剤(H)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the photopolymerization initiator (H), one type may be used alone, or two or more types may be used in combination. When there are two or more photopolymerization initiators (H), their combinations and ratios can be arbitrarily selected.
 組成物(x1-1-1)において、光重合開始剤(H)の含有量は、エネルギー線硬化性樹脂(G)の含有量100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、2~5質量部であることが更に好ましい。 In the composition (x1-1-1), the content of the photopolymerization initiator (H) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the content of the energy ray-curable resin (G). It is preferably 1 to 10 parts by mass, more preferably 2 to 5 parts by mass.
(他の成分)
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)は、本発明の効果を損なわない範囲内において、上述の重合体成分(A)と、熱硬化性成分(B)と、硬化促進剤(C)と、充填材(D)と、カップリング剤(E)と、架橋剤(F)と、エネルギー線硬化性樹脂(G)と、光重合開始剤(H)と、添加剤(I)と、のいずれにも該当しない、他の成分を含有していてもよい。
(Other ingredients)
The composition (x1-1-1) and the first thermosetting resin film (x1-1) are the above-mentioned polymer component (A) and the thermosetting component (x1-1) within a range that does not impair the effects of the present invention. B), curing accelerator (C), filler (D), coupling agent (E), cross-linking agent (F), energy ray-curable resin (G), and photopolymerization initiator (H). ) And the additive (I), and other components that do not correspond to any of the above may be contained.
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)が含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)の前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The other components contained in the composition (x1-1-1) and the first thermosetting resin film (x1-1) may be only one kind or two or more kinds. When there are two or more types, their combinations and ratios can be arbitrarily selected.
The contents of the other components of the composition (x1-1-1) and the first thermosetting resin film (x1-1) are not particularly limited and may be appropriately selected depending on the intended purpose.
(溶媒)
 組成物(x1-1-1)は、さらに溶媒を含有することが好ましい。溶媒を含有する組成物(x1-1-1)は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
 組成物(x1-1-1)が含有する溶媒は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(solvent)
The composition (x1-1-1) preferably further contains a solvent. The solvent-containing composition (x1-1-1) has good handleability.
The solvent is not particularly limited, but preferred ones are, for example, hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples thereof include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
The solvent contained in the composition (x1-1-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. it can.
 組成物(x1-1-1)が含有する溶媒で、より好ましいものとしては、例えば、組成物(x1-1-1)中の含有成分をより均一に混合できる点から、メチルエチルケトン等が挙げられる。 Among the solvents contained in the composition (x1-1-1), more preferable ones include, for example, methyl ethyl ketone and the like from the viewpoint that the components contained in the composition (x1-1-1) can be mixed more uniformly. ..
 組成物(x1-1-1)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。 The content of the solvent in the composition (x1-1-1) is not particularly limited, and may be appropriately selected depending on, for example, the type of component other than the solvent.
<第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)の製造方法>
 第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<Manufacturing method of first thermosetting resin film forming composition (x1-1-1)>
The first thermosetting resin film forming composition (x1-1-1) is obtained by blending each component for constituting the composition.
The order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
The method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
The temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
<第一エネルギー線硬化性樹脂フィルム(x1-2)>
 第一エネルギー線硬化性樹脂フィルム(x1-2)を硬化させて、その硬化物である第一硬化樹脂膜(r1)を形成するときの硬化条件は、硬化物が十分にその機能を発揮する程度の硬化度となる限り、特に限定されず、第一エネルギー線硬化性樹脂フィルム(x1-2)の種類、前記硬化物の用途等に応じて、適宜選択すればよい。
 例えば、第一エネルギー線硬化性樹脂フィルム(x1-2)の硬化時における、エネルギー線の照度は、180~280mW/cmであることが好ましい。そして、前記硬化時における、エネルギー線の光量は、450~1000mJ/cmであることが好ましい。
<First energy ray curable resin film (x1-2)>
The cured product fully exerts its function under the curing conditions when the first energy ray-curable resin film (x1-2) is cured to form the first cured resin film (r1) which is the cured product. The degree of curing is not particularly limited, and may be appropriately selected depending on the type of the first energy ray-curable resin film (x1-2), the intended use of the cured product, and the like.
For example, the illuminance of the energy ray at the time of curing the first energy ray curable resin film (x1-2) is preferably 180 to 280 mW / cm 2. The amount of light of the energy rays at the time of curing is preferably 450 to 1000 mJ / cm 2.
<第一エネルギー線硬化性樹脂フィルム形成用組成物(x1-2-1)>
 第一エネルギー線硬化性樹脂フィルム形成用組成物(x1-2-1)としては、例えば、エネルギー線硬化性成分(a)と、充填材と、添加剤と、を含有する第一エネルギー線硬化性樹脂フィルム形成用組成物(x1-2-1)(本明細書においては、単に「組成物(x1-2-1)」と称することがある)等が挙げられる。
<Composition for forming a first energy ray-curable resin film (x1-2-1)>
The first energy ray-curable resin film forming composition (x1-2-1) includes, for example, an energy ray-curable component (a), a filler, and an additive. Examples thereof include a composition for forming a sex resin film (x1-2-1) (in the present specification, it may be simply referred to as "composition (x1-2-1)").
(エネルギー線硬化性成分(a))
 エネルギー線硬化性成分(a)は、エネルギー線の照射によって硬化する成分であり、第一エネルギー線硬化性樹脂フィルム(x1-2)に造膜性や、可撓性等を付与するための成分でもある。
 エネルギー線硬化性成分(a)は、未硬化であることが好ましく、粘着性を有することが好ましく、未硬化でかつ粘着性を有することがより好ましい。
(Energy ray curable component (a))
The energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and is a component for imparting film-forming property, flexibility, and the like to the first energy ray-curable resin film (x1-2). But also.
The energy ray-curable component (a) is preferably uncured, preferably sticky, and more preferably uncured and sticky.
 エネルギー線硬化性成分(a)としては、例えば、エネルギー線硬化性基を有する、重量平均分子量が80,000~2,000,000の重合体(a1)、及びエネルギー線硬化性基を有する、分子量が100~80,000の化合物(a2)が挙げられる。前記重合体(a1)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。 Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000, and an energy ray-curable group. Examples thereof include a compound (a2) having a molecular weight of 100 to 80,000. The polymer (a1) may be at least partially crosslinked by a crosslinking agent or may not be crosslinked.
・エネルギー線硬化性基を有する、重量平均分子量が80,000~2,000,000の重合体(a1)
 エネルギー線硬化性基を有する、重量平均分子量が80,000~2,000,000の重合体(a1)としては、例えば、他の化合物が有する基と反応可能な官能基を有するアクリル重合体(a11)と、前記官能基と反応する基、及びエネルギー線硬化性二重結合等のエネルギー線硬化性基を有するエネルギー線硬化性化合物(a12)と、が重合してなるアクリル樹脂(a1-1)が挙げられる。
-A polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000.
Examples of the polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000 include an acrylic polymer having a functional group capable of reacting with a group of another compound (a). An acrylic resin (a1-1) obtained by polymerizing a11), a group that reacts with the functional group, and an energy ray-curable compound (a12) having an energy ray-curable group such as an energy ray-curable double bond. ).
 他の化合物が有する基と反応可能な前記官能基としては、例えば、水酸基、カルボキシ基、アミノ基、置換アミノ基(アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基)、エポキシ基等が挙げられる。ただし、半導体ウエハや半導体チップ等の回路の腐食を防止するという点では、前記官能基はカルボキシ基以外の基であることが好ましい。
 これらの中でも、前記官能基は、水酸基であることが好ましい。
Examples of the functional group capable of reacting with a group of another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than the hydrogen atom. Group), epoxy group and the like. However, in terms of preventing corrosion of circuits such as semiconductor wafers and semiconductor chips, the functional group is preferably a group other than a carboxy group.
Among these, the functional group is preferably a hydroxyl group.
・官能基を有するアクリル重合体(a11)
 前記官能基を有するアクリル重合体(a11)としては、例えば、前記官能基を有するアクリルモノマーと、前記官能基を有しないアクリルモノマーと、が共重合してなるものが挙げられ、これらモノマー以外に、さらにアクリルモノマー以外のモノマー(非アクリルモノマー)が共重合したものであってもよい。
 また、前記アクリル重合体(a11)は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。
-Acrylic polymer having a functional group (a11)
Examples of the acrylic polymer (a11) having a functional group include those obtained by copolymerizing an acrylic monomer having the functional group and an acrylic monomer having no functional group, and other than these monomers. Further, a monomer other than the acrylic monomer (non-acrylic monomer) may be copolymerized.
Further, the acrylic polymer (a11) may be a random copolymer or a block copolymer.
 前記官能基を有するアクリルモノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、置換アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。 Examples of the acrylic monomer having a functional group include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
 前記水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル不飽和アルコール((メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられる。 Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth). (Meta) hydroxyalkyl acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic unsaturated such as vinyl alcohol and allyl alcohol Examples thereof include alcohol (unsaturated alcohol having no (meth) acrylic skeleton).
 前記カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);前記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having ethylenically unsaturated bonds) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, and citracon. Ethylene unsaturated dicarboxylic acids such as acids (dicarboxylic acids having ethylenically unsaturated bonds); anhydrides of the ethylenically unsaturated dicarboxylic acids; (meth) acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate and the like. Be done.
 前記官能基を有するアクリルモノマーは、水酸基含有モノマー、カルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。 The acrylic monomer having the functional group is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, and more preferably a hydroxyl group-containing monomer.
 前記アクリル重合体(a11)を構成する、前記官能基を有するアクリルモノマーは、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The acrylic monomer having the functional group constituting the acrylic polymer (a11) may be only one kind, two or more kinds, and when two or more kinds, a combination thereof and The ratio can be selected arbitrarily.
 前記官能基を有しないアクリルモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル等が挙げられる。 Examples of the acrylic monomer having no functional group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n- (meth) acrylate. Butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (meth) ) 2-Ethylhexyl acrylate, (meth) isooctyl acrylate, (meth) n-octyl acrylate, (meth) n-nonyl acrylate, (meth) isononyl acrylate, (meth) decyl acrylate, (meth) acrylic Undecyl acid, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl acrylate), pentadecyl (meth) acrylate, (meth) Alkyl groups constituting alkyl esters such as hexadecyl acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, and octadecyl (meth) acrylate (stearyl (meth) acrylate) have 1 to 1 to carbon atoms. Examples thereof include (meth) acrylic acid alkyl ester having a chain structure of 18.
 前記官能基を有しないアクリルモノマーとしては、例えば、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル等のアルコキシアルキル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル等を含む、芳香族基を有する(メタ)アクリル酸エステル;非架橋性の(メタ)アクリルアミド及びその誘導体;(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸N,N-ジメチルアミノプロピル等の非架橋性の3級アミノ基を有する(メタ)アクリル酸エステル等も挙げられる。 Examples of the acrylic monomer having no functional group include an alkoxyalkyl group such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate. (Meta) acrylic acid ester; (meth) acrylic acid ester having an aromatic group, including (meth) acrylic acid aryl ester such as (meth) phenyl acrylic acid; non-crosslinkable (meth) acrylamide and its derivatives; Examples thereof include (meth) acrylic acid esters having a non-crosslinkable tertiary amino group such as (meth) acrylic acid N, N-dimethylaminoethyl and (meth) acrylic acid N, N-dimethylaminopropyl.
 前記アクリル重合体(a11)を構成する、前記官能基を有しないアクリルモノマーは、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The acrylic monomer having no functional group constituting the acrylic polymer (a11) may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
 前記非アクリルモノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。
 前記アクリル重合体(a11)を構成する前記非アクリルモノマーは、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
Examples of the non-acrylic monomer include olefins such as ethylene and norbornene; vinyl acetate; and styrene.
The non-acrylic monomer constituting the acrylic polymer (a11) may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
 前記アクリル重合体(a11)において、これを構成する構成単位の全量に対する、前記官能基を有するアクリルモノマーから誘導された構成単位の量の割合(含有量)は、0.1~50質量%であることが好ましく、1~40質量%であることがより好ましく、3~30質量%であることが特に好ましい。前記割合がこのような範囲であることで、前記アクリル重合体(a11)と前記エネルギー線硬化性化合物(a12)との共重合によって得られた前記アクリル樹脂(a1-1)において、エネルギー線硬化性基の含有量は、第一エネルギー線硬化性樹脂フィルム(x1-2)の硬化物の硬化の程度を好ましい範囲に容易に調節可能となる。 In the acrylic polymer (a11), the ratio (content) of the amount of the structural unit derived from the acrylic monomer having a functional group to the total amount of the structural unit constituting the acrylic polymer (a11) is 0.1 to 50% by mass. It is preferably 1 to 40% by mass, more preferably 3 to 30% by mass, and particularly preferably 3 to 30% by mass. When the ratio is in such a range, the energy ray-curable in the acrylic resin (a1-1) obtained by copolymerization of the acrylic polymer (a11) and the energy ray-curable compound (a12). The content of the sex group can be easily adjusted to a preferable range in the degree of curing of the cured product of the first energy ray-curable resin film (x1-2).
 前記アクリル樹脂(a1-1)を構成する前記アクリル重合体(a11)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The acrylic polymer (a11) constituting the acrylic resin (a1-1) may be of only one type, may be of two or more types, and when there are two or more types, a combination thereof and The ratio can be selected arbitrarily.
 組成物(x1-2-1)において、溶媒以外の成分の総含有量に対する、アクリル樹脂(a1-1)の含有量の割合(すなわち、第一エネルギー線硬化性樹脂フィルム(x1-2)における、前記フィルムの総質量に対する、アクリル樹脂(a1-1)の含有量の割合)は、1~40質量%であることが好ましく、2~30質量%であることがより好ましく、3~20質量%であることが特に好ましい。 In the composition (x1-2-1), the ratio of the content of the acrylic resin (a1-1) to the total content of the components other than the solvent (that is, in the first energy ray-curable resin film (x1-2)). The ratio of the content of the acrylic resin (a1-1) to the total mass of the film) is preferably 1 to 40% by mass, more preferably 2 to 30% by mass, and 3 to 20% by mass. % Is particularly preferable.
・エネルギー線硬化性化合物(a12)
 前記エネルギー線硬化性化合物(a12)は、前記アクリル重合体(a11)が有する官能基と反応可能な基として、イソシアネート基、エポキシ基及びカルボキシ基からなる群より選択される1種又は2種以上を有するものが好ましく、前記基としてイソシアネート基を有するものがより好ましい。前記エネルギー線硬化性化合物(a12)は、例えば、前記基としてイソシアネート基を有する場合、このイソシアネート基が、前記官能基として水酸基を有するアクリル重合体(a11)のこの水酸基と容易に反応する。
-Energy ray curable compound (a12)
The energy ray-curable compound (a12) is one or more selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). It is preferable that the group has an isocyanate group, and more preferably the group has an isocyanate group. When the energy ray-curable compound (a12) has an isocyanate group as the group, for example, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
 前記エネルギー線硬化性化合物(a12)は、1分子中に前記エネルギー線硬化性基を1~5個有することが好ましく、1~2個有することがより好ましい。 The energy ray-curable compound (a12) preferably has 1 to 5 energy ray-curable groups in one molecule, and more preferably 1 to 2 groups.
 前記エネルギー線硬化性化合物(a12)としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;
 ジイソシアネート化合物又はポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;
 ジイソシアネート化合物又はポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物等が挙げられる。
 これらの中でも、前記エネルギー線硬化性化合物(a12)は、2-メタクリロイルオキシエチルイソシアネートであることが好ましい。
Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, and 1,1- (bisacryloyloxymethyl). Ethyl isocyanate;
Acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate;
Examples thereof include an acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound with a polyol compound and a hydroxyethyl (meth) acrylate.
Among these, the energy ray-curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
 前記アクリル樹脂(a1-1)を構成する前記エネルギー線硬化性化合物(a12)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
 前記アクリル樹脂(a1-1)において、前記アクリル重合体(a11)に由来する前記官能基の含有量に対する、前記エネルギー線硬化性化合物(a12)に由来するエネルギー線硬化性基の含有量の割合は、20~120モル%であることが好ましく、35~100モル%であることがより好ましく、50~100モル%であることが特に好ましい。前記含有量の割合がこのような範囲であることで、エネルギー線硬化性樹脂フィルム(x1-2)の硬化物の接着力がより大きくなる。なお、前記エネルギー線硬化性化合物(a12)が一官能(前記基を1分子中に1個有する)化合物である場合には、前記含有量の割合の上限値は100モル%となるが、前記エネルギー線硬化性化合物(a12)が多官能(前記基を1分子中に2個以上有する)化合物である場合には、前記含有量の割合の上限値は100モル%を超えることがある。 The ratio of the content of the energy ray-curable group derived from the energy ray-curable compound (a12) to the content of the functional group derived from the acrylic polymer (a11) in the acrylic resin (a1-1). Is preferably 20 to 120 mol%, more preferably 35 to 100 mol%, and particularly preferably 50 to 100 mol%. When the content ratio is in such a range, the adhesive force of the cured product of the energy ray-curable resin film (x1-2) becomes larger. When the energy ray-curable compound (a12) is a monofunctional compound (having one group in one molecule), the upper limit of the content ratio is 100 mol%. When the energy ray-curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule), the upper limit of the content ratio may exceed 100 mol%.
 前記重合体(a1)の重量平均分子量(Mw)は、100,000~2,000,000であることが好ましく、300,000~1,500,000であることがより好ましい。 The weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 2,000,000, more preferably 300,000 to 1,500,000.
 前記重合体(a1)が、その少なくとも一部が架橋剤によって架橋されたものである場合、前記重合体(a1)は、前記アクリル重合体(a11)を構成するものとして説明した、上述のモノマーのいずれにも該当せず、かつ架橋剤と反応する基を有するモノマーが重合して、前記架橋剤と反応する基において架橋されたものであってもよいし、前記エネルギー線硬化性化合物(a12)に由来する、前記官能基と反応する基において、架橋されたものであってもよい。 The above-mentioned monomer described as constituting the acrylic polymer (a11) when the polymer (a1) is at least partially crosslinked by a cross-linking agent. A monomer that does not correspond to any of the above and has a group that reacts with the cross-linking agent may be polymerized and cross-linked at the group that reacts with the cross-linking agent, or the energy ray-curable compound (a12). ), Which may be crosslinked in the group that reacts with the functional group.
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)が含有する前記重合体(a1)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The polymer (a1) contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may be only one kind, or two or more kinds. In the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
エネルギー線硬化性基を有する、分子量が100~80,000の化合物(a2)
 エネルギー線硬化性基を有する、分子量が100~80,000の化合物(a2)中の前記エネルギー線硬化性基としては、エネルギー線硬化性二重結合を含む基が挙げられ、好ましいものとしては、(メタ)アクリロイル基、ビニル基等が挙げられる。
A compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000.
Examples of the energy ray-curable group in the compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 include a group containing an energy ray-curable double bond, and preferred ones are. (Meta) Acryloyl group, vinyl group and the like can be mentioned.
 前記化合物(a2)は、上記の条件を満たすものであれば、特に限定されないが、エネルギー線硬化性基を有する低分子量化合物、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂等が挙げられる。 The compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray-curable group, an epoxy resin having an energy ray-curable group, and an energy ray-curable group. Examples include phenol resin.
 前記化合物(a2)のうち、エネルギー線硬化性基を有する低分子量化合物としては、例えば、多官能のモノマー又はオリゴマー等が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
 前記アクリレート系化合物としては、例えば、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピルメタクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシジエトキシ)フェニル]プロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、2,2-ビス[4-((メタ)アクリロキシポリプロポキシ)フェニル]プロパン、トリシクロデカンジメタノールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシエトキシ)フェニル]プロパン、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン等の2官能(メタ)アクリレート;
 トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート;
 ウレタン(メタ)アクリレートオリゴマー等の多官能(メタ)アクリレートオリゴマー等が挙げられる。
Among the compounds (a2), examples of the low molecular weight compound having an energy ray-curable group include polyfunctional monomers or oligomers, and acrylate compounds having a (meth) acryloyl group are preferable.
Examples of the acrylate-based compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4. -((Meta) acryloxipolyethoxy) phenyl] propane, ethoxylated bisphenol A di (meth) acrylate, 2,2-bis [4-((meth) acryloxidiethoxy) phenyl] propane, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, 2,2-bis [4-((meth) acryloyloxypolypropoxy) phenyl] propane, tricyclodecanedimethanol di (meth) acrylate, 1 , 10-decanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 2,2-bis [4-((Meta) acryloxyethoxy) phenyl] propane, neopentyl glycol di (meth) acrylate, ethoxylated polypropylene glycol di (meth) acrylate, 2-hydroxy-1,3-di (meth) acryloxypropane, etc. Bifunctional (meth) acrylate;
Tris (2- (meth) acryloxyethyl) isocyanurate, ε-caprolactone-modified tris- (2- (meth) acryloxyethyl) isocyanurate, ethoxylated glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol poly (meth) acrylate, dipentaerythritol hexa ( Polyfunctional (meth) acrylates such as meta) acrylates;
Examples thereof include polyfunctional (meth) acrylate oligomers such as urethane (meth) acrylate oligomers.
 前記化合物(a2)のうち、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂としては、例えば、「特開2013-194102号公報」の段落0043等に記載されているものを用いることができる。このような樹脂は、後述する熱硬化性成分を構成する樹脂にも該当するが、本発明においては前記化合物(a2)として取り扱う。 Among the compounds (a2), an epoxy resin having an energy ray-curable group and a phenol resin having an energy ray-curable group are described in, for example, paragraph 0043 of "Japanese Patent Laid-Open No. 2013-194102". Can be used. Such a resin also corresponds to a resin constituting a thermosetting component described later, but is treated as the compound (a2) in the present invention.
 前記化合物(a2)の重量平均分子量は、100~30,000であることが好ましく、300~10,000であることがより好ましい。 The weight average molecular weight of the compound (a2) is preferably 100 to 30,000, more preferably 300 to 10,000.
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)が含有する前記化合物(a2)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The compound (a2) contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may be only one kind or two or more kinds. Well, when there are two or more types, their combinations and ratios can be arbitrarily selected.
(エネルギー線硬化性基を有しない重合体(b))
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)は、前記エネルギー線硬化性成分(a)として前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましい。
 前記重合体(b)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。
(Polymer without energy ray-curable group (b))
When the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) contain the compound (a2) as the energy ray-curable component (a), they are further energy ray-curable. It is also preferable to contain the polymer (b) having no group.
The polymer (b) may be at least partially crosslinked by a crosslinking agent or may not be crosslinked.
 エネルギー線硬化性基を有しない重合体(b)としては、例えば、アクリル重合体、フェノキシ樹脂、ウレタン樹脂、ポリエステル、ゴム系樹脂、アクリルウレタン樹脂等が挙げられる。
 これらの中でも、前記重合体(b)は、アクリル重合体(以下、「アクリル重合体(b-1)」と略記することがある)であることが好ましい。
Examples of the polymer (b) having no energy ray-curable group include an acrylic polymer, a phenoxy resin, a urethane resin, a polyester, a rubber resin, and an acrylic urethane resin.
Among these, the polymer (b) is preferably an acrylic polymer (hereinafter, may be abbreviated as "acrylic polymer (b-1)").
 アクリル重合体(b-1)は、公知のものでよく、例えば、1種のアクリルモノマーの単独重合体であってもよいし、2種以上のアクリルモノマーの共重合体であってもよいし、1種又は2種以上のアクリルモノマーと、1種又は2種以上のアクリルモノマー以外のモノマー(非アクリルモノマー)と、の共重合体であってもよい。 The acrylic polymer (b-1) may be a known one, and may be, for example, a homopolymer of one kind of acrylic monomer or a copolymer of two or more kinds of acrylic monomers. It may be a copolymer of one or more kinds of acrylic monomers and one or more kinds of monomers other than the acrylic monomers (non-acrylic monomers).
 アクリル重合体(b-1)を構成する前記アクリルモノマーとしては、例えば、(メタ)アクリル酸アルキルエステル、環状骨格を有する(メタ)アクリル酸エステル、グリシジル基含有(メタ)アクリル酸エステル、水酸基含有(メタ)アクリル酸エステル、置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、先に説明したとおりである。 Examples of the acrylic monomer constituting the acrylic polymer (b-1) include (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth) acrylic acid ester, and hydroxyl group-containing. Examples thereof include (meth) acrylic acid ester and (meth) acrylic acid ester containing a substituted amino group. Here, the "substituted amino group" is as described above.
 前記(メタ)アクリル酸アルキルエステルとしては、例えば、先に説明した、アクリル重合体(a11)を構成する、前記官能基を有しないアクリルモノマー(アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である、(メタ)アクリル酸アルキルエステル等)と同じものが挙げられる。 As the (meth) acrylic acid alkyl ester, for example, the above-described acrylic monomer having no functional group (alkyl group constituting the alkyl ester) constituting the acrylic polymer (a11) has one carbon number. The same as (meth) acrylic acid alkyl ester, etc., which has a chain structure of to 18) can be mentioned.
 前記環状骨格を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル等が挙げられる。
Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid isobornyl and (meth) acrylic acid dicyclopentanyl;
(Meta) Acrylic acid aralkyl esters such as benzyl (meth) acrylic acid;
(Meta) Acrylic acid cycloalkenyl ester such as (meth) acrylic acid dicyclopentenyl ester;
Examples thereof include (meth) acrylic acid cycloalkenyloxyalkyl ester such as (meth) acrylic acid dicyclopentenyloxyethyl ester.
 前記グリシジル基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸グリシジル等が挙げられる。
 前記水酸基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。
 前記置換アミノ基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸N-メチルアミノエチル等が挙げられる。
