WO2017077957A1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2017077957A1
WO2017077957A1 PCT/JP2016/082082 JP2016082082W WO2017077957A1 WO 2017077957 A1 WO2017077957 A1 WO 2017077957A1 JP 2016082082 W JP2016082082 W JP 2016082082W WO 2017077957 A1 WO2017077957 A1 WO 2017077957A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
thermosetting resin
support sheet
layer
semiconductor wafer
Prior art date
Application number
PCT/JP2016/082082
Other languages
French (fr)
Japanese (ja)
Inventor
正憲 山岸
明徳 佐藤
克彦 堀米
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2017548739A priority Critical patent/JP6950907B2/en
Publication of WO2017077957A1 publication Critical patent/WO2017077957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device using a semiconductor chip in which at least a bump surface is protected by a protective film.
  • a semiconductor device using a mounting method called a face-down method has been manufactured.
  • electrode portions called bumps are formed on the surface of a semiconductor chip, and the semiconductor chip is mounted on the substrate so that the chip surface faces the substrate or the like.
  • a semiconductor wafer or a semiconductor chip used in the face-down method may be provided with a resin layer having various functions on a wafer surface provided with bumps for various purposes.
  • a back grind sheet is generally attached to protect the surface of the wafer. Therefore, conventionally, a laminated sheet in which a back grind sheet and various resin layers are laminated and integrated may be used.
  • Patent Document 1 as such a laminated sheet, a thermosetting resin layer that is in contact with the circuit surface, and a flexible thermoplastic resin layer that is directly laminated on this layer, and a thermoplastic resin layer are laminated. Furthermore, what was laminated
  • the bumps provided on the wafer surface are likely to be damaged due to stress concentration on the bump neck which is a connecting portion between the semiconductor wafer and the bump. Therefore, forming a protective film on the wafer surface separately from the sealing resin has been studied. It has been studied that the protective film is formed by heat-curing a thermosetting resin layer laminated on the wafer surface, for example, before resin sealing. However, the thermosetting resin is fluidized by heating, but the flow of the resin is hindered by the bumps, so that it may be difficult to obtain a uniform film thickness. If the thickness of the protective film cannot be made uniform, the embedding property of the bump neck becomes insufficient and the bump neck may not be properly protected.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a bump neck with a bump film by providing a bump film with a uniform film thickness in a bumped semiconductor wafer.
  • a method for manufacturing a semiconductor device capable of appropriately protecting the semiconductor device is provided.
  • the present inventors bonded a thermosetting resin layer supported by a support sheet on the surface (bump surface) of a semiconductor wafer provided with bumps, and thermosetting the substrate in a state supported by the support sheet.
  • a thermosetting resin layer supported by a support sheet on the surface (bump surface) of a semiconductor wafer provided with bumps, and thermosetting the substrate in a state supported by the support sheet.
  • thermosetting resin layer in which a first support sheet and a thermosetting resin layer are provided in this order on the surface of a semiconductor wafer on which bumps are provided, the thermosetting resin layer And a process of bonding to the bonding surface, (II) heating and curing the thermosetting resin layer to form a protective film; (III) peeling the first support sheet from the protective film formed by curing the thermosetting resin layer; (IV) dicing the semiconductor wafer together with the protective film; A method for manufacturing a semiconductor device comprising: (2) (A-1) bonding the second protective film forming layer to the back surface of the semiconductor wafer; (A-2) heating the second protective film forming layer to form a second protective film; and (A-3) the second protective film forming layer on the back surface of the semiconductor wafer, or a second protective film.
  • the method for manufacturing a semiconductor device according to (1) further including a step of bonding a second support sheet on the film.
  • B-1) A second protective film-forming film comprising a second support sheet and a second protective film-forming layer provided on the second support sheet; Bonding and bonding to the back surface of the semiconductor wafer; and
  • B-2) The method for manufacturing a semiconductor device according to (1), further including: a step of heating the second protective film forming layer to form a second protective film.
  • the first support sheet includes a first base material and a first pressure-sensitive adhesive layer provided on one surface of the first base material, and the thermosetting is performed on the first pressure-sensitive adhesive layer.
  • a conductive resin layer is provided.
  • the melt viscosity of the thermosetting resin layer is 1 ⁇ 10 2 Pa ⁇ S or more and less than 2 ⁇ 10 4 Pa ⁇ S at the temperature when the first protective film-forming film is bonded to the semiconductor wafer.
  • the shear modulus of the first pressure-sensitive adhesive layer is 1 ⁇ 10 3 Pa or more and 2 ⁇ 10 6 Pa or less at the temperature when the first protective film-forming film is bonded to the semiconductor wafer (6)
  • the present invention provides a method for manufacturing a semiconductor device in which a bump can be appropriately protected by a protective film by making the protective film uniform in thickness and embedding a bump neck inside the protective film.
  • the semiconductor wafer 10 used in this manufacturing method is a bumped wafer in which bumps 11 are provided on the surface 10A.
  • a plurality of bumps 11 are usually provided.
  • the semiconductor wafer 10 is not particularly limited, but may be a silicon wafer or a ceramic, glass, or sapphire wafer.
  • the thickness of the semiconductor wafer 10 is not particularly limited, but is preferably 0.625 to 0.825 mm.
  • the material of the bump 11 is not particularly limited, and various metal materials are used, and preferably solder is used.
  • the shape of the bump 11 is not particularly limited, and may be a round shape as shown in FIG. 1, but may be any other shape.
  • the height of the bump 11 is not particularly limited, but is usually 5 to 1000 ⁇ m, preferably 50 to 500 ⁇ m.
  • the manufacturing method of the semiconductor device according to the first embodiment of the present invention includes at least the following steps.
  • the process of pasting together (II) a step of heating and curing the thermosetting resin layer to form a protective film; (III) A step of peeling the first support sheet from the protective film formed by curing the thermosetting resin layer, (IV) Process of dicing a semiconductor wafer together with a protective film
  • step (I) In step (I), first, as shown in FIG. 2, a first protective film-forming film 20 including a first support sheet 23 and a thermosetting resin layer 25 provided on the first support sheet 23. Prepare. Then, as shown in FIG. 3, the first protective film forming film 20 is bonded to the surface (bump surface) 10 ⁇ / b> A of the semiconductor wafer 10 with the thermosetting resin layer 25 as the bonding surface.
  • the first support sheet 23 is provided with the first base material 21 and the first adhesive provided on one surface of the first base material 21 as shown in FIG. 2.
  • thermosetting resin layer 25 may be affixed on the first pressure-sensitive adhesive layer 22, but the first pressure-sensitive adhesive layer 22 is omitted and the first adhesive layer 22 is formed on the first base material 21.
  • the thermosetting resin layer 25 may be directly attached.
  • one surface of the 1st base material 21 is surface-treated, or layers other than an adhesive layer are provided in the 1st support sheet 23, and the thermosetting resin layer 25 is provided through the layer or surface treatment surface. It may be affixed.
  • an intermediate layer may be provided between the first pressure-sensitive adhesive layer 22 and the first base material 21.
  • a release material (not shown) may be further stuck on the thermosetting resin layer 25 of the first protective film forming film 20.
  • the release material protects the thermosetting resin layer 25 until the first protective film forming film 20 is used.
  • the release material is peeled off and removed from the first protective film forming film 20 before the first protective film forming film 20 is attached to the semiconductor wafer 10.
  • the 1st adhesive layer 22 is formed from various adhesives, even if it is formed with the energy-beam curable adhesive which hardens
  • the first support sheet 23 preferably has heat resistance. That is, the first base material 21 constituting the first support sheet 23 is preferably a base material that does not melt or remarkably shrink due to heating in the step (II). In addition, the first support sheet 23 having heat resistance does not increase the adhesion to the adherend even when heated for a predetermined time. Specifically, the heat-resistant first support sheet 23 has an adhesive force after heating in the step (II) of less than 10 N / 25 mm. Further, the adhesive force after heating in the step (II) of the first support sheet 23 is 0.3 to 9.8 N / 25 mm in order to make the adhesive force to the first protective film 25A after heating more appropriate. It is preferably 0.5 to 9.5 N / 25 mm.
  • the adhesive strength after heating means that when the pressure-sensitive adhesive layer is formed of an energy ray curable pressure-sensitive adhesive, the pressure-sensitive adhesive layer is irradiated with energy rays at the same timing and conditions as the manufacturing method to be carried out. It means the adhesive force when the pressure-sensitive adhesive layer is heated at the same timing and conditions as in the production method to be cured. In the production method to be carried out, for example, when the energy ray is irradiated after the heating in the step (II), it is a value when the adhesive force is measured by irradiating the pressure-sensitive adhesive layer after the heating.
  • step (II) in the case of irradiating energy rays, for example, before heating in step (II) in the production method to be carried out, it is a value when the adhesive force is measured by irradiating the pressure-sensitive adhesive layer before heating. is there. Moreover, the heating of the 1st support sheet at the time of adhesive force measurement is performed in the state which affixed the 1st support sheet to the thermosetting resin layer which is a to-be-adhered body, and the thermosetting resin layer is hardened by the heating. It becomes a protective film. Details of the method for measuring the adhesive strength are as described in the Examples.
  • the bonding of the first protective film forming film 20 to the semiconductor wafer 10 is preferably performed at a bonding temperature of 30 to 150 ° C., more preferably 40 to 100 ° C.
  • the first protective film forming film 20 is preferably applied while being pressed, for example, while being pressed by a pressing means such as a pressure roller.
  • the first protective film forming film 20 may be pressure-bonded to the semiconductor wafer 10 by a vacuum laminator.
  • the bumps 11 penetrate the thermosetting resin layer 25 and protrude toward the first support sheet 23. Protruding the bumps 11 toward the first support sheet 23 in this manner makes it easy to fix the bumps 11 in contact with electrodes or the like on the chip mounting substrate by reflow described later.
  • the bump 11 may be in a state of being embedded in the thermosetting resin layer 25 without protruding toward the first support sheet 23 side. Even in such a state, the bump 11 may be protruded by causing the thermosetting resin layer 25 to flow by heating in the step (II) or the like.
  • the first support sheet 23 includes a base material 21 and a first pressure-sensitive adhesive layer 22 provided on one surface of the base material 21, and a thermosetting resin layer 25 is provided on the first pressure-sensitive adhesive layer 22.
  • the melt viscosity of the thermosetting resin layer 25 is 1 ⁇ 10 2 Pa ⁇ S or more and 2 ⁇ 10 at the temperature (bonding temperature) when the first protective film forming film 20 is bonded to the semiconductor wafer 10.
  • the shear modulus of the first pressure-sensitive adhesive layer 22 is preferably 1 ⁇ 10 3 Pa or more and 2 ⁇ 10 6 Pa or less at the bonding temperature.
  • the melt viscosity of the thermosetting resin layer 25 is 1 ⁇ 10 3 Pa ⁇ S or more and less than 1 ⁇ 10 4 Pa ⁇ S
  • the shear modulus of the first pressure-sensitive adhesive layer 22 is 1 ⁇ 10 4 Pa or more and 5 It is more preferable that it is 10 5 Pa or less.
  • the melt viscosity of the thermosetting resin layer 25 can be adjusted, for example, by changing the amount of each material in the thermosetting resin composition described later and the type of each material.
  • the shear elastic modulus of the 1st adhesive layer 22 can be adjusted by changing the kind of adhesive.
  • the first pressure-sensitive adhesive layer 22 is formed of an energy ray-curable pressure-sensitive adhesive, before the first support sheet 33 is attached to the semiconductor wafer 10, the first pressure-sensitive adhesive layer 22 is irradiated with energy rays to be partially or It is also possible to adjust the shear modulus by completely curing.
  • the melt viscosity of the thermosetting resin layer is a value measured by a parallel plate method using a rheometer (manufactured by HAAKE, RS-1). More specifically, it is a value when measurement is performed in the range of room temperature to 250 ° C. under the conditions of a gap of 100 ⁇ m, a rotation cone diameter of 20 mm, and a rotation speed of 10 s ⁇ 1 .
  • the shear modulus of the pressure-sensitive adhesive layer is measured using a shear modulus measurement apparatus (ARES, manufactured by Rheometric Co., Ltd.) with a pressure-sensitive adhesive layer having a thickness of 0.2 mm.
  • ARES shear modulus measurement apparatus
  • the shear modulus was measured under the conditions of a frequency of 1 Hz, a plate diameter of 7.9 mm ⁇ , and a strain of 1%, with the temperature being the same as the bonding temperature. Further, when the pressure-sensitive adhesive layer is cured by energy rays at the time of bonding, the pressure-sensitive adhesive layer is cured under the same conditions and the shear elastic modulus is measured.
  • the thermosetting resin layer 25 preferably has a thickness of 0.01 to 0.99 times the height of the bump 11 (bump height).
  • bump height By setting the thickness of the thermosetting resin layer 25 to 0.01 times or more of the bump height, it becomes easy to prevent the bump neck from being damaged by embedding the bump neck in the protective film. Moreover, it becomes easy to make the front-end
  • the thickness of the thermosetting resin layer 25 is not particularly limited, but is usually 5 to 500 ⁇ m, preferably 10 to 100 ⁇ m.
  • thermosetting resin layer 25 laminated on the surface 10A of the semiconductor wafer 10 is heated (step (II)). As shown in FIG. 3, this heating is performed on the semiconductor wafer 10 on which the first protective film forming film 20 (that is, the first support sheet 23 and the thermosetting resin layer 25) is laminated, for example, a heating furnace or the like. It is preferable to carry out by placing and heating inside. Since the thermosetting resin layer 25 contains a thermosetting resin, the thermosetting resin layer 25 is thermoset by the above-described heating to form a protective film 25A (see FIG. 4).
  • the heating conditions are not particularly limited as long as the thermosetting resin contained in the thermosetting resin layer 25 is cured. For example, the heating conditions are 80 to 200 ° C., 30 to 300 minutes, preferably 100 to 180 ° C. It is performed for 60 to 200 minutes.
  • Step (III) After the heating in the step (II), in the step (III), the first support sheet 23 attached to the surface of the semiconductor wafer 10 is peeled from the protective film 25A. After the peeling, the protective film 25A remains on the semiconductor wafer 10 as shown in FIG.
  • the 1st support sheet 23 has heat resistance as mentioned above, even if it heats, the adhesive force with respect to 25 A of protective films will not improve notably. Therefore, even after the heating in the step (II), the first support sheet 23 can be easily peeled from the protective film 25A.
  • the first pressure-sensitive adhesive layer 22 is formed of an energy ray-curable pressure-sensitive adhesive
  • the first pressure-sensitive adhesive layer 22 is irradiated with energy rays before the first support sheet 23 is peeled from the semiconductor wafer 10 in the step (III). Then, the first pressure-sensitive adhesive layer 22 is cured.
  • the first pressure-sensitive adhesive layer 22 is easily peeled at the interface with the thermosetting resin layer 25 because the adhesive strength is reduced by being cured by energy ray irradiation.
  • the timing for irradiating the first pressure-sensitive adhesive layer 22 with energy rays and curing is not particularly limited, and the first support sheet 23 may be cured in advance before being attached to the semiconductor wafer.
  • the first pressure-sensitive adhesive layer 22 is applied to the semiconductor wafer 10 while irradiating energy rays to such an extent that the first support sheet 23 is not completely cured. Then, the adhesive force may be further reduced by further irradiating with energy rays and further curing.
  • the semiconductor wafer 10 on which the protective film 25 ⁇ / b> A is formed on the bump surface is divided by dicing and divided into a plurality of semiconductor chips 15.
  • the protective film 25 ⁇ / b> A is also divided according to the shape of the semiconductor chip 15.
  • Well-known methods such as a blade dicing, stealth dicing, and laser dicing, can be used, for example, by providing the notch 17 so that the protective film 25A and the semiconductor wafer 10 may be penetrated. Is what you do. For example, as shown in FIG.
  • the dicing is performed by attaching a second support sheet 33 to the back surface 10 ⁇ / b> B side of the semiconductor wafer 10 to support the semiconductor wafer 10 and making a notch 17 from the front surface 10 ⁇ / b> A side of the semiconductor wafer 10.
  • the second support sheet 33 includes a second base material 31 and a second pressure-sensitive adhesive layer 32 provided on one surface of the second base material 31. It is affixed to the semiconductor wafer 10 through the agent layer 32.
  • the second pressure-sensitive adhesive layer 32 may be omitted, or the surface of the second base material 31 that is bonded to the semiconductor wafer 10 is surface-treated, or the pressure-sensitive adhesive layer.
  • a layer other than the pressure-sensitive adhesive layer may be provided and bonded to the back side of the semiconductor wafer 10 via the layer or the surface-treated surface.
  • an intermediate layer (not shown) may be provided between the second pressure-sensitive adhesive layer 32 and the second base material 31.
  • the second support sheet 33 may be slightly larger than the semiconductor wafer 10, and its central region may be attached to the semiconductor wafer 10, and its outer peripheral region may be attached to the support member 13 without being attached to the semiconductor wafer 10.
  • the support member 13 is a member for supporting the second support sheet 33 at the time of dicing or the like, and examples thereof include a ring frame. Note that the second support sheet 33 is not necessarily attached to the support member 13 by directly attaching the second pressure-sensitive adhesive layer 32, and a re-peeling adhesive layer or the like is provided in the outer peripheral region of the second support sheet 33. You may stick by a re-peeling adhesive layer.
  • the 2nd adhesive layer 32 is formed from various adhesives, you may be formed with the energy-beam curable adhesive.
  • energy rays are preliminarily applied to at least a region (center region) bonded to the back surface side of the semiconductor wafer 10 of the second pressure sensitive adhesive layer 32 before pick-up described later. Is applied to cure the second pressure-sensitive adhesive layer 32 and reduce the adhesive force to the back surface of the semiconductor wafer 10.
  • the timing of irradiating the energy beam is not particularly limited, but may be performed before being bonded to the semiconductor wafer 10 or may be performed after dicing and before pickup.
  • the peripheral region may not be irradiated with energy rays, and may be maintained with a high adhesive force for the purpose of bonding to the support member 13.
  • the semiconductor chip 15 is picked up and attached to the chip mounting substrate or the like by reflow, and then the gap between the semiconductor chip 15 and the chip mounting substrate is sealed with a sealing resin.
  • a semiconductor device is manufactured through necessary steps.
  • the method of picking up is not particularly limited.
  • the semiconductor chip 15 is pushed up from the back surface side with a pin or the like through the second support sheet 33, and the semiconductor chip 15 is peeled off from the second support sheet 33 to form a vacuum collet.
  • the picked-up semiconductor chip 15 is attached to a chip mounting substrate or the like by the following method, for example. That is, as shown in FIG. 6, the semiconductor chip 15 is disposed at a predetermined position on the chip mounting substrate 40 such that the surface (that is, the bump surface) faces the chip mounting substrate 40. Then, by reflow, the bumps 11 are fixed to the chip mounting substrate 40, and the semiconductor chip 15 and the chip mounting substrate 40 are electrically connected. In the reflow, for example, a conductive material (not shown) such as solder provided on the substrate 40 is melted, and the bumps 11 are fused to the electrodes of the chip mounting substrate 40 by the conductive material.
  • the reflow is performed, for example, by placing and heating the chip mounting substrate 40 and the semiconductor chip 15 disposed on the substrate 40 inside the heating furnace. Heating in the reflow is performed, for example, in an atmosphere of 120 to 300 ° C. for 0.5 to 5 minutes, preferably in an atmosphere of 160 to 260 ° C. for 1 to 2 minutes.
  • the semiconductor wafer 10 is preferably subjected to back grinding.
  • the back surface grinding is performed in a state where the first support sheet 23 is attached to the front surface 10 ⁇ / b> A side of the semiconductor wafer 10. That is, the back grinding of the semiconductor wafer is performed between the step (I) and the step (III).
  • the 1st support sheet 23 is used not only as a sheet
  • the backside grinding of the semiconductor wafer is performed, for example, by fixing the front surface side of the semiconductor wafer 10 to which the first support sheet 23 is attached on a fixed table such as a chuck table and grinding the backside 10B with a grinder or the like.
  • the thickness of the wafer 10 after grinding is not particularly limited, but is usually 5 to 450 ⁇ m, preferably about 20 to 400 ⁇ m.
  • the thermosetting resin layer 25 includes at least a thermosetting resin and can be bonded to the wafer 10.
  • the thermosetting resin layer 25 becomes a protective film 25 ⁇ / b> A by being heated in a heat curing step described later.
  • the thermosetting resin used for the thermosetting resin layer 25 include an epoxy resin, a phenol resin, an amino resin, an unsaturated polyester resin, a polyurethane resin, a silicone resin, and a thermosetting polyimide resin.
  • a thermosetting resin can be used individually or in combination of 2 or more types.
  • an epoxy resin containing a small amount of ionic impurities that corrode semiconductor elements is particularly suitable.
  • thermosetting resin for example, a phenol resin can be used suitably as a hardening
  • the thermosetting resin is preferably 5 to 70% by mass, more preferably 10 to 10% by mass with respect to the total amount of the thermosetting resin layer (that is, the thermosetting resin composition). 50% by mass.
  • the thermosetting resin layer 25 is comprised from the thermosetting resin composition containing a thermoplastic resin and a filler other than a thermosetting resin.
  • a thermoplastic resin an acrylic resin, a polyester resin, a urethane resin, an acrylic urethane resin, a silicone resin, a rubber polymer, a phenoxy resin, or the like can be used.
  • an acrylic resin is preferable.
  • the thermoplastic resin in the thermosetting resin layer is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, based on the total amount of the thermosetting resin layer (that is, the thermosetting resin composition).
  • inorganic powders selected from powders such as silica, alumina, talc, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride, spheroidized beads, single crystal fibers and glass fibers, etc.
  • a filler is mentioned, In these, a silica filler or an alumina filler is preferable.
  • the filler in the thermosetting resin layer is preferably 5 to 75% by mass, more preferably 10 to 60% by mass, based on the total amount of the thermosetting resin layer (that is, the thermosetting resin composition).
  • thermosetting resin composition may contain other additives, such as coloring agents, such as a hardening accelerator, a coupling agent, a pigment, and dye other than said component, respectively.
  • the curing accelerator is not particularly limited, and for example, at least one selected from amine-based curing accelerators, phosphorus-based curing accelerators, imidazole-based curing accelerators, boron-based curing accelerators, phosphorus-boron-based curing accelerators, and the like. Seeds can be used.
  • a silane coupling agent can be used as the coupling agent.
  • first substrate 21 a resin film can be used, but those having heat resistance as described above are preferably used.
  • the resin film constituting the first substrate 21 may be a single layer film made of one kind of resin film or a multilayer film in which a plurality of resin films are laminated.
  • Specific resin films include polyethylene films, polypropylene films, polybutene films, polybutadiene films, polymethylpentene films, ethylene-norbornene copolymer films, polyolefin films such as norbornene resin films; ethylene-vinyl acetate copolymer films , Ethylene-based copolymer films such as ethylene- (meth) acrylic acid copolymer film and ethylene- (meth) acrylic acid ester copolymer film; polyvinyl chloride such as polyvinyl chloride film and vinyl chloride copolymer film Film: Polyester film such as polyethylene terephthalate film and polybutylene terephthalate film; polyurethane film, polyimide film, polyamide film, polyaceta Le-based films, polycarbonate-based film, polystyrene film, fluororesin film, modified polyphenylene oxide-based film, polyphenylene sulfide film, polysulfone-based films.
  • modified films such as these crosslinked films and ionomer films are also used.
  • resin film used for the first substrate 21 a polyester film, a biaxially stretched polypropylene film, a polyimide film, and a polyamide film are preferable, a polyester film is more preferable, and a polyethylene terephthalate film Is particularly preferred. Since these resin films have heat resistance and high rigidity, the thermosetting resin layer 23 is prevented from flowing in the step (II) and the film thickness is prevented from becoming nonuniform.
  • the 2nd base material 31 used for the 2nd support sheet 33 it is preferable to use a resin film.
  • the second base material 33 can be appropriately selected from the above-described resin films and can be used.
  • the second base material 31 does not need to have heat resistance and does not need to have high rigidity.
  • the base material used for the 1st and 2nd base materials 31 and 33 may use the mutually same thing, and may use a different thing.
  • the first and second base materials 21 and 31 transmit energy rays when the pressure-sensitive adhesive constituting the first and second pressure-sensitive adhesive layers 22 and 23 is an energy ray-type curable pressure-sensitive adhesive, respectively. It is preferable that
  • the thickness of each of the first and second base materials 21 and 31 is, for example, 10 to 300 ⁇ m, preferably 15 to 200 ⁇ m.
  • the adhesive which forms each of the 1st and 2nd adhesive layers 22 and 32 is not specifically limited, an acrylic adhesive, a rubber adhesive, a silicone adhesive, a polyester adhesive, a urethane adhesive, a polyolefin -Based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, polyamide-based pressure-sensitive adhesives, fluorine-based pressure-sensitive adhesives, styrene-diene block copolymer-based pressure-sensitive adhesives and the like.
  • acrylic pressure-sensitive adhesives are preferable.
  • Adhesives are usually acrylic resins, rubber components, silicone resins, polyester resins, urethane resins, polyolefin resins, vinyl alkyl ether resins, polyamide resins, fluorine resins, styrene-diene block copolymers
  • main polymer main polymer
  • adhesive component contains components such as cross-linking agents, tackifiers, antioxidants, plasticizers, fillers, antistatic agents, photopolymerization initiators, and flame retardants It consists of an adhesive composition.
  • the term “adhesive component” is a concept that includes a polymer that does not substantially have adhesiveness, but also includes a polymer that exhibits adhesiveness due to the addition of a plasticizing component, an adhesive-imparting agent, or the like.
  • the first and second pressure-sensitive adhesive layers 22 and 32 may be formed from an energy ray-curable pressure-sensitive adhesive, or a non-energy ray-curable pressure-sensitive adhesive that does not cure the pressure-sensitive adhesive even when irradiated with energy rays. It may be formed from an agent.
  • the energy rays have energy quanta in electromagnetic waves or charged particle rays, and indicate active light such as ultraviolet rays or electron rays. In this production method, it is preferable to use ultraviolet rays. Note that only one of the first and second pressure-sensitive adhesive layers 22 and 32 may be formed from the energy-ray-type curable pressure-sensitive adhesive, or both may be formed from the energy-ray-type curable pressure-sensitive adhesive.
  • the energy ray curable pressure sensitive adhesive is composed of an energy ray curable pressure sensitive adhesive containing a component having a photopolymerizable unsaturated group.
  • the energy ray-curable pressure-sensitive adhesive is not particularly limited, but is a photopolymerizable unsaturated group such as a double bond in the main polymer (for example, acrylic polymer) of the pressure-sensitive adhesive itself (for example, in the side chain of the main polymer). Is introduced.
  • an energy ray-polymerizable compound having a photopolymerizable unsaturated group may be blended separately from the main polymer (for example, acrylic polymer). In this case, the main polymer may or may not have a photopolymerizable unsaturated group introduced therein.
  • the first support sheet 23 preferably has heat resistance as described above. Therefore, the pressure-sensitive adhesive for forming the first pressure-sensitive adhesive layer 22 also preferably has heat resistance.
  • the heat-resistant pressure-sensitive adhesive is not particularly limited as long as it can maintain a low adhesive strength even after heating as described above.
  • the energy ray curable acrylic pressure-sensitive adhesive (A) is preferable.
  • the energy ray curable acrylic pressure-sensitive adhesive (A) can easily exhibit heat resistance by irradiating and curing the energy rays before heating in the step (II).
  • the energy beam curable acrylic pressure-sensitive adhesive (A) one having as a main component an energy beam curable acrylic polymer (A1) having a photopolymerizable unsaturated group in the side chain can be mentioned.
  • the main component generally constitutes 50% by mass or more, preferably 70% by mass or more, of all components of the adhesive constituting the adhesive layer.
  • the energy ray curable acrylic polymer (A1) a (meth) acrylic acid ester copolymer in which active sites such as —COOH, —NCO, epoxy group, —OH, —NH 2 are introduced into the polymer chain ( What reacted the compound which has a photopolymerizable unsaturated group (henceforth an unsaturated group containing compound (X)) with the active point of A2) is mentioned.
  • active sites such as —COOH, —NCO, epoxy group, —OH, —NH 2
  • (meth) acrylic acid is used as a term indicating both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
  • the (meth) acrylic acid ester copolymer (A2) is a copolymer of a (meth) acrylic acid alkyl ester having an alkyl group with 1 to 20 carbon atoms and another monomer. Coalescence is mentioned.
  • (meth) acrylic acid alkyl esters having an alkyl group with 1 to 20 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate.
  • Examples include lauryl, myristyl (meth) acrylate, palmityl (meth) acrylate, and stearyl (meth) acrylate. These may be used alone or in combination of two or more.
