WO2021182554A1 - Protective film-forming sheet - Google Patents

Protective film-forming sheet Download PDF

Info

Publication number
WO2021182554A1
WO2021182554A1 PCT/JP2021/009704 JP2021009704W WO2021182554A1 WO 2021182554 A1 WO2021182554 A1 WO 2021182554A1 JP 2021009704 W JP2021009704 W JP 2021009704W WO 2021182554 A1 WO2021182554 A1 WO 2021182554A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
bump
meth
acrylate
bumps
Prior art date
Application number
PCT/JP2021/009704
Other languages
French (fr)
Japanese (ja)
Inventor
拓 根本
桜子 田村
友尭 森下
圭亮 四宮
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2022507270A priority Critical patent/JPWO2021182554A1/ja
Priority to KR1020227029886A priority patent/KR20220152208A/en
Priority to CN202180020576.2A priority patent/CN115244654A/en
Publication of WO2021182554A1 publication Critical patent/WO2021182554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Definitions

  • the present invention relates to a protective film forming sheet.
  • a convex electrode (hereinafter, also referred to as “bump”) is formed on the connection pad portion of the semiconductor chip. Things have been used. Then, by the so-called face-down method, a flip chip mounting method has been adopted in which those bumps are brought into contact with the corresponding terminal portions on the chip mounting substrate so as to face each other, and melt-bonded or diffuse-bonded.
  • Patent Documents 1 to 3 low ⁇ -dose solder is used to avoid a problem associated with high-density mounting, that is, a soft error in which the stored contents are rewritten due to ⁇ rays entering the memory cell of a semiconductor integrated circuit. The material has been proposed.
  • the present inventors have conducted diligent studies and have come to create a sheet for forming a protective film capable of suppressing the ball bumps from being crushed and spreading in the lateral direction. Further, even in a semiconductor chip having pillar bumps, it is considered that the pillar bumps may come into contact with each other to cause a short circuit due to bending or the like of the pillar bumps. The created sheet was also found to be effective in solving such problems in pillar bumps.
  • an object of the present invention is to provide a protective film forming sheet capable of suppressing a short circuit between bumps having a narrow pitch.
  • ⁇ 2 The bump pitch (BM P ) (unit: ⁇ m) and the bump width (BM w ) (unit: ⁇ m) satisfy the following formula (I). [(BM P ) / (BM w )] ⁇ 1.0 ... (I) A protective film forming sheet that satisfies the following requirements ( ⁇ 1) to ( ⁇ 3).
  • Requirement ( ⁇ 1) The tensile elastic modulus E'(23 ° C.) at 23 ° C. of the protective film (X) formed by curing the curable resin film (x) is 1 ⁇ 10 7 Pa to 1 ⁇ . It is 10 10 Pa.
  • Requirement ( ⁇ 2) The tensile elastic modulus E'(260 ° C.) of the protective film (X) formed by curing the curable resin film (x) at 260 ° C. is 1 ⁇ 10 5 Pa to 1 ⁇ . It is 10 8 Pa.
  • -Requirement ( ⁇ 3) The thickness (XT ) (unit: ⁇ m) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. and the height of the bumps (unit: ⁇ m).
  • BM h ) (unit: ⁇ m) satisfies the following formula (II). [( XT ) / (BM h )] ⁇ 0.2 ...
  • -Requirement ( ⁇ 3b) The height of the bump (BM h ) and the width of the bump (BM w ) satisfy the following formula (IIIb) 0.5 ⁇ [(BM h ) / (BM w )] ⁇ 5.0 ... (IIIb) [4]
  • -Requirement ( ⁇ 4) The height of the bump (BM h ) is 15 ⁇ m to 300 ⁇ m [5]
  • the support sheet (Y) is a back grind tape, any of [1] to [4].
  • a method for manufacturing a semiconductor wafer with a protective film Including the following steps (S1) to (S3), -Step (S1): Step of preparing a semiconductor wafer having a bump-forming surface provided with a plurality of bumps-Step (S2): Any one of [1] to [5] on the bump-forming surface of the semiconductor wafer.
  • Step / Step (S3) of attaching the protective film-forming sheet according to the above item to the protective film forming sheet with the curable resin film (x) as the affixing surface while pressing the sheet. ) Is formed.
  • a method for manufacturing a semiconductor wafer with a protective film wherein the semiconductor wafer prepared in the step (S1) satisfies the following requirements ( ⁇ 1) to ( ⁇ 2).
  • BM w The width (BM w ) (unit: ⁇ m) of the bump is 20 ⁇ m to 350 ⁇ m.
  • ⁇ 2 Pitch (BM P ) (unit: ⁇ m) of the bump and the width of the bump.
  • (BM w ) (unit: ⁇ m) satisfies the following formula (I) [(BM P ) / (BM w )] ⁇ 1.0 ... (I) [7]
  • a method for manufacturing a semiconductor chip with a protective film which comprises the following steps (T1) to (T2).
  • Step (T1) A step of obtaining a semiconductor wafer with a protective film by carrying out the manufacturing method according to [6]-Step (T2): A step of disassembling the semiconductor wafer with a protective film
  • Step (U2) A step of carrying out the manufacturing method according to [7] to obtain a semiconductor chip with a protective film
  • Step (U2) A wiring substrate and the semiconductor chip with a protective film are attached to each other via the bump.
  • Step (U3) A step of filling an underfill material between the wiring board and the semiconductor chip with a protective film.
  • the term "active ingredient” refers to a component contained in a target composition excluding a diluting solvent such as water or an organic solvent.
  • a diluting solvent such as water or an organic solvent.
  • (meth) acrylic acid means both “acrylic acid” and “methacrylic acid”, and other similar terms are also used.
  • the weight average molecular weight and the number average molecular weight are polystyrene-equivalent values measured by a gel permeation chromatography (GPC) method.
  • GPC gel permeation chromatography
  • the lower limit value and the upper limit value described stepwise can be combined independently. For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the “preferable lower limit value (10)" and the “more preferable upper limit value (60)” are combined to obtain “10 to 60". You can also do it.
  • the protective film forming sheet of the present invention has a laminated structure of a curable resin film (x) and a support sheet (Y).
  • the protective film forming sheet of the present invention has a plurality of bumps and is used for forming the protective film (X) on the bump forming surface of the semiconductor wafer that satisfies the following requirements ( ⁇ 1) to ( ⁇ 2).
  • -Requirement ( ⁇ 1) The width (BM w ) (unit: ⁇ m) of the bump is 20 ⁇ m to 350 ⁇ m.
  • the protective film forming sheet of the present invention satisfies the following requirements ( ⁇ 1) to ( ⁇ 3).
  • Requirement ( ⁇ 1) The tensile elastic modulus E'(23 ° C.) at 23 ° C. of the protective film (X) formed by curing the curable resin film (x) is 1 ⁇ 10 7 Pa to 1 ⁇ . It is 10 10 Pa.
  • Requirement ( ⁇ 2) The tensile elastic modulus E'(260 ° C.) of the protective film (X) formed by curing the curable resin film (x) at 260 ° C. is 1 ⁇ 10 5 Pa to 1 ⁇ . It is 10 8 Pa.
  • the protective film forming sheet of the present invention is used for the bump forming surface of a semiconductor wafer having narrow pitched bumps satisfying the above requirements ( ⁇ 1) to ( ⁇ 2).
  • the protective film-forming sheet of the present invention has a laminated structure of a curable resin film (x) and a support sheet (Y) as a specific configuration, and is related to the curable resin film (x). Satisfy requirements ( ⁇ 1) to ( ⁇ 3).
  • the present inventors have a laminated structure of a curable resin film (x) and a support sheet (Y), and satisfy the above requirements ( ⁇ 1) to ( ⁇ 3) related to the curable resin film (x).
  • the protective film (X) By forming the protective film (X) on the bump forming surface of the semiconductor wafer having the narrow pitched bumps satisfying the above requirements ( ⁇ 1) to ( ⁇ 2) by using the protective film forming sheet, the bumps are crushed. It was found that the deformation can be suppressed and the short circuit between the narrowed pitched bumps can be suppressed.
  • the above requirements ( ⁇ 1) to ( ⁇ 3) related to the protective film (X) defined in the protective film forming sheet of the present invention will be described.
  • the tensile elastic modulus E'(23 ° C.) at 23 ° C. is preferably 3 ⁇ 10 7 Pa to 8 ⁇ 10 9 Pa, more preferably 5 ⁇ 10 7 Pa to 7 ⁇ 10 9 Pa, and even more preferably 7 ⁇ 10 7 Pa to 6 ⁇ 10 9 Pa.