Examples of the glycidyl group-containing (meth) acrylic acid ester include glycidyl (meth) acrylic acid.
Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxy (meth) acrylate. Examples thereof include propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
Examples of the substituted amino group-containing (meth) acrylic acid ester include N-methylaminoethyl (meth) acrylic acid.
 アクリル重合体(b-1)を構成する前記非アクリルモノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。 Examples of the non-acrylic monomer constituting the acrylic polymer (b-1) include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
 少なくとも一部が架橋剤によって架橋された、前記エネルギー線硬化性基を有しない重合体(b)としては、例えば、前記重合体(b)中の反応性官能基が架橋剤と反応したものが挙げられる。
 前記反応性官能基は、架橋剤の種類等に応じて適宜選択すればよく、特に限定されない。例えば、架橋剤がポリイソシアネート化合物である場合には、前記反応性官能基としては、水酸基、カルボキシ基、アミノ基等が挙げられ、これらの中でも、イソシアネート基との反応性が高い水酸基が好ましい。また、架橋剤がエポキシ系化合物である場合には、前記反応性官能基としては、カルボキシ基、アミノ基、アミド基等が挙げられ、これらの中でもエポキシ基との反応性が高いカルボキシ基が好ましい。ただし、半導体ウエハや半導体チップの回路の腐食を防止するという点では、前記反応性官能基はカルボキシ基以外の基であることが好ましい。
As the polymer (b) having no energy ray-curable group, which is at least partially crosslinked by a cross-linking agent, for example, a polymer (b) in which the reactive functional group in the polymer (b) has reacted with the cross-linking agent is used. Can be mentioned.
The reactive functional group may be appropriately selected depending on the type of the cross-linking agent and the like, and is not particularly limited. For example, when the cross-linking agent is a polyisocyanate compound, examples of the reactive functional group include a hydroxyl group, a carboxy group, an amino group and the like, and among these, a hydroxyl group having high reactivity with an isocyanate group is preferable. When the cross-linking agent is an epoxy compound, examples of the reactive functional group include a carboxy group, an amino group, an amide group and the like, and among these, a carboxy group having high reactivity with an epoxy group is preferable. .. However, from the viewpoint of preventing corrosion of circuits of semiconductor wafers and semiconductor chips, the reactive functional group is preferably a group other than the carboxy group.
 前記反応性官能基を有する、エネルギー線硬化性基を有しない重合体(b)としては、例えば、少なくとも前記反応性官能基を有するモノマーを重合させて得られたものが挙げられる。アクリル重合体(b-1)の場合であれば、これを構成するモノマーとして挙げた、前記アクリルモノマー及び非アクリルモノマーのいずれか一方又は両方として、前記反応性官能基を有するものを用いればよい。反応性官能基として水酸基を有する前記重合体(b)としては、例えば、水酸基含有(メタ)アクリル酸エステルを重合して得られたものが挙げられ、これ以外にも、先に挙げた前記アクリルモノマー又は非アクリルモノマーにおいて、1個又は2個以上の水素原子が前記反応性官能基で置換されてなるモノマーを重合して得られたものが挙げられる。 Examples of the polymer (b) having the reactive functional group and not having the energy ray-curable group include those obtained by polymerizing at least the monomer having the reactive functional group. In the case of the acrylic polymer (b-1), one or both of the acrylic monomer and the non-acrylic monomer mentioned as the monomers constituting the acrylic polymer (b-1) may be those having the reactive functional group. .. Examples of the polymer (b) having a hydroxyl group as a reactive functional group include those obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester, and in addition to this, the above-mentioned acrylic. Examples of the monomer or non-acrylic monomer include those obtained by polymerizing a monomer in which one or more hydrogen atoms are substituted with the reactive functional group.
 反応性官能基を有する前記重合体(b)において、これを構成する構成単位の全量に対する、反応性官能基を有するモノマーから誘導された構成単位の量の割合(含有量)は、1~20質量%であることが好ましく、2~10質量%であることがより好ましい。前記割合がこのような範囲であることで、前記重合体(b)において、架橋の程度がより好ましい範囲となる。 In the polymer (b) having a reactive functional group, the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total amount of the structural units constituting the polymer (b) is 1 to 20. It is preferably by mass%, more preferably 2 to 10% by mass. When the ratio is in such a range, the degree of cross-linking in the polymer (b) becomes a more preferable range.
 エネルギー線硬化性基を有しない重合体(b)の重量平均分子量(Mw)は、組成物(IV)の造膜性がより良好となる点から、10,000~2,000,000であることが好ましく、100,000~1,500,000であることがより好ましい。 The weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is 10,000 to 2,000,000 from the viewpoint of improving the film-forming property of the composition (IV). It is preferably 100,000 to 1,500,000, and more preferably 100,000 to 1,500,000.
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)が含有する、エネルギー線硬化性基を有しない重合体(b)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Only one type of polymer (b) having no energy ray-curable group contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may be used. However, there may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 組成物(x1-2-1)としては、前記重合体(a1)及び前記化合物(a2)のいずれか一方又は両方を含有するものが挙げられる。そして、組成物(x1-2-1)は、前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましく、この場合、さらに前記(a1)を含有することも好ましい。また、組成物(x1-2-1)は、前記化合物(a2)を含有せず、前記重合体(a1)、及びエネルギー線硬化性基を有しない重合体(b)をともに含有していてもよい。 Examples of the composition (x1-2-1) include those containing either or both of the polymer (a1) and the compound (a2). When the composition (x1-2-1) contains the compound (a2), it preferably also contains a polymer (b) having no energy ray-curable group. In this case, the composition (x1-2-1) further contains the above (x1-2-1). It is also preferable to contain a1). Further, the composition (x1-2-1) does not contain the compound (a2), but contains both the polymer (a1) and the polymer (b) having no energy ray-curable group. May be good.
 組成物(x1-2-1)が、前記重合体(a1)、前記化合物(a2)及びエネルギー線硬化性基を有しない重合体(b)を含有する場合、組成物(x1-2-1)において、前記化合物(a2)の含有量は、前記重合体(a1)及びエネルギー線硬化性基を有しない重合体(b)の総含有量100質量部に対して、10~400質量部であることが好ましく、30~350質量部であることがより好ましい。 When the composition (x1-2-1) contains the polymer (a1), the compound (a2), and the polymer (b) having no energy ray-curable group, the composition (x1-2-1). ), The content of the compound (a2) is 10 to 400 parts by mass with respect to 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray-curable group. It is preferably 30 to 350 parts by mass, and more preferably 30 to 350 parts by mass.
 組成物(x1-2-1)において、溶媒以外の成分の総含有量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合(すなわち、第一エネルギー線硬化性樹脂フィルム(x1-2)における、前記フィルムの総質量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合)は、5~90質量%であることが好ましく、10~80質量%であることがより好ましく、20~70質量%であることが特に好ましい。前記割合がこのような範囲であることで、第一エネルギー線硬化性樹脂フィルム(x1-2)のエネルギー線硬化性がより良好となる。 In the composition (x1-2-1), the ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total content of the components other than the solvent. (That is, the total of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group with respect to the total mass of the film in the first energy ray-curable resin film (x1-2). The content ratio) is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass. When the ratio is in such a range, the energy ray curability of the first energy ray curable resin film (x1-2) becomes better.
(充填材)
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)中の充填材の量を調節することで、前記X値をより容易に調節できる。また、組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)中の充填材の量を調節することで、第一エネルギー線硬化性樹脂フィルム(x1-2)の硬化物の熱膨張係数を、より容易に調節でき、例えば、第一エネルギー線硬化性樹脂フィルム(x1-2)の硬化物の熱膨張係数を保護膜の形成対象物に対して最適化することで、第一エネルギー線硬化性樹脂フィルム(x1-2)を用いて得られたパッケージの信頼性がより向上する。また、充填材を含有する第一エネルギー線硬化性樹脂フィルム(x1-2)を用いることにより、第一エネルギー線硬化性樹脂フィルム(x1-2)の硬化物の吸湿率を低減したり、放熱性を向上させたりすることもできる。
(Filler)
The X value can be adjusted more easily by adjusting the amount of the filler in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2). Further, by adjusting the amount of the filler in the composition (x1-2-1) and the first energy ray curable resin film (x1-2), the first energy ray curable resin film (x1-2) The thermal expansion coefficient of the cured product can be adjusted more easily. For example, the thermal expansion coefficient of the cured product of the first energy ray-curable resin film (x1-2) is optimized for the object to be formed of the protective film. As a result, the reliability of the package obtained by using the first energy ray-curable resin film (x1-2) is further improved. Further, by using the first energy ray-curable resin film (x1-2) containing a filler, the moisture absorption rate of the cured product of the first energy ray-curable resin film (x1-2) can be reduced or heat can be dissipated. It can also improve sex.
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)が含有する前記充填材は、先に説明した組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)が含有する充填材(D)と同じである。 The filler contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) is the composition (x1-1-1) and the first thermosetting property described above. It is the same as the filler (D) contained in the resin film (x1-1).
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)の充填材の含有の態様は、組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)の充填材(D)の含有の態様と同様であってよい。 The inclusion of the filler in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) includes the composition (x1-1-1) and the first thermosetting resin film (x1-2). It may be the same as the mode of containing the filler (D) of x1-1).
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)が含有する充填材は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The filler contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may be only one kind or two or more kinds. In the case of species or more, their combinations and ratios can be arbitrarily selected.
 組成物(x1-2-1)において、溶媒以外の全ての成分の総含有量に対する充填材の含有量の割合(すなわち、第一エネルギー線硬化性樹脂フィルム(x1-2)における、第一エネルギー線硬化性樹脂フィルム(x1-2)の総質量に対する、充填材の含有量の割合)は、例えば、5~45質量%であってよい。前記割合がこのような範囲であることで、半導体チップ作製用ウエハのバンプ形成面に第一エネルギー硬化性樹脂フィルム(x1-2)を貼付したときに、バンプの上部での第一エネルギー硬化性樹脂フィルム(x1-2)の残存を抑制する効果、第一エネルギー硬化性樹脂フィルム(x1-2)のはみ出しを抑制する効果、バンプ形成面上での第一エネルギー硬化性樹脂フィルム(x1-2)及びその硬化物のハジキを抑制する効果、並びに溝部への第一エネルギー硬化性樹脂フィルム(x1-2)の埋め込み性の向上効果が、より高くなるとともに、上記の熱膨張係数を、さらに容易に調節できる。 In the composition (x1-2-1), the ratio of the content of the filler to the total content of all the components other than the solvent (that is, the first energy in the first energy ray-curable resin film (x1-2)). The ratio of the content of the filler to the total mass of the linear curable resin film (x1-2)) may be, for example, 5 to 45% by mass. When the ratio is in such a range, when the first energy curable resin film (x1-2) is attached to the bump forming surface of the wafer for manufacturing semiconductor chips, the first energy curability on the upper part of the bump is obtained. The effect of suppressing the residual of the resin film (x1-2), the effect of suppressing the protrusion of the first energy curable resin film (x1-2), and the effect of suppressing the protrusion of the first energy curable resin film (x1-2) on the bump forming surface. ) And the effect of suppressing repelling of the cured product, and the effect of improving the embedding property of the first energy curable resin film (x1-2) in the groove are further enhanced, and the above-mentioned thermosetting coefficient is further facilitated. Can be adjusted to.
(添加剤)
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)中の添加剤の種類又は量を調節することで、前記X値をより容易に調節できる。
(Additive)
The X value can be adjusted more easily by adjusting the type or amount of the additive in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2).
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)が含有する前記添加剤は、先に説明した組成物(x1-1-1)及び第一熱硬化性樹脂フィルム(x1-2)が含有する添加剤(I)と同じである。
 例えば、前記X値をより容易に調節できる点で好ましい添加剤としては、レオロジーコントロール剤、界面活性剤、シリコーンオイル等が挙げられる。
The additives contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) are the composition (x1-1-1) and the first thermosetting property described above. It is the same as the additive (I) contained in the resin film (x1-2).
For example, preferable additives in that the X value can be adjusted more easily include rheology control agents, surfactants, silicone oils and the like.
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)の添加剤の含有の態様は、組成物(X1-1-1)及び第一熱硬化性樹脂フィルム(x1-1)の添加剤(I)の含有の態様と同様であってよい。 The mode of containing the additive of the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) is the composition (X1-1-1) and the first thermosetting resin film (x1-2). It may be the same as the mode of containing the additive (I) of x1-1).
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)が含有する添加剤は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may contain only one type of additive or two or more types of additives. In the case of species or more, their combinations and ratios can be arbitrarily selected.
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)の添加剤の含有量は、特に限定されず、その種類や目的に応じて、適宜調節できる。
 例えば、前記X値の調節が目的である場合には、組成物(x1-2-1)において、溶媒以外の全ての成分の総含有量に対する添加剤の含有量の割合(すなわち、第一エネルギー線硬化性樹脂フィルム(x1-2)における、第一エネルギー線硬化性樹脂フィルム(x1-2)の総質量に対する、添加剤の含有量の割合)は、例えば、0.5~10質量%であってもよい。
The content of the additive in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) is not particularly limited, and can be appropriately adjusted according to the type and purpose thereof.
For example, when the purpose is to adjust the X value, the ratio of the content of the additive to the total content of all the components other than the solvent in the composition (x1-2-1) (that is, the first energy). The ratio of the content of the additive to the total mass of the first energy ray-curable resin film (x1-2) in the linear curable resin film (x1-2)) is, for example, 0.5 to 10% by mass. There may be.
(他の成分)
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)は、本発明の効果を損なわない範囲内において、エネルギー線硬化性成分(a)と、前記充填材と、前記添加剤と、のいずれにも該当しない、他の成分を含有していてもよい。
 前記他の成分としては、例えば、熱硬化性成分、光重合開始剤、カップリング剤、架橋剤等が挙げられる。例えば、前記エネルギー線硬化性成分(a)及び熱硬化性成分を含有する組成物(x1-2-1)を用いることにより、第一エネルギー線硬化性樹脂フィルム(x1-2)は、その加熱によって被着体に対する接着力が向上し、この第一エネルギー線硬化性樹脂フィルム(x1-2)の硬化物の強度も向上する。
(Other ingredients)
The composition (x1-2-1) and the first energy ray-curable resin film (x1-2) contain the energy ray-curable component (a) and the filler as long as the effects of the present invention are not impaired. , The additive and other components that do not fall under any of the above may be contained.
Examples of the other components include thermosetting components, photopolymerization initiators, coupling agents, cross-linking agents and the like. For example, by using the composition (x1-2-1) containing the energy ray-curable component (a) and the thermosetting component, the first energy ray-curable resin film (x1-2) is heated. As a result, the adhesive force to the adherend is improved, and the strength of the cured product of the first energy ray-curable resin film (x1-2) is also improved.
 組成物(x1-2-1)における前記熱硬化性成分、光重合開始剤、カップリング剤、及び架橋剤としては、それぞれ、組成物(x1-1-1)における熱硬化性成分(B)、光重合開始剤、カップリング剤(E)、及び架橋剤(F)と同じものが挙げられる。 The thermosetting component, photopolymerization initiator, coupling agent, and cross-linking agent in the composition (x1-2-1) are the thermosetting components (B) in the composition (x1-1-1), respectively. , Photopolymerization initiator, coupling agent (E), and cross-linking agent (F).
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)が含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 組成物(x1-2-1)及び第一エネルギー線硬化性樹脂フィルム(x1-2)の前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The other components contained in the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) may be only one kind or two or more kinds. When there are two or more types, their combinations and ratios can be arbitrarily selected.
The contents of the other components of the composition (x1-2-1) and the first energy ray-curable resin film (x1-2) are not particularly limited and may be appropriately selected depending on the intended purpose.
(溶媒)
 組成物(x1-2-1)は、さらに溶媒を含有することが好ましい。溶媒を含有する組成物(x1-2-1)は、取り扱い性が良好となる。
 組成物(x1-2-1)が含有する溶媒としては、例えば、先に説明した組成物(x1-1-1)が含有する溶媒と同じものが挙げられる。
 組成物(x1-2-1)が含有する溶媒は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 組成物(x1-2-1)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。
(solvent)
The composition (x1-2-1) preferably further contains a solvent. The solvent-containing composition (x1-2-1) has good handleability.
Examples of the solvent contained in the composition (x1-2-1) include the same solvents contained in the composition (x1-1-1) described above.
The solvent contained in the composition (x1-2-1) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. it can.
The content of the solvent in the composition (x1-2-1) is not particularly limited, and may be appropriately selected depending on, for example, the type of component other than the solvent.
<第一エネルギー線硬化性保護膜形成用組成物の製造方法>
 第一エネルギー線硬化性樹脂フィルム形成用組成物(x1-2-1)は、これを構成するための各成分を配合することで得られる。
 第一エネルギー線硬化性樹脂フィルム形成用組成物(x1-2-1)は、例えば、配合成分の種類が異なる点を除けば、先に説明した第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)の場合と同じ方法で製造できる。
<Manufacturing method of composition for forming first energy ray-curable protective film>
The composition for forming a first energy ray-curable resin film (x1-2-1) is obtained by blending each component for constituting the composition.
The first energy ray-curable resin film forming composition (x1-2-1) is the first thermosetting resin film forming composition described above, except that, for example, the types of compounding components are different. It can be manufactured by the same method as in the case of x1-1-1).
[第一複合シート(α1)]
 第一硬化性樹脂フィルム(x1)は、既述のように、第一支持シート(Y1)と積層することで、第一複合シート(α1)を構成することができる。
 第一複合シート(α1)の構成例を図3に示す。
 第一複合シート(α1)は、図3に示す第一複合シート(α1)のように、第一支持シート(Y1)の一方の面に第一硬化性樹脂(x1)の層(X1)が備えられている。第一支持シート(Y1)の一方の面に第一硬化性樹脂(x1)の層(X1)が備えられることで、製品パッケージとして第一硬化性樹脂(x1)の層(X1)を運搬したり、工程内において第一硬化性樹脂(x1)の層(X1)を搬送したりする際に、第一硬化性樹脂(x1)の層(X1)が安定的に支持・保護される。
[First composite sheet (α1)]
As described above, the first curable resin film (x1) can form the first composite sheet (α1) by laminating it with the first support sheet (Y1).
A configuration example of the first composite sheet (α1) is shown in FIG.
Like the first composite sheet (α1) shown in FIG. 3, the first composite sheet (α1) has a layer (X1) of the first curable resin (x1) on one surface of the first support sheet (Y1). It is equipped. By providing the layer (X1) of the first curable resin (x1) on one surface of the first support sheet (Y1), the layer (X1) of the first curable resin (x1) is transported as a product package. Or, when the layer (X1) of the first curable resin (x1) is transported in the process, the layer (X1) of the first curable resin (x1) is stably supported and protected.
 また、第一複合シート(α1)の具体的な構成例を図4~図6に示す。
 第一複合シート(α1)は、図4に示す第一複合シート(α1a)のように、第一支持シート(Y1)は基材51であり、基材51の一方の面に第一硬化性樹脂(x1)の層(X1)が備えられている。
 また、第一複合シート(α1)は、図5に示す第一複合シート(α1b)のように、第一支持シート(Y1)は基材51と粘着剤層61とを積層した粘着シートであり、当該粘着シートの粘着剤層61と第一硬化性樹脂(x1)の層(X1)とが貼合されていてもよい。
 さらに、第一複合シート(α1)は、図6に示す第一複合シート(α1c)のように、第一支持シート(Y1)は基材51と中間層71と粘着剤層61とをこの順で積層した粘着シートであり、当該粘着シートの粘着剤層61と第一硬化性樹脂(x1)の層(X1)とが貼合されていてもよい。基材51と中間層71と粘着剤層61とをこの順で積層した粘着シートは、バックグラインドテープとして好適に用いることができる。すなわち、図6に示す第一複合シート(α1c)は、第一支持シート(Y1)としてバックグラインドテープを有するため、第一複合シート(α1c)の第一硬化性樹脂(x1)の層(X1)と、半導体チップ作製用ウエハのバンプ形成面とを貼合した後、半導体チップ作製用ウエハの裏面を研削して薄化処理する際に、好適に用いることができる。
Further, specific configuration examples of the first composite sheet (α1) are shown in FIGS. 4 to 6.
Like the first composite sheet (α1a) shown in FIG. 4, the first composite sheet (α1) is a base material 51, and the first support sheet (Y1) is first curable on one surface of the base material 51. A layer (X1) of resin (x1) is provided.
Further, the first composite sheet (α1) is an adhesive sheet in which a base material 51 and an adhesive layer 61 are laminated, like the first composite sheet (α1b) shown in FIG. , The pressure-sensitive adhesive layer 61 of the pressure-sensitive adhesive sheet and the layer (X1) of the first curable resin (x1) may be bonded together.
Further, the first composite sheet (α1) has the base material 51, the intermediate layer 71, and the adhesive layer 61 in this order, as in the first composite sheet (α1c) shown in FIG. The pressure-sensitive adhesive layer 61 of the pressure-sensitive adhesive sheet and the layer (X1) of the first curable resin (x1) may be bonded to each other. The pressure-sensitive adhesive sheet in which the base material 51, the intermediate layer 71, and the pressure-sensitive adhesive layer 61 are laminated in this order can be suitably used as a back grind tape. That is, since the first composite sheet (α1c) shown in FIG. 6 has a back grind tape as the first support sheet (Y1), the layer (X1) of the first curable resin (x1) of the first composite sheet (α1c). ) And the bump-forming surface of the semiconductor chip-making wafer, and then the back surface of the semiconductor chip-making wafer is ground and thinned.
 以下、第一複合シート(α1)に用いられる第一硬化性樹脂(x1)及び、第一支持シート(Y1)について説明する。
<第一支持シート(Y1)>
 第一支持シート(Y1)は、第一硬化性樹脂(x1)を支持するための支持体として機能する。
 第一支持シート(Y1)は、図4に示すように、基材51のみから構成されていてもよく、図5に示すように、基材51と粘着剤層61との積層体であってもよく、図6に示すように、基材51と中間層71と粘着剤層61とがこの順で積層された積層体であってもよい。基材51と中間層71と粘着剤層61とがこの順で積層された積層体は、バックグラインドシート(b-BG)としての使用に好適である。
Hereinafter, the first curable resin (x1) used for the first composite sheet (α1) and the first support sheet (Y1) will be described.
<First support sheet (Y1)>
The first support sheet (Y1) functions as a support for supporting the first curable resin (x1).
As shown in FIG. 4, the first support sheet (Y1) may be composed of only the base material 51, or is a laminate of the base material 51 and the pressure-sensitive adhesive layer 61 as shown in FIG. Also, as shown in FIG. 6, the base material 51, the intermediate layer 71, and the pressure-sensitive adhesive layer 61 may be laminated in this order. A laminate in which the base material 51, the intermediate layer 71, and the pressure-sensitive adhesive layer 61 are laminated in this order is suitable for use as a back grind sheet (b-BG).
 以下、第一支持シート(Y1)が有する基材、第一支持シート(Y1)が有していてもよい粘着剤層及び中間層について説明する。 Hereinafter, the base material of the first support sheet (Y1), the pressure-sensitive adhesive layer and the intermediate layer that the first support sheet (Y1) may have will be described.
(基材)
 基材は、シート状又はフィルム状のものであり、その構成材料としては、例えば、以下の各種樹脂が挙げられる。
 基材を構成する樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、基材を構成する樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、基材を構成する樹脂としては、例えば、ここまでに例示した前記樹脂のうちの1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂のうちの1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
(Base material)
The base material is in the form of a sheet or a film, and examples of the constituent material thereof include the following various resins.
Examples of the resin constituting the base material include polyethylenes such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE); polypropylene, polybutene, polybutadiene, polymethylpentene, norbornene resin and the like. Polyethylene other than polyethylene; ethylene-based copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer, etc. (Polymer obtained by using ethylene as a monomer); Vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer); Polystyrene; Polycycloolefin; Polymers such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, all aromatic polyesters in which all constituent units have an aromatic cyclic group; two or more kinds of polymers. Examples thereof include the polymer of the polyester; poly (meth) acrylic acid ester; polyurethane; polyurethane acrylate; polyimide; polyamide; polycarbonate; fluororesin; polyacetal; modified polyphenylene oxide; polyphenylene sulfide; polysulfone; polyether ketone and the like.
Further, as the resin constituting the base material, for example, a polymer alloy such as a mixture of the polyester and other resins can be mentioned. The polymer alloy of the polyester and the resin other than the polyester preferably has a relatively small amount of the resin other than the polyester.
The resin constituting the base material is, for example, a crosslinked resin in which one or more of the resins exemplified above are crosslinked; one or two of the resins exemplified so far. Modified resins such as ionomer using the above can also be mentioned.
 基材を構成する樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。基材を構成する樹脂が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the resin constituting the base material, one type may be used alone, or two or more types may be used in combination. When two or more kinds of resins constituting the base material are used, the combination and ratio thereof can be arbitrarily selected.
 基材は1層(単層)のみでもよいし、2層以上の複数層でもよい。基材が複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The base material may be only one layer (single layer) or may have two or more layers. When the base material has a plurality of layers, the plurality of layers may be the same as or different from each other, and the combination of the plurality of layers is not particularly limited.
 基材の厚さは、5μm~1,000μmであることが好ましく、10μm~500μmであることがより好ましく、15μm~300μmであることが更に好ましく、20μm~150μmであることがより更に好ましい。
 ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、複数層からなる基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。
The thickness of the base material is preferably 5 μm to 1,000 μm, more preferably 10 μm to 500 μm, further preferably 15 μm to 300 μm, and even more preferably 20 μm to 150 μm.
Here, the "thickness of the base material" means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material. means.
 基材は、厚さの精度が高いもの、即ち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような、基材を構成するのに使用可能な厚さの精度が高い材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体等が挙げられる。 It is preferable that the base material has a high thickness accuracy, that is, a base material in which the variation in thickness is suppressed regardless of the part. Among the above-mentioned constituent materials, such materials having high thickness accuracy that can be used to form a base material include, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, and ethylene-vinyl acetate copolymers. And so on.