  • (meth) acrylic acid alkyl esters in which the alkyl group has 6 to 14 carbon atoms.
  • the (meth) acrylic acid alkyl ester having 6 to 14 carbon atoms in the alkyl group is 50 to 97% by mass with respect to the total amount of monomers constituting the (meth) acrylic acid ester copolymer (A2). It is preferably 70 to 95% by mass.
  • the (meth) acrylic acid alkyl ester in which the alkyl group has 6 to 14 carbon atoms is preferably one in which the alkyl group has 8 to 12 carbon atoms, specifically, 2-ethylhexyl (meth) acrylate, Lauryl (meth) acrylate is more preferred.
  • monomers used in the (meth) acrylic acid ester copolymer (A2) include functional groups such as -COOH, -NCO, epoxy group, -OH, and -NH 2 described above.
  • examples of the monomer having a functional group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylic acid.
  • (Meth) acrylic acid hydroxyalkyl esters such as 2-hydroxybutyl, (meth) acrylic acid 3-hydroxybutyl, (meth) acrylic acid 4-hydroxybutyl; (meth) acrylic acid monomethylaminoethyl, (meth) acrylic acid mono (Meth) acrylic acid monoalkylaminoalkyl such as ethylaminoethyl, (meth) acrylic acid monomethylaminopropyl, (meth) acrylic acid monoethylaminopropyl; acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, citracone Ethylenically unsaturated carboxylic acids such as acids; (Meth) acryloyloxyethyl isocyanate and other isocyanate group-containing (meth) acrylic acid esters; glycidyl (meth) acrylate, ⁇ -methylglycidyl (meth) acrylate, (3,4-epoxycyclohexyl
  • monomers having a functional group may be used alone or in combination of two or more.
  • the monomer having a functional group is preferably 3 to 40% by mass with respect to the total amount of monomers constituting the (meth) acrylic ester copolymer (A2).
  • Other monomers include vinyl esters, olefins, halogenated olefins, styrene monomers, diene monomers, nitrile monomers, N, N-dialkyl substituted acrylamides, and the like. May be used.
  • Examples of the unsaturated group-containing compound (X) reacted with the active site include (meth) acryloyloxyethyl isocyanate, glycidyl (meth) acrylate, pentaerythritol mono (meth) acrylate, and dipentaerythritol mono (meth) acrylate. From among compounds having a photopolymerizable double bond such as trimethylolpropane mono (meth) acrylate, it can be appropriately selected and used according to the type of active site.
  • the unsaturated group-containing compound (X) preferably reacts with a part of the functional group (active point) of the (meth) acrylic acid ester copolymer (A2), specifically, (meth)
  • the unsaturated group-containing compound (X) is preferably reacted with 50 to 90 mol% of the functional group of the acrylate copolymer (A2), more preferably 55 to 85 mol%.
  • a part of the functional group remains without reacting with the unsaturated group-containing compound (X), so that it is easily cross-linked by a cross-linking agent described later.
  • the functional group remaining without reacting is preferably a functional group having active hydrogen such as —COOH, —OH, and —NH 2 , and —OH is more preferable.
  • the energy beam curable acrylic pressure-sensitive adhesive (A) is not photopolymerizable in the side chain.
  • the non-energy ray curable (meth) acrylic acid ester copolymer (A2) which does not have a saturated group may be contained.
  • the (meth) acrylic acid ester copolymer (A2) can be the same as described above, but has a functional group having active hydrogen such as —OH as described above. It is particularly preferred.
  • an energy ray polymerizable compound having an acrylic polymer as a main component and further selected from an energy ray polymerizable oligomer and an energy ray polymerizable monomer What mixed (Y) is mentioned.
  • the acrylic copolymer a (meth) acrylic ester copolymer (A2) that does not have a photopolymerizable unsaturated group in the side chain described above is usually used.
  • an energy ray-curable acrylic polymer (A1) having a photopolymerizable unsaturated group in the side chain and these (A2) and (A1) may be used in combination.
  • Examples of the energy beam polymerizable oligomer include a polyester acrylate, epoxy acrylate, urethane acrylate, polyol acrylate, and a copolymer of an imide (meth) acrylate and a monomer containing an ethylenically unsaturated group. Etc.
  • Examples of the energy beam polymerizable monomer include various monofunctional (meth) acrylates and polyfunctional (meth) acrylates. As specific examples of these energy beam polymerizable oligomers and energy beam polymerizable monomers, those described in Japanese Patent No. 4679896 can be used. The amount of these energy beam polymerizable oligomers and energy beam polymerizable monomers used is selected so as to have the heat resistance described above by irradiation with energy rays.
  • the energy ray curable acrylic pressure-sensitive adhesive preferably contains a crosslinking agent.
  • a cross-linking agent By containing a cross-linking agent, the acrylic polymer is easily cross-linked, and thus heat resistance is easily improved.
  • a crosslinking agent Arbitrary things can be suitably selected and used from what was conventionally used as a crosslinking agent in an acrylic adhesive.
  • the crosslinking agent include polyisocyanate compounds, epoxy resins, melamine resins, urea resins, dialdehydes, methylol polymers, aziridine compounds, metal chelate compounds, metal alkoxides, metal salts, and the like, but polyisocyanate compounds are preferred. Used.
  • polyisocyanate compounds include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, etc. , And their biuret bodies, isocyanurate bodies, and adduct bodies that are a reaction product with low molecular active hydrogen-containing compounds such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylol propane, castor oil, etc. it can.
  • aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate
  • aliphatic polyisocyanates such as hexamethylene diisocyanate
  • a crosslinking agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount used depends on the type of the crosslinking agent, but is usually 0.01 to 20 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the acrylic polymer in the pressure-sensitive adhesive. It is selected in the range.
  • the acrylic polymer is a non-energy ray curable acrylic such as an energy ray curable acrylic polymer (A1) and a (meth) acrylic acid ester copolymer (A2) contained in an adhesive. It means both system polymers.
  • the energy ray curable acrylic pressure-sensitive adhesive (A) preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include benzophenone, benzoin, acetophenone, thioxanthone, acylphosphine oxide, and titanocene photopolymerization initiators. These may be used alone or in combination of two or more, and the blending amount thereof is a component having a photopolymerizable unsaturated group in the pressure-sensitive adhesive (that is, an energy beam polymerizable compound).
  • (Y) and the total amount of the energy beam curable acrylic polymer (A1)) are usually selected in the range of 0.2 to 20 parts by mass, preferably 0.5 to 10 parts by mass, with respect to 100 parts by mass.
  • the energy ray curable acrylic pressure-sensitive adhesive has various additives usually used in acrylic pressure-sensitive adhesives as desired, for example, tackifiers, antioxidants, ultraviolet rays, as long as the object of the present invention is not impaired. Absorbers, light stabilizers, softeners, fillers and the like can be added.
  • the acrylic polymer used for the energy ray curable acrylic pressure-sensitive adhesive preferably has a weight average molecular weight of 300,000 or more, and preferably about 400,000 to 1,000,000.
  • the weight average molecular weight is a value in terms of standard polystyrene measured by the GPC method, and is specifically a method measured by Examples described later.
  • the acrylic polymer may be contained in an amount that can give the pressure-sensitive adhesive to the pressure-sensitive adhesive. It is at least mass%.
  • the water-dispersed acrylic pressure-sensitive adhesive (B) is mainly composed of (meth) acrylic acid alkyl ester having an alkyl group with 4 to 12 carbon atoms and a carboxyl group-containing monomer.
  • the thing containing the copolymer emulsion obtained by emulsion-polymerizing a monomer in presence of an emulsifier is mentioned.
  • specific examples of the (meth) acrylic acid alkyl ester having 4 to 12 carbon atoms in the alkyl group are appropriately selected from the above (meth) acrylic acid alkyl esters.
  • the carboxyl group-containing monomer is appropriately selected from ethylenically unsaturated carboxylic acids.
  • the copolymer emulsion may be obtained by emulsion polymerization of a monomer further containing a monomer other than the (meth) acrylic acid alkyl ester and the carboxyl group-containing monomer.
  • a monomer further containing a monomer other than the (meth) acrylic acid alkyl ester and the carboxyl group-containing monomer.
  • the pressure-sensitive adhesive preferably contains a cross-linking agent, and other additives may be blended as necessary.
  • the thickness of the first pressure-sensitive adhesive layer 22 is appropriately adjusted according to the bump height, but is preferably 5 to 500 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the thickness of the second pressure-sensitive adhesive layer 32 is preferably 5 to 500 ⁇ m, more preferably 10 to 100 ⁇ m.
  • the 1st and 2nd adhesive layers 22 and 32 may be formed from the same material, they may be formed from a mutually different material.
  • the first and second pressure-sensitive adhesive layers 22 and 32 may be, for example, directly applied to the first and second support sheets 23 and 33 after being diluted with a diluent if necessary. It is applied to a release material, heated and dried to form. The adhesive layer is further bonded to the first and second support sheets 23 and 33 when formed on the release material.
  • the intermediate layer used in the first and second support sheets 23 and 33 is preferably formed by curing a curable material containing urethane (meth) acrylate.
  • the curable material contains urethane (meth) acrylate, the stress acting on the first and second support sheets 23 and 33 can be relaxed. Therefore, in each process, it is possible to absorb vibrations and the like generated in the first and second support sheets 23 and 33.
  • the curable material may contain a monomer component such as an acrylic monomer in addition to urethane (meth) acrylate.
  • the acrylic monomer alicyclic compounds such as isobornyl (meth) acrylate and dicyclopentenyl (meth) acrylate are preferable.
  • the curable material is preferably cured with energy rays.
  • curable material when curable material is hardened
  • the materials used for these may be the same or different.
  • the thickness of the intermediate layer is, for example, 5 to 1000 ⁇ m, preferably 10 to 500 ⁇ m.
  • thermosetting resin layer 25 when the thermosetting resin layer 25 is heated and cured, the first support is provided on the thermosetting resin layer 25 as shown in FIG. Sheets 23 are stacked. Therefore, when the thermosetting resin layer 25 is heated and cured, the fluidity of the thermosetting resin is suppressed by the first support sheet 23, and the thickness of the protective film 25A is prevented from becoming uneven. Therefore, the protective film 25A, which is a cured product of the thermosetting resin layer 25, is laminated on the surface 10A of the semiconductor wafer 10 so as to embed the bump neck in a state having a uniform film thickness. It becomes possible to protect appropriately.
  • the adhesion force of the first support sheet 23 to the thermosetting resin layer 25 becomes heavy, and the first support sheet 23 cannot be peeled off from the protective film 25A in the step (III). Although it may occur, as described above, the use of the first pressure-sensitive adhesive layer 22 having heat resistance prevents such peeling failure.
  • the manufacturing process of the second embodiment includes steps (A-1), (A-2) and (A-3) in addition to the steps (I) to (IV) described in the first embodiment.
  • Have (A-1) A step of bonding the second protective film forming layer to the back surface of the semiconductor wafer (A-2)
  • Semiconductor A step of further bonding a second support sheet on the second protective film formed on the back surface of the wafer
  • a second protective film forming layer 35 is bonded to the back surface 10B (surface opposite to the bump surface) of the semiconductor wafer.
  • the second protective film forming layer 35 includes at least a thermosetting resin, and becomes the second protective film 35A when heated, as will be described later.
  • a film-like material composed of the second protective film forming layer 35 may be attached to the back surface 10B of the semiconductor wafer 10, for example, provided on one surface of a support substrate (not shown).
  • the obtained second protective film forming layer 35 may be attached to the back surface 10 ⁇ / b> B of the semiconductor wafer 10.
  • the support base material is peeled off from the second protective film forming layer 35 after the second protective film forming layer 35 is pasted on the back surface of the semiconductor wafer 10.
  • the same resin film as the 1st and 2nd base materials 21 and 31 can be used as a support base material.
  • the second protective film forming layer 35 is preferably composed of a thermosetting resin composition containing a thermoplastic resin and a filler in addition to the thermosetting resin. Moreover, the thermosetting resin composition may further contain other additives such as a color accelerator such as a curing accelerator, a coupling agent, a pigment, and a dye. Note that details of each material and blending amount used for the second protective film forming layer 35 are the same as those of the thermosetting resin layer 25 described in the first embodiment, and thus description thereof is omitted.
  • the second protective film forming layer 35 may be formed of the same material as the thermosetting resin layer 25, but may be formed of a different material.
  • the thickness of the second protective film forming layer 35 is, for example, 5 to 500 ⁇ m, preferably 10 to 100 ⁇ m.
  • the second protective film forming layer 35 is heated and cured to form the second protective film 35A (step (A-2)).
  • the second protective film forming layer 35 is heated by, for example, heating the semiconductor wafer 10 in which the protective film 25A is formed on the front surface 10A side and the second protective film forming layer 35 is stacked on the back surface 10B side in a heating furnace or the like. It is preferable to carry out by arranging and heating.
  • the heating conditions in this process (A-2) are the same conditions as the heating conditions demonstrated in process (II), the description is abbreviate
  • the second support sheet 33 is bonded to the back surface side of the semiconductor wafer 10, that is, on the second protective film 35A.
  • the structure of the 2nd support sheet 33 is the same as that of 1st Embodiment. That is, in FIG. 8, although the 2nd support sheet 33 shows the aspect affixed on the 2nd protective film 35A via the 2nd adhesive layer 32, a 2nd adhesive layer is abbreviate
  • Step (IV) Next, the semiconductor wafer 10 on which the protective film 25A and the second protective film 35A are formed is diced and separated into a plurality of semiconductor chips 15 as shown in FIG.
  • step (IV) of the present embodiment the protective film 25 ⁇ / b> A and the second protective film 35 ⁇ / b> B are diced together with the semiconductor wafer 10 and divided according to the shape of the semiconductor chip 15.
  • the details of the dicing process are the same as those in the first embodiment, and a description thereof is omitted.
  • the semiconductor chip 15 is picked up and attached to the chip mounting substrate or the like by reflow, and then, for example, a gap between the semiconductor chip 15 and the chip mounting substrate 40 is sealed.
  • a semiconductor device is manufactured through a necessary process such as sealing with a stop resin.
  • thermosetting resin difficult to flow and appropriately protect the bumps 11 with the protective film 25A.
  • the back surface of the semiconductor chip 15 can be protected by the second protective film 35A.
  • laser printing may be performed on the second protective film 35A or the second protective film forming layer 35 formed on the back surface of the wafer. By performing laser printing, various marks, characters, and the like can be displayed on the back side of the semiconductor chip 15.
  • the cured second protective film 35A is exposed between the step (A-2) and the step (A-3). Therefore, it is preferable to perform laser printing on the exposed second protective film 35A between the step (A-2) and the step (A-3).
  • the printability is better than when printing on the second protective film forming layer 35 before curing.
  • batch printing can be performed on a plurality of semiconductor chips.
  • efficient printing is possible by performing laser printing on the exposed second protective film 35A.
  • laser printing is performed by irradiating the second protective film 35A or the second protective film forming layer 35 that is not exposed (that is, covered by the second support sheet 33) via the second support sheet 33. May be performed.
  • steps (A-1), (A-2), and (A-3) are performed in this order.
  • steps (A-1), (A -3) and (A-2). steps (I), (II), (A-1) and (III) are performed to form a protective film 25A on the front surface 10A, and the second protective film forming layer 35 is formed on the back surface of the semiconductor wafer 10.
  • the first support sheet 23 is peeled off from the protective film 25A.
  • the second support sheet 33 is further bonded onto the second protective film forming layer 35 before curing laminated on the back surface 10B (step (A-3)).
  • the second protective film forming layer 35 is cured by heating to form a second protective film 35A (step (A-2)), and thereafter the semiconductor wafer 10 Is separated into pieces by dicing to manufacture a semiconductor device.
  • the second protective film 35A is formed on the second support sheet 33 after the dicing is completed after being formed by curing. It is not covered and exposed. Therefore, laser printing performed on the cured second protective film 35 ⁇ / b> A is performed by irradiating the laser through the second support sheet 33.
  • the 2nd support sheet 33 will be affixed on the 2nd protective film formation layer 35 in a process (A-2). In this state, heating is performed. Therefore, when performing in this order, it is preferable that the 2nd support sheet 33 has heat resistance. That is, the second substrate 31 of the second support sheet 33 is preferably a substrate that does not melt or remarkably shrink due to the heating in the step (A-2). Further, the second support sheet 33 having heat resistance does not increase the adhesion to the adherend even when heated for a predetermined time. Specifically, the second support sheet 33 having heat resistance is preferably such that the adhesive strength after heating in the step (A-2) is less than 10 N / 25 mm.
  • the adhesive strength is more preferably 0.3 to 9.8 N / 25 mm, and further preferably 0.5 to 9.5 N / 25 mm.
  • the measuring method of the adhesive force of a 2nd support sheet is the same as a 1st support sheet, a to-be-adhered body becomes a 2nd protective film formation layer. Since the second support sheet 33 has a relatively low adhesive force after heating as described above, when the semiconductor chip 15 is picked up from the second support sheet 33, it is difficult to cause a peeling failure that the semiconductor chip 15 cannot pick up.
  • the 2nd support sheet 33 which has heat resistance
  • the 2nd base material 31 and the 2nd adhesive layer 32 are provided
  • the 2nd adhesive layer 32 is the above-mentioned 1st adhesive layer 31.
  • it is preferably formed from an energy ray curable acrylic pressure-sensitive adhesive or a water-dispersed acrylic pressure-sensitive adhesive.
  • the first and second pressure-sensitive adhesive layers 22 and 32 may be formed from the same pressure-sensitive adhesive or different pressure-sensitive adhesives when both have heat resistance.
  • step (A-2) the heat curing (step (A-2)) need not be performed before dicing. It may be done later. Specifically, in the same manner as described above, the steps (I), (II), (A-1) (III), (A-3) are performed in this order, and then the step (A-2) is performed. Without performing dicing (step (IV)). Therefore, dicing is performed on the semiconductor wafer 10 in which the protective film 25A cured on the front surface 10A is formed and the second protective film forming layer 35 before curing is laminated on the back surface 10B. Then, after dicing, the second protective film forming layer 35 is heated and cured (step (A-2)).
  • the heat curing of the second protective film forming layer 35 is preferably performed after picking up, and particularly preferably performed by heating during reflow.
  • the semiconductor chip 15 semiconductor wafer 10
  • the adhesive force of the support sheet 33 becomes heavy due to the heating in the step (A-2), and a peeling failure may occur. Absent.
  • the second protective film forming layer 35 is cured by heating at the time of reflow, it is not necessary to separately provide a process for curing the second protective film forming layer 35, so that the process can be simplified.
  • thermosetting resin layer 25 and the second protective film forming layer 35 are different, but in the third embodiment, these are simultaneously heated. Harden. That is, in the second embodiment, the process (II) and the process (A-2) are performed at different timings, whereas in the present embodiment, the process (II) and the process (A-2) are performed. Will be performed at the same time.
  • Step (I) after performing the step (I) (that is, after pasting the first protective film forming film 20 on the semiconductor wafer), the steps (II) and (III) are not performed.
  • Step (A-1) is performed, and the second protective film forming layer 35 is bonded to the back surface 10B of the semiconductor wafer 10.
  • the thermosetting resin layer 25 and the second protective film forming layer 35 before curing are laminated on both surfaces, and the first support sheet 23 is overlaid on the thermosetting resin layer 25.
  • the thermosetting resin layer 25 and the second protective film forming layer 35 are cured to form the protective film 25A and the second protective film 35A (step (II) and step (II)).
  • A-2) after performing the step (I) (that is, after pasting the first protective film forming film 20 on the semiconductor wafer).
  • the heating is performed by placing the semiconductor wafer 10 having the thermosetting resin layer 25 and the first support sheet 23 on the front surface and the second protective film forming layer 35 on the back surface, for example, inside a heating furnace. Since the heating method and the heating conditions are the same as in step (II) described in the first embodiment, description thereof is omitted. Thereafter, similarly to the second embodiment, the first support sheet 23 laminated on the protective film 25A is peeled from the protective film 25A (step (III)).
  • the second support sheet 33 is bonded onto the second protective film 35A, and then dicing is performed in the step (IV).
  • the semiconductor wafer 10 having the cured protective film 25A and the second protective film 35A formed on both surfaces is diced. After dicing, the semiconductor device is manufactured in the present embodiment as in the above embodiments.
  • the bumps are appropriately protected by the protective film 25A, and the back surface of the semiconductor chip 15 can be protected by the second protective film 35A.
  • the thermosetting resin layer 25 and the 2nd protective film formation layer 35 are heated and hardened simultaneously, it is possible to simplify a process. Further, the thermosetting resin layer 25 and the second protective film forming layer 35 may cause thermal shrinkage when thermally cured, and the semiconductor wafer 10 may be warped due to the thermal shrinkage. However, in the present embodiment, the thermosetting resin layer 25 and the second protective film forming layer 35 are collectively heat-cured, so that the force due to thermal shrinkage generated during curing is offset. Therefore, in the present embodiment, it is possible to reduce the warpage of the wafer that occurs when the surface protective film resin layer 25 and the second protective film resin layer 35 are thermally cured.
  • the manufacturing process of the fourth embodiment includes the following processes (B-1) and (B-2) in addition to the processes (I) to (IV) described in the first embodiment.
  • B-1) A second protective film-forming film comprising a second support sheet and a second protective film-forming layer provided on the second support sheet, with the second protective film-forming layer as a bonding surface (B-2) Step of forming the second protective film by heating the second protective film forming layer, that is, the second protective film in the second to third embodiments.
  • the forming layer and the second support sheet are separately attached to the back surface side of the semiconductor wafer. However, in the present embodiment, these layers are collectively used as the second protective film forming film. Affixed to
  • a second protective film forming film 30 is bonded to the back surface 10B (the surface opposite to the bump surface) of the wafer.
  • the second protective film forming film 30 includes a second support sheet 33 and a second protective film forming layer 35 provided on the second support sheet 33.
  • the protective film forming layer 35 is bonded to the back surface 10 ⁇ / b> B of the semiconductor wafer 10.
  • the second support sheet 33 as shown in FIGS.
  • the second base material 31 and the second pressure-sensitive adhesive layer 32 formed on one surface of the second base material 31. And having the second protective film forming layer 35 formed on the second pressure-sensitive adhesive layer 32, as described in the first embodiment, it has another configuration. Also good.
  • the second support sheet 33 has a second protective film forming layer as shown in FIGS. 10 and 11, for example, so that the outer peripheral region can be bonded to the support member 13 such as a ring frame. It is slightly larger than 35.
  • the second support sheet 33 may be the same size as the second protective film forming layer 35.
  • the second support sheet 33 is the same size as the second protective film forming layer 35, the second protective film forming layer 35 and the second support sheet 33 are both formed slightly larger than the semiconductor wafer 10.
  • An adhesive member such as a double-sided tape for bonding to the support member 13 may be provided on the outer peripheral region of the second protective film forming layer 35 that is not bonded to the semiconductor wafer 10.
  • the second protective film forming layer 35 is heated and cured to form the second protective film 35A (step (B-2)).
  • the heating of the second protective film forming layer 35 is performed, for example, by placing the semiconductor wafer 10 in which the protective film 25A is formed on the front surface 10A side and the second protective film forming layer 35 is laminated on the back surface 10B side in a heating furnace or the like. It is preferable to carry out by arranging and heating.
  • the heating conditions in this process (B-2) are the same as the heating conditions demonstrated by process (III) of 1st Embodiment, the description is abbreviate
  • the semiconductor wafer 10 having the protective film 25A and the second protective film 35A formed on both sides is diced (step (IV)).
  • the semiconductor chip 15 is picked up, and the semiconductor device is manufactured in the same manner as in the above embodiments.
  • the second support sheet 33 is attached to the second protective film forming layer 35 when the second protective film forming layer 35 is cured by heating. Therefore, in order to prevent the adhesive force of the second support sheet 33 from becoming heavy during the heating in the step (B-2), the second support sheet 33 preferably has heat resistance. Since the 2nd support sheet 33 which has heat resistance is as having demonstrated above, the description is abbreviate
  • the bump 11 can be appropriately protected by the protective film 25A, and the back surface of the semiconductor wafer 10 (semiconductor chip 15) can be protected by the second protective film 35A.
  • the second protective film forming layer 35 and the second support sheet 33 are collectively attached to the back surface of the semiconductor wafer 10 as the second protective film forming film 30, thereby simplifying the process. Is possible.
  • step (IV) the example in which the process (B-2) is performed before the dicing (process (IV)) has been described.
  • the process (B-2) needs to be performed before the dicing. No, it may be performed after dicing. Specifically, after performing steps (I), (II), (B-1), and (III) in this order, dicing is performed (step (IV)). That is, in the dicing, the semiconductor wafer 10 in which the protective film 25A is formed on the front surface 10A and the second protective film forming film 30 (that is, the second protective film forming layer 35 and the second support sheet 33) is laminated on the back surface 10B. To do.
  • a step (B-2) of heating and curing the second protective film forming layer 35 is performed.
  • the second protective film forming layer 35 is preferably cured after being picked up, as in the second embodiment, and is particularly preferably cured by heating during reflow.
  • the timing for heating and curing the thermosetting resin layer 25 and the second protective film forming layer 35 is different, but in the fifth embodiment, these are simultaneously heated. To cure. That is, in the fourth embodiment, the process (II) and the process (B-2) are performed at different timings, but in the present embodiment, the process (II) and the process (B-2) are performed at the same timing. And do it.
  • the step (B-1) is performed without performing the steps (II) and (III).
  • the first protective film forming film 20 that is, the thermosetting resin layer 25 and the first support sheet 23
  • the second protective film forming film 30 that is, the second protective film forming layer 35 and the second support sheet 33
  • the thermosetting resin is heated by heating the semiconductor wafer 10 in which the thermosetting resin layer 25 and the second protective film forming layer 35 before being cured are laminated on both surfaces in this way.
  • the layer 25 and the second protective film forming layer 35 are cured to form the protective film 25A and the second protective film 35A (step (II) and step (B-2)).
  • the first support sheet 23 attached to the protective film 25A is peeled from the protective film 25A (step (III)).
  • the semiconductor wafer 10 supported by the second support sheet 33 is separated into individual pieces together with the protective film 25A and the second protective film 35A by dicing, and the semiconductor in which the protective film 25A and the second protective film 35A are formed on both surfaces.
  • Chip 15 is obtained (step (IV)).
  • the semiconductor chip 15 is picked up, and a semiconductor device is manufactured as in the above embodiments.
  • the second protective film forming layer 35 is heat-cured in a state where the second support sheet 33 is adhered to the second protective film forming layer 35, the second support sheet 33 is added to the first support sheet.
  • the 2 support sheet 33 also has heat resistance. Since the structure of the 2nd support sheet which has heat resistance is as above-mentioned, the description is abbreviate
  • the timing to implement will not be specifically limited.
  • the step (III) is performed before the step (A-3), but after the step (A-3), that is, the step (A-3) and the step (IV).
  • the step (III) is performed between the steps (B-1) and (B-2), but as long as it is performed between the steps (II) and (IV), It may be performed before the step (B-1) or after the step (B-2).
  • the back grinding of the semiconductor wafer is not particularly mentioned.
  • the step (I) is performed as in the first embodiment. It may be carried out between step (III) and step (III), but is preferably carried out between step (I) and step (II).
  • the back surface grinding is performed before the second protective film forming layer 35 is affixed.
  • laser printing may be performed on the second protective film 35A or the second protective film forming layer 35 as in the second embodiment.
  • the cured second protective film 35A is exposed between the step (II) and the step (A-2) and the step (A-3). Therefore, in the third embodiment, it is preferable to perform laser printing on the exposed second protective film 35A between the steps (II) and (A-2) and the step (A-3).
  • the column temperature was 40 ° C.
  • the liquid feed speed was 1.0 mL / min
  • the detector was a differential refractometer.
  • Adhesive strength measurement First, a laminate composed of a release material / thermosetting resin layer / release material is prepared, and one release material is peeled off from the laminate, and the surface of the first support sheet on the first pressure-sensitive adhesive layer side is thermosetting.
  • the resin layer was bonded at room temperature to obtain a laminate (first protective film-forming film) composed of the first support sheet / thermosetting resin layer / release material.
  • This laminate was formed into a strip shape having a width of 25 mm and a length of 150 mm. These members were the same as those used in the examples.
  • the release material is peeled off from the strip-shaped laminate, and is attached to SUS304 at 70 ° C. using a 2 Kg rubber roller so that the thermosetting resin layer surface and the SUS surface are in contact with each other, and the illuminance is 200 mW / cm 2 and the light amount is 160 mJ.
  • the first support sheet was irradiated with ultraviolet rays under the conditions of / cm 2 .