  • the protective film (X) having a tensile elastic modulus E'(23 ° C.) defined by the requirement ( ⁇ 1) is formed by curing the curable resin film (x).
  • the method for preparing the curable resin film (x) for forming the protective film (X) will be described later.
  • the protective film (X) cannot suppress the crushing and deformation of the bumps, and the bumps may come into contact with each other to cause a short circuit.
  • modulus E '(260 °C) is at 5 ⁇ 10 7 Pa, greater than the stress at the time of heating and cooling is increased, reliability and bondability given load to the bump decreases.
  • the protective film (X) formed by curing the curable resin film (x). The tensile elastic modulus E'(260 ° C.) at 260 ° C.
  • the protective film (X) having a tensile elastic modulus E'(260 ° C.) defined by the requirement ( ⁇ 2) is formed by curing the curable resin film (x). The method for preparing the curable resin film (x) for forming the protective film (X) will be described later.
  • the requirements ( ⁇ 3) are the thickness (XT ) (unit: ⁇ m) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. and the height of the bump (BM). h ) (Unit: ⁇ m) and the relationship is specified. Specifically, the following formula (II) is satisfied. [( XT ) / (BM h )] ⁇ 0.2 ... (II) When [( XT ) / (BM h )] ⁇ 0.2, the coating height of the protective film (X) with respect to the bump height (BM h ) is insufficient, and the protective film (X) is bumped.
  • the upper limit of [( XT ) / (BM h )] is not particularly limited, but is preferably 1.0 or less, more preferably 1 from the viewpoint of exposing the bump top from the protective film (X). It is less than 0.0.
  • the requirement ( ⁇ 3) preferably satisfies the following formula (IIa).
  • P is 0.2, preferably 0.30, more preferably 0.40, and even more preferably 0.50.
  • Q is preferably 1.0, more preferably 0.90, and even more preferably 0.80.
  • the thickness of the curable resin film (x) satisfying the relationship specified in the requirement ( ⁇ 3) is the thickness of the curable resin film (x) and the protection formed by curing the curable resin film (x). It can be adjusted based on the relationship with the thickness of the film (X) and the height of bumps of the semiconductor wafer to be used.
  • FIG. 11 shows the height of the bump (BM h ) and the thickness (XT ) (unit: ⁇ m) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. The relationship is shown.
  • the thickness (XT ) (unit: ⁇ m) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. is the bump height (BM) as shown in FIG.
  • the position 50 farthest from the bump forming surface 41a is determined within the region where the protective film (X) formed on the bump forming surface 41a is continuously present. Therefore, for example, the protective film (X) partially present on the top of the bump, and the contact portion between the protective film (X) and the bump, which is removed by the exposure treatment (plasma etching treatment) described later, is a bump forming surface. The position 50 farthest from 41a is not determined.
  • the thickness of the protective film (X) after the retreat due to the exposure treatment must satisfy the above formula (II) (0.2 ⁇ m or more). There is. That is, regardless of the presence or absence of the exposure treatment described later, the thickness of the protective film (X) is naturally determined by the above formula (X) immediately before the step of electrically connecting the semiconductor chip and the wiring board via the ball bumps. II) must be satisfied (0.2 ⁇ m or more).
  • the bump height (BM h ) and the protective film (X) thickness ( XT ) pass, for example, a semiconductor wafer with the protective film (X) in a direction perpendicular to the bump forming surface and through the center of the bump. It can be measured by observing the cross section after cutting with an optical microscope.
  • the protective film forming sheet of the present invention will be described in detail with reference to a method for preparing a curable resin film (x) for forming a protective film (X) satisfying the requirement ( ⁇ 1) and the requirement ( ⁇ 2). do.
  • FIG. 1 shows a configuration example of the protective film forming sheet of the present invention.
  • the protective film-forming sheet of one aspect of the present invention is provided with a curable resin film (x) on one surface of the support sheet (Y) like the protective film-forming sheet 1 shown in FIG.
  • the curable resin film (x) can be transported as a product package, or the curable resin film (x) can be transported in the process.
  • the curable resin film (x) is stably supported and protected when it is used.
  • FIGS. 2 to 4 show structural examples of the protective film forming sheet according to one aspect of the present invention.
  • the support sheet (Y) is the base material 11, and a curable resin is formed on one surface of the base material 11.
  • a film (x) is provided.
  • the protective film forming sheet according to one aspect of the present invention is an adhesive sheet in which a base material 11 and an adhesive layer 21 are laminated, as in the protective film forming sheet 1b shown in FIG. Yes, the pressure-sensitive adhesive layer 21 of the pressure-sensitive adhesive sheet and the curable resin film (x) may be bonded together.
  • the support sheet (Y) includes the base material 11, the intermediate layer 31, and the adhesive layer 21.
  • the pressure-sensitive adhesive sheets are laminated in this order, and the pressure-sensitive adhesive layer 21 of the pressure-sensitive adhesive sheet and the curable resin film (x) may be bonded to each other.
  • the pressure-sensitive adhesive sheet in which the base material 11, the intermediate layer 31, and the pressure-sensitive adhesive layer 21 are laminated in this order can be suitably used as a back grind tape. That is, since the protective film forming sheet 1c shown in FIG.
  • the semiconductor wafer 4 has a back grind tape as the supporting sheet (Y), the curable resin film (x) of the protective film forming sheet 1c and the semiconductor wafer having a plurality of bumps.
  • Suitable for thinning a semiconductor wafer by grinding a surface of the semiconductor wafer opposite to the bump forming surface (hereinafter, also referred to as “back surface of the semiconductor wafer”) after bonding the bump forming surface of the semiconductor wafer. can be used for.
  • the curable resin film (x) is a film for protecting the bump-forming surface of a semiconductor wafer having a plurality of bumps, and forms the protective film (X) by curing by heating or energy ray irradiation. That is, the curable resin film (x) may be a thermosetting resin film (x1) that is cured by heating, or an energy ray-curable resin film (x2) that is cured by energy ray irradiation.
  • an "energy ray” means an electromagnetic wave or a charged particle beam having an energy quantum. Examples thereof include ultraviolet rays, electron beams, and the like, and ultraviolet rays are preferable.
  • the physical characteristics of the curable resin film (x) can be adjusted by adjusting either or both of the types and amounts of the components contained in the curable resin film (x).
  • thermosetting resin film (x1) and the energy ray-curable resin film (x2) will be described.
  • the thermosetting resin film (x1) contains a polymer component (A) and a thermosetting component (B).
  • the thermosetting resin film (x1) is formed from, for example, a thermosetting resin composition (x1-1) containing a polymer component (A) and a thermosetting component (B).
  • the polymer component (A) is a component that can be regarded as being formed by a polymerization reaction of a polymerizable compound.
  • the thermosetting component (B) is a component capable of undergoing a curing (polymerization) reaction using heat as a trigger for the reaction.
  • the curing (polymerization) reaction also includes a polycondensation reaction.
  • thermosetting resin composition (x1-1) the content of each component in the total amount of the active component of the thermosetting resin composition (x1-1)
  • thermosetting resin composition (x1-1) the content of each component in the total amount of the active component of the thermosetting resin composition (x1-1)
  • thermosetting resin composition (x1-1) It is synonymous with “content of each component of the thermosetting resin film (x1) formed from”.
  • thermosetting resin film (x1) and the thermosetting resin composition (x1-1) contain the polymer component (A).
  • the polymer component (A) is a polymer compound for imparting film-forming property, flexibility, etc. to the thermosetting resin film (x1).
  • the polymer component (A) one type may be used alone, or two or more types may be used in combination. When two or more kinds of polymer components (A) are used in combination, their combinations and ratios can be arbitrarily selected.
  • polymer component (A) examples include polyvinyl acetal, acrylic resin (resin having (meth) acryloyl group), polyester, urethane resin (resin having urethane bond), acrylic urethane resin, and silicone resin (siloxane).
  • examples thereof include a resin having a bond), a rubber-based resin (a resin having a rubber structure), a phenoxy resin, and a thermosetting polyimide. These can be used alone or in combination of two or more. Among these, one or more selected from polyvinyl acetal and acrylic resin is preferable.
  • polyvinyl acetal and an acrylic resin which are preferable as the polymer component (A), will be described as an example.
  • the polyvinyl acetal used as the polymer component (A) is not particularly limited, and for example, a known polyvinyl acetal can be used.
  • a known polyvinyl acetal among the polyvinyl acetals, for example, polyvinyl formal, polyvinyl butyral and the like can be mentioned, and polyvinyl butyral is more preferable.