 基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。 In addition to the main constituent materials such as the resin, the base material contains various known additives such as fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and softeners (plasticizers). You may.
 基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、あるいは、他の層が蒸着されていてもよい。また、第一硬化性樹脂フィルム(x1)が第一エネルギー線硬化性樹脂フィルム(x1-2)である場合、及び粘着剤層がエネルギー性硬化性の粘着剤層である場合、基材はエネルギー線を透過させるものであることが好ましい。 The base material may be transparent, opaque, colored depending on the purpose, or another layer may be vapor-deposited. When the first curable resin film (x1) is the first energy ray-curable resin film (x1-2) and the pressure-sensitive adhesive layer is an energy-curable pressure-sensitive adhesive layer, the base material has energy. It is preferable that the line is transmitted.
 基材は、公知の方法で製造できる。例えば、樹脂を含有する基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。 The base material can be produced by a known method. For example, a base material containing a resin can be produced by molding a resin composition containing the resin.
(粘着剤層)
 粘着剤層は、シート状又はフィルム状であり、粘着剤を含有する。
 粘着剤としては、例えば、アクリル系樹脂((メタ)アクリロイル基を有する樹脂からなる粘着剤)、ウレタン系樹脂(ウレタン結合を有する樹脂からなる粘着剤)、ゴム系樹脂(ゴム構造を有する樹脂からなる粘着剤)、シリコーン系樹脂(シロキサン結合を有する樹脂からなる粘着剤)、エポキシ系樹脂(エポキシ基を有する樹脂からなる粘着剤)、ポリビニルエーテル、ポリカーボネート等の粘着性樹脂が挙げられる。これらの中でも、アクリル系樹脂が好ましい。
(Adhesive layer)
The pressure-sensitive adhesive layer is in the form of a sheet or a film and contains a pressure-sensitive adhesive.
Examples of the adhesive include acrylic resins (adhesives composed of resins having (meth) acryloyl groups), urethane resins (adhesives composed of resins having urethane bonds), and rubber resins (resins having a rubber structure). (Adhesive), silicone resin (adhesive made of resin having siloxane bond), epoxy resin (adhesive made of resin having epoxy group), polyvinyl ether, adhesive resin such as polycarbonate and the like. Among these, an acrylic resin is preferable.
 なお、本発明において、「粘着性樹脂」とは、粘着性を有する樹脂と、接着性を有する樹脂と、の両方を含む概念であり、例えば、樹脂自体が粘着性を有するものだけでなく、添加剤等の他の成分との併用によって粘着性を示す樹脂や、熱又は水等のトリガーの存在によって接着性を示す樹脂等も含む。 In the present invention, the "adhesive resin" is a concept including both a resin having adhesiveness and a resin having adhesiveness. For example, not only the resin itself has adhesiveness but also the resin itself has adhesiveness. It also includes a resin that exhibits adhesiveness when used in combination with other components such as additives, and a resin that exhibits adhesiveness due to the presence of a trigger such as heat or water.
 粘着剤層は1層(単層)のみでもよいし、2層以上の複数層でもよい。粘着剤層が複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The adhesive layer may be only one layer (single layer), or may be two or more layers. When the pressure-sensitive adhesive layer is a plurality of layers, the plurality of layers may be the same as or different from each other, and the combination of the plurality of layers is not particularly limited.
 粘着剤層の厚さは1μm~1000μmであることが好ましく、5μm~500μmであることがより好ましく、10μm~100μmであることが更に好ましい。ここで、「粘着剤層の厚さ」とは、粘着剤層全体の厚さを意味し、例えば、複数層からなる粘着剤層の厚さとは、粘着剤層を構成するすべての層の合計の厚さを意味する。 The thickness of the pressure-sensitive adhesive layer is preferably 1 μm to 1000 μm, more preferably 5 μm to 500 μm, and even more preferably 10 μm to 100 μm. Here, the "thickness of the pressure-sensitive adhesive layer" means the thickness of the entire pressure-sensitive adhesive layer, and for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the sum of all the layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
 粘着剤層は、エネルギー線硬化性粘着剤を用いて形成されたものでもよいし、非エネルギー線硬化性粘着剤を用いて形成されたものでもよい。エネルギー線硬化性の粘着剤を用いて形成された粘着剤層は、硬化前及び硬化後での物性を容易に調節できる。 The pressure-sensitive adhesive layer may be formed by using an energy ray-curable pressure-sensitive adhesive or may be formed by using a non-energy ray-curable pressure-sensitive adhesive. The pressure-sensitive adhesive layer formed by using the energy ray-curable pressure-sensitive adhesive can easily adjust the physical properties before and after curing.
(中間層)
 中間層は、シート状又はフィルム状であり、その構成材料は目的に応じて適宜選択すればよく、特に限定されない。例えば、半導体表面を覆う保護膜に、半導体表面に存在するバンプの形状が反映されることによって、第一硬化樹脂膜(r1)が変形してしまうのを抑制することを目的とする場合、中間層の好ましい構成材料としては、凹凸追従性が高く、中間層の貼付性がより向上する点から、ウレタン(メタ)アクリレート等が挙げられる。
(Middle layer)
The intermediate layer is in the form of a sheet or a film, and the constituent material thereof may be appropriately selected depending on the intended purpose and is not particularly limited. For example, when the purpose is to prevent the first cured resin film (r1) from being deformed by reflecting the shape of the bumps existing on the semiconductor surface on the protective film covering the semiconductor surface, it is intermediate. Preferred constituent materials of the layer include urethane (meth) acrylate and the like because they have high unevenness-following property and the adhesiveness of the intermediate layer is further improved.
 中間層は1層(単層)のみでもよいし、2層以上の複数層でもよい。中間層が複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The intermediate layer may be only one layer (single layer), or may be two or more layers. When the intermediate layer is a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
 中間層の厚さは、保護対象となる半導体表面のバンプの高さに応じて適宜調節できるが、比較的高さが高いバンプの影響も容易に吸収できる点から、50μm~600μmであることが好ましく、70μm~500μmであることがより好ましく、80μm~400μmであることが更に好ましい。ここで、「中間層の厚さ」とは、中間層全体の厚さを意味し、例えば、複数層からなる中間層の厚さとは、中間層を構成するすべての層の合計の厚さを意味する。 The thickness of the intermediate layer can be appropriately adjusted according to the height of the bumps on the surface of the semiconductor to be protected, but it may be 50 μm to 600 μm because the influence of the bumps having a relatively high height can be easily absorbed. It is preferably 70 μm to 500 μm, more preferably 80 μm to 400 μm. Here, the "thickness of the intermediate layer" means the thickness of the entire intermediate layer, and for example, the thickness of the intermediate layer composed of a plurality of layers is the total thickness of all the layers constituting the intermediate layer. means.
 次に、第一複合シート(α1)の製造方法について説明する。 Next, the manufacturing method of the first composite sheet (α1) will be described.
[第一複合シート(α1)の製造方法]
 第一複合シート(α1)は、上記の各層を対応する位置関係となるように順次積層することで製造することができる。
 例えば、第一支持シート(Y1)を製造する際に、基材上に粘着剤層又は中間層を積層する場合には、基材上に粘着剤組成物又は中間層形成用組成物を塗工し、必要に応じて乾燥させるか、又はエネルギー線を照射することで、粘着剤層又は中間層を積層できる。
 塗工方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ロールナイフコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
[Manufacturing method of first composite sheet (α1)]
The first composite sheet (α1) can be manufactured by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship.
For example, when the pressure-sensitive adhesive layer or the intermediate layer is laminated on the base material when the first support sheet (Y1) is manufactured, the pressure-sensitive adhesive composition or the composition for forming the intermediate layer is coated on the base material. Then, if necessary, the pressure-sensitive adhesive layer or the intermediate layer can be laminated by drying or irradiating with energy rays.
Examples of the coating method include a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a roll knife coating method, a blade coating method, a die coating method, and a gravure coating method.
 一方、例えば、基材上に積層済みの粘着剤層の上に、さらに第一硬化性樹脂(x1)を積層する場合には、粘着剤層上に熱硬化性樹脂組成物(x1-1-1)又はエネルギー線硬化性樹脂組成物(x1-2-1)を塗工して、第一硬化性樹脂(x1)の層(X1)を直接形成することが可能である。
 同様に、基材上に積層済みの中間層の上に、さらに粘着剤層を積層する場合には、中間層上に粘着剤組成物を塗工して、粘着剤層を直接形成することが可能である。
On the other hand, for example, when the first curable resin (x1) is further laminated on the pressure-sensitive adhesive layer already laminated on the base material, the thermosetting resin composition (x1-1-1) is further laminated on the pressure-sensitive adhesive layer. It is possible to directly form the layer (X1) of the first curable resin (x1) by applying 1) or the energy ray-curable resin composition (x1-2-1).
Similarly, when the pressure-sensitive adhesive layer is further laminated on the intermediate layer already laminated on the base material, the pressure-sensitive adhesive composition may be applied on the intermediate layer to directly form the pressure-sensitive adhesive layer. It is possible.
 このように、いずれかの組成物を用いて、連続する2層の積層構造を形成する場合には、前記組成物から形成された層の上に、さらに組成物を塗工して新たに層を形成することが可能である。ただし、これら2層のうちの後から積層する層は、別の剥離フィルム上に前記組成物を用いてあらかじめ形成しておき、この形成済みの層の前記剥離フィルムと接触している側とは反対側の露出面を、既に形成済みの残りの層の露出面と貼り合わせることで、連続する2層の積層構造を形成することが好ましい。このとき、前記組成物は、剥離フィルムの剥離処理面に塗工することが好ましい。剥離フィルムは、積層構造の形成後、必要に応じて取り除けばよい。 As described above, when a continuous two-layer laminated structure is formed by using any of the compositions, the composition is further applied on the layer formed from the composition to form a new layer. Is possible to form. However, of these two layers, the layer to be laminated afterwards is formed in advance on another release film using the composition, and the side of the formed layer that is in contact with the release film is different from the side. It is preferable to form a laminated structure of two continuous layers by laminating the exposed surface on the opposite side with the exposed surface of the remaining layers that have already been formed. At this time, it is preferable that the composition is applied to the peeled surface of the peeling film. The release film may be removed if necessary after the laminated structure is formed.
[第二複合シート(α2)]
 第二複合シート(α2)は、半導体ウエハの裏面に保護膜を形成することが可能な構成であれば特に限定されず、例えば、第一複合シート(α1)と同様の構成を採用することができる。
 したがって、第二複合シート(α2)が有する第二硬化性樹脂フィルム(x2)は、上記の第一硬化性樹脂フィルム(x1)と同様の材質及び構成であってもよい。
 但し、一般に半導体ウエハの裏面にはバンプや溝部は存在せず平滑であるため、第一硬化性樹脂フィルム(x1)における要件(I)を満たすことは、第二硬化性樹脂フィルム(x2)に対しては求められない。したがって、第二硬化性樹脂フィルム(x2)において、X値は、18以下であってもよく、また、10,000以上であってもよい。
[Second composite sheet (α2)]
The second composite sheet (α2) is not particularly limited as long as it has a structure capable of forming a protective film on the back surface of the semiconductor wafer, and for example, the same structure as the first composite sheet (α1) may be adopted. it can.
Therefore, the second curable resin film (x2) contained in the second composite sheet (α2) may have the same material and composition as the first curable resin film (x1) described above.
However, since there are generally no bumps or grooves on the back surface of the semiconductor wafer and the semiconductor wafer is smooth, satisfying the requirement (I) in the first curable resin film (x1) requires the second curable resin film (x2). It is not required for it. Therefore, in the second curable resin film (x2), the X value may be 18 or less, or 10,000 or more.
(着色剤(J))
 ここで、レーザーマーキングにより形成される印字の視認性の向上の観点、半導体チップ裏面の研削痕を見えにくくして半導体チップの意匠性を向上させる観点等から、第二硬化性樹脂フィルム(x2)及び第二硬化性樹脂フィルム(x2)を形成するための第二硬化性樹脂フィルム形成用組成物は、着色剤(J)を含有することが好ましい。
 着色剤(J)としては、例えば、無機系顔料、有機系顔料、有機系染料等、公知のものが挙げられる。
 前記有機系顔料及び有機系染料としては、例えば、アミニウム系色素、シアニン系色素、メロシアニン系色素、クロコニウム系色素、スクアリウム系色素、アズレニウム系色素、ポリメチン系色素、ナフトキノン系色素、ピリリウム系色素、フタロシアニン系色素、ナフタロシアニン系色素、ナフトラクタム系色素、アゾ系色素、縮合アゾ系色素、インジゴ系色素、ペリノン系色素、ペリレン系色素、ジオキサジン系色素、キナクリドン系色素、イソインドリノン系色素、キノフタロン系色素、ピロール系色素、チオインジゴ系色素、金属錯体系色素(金属錯塩染料)、ジチオール金属錯体系色素、インドールフェノール系色素、トリアリルメタン系色素、アントラキノン系色素、ナフトール系色素、アゾメチン系色素、ベンズイミダゾロン系色素、ピランスロン系色素及びスレン系色等が挙げられる。
 前記無機系顔料としては、例えば、カーボンブラック、コバルト系色素、鉄系色素、クロム系色素、チタン系色素、バナジウム系色素、ジルコニウム系色素、モリブデン系色素、ルテニウム系色素、白金系色素、ITO(インジウムスズオキサイド)系色素、ATO(アンチモンスズオキサイド)系色素等が挙げられる。
(Colorant (J))
Here, the second curable resin film (x2) is used from the viewpoint of improving the visibility of the print formed by the laser marking, making the grinding marks on the back surface of the semiconductor chip less visible, and improving the design of the semiconductor chip. The composition for forming the second curable resin film (x2) for forming the second curable resin film (x2) preferably contains a colorant (J).
Examples of the colorant (J) include known ones such as inorganic pigments, organic pigments, and organic dyes.
Examples of the organic pigments and organic dyes include aminium pigments, cyanine pigments, merocyanine pigments, croconium pigments, squalium pigments, azulenium pigments, polymethine pigments, naphthoquinone pigments, pyrylium pigments, and phthalocyanines. Colors, naphthalocyanine pigments, naphtholactam pigments, azo pigments, condensed azo pigments, indigo pigments, perinone pigments, perylene pigments, dioxazine pigments, quinacridone pigments, isoindolinone pigments, quinophthalone pigments , Pyrrole pigments, thioindigo pigments, metal complex pigments (metal complex salt dyes), dithiol metal complex pigments, indolphenol pigments, triallylmethane pigments, anthraquinone pigments, naphthol pigments, azomethine pigments, benzimidezo Examples thereof include Ron-based pigments, Pyranthron-based pigments and Slen-based colors.
Examples of the inorganic pigments include carbon black, cobalt pigments, iron pigments, chromium pigments, titanium pigments, vanadium pigments, zirconium pigments, molybdenum pigments, ruthenium pigments, platinum pigments, and ITO ( Examples thereof include indium tin oxide) dyes and ATO (antimons tin oxide) dyes.
 第二硬化性樹脂フィルム(x2)及び第二硬化性樹脂フィルム形成用組成物が含有する着色剤(J)は、1種のみでもよいし、2種以上でもよい。着色剤(J)が、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 着色剤(J)を用いる場合、第二硬化性樹脂フィルム(x2)の着色剤(J)の含有量は、目的に応じて適宜調節すればよい。例えば、既述のように、第二硬化性樹脂フィルム(x2)を硬化することで形成される硬化物である第二硬化樹脂膜(r2)はレーザー照射により印字が施される場合があり、第二硬化性樹脂(x2)の着色剤(J)の含有量を調節し、保護膜の光透過性を調節することにより、印字視認性を調節できる。また、着色剤(J)の含有量を調節することで、保護膜の意匠性を向上させ、半導体ウエハの裏面の研削痕を見えにくくすることもできる。これらの点を考慮すると、第二硬化性樹脂フィルム(x2)を形成するための第二硬化性樹脂フィルム形成用組成物において、溶媒以外の全ての成分の総含有量(第二硬化性樹脂フィルム形成用組成物の固形分の総質量ともいう)に対する着色剤(J)の含有量の割合(すなわち、第二硬化性樹脂フィルム(x2)の着色剤(J)の含有量)は、0.1~10質量%であることが好ましく、0.1~7.5質量%であることがより好ましく、0.1~5質量%であることが特に好ましい。着色剤(J)の前記含有量が前記下限値以上であることで、着色剤(J)を用いたことによる効果がより顕著に得られる。また、着色剤(J)の前記含有量が前記上限値以下であることで、第二硬化性樹脂フィルム(x2)の光透過性の過度な低下が抑制される。
The colorant (J) contained in the second curable resin film (x2) and the composition for forming the second curable resin film may be only one kind or two or more kinds. When there are two or more colorants (J), their combinations and ratios can be arbitrarily selected.
When the colorant (J) is used, the content of the colorant (J) in the second curable resin film (x2) may be appropriately adjusted according to the intended purpose. For example, as described above, the second curable resin film (r2), which is a cured product formed by curing the second curable resin film (x2), may be printed by laser irradiation. The print visibility can be adjusted by adjusting the content of the colorant (J) of the second curable resin (x2) and adjusting the light transmission of the protective film. Further, by adjusting the content of the colorant (J), the design of the protective film can be improved and the grinding marks on the back surface of the semiconductor wafer can be made difficult to see. Considering these points, in the composition for forming the second curable resin film for forming the second curable resin film (x2), the total content of all the components other than the solvent (second curable resin film). The ratio of the content of the colorant (J) to the total mass of the solid content of the forming composition (that is, the content of the colorant (J) of the second curable resin film (x2)) is 0. It is preferably 1 to 10% by mass, more preferably 0.1 to 7.5% by mass, and particularly preferably 0.1 to 5% by mass. When the content of the colorant (J) is at least the lower limit value, the effect of using the colorant (J) can be obtained more remarkably. Further, when the content of the colorant (J) is not more than the upper limit value, an excessive decrease in the light transmittance of the second curable resin film (x2) is suppressed.
 なお、上述した第一硬化性樹脂フィルム(x1)及び第一硬化性樹脂フィルム形成用組成物中においても、着色剤(J)を含有していてもよい。但し、半導体チップ作製用ウエハの分割予定ラインの視認性を確保する観点から、着色剤(J)の含有量は、当該分割予定ラインの視認性を確保し得るレベルの透明性が確保される範囲内の量であることが好ましい。 The colorant (J) may also be contained in the above-mentioned first curable resin film (x1) and the composition for forming the first curable resin film. However, from the viewpoint of ensuring the visibility of the planned division line of the wafer for manufacturing semiconductor chips, the content of the colorant (J) is within the range in which the level of transparency that can ensure the visibility of the planned division line is ensured. The amount is preferably within.
 また、第二複合シート(α2)が有する第二支持シート(Y2)は、上記の第一支持シート(Y1)と同様の構成であってもよい。具体的には、第二支持シート(Y2)は、第一支持シート(Y1)と同様、図4に示すような基材51のみからなるものであってもよく、図5に示すような基材51と粘着剤層61とが積層された粘着シートであってもよく、図6に示すような基材51と中間層71と粘着剤層61とが積層された粘着シートであってもよい。
 第二支持シート(Y2)が有する基材、中間層、及び粘着剤層は、第一支持シート(Y1)が有する基材、中間層、及び粘着剤層と同様の構成及び材質であってもよい。
Further, the second support sheet (Y2) included in the second composite sheet (α2) may have the same configuration as the first support sheet (Y1) described above. Specifically, the second support sheet (Y2) may be composed of only the base material 51 as shown in FIG. 4, like the first support sheet (Y1), and is a group as shown in FIG. It may be a pressure-sensitive adhesive sheet in which the material 51 and the pressure-sensitive adhesive layer 61 are laminated, or may be a pressure-sensitive adhesive sheet in which the base material 51, the intermediate layer 71, and the pressure-sensitive adhesive layer 61 are laminated as shown in FIG. ..
The base material, the intermediate layer, and the pressure-sensitive adhesive layer of the second support sheet (Y2) may have the same structure and material as the base material, the intermediate layer, and the pressure-sensitive adhesive layer of the first support sheet (Y1). Good.
[第一硬化性樹脂フィルム(x1)の使用方法]
 第一硬化性樹脂フィルム(x1)は、バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜(第一硬化樹脂膜(r1))を形成するために使用される。
 より詳細には、第一硬化性樹脂フィルム(x1)は、バンプを備えるバンプ形成面及び分割予定ラインとしての溝部を有する半導体チップ作製用ウエハを用いた、後述する半導体チップの製造方法により、バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜(第一硬化樹脂膜(r1))を形成するために使用される。
[How to use the first curable resin film (x1)]
The first curable resin film (x1) forms a cured resin film (first cured resin film (r1)) as a protective film on both the bump forming surface and the side surface of the semiconductor chip having a bump forming surface having bumps. Used to do.
More specifically, the first curable resin film (x1) is bumped by a method for manufacturing a semiconductor chip, which will be described later, using a wafer for manufacturing a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line. It is used to form a cured resin film (first cured resin film (r1)) as a protective film on both the bump forming surface and the side surface of the semiconductor chip having the bump forming surface.
[第二硬化性樹脂フィルム(x2)の使用方法]
 第二硬化性樹脂フィルム(x2)は、バンプを備えるバンプ形成面を有する半導体チップの裏面に保護膜としての硬化樹脂膜(第二硬化樹脂膜(r2))を形成するために使用される。
 より詳細には、第一硬化性樹脂フィルム(x1)は、バンプを備えるバンプ形成面及び分割予定ラインとしての溝部を有する半導体チップ作製用ウエハを用いた、後述する半導体チップの製造方法の工程(T)において、バンプを備えるバンプ形成面を有する半導体チップの裏面に保護膜としての硬化樹脂膜(第二硬化樹脂膜(r2))を形成するために使用される。
[How to use the second curable resin film (x2)]
The second curable resin film (x2) is used to form a cured resin film (second cured resin film (r2)) as a protective film on the back surface of a semiconductor chip having a bump forming surface having bumps.
More specifically, the first curable resin film (x1) is a step of a method for manufacturing a semiconductor chip, which will be described later, using a wafer for manufacturing a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line. In T), it is used to form a cured resin film (second cured resin film (r2)) as a protective film on the back surface of a semiconductor chip having a bump forming surface having bumps.
[第一複合シート(α1)の使用方法]
 第一複合シート(α1)は、バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜(第一硬化樹脂膜(r1))を形成するために使用される。
 より詳細には、第一複合シート(α1)は、バンプを備えるバンプ形成面及び分割予定ラインとしての溝部を有する半導体チップ作製用ウエハを用いた、後述する半導体チップの製造方法により、バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜(第一硬化樹脂膜(r1))を形成するために使用される。
[How to use the first composite sheet (α1)]
The first composite sheet (α1) is for forming a cured resin film (first cured resin film (r1)) as a protective film on both the bump forming surface and the side surface of the semiconductor chip having a bump forming surface having bumps. Used for.
More specifically, the first composite sheet (α1) is provided with bumps by a method for manufacturing a semiconductor chip, which will be described later, using a wafer for manufacturing a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line. It is used to form a cured resin film (first cured resin film (r1)) as a protective film on both the bump forming surface and the side surface of the semiconductor chip having the bump forming surface.
[第二複合シート(α2)の使用方法]
 第二複合シート(α2)は、バンプを備えるバンプ形成面を有する半導体チップの裏面に保護膜としての硬化樹脂膜(第二硬化樹脂膜(r2))を形成するために使用される。
 より詳細には、第二複合シート(α2)は、バンプを備えるバンプ形成面及び分割予定ラインとしての溝部を有する半導体チップ作製用ウエハを用いた、後述する半導体チップの製造方法の工程(T)において、バンプを備えるバンプ形成面を有する半導体チップの裏面に保護膜としての硬化樹脂膜(第二硬化樹脂膜(r2))を形成するために使用される。
[How to use the second composite sheet (α2)]
The second composite sheet (α2) is used to form a cured resin film (second cured resin film (r2)) as a protective film on the back surface of a semiconductor chip having a bump forming surface having bumps.
More specifically, the second composite sheet (α2) is a step (T) of a method for manufacturing a semiconductor chip, which will be described later, using a wafer for manufacturing a semiconductor chip having a bump forming surface having bumps and a groove as a planned division line. In, it is used to form a cured resin film (second cured resin film (r2)) as a protective film on the back surface of a semiconductor chip having a bump forming surface having bumps.
[本発明の半導体チップの製造方法]
 本発明の半導体チップの製造方法の工程概略図を図7に示す。
 本発明の半導体チップの製造方法は、大まかには、半導体チップ作製用ウエハを準備する工程(S1)、第一複合シート(α1)を貼付する工程(S2)、第一硬化性樹脂(x1)を硬化する工程(S3)、及び個片化する工程(S4)を含み、さらに半導体チップ作製用ウエハの裏面を研削する工程(S-BG)を含む。
 本発明の一態様の半導体チップの製造方法においては、上記第一硬化性樹脂フィルム(x1)を用いてもよいが、取り扱い性の向上等の観点からは、上記第一複合シート(α1)を用いることが好ましい。
[Method for manufacturing semiconductor chip of the present invention]
FIG. 7 shows a schematic process diagram of the method for manufacturing a semiconductor chip of the present invention.
The method for manufacturing a semiconductor chip of the present invention is roughly a step of preparing a wafer for manufacturing a semiconductor chip (S1), a step of attaching a first composite sheet (α1) (S2), and a first curable resin (x1). Including a step of curing (S3) and a step of individualizing (S4), and further including a step of grinding the back surface of the wafer for manufacturing a semiconductor chip (S-BG).
In the method for producing a semiconductor chip according to one aspect of the present invention, the first curable resin film (x1) may be used, but from the viewpoint of improving handleability, the first composite sheet (α1) may be used. It is preferable to use it.
 詳細には、本発明の一態様の半導体チップの製造方法は、上記第一複合シート(α1)を用い、下記工程(S1)~(S4)をこの順で含む。
・工程(S1):バンプを備えるバンプ形成面を有する半導体ウエハの前記バンプ形成面に、分割予定ラインとしての溝部が裏面に到達することなく形成されている半導体チップ作製用ウエハを準備する工程
・工程(S2):前記半導体チップ作製用ウエハの前記バンプ形成面に、第一硬化性樹脂(x1)を押圧して貼付し、前記半導体チップ作製用ウエハの前記バンプ形成面を第一硬化性樹脂(x1)で被覆すると共に、前記半導体チップ作製用ウエハに形成されている前記溝部に前記第一硬化性樹脂(x1)を埋め込む工程
・工程(S3):前記第一硬化性樹脂(x1)を硬化させて、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハを得る工程
・工程(S4):前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハを前記分割予定ラインに沿って個片化し、少なくとも前記バンプ形成面及び側面が前記第一硬化樹脂膜(r1)で被覆されている半導体チップを得る工程
 さらに、前記工程(S2)の後で且つ前記工程(S3)の前、前記工程(S3)の後で且つ前記工程(S4)の前、又は前記工程(S4)において、下記工程(S-BG)を含む。
・工程(S-BG):前記半導体チップ作製用ウエハの前記裏面を研削する工程
Specifically, the method for manufacturing a semiconductor chip according to one aspect of the present invention uses the first composite sheet (α1) and includes the following steps (S1) to (S4) in this order.
Step (S1): A step of preparing a wafer for manufacturing a semiconductor chip, in which a groove portion as a planned division line is formed on the bump forming surface of a semiconductor wafer having a bump forming surface having bumps without reaching the back surface. Step (S2): The first curable resin (x1) is pressed and attached to the bump forming surface of the semiconductor chip manufacturing wafer, and the bump forming surface of the semiconductor chip manufacturing wafer is pressed and attached to the bump forming surface of the semiconductor chip manufacturing wafer. Step / Step (S3) of embedding the first curable resin (x1) in the groove formed in the wafer for manufacturing the semiconductor chip while coating with (x1): The first curable resin (x1). Step / Step (S4): Obtaining a Wafer for Making a Semiconductor Chip with a First Curing Resin Film (r1) by Curing: A Wafer for Making a Semiconductor Chip with a First Curing Resin Film (r1) Along the Scheduled Division Line Step of individualizing to obtain a semiconductor chip in which at least the bump forming surface and the side surface are coated with the first cured resin film (r1) Further, after the step (S2) and before the step (S3), After the step (S3) and before the step (S4), or in the step (S4), the following step (S-BG) is included.
-Step (S-BG): A step of grinding the back surface of the wafer for manufacturing a semiconductor chip.
 上記工程を含む製造方法により、バンプ形成面だけでなく、側面も第一硬化樹脂膜(r1)で被覆された、強度に優れると共に、保護膜としての第一硬化樹脂膜(r1)の剥がれも起こりにくい半導体チップが得られる。
 なお、ここでいう「被覆された」とは、1つの半導体チップの少なくともバンプ形成面と側面とに、半導体チップの形状に沿って第一硬化樹脂膜(r1)を形成したことを意味する。すなわち、本発明は、複数の半導体チップを樹脂中の閉じ込める封止技術とは明確に相違する。
By the manufacturing method including the above steps, not only the bump forming surface but also the side surface is covered with the first cured resin film (r1), which is excellent in strength and also prevents the first cured resin film (r1) as a protective film from peeling off. A semiconductor chip that is unlikely to occur can be obtained.