  • the adherend to which the first support sheet is affixed is heated at 130 ° C. for 2 hours to cure the thermosetting resin layer to form a protective film, and then measure the adhesive strength of the first support sheet to the protective film did.
  • the measurement of the adhesive force was performed by peeling the first support sheet from the adherend at a peeling angle of 180 ° and a peeling speed of 300 mm / min under the conditions of a temperature of 23 ° C. and a humidity of 50% RH.
  • the measurement of this adhesive force is that the first support sheet is irradiated with energy rays after the first protective film-forming film is attached to the semiconductor wafer and before the thermosetting resin layer is heat-cured. It was done assuming that.
  • 2-methacryloyloxyethyl isocyanate is derived from 2-hydroxyethyl acrylate to an acrylic ester copolymer which is a copolymer of 80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate.
  • Photopolymerization was started on 100 parts by mass of an energy ray-curable acrylic polymer (weight average molecular weight (Mw): 600,000) obtained by adding the addition rate to 80 mol% based on 100 mol% of the hydroxyl group.
  • a 200 ⁇ m intermediate layer was provided, and an energy ray curable acrylic pressure-sensitive adhesive was applied on the intermediate layer so as to have a thickness of 10 ⁇ m to form a first pressure-sensitive adhesive layer, thereby obtaining a first support sheet.
  • the first pressure-sensitive adhesive layer of the first support sheet was cured by irradiation with ultraviolet rays under the conditions of an illuminance of 150 mW / cm 2 and a light amount of 300 mJ / cm 2 .
  • thermosetting resin composition was applied on the release material, and a thermosetting resin layer having a thickness of 100 ⁇ m was formed on the release material.
  • the melt viscosity at 70 ° C. of the thermosetting resin layer was 5,000 Pa ⁇ S.
  • shear strength (vs. Cu) after curing of the thermosetting resin layer (that is, the protective film) was 200 N / 2 mm.
  • the thermosetting resin layer with the release material is laminated on the first pressure-sensitive adhesive layer of the first support sheet, and from the base material / intermediate layer / first pressure-sensitive adhesive layer / thermosetting resin layer / release material. Thus, a first protective film-forming film was obtained.
  • the first protective film-forming film from which the release material has been peeled off is a semiconductor wafer (WALTS stock) provided with a bump (bump height: 210 ⁇ m) so that the thermosetting resin layer becomes a bonding surface at 70 ° C. It was bonded to the surface of a company-made size: 8 inches (20.32 cm), thickness: 730 ⁇ m (step (I)).
  • the semiconductor wafer to which the first protective film-forming film was bonded was heated at 130 ° C. for 2 hours to cure the thermosetting resin layer and form a protective film ((Step (II)).
  • the 1st support sheet was peeled from the film
  • Example 1 it was possible to appropriately protect the bumps with the protective film having a uniform film thickness by curing the thermosetting resin layer with the first support sheet attached.
  • Example 1 The same procedure as in Example 1 was performed except that the step (III) and the step (II) were interchanged. That is, in Comparative Example 1, after the first protective film-forming film was bonded to the surface of the semiconductor wafer (step (I)), the first support sheet was peeled from the thermosetting resin layer (step (III)). Then, the semiconductor wafer with the thermosetting resin layer laminated on the surface was heated under the same heating conditions as in Example 1 to form a protective film (step (II)). When the formed protective film was observed after the protective film was formed, it can be understood that in Comparative Example 1, the film thickness of the protective film becomes non-uniform and the bumps cannot be properly protected.
  • Example 2 The adhesive strength of the first support sheet produced by the same method as in Example 1 was measured according to the above adhesive strength measurement. The results are shown in Table 1.
  • Example 3 It implemented similarly to Example 2 except having changed the compounding quantity of the crosslinking agent into 1.5 mass parts, and having produced the energy ray hardening-type acrylic adhesive.
  • Example 4 It implemented similarly to Example 2 except the point which changed the compounding quantity of the crosslinking agent into 4.5 mass parts, and produced the energy ray hardening-type acrylic adhesive.
  • Example 5 It implemented similarly to Example 2 except having changed the compounding quantity of the crosslinking agent into 7.5 mass parts, and having produced the energy-beam curable acrylic adhesive.
  • Example 6 2-methacryloyloxyethyl isocyanate is converted into an acrylic ester copolymer that is a copolymer of 80 parts by mass of lauryl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate.
  • Energy-ray-curing acrylic polymer (weight-average molecular weight (Mw): 600, obtained by adding an addition rate of 80 mol% based on 100 mol% of hydroxyl group derived from 2-hydroxyethyl acrylate) This was carried out in the same manner as in Example 2 except that the change was made to (000).
  • Example 7 The energy ray curable acrylic pressure-sensitive adhesive to be used was changed to 2-methacryloyloxy with an acrylic ester copolymer which is a copolymer of 90 parts by mass of 2-ethylhexyl acrylate and 10 parts by mass of 2-hydroxyethyl acrylate.
  • An energy ray-curable acrylic polymer (weight average molecular weight (Mw)) obtained by adding ethyl isocyanate so that the addition rate is 60 mol% based on 100 mol% of hydroxyl group derived from 2-hydroxyethyl acrylate.
  • Example 600,000 Similar to Example 2 except that it was changed to an energy ray curable acrylic pressure-sensitive adhesive obtained by blending 100 parts by mass with 3 parts by mass of a photopolymerization initiator and 1 part by mass of a crosslinking agent. Carried out.
  • the energy ray curable acrylic pressure-sensitive adhesive to be used is an acrylic ester copolymer which is a copolymer of 50 parts by mass of butyl acrylate, 20 parts by mass of methyl methacrylate, and 30 parts by mass of 2-hydroxyethyl acrylate.
  • 2-methacryloyloxyethyl isocyanate such that the addition rate is 90 mol% based on 100 mol% of hydroxyl group derived from 2-hydroxyethyl acrylate (weight average) Molecular weight (Mw): 600,000
  • the pressure-sensitive adhesive used for the first support sheet is an energy ray-curable acrylic pressure-sensitive adhesive, and the (meth) acrylate copolymer (A2) is used as a specific monomer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dicing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

This method for manufacturing a semiconductor device includes: (I) a step in which a first protective film forming film 20 provided, in the following order, with a first support sheet 23 and a thermosetting resin layer 25 is bonded to the surface 10A of a semiconductor wafer 10 provided with bumps 11, with the thermosetting resin layer 25 acting as the bonding surface; (II) a step in which the first support sheet 23 is detached from the thermosetting resin layer 25; (III) a step in which the thermosetting resin layer 25 is heated and cured, and a protective film is formed; and (IV) a step in which the semiconductor wafer 10 is diced together with the thermosetting resin layer or the protective film.

Description

半導体装置の製造方法Manufacturing method of semiconductor device
 本発明は、半導体装置の製造方法に関し、詳しくは、少なくともバンプ面が保護膜で保護された半導体チップを用いた半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device using a semiconductor chip in which at least a bump surface is protected by a protective film.
 従来、フェースダウン方式と呼ばれる実装法を用いた半導体装置の製造が行われている。フェースダウン方式においては、半導体チップの表面に、バンプと呼ばれる電極部が形成されるとともに、そのチップ表面が基板等に対向させられるようにして、半導体チップが基板上に搭載される。
 フェースダウン方式において使用される半導体ウエハや半導体チップは、様々な目的のために、バンプが設けられたウエハ表面に、各種の機能を持たせた樹脂層が設けられることがある。また、半導体ウエハは、裏面研削される際、ウエハの表面保護のためにバックグラインドシートが貼付されることが一般的である。そのため、従来、バックグラインドシートと各種の樹脂層を積層一体化した積層シートが使用されることがある。
Conventionally, a semiconductor device using a mounting method called a face-down method has been manufactured. In the face-down method, electrode portions called bumps are formed on the surface of a semiconductor chip, and the semiconductor chip is mounted on the substrate so that the chip surface faces the substrate or the like.
A semiconductor wafer or a semiconductor chip used in the face-down method may be provided with a resin layer having various functions on a wafer surface provided with bumps for various purposes. Further, when a semiconductor wafer is ground on the back surface, a back grind sheet is generally attached to protect the surface of the wafer. Therefore, conventionally, a laminated sheet in which a back grind sheet and various resin layers are laminated and integrated may be used.
 特許文献1には、そのような積層シートとして、回路面に接する熱硬化性樹脂層と、この層の上に直接積層され、柔軟性のある熱可塑性樹脂層と、熱可塑性樹脂層の上にさらに積層され、樹脂フィルム等で構成される最外層とを備えたものが開示される。この積層シートは、裏面研削時に半導体ウエハに貼付されて半導体ウエハを保護する。また、裏面研削後には、熱可塑性樹脂層と最外層が、熱硬化性樹脂層から剥離される一方で、半導体ウエハ上に残された熱硬化性樹脂層は、半導体チップが基板に搭載された後に硬化されて封止樹脂として使用される。 In Patent Document 1, as such a laminated sheet, a thermosetting resin layer that is in contact with the circuit surface, and a flexible thermoplastic resin layer that is directly laminated on this layer, and a thermoplastic resin layer are laminated. Furthermore, what was laminated | stacked and provided with the outermost layer comprised with a resin film etc. is disclosed. This laminated sheet is affixed to the semiconductor wafer during back grinding to protect the semiconductor wafer. In addition, after the back surface grinding, the thermoplastic resin layer and the outermost layer are peeled off from the thermosetting resin layer, while the thermosetting resin layer remaining on the semiconductor wafer has the semiconductor chip mounted on the substrate. It is cured later and used as a sealing resin.
特開2005-28734号公報JP 2005-28734 A
 ところで、ウエハ表面に設けられたバンプは、半導体ウエハとバンプの接続部分であるバンプネックに応力が集中して、破損が起こりやすくなる。そのため、封止樹脂とは別にウエハ表面に保護膜を形成することが検討されている。保護膜は、ウエハ表面に積層した熱硬化性樹脂層を、例えば樹脂封止する前に加熱硬化して形成することが検討されている。
 しかし、熱硬化性樹脂は、加熱により流動化する一方で、その樹脂の流れがバンプにより阻害されるため、均一な膜厚にすることが難しいことがある。保護膜の膜厚が均一にできない場合には、バンプネックの埋め込み性が不十分になって、バンプネックを適切に保護できないことがある。
By the way, the bumps provided on the wafer surface are likely to be damaged due to stress concentration on the bump neck which is a connecting portion between the semiconductor wafer and the bump. Therefore, forming a protective film on the wafer surface separately from the sealing resin has been studied. It has been studied that the protective film is formed by heat-curing a thermosetting resin layer laminated on the wafer surface, for example, before resin sealing.
However, the thermosetting resin is fluidized by heating, but the flow of the resin is hindered by the bumps, so that it may be difficult to obtain a uniform film thickness. If the thickness of the protective film cannot be made uniform, the embedding property of the bump neck becomes insufficient and the bump neck may not be properly protected.
 本発明は、以上の問題点に鑑みてなされたものであり、本発明の課題は、バンプ付きの半導体ウエハにおいて、均一な膜厚を有する保護膜により、バンプネックの埋め込み性を確保してバンプを適切に保護できる半導体装置の製造方法を提供する。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a bump neck with a bump film by providing a bump film with a uniform film thickness in a bumped semiconductor wafer. A method for manufacturing a semiconductor device capable of appropriately protecting the semiconductor device is provided.
 本発明者らは、バンプが設けられた半導体ウエハの表面(バンプ面)上に、支持シートに支持された熱硬化性樹脂層を貼り合わせ、かつ、支持シートに支持された状態で熱硬化性樹脂層を硬化することで、加熱硬化時の熱硬化性樹脂の流動性を抑えて樹脂層の厚みを均一のままにすることができることを見出し、以下の本発明を完成させた。本発明は、以下の(1)~(8)を提供する。
(1)(I)バンプが設けられた半導体ウエハの表面に、第1支持シートと熱硬化性樹脂層とがこの順で設けられた第1保護膜形成用フィルムを、前記熱硬化性樹脂層を貼り合わせ面にして貼り合わせる工程と、
(II)前記熱硬化性樹脂層を加熱して硬化させ、保護膜を形成する工程と、
(III)前記第1支持シートを、前記熱硬化性樹脂層を硬化して形成した前記保護膜から剥離する工程と、
(IV)前記半導体ウエハを前記保護膜と共にダイシングする工程と、
 を備える半導体装置の製造方法。
(2)(A-1)第2保護膜形成層を半導体ウエハの裏面に貼り合わせる工程と、
(A-2)前記第2保護膜形成層を加熱して、第2保護膜を形成する工程と
(A-3)前記半導体ウエハの裏面上の前記第2保護膜形成層、又は第2保護膜の上にさらに第2支持シートを貼り合せる工程と
 をさらに備える上記(1)に記載の半導体装置の製造方法。
(3)(B-1)第2支持シートと、前記第2支持シート上に設けられた第2保護膜形成層とを備える第2保護膜形成用フィルムを、前記第2保護膜形成層を貼り合わせ面して、前記半導体ウエハの裏面に貼り合わせる工程と、
(B-2)前記第2保護膜形成層を加熱して、第2保護膜を形成する工程と
 をさらに備える上記(1)に記載の半導体装置の製造方法。
(4)前記熱硬化性樹脂層、及び前記第2保護膜形成層を同時に加熱して、これらを熱硬化させる上記(2)又は(3)に記載の半導体装置の製造方法。
(5)前記第1支持シートの工程(II)の加熱後の接着力が10N/25mm未満である上記(1)~(4)のいずれか1項に記載の半導体装置の製造方法。
(6)前記第1支持シートが、第1基材と、前記第1基材の一方の面に設けられた第1粘着剤層とを備え、前記第1粘着剤層の上に前記熱硬化性樹脂層が設けられている上記(1)~(5)のいずれか1項に記載の半導体装置の製造方法。
(7)前記熱硬化性樹脂層の溶融粘度は、前記半導体ウエハに前記第1保護膜形成用フィルムを貼り合わせる際の温度において、1×10Pa・S以上2×10Pa・S未満であり、
 前記第1粘着剤層のせん断弾性率は、前記半導体ウエハに前記第1保護膜形成用フィルムを貼り合わせる際の温度において、1×10Pa以上2×10Pa以下である上記(6)に記載の半導体装置の製造方法。
(8)前記熱硬化性樹脂層は、バンプ高さの0.01~0.99倍の厚みを有する上記(1)~(7)のいずれか1項に記載の半導体装置の製造方法。
The present inventors bonded a thermosetting resin layer supported by a support sheet on the surface (bump surface) of a semiconductor wafer provided with bumps, and thermosetting the substrate in a state supported by the support sheet. By curing the resin layer, it was found that the fluidity of the thermosetting resin during heat curing can be suppressed and the thickness of the resin layer can be kept uniform, and the following invention has been completed. The present invention provides the following (1) to (8).
(1) (I) A first protective film-forming film in which a first support sheet and a thermosetting resin layer are provided in this order on the surface of a semiconductor wafer on which bumps are provided, the thermosetting resin layer And a process of bonding to the bonding surface,
(II) heating and curing the thermosetting resin layer to form a protective film;
(III) peeling the first support sheet from the protective film formed by curing the thermosetting resin layer;
(IV) dicing the semiconductor wafer together with the protective film;
A method for manufacturing a semiconductor device comprising:
(2) (A-1) bonding the second protective film forming layer to the back surface of the semiconductor wafer;
(A-2) heating the second protective film forming layer to form a second protective film; and (A-3) the second protective film forming layer on the back surface of the semiconductor wafer, or a second protective film. The method for manufacturing a semiconductor device according to (1), further including a step of bonding a second support sheet on the film.
(3) (B-1) A second protective film-forming film comprising a second support sheet and a second protective film-forming layer provided on the second support sheet; Bonding and bonding to the back surface of the semiconductor wafer; and
(B-2) The method for manufacturing a semiconductor device according to (1), further including: a step of heating the second protective film forming layer to form a second protective film.
(4) The method for manufacturing a semiconductor device according to (2) or (3), wherein the thermosetting resin layer and the second protective film forming layer are simultaneously heated to thermally cure them.
(5) The method for manufacturing a semiconductor device according to any one of (1) to (4), wherein the adhesive force after heating in the step (II) of the first support sheet is less than 10 N / 25 mm.
(6) The first support sheet includes a first base material and a first pressure-sensitive adhesive layer provided on one surface of the first base material, and the thermosetting is performed on the first pressure-sensitive adhesive layer. 6. The method for manufacturing a semiconductor device according to any one of (1) to (5), wherein a conductive resin layer is provided.
(7) The melt viscosity of the thermosetting resin layer is 1 × 10 2 Pa · S or more and less than 2 × 10 4 Pa · S at the temperature when the first protective film-forming film is bonded to the semiconductor wafer. And
The shear modulus of the first pressure-sensitive adhesive layer is 1 × 10 3 Pa or more and 2 × 10 6 Pa or less at the temperature when the first protective film-forming film is bonded to the semiconductor wafer (6) The manufacturing method of the semiconductor device as described in 2.
(8) The method for manufacturing a semiconductor device according to any one of (1) to (7), wherein the thermosetting resin layer has a thickness of 0.01 to 0.99 times a bump height.
 本発明では、保護膜の膜厚を均一にし、かつ保護膜内部にバンプネックを埋め込むことで、保護膜によりバンプを適切に保護できる半導体装置の製造方法を提供する。 The present invention provides a method for manufacturing a semiconductor device in which a bump can be appropriately protected by a protective film by making the protective film uniform in thickness and embedding a bump neck inside the protective film.
バンプが表面に形成された半導体ウエハを示す模式的な断面図である。It is typical sectional drawing which shows the semiconductor wafer in which the bump was formed in the surface. 第1保護膜形成用フィルムを示す模式的な断面図である。It is typical sectional drawing which shows the film for 1st protective film formation. 第1保護膜形成用フィルムを貼付した半導体ウエハを加熱する工程を示す模式的な断面図である。It is typical sectional drawing which shows the process of heating the semiconductor wafer which stuck the film for 1st protective film formation. 第1支持シートが剥がされた後の半導体ウエハを示す模式的な断面図である。It is typical sectional drawing which shows the semiconductor wafer after the 1st support sheet was peeled off. ダイシングが行われる際の半導体ウエハを示す模式的な断面図である。It is a typical sectional view showing a semiconductor wafer at the time of dicing. 個片化された半導体チップをチップ搭載用基板に載置したときの様子を示す模式的な断面図である。It is typical sectional drawing which shows a mode when the separated semiconductor chip is mounted in the board | substrate for chip mounting. 表面に保護膜が形成され、裏面に第2保護膜形成層が積層された半導体ウエハを示す模式的な断面図である。It is typical sectional drawing which shows the semiconductor wafer by which the protective film was formed in the surface and the 2nd protective film formation layer was laminated | stacked on the back surface. 表面及び裏面それぞれに保護膜、及び第2保護膜が形成された半導体ウエハをダイシングする工程を示す模式図である。It is a schematic diagram which shows the process of dicing the semiconductor wafer in which the protective film and the 2nd protective film were formed in the surface and the back surface, respectively. 表面及び裏面それぞれに第1保護膜形成用フィルム、及び第2保護膜形成層が積層された半導体ウエハを加熱する工程を示す模式図である。It is a schematic diagram which shows the process of heating the semiconductor wafer by which the film for 1st protective film formation and the 2nd protective film formation layer were laminated | stacked on the surface and the back surface, respectively. 第2保護膜形成用フィルムを示す模式的な断面図である。It is typical sectional drawing which shows the film for 2nd protective film formation. 表面に保護膜が形成され、かつ裏面に第2保護膜形成用フィルムが貼り合わされた半導体ウエハを示す模式的な断面図である。It is typical sectional drawing which shows the semiconductor wafer by which the protective film was formed in the surface and the film for 2nd protective film formation was bonded together in the back surface. 表面及び裏面それぞれに第1保護膜形成用フィルム、及び第2保護膜形成用フィルムが設けられた半導体ウエハを加熱する工程を示す模式図である。It is a schematic diagram which shows the process of heating the semiconductor wafer by which the film for 1st protective film formation and the film for 2nd protective film formation were each provided in the surface and the back surface.
 以下、本発明について、実施形態を用いて具体的に説明する。
(第1の実施形態)
 本製造方法において使用される半導体ウエハ10は、図1に示すように、表面10Aにバンプ11が設けられたバンプ付きウエハである。バンプ11は通常複数設けられる。半導体ウエハ10は、特に限定されないが、シリコンウエハでもよいし、セラミック、ガラス、サファイア系等のウエハであってもよい。半導体ウエハ10の厚みは、特に限定されないが、0.625~0.825mmであることが好ましい。バンプ11の材料は、特に限定されず、各種金属材料が使用され、好ましくは半田が使用される。また、バンプ11の形状は、特に限定されず、図1に示すように丸型であってもよいが、その他いかなる形状でもよい。また、バンプ11の高さは、特に限定されないが、通常、5~1000μm、好ましくは50~500μmである。
Hereinafter, the present invention will be specifically described using embodiments.
(First embodiment)
As shown in FIG. 1, the semiconductor wafer 10 used in this manufacturing method is a bumped wafer in which bumps 11 are provided on the surface 10A. A plurality of bumps 11 are usually provided. The semiconductor wafer 10 is not particularly limited, but may be a silicon wafer or a ceramic, glass, or sapphire wafer. The thickness of the semiconductor wafer 10 is not particularly limited, but is preferably 0.625 to 0.825 mm. The material of the bump 11 is not particularly limited, and various metal materials are used, and preferably solder is used. Further, the shape of the bump 11 is not particularly limited, and may be a round shape as shown in FIG. 1, but may be any other shape. The height of the bump 11 is not particularly limited, but is usually 5 to 1000 μm, preferably 50 to 500 μm.
 本発明の第1の実施形態の半導体装置の製造方法は、少なくとも以下の工程を有する。
(I)バンプが設けられた半導体ウエハの表面に、第1支持シートと熱硬化性樹脂層とがこの順で設けられた第1保護膜形成用フィルムを、熱硬化性樹脂層を貼り合わせ面にして貼り合わせる工程、
(II)熱硬化性樹脂層を加熱して硬化させ、保護膜を形成する工程、
(III)第1支持シートを、熱硬化性樹脂層を硬化して形成した保護膜から剥離する工程、
(IV)半導体ウエハを保護膜と共にダイシングする工程
The manufacturing method of the semiconductor device according to the first embodiment of the present invention includes at least the following steps.
(I) The first protective sheet-forming film in which the first support sheet and the thermosetting resin layer are provided in this order on the surface of the semiconductor wafer provided with the bumps, and the thermosetting resin layer are bonded to each other. The process of pasting together,
(II) a step of heating and curing the thermosetting resin layer to form a protective film;
(III) A step of peeling the first support sheet from the protective film formed by curing the thermosetting resin layer,
(IV) Process of dicing a semiconductor wafer together with a protective film
 以下、本実施形態の製造方法について工程ごとに詳細に説明する。
[工程(I)]
 工程(I)では、まず、図2に示すように、第1支持シート23と、第1支持シート23の上に設けられた熱硬化性樹脂層25とを備える第1保護膜形成用フィルム20を用意する。そして、第1保護膜形成用フィルム20を、図3に示すように、熱硬化性樹脂層25を貼り合わせ面にして、半導体ウエハ10の表面(バンプ面)10Aに貼り合わせる。
 ここで、第1保護膜形成用フィルム20において、第1支持シート23は、図2に示すように、第1基材21と、第1基材21の一方の面に設けられた第1粘着剤層22とを備えるとともに、熱硬化性樹脂層25が第1粘着剤層22の上に貼付されるものでよいが、第1粘着剤層22が省略され、第1基材21の上に熱硬化性樹脂層25が直接貼付されたものでもよい。また、第1基材21の一方の面が、表面処理され、又は第1支持シート23に粘着剤層以外の層が設けられ、その層又は表面処理面を介して熱硬化性樹脂層25に貼付されてもよい。さらに、第1粘着剤層22と第1基材21の間に中間層が設けられてもよい。
Hereinafter, the manufacturing method of this embodiment is demonstrated in detail for every process.
[Step (I)]
In step (I), first, as shown in FIG. 2, a first protective film-forming film 20 including a first support sheet 23 and a thermosetting resin layer 25 provided on the first support sheet 23. Prepare. Then, as shown in FIG. 3, the first protective film forming film 20 is bonded to the surface (bump surface) 10 </ b> A of the semiconductor wafer 10 with the thermosetting resin layer 25 as the bonding surface.
Here, in the first protective film forming film 20, the first support sheet 23 is provided with the first base material 21 and the first adhesive provided on one surface of the first base material 21 as shown in FIG. 2. In addition to the adhesive layer 22, the thermosetting resin layer 25 may be affixed on the first pressure-sensitive adhesive layer 22, but the first pressure-sensitive adhesive layer 22 is omitted and the first adhesive layer 22 is formed on the first base material 21. The thermosetting resin layer 25 may be directly attached. Moreover, one surface of the 1st base material 21 is surface-treated, or layers other than an adhesive layer are provided in the 1st support sheet 23, and the thermosetting resin layer 25 is provided through the layer or surface treatment surface. It may be affixed. Furthermore, an intermediate layer may be provided between the first pressure-sensitive adhesive layer 22 and the first base material 21.
 また、第1保護膜形成用フィルム20の熱硬化性樹脂層25の上に、さらに剥離材(図示せず)が貼付されてもよい。剥離材は、第1保護膜形成用フィルム20を使用するときまで熱硬化性樹脂層25を保護する。剥離材は、第1保護膜形成用フィルム20が、半導体ウエハ10に貼付される前に第1保護膜形成用フィルム20から剥がされて除去される。
 第1粘着剤層22は、各種の粘着剤から形成されるが、エネルギー線を照射することで硬化して、被着体に対する接着力が低下するエネルギー線硬化型粘着剤により形成されていてもよい。
Further, a release material (not shown) may be further stuck on the thermosetting resin layer 25 of the first protective film forming film 20. The release material protects the thermosetting resin layer 25 until the first protective film forming film 20 is used. The release material is peeled off and removed from the first protective film forming film 20 before the first protective film forming film 20 is attached to the semiconductor wafer 10.
Although the 1st adhesive layer 22 is formed from various adhesives, even if it is formed with the energy-beam curable adhesive which hardens | cures by irradiating an energy ray and the adhesive force with respect to a to-be-adhered body falls. Good.
 第1支持シート23は、耐熱性を有することが好ましい。すなわち、第1支持シート23を構成する第1基材21としては、工程(II)の加熱により、溶融したり、著しく収縮したりしない基材であることが好ましい。また、耐熱性を有する第1支持シート23は、所定時間加熱しても、被着体に対する接着性が高くならないものである。具体的には、耐熱性を有する第1支持シート23は、工程(II)の加熱後の接着力が10N/25mm未満となるものである。また、第1支持シート23の工程(II)の加熱後の接着力は、加熱後の第1保護膜25Aに対する接着力をより適切にするために、0.3~9.8N/25mmであることが好ましく、0.5~9.5N/25mmがより好ましい。 The first support sheet 23 preferably has heat resistance. That is, the first base material 21 constituting the first support sheet 23 is preferably a base material that does not melt or remarkably shrink due to heating in the step (II). In addition, the first support sheet 23 having heat resistance does not increase the adhesion to the adherend even when heated for a predetermined time. Specifically, the heat-resistant first support sheet 23 has an adhesive force after heating in the step (II) of less than 10 N / 25 mm. Further, the adhesive force after heating in the step (II) of the first support sheet 23 is 0.3 to 9.8 N / 25 mm in order to make the adhesive force to the first protective film 25A after heating more appropriate. It is preferably 0.5 to 9.5 N / 25 mm.
 なお、上記加熱後の接着力とは、粘着剤層がエネルギー線硬化型粘着剤で形成される場合には、実施される製造方法と同様のタイミング及び条件で、粘着剤層にエネルギー線を照射して硬化し、かつ実施される製造方法と同様のタイミング及び条件で、粘着剤層を加熱した際の接着力を意味する。実施される製造方法で例えば工程(II)の加熱後に、エネルギー線を照射する場合には、加熱後に粘着剤層にエネルギー線を照射して接着力を測定したときの値である。一方で、実施される製造方法で例えば工程(II)の加熱前に、エネルギー線を照射する場合には、加熱前に粘着剤層にエネルギー線を照射して接着力を測定したときの値である。また、接着力測定時の第1支持シートの加熱は、第1支持シートを被着体である熱硬化性樹脂層に貼着した状態で行い、その加熱により熱硬化性樹脂層が硬化されて保護膜となる。接着力の測定方法の詳細は、実施例に記載するとおりである。 The adhesive strength after heating means that when the pressure-sensitive adhesive layer is formed of an energy ray curable pressure-sensitive adhesive, the pressure-sensitive adhesive layer is irradiated with energy rays at the same timing and conditions as the manufacturing method to be carried out. It means the adhesive force when the pressure-sensitive adhesive layer is heated at the same timing and conditions as in the production method to be cured. In the production method to be carried out, for example, when the energy ray is irradiated after the heating in the step (II), it is a value when the adhesive force is measured by irradiating the pressure-sensitive adhesive layer after the heating. On the other hand, in the case of irradiating energy rays, for example, before heating in step (II) in the production method to be carried out, it is a value when the adhesive force is measured by irradiating the pressure-sensitive adhesive layer before heating. is there. Moreover, the heating of the 1st support sheet at the time of adhesive force measurement is performed in the state which affixed the 1st support sheet to the thermosetting resin layer which is a to-be-adhered body, and the thermosetting resin layer is hardened by the heating. It becomes a protective film. Details of the method for measuring the adhesive strength are as described in the Examples.