  • the polyvinyl butyral having the structural units represented by the following formulas (i-1), (i-2), and (i-3) is a semiconductor wafer having a bump forming surface and a protective film (X). It is preferable from the viewpoint of improving adhesion.
  • the weight average molecular weight (Mw) of the polyvinyl acetal is preferably 5,000 to 200,000, more preferably 8,000 to 100,000, and further preferably 9,000 to 80,000. It is preferably 10,000 to 50,000, and even more preferably 10,000 to 50,000.
  • Mw weight average molecular weight
  • the content ratio p (degree of butyralization) of the structural unit of the butyral group represented by the above formula (i-1) is preferably 40 to 90 mol%, preferably 50 to 90 mol%, based on the total structural unit of the polymer component (A). 85 mol% is more preferable, and 60 to 76 mol% is further preferable.
  • the content ratio q of the structural unit having an acetyl group represented by the above formula (i-2) is preferably 0.1 to 9 mol%, preferably 0.5 to 9 mol%, based on all the structural units of the polymer component (A). 8 mol% is more preferable, and 1 to 7 mol% is further preferable.
  • the content ratio r of the structural unit having a hydroxyl group represented by the above formula (i-3) is preferably 10 to 60 mol%, more preferably 10 to 50 mol%, based on all the structural units of the polymer component (A). It is preferable, and more preferably 20 to 40 mol%.
  • the glass transition temperature (Tg) of polyvinyl acetal is preferably 40 to 80 ° C, more preferably 50 to 70 ° C.
  • Tg of polyvinyl acetal is in such a range, when the thermosetting resin film (x1) is attached to the bump forming surface of the bumped wafer, the protective film (X) on the upper portion of the bump remains. The effect of suppressing the film becomes higher, and the hardness of the protective film formed by thermosetting the thermosetting resin layer can be made sufficient.
  • the glass transition temperature (Tg) of the polymer (resin) is a value measured by the method described in Examples described later.
  • the content ratio of the above three types of structural units constituting polyvinyl butyral may be arbitrarily adjusted according to desired physical properties. Further, polyvinyl butyral may have a structural unit other than the above three types of structural units, but the content of the above three types of structural units is preferably 80 to 100 mol% based on the total amount of polyvinyl butyral. , More preferably 90 to 100 mol%, still more preferably 100 mol%.
  • the acrylic resin examples include known acrylic polymers.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1,500,000.
  • Mw weight average molecular weight
  • the thermosetting resin film (x1) can easily follow the uneven surface of the adherend, for example, the adherend and the thermosetting. It is easy to suppress the generation of voids and the like with the resin film (x1).
  • the glass transition temperature (Tg) of the acrylic resin is preferably -60 to 70 ° C, more preferably -30 to 50 ° C.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) of the acrylic resin is equal to or higher than the above lower limit, the adhesive force between the protective film (X) and the support sheet (Y) is suppressed, and the peelability of the support sheet (Y) becomes high. improves. Further, when the glass transition temperature (Tg) of the acrylic resin is not more than the above upper limit value, the adhesive force of the thermosetting resin film (x1) and the protective film (X) with the adherend is improved.
  • the acrylic resin is selected from, for example, a polymer of one or more (meth) acrylic acid esters; (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylol acrylamide, and the like. Examples thereof include copolymers of two or more kinds of monomers.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and (meth).
  • N-butyl acrylate isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylate Heptyl, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, Undecyl (meth) acrylate, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecy
  • acrylic resin for example, in addition to the (meth) acrylic acid ester, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like are copolymerized. It may be made of
  • the monomer constituting the acrylic resin may be one kind alone or two or more kinds. When there are two or more types of monomers constituting the acrylic resin, their combinations and ratios can be arbitrarily selected.
  • the acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
  • the functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound without a cross-linking agent (F). ..
  • F cross-linking agent
  • thermoplastic resin other than polyvinyl acetal and acrylic resin
  • thermoplastic resin may be simply abbreviated as "thermoplastic resin”
  • thermoplastic resin the peelability of the protective film (X) from the support sheet (Y) is improved, and the thermosetting resin film (x1) easily follows the uneven surface of the adherend, so that the cover can be covered. The generation of voids and the like may be further suppressed between the adherend and the thermosetting resin film (x1).
  • the weight average molecular weight of the thermoplastic resin is preferably 1,000 to 100,000, more preferably 3,000 to 80,000.
  • the glass transition temperature (Tg) of the thermoplastic resin is preferably ⁇ 30 to 150 ° C., more preferably ⁇ 20 to 120 ° C.
  • thermoplastic resin examples include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, polystyrene and the like.
  • thermoplastic resin One type of thermoplastic resin may be used alone, or two or more types may be used in combination. When there are two or more types of thermoplastic resins, their combinations and ratios can be arbitrarily selected.
  • the content of the polymer component (A) is a thermosetting resin composition from the viewpoint of facilitating the acquisition of the protective film (X) satisfying the requirements ( ⁇ 1) and the requirements ( ⁇ 2). Based on the total amount of the active ingredient of (x1-1), it is preferably 5 to 85% by mass, more preferably 10 to 80% by mass, further preferably 15 to 70% by mass, and 15 to 15 to 70% by mass. It is even more preferably 60% by mass, and even more preferably 15 to 50% by mass.
  • polymer component (A) As described above, as the polymer component (A), one or more selected from polyvinyl acetal and acrylic resin is preferable, but requirements ( ⁇ 1) and requirements ( ⁇ 2) are satisfied. From the viewpoint of making it easier to obtain the protective film (X) to be filled, the polymer component (A) is preferably polyvinyl acetal.
  • the polymer component (A) may also correspond to the thermosetting component (B).
  • the thermosetting resin composition (x1-1) contains a component corresponding to both the polymer component (A) and the thermosetting component (B)
  • the thermosetting resin composition The product (x1-1) is considered to contain both the polymer component (A) and the thermosetting component (B).
  • thermosetting component (B) The thermosetting resin film (x1) and the thermosetting resin composition (x1-1) contain a thermosetting component (B).
  • the thermosetting component (B) is a component for curing the thermosetting resin film (x1) to form a hard protective film (X).
  • the thermosetting component (B) one type may be used alone, or two or more types may be used in combination. When there are two or more thermosetting components (B), their combinations and ratios can be arbitrarily selected.
  • thermosetting component (B) examples include epoxy-based thermosetting resins, thermosetting polyimides, polyurethanes, unsaturated polyesters, and silicone resins. Among these, epoxy-based thermosetting resins are preferable.
  • the epoxy-based thermosetting resin is composed of an epoxy resin (B1) and a thermosetting agent (B2).
  • B1 an epoxy resin
  • B2 a thermosetting agent
  • One type of epoxy thermosetting resin may be used alone, or two or more types may be used in combination. When there are two or more types of epoxy thermosetting resins, their combinations and ratios can be arbitrarily selected.
  • Epoxy resin (B1) examples include known ones, such as polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolac epoxy resin, and dicyclopentadiene type epoxy resin. Examples thereof include biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, and bifunctional or higher functional epoxy compounds.
  • epoxy resin (B1) an epoxy resin having an unsaturated hydrocarbon group may be used.
  • Epoxy resins having unsaturated hydrocarbon groups have higher compatibility with acrylic resins than epoxy resins having no unsaturated hydrocarbon groups. Therefore, by using an epoxy resin having an unsaturated hydrocarbon group, the reliability of the package obtained by using the thermosetting resin film (x1) is improved.
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy group of the polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction of (meth) acrylic acid or a derivative thereof.
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (vinyl group), a 2-propenyl group (allyl group), a (meth) acryloyl group, and a (meth) acryloyl group. ) Examples thereof include an acrylamide group. Of these, the acryloyl group is preferable.
  • the number average molecular weight of the epoxy resin (B1) is not particularly limited, but is 300 to 30, from the viewpoint of the curability of the thermosetting resin film (x1) and the strength and heat resistance of the protective film (X) after curing. It is preferably 000, more preferably 400 to 10,000, and even more preferably 500 to 3,000.
  • the epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1,000 g / eq, more preferably 300 to 800 g / eq.
  • One type of epoxy resin (B1) may be used alone, or two or more types may be used in combination. When two or more types of epoxy resin (B1) are used in combination, the combination and ratio thereof can be arbitrarily selected.
  • thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
  • thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with epoxy groups in one molecule.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, and a group in which an acid group is annealed, and the phenolic hydroxyl group, an amino group, or an acid group is annealed. It is preferably a group, and more preferably a phenolic hydroxyl group or an amino group.
  • examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolak-type phenol resins, dicyclopentadiene-based phenol resins, and aralkylphenol resins. ..
  • examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter, may be abbreviated as "DICY”) and the like.
  • the thermosetting agent (B2) may have an unsaturated hydrocarbon group.
  • examples of the thermosetting agent (B2) having an unsaturated hydrocarbon group include a compound in which a part of the hydroxyl groups of the phenol resin is replaced with a group having an unsaturated hydrocarbon group, or an aromatic ring of the phenol resin. , Compounds in which a group having an unsaturated hydrocarbon group is directly bonded, and the like can be mentioned.
  • the unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
  • thermosetting agent (B2) When a phenolic curing agent is used as the thermosetting agent (B2), the thermosetting agent (B2) has a softening point or a softening point from the viewpoint of facilitating the improvement of the peelability of the protective film (X) from the support sheet (Y). Those having a high glass transition temperature are preferable.
  • the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene phenol resin, and aralkyl phenol resin shall be 300 to 30,000. , More preferably 400 to 10,000, and even more preferably 500 to 3,000.
  • the molecular weight of the non-resin component such as biphenol and dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (B2) one type may be used alone, or two or more types may be used in combination. When there are two or more types of thermosetting agents (B2), their combinations and ratios can be arbitrarily selected.
  • the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1). It is preferably 1 to 200 parts by mass, and more preferably 1 to 200 parts by mass.
  • the content of the thermosetting agent (B2) is at least the above lower limit value, the curing of the thermosetting resin film (x1) becomes easier to proceed.
  • the content of the thermosetting agent (B2) is not more than the above upper limit value, the moisture absorption rate of the thermosetting resin film (x1) is reduced, and the thermosetting resin film (x1) can be used. The reliability of the package is improved.
  • the content of the thermosetting component (B) (the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is that of the polymer component (A).
  • the content is preferably 50 to 1000 parts by mass, more preferably 70 to 800 parts by mass, further preferably 80 to 600 parts by mass, and 90 to 500 parts by mass with respect to 100 parts by mass. It is even more preferable that the amount is 100 to 400 parts by mass.
  • the protective film (X) satisfying the requirement ( ⁇ 1) and the requirement ( ⁇ 2) can be easily obtained.
  • the amount of the thermosetting component (B) increases with respect to the polymer component (A)
  • the tensile elastic modulus E'tends to increase easily.
  • the amount of the thermosetting component (B) is reduced with respect to the polymer component (A)
  • the tensile elastic modulus E'tends to be lowered more easily.
  • the thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain a curing accelerator (C).
  • the curing accelerator (C) is a component for adjusting the curing rate of the thermosetting resin composition (x1-1).
  • Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole.
  • 2-Phenyl-4-methylimidazole 2-Phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and other imidazoles (one or more hydrogen atoms other than hydrogen atoms) (Imidazole substituted with an organic group); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (phosphine in which one or more hydrogen atoms are substituted with an organic group); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylborone salts such as tetraphenylborate.
  • curing accelerator (C) one type may be used alone, or two or more types may be used in combination. When there are two or more types of curing accelerators (C), their combinations and ratios can be arbitrarily selected.
  • thermosetting resin composition (x1-1) when the curing accelerator (C) is used, the content of the curing accelerator (C) is based on 100 parts by mass of the content of the thermosetting component (B). The amount is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the content of the curing accelerator (C) is at least the above lower limit value, the effect of using the curing accelerator (C) can be more remarkably obtained.
  • the highly polar curing accelerator (C) is a thermosetting resin film (x1) under high temperature and high humidity conditions. ), The effect of suppressing segregation by moving to the adhesion interface side with the adherend is enhanced, and the reliability of the package obtained by using the thermosetting resin film (x1) is further improved.
  • thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain a filler (D).
  • a filler (D) By containing the filler (D), it becomes easy to adjust the coefficient of thermal expansion of the protective film (X) obtained by curing the curable resin film (x1) within an appropriate range, and the thermosetting resin film (x1) can be easily adjusted. The reliability of the package obtained by using x1) is further improved. Further, when the thermosetting resin film (x1) contains the filler (D), the hygroscopicity of the protective film (X) can be reduced and the heat dissipation can be improved.
  • the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride and the like; spherical beads of these inorganic fillers; surface modification of these inorganic fillers. Goods; Single crystal fibers of these inorganic fillers; Glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • filler (D) one type may be used alone, or two or more types may be used in combination. When there are two or more kinds of fillers (D), their combinations and ratios can be arbitrarily selected.
  • the content of the filler (D) is preferably 5 to 80% by mass based on the total amount of the active ingredients of the thermosetting resin composition (x1-1), 7 More preferably, it is in an amount of about 60% by mass.
  • the content of the filler (D) is in such a range, the above-mentioned coefficient of thermal expansion can be easily adjusted.
  • the average particle size of the filler (D) is preferably 5 nm to 1,000 nm, more preferably 5 nm to 500 nm, and even more preferably 10 nm to 300 nm.
  • the above average particle size is obtained by measuring the outer diameter of one particle at several places and obtaining the average value.
  • thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain a coupling agent (E).
  • a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound it is easy to improve the adhesiveness and adhesion of the thermosetting resin film (x1) to the adherend.
  • the protective film (X) obtained by curing the thermosetting resin film (x1) by using the coupling agent (E) does not impair the heat resistance and easily improves the water resistance. ..
  • the coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional groups of the polymer component (A), the thermosetting component (B) and the like, and is preferably a silane coupling agent. More preferred.
  • Preferred silane coupling agents include, for example, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2-( 3,4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-aminoethyl) Amino) propylmethyldiethoxysilane
  • the coupling agent (E) one type may be used alone, or two or more types may be used in combination. When there are two or more kinds of coupling agents (E), their combinations and ratios can be arbitrarily selected.
  • the content of the coupling agent (E) is the content of the polymer component (A) and the thermosetting component (B).
  • the total content is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and further preferably 0.1 to 5 parts by mass with respect to 100 parts by mass. ..
  • the content of the coupling agent (E) is equal to or higher than the above lower limit, the dispersibility of the filler (D) in the resin is improved and the thermosetting resin film (x1) is adhered to the adherend.
  • the effect of using the coupling agent (E), such as improvement of the property can be obtained more remarkably. Further, when the content of the coupling agent (E) is not more than the above upper limit value, the generation of outgas is further suppressed.
  • the polymer component (A) has a functional group such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, or an isocyanate group that can be bonded to other compounds such as the above-mentioned acrylic resin.
  • the thermosetting resin film (x1) and the thermosetting resin composition (x1-1) contain a cross-linking agent (F) for bonding the functional group with another compound and cross-linking. You may. By cross-linking with the cross-linking agent (F), the initial adhesive force and cohesive force of the thermosetting resin film (x1) can be adjusted.
  • cross-linking agent (F) examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based cross-linking agent (a cross-linking agent having a metal chelate structure), and an aziridine-based cross-linking agent (a cross-linking agent having an aziridinyl group). And so on.
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyhydric isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively abbreviated as "aromatic polyvalent isocyanate compound and the like”. ); Trimerics such as the aromatic polyvalent isocyanate compound, isocyanurates and adducts; terminal isocyanate urethane prepolymers obtained by reacting the aromatic polyvalent isocyanate compounds with polyol compounds, etc. Can be mentioned.
  • the "adduct” includes the aromatic polyhydric isocyanate compound, the aliphatic polyhydric isocyanate compound, or the alicyclic polyvalent isocyanate compound, and low amounts of ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, castor oil, and the like. It means a reaction product with a molecularly active hydrogen-containing compound, and examples thereof include a xylylene diisocyanate adduct of trimethylolpropane.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4, 4'-diisocyanate; diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylolpropane Compounds in which any one or more of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate are added to all or some hydroxylates of the polyols such as lysine diis
  • organic polyvalent imine compound examples include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxyamide), trimethylolpropane-tri- ⁇ -aziridinyl propionate, and tetramethylolmethane.
  • examples thereof include -tri- ⁇ -aziridinyl propionate and N, N'-toluene-2,4-bis (1-aziridinecarboxyamide) triethylene melamine.
  • the cross-linking agent (F) When an organic multivalent isocyanate compound is used as the cross-linking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A).
  • a hydroxyl group-containing polymer When the cross-linking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, the reaction between the cross-linking agent (F) and the polymer component (A) results in a thermosetting resin film (x1). The crosslinked structure can be easily introduced.
  • cross-linking agent (F) one type may be used alone, or two or more types may be used in combination. When there are two or more cross-linking agents (F), their combinations and ratios can be arbitrarily selected.