The term "coated" as used herein means that a first cured resin film (r1) is formed along the shape of the semiconductor chip on at least the bump forming surface and the side surface of one semiconductor chip. That is, the present invention is clearly different from the sealing technique of confining a plurality of semiconductor chips in a resin.
 以下、本発明の半導体チップの製造方法について、工程毎に詳述する。
 なお、以降の説明では、「半導体チップ」を単に「チップ」ともいい、「半導体ウエハ」を単に「ウエハ」ともいう。
Hereinafter, the method for manufacturing the semiconductor chip of the present invention will be described in detail for each step.
In the following description, the "semiconductor chip" is also simply referred to as a "chip", and the "semiconductor wafer" is also simply referred to as a "wafer".
[工程(S1)]
 工程(S1)で準備する半導体ウエハの一例について、上面図を図8に示し、概略断面図を図9に示す。
 工程(S1)では、バンプ12を備えるバンプ形成面11aを有する半導体ウエハ11のバンプ形成面11aに、分割予定ラインとしての溝部13が裏面11bに到達することなく形成されている、半導体チップ作製用ウエハ10を準備する。
 なお、図8中、バンプは図示省略している。
[Step (S1)]
A top view of an example of the semiconductor wafer prepared in the step (S1) is shown in FIG. 8, and a schematic cross-sectional view is shown in FIG.
In the step (S1), a groove portion 13 as a planned division line is formed on the bump forming surface 11a of the semiconductor wafer 11 having the bump forming surface 11a including the bump 12 without reaching the back surface 11b, for manufacturing a semiconductor chip. Wafer 10 is prepared.
In FIG. 8, bumps are not shown.
 バンプ12の形状は、特に限定されず、チップ搭載用の基板上の電極等に接触させて固定させることが可能であれば、いかなる形状であってもよい。
 例えば、図9では、バンプ12を球状としているが、バンプ12は回転楕円体であってもよい。当該回転楕円体は、例えば、ウエハ11のバンプ形成面11aに対して垂直方向に引き延ばされた回転楕円体であってもよいし、ウエハ11のバンプ形成面11aに対して水平方向に引き延ばされた回転楕円体であってもよい。また、バンプ12はピラー(柱)形状であってもよい。
The shape of the bump 12 is not particularly limited, and may be any shape as long as it can be brought into contact with and fixed to an electrode or the like on a substrate for mounting the chip.
For example, in FIG. 9, the bump 12 is spherical, but the bump 12 may be a spheroid. The spheroid may be, for example, a spheroid stretched in the direction perpendicular to the bump forming surface 11a of the wafer 11, or may be pulled horizontally to the bump forming surface 11a of the wafer 11. It may be a stretched spheroid. Further, the bump 12 may have a pillar shape.
 バンプ12の高さは、特に限定されず、設計上の要求に応じて適宜変更される。
 例示すると、30μm~300μmであり、好ましくは60μm~250μm、より好ましくは80μm~200μmである。
 なお、「バンプ12の高さ」とは、1つのバンプに着目したときに、バンプ形成面11aから最も高い位置に存在する部位での高さを意味する。
The height of the bump 12 is not particularly limited and may be appropriately changed according to design requirements.
For example, it is 30 μm to 300 μm, preferably 60 μm to 250 μm, and more preferably 80 μm to 200 μm.
The "height of the bump 12" means the height at the portion existing at the highest position from the bump forming surface 11a when focusing on one bump.
 バンプ12の個数についても、特に限定されず、設計上の要求に応じて適宜変更される。 The number of bumps 12 is also not particularly limited, and may be appropriately changed according to design requirements.
 ウエハ11は、例えば、配線、キャパシタ、ダイオード、及びトランジスタ等の回路が表面に形成された半導体ウエハである。当該ウエハの材質は特に限定されず、例えば、シリコンウエハ、シリコンカーバイドウエハ、化合物半導体ウエハ、ガラスウエハ、及びサファイアウエハ等が挙げられる。 The wafer 11 is, for example, a semiconductor wafer in which circuits such as wirings, capacitors, diodes, and transistors are formed on the surface. The material of the wafer is not particularly limited, and examples thereof include silicon wafers, silicon carbide wafers, compound semiconductor wafers, glass wafers, and sapphire wafers.
 ウエハ11のサイズは、特に限定されないが、バッチ処理効率を高める観点から、通常8インチ(直径200mm)以上であり、好ましくは12インチ(直径300mm)以上である。なお、ウエハの形状は、円形には限定されず、例えば正方形や長方形等の角型であってもよい。角型のウエハの場合、ウエハ11のサイズは、バッチ処理効率を高める観点から、最も長い辺の長さが、上記サイズ(直径)以上であることが好ましい。 The size of the wafer 11 is not particularly limited, but is usually 8 inches (diameter 200 mm) or more, preferably 12 inches (diameter 300 mm) or more from the viewpoint of improving batch processing efficiency. The shape of the wafer is not limited to a circle, and may be a square shape such as a square or a rectangle. In the case of a square wafer, the size of the wafer 11 is preferably such that the length of the longest side is equal to or larger than the above size (diameter) from the viewpoint of increasing batch processing efficiency.
 ウエハ11の厚みは、特に限定されないが、第一硬化性樹脂(x1)を硬化する際の収縮に伴う反りを抑制しやすくする観点、後の工程においてウエハ11の裏面11bの研削量を抑えて裏面研削に要する時間を短くする観点から、好ましくは100μm~1,000μm、より好ましくは200μm~900μm、更に好ましくは300μm~800μmである。 The thickness of the wafer 11 is not particularly limited, but from the viewpoint of facilitating the suppression of warpage due to shrinkage when the first curable resin (x1) is cured, the amount of grinding of the back surface 11b of the wafer 11 is suppressed in a later step. From the viewpoint of shortening the time required for backside grinding, it is preferably 100 μm to 1,000 μm, more preferably 200 μm to 900 μm, and further preferably 300 μm to 800 μm.
 工程(S1)で準備する半導体チップ作製用ウエハ10のバンプ形成面11aには、半導体チップ作製用ウエハ10を個片化する際の分割予定ラインとして、複数の溝部13が格子状に形成されている。複数の溝部13は、ブレード先ダイシング法(Dicing Before Grinding)を適用する際に形成される切り込み溝であり、ウエハ11の厚さよりも浅い深さで形成され、溝部13の最深部がウエハ11の裏面11bに到達しないようにしている。複数の溝部13は、従来公知の、ダイシングブレードを備えるウエハダイシング装置等を用いたダイシングによって形成することができる。なお、複数の溝部13は、ブレードではなく、レーザー等を用いたダイシングによって形成することもできる。
 なお、複数の溝部13は、製造する半導体チップが所望のサイズ及び形状になるように形成すればよく、必ずしも図8に示すような格子状に溝部13を形成せずともよい。また、半導体チップのサイズは、通常、0.5mm×0.5mm~1.0mm×1.0mm程度であるが、このサイズには限定されない。
On the bump forming surface 11a of the semiconductor chip manufacturing wafer 10 prepared in the step (S1), a plurality of groove portions 13 are formed in a grid pattern as a planned division line when the semiconductor chip manufacturing wafer 10 is fragmented. There is. The plurality of groove portions 13 are notch grooves formed when the blade tip dicing method (Dicing Before Grinding) is applied, and are formed at a depth shallower than the thickness of the wafer 11, and the deepest portion of the groove portions 13 is the wafer 11. It is prevented from reaching the back surface 11b. The plurality of groove portions 13 can be formed by dicing using a conventionally known wafer dicing device including a dicing blade or the like. The plurality of groove portions 13 can also be formed by dicing using a laser or the like instead of a blade.
The plurality of groove portions 13 may be formed so that the semiconductor chip to be manufactured has a desired size and shape, and the groove portions 13 do not necessarily have to be formed in a grid pattern as shown in FIG. The size of the semiconductor chip is usually about 0.5 mm × 0.5 mm to 1.0 mm × 1.0 mm, but is not limited to this size.
 溝部13の幅は、第一硬化性樹脂(x1)の埋め込み性を良好にする観点から、好ましくは10μm~2,000μmであり、より好ましくは30μm~1,000μm、更に好ましくは40μm~500μm、より更に好ましくは50μm~300μmである。 The width of the groove portion 13 is preferably 10 μm to 2,000 μm, more preferably 30 μm to 1,000 μm, still more preferably 40 μm to 500 μm, from the viewpoint of improving the embedding property of the first curable resin (x1). Even more preferably, it is 50 μm to 300 μm.
 溝部13の深さは、使用するウエハの厚さと要求されるチップ厚さとに応じて調整され、好ましくは30μm~700μm、より好ましくは60μm~600μm、更に好ましくは100μm~500μmである。 The depth of the groove portion 13 is adjusted according to the thickness of the wafer to be used and the required chip thickness, and is preferably 30 μm to 700 μm, more preferably 60 μm to 600 μm, and further preferably 100 μm to 500 μm.
 溝13のアスペクト比は、2~6であってもよく、2.5~5であってもよく、3~5であってもよい。 The aspect ratio of the groove 13 may be 2 to 6, 2.5 to 5, or 3 to 5.
 工程(S1)で準備した半導体チップ作製用ウエハ10は、工程(S2)に供される。 The semiconductor chip manufacturing wafer 10 prepared in the process (S1) is used in the process (S2).
[工程(S2)]
 工程(S2)の概略を図10に示す。
 工程(S2)では、半導体チップ作製用ウエハ10のバンプ形成面11aに、第一硬化性樹脂(x1)を押圧して貼付する。
 ここで、第一硬化性樹脂(x1)の取扱性の観点から、第一硬化性樹脂(x1)は、支持シートに積層されて用いられることが好ましい。
 したがって、工程(S2)では、半導体チップ作製用ウエハ10のバンプ形成面11aに、第一支持シート(Y1)と第一硬化性樹脂(x1)の層(X1)とが積層された積層構造を有する第一複合シート(α1)を、前記層(X1)を貼付面として押圧して貼付することが好ましい。
 工程(S2)により、図4に示すように、半導体チップ作製用ウエハ10のバンプ形成面11aを第一硬化性樹脂(x1)で被覆すると共に、半導体チップ作製用ウエハ10に形成されている溝部13に第一硬化性樹脂(x1)が埋め込まれる。
[Step (S2)]
The outline of the step (S2) is shown in FIG.
In the step (S2), the first curable resin (x1) is pressed and attached to the bump forming surface 11a of the semiconductor chip manufacturing wafer 10.
Here, from the viewpoint of handleability of the first curable resin (x1), it is preferable that the first curable resin (x1) is used by being laminated on a support sheet.
Therefore, in the step (S2), a laminated structure in which the first support sheet (Y1) and the layer (X1) of the first curable resin (x1) are laminated on the bump forming surface 11a of the semiconductor chip manufacturing wafer 10 is formed. It is preferable that the first composite sheet (α1) to be attached is attached by pressing the layer (X1) as a attachment surface.
In the step (S2), as shown in FIG. 4, the bump forming surface 11a of the semiconductor chip manufacturing wafer 10 is covered with the first curable resin (x1), and the groove portion formed in the semiconductor chip manufacturing wafer 10 is formed. The first curable resin (x1) is embedded in 13.
 半導体チップ作製用ウエハ10に形成されている溝部13に第一硬化性樹脂(x1)を埋め込むことにより、工程(S4)において半導体チップ作製用ウエハ10を個片化する際に半導体チップの側面となる部分を第一硬化性樹脂(x1)で被覆することができる。つまり、半導体チップの強度を優れたものにすると共に、保護膜としての第一硬化樹脂膜(r1)の剥がれを抑制するために必要となる、半導体チップ側面を被覆する第一硬化樹脂膜(r1)の前駆体となる被覆物を、工程(S2)により形成することができる。 By embedding the first curable resin (x1) in the groove 13 formed in the semiconductor chip manufacturing wafer 10, the side surface of the semiconductor chip is formed when the semiconductor chip manufacturing wafer 10 is fragmented in the step (S4). The portion to be formed can be coated with the first curable resin (x1). That is, the first cured resin film (r1) that covers the side surface of the semiconductor chip, which is necessary for improving the strength of the semiconductor chip and suppressing the peeling of the first cured resin film (r1) as the protective film. ) Can be formed by the step (S2).
 なお、第一複合シート(α1)を半導体チップ作製用ウエハ10に貼付する際の押圧力は、第一硬化性樹脂(x1)の溝部13への埋め込み性を良好なものとする観点から、好ましくは1kPa~200kPa、より好ましくは5kPa~150kPa、更に好ましくは10kPa~100kPaである。
 なお、第一複合シート(α1)を半導体チップ作製用ウエハ10に貼付する際の押圧力は、貼付初期から終期にかけて適宜変動させてもよい。例えば、溝部13への第一硬化性樹脂(x1)の埋め込み性をより良好なものとする観点から、押圧力を、貼付初期には低くし、徐々に押圧力を高めることが好ましい。
The pressing force when the first composite sheet (α1) is attached to the wafer 10 for manufacturing a semiconductor chip is preferable from the viewpoint of improving the embedding property of the first curable resin (x1) in the groove portion 13. Is 1 kPa to 200 kPa, more preferably 5 kPa to 150 kPa, and even more preferably 10 kPa to 100 kPa.
The pressing force when the first composite sheet (α1) is attached to the semiconductor chip manufacturing wafer 10 may be appropriately changed from the initial stage to the final stage of the attachment. For example, from the viewpoint of improving the embedding property of the first curable resin (x1) in the groove portion 13, it is preferable to lower the pressing force at the initial stage of application and gradually increase the pressing force.
 また、第一複合シート(α1)を半導体チップ作製用ウエハ10に貼付する際、第一硬化性樹脂(x1)が熱硬化性樹脂である場合には、第一硬化性樹脂(x1)の溝部13への埋め込み性をより良好なものとする観点から、加熱を行うことが好ましい。第一硬化性樹脂(x1)が熱硬化性樹脂である場合、第一硬化性樹脂(x1)は、加熱することで流動性が一時的に高まり、加熱を続けることで硬化する。そこで、第一硬化性樹脂(x1)の流動性が向上する範囲内で加熱を行うことにより、第一硬化性樹脂(x1)が溝部13全体に行き渡りやすくなり、第一硬化性樹脂(x1)の溝部13への埋め込み性がより向上し得る。
 具体的な加熱温度(貼付温度)としては、好ましくは50℃~150℃、より好ましくは60℃~130℃、更に好ましくは70℃~110℃である。
 なお、第一硬化性樹脂(x1)に対して行う当該加熱処理は、第一硬化性樹脂(x1)の硬化処理には含まれない。
Further, when the first composite sheet (α1) is attached to the wafer 10 for manufacturing a semiconductor chip, if the first curable resin (x1) is a thermosetting resin, the groove portion of the first curable resin (x1) It is preferable to perform heating from the viewpoint of improving the embedding property in 13. When the first curable resin (x1) is a thermosetting resin, the fluidity of the first curable resin (x1) is temporarily increased by heating, and the first curable resin (x1) is cured by continuing heating. Therefore, by heating within the range in which the fluidity of the first curable resin (x1) is improved, the first curable resin (x1) can be easily spread over the entire groove portion 13, and the first curable resin (x1) can be easily distributed. Can be further improved in embedding property in the groove portion 13.
The specific heating temperature (pasting temperature) is preferably 50 ° C. to 150 ° C., more preferably 60 ° C. to 130 ° C., and even more preferably 70 ° C. to 110 ° C.
The heat treatment performed on the first curable resin (x1) is not included in the curing treatment of the first curable resin (x1).
 さらに、第一複合シート(α1)を半導体チップ作製用ウエハ10に貼付する際、減圧環境下で行うことが好ましい。これにより、溝部13が負圧となり、第一硬化性樹脂(x1)が溝部13全体に行き渡りやすくなる。その結果、第一硬化性樹脂(x1)の溝部13への埋め込み性がより良好なものとなる。減圧環境の具体的な圧力としては、好ましくは0.001kPa~50kPa、より好ましくは0.01kPa~5kPa、更に好ましいくは0.05kPa~1kPaである。 Further, when the first composite sheet (α1) is attached to the wafer 10 for manufacturing a semiconductor chip, it is preferable to perform it in a reduced pressure environment. As a result, the groove portion 13 becomes a negative pressure, and the first curable resin (x1) easily spreads over the entire groove portion 13. As a result, the embedding property of the first curable resin (x1) in the groove portion 13 becomes better. The specific pressure in the reduced pressure environment is preferably 0.001 kPa to 50 kPa, more preferably 0.01 kPa to 5 kPa, and even more preferably 0.05 kPa to 1 kPa.
 また、第一複合シート(α1)における第一硬化性樹脂(x1)の層(X1)の厚さは、第一硬化性樹脂(x1)の溝部13への埋め込み性を更に良好なものとする観点から、好ましくは30μm超200μm以下、より好ましくは60μm~150μm、更に好ましくは80μm~130μmである。 Further, the thickness of the layer (X1) of the first curable resin (x1) in the first composite sheet (α1) further improves the embedding property of the first curable resin (x1) in the groove portion 13. From the viewpoint, it is preferably more than 30 μm and 200 μm or less, more preferably 60 μm to 150 μm, and further preferably 80 μm to 130 μm.
 さらに、第一硬化性樹脂(x1)の層(X1)は、第一硬化性樹脂(x1)から構成されているため、上記要件(I)を満たす。したがって、X値が19以上10,000未満であるため、第一複合シート(α1)を半導体チップ作製用ウエハ10のバンプ形成面11aに貼付したときに、バンプ12上部での第一硬化性樹脂(x1)の残存を抑制する効果、第一硬化性樹脂(x1)の層(X1)のはみ出しを抑制する効果、バンプ形成面11a上での第一硬化性樹脂(x1)及びその硬化物である第一硬化樹脂膜(r1)のハジキを抑制する効果に優れ、溝部13への第一硬化性樹脂(x1)の埋め込み性も良好である。 Further, since the layer (X1) of the first curable resin (x1) is composed of the first curable resin (x1), the above requirement (I) is satisfied. Therefore, since the X value is 19 or more and less than 10,000, when the first composite sheet (α1) is attached to the bump forming surface 11a of the semiconductor chip manufacturing wafer 10, the first curable resin on the upper part of the bump 12. The effect of suppressing the residual of (x1), the effect of suppressing the protrusion of the layer (X1) of the first curable resin (x1), the first curable resin (x1) on the bump forming surface 11a and the cured product thereof. The effect of suppressing repelling of a certain first curable resin film (r1) is excellent, and the embedding property of the first curable resin (x1) in the groove 13 is also good.
 ここで、第一複合シート(α1)が有する第一支持シート(Y1)は、第一硬化性樹脂(x1)を支持すると共に、バックグラインドシートとしての機能を兼ね備えていることが好ましい。
 この場合、第一複合シート(α1)を貼付した状態で、ウエハ11の裏面11bの研削を行う際に、第一支持シート(Y1)がバックグラインドシートとしての機能し、バックグラインド工程を実施しやすいものとできる。
Here, it is preferable that the first support sheet (Y1) contained in the first composite sheet (α1) supports the first curable resin (x1) and also has a function as a back grind sheet.
In this case, when the back surface 11b of the wafer 11 is ground with the first composite sheet (α1) attached, the first support sheet (Y1) functions as a back grind sheet, and the back grind process is performed. It can be easy.
[工程(S3)、工程(S4)、及び工程(S-BG)]
 上記の工程(S2)までの工程により、半導体チップ作製用ウエハ10に第一複合シート(α1)を貼付して積層した積層体が形成される。当該積層体は、工程(S-BG)の実施のタイミングに応じて、以下に説明する第一実施形態~第四実施形態のいずれかにかかる工程に供されることが好ましい。
 以下、第一実施形態~第四実施形態について、工程(S-BG)を実施するタイミングに関する説明を交えながら、工程(S3)及び工程(S4)について説明する。
[Step (S3), Step (S4), and Step (S-BG)]
By the steps up to the above step (S2), a laminated body in which the first composite sheet (α1) is attached to the wafer 10 for manufacturing a semiconductor chip and laminated is formed. It is preferable that the laminate is subjected to the step according to any one of the first to fourth embodiments described below, depending on the timing of carrying out the step (S-BG).
Hereinafter, the steps (S3) and (S4) will be described with respect to the first to fourth embodiments, together with the explanation regarding the timing of carrying out the step (S-BG).
<第一実施形態>
 第一実施形態では、図7に示すように、工程(S2)の後で且つ工程(S3)の前に、工程(S-BG)が行われる。
 図11に、第一実施形態に関する概略図を示す。
<First Embodiment>
In the first embodiment, as shown in FIG. 7, the step (S-BG) is performed after the step (S2) and before the step (S3).
FIG. 11 shows a schematic view of the first embodiment.
(第一実施形態:工程(S-BG))
 第一実施形態では、まず、工程(S-BG)を実施する。具体的には、図11の(1-a)に示すように、第一複合シート(α1)を貼付した状態で半導体チップ作製用ウエハ10の裏面11bを研削する。図11中の「BG」は、バックグラインドを意味し、以降の図面においても同様である。次いで、図11の(1-b)に示すように、第一複合シート(α1)から第一支持シート(Y1)を剥離する。
 半導体チップ作製用ウエハ10の裏面11bを研削する際の研削量は、少なくとも半導体チップ作製用ウエハ10の溝部13の底部が露出する量であればよいが、更に研削を行って、半導体チップ作製用ウエハ10と共に、溝部13に埋め込まれた第一硬化性樹脂(x1)も研削するようにしてもよい。
 第一実施形態では、工程(S3)を実施する前に第一支持シート(Y1)を剥離するため、第一硬化性樹脂(x1)が熱硬化性樹脂であり、工程(S3)において硬化のための加熱処理が実施される場合であっても、第一支持シート(Y1)には耐熱性が要求されない。したがって、第一支持シート(Y1)の設計の自由度が向上する。
(First Embodiment: Process (S-BG))
In the first embodiment, first, the step (S-BG) is carried out. Specifically, as shown in FIG. 11 (1-a), the back surface 11b of the semiconductor chip manufacturing wafer 10 is ground with the first composite sheet (α1) attached. “BG” in FIG. 11 means back grind, and the same applies to the subsequent drawings. Next, as shown in (1-b) of FIG. 11, the first support sheet (Y1) is peeled from the first composite sheet (α1).
The amount of grinding when grinding the back surface 11b of the semiconductor chip manufacturing wafer 10 may be at least an amount that exposes the bottom of the groove 13 of the semiconductor chip manufacturing wafer 10, but further grinding is performed for semiconductor chip manufacturing. Along with the wafer 10, the first curable resin (x1) embedded in the groove 13 may be ground.
In the first embodiment, since the first support sheet (Y1) is peeled off before the step (S3) is carried out, the first curable resin (x1) is a thermosetting resin and is cured in the step (S3). The first support sheet (Y1) is not required to have heat resistance even when the heat treatment for the purpose is carried out. Therefore, the degree of freedom in designing the first support sheet (Y1) is improved.
(第一実施形態:工程(S3))
 工程(S-BG)を実施した後、工程(S3)を実施する。具体的には、図11の(1-c)に示すように、第一硬化性樹脂(x1)を硬化させて、第一硬化樹脂膜(r1)付きの半導体チップ作製用ウエハ10を得る。
 第一硬化性樹脂(x1)を硬化することにより形成される第一硬化樹脂膜(r1)は、常温において、第一硬化性樹脂(x1)よりも強固になる。そのため、第一硬化樹脂膜(r1)を形成することによって、バンプネックが良好に保護される。また、図11の(1-d)に示す工程(S4)において、第一硬化樹脂膜(r1)付きの半導体チップ作製用ウエハ10を個片化することで、側面も第一硬化樹脂膜(r1)で被覆された半導体チップを得ることができ、強度に優れる半導体チップが得られる。しかも、保護膜としての第一硬化樹脂膜(r1)が剥がれることも抑制される。
(First Embodiment: Step (S3))
After carrying out the step (S-BG), the step (S3) is carried out. Specifically, as shown in FIG. 11 (1-c), the first curable resin (x1) is cured to obtain a wafer 10 for manufacturing a semiconductor chip with the first curable resin film (r1).
The first curable resin film (r1) formed by curing the first curable resin (x1) becomes stronger than the first curable resin (x1) at room temperature. Therefore, the bump neck is well protected by forming the first cured resin film (r1). Further, in the step (S4) shown in FIG. 11 (1-d), the side surface of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1) is also separated by the first cured resin film (r1). A semiconductor chip coated with r1) can be obtained, and a semiconductor chip having excellent strength can be obtained. Moreover, the peeling of the first cured resin film (r1) as the protective film is also suppressed.
(第一実施形態:硬化方法)
 第一硬化性樹脂(x1)の硬化は、第一硬化性樹脂(x1)に含まれている硬化性成分の種類に応じて、熱硬化及びエネルギー線の照射による硬化のいずれかにより行うことができる。
 熱硬化を行う場合の条件としては、硬化温度が100~200℃であることが好ましく、110~170℃であることがより好ましく、120~150℃であることが特に好ましい。そして、前記熱硬化時の加熱時間は、0.5~5時間であることが好ましく、0.5~4時間であることがより好ましく、1~3時間であることが特に好ましい。
 エネルギー線照射による硬化を行う場合の条件としては、使用するエネルギー線の種類により適宜設定される、例えば、紫外線を用いる場合、照度は好ましくは180~280mW/cmであり、光量は好ましくは450~1000mJ/cmである。
 ここで、第一硬化性樹脂(x1)を硬化させて第一硬化樹脂膜(r1)を形成する過程において、工程(S2)において第一硬化性樹脂(x1)で溝部13を埋め込む際に入り込むことのある気泡等を除去する観点から、第一硬化性樹脂(x1)は、熱硬化性樹脂であることが好ましい。すなわち、第一硬化性樹脂(x1)が熱硬化性樹脂である場合、第一硬化性樹脂(x1)は、加熱することで流動性が一時的に高まり、加熱を続けることで硬化する。この現象を利用することで、第一硬化性樹脂(x1)の流動性が高まった際に、第一硬化性樹脂(x1)で溝部13を埋め込む際に入り込むことのある気泡等が除去され、第一硬化性樹脂(x1)の溝部13への埋め込み性をより良好な状態とした上で、第一硬化性樹脂(x1)を硬化することができる。
 また、硬化時間の短縮の観点から、第一硬化性樹脂(x1)は、エネルギー線硬化性樹脂であることが好ましい。
 なお、第一硬化樹脂膜(r1)を形成するための第一硬化性樹脂(x1)の詳細については後述する。
(First Embodiment: Curing method)
The first curable resin (x1) can be cured by either thermosetting or curing by irradiation with energy rays, depending on the type of curable component contained in the first curable resin (x1). it can.
As the conditions for thermosetting, the curing temperature is preferably 100 to 200 ° C, more preferably 110 to 170 ° C, and particularly preferably 120 to 150 ° C. The heating time during the thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 4 hours, and particularly preferably 1 to 3 hours.
The conditions for curing by energy ray irradiation are appropriately set depending on the type of energy ray to be used. For example, when ultraviolet rays are used, the illuminance is preferably 180 to 280 mW / cm 2 , and the amount of light is preferably 450. It is ~ 1000 mJ / cm 2 .
Here, in the process of curing the first curable resin (x1) to form the first curable resin film (r1), the groove 13 is embedded in the first curable resin (x1) in the step (S2). From the viewpoint of removing air bubbles and the like, the first curable resin (x1) is preferably a thermosetting resin. That is, when the first curable resin (x1) is a thermosetting resin, the fluidity of the first curable resin (x1) is temporarily increased by heating, and the first curable resin (x1) is cured by continuing heating. By utilizing this phenomenon, when the fluidity of the first curable resin (x1) is increased, air bubbles and the like that may enter when the groove portion 13 is embedded in the first curable resin (x1) are removed. The first curable resin (x1) can be cured after the embedding property of the first curable resin (x1) in the groove portion 13 is improved.
Further, from the viewpoint of shortening the curing time, the first curable resin (x1) is preferably an energy ray-curable resin.
The details of the first curable resin (x1) for forming the first curable resin film (r1) will be described later.
(第一実施形態:工程(S4))
 工程(S3)を実施した後、工程(S4)を実施する。具体的には、図11の(1-d)に示すように、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10の第一硬化樹脂膜(r1)のうち溝部に形成されている部分を、分割予定ラインに沿って切断する。
 切断は、ブレードダイシングやレーザーダイシング等、従来公知の方法を採用して適宜実施することができる。
 これにより、少なくともバンプ形成面11a及び側面が第一硬化樹脂膜(r1)で被覆されている半導体チップ40を得ることができる。
 半導体チップ40は、バンプ形成面11a及び側面が第一硬化樹脂膜(r1)で被覆されているため、優れた強度を有する。また、バンプ形成面11a及び側面が第一硬化樹脂膜(r1)で切れ目なく連続して被覆されているため、バンプ形成面11aと第一硬化樹脂膜(r1)との接合面(界面)が、半導体チップ40の側面において露出していない。バンプ形成面11aと第一硬化樹脂膜(r1)との接合面(界面)のうち、半導体チップ40の側面において露出している露出部は、膜剥がれの起点となりやすい。本発明の半導体チップ40は、当該露出部が存在しないため、当該露出部からの膜剥がれが、半導体チップ作製用ウエハ10を切断して半導体チップ40を製造する過程や、製造後において生じにくい。したがって、保護膜としての第一硬化樹脂膜(r1)の剥がれが抑制された、半導体チップ40が得られる。
(First Embodiment: Step (S4))
After carrying out the step (S3), the step (S4) is carried out. Specifically, as shown in FIG. 11 (1-d), it is formed in the groove portion of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). Cut the part along the planned division line.
The cutting can be appropriately carried out by adopting a conventionally known method such as blade dicing or laser dicing.
As a result, it is possible to obtain a semiconductor chip 40 in which at least the bump forming surface 11a and the side surface are coated with the first cured resin film (r1).
Since the bump forming surface 11a and the side surface of the semiconductor chip 40 are covered with the first cured resin film (r1), the semiconductor chip 40 has excellent strength. Further, since the bump forming surface 11a and the side surface are continuously covered with the first cured resin film (r1) without a break, the joint surface (interface) between the bump forming surface 11a and the first cured resin film (r1) is formed. , It is not exposed on the side surface of the semiconductor chip 40. Of the joint surface (interface) between the bump forming surface 11a and the first cured resin film (r1), the exposed portion exposed on the side surface of the semiconductor chip 40 tends to be the starting point of film peeling. Since the semiconductor chip 40 of the present invention does not have the exposed portion, film peeling from the exposed portion is unlikely to occur in the process of cutting the wafer 10 for manufacturing the semiconductor chip to manufacture the semiconductor chip 40 or after the manufacturing. Therefore, the semiconductor chip 40 in which the peeling of the first cured resin film (r1) as the protective film is suppressed can be obtained.
 なお、工程(S4)において、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10の第一硬化樹脂膜(r1)のうち溝部に形成されている部分を、分割予定ラインに沿って切断する場合、第一硬化樹脂膜(r1)が透明であることが好ましい。第一硬化樹脂膜(r1)が透明であることにより、半導体ウエハ11が透けて見えるため、分割予定ラインの視認性が確保される。そのため、分割予定ラインに沿って切断しやすくなる。 In the step (S4), the portion of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is cut along the planned division line. When this is done, it is preferable that the first cured resin film (r1) is transparent. Since the first cured resin film (r1) is transparent, the semiconductor wafer 11 can be seen through, so that the visibility of the planned division line is ensured. Therefore, it becomes easy to cut along the planned division line.