 第1保護膜形成用フィルム20の半導体ウエハ10への貼り合わせは、貼り合わせ温度30~150℃で行われることが好ましく、40~100℃で行われることがより好ましい。
 また、第1保護膜形成用フィルム20の貼付は、加圧しながら行うことが好ましく、例えば圧着ローラ等の押圧手段により押圧しながら行うことが好ましい。あるいは、真空ラミネータにより、第1保護膜形成用フィルム20を半導体ウエハ10に圧着してもよい。
The bonding of the first protective film forming film 20 to the semiconductor wafer 10 is preferably performed at a bonding temperature of 30 to 150 ° C., more preferably 40 to 100 ° C.
The first protective film forming film 20 is preferably applied while being pressed, for example, while being pressed by a pressing means such as a pressure roller. Alternatively, the first protective film forming film 20 may be pressure-bonded to the semiconductor wafer 10 by a vacuum laminator.
 半導体ウエハ10は、第1保護膜形成用フィルム20が貼付されると、図3に示すように、バンプ11が、熱硬化性樹脂層25を突き抜けて第1支持シート23側に突出する。このようにバンプ11を第1支持シート23側に突出させることで、後述するリフローにより、バンプ11をチップ搭載用基板上の電極等に接触させて固定することが容易になる。
 ただし、バンプ11は、第1支持シート23側に突出せずに、熱硬化性樹脂層25の内部に埋め込まれたような状態になっていてもよい。このような状態であっても、工程(II)等において、熱硬化性樹脂層25を加熱により流動させてバンプ11を突出させればよい。
When the first protective film forming film 20 is affixed to the semiconductor wafer 10, as shown in FIG. 3, the bumps 11 penetrate the thermosetting resin layer 25 and protrude toward the first support sheet 23. Protruding the bumps 11 toward the first support sheet 23 in this manner makes it easy to fix the bumps 11 in contact with electrodes or the like on the chip mounting substrate by reflow described later.
However, the bump 11 may be in a state of being embedded in the thermosetting resin layer 25 without protruding toward the first support sheet 23 side. Even in such a state, the bump 11 may be protruded by causing the thermosetting resin layer 25 to flow by heating in the step (II) or the like.
 第1支持シート23が、基材21と、基材21の一方の面に設けられた第1粘着剤層22とを備え、第1粘着剤層22の上に熱硬化性樹脂層25が設けられる場合、熱硬化性樹脂層25の溶融粘度は、半導体ウエハ10に第1保護膜形成用フィルム20を貼り合わせる際の温度(貼り合わせ温度)において、1×10Pa・S以上2×10Pa・S未満であるとともに、第1粘着剤層22のせん断弾性率が、貼り合わせ温度において、1×10Pa以上2×10Pa以下であることが好ましい。また、熱硬化性樹脂層25の上記溶融粘度が1×103Pa・S以上1×10Pa・S未満、第1粘着剤層22の上記せん断弾性率が、1×104Pa以上5×105Pa以下であることがより好ましい。
 貼り合わせ温度において、第1粘着剤層22のせん断弾性率と、熱硬化性樹脂層25の溶融粘度を上記範囲内とすることで、バンプ11の根元部分であるバンプネックを熱硬化性樹脂層25によって埋め込みつつ、バンプ11の先端を熱硬化性樹脂層25から突出させやすくなる。さらには、後述する工程(II)の加熱時に熱硬化性樹脂層25が流動しすぎることも防止する。
The first support sheet 23 includes a base material 21 and a first pressure-sensitive adhesive layer 22 provided on one surface of the base material 21, and a thermosetting resin layer 25 is provided on the first pressure-sensitive adhesive layer 22. In the case where the thermosetting resin layer 25 is melted, the melt viscosity of the thermosetting resin layer 25 is 1 × 10 2 Pa · S or more and 2 × 10 at the temperature (bonding temperature) when the first protective film forming film 20 is bonded to the semiconductor wafer 10. While being less than 4 Pa · S, the shear modulus of the first pressure-sensitive adhesive layer 22 is preferably 1 × 10 3 Pa or more and 2 × 10 6 Pa or less at the bonding temperature. In addition, the melt viscosity of the thermosetting resin layer 25 is 1 × 10 3 Pa · S or more and less than 1 × 10 4 Pa · S, and the shear modulus of the first pressure-sensitive adhesive layer 22 is 1 × 10 4 Pa or more and 5 It is more preferable that it is 10 5 Pa or less.
By setting the shear elastic modulus of the first pressure-sensitive adhesive layer 22 and the melt viscosity of the thermosetting resin layer 25 within the above range at the bonding temperature, the bump neck that is the base portion of the bump 11 is formed as the thermosetting resin layer. 25, the tip of the bump 11 is easily protruded from the thermosetting resin layer 25. Furthermore, it prevents that the thermosetting resin layer 25 flows too much at the time of the heating of process (II) mentioned later.
 熱硬化性樹脂層25の溶融粘度は、例えば、後述する熱硬化性樹脂組成物における各材料の配合量や、各材料の種類を変更することで調整可能である。また、第1粘着剤層22のせん断弾性率は、粘着剤の種類を変更することで調整可能である。さらに、第1粘着剤層22は、エネルギー線硬化型粘着剤で形成される場合には、第1支持シート33を半導体ウエハ10に貼付する前に、エネルギー線を照射して、部分的に又は完全に硬化させることで、せん断弾性率を調整することも可能である。 The melt viscosity of the thermosetting resin layer 25 can be adjusted, for example, by changing the amount of each material in the thermosetting resin composition described later and the type of each material. Moreover, the shear elastic modulus of the 1st adhesive layer 22 can be adjusted by changing the kind of adhesive. Furthermore, when the first pressure-sensitive adhesive layer 22 is formed of an energy ray-curable pressure-sensitive adhesive, before the first support sheet 33 is attached to the semiconductor wafer 10, the first pressure-sensitive adhesive layer 22 is irradiated with energy rays to be partially or It is also possible to adjust the shear modulus by completely curing.
 なお、熱硬化性樹脂層の溶融粘度は、レオメーター(HAAKE社製、RS-1)を用いて、パラレルプレート法により測定した値である。より詳細には、ギャップ100μm、回転コーン直径20mm、回転速度10s-1の条件にて、室温から250℃の範囲で測定を行った際の値である。
 また、粘着剤層のせん断弾性率は、厚さ0.2mmの粘着剤層を形成し、せん断弾性率測定装置(レオメトリック社製、ARES)を用いて測定したものである。具体的には、温度を貼り合わせ温度と同じ温度とし、周波数1Hz、プレート径7.9mmφ、及び歪み1%の条件でせん断弾性率を測定したものである。また、貼り合わせ時に粘着剤層がエネルギー線により硬化されている場合には、同様の条件で粘着剤層を硬化させてせん断弾性率を測定する。
The melt viscosity of the thermosetting resin layer is a value measured by a parallel plate method using a rheometer (manufactured by HAAKE, RS-1). More specifically, it is a value when measurement is performed in the range of room temperature to 250 ° C. under the conditions of a gap of 100 μm, a rotation cone diameter of 20 mm, and a rotation speed of 10 s −1 .
The shear modulus of the pressure-sensitive adhesive layer is measured using a shear modulus measurement apparatus (ARES, manufactured by Rheometric Co., Ltd.) with a pressure-sensitive adhesive layer having a thickness of 0.2 mm. Specifically, the shear modulus was measured under the conditions of a frequency of 1 Hz, a plate diameter of 7.9 mmφ, and a strain of 1%, with the temperature being the same as the bonding temperature. Further, when the pressure-sensitive adhesive layer is cured by energy rays at the time of bonding, the pressure-sensitive adhesive layer is cured under the same conditions and the shear elastic modulus is measured.
 熱硬化性樹脂層25は、バンプ11の高さ(バンプ高さ)の0.01~0.99倍の厚みを有することが好ましい。熱硬化性樹脂層25の厚みをバンプ高さの0.01倍以上とすることで、バンプネックを保護膜内部に埋め込みバンプネックの破損を防止しやすくなる。また、0.99倍以下とすることで、バンプの先端を熱硬化性樹脂層25から突出させやすくなる。これら観点から、熱硬化性樹脂層25は、バンプ高さの0.1~0.9倍の厚みを有することがより好ましい。
 なお、熱硬化性樹脂層25の厚みは、特に限定されないが、通常、5~500μm、好ましくは10~100μmである。
The thermosetting resin layer 25 preferably has a thickness of 0.01 to 0.99 times the height of the bump 11 (bump height). By setting the thickness of the thermosetting resin layer 25 to 0.01 times or more of the bump height, it becomes easy to prevent the bump neck from being damaged by embedding the bump neck in the protective film. Moreover, it becomes easy to make the front-end | tip of a bump protrude from the thermosetting resin layer 25 by setting it as 0.99 times or less. From these viewpoints, it is more preferable that the thermosetting resin layer 25 has a thickness of 0.1 to 0.9 times the bump height.
The thickness of the thermosetting resin layer 25 is not particularly limited, but is usually 5 to 500 μm, preferably 10 to 100 μm.
[工程(II)]
 上記工程(I)の後に、半導体ウエハ10の表面10Aに積層された熱硬化性樹脂層25を加熱する(工程(II))。この加熱は、図3に示すように、第1保護膜形成用フィルム20(すなわち、第1支持シート23と、熱硬化性樹脂層25)が積層された半導体ウエハ10を、例えば、加熱炉等の内部に配置して加熱することで行うことが好ましい。熱硬化性樹脂層25は、熱硬化性樹脂を含有するため、上記加熱により熱硬化され、保護膜25A(図4参照)となる。
 上記加熱条件は、熱硬化性樹脂層25に含有される熱硬化性樹脂が硬化されれば特に限定されず、例えば、80~200℃で、30~300分間、好ましくは100~180℃で、60~200分間行われる。
[Step (II)]
After the step (I), the thermosetting resin layer 25 laminated on the surface 10A of the semiconductor wafer 10 is heated (step (II)). As shown in FIG. 3, this heating is performed on the semiconductor wafer 10 on which the first protective film forming film 20 (that is, the first support sheet 23 and the thermosetting resin layer 25) is laminated, for example, a heating furnace or the like. It is preferable to carry out by placing and heating inside. Since the thermosetting resin layer 25 contains a thermosetting resin, the thermosetting resin layer 25 is thermoset by the above-described heating to form a protective film 25A (see FIG. 4).
The heating conditions are not particularly limited as long as the thermosetting resin contained in the thermosetting resin layer 25 is cured. For example, the heating conditions are 80 to 200 ° C., 30 to 300 minutes, preferably 100 to 180 ° C. It is performed for 60 to 200 minutes.
[工程(III)]
 上記工程(II)の加熱の後に、工程(III)では、半導体ウエハ10の表面に貼付されていた第1支持シート23を、保護膜25Aから剥離する。この剥離後、保護膜25Aは、図4に示すように、半導体ウエハ10の上に残されたままとなる。
 ここで、第1支持シート23は、上記のように耐熱性を有する場合、加熱しても、保護膜25Aに対する接着力が顕著に向上することはない。したがって、工程(II)の加熱の後であっても、第1支持シート23は、保護膜25Aから容易に剥離することが可能である。
[Step (III)]
After the heating in the step (II), in the step (III), the first support sheet 23 attached to the surface of the semiconductor wafer 10 is peeled from the protective film 25A. After the peeling, the protective film 25A remains on the semiconductor wafer 10 as shown in FIG.
Here, when the 1st support sheet 23 has heat resistance as mentioned above, even if it heats, the adhesive force with respect to 25 A of protective films will not improve notably. Therefore, even after the heating in the step (II), the first support sheet 23 can be easily peeled from the protective film 25A.
 第1粘着剤層22がエネルギー線硬化型粘着剤により形成される場合、工程(III)において第1支持シート23を半導体ウエハ10から剥離する前に、第1粘着剤層22にエネルギー線を照射して第1粘着剤層22を硬化させておく。第1粘着剤層22は、エネルギー線照射により硬化することで、接着力が低下するため、熱硬化性樹脂層25との界面で容易に剥離できるようになる。
 第1粘着剤層22にエネルギー線を照射して硬化させるタイミングは特に限定されず、第1支持シート23を半導体ウエハに貼付する前に予め硬化させてもよい。また、半導体ウエハ10に貼付した後であってもよく、例えば、工程(II)と工程(III)の間で行ってもよい。また、第1粘着剤層22は、例えば、第1支持シート23を半導体ウエハ10に貼付する前、完全に硬化しない程度にエネルギー線を照射して接着力を低下させるとともに、半導体ウエハ10に貼付した後、さらにエネルギー線を照射してさらに硬化させて、接着力を一層低下させてもよい。
When the first pressure-sensitive adhesive layer 22 is formed of an energy ray-curable pressure-sensitive adhesive, the first pressure-sensitive adhesive layer 22 is irradiated with energy rays before the first support sheet 23 is peeled from the semiconductor wafer 10 in the step (III). Then, the first pressure-sensitive adhesive layer 22 is cured. The first pressure-sensitive adhesive layer 22 is easily peeled at the interface with the thermosetting resin layer 25 because the adhesive strength is reduced by being cured by energy ray irradiation.
The timing for irradiating the first pressure-sensitive adhesive layer 22 with energy rays and curing is not particularly limited, and the first support sheet 23 may be cured in advance before being attached to the semiconductor wafer. Moreover, it may be after sticking to the semiconductor wafer 10, for example, you may carry out between process (II) and process (III). In addition, for example, before the first support sheet 23 is attached to the semiconductor wafer 10, the first pressure-sensitive adhesive layer 22 is applied to the semiconductor wafer 10 while irradiating energy rays to such an extent that the first support sheet 23 is not completely cured. Then, the adhesive force may be further reduced by further irradiating with energy rays and further curing.
[工程(IV)]
 次に、保護膜25Aがバンプ面に形成された半導体ウエハ10を、図5に示すように、ダイシングすることで分割して、複数の半導体チップ15に個片化する。この工程では、半導体ウエハ10とともに、保護膜25Aも、半導体チップ15の形状に合わせて分割される。
 ダイシング方法としては、特に限定されないが、ブレードダイシング、ステルスダイシング、レーザダイシングなどの公知の方法を用いることができ、例えば、保護膜25A及び半導体ウエハ10を貫通するように、切り込み17を設けることで行うものである。
 ダイシングは、例えば、図5に示すように、半導体ウエハ10の裏面10B側に第2支持シート33を貼付して半導体ウエハ10を支持するとともに、半導体ウエハ10の表面10A側から切り込み17を入れることで行う。
[Step (IV)]
Next, as shown in FIG. 5, the semiconductor wafer 10 on which the protective film 25 </ b> A is formed on the bump surface is divided by dicing and divided into a plurality of semiconductor chips 15. In this step, along with the semiconductor wafer 10, the protective film 25 </ b> A is also divided according to the shape of the semiconductor chip 15.
Although it does not specifically limit as a dicing method, Well-known methods, such as a blade dicing, stealth dicing, and laser dicing, can be used, for example, by providing the notch 17 so that the protective film 25A and the semiconductor wafer 10 may be penetrated. Is what you do.
For example, as shown in FIG. 5, the dicing is performed by attaching a second support sheet 33 to the back surface 10 </ b> B side of the semiconductor wafer 10 to support the semiconductor wafer 10 and making a notch 17 from the front surface 10 </ b> A side of the semiconductor wafer 10. To do.
 第2支持シート33は、図5の構成では、第2基材31と、第2基材31の一方の面の上に設けられる第2粘着剤層32とを備えるものであり、第2粘着剤層32を介して半導体ウエハ10に貼付される。ただし、第2支持シート33は、第2粘着剤層32が省略されてもよいし、第2基材31の半導体ウエハ10に接着される側の面が、表面処理がなされ、又は粘着剤層の代わりに粘着剤層以外の層が設けられ、その層又は表面処理面を介して半導体ウエハ10の裏面側に貼り合わせてもよい。また、第2粘着剤層32と第2基材31の間にさらに中間層(図示せず)が設けられてもよい。
 第2支持シート33は、半導体ウエハ10より一回り大きく、かつ、その中央領域が半導体ウエハ10に貼付されるとともに、外周領域が半導体ウエハ10に貼付されず、支持部材13に貼付されることが好ましい。支持部材13は、ダイシング時等において、第2支持シート33を支持するための部材であり、例えば、リングフレームが挙げられる。
 なお、第2支持シート33の支持部材13への貼付は、第2粘着剤層32を直接貼付する必要はなく、第2支持シート33の外周領域に再剥離接着剤層等を設けて、その再剥離接着剤層等により貼付してもよい。
In the configuration of FIG. 5, the second support sheet 33 includes a second base material 31 and a second pressure-sensitive adhesive layer 32 provided on one surface of the second base material 31. It is affixed to the semiconductor wafer 10 through the agent layer 32. However, in the second support sheet 33, the second pressure-sensitive adhesive layer 32 may be omitted, or the surface of the second base material 31 that is bonded to the semiconductor wafer 10 is surface-treated, or the pressure-sensitive adhesive layer. Instead of this, a layer other than the pressure-sensitive adhesive layer may be provided and bonded to the back side of the semiconductor wafer 10 via the layer or the surface-treated surface. Further, an intermediate layer (not shown) may be provided between the second pressure-sensitive adhesive layer 32 and the second base material 31.
The second support sheet 33 may be slightly larger than the semiconductor wafer 10, and its central region may be attached to the semiconductor wafer 10, and its outer peripheral region may be attached to the support member 13 without being attached to the semiconductor wafer 10. preferable. The support member 13 is a member for supporting the second support sheet 33 at the time of dicing or the like, and examples thereof include a ring frame.
Note that the second support sheet 33 is not necessarily attached to the support member 13 by directly attaching the second pressure-sensitive adhesive layer 32, and a re-peeling adhesive layer or the like is provided in the outer peripheral region of the second support sheet 33. You may stick by a re-peeling adhesive layer.
 第2粘着剤層32は、各種の粘着剤から形成されるが、エネルギー線硬化型粘着剤により形成されていてもよい。エネルギー線硬化型粘着剤により形成される場合には、後述するピックアップの前に、少なくとも、第2粘着剤層32の半導体ウエハ10の裏面側に貼り合わされる領域(中央領域)に、予めエネルギー線を照射して、第2粘着剤層32を硬化して半導体ウエハ10の裏面に対する接着力を低減させる。エネルギー線を照射するタイミングは、特に限定されないが、半導体ウエハ10に貼り合わせる前に行ってもよいし、ダイシング後、ピックアップの前に行ってもよい。
 一方、外周領域はエネルギー線照射を行わなくてもよく、支持部材13への接着を目的として、接着力を高いまま維持しておいてもよい。
Although the 2nd adhesive layer 32 is formed from various adhesives, you may be formed with the energy-beam curable adhesive. When formed with an energy ray curable pressure sensitive adhesive, energy rays are preliminarily applied to at least a region (center region) bonded to the back surface side of the semiconductor wafer 10 of the second pressure sensitive adhesive layer 32 before pick-up described later. Is applied to cure the second pressure-sensitive adhesive layer 32 and reduce the adhesive force to the back surface of the semiconductor wafer 10. The timing of irradiating the energy beam is not particularly limited, but may be performed before being bonded to the semiconductor wafer 10 or may be performed after dicing and before pickup.
On the other hand, the peripheral region may not be irradiated with energy rays, and may be maintained with a high adhesive force for the purpose of bonding to the support member 13.
 本実施形態では、ダイシングの後、半導体チップ15をピックアップして、リフローによりチップ搭載用基板等に取り付けた後、さらに、半導体チップ15とチップ搭載基板の間の隙間を封止樹脂により封止する等、必要な工程を経ることで、半導体装置を製造する。
 ここで、ピックアップの方法は、特に限定されないが、例えば第2支持シート33を介してピンなどで半導体チップ15を裏面側から突き上げて、半導体チップ15を第2支持シート33から剥離して真空コレット等によりピックアップする方法がある。
In the present embodiment, after dicing, the semiconductor chip 15 is picked up and attached to the chip mounting substrate or the like by reflow, and then the gap between the semiconductor chip 15 and the chip mounting substrate is sealed with a sealing resin. A semiconductor device is manufactured through necessary steps.
Here, the method of picking up is not particularly limited. For example, the semiconductor chip 15 is pushed up from the back surface side with a pin or the like through the second support sheet 33, and the semiconductor chip 15 is peeled off from the second support sheet 33 to form a vacuum collet. There is a method of picking up by such as.
 ピックアップした半導体チップ15は、例えば、以下の方法で、チップ搭載用基板等に取り付ける。
 すなわち、図6に示すように、半導体チップ15は、その表面(すなわち、バンプ面)がチップ搭載用基板40に対向するようにして、チップ搭載用基板40の所定位置に配置される。そして、リフローにより、バンプ11がチップ搭載用基板40に固定され、半導体チップ15とチップ搭載用基板40が電気的に導通させる。なお、リフローでは、例えば、基板40上に設けられた半田等の導電材(図示せず)を溶融させ、その導電材により、バンプ11をチップ搭載用基板40の電極等に融着される。
 リフローは、例えば、チップ搭載用基板40と、その基板40上に配置された半導体チップ15とを、加熱炉内部に配置して加熱することで行う。リフローにおける加熱は、例えば、120~300℃の雰囲気下で0.5~5分、好ましくは160~260℃の雰囲気下で1~2分行うものである。
The picked-up semiconductor chip 15 is attached to a chip mounting substrate or the like by the following method, for example.
That is, as shown in FIG. 6, the semiconductor chip 15 is disposed at a predetermined position on the chip mounting substrate 40 such that the surface (that is, the bump surface) faces the chip mounting substrate 40. Then, by reflow, the bumps 11 are fixed to the chip mounting substrate 40, and the semiconductor chip 15 and the chip mounting substrate 40 are electrically connected. In the reflow, for example, a conductive material (not shown) such as solder provided on the substrate 40 is melted, and the bumps 11 are fused to the electrodes of the chip mounting substrate 40 by the conductive material.
The reflow is performed, for example, by placing and heating the chip mounting substrate 40 and the semiconductor chip 15 disposed on the substrate 40 inside the heating furnace. Heating in the reflow is performed, for example, in an atmosphere of 120 to 300 ° C. for 0.5 to 5 minutes, preferably in an atmosphere of 160 to 260 ° C. for 1 to 2 minutes.
 本実施形態の製造方法において、半導体ウエハ10は、裏面研削が行われることが好ましい。裏面研削は、第1支持シート23を、半導体ウエハ10の表面10A側に、貼付した状態で行う。すなわち、半導体ウエハの裏面研削は、工程(I)と工程(III)の間に行う。これにより、第1支持シート23は、熱硬化性樹脂層25を支持するためのシートのみならず、裏面研削時にバンプ面を保護するバックグランドシートとしても使用される。また、半導体ウエハ10の裏面研削は、工程(I)と工程(II)の間に行うことが好ましい。
 半導体ウエハの裏面研削は、例えば、第1支持シート23が貼付された、半導体ウエハ10の表面側をチャックテーブル等の固定テープル上に固定し、裏面10Bをグラインダー等により研削することで行う。ウエハ10の研削後の厚みは特に限定はされないが、通常5~450μm、好ましくは20~400μm程度である。
In the manufacturing method of the present embodiment, the semiconductor wafer 10 is preferably subjected to back grinding. The back surface grinding is performed in a state where the first support sheet 23 is attached to the front surface 10 </ b> A side of the semiconductor wafer 10. That is, the back grinding of the semiconductor wafer is performed between the step (I) and the step (III). Thereby, the 1st support sheet 23 is used not only as a sheet | seat for supporting the thermosetting resin layer 25 but as a background sheet | seat which protects a bump surface at the time of back surface grinding. Moreover, it is preferable to perform the back surface grinding of the semiconductor wafer 10 between the step (I) and the step (II).
The backside grinding of the semiconductor wafer is performed, for example, by fixing the front surface side of the semiconductor wafer 10 to which the first support sheet 23 is attached on a fixed table such as a chuck table and grinding the backside 10B with a grinder or the like. The thickness of the wafer 10 after grinding is not particularly limited, but is usually 5 to 450 μm, preferably about 20 to 400 μm.
 次に、本製造方法で使用される各部材の材料について詳細に説明する。
(熱硬化性樹脂層)
 熱硬化性樹脂層25は、少なくとも熱硬化性樹脂を含むとともに、ウエハ10に対して接着可能であり、後述する加熱硬化工程において加熱されることで、保護膜25Aとなるものである。
 熱硬化性樹脂層25に使用される熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、熱硬化性ポリイミド樹脂等が挙げられる。熱硬化性樹脂は、単独で又は2種以上併用して用いることができる。熱硬化性樹脂としては、特に、半導体素子を腐食させるイオン性不純物等含有が少ないエポキシ樹脂が好適である。また、熱硬化性樹脂として、硬化剤を含有させることも可能であり、例えば、エポキシ樹脂の硬化剤としてとしてはフェノール樹脂を好適に用いることができる。
 なお、熱硬化性樹脂層25において、熱硬化性樹脂は、熱硬化性樹脂層(すなわち、熱硬化性樹脂組成物)全量に対して、好ましくは、5~70質量%、より好ましくは10~50質量%である。
Next, the material of each member used by this manufacturing method is demonstrated in detail.
(Thermosetting resin layer)
The thermosetting resin layer 25 includes at least a thermosetting resin and can be bonded to the wafer 10. The thermosetting resin layer 25 becomes a protective film 25 </ b> A by being heated in a heat curing step described later.
Examples of the thermosetting resin used for the thermosetting resin layer 25 include an epoxy resin, a phenol resin, an amino resin, an unsaturated polyester resin, a polyurethane resin, a silicone resin, and a thermosetting polyimide resin. A thermosetting resin can be used individually or in combination of 2 or more types. As the thermosetting resin, an epoxy resin containing a small amount of ionic impurities that corrode semiconductor elements is particularly suitable. Moreover, it is also possible to contain a hardening | curing agent as a thermosetting resin, for example, a phenol resin can be used suitably as a hardening | curing agent of an epoxy resin.
In the thermosetting resin layer 25, the thermosetting resin is preferably 5 to 70% by mass, more preferably 10 to 10% by mass with respect to the total amount of the thermosetting resin layer (that is, the thermosetting resin composition). 50% by mass.
 また、熱硬化性樹脂層25は、熱硬化性樹脂以外にも熱可塑性樹脂及び充填材を含有する熱硬化性樹脂組成物から構成されることが好ましい。
 熱可塑性樹脂としては、アクリル系樹脂、ポリエステル樹脂、ウレタン樹脂、アクリルウレタン樹脂、シリコーン樹脂、ゴム系ポリマー、フェノキシ樹脂等を用いることができるが、これらの中では、アクリル系樹脂が好ましい。
 熱硬化性樹脂層における熱可塑性樹脂は、熱硬化性樹脂層(すなわち、熱硬化性樹脂組成物)全量に対して、好ましくは1~50質量%、より好ましくは5~40質量%である。
Moreover, it is preferable that the thermosetting resin layer 25 is comprised from the thermosetting resin composition containing a thermoplastic resin and a filler other than a thermosetting resin.
As the thermoplastic resin, an acrylic resin, a polyester resin, a urethane resin, an acrylic urethane resin, a silicone resin, a rubber polymer, a phenoxy resin, or the like can be used. Among these, an acrylic resin is preferable.
The thermoplastic resin in the thermosetting resin layer is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, based on the total amount of the thermosetting resin layer (that is, the thermosetting resin composition).
 また、充填材としては、シリカ、アルミナ、タルク、炭酸カルシウム、酸化チタン、酸化鉄、炭化珪素、窒化ホウ素等の粉末、これらを球形化したビーズ、単結晶繊維およびガラス繊維等から選択される無機フィラーが挙げられ、これらの中では、シリカフィラー又はアルミナフィラーが好ましい。
 熱硬化性樹脂層における充填材は、熱硬化性樹脂層(すなわち、熱硬化性樹脂組成物)全量に対して、好ましくは5~75質量%、より好ましくは10~60質量%である。
In addition, as the filler, inorganic powders selected from powders such as silica, alumina, talc, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride, spheroidized beads, single crystal fibers and glass fibers, etc. A filler is mentioned, In these, a silica filler or an alumina filler is preferable.