  • the content of the cross-linking agent (F) is 0 with respect to 100 parts by mass of the content of the polymer component (A). It is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and even more preferably 0.5 to 5 parts by mass.
  • the content of the cross-linking agent (F) is at least the lower limit value, the effect of using the cross-linking agent (F) is more remarkable. Further, when the content of the cross-linking agent (F) is not more than the upper limit value, the excessive use of the cross-linking agent (F) is suppressed.
  • thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain an energy ray-curable resin (G). Since the thermosetting resin film (x1) contains the energy ray-curable resin (G), the characteristics can be changed by irradiation with energy rays.
  • the energy ray-curable resin (G) is obtained by polymerizing (curing) an energy ray-curable compound.
  • the energy ray-curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate-based compounds having a (meth) acryloyl group are preferable.
  • acrylate-based compound examples include trimethylolpropantri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol monohydroxypenta (meth).
  • the weight average molecular weight of the energy ray-curable compound is preferably 100 to 30,000, more preferably 300 to 10,000.
  • the energy ray-curable compound used for polymerization one type may be used alone, or two or more types may be used in combination. When there are two or more energy ray-curable compounds used for polymerization, their combinations and ratios can be arbitrarily selected.
  • the content of the energy ray-curable resin (G) is 1 to 95% by mass based on the total amount of the active ingredients of the thermosetting resin composition (x1-1). It is preferably 5 to 90% by mass, more preferably 10 to 85% by mass.
  • thermosetting resin film (x1) and the thermosetting resin composition (x1-1) contain the energy ray-curable resin (G), the polymerization reaction of the energy ray-curable resin (G) is efficiently promoted. Therefore, the thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain a photopolymerization initiator (H).
  • photopolymerization initiator (H) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4.
  • photopolymerization initiator (H) one type may be used alone, or two or more types may be used in combination. When there are two or more photopolymerization initiators (H), their combinations and ratios can be arbitrarily selected.
  • the content of the photopolymerization initiator (H) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the content of the energy ray-curable resin (G). It is preferably 1 to 10 parts by mass, more preferably 2 to 5 parts by mass.
  • thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain the general-purpose additive (I) as long as the effects of the present invention are not impaired.
  • the general-purpose additive (I) may be a known one, and may be arbitrarily selected depending on the intended purpose, and is not particularly limited.
  • Preferred general-purpose additives (I) include, for example, plasticizers, antistatic agents, antioxidants, colorants (dye, pigment), gettering agents and the like.
  • the general-purpose additive (I) one type may be used alone, or two or more types may be used in combination. When there are two or more general-purpose additives (I), their combinations and ratios can be arbitrarily selected.
  • the content of the general-purpose additive (I) is not particularly limited, and may be appropriately selected depending on the intended purpose.
  • the thermosetting resin composition (x1-1) preferably further contains a solvent.
  • the thermosetting resin composition (x1-1) containing a solvent has good handleability.
  • the solvent is not particularly limited, but preferred ones are, for example, hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol; Examples thereof include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides (compounds having an amide bond) such as dimethylformamide and N-methylpyrrolidone.
  • the solvent one type may be used alone, or two or more types may be used in combination. When there are two or more solvents, their combinations and ratios can be arbitrarily selected.
  • the solvent is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the thermosetting resin composition (x1-1) can be mixed more uniformly.
  • thermosetting resin composition (x1-1) is prepared by blending each component for constituting the thermosetting resin composition (x1-1).
  • the order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
  • the solvent may be mixed with any compounding component other than this solvent and the compounding component may be diluted in advance, or any compounding component other than the solvent may be used in advance. You may use it by mixing the solvent with these compounding components without diluting.
  • the method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
  • the temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • the energy ray-curable resin film (x2) contains the energy ray-curable component (a).
  • the energy ray-curable resin film (x2) is formed from, for example, an energy ray-curable resin composition (x2-1) containing an energy ray-curable component (a).
  • the energy ray-curable component (a) is preferably uncured, preferably has adhesiveness, and more preferably uncured and has adhesiveness.
  • “energy ray-curable resin composition (x2)" It is synonymous with "content of each component of the energy ray-curable resin film (x2) formed from -1)".
  • the energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and is also a component for imparting film-forming property, flexibility, and the like to the energy ray-curable resin film (x2).
  • Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000, and an energy ray-curable group. Examples thereof include a compound (a2) having a molecular weight of 100 to 80,000.
  • the polymer (a1) may be at least partially crosslinked by a crosslinking agent or may not be crosslinked.
  • Polymer (a1) examples of the polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000 include an acrylic polymer having a functional group capable of reacting with a group of another compound.
  • An acrylic resin (a1) obtained by polymerizing (a11), a group that reacts with the functional group, and an energy ray-curable compound (a12) having an energy ray-curable group such as an energy ray-curable double bond. -1) can be mentioned.
  • the functional group capable of reacting with the group of another compound examples include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than the hydrogen atom. Group), an epoxy group, and the like.
  • the functional group is preferably a group other than a carboxy group.
  • the functional group is preferably a hydroxyl group.
  • the acrylic polymer (a11) having a functional group examples include those obtained by copolymerizing an acrylic monomer having a functional group and an acrylic monomer having no functional group, and other than these monomers. Further, a monomer other than the acrylic monomer (non-acrylic monomer) may be copolymerized. Further, the acrylic polymer (a11) may be a random copolymer or a block copolymer.
  • acrylic monomer having a functional group examples include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylic.
  • Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acid, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic unsaturateds such as vinyl alcohols and allyl alcohols.
  • Alcohol (unsaturated alcohol having no (meth) acrylic skeleton) and the like can be mentioned.
  • carboxy group-containing monomer examples include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having ethylenically unsaturated bonds) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, and citraconic acid.
  • ethylenically unsaturated dicarboxylic acid dicarboxylic acid having an ethylenically unsaturated bond
  • anhydride of the ethylenically unsaturated dicarboxylic acid (meth) acrylic acid carboxyalkyl ester such as 2-carboxyethyl methacrylate. ..
  • acrylic monomer having a functional group a hydroxyl group-containing monomer or a carboxy group-containing monomer is preferable, and a hydroxyl group-containing monomer is more preferable.
  • acrylic monomer having a functional group constituting the acrylic polymer (a11) one type may be used alone, or two or more types may be used in combination. When there are two or more kinds of acrylic monomers having a functional group constituting the acrylic polymer (a11), their combinations and ratios can be arbitrarily selected.
  • acrylic monomer having no functional group examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n- (meth) acrylate.
  • acrylic monomer having no functional group examples include an alkoxyalkyl group such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate.
  • (Meta) acrylic acid ester (meth) acrylic acid ester having an aromatic group, including (meth) acrylic acid aryl ester such as (meth) phenyl acrylate; non-crosslinkable (meth) acrylamide and derivatives thereof; Examples thereof include (meth) acrylic acid esters having a non-crosslinkable tertiary amino group such as (meth) acrylic acid N, N-dimethylaminoethyl and (meth) acrylic acid N, N-dimethylaminopropyl.
  • acrylic monomer having no functional group constituting the acrylic polymer (a11) one type may be used alone, or two or more types may be used in combination.
  • acrylic polymer (a11) one type may be used alone, or two or more types may be used in combination.
  • non-functional acrylic monomers constituting the acrylic polymer (a11) their combinations and ratios can be arbitrarily selected.
  • non-acrylic monomer examples include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
  • non-acrylic monomer constituting the acrylic polymer (a11) one type may be used alone, or two or more types may be used in combination.
  • the combination and ratio thereof can be arbitrarily selected.
  • the ratio (content) of the amount of the structural unit derived from the acrylic monomer having a functional group to the total mass of the constituent units constituting the polymer is 0.1 to 50% by mass. It is preferably 1 to 40% by mass, more preferably 3 to 30% by mass.
  • the content of the group can be easily adjusted to a preferable range for the degree of curing of the protective film (X).
  • acrylic polymer (a11) constituting the acrylic resin (a1-1) one type may be used alone, or two or more types may be used in combination. When there are two or more kinds of acrylic polymers (a11) constituting the acrylic resin (a1-1), their combinations and ratios can be arbitrarily selected.
  • the content of the acrylic resin (a1-1) is preferably 1 to 60% by mass, preferably 3 to 50% by mass, based on the total amount of the active ingredients of the energy ray-curable resin composition (x2-1). More preferably, it is more preferably 5 to 40% by mass.
  • the energy ray-curable compound (a12) is one or more selected from the group consisting of an isocyanate group, an epoxy group, and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11).
  • the one having an isocyanate group is preferable, and the one having an isocyanate group as the group is more preferable.