<第二実施形態>
 第二実施形態では、図4に示すように、工程(S3)の後で且つ工程(S4)の前に、工程(S-BG)が行われる。
 図6に、第二実施形態に関する概略図を示す。
<Second embodiment>
In the second embodiment, as shown in FIG. 4, the step (S-BG) is performed after the step (S3) and before the step (S4).
FIG. 6 shows a schematic view of the second embodiment.
(第二実施形態:工程(S3))
 第二実施形態では、まず、工程(S3)を実施する。具体的には、図12の(2-a)に示すように、第一複合シート(α1)を貼付した状態で第一硬化性樹脂(x1)を硬化させて、第一硬化樹脂膜(r1)付きの半導体チップ作製用ウエハ10を得る。
 第一硬化性樹脂(x1)を硬化することにより形成される第一硬化樹脂膜(r1)は、常温において、第一硬化性樹脂(x1)よりも強固になる。そのため、第一硬化樹脂膜(r1)を形成することによって、バンプネックが良好に保護される。また、また、工程(S4)において、第一硬化樹脂膜(r1)付きの半導体チップ作製用ウエハ10を個片化することで、側面も第一硬化樹脂膜(r1)で被覆された半導体チップを得ることができ、強度に優れる半導体チップが得られる。しかも、保護膜としての第一硬化樹脂膜(r1)が剥がれることも抑制される。
 硬化方法は、第一実施形態で説明した硬化方法と同様の方法が挙げられる。
 第一支持シート(Y1)を剥離することなく熱硬化処理を行うことで、熱硬化時に第一支持シート(Y1)によって第一硬化性樹脂(x1)を硬化する際に一時的に生じる第一硬化性樹脂(x1)の表面における流動を抑えることができ、バンプ形成面における第一硬化樹脂膜(r1)の平坦性を向上させることができる。また、半導体チップ作製用ウエハ10の裏面11bを研削する前に、第一硬化性樹脂(x1)を硬化させることで、半導体チップ作製用ウエハ10の反りが抑制される。
(Second Embodiment: Step (S3))
In the second embodiment, first, the step (S3) is carried out. Specifically, as shown in (2-a) of FIG. 12, the first curable resin (x1) is cured with the first composite sheet (α1) attached, and the first curable resin film (r1) is cured. ) Is obtained.
The first curable resin film (r1) formed by curing the first curable resin (x1) becomes stronger than the first curable resin (x1) at room temperature. Therefore, the bump neck is well protected by forming the first cured resin film (r1). Further, in the step (S4), the semiconductor chip whose side surface is also covered with the first cured resin film (r1) by separating the wafer 10 for manufacturing the semiconductor chip with the first cured resin film (r1) into pieces. Can be obtained, and a semiconductor chip having excellent strength can be obtained. Moreover, the peeling of the first cured resin film (r1) as the protective film is also suppressed.
Examples of the curing method include the same curing methods as those described in the first embodiment.
By performing the thermosetting treatment without peeling off the first support sheet (Y1), the first that temporarily occurs when the first curable resin (x1) is cured by the first support sheet (Y1) at the time of heat curing. The flow on the surface of the curable resin (x1) can be suppressed, and the flatness of the first cured resin film (r1) on the bump forming surface can be improved. Further, by curing the first curable resin (x1) before grinding the back surface 11b of the semiconductor chip manufacturing wafer 10, the warp of the semiconductor chip manufacturing wafer 10 is suppressed.
(第二実施形態:工程(S―BG))
 工程(S3)を実施した後、工程(S-BG)を実施する。図12の(2-b)に示すように、第一複合シート(α1)を貼付した状態で半導体チップ作製用ウエハ10の裏面11bを研削する。
 なお、半導体チップ作製用ウエハ10の裏面11bを研削する際の研削量は、少なくとも半導体チップ作製用ウエハ10の溝部13の底部が露出する量であればよいが、更に研削を行って、半導体チップ作製用ウエハ10と共に、溝部13に埋め込まれた第一硬化樹脂膜(r1)も研削するようにしてもよい。
次いで、図12の(2-c)に示すように、第一複合シート(α1)から第一支持シート(Y1)を剥離する。
(Second Embodiment: Step (S-BG))
After carrying out the step (S3), the step (S-BG) is carried out. As shown in (2-b) of FIG. 12, the back surface 11b of the semiconductor chip manufacturing wafer 10 is ground with the first composite sheet (α1) attached.
The amount of grinding when grinding the back surface 11b of the semiconductor chip manufacturing wafer 10 may be at least an amount that exposes the bottom of the groove 13 of the semiconductor chip manufacturing wafer 10, but the semiconductor chip is further ground. The first cured resin film (r1) embedded in the groove 13 may be ground together with the manufacturing wafer 10.
Next, as shown in (2-c) of FIG. 12, the first support sheet (Y1) is peeled from the first composite sheet (α1).
(第二実施形態:工程(S4))
 工程(S-BG)を実施した後、第一実施形態と同様、工程(S4)を実施する。具体的には、図12の(2-d)に示すように、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10の第一硬化樹脂膜(r1)のうち溝部に形成されている部分を、分割予定ラインに沿って切断する。
 切断は、ブレードダイシングやレーザーダイシング等、従来公知の方法を採用して適宜実施することができる。
 これにより、少なくともバンプ形成面11a及び側面が第一硬化樹脂膜(r1)で被覆されている半導体チップ40を得ることができる。
 半導体チップ40は、バンプ形成面11a及び側面が第一硬化樹脂膜(r1)で被覆されているため、優れた強度を有する。また、既述した理由により、保護膜としての第一硬化樹脂膜(r1)の剥がれが抑制された、半導体チップ40が得られる。
(Second Embodiment: Step (S4))
After carrying out the step (S-BG), the step (S4) is carried out in the same manner as in the first embodiment. Specifically, as shown in FIG. 12 (2-d), it is formed in the groove portion of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). Cut the part along the planned division line.
The cutting can be appropriately carried out by adopting a conventionally known method such as blade dicing or laser dicing.
As a result, it is possible to obtain a semiconductor chip 40 in which at least the bump forming surface 11a and the side surface are coated with the first cured resin film (r1).
Since the bump forming surface 11a and the side surface of the semiconductor chip 40 are covered with the first cured resin film (r1), the semiconductor chip 40 has excellent strength. Further, for the reason described above, the semiconductor chip 40 in which the peeling of the first cured resin film (r1) as the protective film is suppressed can be obtained.
<第三実施形態>
 第三実施形態では、図4に示すように、工程(S3)の後で且つ工程(S4)の前に、工程(S-BG)が行われる点で、第二実施形態と共通する。但し、バックグラインドシート(b-BG)を別途用いる点において、第二実施形態とは異なる。
 図13に、第三実施形態に関する概略図を示す。
<Third Embodiment>
As shown in FIG. 4, the third embodiment is common to the second embodiment in that the step (S-BG) is performed after the step (S3) and before the step (S4). However, it differs from the second embodiment in that a back grind sheet (b-BG) is used separately.
FIG. 13 shows a schematic view of the third embodiment.
(第三実施形態:工程(S3))
 第三実施形態では、まず、工程(S3)が行われるが、その前に、図13の(3-a)に示すように、第一複合シート(α1)から第一支持シート(Y1)を剥離する。その上で、工程(S3)を実施する。具体的には、図13の(3-b)に示すように、第一硬化性樹脂(x1)を硬化させて、第一硬化樹脂膜(r1)付きの半導体チップ作製用ウエハ10を得る。
 硬化方法は、第一実施形態で説明した硬化方法と同様の方法が挙げられる。
 工程(S3)を実施する前に第一支持シート(Y1)を剥離するため、第一硬化性樹脂(x1)が熱硬化性樹脂であり、工程(S3)において硬化のための加熱処理が実施される場合であっても、第一支持シート(Y1)には耐熱性が要求されない。したがって、第一支持シート(Y1)の設計の自由度が向上する。
 また、半導体チップ作製用ウエハ10の裏面11bを研削する前に、第一硬化性樹脂(x1)を硬化させることで、半導体チップ作製用ウエハ10の反りが抑制される。
(Third Embodiment: step (S3))
In the third embodiment, first, the step (S3) is performed, but before that, as shown in (3-a) of FIG. 13, the first composite sheet (α1) to the first support sheet (Y1) are formed. Peel off. Then, the step (S3) is carried out. Specifically, as shown in FIG. 13 (3-b), the first curable resin (x1) is cured to obtain a wafer 10 for manufacturing a semiconductor chip with the first curable resin film (r1).
Examples of the curing method include the same curing methods as those described in the first embodiment.
In order to peel off the first support sheet (Y1) before carrying out the step (S3), the first curable resin (x1) is a thermosetting resin, and heat treatment for curing is carried out in the step (S3). Even if this is the case, the first support sheet (Y1) is not required to have heat resistance. Therefore, the degree of freedom in designing the first support sheet (Y1) is improved.
Further, by curing the first curable resin (x1) before grinding the back surface 11b of the semiconductor chip manufacturing wafer 10, the warp of the semiconductor chip manufacturing wafer 10 is suppressed.
(第三実施形態:工程(S-BG))
 工程(S3)を実施した後、工程(S-BG)を実施する。具体的には、図13の(3-c)に示すように、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10の第一硬化樹脂膜(r1)の表面にバックグラインドシート(b-BG)を貼付する。次いで、図13の(3-d)に示すように、バックグラインドシート(b-BG)を貼付した状態で半導体チップ作製用ウエハ10の裏面11bを研削した後、図13の(3-e)に示すように、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10からバックグラインドシート(b-BG)を剥離する。
 バックグラインドシート(b-BG)は工程(S3)では用いられないため、第一硬化性樹脂(x1)が熱硬化性樹脂であり、工程(S3)において硬化のための加熱処理が実施される場合であっても、バックグラインドシート(b-BG)には耐熱性が要求されない。したがって、バックグラインドシート(b-BG)の設計の自由度が向上する。
 なお、半導体チップ作製用ウエハ10の裏面11bを研削する際の研削量は、少なくとも半導体チップ作製用ウエハ10の溝部13の底部が露出する量であればよいが、更に研削を行って、半導体チップ作製用ウエハ10と共に、溝部13に埋め込まれた第一硬化樹脂膜(r1)も研削するようにしてもよい。
(Third embodiment: step (S-BG))
After carrying out the step (S3), the step (S-BG) is carried out. Specifically, as shown in FIG. 13 (3-c), a back grind sheet (b) is formed on the surface of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). -BG) is attached. Next, as shown in (3-d) of FIG. 13, after grinding the back surface 11b of the semiconductor chip manufacturing wafer 10 with the back grind sheet (b-BG) attached, (3-e) of FIG. As shown in the above, the back grind sheet (b-BG) is peeled off from the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1).
Since the back grind sheet (b-BG) is not used in the step (S3), the first curable resin (x1) is a thermosetting resin, and heat treatment for curing is carried out in the step (S3). Even in this case, the back grind sheet (b-BG) is not required to have heat resistance. Therefore, the degree of freedom in designing the back grind sheet (b-BG) is improved.
The amount of grinding when grinding the back surface 11b of the semiconductor chip manufacturing wafer 10 may be at least an amount that exposes the bottom of the groove 13 of the semiconductor chip manufacturing wafer 10, but the semiconductor chip is further ground. The first cured resin film (r1) embedded in the groove 13 may be ground together with the manufacturing wafer 10.
(第三実施形態:工程(S4))
 工程(S-BG)を実施した後、第一実施形態及び第二実施形態と同様、工程(S4)を実施する。具体的には、図13の(3-f)に示すように、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10の第一硬化樹脂膜(r1)のうち溝部に形成されている部分を、分割予定ラインに沿って切断する。
 切断は、ブレードダイシングやレーザーダイシング等、従来公知の方法を採用して適宜実施することができる。
 これにより、少なくともバンプ形成面11a及び側面が第一硬化樹脂膜(r1)で被覆されている半導体チップ40を得ることができる。
 半導体チップ40は、バンプ形成面11a及び側面が第一硬化樹脂膜(r1)で被覆されているため、優れた強度を有する。また、既述した理由により、保護膜としての第一硬化樹脂膜(r1)の剥がれが抑制された、半導体チップ40が得られる。
(Third Embodiment: step (S4))
After carrying out the step (S-BG), the step (S4) is carried out in the same manner as in the first embodiment and the second embodiment. Specifically, as shown in FIG. 13 (3-f), it is formed in the groove portion of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). Cut the part along the planned division line.
The cutting can be appropriately carried out by adopting a conventionally known method such as blade dicing or laser dicing.
As a result, it is possible to obtain a semiconductor chip 40 in which at least the bump forming surface 11a and the side surface are coated with the first cured resin film (r1).
Since the bump forming surface 11a and the side surface of the semiconductor chip 40 are covered with the first cured resin film (r1), the semiconductor chip 40 has excellent strength. Further, for the reason described above, the semiconductor chip 40 in which the peeling of the first cured resin film (r1) as the protective film is suppressed can be obtained.
<第四実施形態>
 第四実施形態では、図4に示すように、工程(S-BG)が、工程(S4)において行われる。
 図14に、第四実施形態に関する概略図を示す。
<Fourth Embodiment>
In the fourth embodiment, as shown in FIG. 4, the step (S-BG) is performed in the step (S4).
FIG. 14 shows a schematic view of the fourth embodiment.
(第四実施形態:工程(S3))
 第四実施形態では、まず、工程(S3)が行われるが、その前に、図14の(4-a)に示すように、第一複合シート(α1)から第一支持シート(Y1)を剥離する。その上で、工程(S3)を実施する。具体的には、図14の(4-b)に示すように、第一硬化性樹脂(x1)を硬化させて、第一硬化樹脂膜(r1)付きの半導体チップ作製用ウエハ10を得る。
 硬化方法は、第一実施形態で説明した硬化方法と同様の方法が挙げられる。
 工程(S3)を実施する前に第一支持シート(Y1)を剥離するため、第一硬化性樹脂(x1)が熱硬化性樹脂であり、工程(S3)において硬化のための加熱処理が実施される場合であっても、第一支持シート(Y1)には耐熱性が要求されない。したがって、第一支持シート(Y1)の設計の自由度が向上する。
 また、半導体チップ作製用ウエハ10の裏面11bを研削する前に、第一硬化性樹脂(x1)を硬化させることで、半導体チップ作製用ウエハ10の反りが抑制される。
(Fourth Embodiment: Step (S3))
In the fourth embodiment, first, the step (S3) is performed, but before that, as shown in (4-a) of FIG. 14, the first composite sheet (α1) to the first support sheet (Y1) are formed. Peel off. Then, the step (S3) is carried out. Specifically, as shown in FIG. 14 (4-b), the first curable resin (x1) is cured to obtain a wafer 10 for manufacturing a semiconductor chip with the first curable resin film (r1).
Examples of the curing method include the same curing methods as those described in the first embodiment.
In order to peel off the first support sheet (Y1) before carrying out the step (S3), the first curable resin (x1) is a thermosetting resin, and heat treatment for curing is carried out in the step (S3). Even if this is the case, the first support sheet (Y1) is not required to have heat resistance. Therefore, the degree of freedom in designing the first support sheet (Y1) is improved.
Further, by curing the first curable resin (x1) before grinding the back surface 11b of the semiconductor chip manufacturing wafer 10, the warp of the semiconductor chip manufacturing wafer 10 is suppressed.
(第四実施形態:工程(S-BG)を含む工程(S4))
 工程(S3)を実施した後、図14の(4-c)に示すように、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10の第一硬化樹脂膜(r1)のうち溝部13に形成されている部分に、分割予定ラインに沿って切り込みを入れる。切り込みの深さは、個片化しやすくする観点から、溝部13の最深部に到達する深さとすることが好ましい。これにより、後述する工程(S-BG)において、当該切込みに沿って第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10が個片化される。
 あるいは、図示省略するが、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10の第一硬化樹脂膜(r1)のうち溝部13に形成されている部分に、分割予定ラインに沿って改質領域を形成してもよい。改質領域は、レーザー又はプラズマ処理等により形成することができる。これにより、後述する工程(S-BG)において、当該改質領域を起点として亀裂が生じ、当該改質領域に沿って第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10が個片化される。
 次に、工程(S-BG)を実施する。具体的には、図14の(4-d)に示すように、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10の第一硬化樹脂膜(r1)の表面にバックグラインドシート(b-BG)を貼付する。次いで、図14の(4-e)に示すように、バックグラインドシート(b-BG)を貼付した状態で半導体チップ作製用ウエハ10の裏面11bを研削する。最後に、図14の(4-f)に示すように、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハ10からバックグラインドシート(b-BG)を剥離する。
 これにより、少なくともバンプ形成面11a及び側面が第一硬化樹脂膜(r1)で被覆されている半導体チップ40を得ることができる。
 なお、半導体チップ作製用ウエハ10の裏面11bを研削する際の研削量は、少なくとも半導体チップ作製用ウエハ10の溝部13の底部が露出する量であればよいが、更に研削を行って、半導体チップ作製用ウエハ10と共に、溝部13に埋め込まれた第一硬化樹脂膜(r1)も研削するようにしてもよい。
 半導体チップ40は、バンプ形成面11a及び側面が第一硬化樹脂膜(r1)で被覆されているため、優れた強度を有する。
 なお、バックグラインドシート(b-BG)は工程(S3)では用いられないため、第一硬化性樹脂(x1)が熱硬化性樹脂であり、工程(S3)において硬化のための加熱処理が実施される場合であっても、バックグラインドシート(b-BG)には耐熱性が要求されない。したがって、バックグラインドシート(b-BG)の設計の自由度が向上する。
(Fourth Embodiment: Step (S4) including Step (S-BG))
After performing the step (S3), as shown in (4-c) of FIG. 14, the groove 13 of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). Make a cut along the planned division line in the part formed in. The depth of cut is preferably a depth that reaches the deepest portion of the groove portion 13 from the viewpoint of facilitating individualization. As a result, in the step (S-BG) described later, the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1) is fragmented along the notch.
Alternatively, although not shown, the portion of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove 13 is modified along the planned division line. A quality region may be formed. The modified region can be formed by laser or plasma treatment or the like. As a result, in the step (S-BG) described later, cracks are generated starting from the modified region, and the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1) is fragmented along the modified region. Will be done.
Next, the step (S-BG) is carried out. Specifically, as shown in FIG. 14 (4-d), a back grind sheet (b) is formed on the surface of the first cured resin film (r1) of the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1). -BG) is attached. Next, as shown in (4-e) of FIG. 14, the back surface 11b of the semiconductor chip manufacturing wafer 10 is ground with the back grind sheet (b-BG) attached. Finally, as shown in FIG. 14 (4-f), the back grind sheet (b-BG) is peeled off from the wafer 10 for manufacturing a semiconductor chip with the first cured resin film (r1).
As a result, it is possible to obtain a semiconductor chip 40 in which at least the bump forming surface 11a and the side surface are coated with the first cured resin film (r1).
The amount of grinding when grinding the back surface 11b of the semiconductor chip manufacturing wafer 10 may be at least an amount that exposes the bottom of the groove 13 of the semiconductor chip manufacturing wafer 10, but the semiconductor chip is further ground. The first cured resin film (r1) embedded in the groove 13 may be ground together with the manufacturing wafer 10.
Since the bump forming surface 11a and the side surface of the semiconductor chip 40 are covered with the first cured resin film (r1), the semiconductor chip 40 has excellent strength.
Since the back grind sheet (b-BG) is not used in the step (S3), the first curable resin (x1) is a thermosetting resin, and heat treatment for curing is carried out in the step (S3). Even if this is the case, the back grind sheet (b-BG) is not required to have heat resistance. Therefore, the degree of freedom in designing the back grind sheet (b-BG) is improved.
 ここで、第一実施形態ないし第四実施形態では、工程(S-BG)において、第一支持シート(Y1)又はバックグラインドシート(b-BG)が使用される態様を挙げて説明したが、本発明の一態様では、第一支持シート(Y1)又はバックグラインドシート(b-BG)に代えて、バックグラインド用の樹脂層(Z1)を形成するようにしてもよい。
 具体的には、流動性のある樹脂(z1)を用いて、第一硬化樹脂膜(r1)の表面を被覆するとともに、第一硬化樹脂膜(r1)から露出しているバンプも被覆した後、樹脂(z1)を硬化させて、バックグラインド用の樹脂層(Z1)を形成することで、バックグラインドシートの代用として研削工程を行うこともできる。
 なお、第一硬化樹脂膜(r1)の表面と第一硬化樹脂膜(r1)から露出しているバンプとを樹脂(z1)で被覆する際、バンプの凹凸に追従可能な柔軟性のある樹脂フィルム(z2)を介して被覆することで、工程(S-BG)後に不要となったバックグラインド用の樹脂層(Z1)を剥離しやすくすることができる。
Here, in the first to fourth embodiments, the mode in which the first support sheet (Y1) or the back grind sheet (b-BG) is used in the step (S-BG) has been described. In one aspect of the present invention, a resin layer (Z1) for back grind may be formed instead of the first support sheet (Y1) or back grind sheet (b-BG).
Specifically, after coating the surface of the first cured resin film (r1) with a fluid resin (z1) and also covering the bumps exposed from the first cured resin film (r1). By curing the resin (z1) to form a resin layer (Z1) for back grind, the grinding process can be performed as a substitute for the back grind sheet.
When the surface of the first cured resin film (r1) and the bumps exposed from the first cured resin film (r1) are coated with the resin (z1), a flexible resin that can follow the unevenness of the bumps. By coating with the film (z2), the resin layer (Z1) for back grind, which is no longer needed after the step (S-BG), can be easily peeled off.
[工程(T)]
 本発明の半導体チップの製造方法の一態様では、さらに、下記工程(T)を含むことが好ましい。
・工程(T):前記半導体チップ作製用ウエハの前記裏面に、第二硬化樹脂膜(r2)を形成する工程
[Step (T)]
In one aspect of the method for manufacturing a semiconductor chip of the present invention, it is preferable to further include the following step (T).
Step (T): A step of forming a second cured resin film (r2) on the back surface of the semiconductor chip manufacturing wafer.
 上記実施形態にかかる製造方法によれば、少なくともバンプ形成面11a及び側面が第一硬化樹脂膜(r1)で被覆されている半導体チップ40を得ることができる。しかし、半導体チップ40の裏面は剥き出しである。そこで、半導体チップ40の裏面を保護して半導体チップ40の強度をより向上させる観点から、上記工程(T)を実施することが好ましい。 According to the manufacturing method according to the above embodiment, it is possible to obtain a semiconductor chip 40 in which at least the bump forming surface 11a and the side surface are coated with the first cured resin film (r1). However, the back surface of the semiconductor chip 40 is exposed. Therefore, from the viewpoint of protecting the back surface of the semiconductor chip 40 and further improving the strength of the semiconductor chip 40, it is preferable to carry out the above step (T).
 上記工程(T)は、より詳細には、下記工程(T1)~下記工程(T2)をこの順で含むことが好ましい。
・工程(T1):半導体チップ作製用ウエハの裏面に、第二硬化性樹脂(x2)を貼付する工程
・工程(T2):第二硬化性樹脂(x2)を硬化させて第二硬化性樹脂膜(r2)を形成する工程
 また、工程(T1)では、第二支持シート(Y2)と第二硬化性樹脂(x2)の層(X2)とが積層された積層構造を有する第二積層体(α2)を用いることが好ましい。詳細には、工程(T1)は、半導体チップ作製用ウエハの裏面に、第二支持シート(Y2)と第二硬化性樹脂(x2)の層(X2)とが積層された積層構造を有する第二積層体(α2)を、前記層(X2)を貼付面として貼付する工程とすることが好ましい。
 この場合、第二積層体(α2)から第二支持シート(Y2)を剥離するタイミングは、工程(T1)と工程(T2)の間であってもよく、工程(T2)の後であってもよい。
More specifically, the step (T) preferably includes the following steps (T1) to the following steps (T2) in this order.
-Step (T1): Step of attaching the second curable resin (x2) to the back surface of the wafer for manufacturing semiconductor chips-Step (T2): The second curable resin (x2) is cured to cure the second curable resin. Step of Forming Film (r2) In Step (T1), a second laminated body having a laminated structure in which a second support sheet (Y2) and a layer (X2) of a second curable resin (x2) are laminated. It is preferable to use (α2). Specifically, the step (T1) has a laminated structure in which a second support sheet (Y2) and a layer (X2) of a second curable resin (x2) are laminated on the back surface of a wafer for manufacturing a semiconductor chip. It is preferable that the two laminated bodies (α2) are attached with the layer (X2) as the attachment surface.
In this case, the timing of peeling the second support sheet (Y2) from the second laminated body (α2) may be between the step (T1) and the step (T2), and after the step (T2). May be good.
 ここで、工程(T1)において第二積層体(α2)を用いる場合、第二複合シート(α2)が有する第二支持シート(Y2)は、第二硬化性樹脂(x2)を支持すると共に、ダイシングシートとしての機能を兼ね備えていることが好ましい。
 第一実施形態から第三実施形態にかかる製造方法の場合、工程(S4)において第二複合シート(α2)が第一硬化樹脂膜(r1)付きの半導体ウエハ10の裏面11bに貼付されていることで、ダイシングによる個片化を行う際に、第二支持シート(Y2)がダイシングシートとしての機能し、ダイシングを実施しやすいものとできる。
Here, when the second laminated body (α2) is used in the step (T1), the second support sheet (Y2) contained in the second composite sheet (α2) supports the second curable resin (x2) and also supports the second curable resin (x2). It is preferable that it also has a function as a dicing sheet.
In the case of the manufacturing method according to the first to third embodiments, the second composite sheet (α2) is attached to the back surface 11b of the semiconductor wafer 10 with the first cured resin film (r1) in the step (S4). As a result, the second support sheet (Y2) functions as a dicing sheet when individualizing by dicing, so that dicing can be easily performed.
ここで、第一実施形態にかかる製造方法のように、工程(S-BG)後に、工程(S3)を実施する場合、工程(S3)を実施する前に、上記工程(T1)を実施し、次いで、工程(S3)と工程(T2)を同時に行うようにしてもよい。すなわち、第一硬化性樹脂(x1)と第二硬化性樹脂(x2)を一括して同時に硬化するようにしてもよい。これにより、硬化処理の回数を削減することができる。 Here, when the step (S3) is carried out after the step (S-BG) as in the manufacturing method according to the first embodiment, the above step (T1) is carried out before the step (S3) is carried out. Then, the step (S3) and the step (T2) may be performed at the same time. That is, the first curable resin (x1) and the second curable resin (x2) may be cured at the same time at the same time. As a result, the number of curing treatments can be reduced.
 具体的には、第一実施形態ないし第三実施形態にかかる製造方法において、工程(T)は、下記工程(T1-1)及び下記工程(T1-2)をこの順で含み、
・工程(T1-1):工程(S-BG)の後で且つ工程(S4)の前において、半導体チップ作製用ウエハの裏面に、第二硬化性樹脂(x2)を貼付する工程
・工程(T1-2):工程(S4)の前または後において、第二硬化性樹脂(x2)を硬化させて、第二硬化樹脂膜(r2)を形成する工程
 工程(S4)において、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの第一硬化樹脂膜(r1)のうち溝部に形成されている部分を、分割予定ラインに沿って切断する際、第二硬化性樹脂(x2)又は第二硬化樹脂膜(r2)も一括して切断することが好ましい。
 また、第四実施形態にかかる製造方法において、工程(T)は、下記工程(T2-1)及び下記工程(T2-2)をこの順で含み、
・工程(T2-1):工程(S-BG)の後で且つ工程(S4)の後において、バックグラインドシート(b-BG)を貼付した状態のまま、半導体チップ作製用ウエハの裏面に、第二硬化性樹脂(x2)を貼付する工程
・工程(T2-2):第二硬化性樹脂(x2)を硬化して、第二硬化樹脂膜(r2)を形成する工程
 さらに、工程(T)は、工程(T2-2)の前又は後において、下記工程(T2-3)を含むことが好ましい。
・工程(T2-3):カーフに沿って第二硬化性樹脂層(x2)又は第二硬化樹脂膜(r2)を分割する工程
Specifically, in the manufacturing method according to the first embodiment to the third embodiment, the step (T) includes the following steps (T1-1) and the following steps (T1-2) in this order.
Step (T1-1): A step / step (x2) of attaching the second curable resin (x2) to the back surface of the wafer for manufacturing a semiconductor chip after the step (S-BG) and before the step (S4). T1-2): A step of curing the second curable resin (x2) to form a second curable resin film (r2) before or after the step (S4). In the step (S4), the first curable resin. When the portion of the first curable resin film (r1) of the wafer for manufacturing a semiconductor chip with the film (r1) formed in the groove is cut along the planned division line, the second curable resin (x2) or the second curable resin (x2) is used. It is preferable to cut the dicured resin film (r2) at once.
Further, in the manufacturing method according to the fourth embodiment, the step (T) includes the following steps (T2-1) and the following steps (T2-2) in this order.
Step (T2-1): After the step (S-BG) and after the step (S4), the back grind sheet (b-BG) is still attached to the back surface of the wafer for manufacturing semiconductor chips. Step / step (T2-2) of applying the second curable resin (x2): Step of curing the second curable resin (x2) to form a second curable resin film (r2) Further, a step (T2). ) Preferably include the following step (T2-3) before or after the step (T2-2).
-Step (T2-3): A step of dividing the second curable resin layer (x2) or the second curable resin film (r2) along the calf.
[その他の工程]
 本発明の半導体チップの製造方法の一態様では、本発明の趣旨を逸脱することのない範囲で、他の工程を含んでいてもよい。
 このような処理としては、例えば保護膜(第一硬化樹脂膜(r1)形成後のバンプ形成面に対するウエットエッチング処理やドライエッチング処理等が挙げられる。
[Other processes]
One aspect of the method for manufacturing a semiconductor chip of the present invention may include other steps as long as the gist of the present invention is not deviated.
Examples of such a treatment include a wet etching treatment and a dry etching treatment on the bump forming surface after the formation of the protective film (first cured resin film (r1)).
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the following examples.
1.第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)の製造原料
 第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)の製造に用いた原料を以下に示す。
1. 1. Raw Materials for Producing the First Thermosetting Resin Film Forming Composition (x1-1-1) The raw materials used for producing the first thermosetting resin film forming composition (x1-1-1) are shown below.
(1) 重合体成分(A)
 (A)-1:下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するポリビニルブチラール(積水化学工業社製「エスレックBL-10」、重量平均分子量25000、ガラス転移温度59℃)。
 (A)-2:アクリル酸ブチル(55質量部)、アクリル酸メチル(10質量部)、メタクリル酸グリシジル(20質量部)、及びアクリル酸-2-ヒドロキシエチル(15質量部)を共重合して得られたアクリル樹脂(重量平均分子量800,000、ガラス転移温度-28℃)。
Figure JPOXMLDOC01-appb-C000002