The filler in the thermosetting resin layer is preferably 5 to 75% by mass, more preferably 10 to 60% by mass, based on the total amount of the thermosetting resin layer (that is, the thermosetting resin composition).
 また、熱硬化性樹脂組成物は、それぞれ上記の成分以外にも、硬化促進剤、カップリング剤、顔料、染料などの着色剤等のその他の添加剤を含有していてもよい。
 硬化促進剤としては特に制限されず、例えば、アミン系硬化促進剤、リン系硬化促進剤、イミダゾール系硬化促進剤、ホウ素系硬化促進剤、リン-ホウ素系硬化促進剤などから選択される少なくとも1種を用いることができる。また、カップリング剤としては、シランカップリング剤を使用することが可能である。
Moreover, the thermosetting resin composition may contain other additives, such as coloring agents, such as a hardening accelerator, a coupling agent, a pigment, and dye other than said component, respectively.
The curing accelerator is not particularly limited, and for example, at least one selected from amine-based curing accelerators, phosphorus-based curing accelerators, imidazole-based curing accelerators, boron-based curing accelerators, phosphorus-boron-based curing accelerators, and the like. Seeds can be used. A silane coupling agent can be used as the coupling agent.
(第1及び第2基材)
 第1基材21としては、樹脂フィルムを使用することができるが、上記したように耐熱性を有するものが好ましく使用される。第1基材21を構成する樹脂フィルムは、1種の樹脂フィルムからなる単層フィルムであってもよいし、複数の樹脂フィルムを積層した複層フィルムであってもよい。
 具体的な樹脂フィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、エチレン-ノルボルネン共重合体フィルム、ノルボルネン樹脂フィルム等のポリオレフィン系フィルム;エチレン-酢酸ビニル共重合体フィルム、エチレン-(メタ)アクリル酸共重合体フィルム、エチレン-(メタ)アクリル酸エステル共重合体フィルム等のエチレン系共重合体フィルム;ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム等のポリ塩化ビニル系フィルム;ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等のポリエステル系フィルム;ポリウレタン系フィルム、ポリイミド系フィルム、ポリアミド系フィルム、ポリアセタール系フィルム、ポリカーボネート系フィルム、ポリスチレン系フィルム、フッ素樹脂フィルム、変性ポリフェニレンオキシド系フィルム、ポリフェニレンスルフィド系フィルム、ポリスルホン系フィルムなどが挙げられる。またこれらの架橋フィルム、アイオノマーフィルムのような変性フィルムも用いられる。
 これらの中では、第1基材21に使用される樹脂フィルムとしては、ポリエステル系フィルム、二軸延伸ポリプロピレンフィルム、ポリイミド系フィルム、およびポリアミド系フィルムが好ましく、ポリエステル系フィルムがより好ましく、ポリエチレンテレフタレートフィルムが特に好ましい。これら樹脂フィルムは、耐熱性を有し、かつ剛性が高いため、工程(II)において熱硬化性樹脂層23が流動することを防いで、膜厚が不均一になることを防止する。
(First and second base materials)
As the first substrate 21, a resin film can be used, but those having heat resistance as described above are preferably used. The resin film constituting the first substrate 21 may be a single layer film made of one kind of resin film or a multilayer film in which a plurality of resin films are laminated.
Specific resin films include polyethylene films, polypropylene films, polybutene films, polybutadiene films, polymethylpentene films, ethylene-norbornene copolymer films, polyolefin films such as norbornene resin films; ethylene-vinyl acetate copolymer films , Ethylene-based copolymer films such as ethylene- (meth) acrylic acid copolymer film and ethylene- (meth) acrylic acid ester copolymer film; polyvinyl chloride such as polyvinyl chloride film and vinyl chloride copolymer film Film: Polyester film such as polyethylene terephthalate film and polybutylene terephthalate film; polyurethane film, polyimide film, polyamide film, polyaceta Le-based films, polycarbonate-based film, polystyrene film, fluororesin film, modified polyphenylene oxide-based film, polyphenylene sulfide film, polysulfone-based films. Further, modified films such as these crosslinked films and ionomer films are also used.
Among these, as the resin film used for the first substrate 21, a polyester film, a biaxially stretched polypropylene film, a polyimide film, and a polyamide film are preferable, a polyester film is more preferable, and a polyethylene terephthalate film Is particularly preferred. Since these resin films have heat resistance and high rigidity, the thermosetting resin layer 23 is prevented from flowing in the step (II) and the film thickness is prevented from becoming nonuniform.
 また、第2支持シート33に使用される第2基材31としては、樹脂フィルムを使用することが好ましい。第2基材33には、上記した樹脂フィルムから適宜選択して使用可能であるが、第2基材31は、耐熱性を有する必要はなく、また、高剛性にする必要もない。なお、第1及び第2基材31、33に使用される基材は、互いに同じものを使用してもよいし、異なるものを使用してもよい。また、第1及び第2基材21、31は、それぞれ第1及び第2粘着材層22、23を構成する粘着剤がエネルギー線型硬化性粘着剤である場合には、エネルギー線を透過するものであることが好ましい。
 第1及び第2基材21、31の厚さはそれぞれ、例えば10~300μm、好ましくは15~200μmである。
Moreover, as the 2nd base material 31 used for the 2nd support sheet 33, it is preferable to use a resin film. The second base material 33 can be appropriately selected from the above-described resin films and can be used. However, the second base material 31 does not need to have heat resistance and does not need to have high rigidity. In addition, the base material used for the 1st and 2nd base materials 31 and 33 may use the mutually same thing, and may use a different thing. The first and second base materials 21 and 31 transmit energy rays when the pressure-sensitive adhesive constituting the first and second pressure-sensitive adhesive layers 22 and 23 is an energy ray-type curable pressure-sensitive adhesive, respectively. It is preferable that
The thickness of each of the first and second base materials 21 and 31 is, for example, 10 to 300 μm, preferably 15 to 200 μm.
(第1及び第2粘着剤層)
 第1及び第2粘着剤層22、32それぞれを形成する粘着剤は、特に限定されないが、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、ポリオレフィン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリアミド系粘着剤、フッ素系粘着剤、スチレン-ジエンブロック共重合体系粘着剤等が挙げられるが、これらの中では、アクリル系粘着剤が好ましい。例えば、第1粘着剤層22にアクリル系粘着剤を使用すると、粘着剤層のせん断弾性率を上記した範囲としやすくなる。
 粘着剤は、通常、アクリル系樹脂、ゴム成分、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、ビニルアルキルエーテル系樹脂、ポリアミド系樹脂、フッ素系樹脂、スチレン-ジエンブロック共重合体等の粘着性成分(主ポリマー)に加え、必要に応じて架橋剤、粘着剤付与剤、酸化防止剤、可塑剤、充填剤、帯電防止剤、光重合開始剤、難燃剤等の成分を含有する粘着剤組成物からなるものである。なお、粘着性成分とは、ポリマー自体は実質的に粘着性を有していないが、可塑化成分、粘着剤付与剤の添加等により粘着性を発現するポリマー等も広く含む概念である。
(First and second adhesive layers)
Although the adhesive which forms each of the 1st and 2nd adhesive layers 22 and 32 is not specifically limited, an acrylic adhesive, a rubber adhesive, a silicone adhesive, a polyester adhesive, a urethane adhesive, a polyolefin -Based pressure-sensitive adhesives, vinyl alkyl ether-based pressure-sensitive adhesives, polyamide-based pressure-sensitive adhesives, fluorine-based pressure-sensitive adhesives, styrene-diene block copolymer-based pressure-sensitive adhesives and the like. Among these, acrylic pressure-sensitive adhesives are preferable. For example, when an acrylic pressure-sensitive adhesive is used for the first pressure-sensitive adhesive layer 22, the shear elastic modulus of the pressure-sensitive adhesive layer is easily set in the above-described range.
Adhesives are usually acrylic resins, rubber components, silicone resins, polyester resins, urethane resins, polyolefin resins, vinyl alkyl ether resins, polyamide resins, fluorine resins, styrene-diene block copolymers In addition to adhesive components (main polymer), etc., if necessary, contains components such as cross-linking agents, tackifiers, antioxidants, plasticizers, fillers, antistatic agents, photopolymerization initiators, and flame retardants It consists of an adhesive composition. The term “adhesive component” is a concept that includes a polymer that does not substantially have adhesiveness, but also includes a polymer that exhibits adhesiveness due to the addition of a plasticizing component, an adhesive-imparting agent, or the like.
 第1及び第2粘着剤層22、32は、上記したように、エネルギー線型硬化性粘着剤から形成されてもよいし、エネルギー線を照射しても粘着剤が硬化しない非エネルギー線硬化型粘着剤から形成されてもよい。なお、エネルギー線とは、電磁波または荷電粒子線の中でエネルギー量子を有するものであり、紫外線などの活性光または電子線などを指すが、本製造方法では、紫外線を使用することが好ましい。なお、これら第1及び第2粘着剤層22、32は、いずれか一方のみがエネルギー線型硬化性粘着剤から形成されてもよいし、両方がエネルギー線型硬化性粘着剤から形成されてもよい。
 エネルギー線硬化型粘着剤は、具体的には、光重合性不飽和基を有する成分が含有されるエネルギー線硬化型粘着剤からなるものである。エネルギー線硬化型粘着剤としては、特に限定されないが、粘着剤の主ポリマー(例えば、アクリル系重合体)自体に(例えば、主ポリマーの側鎖に)二重結合等の光重合性不飽和基が導入されたものが挙げられる。
 また、エネルギー線硬化型粘着剤としては、主ポリマー(例えば、アクリル系重合体)とは別に、光重合性不飽和基を有するエネルギー線重合性化合物が配合されるものであってもよい。この場合、主ポリマーは、光重合性不飽和基が導入されたものであってもよいし、導入されていなくてもよい。
As described above, the first and second pressure-sensitive adhesive layers 22 and 32 may be formed from an energy ray-curable pressure-sensitive adhesive, or a non-energy ray-curable pressure-sensitive adhesive that does not cure the pressure-sensitive adhesive even when irradiated with energy rays. It may be formed from an agent. The energy rays have energy quanta in electromagnetic waves or charged particle rays, and indicate active light such as ultraviolet rays or electron rays. In this production method, it is preferable to use ultraviolet rays. Note that only one of the first and second pressure-sensitive adhesive layers 22 and 32 may be formed from the energy-ray-type curable pressure-sensitive adhesive, or both may be formed from the energy-ray-type curable pressure-sensitive adhesive.
Specifically, the energy ray curable pressure sensitive adhesive is composed of an energy ray curable pressure sensitive adhesive containing a component having a photopolymerizable unsaturated group. The energy ray-curable pressure-sensitive adhesive is not particularly limited, but is a photopolymerizable unsaturated group such as a double bond in the main polymer (for example, acrylic polymer) of the pressure-sensitive adhesive itself (for example, in the side chain of the main polymer). Is introduced.
Further, as the energy ray-curable pressure-sensitive adhesive, an energy ray-polymerizable compound having a photopolymerizable unsaturated group may be blended separately from the main polymer (for example, acrylic polymer). In this case, the main polymer may or may not have a photopolymerizable unsaturated group introduced therein.
 第1支持シート23は、上記のように耐熱性を有することが好ましく、そのため、第1粘着剤層22を形成するための粘着剤も耐熱性を有することが好ましい。耐熱性を有する粘着剤とは、上記したように、加熱後でも接着力を低いものに維持できるものであれば特に限定されないが、具体的には、エネルギー線硬化型アクリル系粘着剤(A)、水分散型アクリル系粘着剤(B)が挙げられる。これらの中ではエネルギー線硬化型アクリル系粘着剤(A)が好ましい。なお、エネルギー線硬化型アクリル系粘着剤(A)は、工程(II)の加熱前にエネルギー線を照射させ硬化させることで、耐熱性を発揮させやすくなる。 The first support sheet 23 preferably has heat resistance as described above. Therefore, the pressure-sensitive adhesive for forming the first pressure-sensitive adhesive layer 22 also preferably has heat resistance. The heat-resistant pressure-sensitive adhesive is not particularly limited as long as it can maintain a low adhesive strength even after heating as described above. Specifically, the energy ray-curable acrylic pressure-sensitive adhesive (A) And water-dispersed acrylic pressure-sensitive adhesive (B). Among these, the energy ray curable acrylic pressure-sensitive adhesive (A) is preferable. The energy ray curable acrylic pressure-sensitive adhesive (A) can easily exhibit heat resistance by irradiating and curing the energy rays before heating in the step (II).
 エネルギー線硬化型アクリル系粘着剤(A)の一例としては、側鎖に光重合性不飽和基を有するエネルギー線硬化型アクリル系重合体(A1)を主成分とするものが挙げられる。なお、主成分とは、一般的に、粘着剤層を構成する粘着剤全成分の50質量%以上を構成するものであり、好ましくは70質量%以上である。
 エネルギー線硬化型アクリル系重合体(A1)としては、ポリマー鎖に-COOH、-NCO、エポキシ基、-OH、-NH2などの活性点を導入した(メタ)アクリル酸エステル系共重合体(A2)の活性点に、光重合性不飽和基を有する化合物(以下、不飽和基含有化合物(X)ともいう)を反応させたものが挙げられる。
 (メタ)アクリル酸エステル系共重合体(A2)に前記活性点を導入するには、該(メタ)アクリル酸エステル系共重合体(A2)を重合する際に、-COOH、-NCO、エポキシ基、-OH、-NH2などの官能基を有する単量体を使用すればよい。
 なお、本明細書において、(メタ)アクリル酸とは、「アクリル酸」及び「メタクリル酸」の双方を示す語として用いており、他の類似用語についても同様である。
As an example of the energy beam curable acrylic pressure-sensitive adhesive (A), one having as a main component an energy beam curable acrylic polymer (A1) having a photopolymerizable unsaturated group in the side chain can be mentioned. In addition, the main component generally constitutes 50% by mass or more, preferably 70% by mass or more, of all components of the adhesive constituting the adhesive layer.
As the energy ray curable acrylic polymer (A1), a (meth) acrylic acid ester copolymer in which active sites such as —COOH, —NCO, epoxy group, —OH, —NH 2 are introduced into the polymer chain ( What reacted the compound which has a photopolymerizable unsaturated group (henceforth an unsaturated group containing compound (X)) with the active point of A2) is mentioned.
In order to introduce the active site into the (meth) acrylate copolymer (A2), when the (meth) acrylate copolymer (A2) is polymerized, —COOH, —NCO, epoxy A monomer having a functional group such as a group, —OH, —NH 2 may be used.
In this specification, (meth) acrylic acid is used as a term indicating both “acrylic acid” and “methacrylic acid”, and the same applies to other similar terms.
 (メタ)アクリル酸エステル系共重合体(A2)としては、具体的には、アルキル基の炭素数が1~20である(メタ)アクリル酸アルキルエステルと、他の単量体との共重合体が挙げられる。
 アルキル基の炭素数が1~20である(メタ)アクリル酸アルキルエステルの例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸パルミチル、(メタ)アクリル酸ステアリルなどが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Specifically, the (meth) acrylic acid ester copolymer (A2) is a copolymer of a (meth) acrylic acid alkyl ester having an alkyl group with 1 to 20 carbon atoms and another monomer. Coalescence is mentioned.
Examples of (meth) acrylic acid alkyl esters having an alkyl group with 1 to 20 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. , Pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, decyl (meth) acrylate, (meth) acrylic acid Examples include lauryl, myristyl (meth) acrylate, palmityl (meth) acrylate, and stearyl (meth) acrylate. These may be used alone or in combination of two or more.
 また、これらの中では、アルキル基の炭素数が6~14である(メタ)アクリル酸アルキルエステルを使用することが好ましい。ここで、アルキル基の炭素数が6~14である(メタ)アクリル酸アルキルエステルは、(メタ)アクリル酸エステル系共重合体(A2)を構成するモノマー全量に対して、50~97質量%であることが好ましく、70~95質量%であることがより好ましい。また、アルキル基の炭素数が6~14である(メタ)アクリル酸アルキルエステルは、アルキル基の炭素数が8~12であるものが好ましく、具体的には(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリルがより好ましい。このように、アルキル基の炭素数が6~14である(メタ)アクリル酸アルキルエステルを使用することで、粘着剤の耐熱性が向上しやすく、高温で加熱しても接着力が上昇しにくくなる。 Of these, it is preferable to use (meth) acrylic acid alkyl esters in which the alkyl group has 6 to 14 carbon atoms. Here, the (meth) acrylic acid alkyl ester having 6 to 14 carbon atoms in the alkyl group is 50 to 97% by mass with respect to the total amount of monomers constituting the (meth) acrylic acid ester copolymer (A2). It is preferably 70 to 95% by mass. In addition, the (meth) acrylic acid alkyl ester in which the alkyl group has 6 to 14 carbon atoms is preferably one in which the alkyl group has 8 to 12 carbon atoms, specifically, 2-ethylhexyl (meth) acrylate, Lauryl (meth) acrylate is more preferred. As described above, by using (meth) acrylic acid alkyl ester having 6 to 14 carbon atoms in the alkyl group, the heat resistance of the pressure-sensitive adhesive is easily improved, and the adhesive force is hardly increased even when heated at a high temperature. Become.
 また、(メタ)アクリル酸エステル系共重合体(A2)に使用される、他の単量体としては、上記した-COOH、-NCO、エポキシ基、-OH、-NH2などの官能基を有する単量体が挙げられる。
 ここで、官能基を有する単量体の例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチルなどの(メタ)アクリル酸ヒドロキシアルキルエステル;(メタ)アクリル酸モノメチルアミノエチル、(メタ)アクリル酸モノエチルアミノエチル、(メタ)アクリル酸モノメチルアミノプロピル、(メタ)アクリル酸モノエチルアミノプロピルなどの(メタ)アクリル酸モノアルキルアミノアルキル;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸などのエチレン性不飽和カルボン酸;(メタ)アクリロイルオキシエチルイソシアネートなどのイソシアネート基含有(メタ)アクリレ酸エステル;グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、(3,4-エポキシシクロヘキシル)メチル(メタ)アクリレート、3-エポキシシクロ-2-ヒドロキシプロピル(メタ)アクリレートなどのエポキシ基含有(メタ)アクリル酸エステルなどが挙げられるが、これらの中では、(メタ)アクリル酸ヒドロキシアルキルエステルを使用することが好ましい。
 これらの官能基を有する単量体は単独で用いてもよく、2種以上を組み合わせて用いてもよい。ここで、官能基を有する単量体は、(メタ)アクリル酸エステル系共重合体(A2)を構成するモノマー全量に対して、3~40質量%であることが好ましく、5~30質量%であることがより好ましい。
 また、他の単量体としては、ビニルエステル類、オレフィン類、ハロゲン化オレフィン類、スチレン系単量体、ジエン系単量体、ニトリル系単量体、N,N-ジアルキル置換アクリルアミド類などを使用してもよい。
Other monomers used in the (meth) acrylic acid ester copolymer (A2) include functional groups such as -COOH, -NCO, epoxy group, -OH, and -NH 2 described above. The monomer which has.
Here, examples of the monomer having a functional group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylic acid. (Meth) acrylic acid hydroxyalkyl esters such as 2-hydroxybutyl, (meth) acrylic acid 3-hydroxybutyl, (meth) acrylic acid 4-hydroxybutyl; (meth) acrylic acid monomethylaminoethyl, (meth) acrylic acid mono (Meth) acrylic acid monoalkylaminoalkyl such as ethylaminoethyl, (meth) acrylic acid monomethylaminopropyl, (meth) acrylic acid monoethylaminopropyl; acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, citracone Ethylenically unsaturated carboxylic acids such as acids; (Meth) acryloyloxyethyl isocyanate and other isocyanate group-containing (meth) acrylic acid esters; glycidyl (meth) acrylate, β-methylglycidyl (meth) acrylate, (3,4-epoxycyclohexyl) methyl (meth) acrylate, 3-epoxy Examples include epoxy group-containing (meth) acrylic acid esters such as cyclo-2-hydroxypropyl (meth) acrylate, and among these, (meth) acrylic acid hydroxyalkyl esters are preferably used.
These monomers having a functional group may be used alone or in combination of two or more. Here, the monomer having a functional group is preferably 3 to 40% by mass with respect to the total amount of monomers constituting the (meth) acrylic ester copolymer (A2). It is more preferable that
Other monomers include vinyl esters, olefins, halogenated olefins, styrene monomers, diene monomers, nitrile monomers, N, N-dialkyl substituted acrylamides, and the like. May be used.
 また、上記活性点に反応させる不飽和基含有化合物(X)としては、例えば(メタ)アクリロイルオキシエチルイソシアネート、グリシジル(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ジペンタエリスリトールモノ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレートなどの光重合性二重結合を有する化合物の中から、活性点の種類に応じて、適宜選択して用いることができる。 Examples of the unsaturated group-containing compound (X) reacted with the active site include (meth) acryloyloxyethyl isocyanate, glycidyl (meth) acrylate, pentaerythritol mono (meth) acrylate, and dipentaerythritol mono (meth) acrylate. From among compounds having a photopolymerizable double bond such as trimethylolpropane mono (meth) acrylate, it can be appropriately selected and used according to the type of active site.
 また、不飽和基含有化合物(X)は、(メタ)アクリル酸エステル系共重合体(A2)の官能基(活性点)の一部に反応することが好ましく、具体的には、(メタ)アクリル酸エステル系共重合体(A2)が有する官能基の50~90モル%に、不飽和基含有化合物(X)を反応させることが好ましく、55~85モル%反応させることがより好ましい。
 このように、エネルギー線硬化型アクリル系重合体(A1)において、官能基の一部が不飽和基含有化合物(X)と反応せずに残存することで、後述する架橋剤によって架橋されやすくなる。なお、反応せずに残存する官能基は、-COOH、-OH、-NH2の活性水素を有する官能基が好ましく、中でも-OHがより好ましい。
The unsaturated group-containing compound (X) preferably reacts with a part of the functional group (active point) of the (meth) acrylic acid ester copolymer (A2), specifically, (meth) The unsaturated group-containing compound (X) is preferably reacted with 50 to 90 mol% of the functional group of the acrylate copolymer (A2), more preferably 55 to 85 mol%.
Thus, in the energy ray curable acrylic polymer (A1), a part of the functional group remains without reacting with the unsaturated group-containing compound (X), so that it is easily cross-linked by a cross-linking agent described later. . The functional group remaining without reacting is preferably a functional group having active hydrogen such as —COOH, —OH, and —NH 2 , and —OH is more preferable.
 また、エネルギー線硬化型アクリル系粘着剤(A)は、上記した側鎖に光重合性不飽和基を有するエネルギー線硬化型アクリル系重合体(A1)に加えて、側鎖に光重合性不飽和基を有しない、非エネルギー線硬化型の(メタ)アクリル酸エステル系共重合体(A2)を含有していてもよい。この場合、(メタ)アクリル酸エステル系共重合体(A2)は、上記で説明したものと同様のものが使用可能であるが、上記のように-OH等の活性水素を持つ官能基を有することが特に好ましい。 In addition to the energy beam curable acrylic polymer (A1) having a photopolymerizable unsaturated group in the side chain, the energy beam curable acrylic pressure-sensitive adhesive (A) is not photopolymerizable in the side chain. The non-energy ray curable (meth) acrylic acid ester copolymer (A2) which does not have a saturated group may be contained. In this case, the (meth) acrylic acid ester copolymer (A2) can be the same as described above, but has a functional group having active hydrogen such as —OH as described above. It is particularly preferred.
 また、エネルギー線硬化型アクリル系粘着剤(A)の別の例としては、アクリル系重合体を主成分とし、さらにエネルギー線重合性オリゴマー及びエネルギー線重合性モノマーから選択されるエネルギー線重合性化合物(Y)が配合されたものが挙げられる。
 ここで、アクリル系共重合体としては、通常、上記で説明した側鎖に光重合性不飽和基を有していない(メタ)アクリル酸エステル系共重合体(A2)を使用されるが、側鎖に光重合性不飽和基を有するエネルギー線硬化型アクリル系重合体(A1)を使用することも可能であるし、これら(A2)と(A1)とを併用してよい。
In addition, as another example of the energy ray curable acrylic pressure-sensitive adhesive (A), an energy ray polymerizable compound having an acrylic polymer as a main component and further selected from an energy ray polymerizable oligomer and an energy ray polymerizable monomer What mixed (Y) is mentioned.
Here, as the acrylic copolymer, a (meth) acrylic ester copolymer (A2) that does not have a photopolymerizable unsaturated group in the side chain described above is usually used. It is also possible to use an energy ray-curable acrylic polymer (A1) having a photopolymerizable unsaturated group in the side chain, and these (A2) and (A1) may be used in combination.
 エネルギー線重合性オリゴマーとしては、例えばポリエステルアクリレート系、エポキシアクリレート系、ウレタンアクリレート系、ポリオールアクリレート系、イミド(メタ)アクリレートとエチレン性不飽和基含有単量体との共重合体である共重合オリゴマーなどが挙げられる。また、エネルギー線重合性モノマーとしては、各種の単官能性(メタ)アクリレート類、多官能性(メタ)アクリレート類が挙げられる。なお、これらエネルギー線重合性オリゴマー及びエネルギー線重合性モノマーの具体例としては、特許4679896号公報に記載されるものが使用可能である。
 これらのエネルギー線重合性オリゴマーやエネルギー線重合性モノマーの使用量は、エネルギー線の照射により、上記した耐熱性を有するように選定される。
Examples of the energy beam polymerizable oligomer include a polyester acrylate, epoxy acrylate, urethane acrylate, polyol acrylate, and a copolymer of an imide (meth) acrylate and a monomer containing an ethylenically unsaturated group. Etc. Examples of the energy beam polymerizable monomer include various monofunctional (meth) acrylates and polyfunctional (meth) acrylates. As specific examples of these energy beam polymerizable oligomers and energy beam polymerizable monomers, those described in Japanese Patent No. 4679896 can be used.
The amount of these energy beam polymerizable oligomers and energy beam polymerizable monomers used is selected so as to have the heat resistance described above by irradiation with energy rays.
 エネルギー線硬化型アクリル系粘着剤は、架橋剤を含有することが好ましい。架橋剤を含有することで、アクリル系重合体を架橋させやすくなるため、耐熱性を向上させやすい。架橋剤としては特に制限はなく、従来アクリル系粘着剤において架橋剤として慣用されているものの中から、任意のものを適宜選択して用いることができる。架橋剤としては、例えばポリイソシアネート化合物、エポキシ樹脂、メラミン樹脂、尿素樹脂、ジアルデヒド類、メチロールポリマー、アジリジン系化合物、金属キレート化合物、金属アルコキシド、金属塩などが挙げられるが、ポリイソシアネート化合物が好ましく用いられる。
 ポリイソシアネート化合物の例としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネートなどの芳香族ポリイソシアネート、ヘキサメチレンジイソシアネートなどの脂肪族ポリイソシアネート、イソホロンジイソシアネート、水素添加ジフェニルメタンジイソシアネートなどの脂環式ポリイソシアネートなど、及びそれらのビウレット体、イソシアヌレート体、さらにはエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ヒマシ油などの低分子活性水素含有化合物との反応物であるアダクト体などを挙げることができる。
 架橋剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、その使用量は、架橋剤の種類にもよるが、該粘着剤中のアクリル系重合体100質量部に対し、通常0.01~20質量部、好ましくは、0.1~10質量部の範囲で選定される。なお、アクリル系重合体とは、粘着剤に含有されるエネルギー線硬化型アクリル系重合体(A1)、及び、(メタ)アクリル酸エステル系共重合体(A2)等の非エネルギー線硬化型アクリル系重合体の両方を意味する。
The energy ray curable acrylic pressure-sensitive adhesive preferably contains a crosslinking agent. By containing a cross-linking agent, the acrylic polymer is easily cross-linked, and thus heat resistance is easily improved. There is no restriction | limiting in particular as a crosslinking agent, Arbitrary things can be suitably selected and used from what was conventionally used as a crosslinking agent in an acrylic adhesive. Examples of the crosslinking agent include polyisocyanate compounds, epoxy resins, melamine resins, urea resins, dialdehydes, methylol polymers, aziridine compounds, metal chelate compounds, metal alkoxides, metal salts, and the like, but polyisocyanate compounds are preferred. Used.
Examples of polyisocyanate compounds include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, etc. , And their biuret bodies, isocyanurate bodies, and adduct bodies that are a reaction product with low molecular active hydrogen-containing compounds such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylol propane, castor oil, etc. it can.