  • the energy ray-curable compound (a12) has an isocyanate group as the group, for example, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
  • the energy ray-curable compound (a12) preferably has 1 to 5 energy ray-curable groups in one molecule, and more preferably 1 to 2 energy ray-curable groups.
  • Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, and 1,1- (bisacryloyloxymethyl) ethyl.
  • Examples thereof include acryloyl monoisocyanate compounds.
  • the energy ray-curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
  • the energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be used alone or in combination of two or more. When there are two or more types of energy ray-curable compounds (a12) constituting the acrylic resin (a1-1), their combinations and ratios can be arbitrarily selected.
  • the ratio of the content of the energy ray-curable group derived from the energy ray-curable compound (a12) to the content of the functional group derived from the acrylic polymer (a11) is , 20 to 120 mol%, more preferably 35 to 100 mol%, and even more preferably 50 to 100 mol%.
  • the content ratio is in such a range, the adhesive force of the protective film (X) after curing becomes larger.
  • the energy ray-curable compound (a12) is a monofunctional compound (having one group in one molecule)
  • the upper limit of the content ratio is 100 mol%, but the energy.
  • the linear curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule)
  • the upper limit of the content ratio may exceed 100 mol%.
  • the weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 2,000,000, more preferably 300,000 to 1,500,000.
  • the polymer (a1) is any of the above-mentioned monomers described as constituting the acrylic polymer (a11).
  • a monomer having a group that reacts with the cross-linking agent may be polymerized and cross-linked at the group that reacts with the cross-linking agent, or is derived from the energy ray-curable compound (a12).
  • the group that reacts with the functional group may be crosslinked.
  • polymer (a1) one type may be used alone, or two or more types may be used in combination. When there are two or more kinds of polymers (a1), their combinations and ratios can be arbitrarily selected.
  • Compound (a2) Examples of the energy ray-curable group contained in the compound (a2) having an energy ray-curable group and having a weight average molecular weight of 100 to 80,000 include a group containing an energy ray-curable double bond, and preferred ones. , (Meta) acryloyl group, vinyl group and the like.
  • the compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray-curable group, an epoxy resin having an energy ray-curable group, and an energy ray-curable group.
  • Examples include phenol resin.
  • examples of the low molecular weight compound having an energy ray-curable group include polyfunctional monomers or oligomers, and acrylate compounds having a (meth) acryloyl group are preferable.
  • examples of the acrylate-based compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4-.
  • Bifunctional (meth) acrylate tris (2- (meth) acryloxyethyl) isocyanurate, ⁇ -caprolactone-modified tris- (2- (meth) acryloxyethyl) isocyanurate, ethoxylated glycerin tri (meth) acrylate, penta Elythritol tri (meth) acrylate, trimethylolpropantri (meth) acrylate, ditrimethylolpropantetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol poly (meth) Polyfunctional (meth) acrylates such as acrylates and dipentaerythritol hexa (meth) acrylates; polyfunctional (meth) acrylate oligomers such as urethane (meth
  • the weight average molecular weight of compound (a2) is preferably 100 to 30,000, more preferably 300 to 10,000.
  • the compound (a2) may be used alone or in combination of two or more.
  • the combination and the ratio thereof can be arbitrarily selected.
  • the energy ray-curable resin composition (x2-1) and the energy ray-curable resin film (x2) contain the compound (a2) as the energy ray-curable component (a), they further have an energy ray-curable group. It is preferable that the polymer (b) that does not contain the polymer (b) is also contained.
  • the polymer (b) having no energy ray-curable group may have at least a part thereof crosslinked by a crosslinking agent or may not be crosslinked.
  • polymer (b) having no energy ray-curable group examples include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, and acrylic urethane resins.
  • the polymer (b) is preferably an acrylic polymer (hereinafter, may be abbreviated as "acrylic polymer (b-1)").
  • the acrylic polymer (b-1) may be a known one, and may be, for example, a homopolymer of one kind of acrylic monomer or a copolymer of two or more kinds of acrylic monomers. May be good. Further, the acrylic polymer (b-1) is a copolymer of one or more kinds of acrylic monomers and one or more kinds of monomers other than the acrylic monomers (non-acrylic monomers). It may be.
  • acrylic monomer constituting the acrylic polymer (b-1) examples include (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, and (meth) acrylic acid ester containing a glycidyl group. Examples thereof include a hydroxyl group-containing (meth) acrylic acid ester and a substituted amino group-containing (meth) acrylic acid ester.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n-butyl (meth) acrylic acid.
  • Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl ester such as (meth) acrylic acid isobornyl and (meth) acrylic acid dicyclopentanyl; and (meth) acrylic acid benzyl and the like.
  • (Meta) Acrylic acid cycloalkenyloxyalkyl such as (meth) Acrylic acid dicyclopentenyloxyethyl ester Esters and the like can be mentioned.
  • Examples of the glycidyl group-containing (meth) acrylic acid ester include glycidyl (meth) acrylic acid.
  • Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxy (meth) acrylate. Examples thereof include propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • Examples of the substituted amino group-containing (meth) acrylic acid ester include N-methylaminoethyl (meth) acrylic acid.
  • non-acrylic monomer constituting the acrylic polymer (b-1) examples include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
  • Examples of the polymer (b) having no energy ray-curable group, which is at least partially crosslinked by a cross-linking agent include those in which the reactive functional group in the polymer (b) has reacted with the cross-linking agent. ..
  • the reactive functional group may be appropriately selected depending on the type of the cross-linking agent and the like, and is not particularly limited.
  • examples of the reactive functional group include a hydroxyl group, a carboxy group, an amino group and the like, and among these, a hydroxyl group having a high reactivity with an isocyanate group is preferable. ..
  • the reactive functional group include a carboxy group, an amino group, an amide group and the like, and among these, a carboxy group having high reactivity with an epoxy group is used. preferable. However, in terms of preventing corrosion of circuits of semiconductor wafers and semiconductor chips, the reactive functional group is preferably a group other than a carboxy group.
  • Examples of the polymer (b) having a reactive functional group and not having an energy ray-curable group include those obtained by polymerizing at least a monomer having a reactive functional group.
  • the acrylic polymer (b-1) if one or both of the acrylic monomer and the non-acrylic monomer listed as the monomers constituting the polymer is used, those having a reactive functional group may be used. good.
  • the polymer (b) having a hydroxyl group as a reactive functional group for example, a polymer obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester can be mentioned, and in addition to this, the above-mentioned polymer (b) mentioned above can be mentioned.
  • examples thereof include acrylic monomers and non-acrylic monomers obtained by polymerizing a monomer in which one or more hydrogen atoms are substituted with the reactive functional groups.
  • the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total mass of the constituent units constituting the polymer (b) is 1 to 20. It is preferably by mass, more preferably 2 to 10% by mass. When the ratio is in such a range, the degree of cross-linking in the polymer (b) becomes a more preferable range.
  • the weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is 10,000 to higher because the film-forming property of the energy ray-curable resin composition (x2-1) becomes better. It is preferably 2,000,000, more preferably 100,000 to 1,500,000.
  • polymer (b) having no energy ray-curable group one type may be used alone, or two or more types may be used in combination. When there are two or more polymers (b) having no energy ray-curable group, their combinations and ratios can be arbitrarily selected.
  • Examples of the energy ray-curable resin composition (x2-1) include those containing either one or both of the polymer (a1) and the compound (a2).
  • the energy ray-curable resin composition (x2-1) contains the compound (a2)
  • the energy ray-curable resin composition (x2-1) does not contain the compound (a2) and contains both the polymer (a1) and the polymer (b) having no energy ray-curable group. You may.
  • the energy ray-curable resin composition (x2-1) contains the polymer (a1), the compound (a2), and the polymer (b) having no energy ray-curable group
  • the compound (a2) is contained.
  • the amount is preferably 10 to 400 parts by mass, preferably 30 to 350 parts by mass, based on 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray-curable group. More preferably.
  • the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group is 5 to 5 based on the total amount of the active ingredients of the energy ray-curable resin composition (x2-1). It is preferably 90% by mass, more preferably 10 to 80% by mass, and even more preferably 20 to 70% by mass. When the content of the energy ray-curable component is in such a range, the energy ray-curable property of the energy ray-curable resin film (x2) becomes better.
  • the energy ray-curable resin composition (x2-1) contains a thermosetting component, a photopolymerization initiator, a filler, a coupling agent, a cross-linking agent, and a general-purpose additive, depending on the purpose. It may contain one kind or two or more kinds selected from the group consisting of.