 (式中、lは約28であり、mは1~3であり、nは68~74の整数である。)
(1) Polymer component (A)
(A) -1: Polyvinyl butyral having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3 ("Eslek BL-10" manufactured by Sekisui Chemical Industry Co., Ltd., weight average) Molecular weight 25,000, glass transition temperature 59 ° C.).
(A) -2: Copolymerization of butyl acrylate (55 parts by mass), methyl acrylate (10 parts by mass), glycidyl methacrylate (20 parts by mass), and -2-hydroxyethyl acrylate (15 parts by mass). The obtained acrylic resin (weight average molecular weight 800,000, glass transition temperature −28 ° C.).
Figure JPOXMLDOC01-appb-C000002

(In the equation, l 1 is about 28, m 1 is 1-3, and n 1 is an integer of 68-74.)
(2) エポキシ樹脂(B1)
 (B1)-1:液状変性ビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロンEXA-4850-150」、分子量900、エポキシ当量450g/eq)
 (B1)-2:液状ビスフェノールF型エポキシ樹脂(三菱化学株式会社製「YL983U」、エポキシ当量165~175g/eq)
 (B1)-3:多官能芳香族型エポキシ樹脂(日本化薬株式会社製「EPPN-502H」)、エポキシ当量158~178g/eq)
 (B1)-4:ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製「エピクロンHP-7200HH」、エポキシ当量254~264g/eq)
(2) Epoxy resin (B1)
(B1) -1: Liquid-modified bisphenol A type epoxy resin ("Epiclon EXA-4850-150" manufactured by DIC Corporation, molecular weight 900, epoxy equivalent 450 g / eq)
(B1) -2: Liquid bisphenol F type epoxy resin ("YL983U" manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 165 to 175 g / eq)
(B1) -3: Polyfunctional aromatic epoxy resin (“EPPN-502H” manufactured by Nippon Kayaku Co., Ltd.), epoxy equivalent 158 to 178 g / eq)
(B1) -4: Dicyclopentadiene type epoxy resin (“Epiclon HP-7200HH” manufactured by DIC Corporation, epoxy equivalent 254 to 264 g / eq)
(3) 熱硬化剤(B2)
 (B2)-1:ノボラック型フェノール樹脂(昭和電工株式会社製「BRG-556」)
 (B2)-2:O-クレゾール型ノボラック樹脂(DIC株式会社製「フェノライトKA-1160」)
(3) Thermosetting agent (B2)
(B2) -1: Novolac type phenol resin ("BRG-556" manufactured by Showa Denko KK)
(B2) -2: O-cresol type novolak resin ("Phenolite KA-1160" manufactured by DIC Corporation)
(4) 硬化促進剤(C)
 (C)-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ-PW」)
(4) Curing accelerator (C)
(C) -1: 2-Phenyl-4,5-dihydroxymethylimidazole ("Curesol 2PHZ-PW" manufactured by Shikoku Chemicals Corporation)
(5) 充填剤(D)
 (D)-1:エポキシ基で修飾された球状シリカ(アドマテックス社製「アドマナノ YA050C-MKK」、平均粒子径50nm)
(5) Filler (D)
(D) -1: Spherical silica modified with an epoxy group (“Admanano YA050C-MKK” manufactured by Admatex, average particle size 50 nm)
(6) 添加剤(I)
 (I)-1:界面活性剤(アクリル重合体、BYK社製「BYK-361N」)
 (I)-2:シリコーンオイル(アラルキル変性シリコーンオイル、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製「XF42-334」)
 (I)-3:レオロジーコントロール剤(ポリヒドロキシカルボン酸エステル、BYK社製「BYK-R606」)
(6) Additive (I)
(I) -1: Surfactant (acrylic polymer, "BYK-361N" manufactured by BYK)
(I) -2: Silicone oil (Aralkill-modified silicone oil, "XF42-334" manufactured by Momentive Performance Materials Japan GK)
(I) -3: Rheology control agent (polyhydroxycarboxylic acid ester, "BYK-R606" manufactured by BYK)
2.実施例1~2、比較例1~3
2-1.実施例1
(1)第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)の製造
 重合体成分(A)-1(100質量部)、エポキシ樹脂(B1)-1(350質量部)、エポキシ樹脂(B1)-4(270質量部)、(B2)-1(190質量部)、硬化促進剤(C)-1(2質量部)、充填剤(D)-1(90質量部)、及び添加剤(I)-3(9質量部)を、メチルエチルケトンに溶解又は分散させて、23℃で撹拌することで、溶媒以外のすべての成分の合計濃度が45質量%である熱硬化樹脂フィルム形成用組成物(x1-1-1)を得た。なお、ここに示す溶媒以外の成分の配合量はすべて、溶媒を含まない目的物の配合量である。
2. Examples 1-2, Comparative Examples 1-3
2-1. Example 1
(1) Production of Composition (x1-1-1) for Forming First Thermosetting Resin Film Polymer Component (A) -1 (100 parts by mass), Epoxy Resin (B1) -1 (350 parts by mass), Epoxy resin (B1) -4 (270 parts by mass), (B2) -1 (190 parts by mass), curing accelerator (C) -1 (2 parts by mass), filler (D) -1 (90 parts by mass) , And the additive (I) -3 (9 parts by mass) are dissolved or dispersed in methyl ethyl ketone and stirred at 23 ° C. to obtain a thermosetting resin in which the total concentration of all components other than the solvent is 45% by mass. A film-forming composition (x1-1-1) was obtained. The blending amounts of the components other than the solvent shown here are all the blending amounts of the target product containing no solvent.
(2)第一熱硬化性樹脂フィルム(x1-1)の製造
 ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた組成物(x1-1-1)を塗工し、120℃で2分加熱乾燥させることにより、厚さ45μmの第一熱硬化性樹脂フィルム(x1-1)を形成した。
(2) Production of First Thermosetting Resin Film (x1-1) Using a release film (“SP-PET38131” manufactured by Lintec Co., Ltd., thickness 38 μm) in which one side of a polyethylene terephthalate film was peeled by a silicone treatment, was used. The composition (x1-1-1) obtained above is applied to the peeled surface and dried by heating at 120 ° C. for 2 minutes to obtain a first thermosetting resin film (x1) having a thickness of 45 μm. -1) was formed.
2-2.実施例2、比較例1~3
 第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)の含有成分の種類及び含有量が、後述する表1に示すとおりとなるように、第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)の製造時における、配合成分の種類及び配合量のいずれか一方又は両方を変更した点以外は、実施例1の場合と同じ方法で、厚さ45μmの第一熱硬化性樹脂フィルム(x1-1)を形成した。
 なお、表1中の含有成分の欄の「-」との記載は、第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)がその成分を含有していないことを意味する。
2-2. Example 2, Comparative Examples 1 to 3
The composition for forming the first thermosetting resin film so that the types and contents of the components contained in the composition for forming the first thermosetting resin film (x1-1-1) are as shown in Table 1 described later. First heat having a thickness of 45 μm in the same manner as in Example 1 except that one or both of the types and amounts of the compounding components were changed during the production of the product (x1-1-1). A curable resin film (x1-1) was formed.
In addition, the description of "-" in the column of the contained component in Table 1 means that the composition for forming the first thermosetting resin film (x1-1-1) does not contain the component.
3.評価
3-1.第一複合シート(α1)の製造
 第一支持シート(Y1)としてバックグラインドテープ(リンテック株式会社製「E-8510HR」)を用い、このバックグラインドテープと、上記で得られた、実施例1~2、比較例1~3の剥離フィルム上の第一熱硬化性樹脂フィルム(x1-1)と、をそれぞれ貼り合わせた。これにより、第一支持シート(Y1)と第一熱硬化性樹脂フィルム(x1-1)とを積層した第一複合シート(α1)を得た。
3. 3. Evaluation 3-1. Production of First Composite Sheet (α1) Using a back grind tape (“E-8510HR” manufactured by Lintec Corporation) as the first support sheet (Y1), this back grind tape and the above-mentioned Examples 1 to 1 to 2. The first thermosetting resin film (x1-1) on the release films of Comparative Examples 1 to 3 was bonded to each other. As a result, a first composite sheet (α1) in which the first support sheet (Y1) and the first thermosetting resin film (x1-1) were laminated was obtained.
3-2.第一熱硬化性樹脂フィルム(x1-1)のGc1及びGc300の測定、X値の算出
 組成物(x1-1-1)の塗工量を変更した点以外は、上記と同様の方法で、厚さ50μmの第一熱硬化性樹脂フィルム(x1-1)を20枚作製した。次いで、これら第一熱硬化性樹脂フィルム(x1-1)を積層し、得られた積層フィルムを直径25mmの円板状に裁断することにより、厚さ1mmの第一熱硬化性樹脂フィルム(x1-1)の試験片を作製した。
 粘弾性測定装置(アントンパール社製「MCR301」)における、試験片の設置箇所を、あらかじめ90℃で保温しておき、この設置箇所へ、上記で得られた第一熱硬化性樹脂フィルム(x1-1)の試験片を載置し、この試験片の上面に測定治具を押し当てることで、試験片を前記設置箇所に固定した。
 次いで、温度90℃、測定周波数1Hzの条件で、試験片に発生させるひずみを0.01%~1000%の範囲で段階的に上昇させ、試験片の貯蔵弾性率Gcを測定した。そして、Gc1及びGc300の測定値から、X値を算出した。結果を表1に示す。
3-2. Measurement of Gc1 and Gc300 of the first thermosetting resin film (x1-1), calculation of X value The same method as above except that the coating amount of the composition (x1-1-1) was changed. Twenty first thermosetting resin films (x1-1) having a thickness of 50 μm were prepared. Next, these first thermosetting resin films (x1-1) are laminated, and the obtained laminated film is cut into a disk shape having a diameter of 25 mm to obtain a first thermosetting resin film (x1) having a thickness of 1 mm. A test piece of -1) was prepared.
The place where the test piece is installed in the viscoelasticity measuring device (“MCR301” manufactured by Anton Pearl Co., Ltd.) is kept warm at 90 ° C. in advance, and the first thermosetting resin film (x1) obtained above is placed in this place. The test piece of -1) was placed, and the test piece was fixed to the installation location by pressing the measuring jig against the upper surface of the test piece.
Then, under the conditions of a temperature of 90 ° C. and a measurement frequency of 1 Hz, the strain generated in the test piece was gradually increased in the range of 0.01% to 1000%, and the storage elastic modulus Gc of the test piece was measured. Then, the X value was calculated from the measured values of Gc1 and Gc300. The results are shown in Table 1.
3-3.第一熱硬化性樹脂フィルム(x1-1)のはみ出し量の測定
 ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた組成物(x1-1-1)を塗工し、120℃で2分加熱乾燥させることにより、厚さ30μmの第一熱硬化性樹脂フィルム(x1-1)を形成した。
 次いで、この第一熱硬化性樹脂フィルム(x1-1)を、前記剥離フィルムとともに、直径170mmの円形状に加工することにより、剥離フィルム付きの試験片を作製した。
 得られた試験片の露出面(換言すると、剥離フィルムを備えている側とは反対側の面)全面を、透明な帯状のバックグラインドテープ(リンテック社製「E-8180」)の表面と貼り合わせることにより、図15に示す積層物を得た。図15は、得られた積層物を、その中のバックグラインドテープ側の上方から見下ろしたときの状態を、模式的に示す平面図である。
 ここに示すように、得られた積層物101は、バックグラインドテープ107と、試験片120(第一熱硬化性樹脂フィルム(x1-1))と、剥離フィルムと、がこの順に、これらの厚さ方向において積層されて、構成されている。
3-3. Measurement of the amount of protrusion of the first thermosetting resin film (x1-1) Using a release film (“SP-PET38131” manufactured by Lintec Co., Ltd., thickness 38 μm) in which one side of the polyethylene terephthalate film was peeled by silicone treatment, was used. The composition (x1-1-1) obtained above is applied to the peeled surface and dried by heating at 120 ° C. for 2 minutes to obtain a first thermosetting resin film (x1) having a thickness of 30 μm. -1) was formed.
Next, the first thermosetting resin film (x1-1) was processed together with the release film into a circular shape having a diameter of 170 mm to prepare a test piece with the release film.
The entire exposed surface of the obtained test piece (in other words, the surface opposite to the side provided with the release film) is attached to the surface of a transparent strip-shaped back grind tape (Lintec's "E-8180"). By combining, the laminate shown in FIG. 15 was obtained. FIG. 15 is a plan view schematically showing a state in which the obtained laminate is viewed from above on the back grind tape side.
As shown here, the obtained laminate 101 has a back grind tape 107, a test piece 120 (first thermosetting resin film (x1-1)), and a release film in this order. It is constructed by stacking in the vertical direction.
 次いで、得られた積層物から前記剥離フィルムを取り除き、新たに生じた前記試験片の露出面(換言すると、前記試験片の、前記バックグラインドテープを備えている側とは反対側の面)を、直径12インチのシリコンウエハの一方の表面に圧着させることで、シリコンウエハの表面に前記試験片を貼付した。このとき、試験片の貼付は、貼付装置(ローラー式ラミネータ、リンテック社製「RAD-3510 F/12」)を用いて、テーブル温度:90℃、貼付速度:2mm/sec、貼付圧力:0.5MPa、ローラー貼付高さ:-200μmの条件で、第一熱硬化性樹脂フィルム(x1-1)を加熱しながら行った。
 次いで、シリコンウエハに貼付されている、バックグラインドテープ付きの前記試験片について、その外周上の異なる二点間を結ぶ線分の長さの最大値を測定し、その測定値(前記線分の長さの最大値)を用いて、図2を参照して説明した方法により、前記試験片(換言すると第一熱硬化性樹脂フィルム(x1-1))のはみ出し量(mm)を算出した。結果を表1に示す。
 なお、はみ出し量が170mmである場合には、元の試験片からの形状変化はなく、はみ出しが起こっていないと判断した。一方、はみ出し量が170mmを超える場合には、元の試験片からの形状変化があり、はみ出しが起こっていると判断した。
Next, the release film is removed from the obtained laminate, and the newly generated exposed surface of the test piece (in other words, the surface of the test piece opposite to the side on which the back grind tape is provided) is removed. The test piece was attached to the surface of the silicon wafer by crimping it onto one surface of the silicon wafer having a diameter of 12 inches. At this time, the test piece was attached using a pasting device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation), table temperature: 90 ° C., pasting speed: 2 mm / sec, pasting pressure: 0. The first thermosetting resin film (x1-1) was heated under the conditions of 5 MPa and roller sticking height: −200 μm.
Next, with respect to the test piece with the back grind tape attached to the silicon wafer, the maximum value of the length of the line segment connecting two different points on the outer circumference thereof is measured, and the measured value (the line segment) is measured. Using the maximum length), the amount of protrusion (mm) of the test piece (in other words, the first thermosetting resin film (x1-1)) was calculated by the method described with reference to FIG. The results are shown in Table 1.
When the amount of protrusion was 170 mm, it was determined that there was no change in shape from the original test piece and no protrusion had occurred. On the other hand, when the amount of protrusion exceeds 170 mm, it is determined that the shape has changed from the original test piece and the protrusion has occurred.
3-4.バンプの上部での第一熱硬化性樹脂フィルム(x1-1)の残存有無の確認
 「3-1.第一複合シート(α1)の製造」で得られた第一複合シート(α1)から剥離フィルムを取り除き、これにより露出した第一熱硬化性樹脂フィルム(x1-1)の表面(露出面)を、バンプを有する、直径8インチの半導体ウエハのバンプ形成面に圧着させることで、剥離フィルムを取り除いた第一複合シート(α1)を半導体ウエハのバンプ形成面に貼付した。このとき、半導体ウエハとしては、バンプの高さが210μmであり、バンプの幅が250μmであり、バンプ間の距離が400μmであるものを用いた。また、第一複合シート(α1)の貼付は、貼付装置(ローラー式ラミネータ、リンテック社製「RAD-3510 F/12」)を用いて、テーブル温度:90℃、貼付速度:2mm/sec、貼付圧力:0.5MPa、ローラー貼付高さ:-200μmの条件で、第一複合シート(α1)を加熱しながら行った。
 次いで、マルチウェハマウンター(リンテック社製「RAD-2700 F/12」)を用いて、第一熱硬化性樹脂フィルム(x1-1)から第一支持シート(Y1)を取り除き、第一熱硬化性樹脂フィルム(x1-1)を露出させた。
 次いで、走査型電子顕微鏡(SEM、キーエンス社製「VE-9700」)を用いて、半導体ウエハのバンプ形成面に対して垂直な方向と60°の角度を為す方向から、半導体ウエハのバンプの表面を観察し、バンプの上部での第一熱硬化性樹脂フィルム(x1-1)の残渣の有無を確認した。そして、バンプ上部に残渣が存在する場合には「残渣あり」と判定し、バンプ上部に残渣が存在しない場合には「残渣なし」と判定した。結果を表1に示す。
3-4. Confirmation of residual presence or absence of the first thermosetting resin film (x1-1) on the upper part of the bump Peeling from the first composite sheet (α1) obtained in "3-1. Production of the first composite sheet (α1)" The film is removed, and the surface (exposed surface) of the first thermosetting resin film (x1-1) exposed by this is pressed against the bump-forming surface of a semiconductor wafer having a diameter of 8 inches and having bumps to form a release film. The first composite sheet (α1) from which the above was removed was attached to the bump forming surface of the semiconductor wafer. At this time, as the semiconductor wafer, one having a bump height of 210 μm, a bump width of 250 μm, and a distance between the bumps of 400 μm was used. The first composite sheet (α1) is attached using a pasting device (roller type laminator, Lintec Corporation "RAD-3510 F / 12") at a table temperature of 90 ° C., a sticking speed of 2 mm / sec, and sticking. The first composite sheet (α1) was heated under the conditions of pressure: 0.5 MPa and roller attachment height: −200 μm.
Next, the first support sheet (Y1) was removed from the first thermosetting resin film (x1-1) using a multi-wafer mounter (“RAD-2700 F / 12” manufactured by Lintec Corporation), and the first thermosetting property was obtained. The resin film (x1-1) was exposed.
Next, using a scanning electron microscope (SEM, "VE-9700" manufactured by KEYENCE CORPORATION), the surface of the bump of the semiconductor wafer is formed from a direction perpendicular to the bump forming surface of the semiconductor wafer and an angle of 60 °. Was observed, and the presence or absence of a residue of the first thermosetting resin film (x1-1) on the upper part of the bump was confirmed. Then, when there is a residue on the upper part of the bump, it is determined that there is a residue, and when there is no residue on the upper part of the bump, it is determined that there is no residue. The results are shown in Table 1.
3-5.バンプ形成面での第一熱硬化性樹脂フィルム(x1-1)のハジキの有無の確認
 バンプ形成面における半導体チップの表面における、第一熱硬化性樹脂フィルム(x1-1)の硬化物によるハジキの有無について、パンプが形成されていない12インチの半導体ウエハを用いて検討した。
 具体的には、パンプが形成されていない12インチのシリコンウエハを用い、上述の「3-4.バンプの上部での熱硬化性樹脂フィルム(x1-1)の残存有無の確認」の場合と同じ方法で、第一複合シート(α1)を貼付し、第一熱硬化性樹脂フィルム(x1-1)から第一支持シート(Y1)を取り除いた。
 次いで、半導体ウエハに貼付されている第一熱硬化性樹脂フィルムを、加圧オーブン(リンテック社製「RAD-9100」)を用いて、温度:130℃、時間:2h、炉内圧力:0.5MPaの加熱条件で加熱処理することにより、第一熱硬化性樹脂フィルム(x1-1)を熱硬化させた。
 次いで、光学顕微鏡(キーエンス社製「VHX-1000」)を用いて、第一熱硬化性樹脂フィルム(x1-1)の硬化物(第1硬化樹脂膜(r1))と半導体ウエハとの積層物全体を、前記硬化物側から観察した。そして、半導体ウエハの露出を直接確認できる領域が存在する場合には「ハジキあり」と判定し、半導体ウエハの露出を直接確認できる領域が存在しない場合には「ハジキなし」と判定した。
3-5. Confirmation of presence / absence of repelling of the first thermosetting resin film (x1-1) on the bump forming surface Repellent due to the cured product of the first thermosetting resin film (x1-1) on the surface of the semiconductor chip on the bump forming surface. The presence or absence of this was examined using a 12-inch semiconductor wafer on which no pump was formed.
Specifically, in the case of the above-mentioned "3-4. Confirmation of the presence or absence of the remaining thermosetting resin film (x1-1) on the upper part of the bump" using a 12-inch silicon wafer on which no pump is formed. The first composite sheet (α1) was attached in the same manner, and the first support sheet (Y1) was removed from the first thermosetting resin film (x1-1).
Next, the first thermosetting resin film attached to the semiconductor wafer was subjected to a pressure oven (“RAD-9100” manufactured by Lintec Co., Ltd.) at a temperature of 130 ° C., a time of 2 hours, and a furnace pressure of 0. The first thermosetting resin film (x1-1) was heat-cured by heat-treating under a heating condition of 5 MPa.
Next, using an optical microscope (“VHX-1000” manufactured by KEYENCE CORPORATION), a laminate of a cured product (first cured resin film (r1)) of the first thermosetting resin film (x1-1) and a semiconductor wafer. The whole was observed from the cured product side. Then, when there is a region where the exposure of the semiconductor wafer can be directly confirmed, it is determined that there is a cissing, and when there is no region where the exposure of the semiconductor wafer can be directly confirmed, it is determined that there is no cissing.
3-5.溝部への埋め込み性の評価
(1)半導体チップ作製用ウエハの準備
 半導体チップ作製用ウエハとして、分割予定ラインをハーフカットした12インチのシリコンウエハ(ウエハ厚さ750μm)を用いた。当該シリコンウエハのハーフカット部の幅(溝部の幅)は60μmであり、溝の深さは230μmである。
3-5. Evaluation of embedding property in the groove (1) Preparation of wafer for semiconductor chip fabrication As the semiconductor chip fabrication wafer, a 12-inch silicon wafer (wafer thickness 750 μm) in which the planned division line was half-cut was used. The width of the half-cut portion (width of the groove portion) of the silicon wafer is 60 μm, and the depth of the groove is 230 μm.
(2)評価方法
 「3-1.第一複合シート(α1)の製造」で得られた第一複合シート(α1)から剥離フィルムを取り除き、これにより露出した第一熱硬化性樹脂フィルム(x1-1)の表面(露出面)を、半導体チップ作製用ウエハの表面側(ハーフカット形成面)に、以下の条件で押圧しながら貼付した。
・貼付装置:全自動貼合機(リンテック株式会社製、製品名「RAD-3510」)
・ローラー圧力:0.5MPa
・ローラー高さ:-400μm
・貼付速度:5mm/sec
・貼付温度:90℃
 次いで、第一支持シート(Y1)を第一熱硬化性樹脂フィルム(x1-1)から剥離した後、第一熱硬化性樹脂フィルム(x1-1)を貼り付けた半導体チップ作製用ウエハを、130℃で4時間加熱して硬化させて第一硬化樹脂膜(r1)を形成した。そして、半導体チップ作製用ウエハをハーフカット形成面から裏面に向けて切断し、ハーフカット部の溝部への第一硬化樹脂膜(r1)の埋め込み性を、光学顕微鏡(キーエンス社製「VHX-1000」)で観察した。
 埋め込み性の評価基準は以下のとおりとした。
 S:第一硬化樹脂膜(r1)の形状にゆがみが見られず、埋め込み性が最良である。
 A:溝部入り口近傍にて第一硬化樹脂膜(r1)の形状に若干のゆがみが見られるものの、埋め込み性は良好である。
 B:埋め込み性は不良である。
(2) Evaluation Method The release film was removed from the first composite sheet (α1) obtained in "3-1. Production of the first composite sheet (α1)", and the exposed first thermosetting resin film (x1) was removed. The surface (exposed surface) of -1) was attached to the surface side (half-cut forming surface) of the semiconductor chip manufacturing wafer while pressing under the following conditions.
-Attaching device: Fully automatic laminating machine (manufactured by Lintec Corporation, product name "RAD-3510")
・ Roller pressure: 0.5MPa
・ Roller height: -400 μm
-Attachment speed: 5 mm / sec
-Attachment temperature: 90 ° C
Next, after peeling the first support sheet (Y1) from the first thermosetting resin film (x1-1), a wafer for producing a semiconductor chip to which the first thermosetting resin film (x1-1) is attached is attached. The first cured resin film (r1) was formed by heating at 130 ° C. for 4 hours and curing. Then, the wafer for manufacturing a semiconductor chip is cut from the half-cut forming surface toward the back surface, and the embedding property of the first cured resin film (r1) in the groove portion of the half-cut portion is checked with an optical microscope (Keyence's "VHX-1000". ”) Was observed.
The evaluation criteria for implantability were as follows.
S: The shape of the first cured resin film (r1) is not distorted, and the embedding property is the best.
A: Although the shape of the first cured resin film (r1) is slightly distorted near the entrance of the groove, the embedding property is good.
B: Implantability is poor.
4.結果
 第一熱硬化性樹脂フィルム形成用組成物(x1-1-1)の含有成分及び評価結果を表1に示す。
 また、「3-5.溝部への埋め込み性の評価」の結果(図面代用写真)を図16に示す。
4. Results Table 1 shows the components contained in the first thermosetting resin film forming composition (x1-1-1) and the evaluation results.
In addition, FIG. 16 shows the result (drawing substitute photograph) of "3-5. Evaluation of embedding property in the groove".
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示す結果から、以下のことがわかる。
 X値が19以上10,000未満である実施例1及び2では、はみ出しが見られず、バンプ上部の残渣もなく、貼付時ハジキも見られず、溝埋め込み性も良好であることがわかる。
 これに対し、比較例1及び3のようにX値が19未満であると、はみ出しの発生、バンプ上部における残渣の発生、埋め込み性も不良のいずれか1以上が生じることがわかる。
 また、図16の図面代用写真から、比較例1のようにはみ出しが起こると、溝埋め込み性が不良となることがわかる。また、比較例3では、第一熱硬化性樹脂フィルム(x1-1)が溝に侵入しなかった。
 さらに、比較例2のように、X値が10,000以上であると、バンプ形成面においてハジキが生じることがわかる。
From the results shown in Table 1, the following can be seen.
It can be seen that in Examples 1 and 2 in which the X value is 19 or more and less than 10,000, no protrusion is observed, no residue on the bump portion is observed, no cissing is observed at the time of application, and the groove embedding property is good.
On the other hand, when the X value is less than 19 as in Comparative Examples 1 and 3, it can be seen that any one or more of protrusion, residue on the upper part of the bump, and poor embedding property occurs.
Further, from the drawing substitute photograph of FIG. 16, it can be seen that the groove embedding property becomes poor when the protrusion occurs as in Comparative Example 1. Further, in Comparative Example 3, the first thermosetting resin film (x1-1) did not penetrate into the groove.
Further, as in Comparative Example 2, when the X value is 10,000 or more, it can be seen that cissing occurs on the bump forming surface.
 以上の結果から、実施例1及び2の第一熱硬化性樹脂フィルム(x1-1)を用いて形成された第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハを、上記工程(S4)及び上記工程(S-BG)に供して個片化することによって、バンプ形成面及び側面が第一硬化樹脂膜(r1)で良好に被覆された半導体チップを得ることが可能であることがわかった。 From the above results, a wafer for manufacturing a semiconductor chip with a first curable resin film (r1) formed by using the first thermosetting resin film (x1-1) of Examples 1 and 2 was obtained in the above step (S4). And, it was found that it is possible to obtain a semiconductor chip in which the bump forming surface and the side surface are well coated with the first cured resin film (r1) by subjecting to the above step (S-BG) and individualizing. It was.
10  半導体チップ作製用ウエハ
11  ウエハ
11a バンプ形成面
11b 裏面
12  バンプ
13  溝部
40  半導体チップ
x1  第一硬化性樹脂
r1  第一硬化樹脂膜
X1  層
Y1  第一支持シート
α1  第一複合シート
x2  第二硬化性樹脂
r2  第二硬化樹脂膜
X2  層
Y2  第二支持シート
α2  第二複合シート
51  基材
61  粘着剤層
71  中間層