A crosslinking agent may be used individually by 1 type, and may be used in combination of 2 or more type. The amount used depends on the type of the crosslinking agent, but is usually 0.01 to 20 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the acrylic polymer in the pressure-sensitive adhesive. It is selected in the range. The acrylic polymer is a non-energy ray curable acrylic such as an energy ray curable acrylic polymer (A1) and a (meth) acrylic acid ester copolymer (A2) contained in an adhesive. It means both system polymers.
 エネルギー線硬化型アクリル系粘着剤(A)は、光重合開始剤を含有することが好ましい。光重合開始剤としては、ベンゾフェノン系、ベンゾイン系、アセトフェノン系、チオキサントン系、アシルフォスフィンオキサイド系、チタノセン系の光重合開始剤が挙げられる。これらは1種を用いてもよいし、2種以上を組み合わせて用いてもよく、また、その配合量は、粘着剤中の光重合性不飽和基を有する成分(すなわち、エネルギー線重合性化合物(Y)及びエネルギー線硬化型アクリル系重合体(A1)の合計量)100質量部に対して、通常0.2~20質量部の範囲で選ばれ、好ましくは0.5~10質量部である。
 また、エネルギー線硬化型アクリル系粘着剤には、本発明の目的が損なわれない範囲で、所望によりアクリル系粘着剤に通常使用されている各種添加剤、例えば粘着付与剤、酸化防止剤、紫外線吸収剤、光安定剤、軟化剤、充填剤などを添加することができる。
The energy ray curable acrylic pressure-sensitive adhesive (A) preferably contains a photopolymerization initiator. Examples of the photopolymerization initiator include benzophenone, benzoin, acetophenone, thioxanthone, acylphosphine oxide, and titanocene photopolymerization initiators. These may be used alone or in combination of two or more, and the blending amount thereof is a component having a photopolymerizable unsaturated group in the pressure-sensitive adhesive (that is, an energy beam polymerizable compound). (Y) and the total amount of the energy beam curable acrylic polymer (A1)) are usually selected in the range of 0.2 to 20 parts by mass, preferably 0.5 to 10 parts by mass, with respect to 100 parts by mass. is there.
In addition, the energy ray curable acrylic pressure-sensitive adhesive has various additives usually used in acrylic pressure-sensitive adhesives as desired, for example, tackifiers, antioxidants, ultraviolet rays, as long as the object of the present invention is not impaired. Absorbers, light stabilizers, softeners, fillers and the like can be added.
 また、エネルギー線硬化型アクリル系粘着剤に使用されるアクリル系重合体は、その重量平均分子量が30万以上であることが好ましく、40万~100万程度であることが好ましい。なお、重量平均分子量は、GPC法で測定した標準ポリスチレン換算の値で、具体的には後述する実施例により測定した方法である。
 なお、エネルギー線硬化型アクリル系粘着剤において、アクリル系重合体は、粘着剤に粘着性を付与できる量含有されればよいが、通常、粘着剤全量に対して50質量%以上、好ましくは75質量%以上である。
The acrylic polymer used for the energy ray curable acrylic pressure-sensitive adhesive preferably has a weight average molecular weight of 300,000 or more, and preferably about 400,000 to 1,000,000. In addition, the weight average molecular weight is a value in terms of standard polystyrene measured by the GPC method, and is specifically a method measured by Examples described later.
In the energy ray curable acrylic pressure-sensitive adhesive, the acrylic polymer may be contained in an amount that can give the pressure-sensitive adhesive to the pressure-sensitive adhesive. It is at least mass%.
 また、水分散型アクリル系粘着剤(B)としては、アルキル基の炭素数が4~12である(メタ)アクリル酸アルキルエステルを主成分とし、かつカルボキシル基含有単量体を含有してなる単量体を、乳化剤の存在下で乳化重合して得られた共重合体エマルションを含有するものが挙げられる。ここで、アルキル基の炭素数が4~12である(メタ)アクリル酸アルキルエステルの具体例としては、上記した(メタ)アクリル酸アルキルエステルから適宜選択される。また、カルボキシル基含有単量体としては、エチレン性不飽和カルボン酸から適宜選択される。
 また、共重合体エマルションは、(メタ)アクリル酸アルキルエステル及びカルボキシル基含有単量体以外の単量体もさらに含有するものを乳化重合したものであってもよく、そのような単量体としては、上記した(メタ)アクリル酸エステル系共重合体(A2)に使用可能な各種単量体から適宜選択される。
 水分散型アクリル系粘着剤(B)を使用する場合にも、粘着剤は架橋剤を含有することが好ましく、また、必要に応じて、その他の添加剤が配合されてもよい。
The water-dispersed acrylic pressure-sensitive adhesive (B) is mainly composed of (meth) acrylic acid alkyl ester having an alkyl group with 4 to 12 carbon atoms and a carboxyl group-containing monomer. The thing containing the copolymer emulsion obtained by emulsion-polymerizing a monomer in presence of an emulsifier is mentioned. Here, specific examples of the (meth) acrylic acid alkyl ester having 4 to 12 carbon atoms in the alkyl group are appropriately selected from the above (meth) acrylic acid alkyl esters. In addition, the carboxyl group-containing monomer is appropriately selected from ethylenically unsaturated carboxylic acids.
Further, the copolymer emulsion may be obtained by emulsion polymerization of a monomer further containing a monomer other than the (meth) acrylic acid alkyl ester and the carboxyl group-containing monomer. Is appropriately selected from various monomers that can be used in the (meth) acrylic acid ester copolymer (A2).
Even when the water-dispersed acrylic pressure-sensitive adhesive (B) is used, the pressure-sensitive adhesive preferably contains a cross-linking agent, and other additives may be blended as necessary.
 第1粘着剤層22の厚さは、バンプ高さに応じて適宜調整されるが、好ましくは5~500μm、より好ましくは10~100μmである。また、第2粘着剤層32の厚さは、好ましくは5~500μm、より好ましくは10~100μmである。なお、第1及び第2粘着剤層22、32は、同じ材料から形成されてもよいが、互いに異なる材料から形成されてもよい。
 第1及び第2粘着剤層22,32は、例えば、上記した粘着剤を、必要であれば希釈液により希釈したうえで、第1及び第2支持シート23、33に直接塗布して、あるいは、剥離材に塗布して、加熱、乾燥して形成する。なお、粘着剤層は、剥離材の上に形成された場合には、第1及び第2支持シート23、33にさらに貼り合わされる。
The thickness of the first pressure-sensitive adhesive layer 22 is appropriately adjusted according to the bump height, but is preferably 5 to 500 μm, more preferably 10 to 100 μm. The thickness of the second pressure-sensitive adhesive layer 32 is preferably 5 to 500 μm, more preferably 10 to 100 μm. In addition, although the 1st and 2nd adhesive layers 22 and 32 may be formed from the same material, they may be formed from a mutually different material.
The first and second pressure-sensitive adhesive layers 22 and 32 may be, for example, directly applied to the first and second support sheets 23 and 33 after being diluted with a diluent if necessary. It is applied to a release material, heated and dried to form. The adhesive layer is further bonded to the first and second support sheets 23 and 33 when formed on the release material.
(中間層)
 第1及び第2支持シート23、33において使用される中間層は、ウレタン(メタ)アクリレートを含む硬化性材料を硬化してなるものであることが好ましい。硬化性材料が、ウレタン(メタ)アクリレートを含むことで、第1及び第2支持シート23、33に作用される応力を緩和することが可能である。そのため、各工程において、第1及び第2支持シート23、33で生じる振動等を吸収することが可能である。
 上記硬化性材料は、ウレタン(メタ)アクリレート以外に、アクリル系モノマー等のモノマー成分を含有していてもよい。アクリル系モノマーとしては、好ましくは、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレートなどの脂環式化合物が好ましい。なお、上記硬化性材料は、エネルギー線で硬化させられることが好ましい。なお、硬化性材料は、エネルギー線で硬化される場合、光重合開始剤を含有することが好ましい。
 第1及び第2支持シート23、33がいずれも中間層を有する場合、これらに使用される材料は同じであってもよいが、異なっていてもよい。中間層の厚みは、例えば5~1000μm、好ましくは10~500μmである。
(Middle layer)
The intermediate layer used in the first and second support sheets 23 and 33 is preferably formed by curing a curable material containing urethane (meth) acrylate. When the curable material contains urethane (meth) acrylate, the stress acting on the first and second support sheets 23 and 33 can be relaxed. Therefore, in each process, it is possible to absorb vibrations and the like generated in the first and second support sheets 23 and 33.
The curable material may contain a monomer component such as an acrylic monomer in addition to urethane (meth) acrylate. As the acrylic monomer, alicyclic compounds such as isobornyl (meth) acrylate and dicyclopentenyl (meth) acrylate are preferable. The curable material is preferably cured with energy rays. In addition, when curable material is hardened | cured with an energy ray, it is preferable to contain a photoinitiator.
When each of the first and second support sheets 23 and 33 has an intermediate layer, the materials used for these may be the same or different. The thickness of the intermediate layer is, for example, 5 to 1000 μm, preferably 10 to 500 μm.
 上記で説明した第1の実施形態の製造方法によれば、熱硬化性樹脂層25を加熱して硬化する際、図3に示すように、熱硬化性樹脂層25の上には第1支持シート23が重ねられている。したがって、熱硬化性樹脂層25を加熱して硬化する際、熱硬化性樹脂の流動性が第1支持シート23によって抑えられ、保護膜25Aの膜厚が不均一になることが防止される。そのため、熱硬化性樹脂層25の硬化物である保護膜25Aは、均一な膜厚を有する状態で、バンプネックを埋め込むように、半導体ウエハ10の表面10A上に積層されるので、バンプ11を適切に保護することが可能になる。
 さらに、工程(II)の加熱により、第1支持シート23の熱硬化性樹脂層25に対する接着力が重くなり、工程(III)で第1支持シート23を保護膜25Aから剥離できなくなる剥離不良が生じるおそれがあるが、上記したように、第1粘着剤層22に耐熱性を有するものを使用することでそのような剥離不良が防止される。
According to the manufacturing method of the first embodiment described above, when the thermosetting resin layer 25 is heated and cured, the first support is provided on the thermosetting resin layer 25 as shown in FIG. Sheets 23 are stacked. Therefore, when the thermosetting resin layer 25 is heated and cured, the fluidity of the thermosetting resin is suppressed by the first support sheet 23, and the thickness of the protective film 25A is prevented from becoming uneven. Therefore, the protective film 25A, which is a cured product of the thermosetting resin layer 25, is laminated on the surface 10A of the semiconductor wafer 10 so as to embed the bump neck in a state having a uniform film thickness. It becomes possible to protect appropriately.
Furthermore, due to the heating in the step (II), the adhesion force of the first support sheet 23 to the thermosetting resin layer 25 becomes heavy, and the first support sheet 23 cannot be peeled off from the protective film 25A in the step (III). Although it may occur, as described above, the use of the first pressure-sensitive adhesive layer 22 having heat resistance prevents such peeling failure.
<第2の実施形態>
 次に、本発明の第2の実施形態について第1の実施形態との相違点を説明する。
 第2の実施形態の製造工程は、上記第1の実施形態で説明した工程(I)~(IV)に加えて、さらに工程(A-1)、(A-2)及び(A-3)を有する。
(A-1)第2保護膜形成層を半導体ウエハの裏面に貼り合わせる工程
(A-2)第2保護膜形成層を加熱して、第2保護膜を形成する工程
(A-3)半導体ウエハの裏面上に形成された第2保護膜の上にさらに第2支持シートを貼り合せる工程
<Second Embodiment>
Next, differences of the second embodiment of the present invention from the first embodiment will be described.
The manufacturing process of the second embodiment includes steps (A-1), (A-2) and (A-3) in addition to the steps (I) to (IV) described in the first embodiment. Have
(A-1) A step of bonding the second protective film forming layer to the back surface of the semiconductor wafer (A-2) A step of heating the second protective film forming layer to form a second protective film (A-3) Semiconductor A step of further bonding a second support sheet on the second protective film formed on the back surface of the wafer
[工程(A-1)]
 本実施形態では、第1の実施形態と同様に、工程(I)及び(II)を実施した後(すなわち、熱硬化して、半導体ウエハ10の表面10Aに保護膜25Aを形成した後)、半導体ウエハの裏面10B(バンプ面とは反対側の面)に、図7に示すように、第2保護膜形成層35を貼り合わせる。第2保護膜形成層35は、少なくとも熱硬化性樹脂を含むものであり、後述するように、加熱されることで第2保護膜35Aとなるものである。
 本工程では、第2保護膜形成層35からなるフィルム状のものを、半導体ウエハ10の裏面10Bに貼付すればよいが、例えば、支持基材(図示せず)の一方の面の上に設けられた第2保護膜形成層35を、半導体ウエハ10の裏面10Bに貼付してもよい。なお、支持基材は、第2保護膜形成層35を半導体ウエハ10の裏面に貼付した後、第2保護膜形成層35から剥離して除去される。なお、支持基材としては、第1及び第2基材21、31と同様の樹脂フィルムを使用可能である。
[Process (A-1)]
In the present embodiment, as in the first embodiment, after performing the steps (I) and (II) (that is, after thermosetting and forming the protective film 25A on the surface 10A of the semiconductor wafer 10), As shown in FIG. 7, a second protective film forming layer 35 is bonded to the back surface 10B (surface opposite to the bump surface) of the semiconductor wafer. The second protective film forming layer 35 includes at least a thermosetting resin, and becomes the second protective film 35A when heated, as will be described later.
In this step, a film-like material composed of the second protective film forming layer 35 may be attached to the back surface 10B of the semiconductor wafer 10, for example, provided on one surface of a support substrate (not shown). The obtained second protective film forming layer 35 may be attached to the back surface 10 </ b> B of the semiconductor wafer 10. The support base material is peeled off from the second protective film forming layer 35 after the second protective film forming layer 35 is pasted on the back surface of the semiconductor wafer 10. In addition, as a support base material, the same resin film as the 1st and 2nd base materials 21 and 31 can be used.
 第2保護膜形成層35は、熱硬化性樹脂層25と同様に、熱硬化性樹脂以外にも熱可塑性樹脂及び充填材を含有する熱硬化性樹脂組成物から構成されることが好ましい。また、熱硬化性樹脂組成物は、さらに、硬化促進剤、カップリング剤、顔料、染料等の着色剤等のその他の添加剤を含有していてもよい。なお、第2保護膜形成層35に使用される各材料及び配合量等の詳細は、第1の実施形態で説明した熱硬化性樹脂層25と同様であるので、その説明は省略する。第2保護膜形成層35は、熱硬化性樹脂層25と同一の材料から形成されてもよいが、異なる材料から形成されてもよい。第2保護膜形成層35の厚みは、例えば5~500μm、好ましくは10~100μmである。
 工程(A-1)の後、第1の実施形態と同様に、半導体ウエハ10の表面に貼付されていた第1支持シート23を、保護膜25Aから剥離する(工程(III))。
Similarly to the thermosetting resin layer 25, the second protective film forming layer 35 is preferably composed of a thermosetting resin composition containing a thermoplastic resin and a filler in addition to the thermosetting resin. Moreover, the thermosetting resin composition may further contain other additives such as a color accelerator such as a curing accelerator, a coupling agent, a pigment, and a dye. Note that details of each material and blending amount used for the second protective film forming layer 35 are the same as those of the thermosetting resin layer 25 described in the first embodiment, and thus description thereof is omitted. The second protective film forming layer 35 may be formed of the same material as the thermosetting resin layer 25, but may be formed of a different material. The thickness of the second protective film forming layer 35 is, for example, 5 to 500 μm, preferably 10 to 100 μm.
After the step (A-1), similarly to the first embodiment, the first support sheet 23 attached to the surface of the semiconductor wafer 10 is peeled from the protective film 25A (step (III)).
[工程(A-2)]
 その後、第2保護膜形成層35を加熱して硬化して、第2保護膜35Aを形成する(工程(A-2))。第2保護膜形成層35の加熱は、表面10A側に保護膜25Aが形成され、かつ裏面10B側に第2保護膜形成層35が積層された半導体ウエハ10を、例えば、加熱炉等の内部に配置して加熱することで行うことが好ましい。なお、本工程(A-2)における加熱条件は、工程(II)で説明した加熱条件と同様の条件であるので、その説明を省略する。
[Process (A-2)]
Thereafter, the second protective film forming layer 35 is heated and cured to form the second protective film 35A (step (A-2)). The second protective film forming layer 35 is heated by, for example, heating the semiconductor wafer 10 in which the protective film 25A is formed on the front surface 10A side and the second protective film forming layer 35 is stacked on the back surface 10B side in a heating furnace or the like. It is preferable to carry out by arranging and heating. In addition, since the heating conditions in this process (A-2) are the same conditions as the heating conditions demonstrated in process (II), the description is abbreviate | omitted.
[工程(A-3)]
 工程(A-2)の後、図8に示すように、半導体ウエハ10の裏面側、すなわち、第2保護膜35Aの上に、第2支持シート33を貼り合わせる。なお、第2支持シート33の構成は、第1の実施形態と同様である。すなわち、図8では、第2支持シート33が、第2粘着剤層32を介して第2保護膜35Aに貼付される態様を示すが、第2粘着剤層は省略されて第1基材31が直接第2保護膜35Aに接着されてもよいし、第1基材31に表面処理がなされ、又は粘着剤層以外の層が設けられ、その層又は表面処理面を介して第2保護膜35Aに貼付されてもよい。また、第2粘着剤層32と第2基材31の間にさらに中間層が設けられてもよい。
[工程(IV)]
 次に、保護膜25A及び第2保護膜35Aが形成された半導体ウエハ10を、図8に示すように、ダイシングして、複数の半導体チップ15に個片化する。本実施形態の工程(IV)では、半導体ウエハ10とともに、保護膜25A及び第2保護膜35Bもダイシングされ、半導体チップ15の形状に合わせて分割される。ダイシング工程の詳細は、第1の実施形態と同様であるので、その説明は省略する。
[Process (A-3)]
After the step (A-2), as shown in FIG. 8, the second support sheet 33 is bonded to the back surface side of the semiconductor wafer 10, that is, on the second protective film 35A. In addition, the structure of the 2nd support sheet 33 is the same as that of 1st Embodiment. That is, in FIG. 8, although the 2nd support sheet 33 shows the aspect affixed on the 2nd protective film 35A via the 2nd adhesive layer 32, a 2nd adhesive layer is abbreviate | omitted and the 1st base material 31 is shown. May be directly bonded to the second protective film 35A, or the first base material 31 is subjected to a surface treatment, or a layer other than the pressure-sensitive adhesive layer is provided, and the second protective film is provided via the layer or the surface-treated surface. It may be affixed to 35A. Further, an intermediate layer may be further provided between the second pressure-sensitive adhesive layer 32 and the second base material 31.
[Step (IV)]
Next, the semiconductor wafer 10 on which the protective film 25A and the second protective film 35A are formed is diced and separated into a plurality of semiconductor chips 15 as shown in FIG. In step (IV) of the present embodiment, the protective film 25 </ b> A and the second protective film 35 </ b> B are diced together with the semiconductor wafer 10 and divided according to the shape of the semiconductor chip 15. The details of the dicing process are the same as those in the first embodiment, and a description thereof is omitted.
 ダイシング工程の後、第1の実施形態と同様に、半導体チップ15を、ピックアップして、リフローによりチップ搭載用基板等に取り付けた後、例えば半導体チップ15とチップ搭載基板40の間の隙間を封止樹脂により封止する等、必要な工程を経ることで、半導体装置を製造する。 After the dicing step, as in the first embodiment, the semiconductor chip 15 is picked up and attached to the chip mounting substrate or the like by reflow, and then, for example, a gap between the semiconductor chip 15 and the chip mounting substrate 40 is sealed. A semiconductor device is manufactured through a necessary process such as sealing with a stop resin.
 以上の第2の実施形態でも、第1の実施形態と同様に、熱硬化性樹脂を流動しにくくして、バンプ11を保護膜25Aにより適切に保護することが可能になる。また、第2保護膜35Aにより、半導体チップ15の裏面も保護することも可能になる。
 なお、以上の第2の実施形態では、ウエハの裏面上に形成された第2保護膜35A又は第2保護膜形成層35に対してレーザー印字を行ってもよい。レーザー印字を行うことで、半導体チップ15の裏面側に各種マーク、文字等を表示すること可能である。
 なお、以上の第2の実施形態では、工程(A-2)と工程(A-3)の間に、硬化された第2保護膜35Aが露出されることになる。したがって、工程(A-2)と工程(A-3)の間にその露出した第2保護膜35Aに対してレーザー印字を行うことが好ましい。硬化された第2保護膜35Aに印字を行うことで、硬化前の第2保護膜形成層35に印字する場合に比べて、印字性が良好となる。また、半導体ウエハ10が個片化される前に印字されるので、複数の半導体チップに対して一括印字が可能になる。さらに、露出した第2保護膜35Aに対してレーザー印字を行うことで、効率的な印字が可能になる。ただし、露出しない(すなわち、第2支持シート33によって覆われた)第2保護膜35A、又は第2保護膜形成層35に、第2支持シート33を介してレーザーを照射することで、レーザー印字を行ってもよい。
Also in the second embodiment described above, similarly to the first embodiment, it is possible to make the thermosetting resin difficult to flow and appropriately protect the bumps 11 with the protective film 25A. In addition, the back surface of the semiconductor chip 15 can be protected by the second protective film 35A.
In the second embodiment described above, laser printing may be performed on the second protective film 35A or the second protective film forming layer 35 formed on the back surface of the wafer. By performing laser printing, various marks, characters, and the like can be displayed on the back side of the semiconductor chip 15.
In the second embodiment described above, the cured second protective film 35A is exposed between the step (A-2) and the step (A-3). Therefore, it is preferable to perform laser printing on the exposed second protective film 35A between the step (A-2) and the step (A-3). By printing on the cured second protective film 35A, the printability is better than when printing on the second protective film forming layer 35 before curing. In addition, since printing is performed before the semiconductor wafer 10 is separated into pieces, batch printing can be performed on a plurality of semiconductor chips. Furthermore, efficient printing is possible by performing laser printing on the exposed second protective film 35A. However, laser printing is performed by irradiating the second protective film 35A or the second protective film forming layer 35 that is not exposed (that is, covered by the second support sheet 33) via the second support sheet 33. May be performed.
 なお、上記第2の実施形態では、工程(A-1)、(A-2)及び(A-3)をこの順に行う態様を示したが、代わりに、工程(A-1)、(A-3)及び(A-2)の順で行ってもよい。
 具体的には、工程(I)、(II)、(A-1)及び(III)を実施し、表面10Aに保護膜25Aを形成し、第2保護膜形成層35を半導体ウエハ10の裏面10Bに貼り合わせ、次いで、第1支持シート23を保護膜25Aから剥離する。その後、裏面10B上に積層された、硬化前の第2保護膜形成層35の上に、さらに第2支持シート33を貼り合せる(工程(A-3))。
 そして、第2支持シート33を貼り合わせた後、第2保護膜形成層35を加熱により硬化して、第2保護膜35Aを形成し(工程(A-2))、その後は、半導体ウエハ10をダイシングにより個片化して、半導体装置を製造する。
 ただし、(A-1)、(A-3)及び(A-2)の順で行う場合、第2保護膜35Aは、硬化により形成された後、ダイシングが終了するまで第2支持シート33に覆われ露出することがない。そのため、硬化された第2保護膜35Aに対して行うレーザー印字は、第2支持シート33を介してレーザーを照射して行うことになる。
In the second embodiment, the mode in which the steps (A-1), (A-2), and (A-3) are performed in this order is shown. Instead, the steps (A-1), (A -3) and (A-2).
Specifically, steps (I), (II), (A-1) and (III) are performed to form a protective film 25A on the front surface 10A, and the second protective film forming layer 35 is formed on the back surface of the semiconductor wafer 10. Then, the first support sheet 23 is peeled off from the protective film 25A. Thereafter, the second support sheet 33 is further bonded onto the second protective film forming layer 35 before curing laminated on the back surface 10B (step (A-3)).
Then, after bonding the second support sheet 33, the second protective film forming layer 35 is cured by heating to form a second protective film 35A (step (A-2)), and thereafter the semiconductor wafer 10 Is separated into pieces by dicing to manufacture a semiconductor device.
However, when performing in the order of (A-1), (A-3), and (A-2), the second protective film 35A is formed on the second support sheet 33 after the dicing is completed after being formed by curing. It is not covered and exposed. Therefore, laser printing performed on the cured second protective film 35 </ b> A is performed by irradiating the laser through the second support sheet 33.
 さらに、(A-1)、(A-3)及び(A-2)の順で行うと、第2支持シート33は、工程(A-2)において、第2保護膜形成層35に貼付された状態で、加熱が行われることになる。そのため、この順で行う場合、第2支持シート33は、耐熱性を有することが好ましい。すなわち、第2支持シート33の第2基材31としては、工程(A-2)の加熱により、溶融したり、著しく収縮したりしない基材であることが好ましい。
 また、耐熱性を有する第2支持シート33は、所定時間加熱しても、被着体に対する接着性が高くならないものである。具体的には、耐熱性を有する第2支持シート33は、工程(A-2)の加熱後の接着力が10N/25mm未満となるものが好ましい。また、この接着力は、0.3~9.8N/25mmがより好ましく、0.5~9.5N/25mmがさらに好ましい。なお、第2支持シートの接着力の測定方法は、第1支持シートと同じであるが、被着体が第2保護膜形成層となる。
 第2支持シート33は、このように加熱後の接着力が比較的低いことで、第2支持シート33から半導体チップ15をピックアップする際に、半導体チップ15がピックアップできない剥離不良が生じにくくなる。
Furthermore, if it carries out in order of (A-1), (A-3), and (A-2), the 2nd support sheet 33 will be affixed on the 2nd protective film formation layer 35 in a process (A-2). In this state, heating is performed. Therefore, when performing in this order, it is preferable that the 2nd support sheet 33 has heat resistance. That is, the second substrate 31 of the second support sheet 33 is preferably a substrate that does not melt or remarkably shrink due to the heating in the step (A-2).
Further, the second support sheet 33 having heat resistance does not increase the adhesion to the adherend even when heated for a predetermined time. Specifically, the second support sheet 33 having heat resistance is preferably such that the adhesive strength after heating in the step (A-2) is less than 10 N / 25 mm. The adhesive strength is more preferably 0.3 to 9.8 N / 25 mm, and further preferably 0.5 to 9.5 N / 25 mm. In addition, although the measuring method of the adhesive force of a 2nd support sheet is the same as a 1st support sheet, a to-be-adhered body becomes a 2nd protective film formation layer.
Since the second support sheet 33 has a relatively low adhesive force after heating as described above, when the semiconductor chip 15 is picked up from the second support sheet 33, it is difficult to cause a peeling failure that the semiconductor chip 15 cannot pick up.
 耐熱性を有する第2支持シート33としては、第2基材31と、第2粘着剤層32を備えるものであって、かつ、第2粘着剤層32が、上記した第1粘着剤層31と同様に、エネルギー線硬化型アクリル系粘着剤、または水分散系アクリル系粘着剤等から形成されることが好ましい。これら粘着剤を使用することで、加熱後でも接着力が向上しにくい第2支持シート31を提供できる。なお、第1及び第2粘着剤層22、32は、いずれも耐熱性を有する場合には互いに同一の粘着剤から形成されてもよいし、異なる粘着剤から形成されてもよい。 As the 2nd support sheet 33 which has heat resistance, the 2nd base material 31 and the 2nd adhesive layer 32 are provided, and the 2nd adhesive layer 32 is the above-mentioned 1st adhesive layer 31. In the same manner as above, it is preferably formed from an energy ray curable acrylic pressure-sensitive adhesive or a water-dispersed acrylic pressure-sensitive adhesive. By using these pressure-sensitive adhesives, it is possible to provide the second support sheet 31 in which the adhesive force is hardly improved even after heating. The first and second pressure-sensitive adhesive layers 22 and 32 may be formed from the same pressure-sensitive adhesive or different pressure-sensitive adhesives when both have heat resistance.