  • the energy ray-curable resin film (x2) formed by using the energy ray-curable resin composition (x2-1) containing the energy ray-curable component and the thermosetting component is adhered by heating.
  • the adhesive force to the body is improved, and the strength of the protective film (X) formed from the energy ray-curable resin film (x2) is also improved.
  • thermosetting component, photopolymerization initiator, filler, coupling agent, cross-linking agent, and general-purpose additive in the energy ray-curable resin composition (x2-1) are energy ray-curable resin compositions (respectively). Same as the thermosetting component (B), photopolymerization initiator (H), filler (D), coupling agent (E), cross-linking agent (F), and general-purpose additive (I) in x2-1). Can be mentioned.
  • thermosetting component In the energy ray-curable resin composition (x2-1), one kind of thermosetting component, photopolymerization initiator, filler, coupling agent, cross-linking agent and general-purpose additive may be used alone. However, two or more types may be used in combination. When two or more types are used in combination, their combinations and ratios can be arbitrarily selected.
  • the contents of the thermosetting component, the photopolymerization initiator, the filler, the coupling agent, the cross-linking agent, and the general-purpose additive in the energy ray-curable resin composition (x2-1) can be appropriately adjusted according to the purpose. Well, there is no particular limitation.
  • the energy ray-curable resin composition (x2-1) is preferably further containing a solvent because its handleability is improved by dilution.
  • the solvent contained in the energy ray-curable resin composition (x2-1) include the same solvents as those in the thermosetting resin composition (x1-1).
  • seeds may be used alone, or two or more kinds may be used in combination. When two or more types are used in combination, their combinations and ratios can be arbitrarily selected.
  • thermosetting resin film (x1) in addition to the above energy ray-curable component, as in the case of the thermosetting resin film (x1) described above, a component other than the curable component, that is, An appropriate amount of the curing accelerator (C), the filler (D), the coupling agent (E) and the like can be contained.
  • the energy ray-curable resin composition (x2-1) can be obtained by blending each component for constituting the energy ray-curable resin composition (x2-1).
  • the order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
  • the solvent may be mixed with any compounding component other than this solvent and the compounding component may be diluted in advance, or any compounding component other than the solvent may be used in advance. You may use it by mixing the solvent with these compounding components without diluting.
  • the method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
  • the temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • Support sheet (Y) functions as a support for supporting the curable resin film (x).
  • the support sheet (Y) may be composed of only the base material 11, or may be a laminate of the base material 11 and the pressure-sensitive adhesive layer 21 as shown in FIG. , As shown in FIG. 4, the base material 11, the intermediate layer 31, and the pressure-sensitive adhesive layer 21 may be laminated in this order. A laminate in which the base material 11, the intermediate layer 31, and the pressure-sensitive adhesive layer 21 are laminated in this order is suitable for use as a back grind tape.
  • the base material of the support sheet (Y), the adhesive layer that the support sheet (Y) may have, and the intermediate layer will be described.
  • the base material is in the form of a sheet or a film, and examples of the constituent material thereof include the following various resins.
  • the resin constituting the base material include polyethylenes such as low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and high-density polyethylene (HDPE); polypropylene, polybutene, polybutadiene, polymethylpentene, norbornene resin, and the like.
  • Polyethylenes other than polyethylene ethylene-vinyl acetate copolymers, ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic acid ester copolymers, ethylene-norbornene copolymers and other ethylene-based copolymers.
  • Polymer obtained by using ethylene as a monomer Vinyl chloride-based resin such as polyvinyl chloride and vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer); Polystyrene; Polycycloolefin; Polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, polymers such as all aromatic polyesters in which all constituent units have aromatic cyclic groups; two or more Examples thereof include the polymer of the polyester; poly (meth) acrylic acid ester; polyurethane; polyurethane acrylate; polyimide; polyamide; polycarbonate; fluororesin; polyacetal; modified polyphenylene oxide; polyphenylene sulfide; polysulfone; polyether ketone and the like.
  • the resin constituting the base material for example, a polymer alloy such as a mixture of the polyester and other resins can be mentioned.
  • the polymer alloy of the polyester and the resin other than the polyester preferably has a relatively small amount of the resin other than the polyester.
  • the resin constituting the base material for example, a crosslinked resin in which one or more of the resins exemplified so far is crosslinked; one or two of the resins exemplified so far. Modified resins such as ionomer using the above can also be mentioned.
  • the resin constituting the base material one type may be used alone, or two or more types may be used in combination.
  • the combination and ratio thereof can be arbitrarily selected.
  • the base material may be only one layer (single layer) or may have two or more layers.
  • the base material has a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
  • the thickness of the base material is preferably 5 ⁇ m to 1,000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, further preferably 15 ⁇ m to 300 ⁇ m, and even more preferably 20 ⁇ m to 150 ⁇ m.
  • the "thickness of the base material” means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material. means.
  • the base material has a high thickness accuracy, that is, a material in which the variation in thickness is suppressed regardless of the part.
  • a high thickness accuracy that is, a material in which the variation in thickness is suppressed regardless of the part.
  • materials having high thickness accuracy that can be used to form a base material include, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, and ethylene-vinyl acetate copolymers. And so on.
  • the base material contains various known additives such as fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and softeners (plasticizers). You may.
  • the base material may be transparent, opaque, colored depending on the purpose, or another layer may be vapor-deposited.
  • the curable resin film (x) is an energy ray-curable resin film (x2)
  • the pressure-sensitive adhesive layer is an energy-curable pressure-sensitive adhesive layer
  • the base material transmits energy rays. It is preferable to have.
  • the base material can be produced by a known method.
  • a base material containing a resin can be produced by molding a resin composition containing the resin.
  • the pressure-sensitive adhesive layer is in the form of a sheet or a film and contains a pressure-sensitive adhesive.
  • the pressure-sensitive adhesive include an acrylic resin (a pressure-sensitive adhesive made of a resin having a (meth) acryloyl group), a urethane-based resin (a pressure-sensitive adhesive made of a resin having a urethane bond), and a rubber-based resin (a resin having a rubber structure).
  • an acrylic resin is preferable.
  • the "adhesive resin” is a concept including both a resin having adhesiveness and a resin having adhesiveness.
  • a resin having adhesiveness for example, not only the resin itself has adhesiveness but also the resin itself has adhesiveness. It also includes a resin that exhibits adhesiveness when used in combination with other components such as additives, and a resin that exhibits adhesiveness due to the presence of a trigger such as heat or water.
  • the adhesive layer may be only one layer (single layer), or may be two or more layers.
  • the pressure-sensitive adhesive layer is a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 ⁇ m to 1,000 ⁇ m, more preferably 5 ⁇ m to 500 ⁇ m, and even more preferably 10 ⁇ m to 100 ⁇ m.
  • the "thickness of the pressure-sensitive adhesive layer” means the thickness of the entire pressure-sensitive adhesive layer, and for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the sum of all the layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
  • the pressure-sensitive adhesive layer may be formed by using an energy ray-curable pressure-sensitive adhesive or may be formed by using a non-energy ray-curable pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer formed by using the energy ray-curable pressure-sensitive adhesive can easily adjust the physical properties before and after curing.
  • the intermediate layer is in the form of a sheet or a film, and the constituent material thereof may be appropriately selected depending on the intended purpose and is not particularly limited.
  • the intermediate layer is preferable.
  • the constituent material include urethane (meth) acrylate and the like from the viewpoint of improving the unevenness followability, improving the bump penetration property, and further improving the stickability of the intermediate layer.
  • the intermediate layer may be only one layer (single layer), or may be two or more layers.
  • the intermediate layer is a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
  • the thickness of the intermediate layer can be appropriately adjusted according to the height of the bumps on the surface of the semiconductor to be protected, but it may be 50 ⁇ m to 600 ⁇ m because the influence of the bumps having a relatively high height can be easily absorbed. It is preferably 70 ⁇ m to 500 ⁇ m, more preferably 80 ⁇ m to 400 ⁇ m.
  • the "thickness of the intermediate layer” means the thickness of the entire intermediate layer, and for example, the thickness of the intermediate layer composed of a plurality of layers is the total thickness of all the layers constituting the intermediate layer. means.
  • the protective film forming sheet can be produced by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship. For example, when a pressure-sensitive adhesive layer or an intermediate layer is laminated on a base material when manufacturing a support sheet, a pressure-sensitive adhesive composition or a composition for forming an intermediate layer is applied on the base material, and if necessary.
  • the pressure-sensitive adhesive layer or the intermediate layer can be laminated by drying and irradiating with energy rays.
  • the coating method include a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a roll knife coating method, a blade coating method, a die coating method, and a gravure coating method.