 
10 Wafer for manufacturing semiconductor chips 11 Wafer 11a Bump forming surface 11b Back surface 12 Bump 13 Groove 40 Semiconductor chip x1 First curable resin r1 First curable resin film X1 Layer Y1 First support sheet α1 First composite sheet x2 Second curability Resin r2 Second cured resin film X2 Layer Y2 Second support sheet α2 Second composite sheet 51 Base material 61 Adhesive layer 71 Intermediate layer

Claims (14)

  1.  バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜を形成するために用いられ、下記要件(I)を満たす、硬化性樹脂フィルム。
    <要件(I)>
     温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記硬化性樹脂フィルムの試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが1%のときの前記試験片の貯蔵弾性率をGc1とし、前記試験片のひずみが300%のときの前記試験片の貯蔵弾性率をGc300としたときに、下記式(i)により算出されるX値が、19以上10,000未満である。
     X=Gc1/Gc300・・・・(i)
    A curable resin film used for forming a curable resin film as a protective film on both the bump-forming surface and the side surface of a semiconductor chip having a bump-forming surface having bumps, and satisfying the following requirement (I).
    <Requirement (I)>
    Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the curable resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece is measured, and the strain of the test piece is 1. X calculated by the following formula (i) when the storage elastic modulus of the test piece is Gc1 and the storage elastic modulus of the test piece is Gc300 when the strain of the test piece is 300%. The value is 19 or more and less than 10,000.
    X = Gc1 / Gc300 ... (i)
  2.  前記要件(I)において、Gc300が15,000未満である、請求項1に記載の硬化性樹脂フィルム。 The curable resin film according to claim 1, wherein Gc300 is less than 15,000 in the requirement (I).
  3.  バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜を形成するために用いられ、
     支持シートと硬化性樹脂の層とが積層された積層構造を有し、
     前記硬化性樹脂が、請求項1又は2に記載の硬化性樹脂フィルムである、複合シート。
    It is used to form a cured resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface having bumps.
    It has a laminated structure in which a support sheet and a layer of a curable resin are laminated.
    A composite sheet in which the curable resin is the curable resin film according to claim 1 or 2.
  4.  請求項1又は2に記載の硬化性樹脂フィルムを、バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜を形成するために使用する、使用方法。 The curable resin film according to claim 1 or 2 is used to form a curable resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface provided with bumps. Method.
  5.  請求項3に記載の複合シートを、バンプを備えるバンプ形成面を有する半導体チップの前記バンプ形成面及び側面の双方に保護膜としての硬化樹脂膜を形成するために使用する、使用方法。 A method of use according to claim 3, wherein the composite sheet is used to form a cured resin film as a protective film on both the bump forming surface and the side surface of a semiconductor chip having a bump forming surface provided with bumps.
  6.  半導体チップの製造方法であって、
     下記工程(S1)~(S4)をこの順で含み、
    ・工程(S1):バンプを備えるバンプ形成面を有する半導体ウエハの前記バンプ形成面に、分割予定ラインとしての溝部が裏面に到達することなく形成されている半導体チップ作製用ウエハを準備する工程
    ・工程(S2):前記半導体チップ作製用ウエハの前記バンプ形成面に、第一硬化性樹脂(x1)を押圧して貼付し、前記半導体チップ作製用ウエハの前記バンプ形成面を前記第一硬化性樹脂(x1)で被覆すると共に、前記半導体チップ作製用ウエハに形成されている前記溝部に前記第一硬化性樹脂(x1)を埋め込む工程
    ・工程(S3):前記第一硬化性樹脂(x1)を硬化させて、第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハを得る工程
    ・工程(S4):前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハを前記分割予定ラインに沿って個片化し、少なくとも前記バンプ形成面及び側面が前記第一硬化樹脂膜(r1)で被覆されている半導体チップを得る工程
     さらに、前記工程(S2)の後で且つ前記工程(S3)の前、前記工程(S3)の後で且つ前記工程(S4)の前、又は前記工程(S4)において、下記工程(S-BG)を含み、
    ・工程(S-BG):前記半導体チップ作製用ウエハの前記裏面を研削する工程
     前記第一硬化性樹脂(x1)として、請求項1又は2に記載の硬化性樹脂フィルムを用いる、半導体チップの製造方法。
    A method for manufacturing semiconductor chips
    The following steps (S1) to (S4) are included in this order.
    Step (S1): A step of preparing a wafer for manufacturing a semiconductor chip, in which a groove portion as a planned division line is formed on the bump forming surface of a semiconductor wafer having a bump forming surface having bumps without reaching the back surface. Step (S2): The first curable resin (x1) is pressed and attached to the bump forming surface of the semiconductor chip manufacturing wafer, and the bump forming surface of the semiconductor chip manufacturing wafer is subjected to the first curability. A step / step (S3) of coating with a resin (x1) and embedding the first curable resin (x1) in the groove formed in the wafer for manufacturing a semiconductor chip: the first curable resin (x1). To obtain a wafer for manufacturing a semiconductor chip with a first cured resin film (r1) by curing: Step (S4): Wafer for producing a semiconductor chip with a first cured resin film (r1) is formed along the planned division line. A step of obtaining a semiconductor chip in which at least the bump forming surface and the side surface are coated with the first cured resin film (r1). Further, after the step (S2) and before the step (S3). The following step (S-BG) is included after the step (S3) and before the step (S4), or in the step (S4).
    Step (S-BG): Step of grinding the back surface of the wafer for manufacturing a semiconductor chip A semiconductor chip using the curable resin film according to claim 1 or 2 as the first curable resin (x1). Production method.
  7.  前記工程(S2)は、前記半導体チップ作製用ウエハの前記バンプ形成面に、第一支持シート(Y1)と前記第一硬化性樹脂(x1)の層(X1)とが積層された積層構造を有する第一複合シート(α1)を、前記層(X1)を貼付面として押圧して貼付することで実施される、請求項6に記載の半導体チップの製造方法。 In the step (S2), a laminated structure in which a first support sheet (Y1) and a layer (X1) of the first curable resin (x1) are laminated on the bump forming surface of the wafer for manufacturing a semiconductor chip is formed. The method for manufacturing a semiconductor chip according to claim 6, wherein the first composite sheet (α1) to be held is attached by pressing the layer (X1) as a attachment surface.
  8.  前記工程(S-BG)を、前記工程(S2)の後で且つ前記工程(S3)の前に含み、
     前記工程(S-BG)は、前記第一複合シート(α1)を貼付した状態で前記半導体チップ作製用ウエハの前記裏面を研削した後に、前記第一複合シート(α1)から前記第一支持シート(Y1)を剥離することにより実施され、
     前記工程(S4)は、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)のうち前記溝部に形成されている部分を、前記分割予定ラインに沿って切断することにより実施される、請求項7に記載の半導体チップの製造方法。
    The step (S-BG) is included after the step (S2) and before the step (S3).
    In the step (S-BG), the back surface of the semiconductor chip manufacturing wafer is ground with the first composite sheet (α1) attached, and then the first composite sheet (α1) is used as the first support sheet. It is carried out by peeling off (Y1),
    In the step (S4), a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line. The method for manufacturing a semiconductor chip according to claim 7, which is carried out by cutting the semiconductor chip.
  9.  前記工程(S-BG)を、前記工程(S3)の後で且つ前記工程(S4)の前に含み、
     前記工程(S3)を、前記第一複合シート(α1)から前記第一支持シート(Y1)を剥離することなく実施し、
     前記工程(S-BG)は、前記第一複合シート(α1)を貼付した状態で前記半導体チップ作製用ウエハの前記裏面を研削した後に、前記第一複合シート(α1)から前記第一支持シート(Y1)を剥離することにより実施され、
     前記工程(S4)は、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)のうち前記溝部に形成されている部分を、前記分割予定ラインに沿って切断することにより実施される、請求項7に記載の半導体チップの製造方法。
    The step (S-BG) is included after the step (S3) and before the step (S4).
    The step (S3) was carried out without peeling the first support sheet (Y1) from the first composite sheet (α1).
    In the step (S-BG), the back surface of the semiconductor chip manufacturing wafer is ground with the first composite sheet (α1) attached, and then the first composite sheet (α1) is used as the first support sheet. It is carried out by peeling off (Y1),
    In the step (S4), a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line. The method for manufacturing a semiconductor chip according to claim 7, which is carried out by cutting the semiconductor chip.
  10.  前記工程(S-BG)を、前記工程(S3)の後で且つ前記工程(S4)の前に含み、
     前記工程(S2)の後で且つ前記工程(S3)の前に、前記第一複合シート(α1)から前記第一支持シート(Y1)を剥離し、
     前記工程(S-BG)は、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)の表面にバックグラインドシート(b-BG)を貼付し、前記バックグラインドシート(b-BG)を貼付した状態で前記半導体チップ作製用ウエハの前記裏面を研削した後、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハから前記バックグラインドシート(b-BG)を剥離することにより実施され、
     前記工程(S4)は、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)のうち前記溝部に形成されている部分を、前記分割予定ラインに沿って切断することにより実施される、請求項7に記載の半導体チップの製造方法。
    The step (S-BG) is included after the step (S3) and before the step (S4).
    After the step (S2) and before the step (S3), the first support sheet (Y1) is peeled off from the first composite sheet (α1).
    In the step (S-BG), a back grind sheet (b-BG) is attached to the surface of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1). After grinding the back surface of the semiconductor chip manufacturing wafer with the back grind sheet (b-BG) attached, the back grind sheet (b-) is transferred from the semiconductor chip manufacturing wafer with the first cured resin film (r1). It is carried out by peeling off BG),
    In the step (S4), a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line. The method for manufacturing a semiconductor chip according to claim 7, which is carried out by cutting the semiconductor chip.
  11.  前記工程(S-BG)を、前記工程(S4)において含み、
     前記工程(S2)の後で且つ前記工程(S3)の前に、前記第一複合シート(α1)から前記第一支持シート(Y1)を剥離し、
     前記工程(S4)は、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)のうち前記溝部に形成されている部分に、前記分割予定ラインに沿って切り込みを入れるか、又は前記分割予定ラインに沿って改質領域を形成した後、前記工程(S-BG)として、前記第一硬化樹脂膜(r1)付き半導体チップ作製用ウエハの前記第一硬化樹脂膜(r1)の表面にバックグラインドシート(b-BG)を貼付して、前記バックグラインドシート(b-BG)を貼付した状態で前記半導体チップ作製用ウエハの前記裏面を研削することにより実施される、請求項7に記載の半導体チップの製造方法。
    The step (S-BG) is included in the step (S4).
    After the step (S2) and before the step (S3), the first support sheet (Y1) is peeled off from the first composite sheet (α1).
    In the step (S4), a portion of the first cured resin film (r1) of the wafer for manufacturing a semiconductor chip with the first cured resin film (r1) formed in the groove is formed along the planned division line. After making a notch or forming a modified region along the planned division line, as the step (S-BG), the first wafer for manufacturing a semiconductor chip with the first cured resin film (r1). By attaching a back grind sheet (b-BG) to the surface of the cured resin film (r1) and grinding the back surface of the semiconductor chip manufacturing wafer with the back grind sheet (b-BG) attached. The method for manufacturing a semiconductor chip according to claim 7, which is carried out.
  12.  さらに、下記工程(T)を含む、請求項6~11のいずれか1項に記載の半導体チップの製造方法。
    ・工程(T):前記半導体チップ作製用ウエハの前記裏面に、第二硬化樹脂膜(r2)を形成する工程
    The method for manufacturing a semiconductor chip according to any one of claims 6 to 11, further comprising the following step (T).
    Step (T): A step of forming a second cured resin film (r2) on the back surface of the semiconductor chip manufacturing wafer.
  13.  前記溝部の幅が、10μm~2000μmである、請求項6~12のいずれか1項に記載の半導体チップの製造方法。 The method for manufacturing a semiconductor chip according to any one of claims 6 to 12, wherein the width of the groove is 10 μm to 2000 μm.
  14.  前記溝部の深さが、30μm~700μmである、請求項6~13のいずれか1項に記載の半導体チップの製造方法。 The method for manufacturing a semiconductor chip according to any one of claims 6 to 13, wherein the depth of the groove is 30 μm to 700 μm.
PCT/JP2020/049014 2019-12-27 2020-12-25 Curable resin film, composite sheet, and method for manufacturing semiconductor chip WO2021132679A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227021695A KR20220122998A (en) 2019-12-27 2020-12-25 Curable resin film, composite sheet, and manufacturing method of a semiconductor chip
JP2021567737A JPWO2021132679A1 (en) 2019-12-27 2020-12-25
CN202080090576.5A CN114930504A (en) 2019-12-27 2020-12-25 Curable resin film, composite sheet, and method for producing semiconductor chip