 さらに、(A-1)、(A-3)及び(A-2)の順で工程を行う場合、加熱硬化(工程(A-2))は、ダイシングの前に行う必要はなく、ダイシングの後に行ってもよい。
 具体的には、上記と同様に、工程(I),(II),(A-1)(III)、(A-3)をこの順で行い、その後に、工程(A-2)を行わずに、ダイシング(工程(IV))を行う。したがってダイシングは、表面10Aに硬化された保護膜25Aが形成され、裏面10Bに硬化前の第2保護膜形成層35が積層された、半導体ウエハ10に対して行うことになる。そして、ダイシング後に、第2保護膜形成層35は加熱して硬化することになる(工程(A-2))。
 この場合、第2保護膜形成層35の加熱硬化は、ピックアップした後で行うことが好ましく、特に、リフロー時の加熱により行うことが好ましい。
 ピックアップ後に第2保護膜形成層35の硬化を行うと、加熱時には半導体チップ15(半導体ウエハ10)が、既に第2支持シート33から剥離されていることになる。したがって、第2支持シート33は、上記のように耐熱性を有していなくても、工程(A-2)の加熱により支持シート33の接着力が重くなって剥離不良が生じたりすることもない。さらに、リフロー時の加熱により第2保護膜形成層35を硬化すると、第2保護膜形成層35を硬化するための工程を別途設ける必要がなくなるので工程が簡略化できる。
Furthermore, when the steps (A-1), (A-3) and (A-2) are performed in this order, the heat curing (step (A-2)) need not be performed before dicing. It may be done later.
Specifically, in the same manner as described above, the steps (I), (II), (A-1) (III), (A-3) are performed in this order, and then the step (A-2) is performed. Without performing dicing (step (IV)). Therefore, dicing is performed on the semiconductor wafer 10 in which the protective film 25A cured on the front surface 10A is formed and the second protective film forming layer 35 before curing is laminated on the back surface 10B. Then, after dicing, the second protective film forming layer 35 is heated and cured (step (A-2)).
In this case, the heat curing of the second protective film forming layer 35 is preferably performed after picking up, and particularly preferably performed by heating during reflow.
When the second protective film forming layer 35 is cured after the pickup, the semiconductor chip 15 (semiconductor wafer 10) is already peeled off from the second support sheet 33 during heating. Therefore, even if the second support sheet 33 does not have heat resistance as described above, the adhesive force of the support sheet 33 becomes heavy due to the heating in the step (A-2), and a peeling failure may occur. Absent. Furthermore, when the second protective film forming layer 35 is cured by heating at the time of reflow, it is not necessary to separately provide a process for curing the second protective film forming layer 35, so that the process can be simplified.
<第3の実施形態>
 次に、本発明の第3の実施形態について第2実施形態との相違点を説明する。
 上記第2の実施形態では、熱硬化性樹脂層25と第2保護膜形成層35とを加熱して硬化するタイミングは、別々であったが、第3の実施形態では、これらを同時に加熱して硬化する。すなわち、上記第2の実施形態では、工程(II)と工程(A-2)は別々のタイミングで行っていたのに対して、本実施形態では、工程(II)と工程(A-2)は同じタイミングで一括して行うことになる。
<Third Embodiment>
Next, differences of the third embodiment of the present invention from the second embodiment will be described.
In the second embodiment, the timing for heating and curing the thermosetting resin layer 25 and the second protective film forming layer 35 is different, but in the third embodiment, these are simultaneously heated. Harden. That is, in the second embodiment, the process (II) and the process (A-2) are performed at different timings, whereas in the present embodiment, the process (II) and the process (A-2) are performed. Will be performed at the same time.
 具体的には、本実施形態では、工程(I)を実施した後(すなわち、第1保護膜形成用フィルム20を半導体ウエハに貼付した後)、工程(II)及び(III)を行わずに、工程(A-1)を行い、第2保護膜形成層35を半導体ウエハ10の裏面10Bに貼り合わせる。
 その後、図9に示すように、硬化前の熱硬化性樹脂層25及び第2保護膜形成層35が両面に積層され、かつ熱硬化性樹脂層25の上に第1支持シート23が重ねられた、半導体ウエハ10を加熱することで、熱硬化性樹脂層25及び第2保護膜形成層35を硬化して、保護膜25A及び第2保護膜35Aを形成する(工程(II)と工程(A-2))。なお、加熱は、表面に熱硬化性樹脂層25及び第1支持シート23、裏面に第2保護膜形成層35が積層された半導体ウエハ10を、例えば加熱炉内部に配置して行う。加熱方法及び加熱条件は、上記第1の実施形態で説明した工程(II)と同様であるので、その説明は省略する。
 その後、第2の実施形態と同様に、保護膜25Aの上に積層されている第1支持シート23を保護膜25Aから剥離する(工程(III))。
Specifically, in this embodiment, after performing the step (I) (that is, after pasting the first protective film forming film 20 on the semiconductor wafer), the steps (II) and (III) are not performed. Step (A-1) is performed, and the second protective film forming layer 35 is bonded to the back surface 10B of the semiconductor wafer 10.
Thereafter, as shown in FIG. 9, the thermosetting resin layer 25 and the second protective film forming layer 35 before curing are laminated on both surfaces, and the first support sheet 23 is overlaid on the thermosetting resin layer 25. In addition, by heating the semiconductor wafer 10, the thermosetting resin layer 25 and the second protective film forming layer 35 are cured to form the protective film 25A and the second protective film 35A (step (II) and step (II)). A-2)). The heating is performed by placing the semiconductor wafer 10 having the thermosetting resin layer 25 and the first support sheet 23 on the front surface and the second protective film forming layer 35 on the back surface, for example, inside a heating furnace. Since the heating method and the heating conditions are the same as in step (II) described in the first embodiment, description thereof is omitted.
Thereafter, similarly to the second embodiment, the first support sheet 23 laminated on the protective film 25A is peeled from the protective film 25A (step (III)).
 次いで、工程(A-3)にて、第2保護膜35Aの上に、第2支持シート33を貼り合わせ、引き続き、工程(IV)にてダイシングを行う。本実施形態の工程(IV)では、硬化後の保護膜25A及び第2保護膜35Aを両面に形成した半導体ウエハ10をダイシングすることになる。ダイシング後、本実施形態でも、上記各実施形態と同様に、半導体装置が製造される。 Next, in the step (A-3), the second support sheet 33 is bonded onto the second protective film 35A, and then dicing is performed in the step (IV). In the step (IV) of the present embodiment, the semiconductor wafer 10 having the cured protective film 25A and the second protective film 35A formed on both surfaces is diced. After dicing, the semiconductor device is manufactured in the present embodiment as in the above embodiments.
 以上の第3の実施形態でも、上記第2の実施形態と同様に、バンプを保護膜25Aにより適切に保護するとともに、第2保護膜35Aにより、半導体チップ15の裏面も保護することが可能になる。また、本実施形態では、熱硬化性樹脂層25と第2保護膜形成層35を同時に加熱して硬化するため、工程を簡略化することが可能である。
 さらに、熱硬化性樹脂層25及び第2保護膜形成層35は、熱硬化する際、熱収縮を生じ、その熱収縮により半導体ウエハ10に反りを生じさせることがある。しかし、本実施形態では、これら熱硬化性樹脂層25及び第2保護膜形成層35は、一括して加熱硬化することで、硬化時に発生する熱収縮による力は相殺される。そのため、本実施形態では、表面保護膜用樹脂層25や第2保護膜用樹脂層35を熱硬化する際に発生するウエハの反りを低減できる。
In the third embodiment as well, as in the second embodiment, the bumps are appropriately protected by the protective film 25A, and the back surface of the semiconductor chip 15 can be protected by the second protective film 35A. Become. Moreover, in this embodiment, since the thermosetting resin layer 25 and the 2nd protective film formation layer 35 are heated and hardened simultaneously, it is possible to simplify a process.
Further, the thermosetting resin layer 25 and the second protective film forming layer 35 may cause thermal shrinkage when thermally cured, and the semiconductor wafer 10 may be warped due to the thermal shrinkage. However, in the present embodiment, the thermosetting resin layer 25 and the second protective film forming layer 35 are collectively heat-cured, so that the force due to thermal shrinkage generated during curing is offset. Therefore, in the present embodiment, it is possible to reduce the warpage of the wafer that occurs when the surface protective film resin layer 25 and the second protective film resin layer 35 are thermally cured.
<第4の実施形態>
 次に、本発明の第4の実施形態について第1の実施形態の相違点を説明する。
 第4の実施形態の製造工程は、上記第1の実施形態で説明した工程(I)~(IV)に加えて、さらに以下の工程(B-1)及び(B-2)を備える。
 (B-1)第2支持シートと、第2支持シート上に設けられた第2保護膜形成層とを備える第2保護膜形成用フィルムを、第2保護膜形成層を貼り合わせ面にして、半導体ウエハの裏面に貼り合わせる工程
 (B-2)第2保護膜形成層を加熱して、第2保護膜を形成する工程
 すなわち、上記第2~第3の実施形態では、第2保護膜形成層と、第2支持シートが、半導体ウエハの裏面側に別々に貼付される態様を示したが、本実施形態では、これらは第2保護膜形成用フィルムとして一括して半導体ウエハの裏面側に貼付される。
<Fourth Embodiment>
Next, a difference between the first embodiment and the fourth embodiment of the present invention will be described.
The manufacturing process of the fourth embodiment includes the following processes (B-1) and (B-2) in addition to the processes (I) to (IV) described in the first embodiment.
(B-1) A second protective film-forming film comprising a second support sheet and a second protective film-forming layer provided on the second support sheet, with the second protective film-forming layer as a bonding surface (B-2) Step of forming the second protective film by heating the second protective film forming layer, that is, the second protective film in the second to third embodiments. In the embodiment, the forming layer and the second support sheet are separately attached to the back surface side of the semiconductor wafer. However, in the present embodiment, these layers are collectively used as the second protective film forming film. Affixed to
[工程(B-1)]
 本実施形態では、第1の実施形態と同様に、工程(I)及び(II)を実施した後(すなわち、熱硬化して、半導体ウエハ10の上に保護膜25Aを形成した後)、半導体ウエハの裏面10B(バンプ面とは反対側の面)に、図11に示すように、第2保護膜形成用フィルム30を貼り合わせる。第2保護膜形成用フィルム30は、図10に示すように、第2支持シート33と、第2支持シート33上に設けられた第2保護膜形成層35とを備えるものであり、第2保護膜形成層35を半導体ウエハ10の裏面10Bに貼り合わせる。
 ここで、第2支持シート33の具体例としては、図10、11に示すように、第2基材31と、第2基材31の一方の面上に形成された第2粘着剤層32とを備え、第2粘着剤層32の上に第2保護膜形成層35が形成されたものが挙げられるが、第1の実施形態で説明したように、他の構成を有するものであってもよい。
 第2支持シート33は、第1の実施形態で説明したように、外周領域がリングフレーム等の支持部材13に接着できるように、例えば、図10、11に示すように第2保護膜形成層35より一回り大きく形成される。
 また、第2支持シート33は、第2保護膜形成層35と同じサイズでもよい。第2支持シート33が、第2保護膜形成層35と同じサイズである場合には、第2保護膜形成層35及び第2支持シート33はいずれも半導体ウエハ10よりも一回り大きく形成され、半導体ウエハ10に接着されない第2保護膜形成層35の外周領域の上に支持部材13に接着するための両面テープ等の接着部材が設けられればよい。
 上記工程(B-1)の後、第1の実施形態と同様に、半導体ウエハ10の表面に貼付されていた第1支持シート23を、保護膜25Aから剥離する(工程(III))。
[Process (B-1)]
In the present embodiment, as in the first embodiment, after performing steps (I) and (II) (that is, after thermosetting and forming the protective film 25A on the semiconductor wafer 10), the semiconductor As shown in FIG. 11, a second protective film forming film 30 is bonded to the back surface 10B (the surface opposite to the bump surface) of the wafer. As shown in FIG. 10, the second protective film forming film 30 includes a second support sheet 33 and a second protective film forming layer 35 provided on the second support sheet 33. The protective film forming layer 35 is bonded to the back surface 10 </ b> B of the semiconductor wafer 10.
Here, as a specific example of the second support sheet 33, as shown in FIGS. 10 and 11, the second base material 31 and the second pressure-sensitive adhesive layer 32 formed on one surface of the second base material 31. And having the second protective film forming layer 35 formed on the second pressure-sensitive adhesive layer 32, as described in the first embodiment, it has another configuration. Also good.
As described in the first embodiment, the second support sheet 33 has a second protective film forming layer as shown in FIGS. 10 and 11, for example, so that the outer peripheral region can be bonded to the support member 13 such as a ring frame. It is slightly larger than 35.
The second support sheet 33 may be the same size as the second protective film forming layer 35. When the second support sheet 33 is the same size as the second protective film forming layer 35, the second protective film forming layer 35 and the second support sheet 33 are both formed slightly larger than the semiconductor wafer 10, An adhesive member such as a double-sided tape for bonding to the support member 13 may be provided on the outer peripheral region of the second protective film forming layer 35 that is not bonded to the semiconductor wafer 10.
After the step (B-1), similarly to the first embodiment, the first support sheet 23 attached to the surface of the semiconductor wafer 10 is peeled from the protective film 25A (step (III)).
[工程(B-2)]
 その後、第2保護膜形成層35を加熱して硬化して、第2保護膜35Aを形成する(工程(B-2))。第2保護膜形成層35の加熱は、例えば、表面10A側に保護膜25Aが形成され、かつ裏面10B側に第2保護膜形成層35が積層された半導体ウエハ10を、加熱炉等内部に配置して加熱することで行うことが好ましい。なお、本工程(B-2)における加熱条件は、第1の実施形態の工程(III)で説明した加熱条件と同様であるので、その説明を省略する。
[Process (B-2)]
Thereafter, the second protective film forming layer 35 is heated and cured to form the second protective film 35A (step (B-2)). The heating of the second protective film forming layer 35 is performed, for example, by placing the semiconductor wafer 10 in which the protective film 25A is formed on the front surface 10A side and the second protective film forming layer 35 is laminated on the back surface 10B side in a heating furnace or the like. It is preferable to carry out by arranging and heating. In addition, since the heating conditions in this process (B-2) are the same as the heating conditions demonstrated by process (III) of 1st Embodiment, the description is abbreviate | omitted.
 次に、両面に保護膜25A及び第2保護膜35Aが形成された半導体ウエハ10をダイシングする(工程(IV))。ダイシング後、半導体チップ15をピックアップして、上記各実施形態と同様に半導体装置を製造する。
 なお、本実施形態においては、第2保護膜形成層35を加熱して硬化する際、第2支持シート33が第2保護膜形成層35に貼付されている。したがって、工程(B-2)の加熱時に、第2支持シート33の接着力が重くなることを防止するために、第2支持シート33は耐熱性を有することが好ましい。耐熱性を有する第2支持シート33は、上記で説明したとおりであるので、その説明は省略する。
Next, the semiconductor wafer 10 having the protective film 25A and the second protective film 35A formed on both sides is diced (step (IV)). After dicing, the semiconductor chip 15 is picked up, and the semiconductor device is manufactured in the same manner as in the above embodiments.
In the present embodiment, the second support sheet 33 is attached to the second protective film forming layer 35 when the second protective film forming layer 35 is cured by heating. Therefore, in order to prevent the adhesive force of the second support sheet 33 from becoming heavy during the heating in the step (B-2), the second support sheet 33 preferably has heat resistance. Since the 2nd support sheet 33 which has heat resistance is as having demonstrated above, the description is abbreviate | omitted.
 以上の第4の実施形態でも、バンプ11を保護膜25Aにより適切に保護するとともに、第2保護膜35Aにより半導体ウエハ10(半導体チップ15)の裏面を保護することが可能になる。また、本実施形態では、第2保護膜形成層35と、第2支持シート33は、第2保護膜形成用フィルム30として半導体ウエハ10の裏面に一括して貼付されるので、工程を簡略化することが可能である。 Also in the fourth embodiment described above, the bump 11 can be appropriately protected by the protective film 25A, and the back surface of the semiconductor wafer 10 (semiconductor chip 15) can be protected by the second protective film 35A. In the present embodiment, the second protective film forming layer 35 and the second support sheet 33 are collectively attached to the back surface of the semiconductor wafer 10 as the second protective film forming film 30, thereby simplifying the process. Is possible.
 また、上記第4の実施形態の説明では、工程(B-2)をダイシング(工程(IV))の前に行う例を示したが、工程(B-2)は、ダイシングの前に行う必要はなく、ダイシングの後に行ってもよい。
 具体的には、工程(I)、(II)、(B-1)、及び(III)をこの順に行った後、ダイシングを実施する(工程(IV))。すなわち、ダイシングは、表面10Aに保護膜25Aが形成され、裏面10Bに第2保護膜形成用フィルム30(すなわち、第2保護膜形成層35と第2支持シート33)が積層された半導体ウエハ10に対して行う。そのダイシング後に、第2保護膜形成層35を加熱して硬化する工程(B-2)を行う。この場合、第2保護膜形成層35の硬化は、第2の実施形態と同様に、ピックアップした後で行うことが好ましく、特に、リフロー時の加熱により硬化することが好ましい。
In the description of the fourth embodiment, the example in which the process (B-2) is performed before the dicing (process (IV)) has been described. However, the process (B-2) needs to be performed before the dicing. No, it may be performed after dicing.
Specifically, after performing steps (I), (II), (B-1), and (III) in this order, dicing is performed (step (IV)). That is, in the dicing, the semiconductor wafer 10 in which the protective film 25A is formed on the front surface 10A and the second protective film forming film 30 (that is, the second protective film forming layer 35 and the second support sheet 33) is laminated on the back surface 10B. To do. After the dicing, a step (B-2) of heating and curing the second protective film forming layer 35 is performed. In this case, the second protective film forming layer 35 is preferably cured after being picked up, as in the second embodiment, and is particularly preferably cured by heating during reflow.
<第5の実施形態>
 次に、本発明の第5の実施形態について第4の実施形態との相違点を説明する。
 上記第4の実施形態では、熱硬化性樹脂層25と第2保護膜形成層35とを加熱して硬化するタイミングは、別々であったが、第5の実施形態では、これらを同時に加熱することで硬化させる。すなわち、上記第4の実施形態では、工程(II)と工程(B-2)は別のタイミングで行うが、本実施形態では、工程(II)と工程(B-2)は同じタイミングで一括して行う。
<Fifth Embodiment>
Next, a difference of the fifth embodiment of the present invention from the fourth embodiment will be described.
In the fourth embodiment, the timing for heating and curing the thermosetting resin layer 25 and the second protective film forming layer 35 is different, but in the fifth embodiment, these are simultaneously heated. To cure. That is, in the fourth embodiment, the process (II) and the process (B-2) are performed at different timings, but in the present embodiment, the process (II) and the process (B-2) are performed at the same timing. And do it.
 すなわち、本実施形態では、工程(I)を実施した後、工程(II)及び(III)を行わず、工程(B-1)を行う。このようにして、本実施形態では、図12に示すように、半導体ウエハ10の表面10Aには、第1保護膜形成用フィルム20(すなわち、熱硬化性樹脂層25及び第1支持シート23)が積層されるとともに、裏面10Bには第2保護膜形成用フィルム30(すなわち、第2保護膜形成層35と第2支持シート33)が積層されることになる。
 そして、図12に示すように、このように硬化前の熱硬化性樹脂層25及び第2保護膜形成層35が両面に積層されている、半導体ウエハ10を加熱することで、熱硬化性樹脂層25及び第2保護膜形成層35を硬化して、保護膜25A及び第2保護膜35Aを形成する(工程(II)及び工程(B-2))。
That is, in this embodiment, after performing the step (I), the step (B-1) is performed without performing the steps (II) and (III). Thus, in this embodiment, as shown in FIG. 12, the first protective film forming film 20 (that is, the thermosetting resin layer 25 and the first support sheet 23) is formed on the surface 10A of the semiconductor wafer 10 as shown in FIG. And the second protective film forming film 30 (that is, the second protective film forming layer 35 and the second support sheet 33) are laminated on the back surface 10B.
And as shown in FIG. 12, the thermosetting resin is heated by heating the semiconductor wafer 10 in which the thermosetting resin layer 25 and the second protective film forming layer 35 before being cured are laminated on both surfaces in this way. The layer 25 and the second protective film forming layer 35 are cured to form the protective film 25A and the second protective film 35A (step (II) and step (B-2)).
 加熱硬化後、保護膜25Aに貼付されている第1支持シート23が、保護膜25Aから剥離される(工程(III))。その後、第2支持シート33に支持された半導体ウエハ10を、ダイシングにより、保護膜25Aと第2保護膜35Aとともに個片化して、両面に保護膜25Aと第2保護膜35Aが形成された半導体チップ15を得る(工程(IV))。次いで、半導体チップ15をピックアップし、上記各実施形態と同様に半導体装置を製造する。
 なお、本実施形態では、第2支持シート33が、第2保護膜形成層35に貼付された状態で、第2保護膜形成層35の加熱硬化が行われるので、第1支持シートに加え第2支持シート33も、耐熱性を有することが好ましい。耐熱性を有する第2支持シートの構成は、上記したとおりであるので、その説明は省略する。
 以上の第5の実施形態でも、バンプ11及びウエハ裏面を適切に保護しつつ、工程を簡略化し、かつ半導体ウエハ(半導体チップ)に生じる反りも防止することが可能である。
After heat curing, the first support sheet 23 attached to the protective film 25A is peeled from the protective film 25A (step (III)). Thereafter, the semiconductor wafer 10 supported by the second support sheet 33 is separated into individual pieces together with the protective film 25A and the second protective film 35A by dicing, and the semiconductor in which the protective film 25A and the second protective film 35A are formed on both surfaces. Chip 15 is obtained (step (IV)). Next, the semiconductor chip 15 is picked up, and a semiconductor device is manufactured as in the above embodiments.
In the present embodiment, since the second protective film forming layer 35 is heat-cured in a state where the second support sheet 33 is adhered to the second protective film forming layer 35, the second support sheet 33 is added to the first support sheet. It is preferable that the 2 support sheet 33 also has heat resistance. Since the structure of the 2nd support sheet which has heat resistance is as above-mentioned, the description is abbreviate | omitted.
Also in the fifth embodiment described above, it is possible to simplify the process and prevent warpage occurring in the semiconductor wafer (semiconductor chip) while appropriately protecting the bumps 11 and the back surface of the wafer.
 なお、上記各実施形態において、第1支持シート23が剥離される工程(III)は、工程(II)と工程(IV)の間に行えば、実施されるタイミングは特に限定されない。例えば、第2の実施形態では、工程(A-1)と(A-2)の間に行われたが、工程(A-1)の前に行われてもよいし、その他のタイミングで行ってもよい。
 また、第3の実施形態でも、工程(III)は、工程(A-3)の前に行われたが、工程(A-3)の後、すなわち、工程(A-3)と工程(IV)の間に実施してもよい。
 さらに、第4の実施形態では、工程(III)は、工程(B-1)と(B-2)の間に行われたが、工程(II)と(IV)の間に行われる限り、工程(B-1)の前に行ってもよいし、工程(B-2)の後で行ってもよい。
In addition, in said each embodiment, if the process (III) from which the 1st support sheet 23 peels is performed between process (II) and process (IV), the timing to implement will not be specifically limited. For example, in the second embodiment, it is performed between the steps (A-1) and (A-2), but may be performed before the step (A-1) or at other timing. May be.
In the third embodiment, the step (III) is performed before the step (A-3), but after the step (A-3), that is, the step (A-3) and the step (IV). ).
Furthermore, in the fourth embodiment, the step (III) is performed between the steps (B-1) and (B-2), but as long as it is performed between the steps (II) and (IV), It may be performed before the step (B-1) or after the step (B-2).
 また、上記第2~第5の実施形態において、半導体ウエハの裏面研削については、特に言及しないが、半導体ウエハの裏面研削を行う場合には、第1の実施形態と同様に、工程(I)と工程(III)の間に実施すればよいが、工程(I)と工程(II)の間に行うことが好ましい。ただし、裏面研削は、第2保護膜形成層35が半導体ウエハ10の裏面10Bに貼付される場合には、第2保護膜形成層35の貼付前に行う。
 また、上記第3~第5の実施形態でも、第2の実施形態と同様に、第2保護膜35A、又は第2保護膜用形成層35に対して、レーザー印字を行ってもよい。なお、第3の本実施形態では、工程(II)及び工程(A-2)と、工程(A-3)との間に、硬化された第2保護膜35Aが露出されることになる。したがって、第3の実施形態では、工程(II)及び(A-2)と、工程(A-3)との間にその露出した第2保護膜35Aに対してレーザー印字を行うことが好ましい。
Further, in the second to fifth embodiments, the back grinding of the semiconductor wafer is not particularly mentioned. However, when the back grinding of the semiconductor wafer is performed, the step (I) is performed as in the first embodiment. It may be carried out between step (III) and step (III), but is preferably carried out between step (I) and step (II). However, when the second protective film forming layer 35 is affixed to the back surface 10B of the semiconductor wafer 10, the back surface grinding is performed before the second protective film forming layer 35 is affixed.
In the third to fifth embodiments, laser printing may be performed on the second protective film 35A or the second protective film forming layer 35 as in the second embodiment. In the third embodiment, the cured second protective film 35A is exposed between the step (II) and the step (A-2) and the step (A-3). Therefore, in the third embodiment, it is preferable to perform laser printing on the exposed second protective film 35A between the steps (II) and (A-2) and the step (A-3).
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれらの例によって制限されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 本実施例、比較例では、以下の方法により各種物性を測定するとともに、第1保護膜形成用フィルムを評価した。
[アクリル系重合体の重量平均分子量(Mw)]
 アクリル系重合体の重量平均分子量(Mw)は、以下の測定条件でGPC法により測定して、標準ポリスチレン換算で求めた。
 東ソー株式会社製の高速GPC装置「HLC-8120GPC」に、高速カラム「TSKguardcolumn HXL-H」、「TSKGel GMHXL」、「TSKGelG2000 HXL」(以上、全て東ソー株式会社製)をこの順序で連結して測定した。カラム温度は40℃、送液速度は1.0mL/分、検出器は示差屈折率計であった。
[接着力測定]
 まず、剥離材/熱硬化性樹脂層/剥離材からなる積層体を用意し、この積層体から一方の剥離材を剥がして、第1支持シートの第1粘着剤層側の面に熱硬化性樹脂層を常温にて貼り合わせて、第1支持シート/熱硬化性樹脂層/剥離材からなる積層体(第1保護膜形成用フィルム)を得た。この積層体を幅25mm、長さ150mmの短冊状にした。
 なお、これら各部材は、実施例で使用したものと同様のものを使用した。
 次に、短冊状の積層体から剥離材を剥がし、SUS304に、熱硬化性樹脂層面とSUS面とが接するように2Kgのゴムローラーを用い70℃で貼付し、照度200mW/cm、光量160mJ/cmの条件で第1支持シートに紫外線を照射した。次いで第1支持シートを貼付した被着体を130℃、2時間の条件で加熱し、熱硬化性樹脂層を硬化して保護膜とした後、第1支持シートの保護膜に対する接着力を測定した。接着力の測定は、温度23℃、湿度50%RHの条件下、剥離角度180°、剥離速度300mm/分で第1支持シートを被着体から剥離することで行った。
 なお、本接着力の測定は、第1保護膜形成用フィルムが半導体ウエハに貼付された後、熱硬化性樹脂層が加熱硬化される前に、エネルギー線が第1支持シートに照射されることを想定して行ったものである。
In the examples and comparative examples, various physical properties were measured by the following methods, and the first protective film-forming film was evaluated.
[Weight average molecular weight of acrylic polymer (Mw)]
The weight average molecular weight (Mw) of the acrylic polymer was measured by the GPC method under the following measurement conditions, and determined in terms of standard polystyrene.
High-speed columns “TSKguardcolumn H XL -H”, “TSKGel GMH XL ” and “TSKGel G2000 H XL ” (all of which are manufactured by Tosoh Corporation) are connected in this order to the high-speed GPC device “HLC-8120GPC” manufactured by Tosoh Corporation. And measured. The column temperature was 40 ° C., the liquid feed speed was 1.0 mL / min, and the detector was a differential refractometer.
[Adhesive strength measurement]
First, a laminate composed of a release material / thermosetting resin layer / release material is prepared, and one release material is peeled off from the laminate, and the surface of the first support sheet on the first pressure-sensitive adhesive layer side is thermosetting. The resin layer was bonded at room temperature to obtain a laminate (first protective film-forming film) composed of the first support sheet / thermosetting resin layer / release material. This laminate was formed into a strip shape having a width of 25 mm and a length of 150 mm.
These members were the same as those used in the examples.
Next, the release material is peeled off from the strip-shaped laminate, and is attached to SUS304 at 70 ° C. using a 2 Kg rubber roller so that the thermosetting resin layer surface and the SUS surface are in contact with each other, and the illuminance is 200 mW / cm 2 and the light amount is 160 mJ. The first support sheet was irradiated with ultraviolet rays under the conditions of / cm 2 . Next, the adherend to which the first support sheet is affixed is heated at 130 ° C. for 2 hours to cure the thermosetting resin layer to form a protective film, and then measure the adhesive strength of the first support sheet to the protective film did. The measurement of the adhesive force was performed by peeling the first support sheet from the adherend at a peeling angle of 180 ° and a peeling speed of 300 mm / min under the conditions of a temperature of 23 ° C. and a humidity of 50% RH.
In addition, the measurement of this adhesive force is that the first support sheet is irradiated with energy rays after the first protective film-forming film is attached to the semiconductor wafer and before the thermosetting resin layer is heat-cured. It was done assuming that.
[実施例1]
 アクリル酸2-エチルヘキシル80質量部、及びアクリル酸2-ヒドロキシエチル20質量部の共重合体であるアクリル酸エステル系共重合体に、2-メタクリロイルオキシエチルイソシアネートを、アクリル酸2-ヒドロキシエチル由来の水酸基100モル%基準で、付加率が80モル%となるように付加して得たエネルギー線硬化型アクリル系重合体(重量平均分子量(Mw):600,000)100質量部に、光重合開始剤(商品名:エサキュアKIP150、シーベルヘグナー社製)3質量部、及びトリレンジイソシアネート系架橋剤(商品名:BHS-8515、東洋インキ株式会社製)0.5質量部を配合してエネルギー線硬化型アクリル系粘着剤を調整した。後述する条件で紫外線を照射した後のエネルギー線硬化型アクリル系粘着剤の70℃におけるせん断弾性率が40,000Paであった。
 次に、ポリエチレンテレフタレートフィルムからなる基材(商品名:コスモシャイン、株式会社東洋紡製、厚み:50μm)の一方の面に、ウレタン(メタ)アクリレートを含む硬化性材料をエネルギー線硬化してなる厚み200μmの中間層を設け、その中間層の上に厚みが10μmとなるように、エネルギー線硬化型アクリル系粘着剤を塗布して、第1粘着剤層を形成し、第1支持シートを得た。この第1支持シートの第1粘着剤層は、紫外線を照度150mW/cm2、光量300mJ/cm2の条件で照射して硬化させた。
[Example 1]
2-methacryloyloxyethyl isocyanate is derived from 2-hydroxyethyl acrylate to an acrylic ester copolymer which is a copolymer of 80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate. Photopolymerization was started on 100 parts by mass of an energy ray-curable acrylic polymer (weight average molecular weight (Mw): 600,000) obtained by adding the addition rate to 80 mol% based on 100 mol% of the hydroxyl group. Energy beam curing by blending 3 parts by weight of a chemical agent (trade name: Esacure KIP150, manufactured by Sebel Hegner) and 0.5 part by weight of a tolylene diisocyanate-based crosslinking agent (trade name: BHS-8515, manufactured by Toyo Ink Co., Ltd.) A type acrylic pressure-sensitive adhesive was prepared. The shear modulus at 70 ° C. of the energy ray-curable acrylic pressure-sensitive adhesive after irradiation with ultraviolet rays under the conditions described below was 40,000 Pa.
Next, a thickness obtained by energy ray curing a curable material containing urethane (meth) acrylate on one surface of a base material (trade name: Cosmo Shine, manufactured by Toyobo Co., Ltd., thickness: 50 μm) made of a polyethylene terephthalate film. A 200 μm intermediate layer was provided, and an energy ray curable acrylic pressure-sensitive adhesive was applied on the intermediate layer so as to have a thickness of 10 μm to form a first pressure-sensitive adhesive layer, thereby obtaining a first support sheet. . The first pressure-sensitive adhesive layer of the first support sheet was cured by irradiation with ultraviolet rays under the conditions of an illuminance of 150 mW / cm 2 and a light amount of 300 mJ / cm 2 .
 また、剥離材の上に、エポキシ樹脂系熱硬化性樹脂組成物を塗布し、剥離材上に厚み100μmの熱硬化性樹脂層を形成した。熱硬化性樹脂層(エポキシ樹脂系熱硬化性樹脂組成物)の70℃における溶融粘度は、5,000Pa・Sであった。また、熱硬化性樹脂層の硬化後(すなわち、保護膜)のせん断強度(対Cu)は、200N/2mmであった。
この剥離材付きの熱硬化性樹脂層を、第1支持シートの第1粘着剤層の上に積層して、基材/中間層/第1粘着剤層/熱硬化性樹脂層/剥離材からなる、第1保護膜形成用フィルムを得た。
 その後、剥離材を剥離した第1保護膜形成用フィルムを、70℃で熱硬化性樹脂層が貼り合わせ面となるように、パンプ(バンプ高さ:210μm)が設けられた半導体ウエハ(WALTS株式会社製、サイズ:8インチ(20.32cm)、厚み:730μm)の表面に貼り合わせた(工程(I))。次いで、第1保護膜形成用フィルムを貼り合わせた半導体ウエハを130℃で2時間加熱して、熱硬化性樹脂層を硬化させ、保護膜を形成した((工程(II))。その後、保護膜から第1支持シートを剥離した(工程(III))。
 第1支持シート剥離後に、形成された保護膜を観察したところ、保護膜の膜厚が均一となっていた。また、バンプの先端が保護膜から突出し、かつバンプネックが保護膜により適切に埋め込まれていた。したがって、実施例1では、第1支持シートを貼付した状態で、熱硬化性樹脂層を硬化することで、均一な膜厚を有する保護膜によりバンプを適切に保護することができた。
In addition, an epoxy resin thermosetting resin composition was applied on the release material, and a thermosetting resin layer having a thickness of 100 μm was formed on the release material. The melt viscosity at 70 ° C. of the thermosetting resin layer (epoxy resin thermosetting resin composition) was 5,000 Pa · S. Further, the shear strength (vs. Cu) after curing of the thermosetting resin layer (that is, the protective film) was 200 N / 2 mm.
The thermosetting resin layer with the release material is laminated on the first pressure-sensitive adhesive layer of the first support sheet, and from the base material / intermediate layer / first pressure-sensitive adhesive layer / thermosetting resin layer / release material. Thus, a first protective film-forming film was obtained.
Thereafter, the first protective film-forming film from which the release material has been peeled off is a semiconductor wafer (WALTS stock) provided with a bump (bump height: 210 μm) so that the thermosetting resin layer becomes a bonding surface at 70 ° C. It was bonded to the surface of a company-made size: 8 inches (20.32 cm), thickness: 730 μm (step (I)). Next, the semiconductor wafer to which the first protective film-forming film was bonded was heated at 130 ° C. for 2 hours to cure the thermosetting resin layer and form a protective film ((Step (II)). The 1st support sheet was peeled from the film | membrane (process (III)).
When the formed protective film was observed after the first support sheet was peeled off, the protective film had a uniform film thickness. Further, the tip of the bump protrudes from the protective film, and the bump neck is appropriately embedded by the protective film. Therefore, in Example 1, it was possible to appropriately protect the bumps with the protective film having a uniform film thickness by curing the thermosetting resin layer with the first support sheet attached.
[比較例1]
 工程(III)と工程(II)とを入れ替えて行う以外、実施例1と同様に実施した。
 すなわち、比較例1では、第1保護膜形成用フィルムを、半導体ウエハの表面に貼り合わせた後(工程(I))、熱硬化性樹脂層から第1支持シートを剥離し(工程(III))、次いで、熱硬化性樹脂層が表面に積層された半導体ウエハを実施例1と同様の加熱条件で加熱して、保護膜を形成した(工程(II))。
 保護膜形成後、形成された保護膜を観察したところ、比較例1では、保護膜の膜厚が不均一になり、バンプを適切に保護することができないことが理解できる。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the step (III) and the step (II) were interchanged.
That is, in Comparative Example 1, after the first protective film-forming film was bonded to the surface of the semiconductor wafer (step (I)), the first support sheet was peeled from the thermosetting resin layer (step (III)). Then, the semiconductor wafer with the thermosetting resin layer laminated on the surface was heated under the same heating conditions as in Example 1 to form a protective film (step (II)).
When the formed protective film was observed after the protective film was formed, it can be understood that in Comparative Example 1, the film thickness of the protective film becomes non-uniform and the bumps cannot be properly protected.
[実施例2]
 実施例1と同様の方法で作製した第1支持シートについて上記接着力測定に従って接着力を測定した。その結果を表1に示す。
[Example 2]
The adhesive strength of the first support sheet produced by the same method as in Example 1 was measured according to the above adhesive strength measurement. The results are shown in Table 1.
[実施例3]
 架橋剤の配合量を1.5質量部に変更して、エネルギー線硬化型アクリル系粘着剤を作製した点を除いて実施例2と同様に実施した。
[Example 3]
It implemented similarly to Example 2 except having changed the compounding quantity of the crosslinking agent into 1.5 mass parts, and having produced the energy ray hardening-type acrylic adhesive.
[実施例4]
 架橋剤の配合量を4.5質量部に変更して、エネルギー線硬化型アクリル系粘着剤を作製した点を除いて実施例2と同様に実施した。
[Example 4]
It implemented similarly to Example 2 except the point which changed the compounding quantity of the crosslinking agent into 4.5 mass parts, and produced the energy ray hardening-type acrylic adhesive.
[実施例5]
 架橋剤の配合量を7.5質量部に変更して、エネルギー線硬化型アクリル系粘着剤を作製した点を除いて実施例2と同様に実施した。
[Example 5]
It implemented similarly to Example 2 except having changed the compounding quantity of the crosslinking agent into 7.5 mass parts, and having produced the energy-beam curable acrylic adhesive.
[実施例6]
 使用するエネルギー線硬化型アクリル系重合体を、アクリル酸ラウリル80質量部、及びアクリル酸2-ヒドロキシエチル20質量部の共重合体であるアクリル酸エステル系共重合体に、2-メタクリロイルオキシエチルイソシアネートを、アクリル酸2-ヒドロキシエチル由来の水酸基100モル%基準で、付加率が80モル%となるように付加して得たエネルギー線硬化型アクリル系重合体(重量平均分子量(Mw):600,000)に変更した点を除いて実施例2と同様に実施した。
[Example 6]
2-methacryloyloxyethyl isocyanate is converted into an acrylic ester copolymer that is a copolymer of 80 parts by mass of lauryl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate. Energy-ray-curing acrylic polymer (weight-average molecular weight (Mw): 600, obtained by adding an addition rate of 80 mol% based on 100 mol% of hydroxyl group derived from 2-hydroxyethyl acrylate) This was carried out in the same manner as in Example 2 except that the change was made to (000).
[実施例7]
 使用するエネルギー線硬化型アクリル系粘着剤を、アクリル酸2-エチルヘキシル90質量部、及びアクリル酸2-ヒドロキシエチル10質量部の共重合体であるアクリル酸エステル系共重合体に、2-メタクリロイルオキシエチルイソシアネートを、アクリル酸2-ヒドロキシエチル由来の水酸基100モル%基準で、付加率が60モル%となるように付加して得たエネルギー線硬化型アクリル系重合体(重量平均分子量(Mw):600,000)100質量部に、光重合開始剤3質量部、及び架橋剤1質量部を配合して得たエネルギー線硬化型アクリル系粘着剤に変更した点を除いて実施例2と同様に実施した。
[Example 7]
The energy ray curable acrylic pressure-sensitive adhesive to be used was changed to 2-methacryloyloxy with an acrylic ester copolymer which is a copolymer of 90 parts by mass of 2-ethylhexyl acrylate and 10 parts by mass of 2-hydroxyethyl acrylate. An energy ray-curable acrylic polymer (weight average molecular weight (Mw)) obtained by adding ethyl isocyanate so that the addition rate is 60 mol% based on 100 mol% of hydroxyl group derived from 2-hydroxyethyl acrylate. 600,000) Similar to Example 2 except that it was changed to an energy ray curable acrylic pressure-sensitive adhesive obtained by blending 100 parts by mass with 3 parts by mass of a photopolymerization initiator and 1 part by mass of a crosslinking agent. Carried out.
[参考例1]
 使用するエネルギー線硬化型アクリル系粘着剤を、アクリル酸ブチル50質量部、メタクリル酸メチル20質量部、及びアクリル酸2-ヒドロキシエチル30質量部の共重合体であるアクリル酸エステル系共重合体に、2-メタクリロイルオキシエチルイソシアネートを、アクリル酸2-ヒドロキシエチル由来の水酸基100モル%基準で、付加率が90モル%となるように付加して得たエネルギー線硬化型アクリル系重合体(重量平均分子量(Mw):600,000)100質量部に対して、光重合開始剤3質量部、及び架橋剤1.0質量部を配合して得たエネルギー線硬化型アクリル系粘着剤に変更した点を除いて実施例2と同様に実施した。
[Reference Example 1]
The energy ray curable acrylic pressure-sensitive adhesive to be used is an acrylic ester copolymer which is a copolymer of 50 parts by mass of butyl acrylate, 20 parts by mass of methyl methacrylate, and 30 parts by mass of 2-hydroxyethyl acrylate. , An energy ray-curable acrylic polymer obtained by adding 2-methacryloyloxyethyl isocyanate such that the addition rate is 90 mol% based on 100 mol% of hydroxyl group derived from 2-hydroxyethyl acrylate (weight average) Molecular weight (Mw): 600,000) With respect to 100 parts by mass, 3 parts by mass of photopolymerization initiator and 1.0 part by mass of crosslinking agent were changed to energy ray curable acrylic pressure-sensitive adhesive. The same procedure as in Example 2 was performed except that.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の実施例2~7では、第1支持シートに使用される粘着剤を、エネルギー線硬化型アクリル系粘着剤とするとともに、(メタ)アクリル酸エステル系共重合体(A2)を特定のモノマーから重合することで、第1支持シートを加熱しても接着力が重くならない耐熱性を有するものとすることができる。そのため、本発明のように、第1支持シートを熱硬化性樹脂層に貼付したまま、半導体ウエハを加熱して熱硬化性樹脂層を硬化しても、第1支持シートの剥離性を良好に維持することが可能になる。
 それに対して、参考例1では、第1支持シートを加熱すると、接着力が上昇してしまうため、第1支持シートを熱硬化性樹脂層に貼付したまま、半導体ウエハを加熱して、熱硬化性樹脂層を硬化すると、第1支持シートの剥離性を良好に維持できず、実施例2~7に比べて作業性が低下することが予想される。
In Examples 2 to 7 described above, the pressure-sensitive adhesive used for the first support sheet is an energy ray-curable acrylic pressure-sensitive adhesive, and the (meth) acrylate copolymer (A2) is used as a specific monomer. By polymerizing from the above, it is possible to have heat resistance that does not increase the adhesion even when the first support sheet is heated. Therefore, even if the semiconductor wafer is heated and the thermosetting resin layer is cured by sticking the first support sheet to the thermosetting resin layer as in the present invention, the first support sheet has good peelability. It becomes possible to maintain.
On the other hand, in Reference Example 1, when the first support sheet is heated, the adhesive force is increased. Therefore, the semiconductor wafer is heated and thermoset while the first support sheet is adhered to the thermosetting resin layer. When the conductive resin layer is cured, the peelability of the first support sheet cannot be maintained satisfactorily, and workability is expected to be reduced as compared with Examples 2-7.
 10 半導体ウエハ
 11 バンプ
 15 半導体チップ
 20 第1保護膜形成用フィルム
 21 第1基材
 22 第1粘着剤層
 23 第1支持シート
 25 熱硬化性樹脂層
 25A 保護膜
 30 第2保護膜形成用フィルム
 31 第2基材
 32 第2粘着剤層
 33 第2支持シート
 35 第2保護膜形成層
 35A 第2保護膜
 40 チップ搭載用基板
DESCRIPTION OF SYMBOLS 10 Semiconductor wafer 11 Bump 15 Semiconductor chip 20 1st protective film formation film 21 1st base material 22 1st adhesive layer 23 1st support sheet 25 Thermosetting resin layer 25A Protective film 30 2nd protective film formation film 31 Second base material 32 Second adhesive layer 33 Second support sheet 35 Second protective film forming layer 35A Second protective film 40 Chip mounting substrate

Claims (8)

  1. (I)バンプが設けられた半導体ウエハの表面に、第1支持シートと熱硬化性樹脂層とがこの順で設けられた第1保護膜形成用フィルムを、前記熱硬化性樹脂層を貼り合わせ面にして貼り合わせる工程と、
    (II)前記熱硬化性樹脂層を加熱して硬化させ、保護膜を形成する工程と、
    (III)前記第1支持シートを、前記熱硬化性樹脂層を硬化して形成した前記保護膜から剥離する工程と、
    (IV)前記半導体ウエハを前記保護膜と共にダイシングする工程と、
     を備える半導体装置の製造方法。
    (I) A first protective film-forming film in which a first support sheet and a thermosetting resin layer are provided in this order are bonded to the surface of a semiconductor wafer provided with bumps, and the thermosetting resin layer is bonded to the surface. The process of bonding to the surface,
    (II) heating and curing the thermosetting resin layer to form a protective film;
    (III) peeling the first support sheet from the protective film formed by curing the thermosetting resin layer;
    (IV) dicing the semiconductor wafer together with the protective film;
    A method for manufacturing a semiconductor device comprising:
  2. (A-1)第2保護膜形成層を半導体ウエハの裏面に貼り合わせる工程と、
    (A-2)前記第2保護膜形成層を加熱して、第2保護膜を形成する工程と
    (A-3)前記半導体ウエハの裏面上の前記第2保護膜形成層、又は第2保護膜の上にさらに第2支持シートを貼り合せる工程と
     をさらに備える請求項1に記載の半導体装置の製造方法。
    (A-1) bonding the second protective film forming layer to the back surface of the semiconductor wafer;
    (A-2) heating the second protective film forming layer to form a second protective film; and (A-3) the second protective film forming layer on the back surface of the semiconductor wafer, or a second protective film. The method for manufacturing a semiconductor device according to claim 1, further comprising a step of bonding a second support sheet on the film.
  3. (B-1)第2支持シートと、前記第2支持シート上に設けられた第2保護膜形成層とを備える第2保護膜形成用フィルムを、前記第2保護膜形成層を貼り合わせ面して、前記半導体ウエハの裏面に貼り合わせる工程と、
    (B-2)前記第2保護膜形成層を加熱して、第2保護膜を形成する工程と
     をさらに備える請求項1に記載の半導体装置の製造方法。
    (B-1) A second protective film-forming film comprising a second support sheet and a second protective film-forming layer provided on the second support sheet, the second protective film-forming layer being bonded together And bonding to the back surface of the semiconductor wafer;
    The method for manufacturing a semiconductor device according to claim 1, further comprising: (B-2) heating the second protective film forming layer to form a second protective film.
  4.  前記熱硬化性樹脂層、及び前記第2保護膜形成層を同時に加熱して、これらを熱硬化させる請求項2又は3に記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 2, wherein the thermosetting resin layer and the second protective film forming layer are simultaneously heated to thermally cure them.
  5.  前記第1支持シートの工程(II)の加熱後の接着力が10N/25mm未満である請求項1~4のいずれか1項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 4, wherein the first supporting sheet has an adhesive strength after heating in step (II) of less than 10 N / 25 mm.
  6.  前記第1支持シートが、第1基材と、前記第1基材の一方の面に設けられた第1粘着剤層とを備え、前記第1粘着剤層の上に前記熱硬化性樹脂層が設けられている請求項1~5のいずれか1項に記載の半導体装置の製造方法。 The first support sheet includes a first base material and a first pressure-sensitive adhesive layer provided on one surface of the first base material, and the thermosetting resin layer on the first pressure-sensitive adhesive layer. 6. The method for manufacturing a semiconductor device according to claim 1, wherein a semiconductor device is provided.
  7.  前記熱硬化性樹脂層の溶融粘度は、前記半導体ウエハに前記第1保護膜形成用フィルムを貼り合わせる際の温度において、1×10Pa・S以上2×10Pa・S未満であり、
     前記第1粘着剤層のせん断弾性率は、前記半導体ウエハに前記第1保護膜形成用フィルムを貼り合わせる際の温度において、1×10Pa以上2×10Pa以下である請求項6に記載の半導体装置の製造方法。
    The melt viscosity of the thermosetting resin layer is 1 × 10 2 Pa · S or more and less than 2 × 10 4 Pa · S at a temperature when the first protective film-forming film is bonded to the semiconductor wafer,
    The shear elastic modulus of the first pressure-sensitive adhesive layer is 1 × 10 3 Pa or more and 2 × 10 6 Pa or less at a temperature when the first protective film-forming film is bonded to the semiconductor wafer. The manufacturing method of the semiconductor device of description.
  8.  前記熱硬化性樹脂層は、バンプ高さの0.01~0.99倍の厚みを有する請求項1~7のいずれか1項に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to any one of claims 1 to 7, wherein the thermosetting resin layer has a thickness of 0.01 to 0.99 times a bump height.
PCT/JP2016/082082 2015-11-04 2016-10-28 Method for manufacturing semiconductor device WO2017077957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017548739A JP6950907B2 (en) 2015-11-04 2016-10-28 Manufacturing method of semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015216649 2015-11-04
JP2015-216649 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017077957A1 true WO2017077957A1 (en) 2017-05-11

Family

ID=58663069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082082 WO2017077957A1 (en) 2015-11-04 2016-10-28 Method for manufacturing semiconductor device

Country Status (3)

Country Link
JP (1) JP6950907B2 (en)
TW (1) TWI760315B (en)
WO (1) WO2017077957A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064921A (en) * 2018-10-16 2020-04-23 株式会社ディスコ Wafer processing method
CN112585723A (en) * 2018-10-22 2021-03-30 琳得科株式会社 Method for manufacturing semiconductor device
WO2021132679A1 (en) * 2019-12-27 2021-07-01 リンテック株式会社 Curable resin film, composite sheet, and method for manufacturing semiconductor chip
WO2021132678A1 (en) * 2019-12-27 2021-07-01 リンテック株式会社 Semiconductor chip production method
KR20220147084A (en) 2020-02-27 2022-11-02 린텍 가부시키가이샤 Sheet for forming a protective film, a method for manufacturing a chip with a protective film, and a laminate
WO2023276731A1 (en) * 2021-06-28 2023-01-05 リンテック株式会社 Protection film-provided chip manufacturing method
US11551973B2 (en) 2020-08-19 2023-01-10 Kioxia Corporation Semiconductor device manufacturing method and semiconductor device
WO2023007947A1 (en) * 2021-07-26 2023-02-02 昭和電工マテリアルズ株式会社 Mold release film and method for manufacturing semiconductor package
JP7374039B2 (en) 2020-03-30 2023-11-06 三井化学東セロ株式会社 Method of manufacturing electronic devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006771A (en) * 2002-04-01 2004-01-08 Nec Electronics Corp Semiconductor device and method for manufacturing and mounting the same
JP2010056328A (en) * 2008-08-28 2010-03-11 Furukawa Electric Co Ltd:The Film for chip protection
JP2010258239A (en) * 2009-04-24 2010-11-11 Sekisui Chem Co Ltd Insulating adhesive sheet
JP2012028404A (en) * 2010-07-20 2012-02-09 Nitto Denko Corp Film for backside of flip-chip semiconductor, and film for backside of dicing tape integrated semiconductor
JP2012169482A (en) * 2011-02-15 2012-09-06 Nitto Denko Corp Protection layer formation film
JP2012244115A (en) * 2011-05-24 2012-12-10 Sekisui Chem Co Ltd Backgrind-underfill integrated tape, and mounting method of semiconductor chip
WO2014142154A1 (en) * 2013-03-13 2014-09-18 日東電工株式会社 Reinforcing sheet and process for producing semiconductor device through secondary mounting
WO2015162807A1 (en) * 2014-04-22 2015-10-29 デクセリアルズ株式会社 Semiconductor device manufacturing method
WO2015162808A1 (en) * 2014-04-22 2015-10-29 デクセリアルズ株式会社 Protective tape and semiconductor device manufacturing method using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006771A (en) * 2002-04-01 2004-01-08 Nec Electronics Corp Semiconductor device and method for manufacturing and mounting the same
JP2010056328A (en) * 2008-08-28 2010-03-11 Furukawa Electric Co Ltd:The Film for chip protection
JP2010258239A (en) * 2009-04-24 2010-11-11 Sekisui Chem Co Ltd Insulating adhesive sheet
JP2012028404A (en) * 2010-07-20 2012-02-09 Nitto Denko Corp Film for backside of flip-chip semiconductor, and film for backside of dicing tape integrated semiconductor
JP2012169482A (en) * 2011-02-15 2012-09-06 Nitto Denko Corp Protection layer formation film
JP2012244115A (en) * 2011-05-24 2012-12-10 Sekisui Chem Co Ltd Backgrind-underfill integrated tape, and mounting method of semiconductor chip
WO2014142154A1 (en) * 2013-03-13 2014-09-18 日東電工株式会社 Reinforcing sheet and process for producing semiconductor device through secondary mounting
WO2015162807A1 (en) * 2014-04-22 2015-10-29 デクセリアルズ株式会社 Semiconductor device manufacturing method
WO2015162808A1 (en) * 2014-04-22 2015-10-29 デクセリアルズ株式会社 Protective tape and semiconductor device manufacturing method using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064921A (en) * 2018-10-16 2020-04-23 株式会社ディスコ Wafer processing method
JP7317482B2 (en) 2018-10-16 2023-07-31 株式会社ディスコ Wafer processing method
CN112585723A (en) * 2018-10-22 2021-03-30 琳得科株式会社 Method for manufacturing semiconductor device
JP7033237B2 (en) 2019-12-27 2022-03-09 リンテック株式会社 How to manufacture kits and semiconductor chips
WO2021132678A1 (en) * 2019-12-27 2021-07-01 リンテック株式会社 Semiconductor chip production method
JPWO2021132680A1 (en) * 2019-12-27 2021-07-01
WO2021132680A1 (en) * 2019-12-27 2021-07-01 リンテック株式会社 Kit and method for manufacturing semiconductor chip
WO2021132679A1 (en) * 2019-12-27 2021-07-01 リンテック株式会社 Curable resin film, composite sheet, and method for manufacturing semiconductor chip
KR20220147084A (en) 2020-02-27 2022-11-02 린텍 가부시키가이샤 Sheet for forming a protective film, a method for manufacturing a chip with a protective film, and a laminate
JP7374039B2 (en) 2020-03-30 2023-11-06 三井化学東セロ株式会社 Method of manufacturing electronic devices
US11551973B2 (en) 2020-08-19 2023-01-10 Kioxia Corporation Semiconductor device manufacturing method and semiconductor device
WO2023276731A1 (en) * 2021-06-28 2023-01-05 リンテック株式会社 Protection film-provided chip manufacturing method
WO2023007947A1 (en) * 2021-07-26 2023-02-02 昭和電工マテリアルズ株式会社 Mold release film and method for manufacturing semiconductor package

Also Published As

Publication number Publication date
TW201735195A (en) 2017-10-01
JP6950907B2 (en) 2021-10-13
TWI760315B (en) 2022-04-11
JPWO2017077957A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2017077957A1 (en) Method for manufacturing semiconductor device
JP6336905B2 (en) Film adhesive, semiconductor bonding adhesive sheet, and method of manufacturing semiconductor device
JP4717085B2 (en) Dicing die bond film
JP5740303B2 (en) Curable composition, sheet before curing, dicing die bonding tape, connection structure, and method for producing semiconductor chip with adhesive layer
JP6268329B2 (en) Adhesive composition and adhesive sheet
TWI715586B (en) Dicing wafer bonding film, manufacturing method of semiconductor device, and semiconductor device
WO2014155756A1 (en) Adhesive sheet, composite sheet for forming protective film, and method for manufacturing chip with protective film
JP6298409B2 (en) Sheet with curable resin film forming layer and method for manufacturing semiconductor device using the sheet
WO2017038913A1 (en) Adhesive sheet and method for producing semiconductor device
KR20110097798A (en) Film roll for producing semiconductor device
JP6833083B2 (en) Manufacturing method for film-like adhesives, adhesive sheets and semiconductor devices
JP4794971B2 (en) Dicing die bond sheet
TWI662101B (en) Sticky crystal layer forming thin film, processed object to which sticky crystal layer forming thin film is attached, and semiconductor device
JP5837272B2 (en) Manufacturing method of semiconductor manufacturing equipment
WO2017077958A1 (en) Method for manufacturing semiconductor device
JP6262717B2 (en) Method for manufacturing chip with protective film
TWI801527B (en) Manufacturing method of semiconductor device
JP5414256B2 (en) Adhesive composition, adhesive sheet, and method for manufacturing semiconductor device
JP5224710B2 (en) Adhesive used in semiconductor device manufacturing method
JP5738263B2 (en) Manufacturing method of semiconductor device
CN111748298B (en) Transparent adhesive sheet and transparent adhesive sheet with release material
WO2014083872A1 (en) Sheet for forming resin film for chips and method for manufacturing semiconductor device
JP5406995B2 (en) Adhesive used in semiconductor device manufacturing method
JP2011216733A (en) Adhesive tape for wafer processing
KR102549654B1 (en) adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862017

Country of ref document: EP

Kind code of ref document: A1