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-239012 2019-12-27
JP2019239012 2019-12-27
JP2020031717 2020-02-27
JP2020-031717 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021132679A1 true WO2021132679A1 (en) 2021-07-01

Family

ID=76574525

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/049014 WO2021132679A1 (en) 2019-12-27 2020-12-25 Curable resin film, composite sheet, and method for manufacturing semiconductor chip
PCT/JP2020/049015 WO2021132680A1 (en) 2019-12-27 2020-12-25 Kit and method for manufacturing semiconductor chip

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049015 WO2021132680A1 (en) 2019-12-27 2020-12-25 Kit and method for manufacturing semiconductor chip

Country Status (5)

Country Link
JP (2) JP7033237B2 (en)
KR (2) KR20220122998A (en)
CN (2) CN114930504A (en)
TW (2) TW202140663A (en)
WO (2) WO2021132679A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234201A1 (en) * 2022-06-02 2023-12-07 住友ベークライト株式会社 Liquid resin composition and resin-encapsulated power module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081734A (en) * 2006-08-31 2008-04-10 Hitachi Chem Co Ltd Adhesive sheet, integrated sheet, semiconductor device, and method for manufacturing semiconductor device
JP2015207718A (en) * 2014-04-22 2015-11-19 デクセリアルズ株式会社 Semiconductor device manufacturing method
US20150357256A1 (en) * 2014-06-08 2015-12-10 UTAC Headquarters Pte. Ltd. Semiconductor packages and methods of packaging semiconductor devices
JP2016076694A (en) * 2014-10-02 2016-05-12 住友ベークライト株式会社 Semiconductor device manufacturing method and semiconductor device
WO2017077957A1 (en) * 2015-11-04 2017-05-11 リンテック株式会社 Method for manufacturing semiconductor device
WO2019098329A1 (en) * 2017-11-17 2019-05-23 リンテック株式会社 Thermosetting resin film, and first protective film-forming sheet
JP2019106420A (en) * 2017-12-11 2019-06-27 日東電工株式会社 Dicing tape-integrated sealing sheet and method of manufacturing semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664432B2 (en) 2000-05-18 2005-06-29 カシオ計算機株式会社 Semiconductor device and manufacturing method thereof
JP5830250B2 (en) 2011-02-15 2015-12-09 日東電工株式会社 Manufacturing method of semiconductor device
JP2015092594A (en) 2014-12-10 2015-05-14 日東電工株式会社 Protection layer formation film
JP7098221B2 (en) * 2017-09-08 2022-07-11 株式会社ディスコ Wafer processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008081734A (en) * 2006-08-31 2008-04-10 Hitachi Chem Co Ltd Adhesive sheet, integrated sheet, semiconductor device, and method for manufacturing semiconductor device
JP2015207718A (en) * 2014-04-22 2015-11-19 デクセリアルズ株式会社 Semiconductor device manufacturing method
US20150357256A1 (en) * 2014-06-08 2015-12-10 UTAC Headquarters Pte. Ltd. Semiconductor packages and methods of packaging semiconductor devices
JP2016076694A (en) * 2014-10-02 2016-05-12 住友ベークライト株式会社 Semiconductor device manufacturing method and semiconductor device
WO2017077957A1 (en) * 2015-11-04 2017-05-11 リンテック株式会社 Method for manufacturing semiconductor device
WO2019098329A1 (en) * 2017-11-17 2019-05-23 リンテック株式会社 Thermosetting resin film, and first protective film-forming sheet
JP2019106420A (en) * 2017-12-11 2019-06-27 日東電工株式会社 Dicing tape-integrated sealing sheet and method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234201A1 (en) * 2022-06-02 2023-12-07 住友ベークライト株式会社 Liquid resin composition and resin-encapsulated power module

Also Published As

Publication number Publication date
CN114930503A (en) 2022-08-19
JPWO2021132679A1 (en) 2021-07-01
WO2021132680A1 (en) 2021-07-01
CN114930504A (en) 2022-08-19
KR20220122998A (en) 2022-09-05
JP7033237B2 (en) 2022-03-09
TW202140641A (en) 2021-11-01
JPWO2021132680A1 (en) 2021-07-01
TW202140663A (en) 2021-11-01
KR20220122999A (en) 2022-09-05

Similar Documents

Publication Publication Date Title
WO2018179475A1 (en) Protection film-forming composite sheet
JP6298226B1 (en) Composite sheet for protective film formation
TWI641494B (en) Sheet for forming first protective film, method for forming first protective film and method for manufacturing semiconductor chip
WO2014157520A1 (en) Protective film formation composite sheet, protective film-equipped chip, and method for fabricating protective film-equipped chip
JP7233377B2 (en) Thermosetting resin film and sheet for forming first protective film
WO2021172431A1 (en) Resin film, composite sheet and method for producing semiconductor device
WO2020085220A1 (en) Semiconductor device manufacturing method
JP7256851B2 (en) Manufacturing method of kit and semiconductor chip
JP6438181B1 (en) Semiconductor device and manufacturing method thereof
WO2021132679A1 (en) Curable resin film, composite sheet, and method for manufacturing semiconductor chip
WO2021132678A1 (en) Semiconductor chip production method
JP6938475B2 (en) Composite sheet for forming a protective film
JP2021061324A (en) Protective film forming film and protective film forming composite sheet
JP7451495B2 (en) Thermosetting resin film, sheet for forming a first protective film, kit, and method for producing a workpiece with a first protective film
TWI822962B (en) Method for manufacturing workpiece with first protective film
TWI833912B (en) Thermosetting resin film and first protective film forming sheet
TWI834820B (en) Thermosetting resin film and first protective film forming sheet
WO2021182554A1 (en) Protective film-forming sheet
WO2023136053A1 (en) Sheet for forming first protective membrane, method for manufacturing semiconductor device, and use of sheet
TW202348757A (en) Protective film-forming film, composite sheet for forming protective film, method of manufacturing semiconductor device, and use of protective film-forming film providing a protective film-forming composite sheet including a support sheet and the protective film-forming film provided on one surface of the support sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907790

Country of ref document: EP

Kind code of ref document: A1