  • the pressure-sensitive adhesive composition may be applied on the intermediate layer to directly form the pressure-sensitive adhesive layer. It is possible.
  • the composition is further applied on the layer formed from the composition to form a new layer. Is possible to form.
  • the layer to be laminated afterwards is formed in advance on another release film using the composition, and the side of the formed layer that is in contact with the release film is It is preferable to form a laminated structure of two continuous layers by laminating the exposed surface on the opposite side with the exposed surface of the remaining layers that have already been formed. At this time, it is preferable that the composition is applied to the peeled surface of the peeling film. The release film may be removed if necessary after the laminated structure is formed.
  • the method for manufacturing a semiconductor wafer with a protective film of the present invention will be described in detail with respect to the semiconductor wafer to be applied.
  • FIG. 5 shows an example of a semiconductor wafer having a bump forming surface provided with a plurality of bumps, which is used in the method for manufacturing a semiconductor wafer with a protective film of the present invention.
  • the semiconductor wafer 40 provided with bumps includes a plurality of bump BMs on the bump forming surface (circuit surface) 41a of the semiconductor wafer 41.
  • the "semiconductor wafer having bumps” is also referred to as a "wafer with bumps”.
  • the “semiconductor wafer” is also simply referred to as a "wafer”.
  • the wafer 41 has circuits such as wiring, capacitors, diodes, and transistors formed on the surface thereof, for example.
  • the material of the wafer is not particularly limited, and examples thereof include silicon wafers, silicon carbide wafers, compound semiconductor wafers, sapphire wafers, and glass wafers.
  • the size of the wafer 41 is not particularly limited, but is usually 8 inches (diameter 200 mm) or more, preferably 12 inches (diameter 300 mm) or more from the viewpoint of improving batch processing efficiency.
  • the shape of the wafer is not limited to a circle, and may be a square shape such as a square or a rectangle. In the case of a square wafer, the size of the wafer 41 is preferably such that the length of the longest side is equal to or larger than the above size (diameter) from the viewpoint of increasing batch processing efficiency.
  • the thickness of the wafer 41 is not particularly limited, but is preferably 100 ⁇ m to 1,000 ⁇ m, more preferably 200 ⁇ m or more, from the viewpoint of facilitating the suppression of warpage of the wafer 41 due to curing of the curable resin film (x). It is 900 ⁇ m, more preferably 300 ⁇ m to 800 ⁇ m.
  • the shape of the bump BM is not particularly limited, and may be any shape as long as it can be brought into contact with and fixed to an electrode or the like on a substrate for mounting the chip.
  • the bump BM has a ball shape, but the bump BM may be a spheroid.
  • the spheroid may be, for example, a spheroid stretched in the direction perpendicular to the bump forming surface 41a of the wafer 41, or may be pulled in the horizontal direction with respect to the bump forming surface 41a of the wafer 41. It may be a stretched spheroid.
  • the bump BM may have a pillar shape as shown in FIG. Examples of the material of the bump BM include solder.
  • a semiconductor wafer having narrow pitched bumps defined by the requirements described below is applied. That is, in the present invention, by forming the protective film (X) on the bump forming surface of the semiconductor wafer having the narrow pitched bumps by using the protective film forming sheet, the narrowed pitched bumps can be crushed. Deformation is suppressed and short circuits between bumps are prevented.
  • the semiconductor wafer to which the present invention is applied is a semiconductor having narrow pitched bumps, which may be short-circuited due to crushing or deformation of the bumps when the protective film (X) is not formed. It is a wafer.
  • the semiconductor wafer described below is a semiconductor wafer having narrow pitched bumps, which may cause a short circuit due to crushing or deformation of the bumps when the protective film (X) is not formed.
  • the protective film forming sheet of the present invention is used to form the protective film (X) on the bump forming surface of the semiconductor wafer satisfying the following requirements ( ⁇ 1) to ( ⁇ 2). Further, the method for manufacturing a semiconductor wafer with a protective film of the present invention is carried out using semiconductor wafers that satisfy the following requirements ( ⁇ 1) to ( ⁇ 2).
  • -Requirement ( ⁇ 1) The width (BM w ) (unit: ⁇ m) of the bump is 20 ⁇ m to 350 ⁇ m.
  • the above requirements ( ⁇ 1) to ( ⁇ 2) are indexes indicating that the wafer is a semiconductor wafer having narrow pitched bumps. That is, it is an index showing that a short circuit due to crushing or deformation of the bump is likely to occur.
  • the bump pitch (BM P ) is the shortest distance between two bumps. In Figure 7, the shortest distance of the bump BM_a and bumps BM_b is P 1.
  • the shortest distance between bump BM_b and bump BM_c is P 2 .
  • Bump width (BM w) is the straight line P 1 connecting the bumps BM_a and bumps BM_b, the contact b 1 between the bumps BM_b, linear P 2 connecting the bump BM_b and the bump BM_c, contact b of the bump BM_b It is the length of a straight line b 1- b 2 connecting 2 and 2.
  • the bump pitch (BM P ) (unit: ⁇ m) and the bump width (BM w ) (unit: ⁇ m) can be measured, for example, by observation with an optical microscope based on the above definitions.
  • the wafer to which the present invention is applied is a wafer that satisfies the above requirements ( ⁇ 1) to ( ⁇ 2) between at least one of the plurality of bumps existing on the wafer.
  • the bump width (BM w ) (unit: ⁇ m) defined by the requirement ( ⁇ 1) is 20 ⁇ m to 350 ⁇ m. That is, according to the present invention, it is also possible to target a wafer having a plurality of bumps having a small bump width (BM w ) of 20 ⁇ m or more and less than 150 ⁇ m (particularly, 20 ⁇ m to 100 ⁇ m). In other words, a wafer having a narrow pitch and having a plurality of minute bumps can be targeted. Further, it is also possible to target a wafer having a plurality of bumps having a large bump width (BM w) of 150 ⁇ m to 350 ⁇ m.
  • BM w large bump width
  • Wafers having a plurality of bumps having a narrow pitch and a large width are particularly prone to short circuits between bumps, but according to the present invention, short circuits between bumps in such a wafer can be suppressed.
  • the value of [(BM P ) / (BM w )] specified in the requirement ( ⁇ 2) is one of the indexes indicating the ease of short-circuiting between bumps, and this value is 0.9. It may be less than or equal to or less than or equal to 0.8.
  • the wafer may further satisfy the following requirement ( ⁇ 3a) or the following requirement ( ⁇ 3b).
  • -Requirement ( ⁇ 3a) The height of the bump (BM h ) and the width of the bump (BM w ) satisfy the following formula (IIIa) 0.2 ⁇ [(BM h ) / (BM w )] ⁇ 1.0 ...
  • the above requirement ( ⁇ 3a) is an index indicating that the bump is a ball bump, and the closer the value of [(BM h ) / (BM w )] is to 1.0, the closer to a spherical shape, 0.2.
  • a semiconductor wafer having such ball bumps is individualized into a semiconductor chip, and in the process of electrically connecting the semiconductor chip and the wiring substrate via the ball bumps, the ball bumps are crushed in the lateral direction. The problem arises that the ball bumps come into contact with each other and cause a short circuit.
  • the above requirement ( ⁇ 3b) is an index indicating that the bump is a pillar bump, and the closer the value of [(BM h ) / (BM w )] is to 5.0, the higher the aspect ratio of the pillar bump, which is 0. The closer it is to .5, the lower the aspect ratio of the pillar bumps.
  • a semiconductor wafer having such a pillar bump is separated into a semiconductor chip, and in a process of electrically connecting the semiconductor chip and a wiring board via a ball bump, the pillar bump is deformed and bent, and the pillar bump is bent. There is a problem that they come into contact with each other and cause a short circuit. In addition, there is a problem that the pillar bump is deformed and bent, resulting in poor connection.
  • the pillar bumps are gradually deformed by the weight of the semiconductor package. In some cases, it may lead to a short circuit. According to the present invention, a short circuit due to contact between pillar bumps can be suppressed. In addition, poor connection that may be caused by deformation of the pillar bumps can be suppressed.
  • the bump height (BM h ) is a straight line connecting the contact point of the bump forming surface with the bump and the part of the bump farthest from the bump forming surface when focusing on one bump. Means the distance of. Specifically, the bump height (BM h ) may be a value specified by the following requirement ( ⁇ 4). -Requirement ( ⁇ 4):
  • the bump height (BM h ) is 15 ⁇ m to 300 ⁇ m. That is, in one aspect of the present invention, the bump height (BM h ) is low, 20 ⁇ m or more and less than 150 ⁇ m (particularly, 20 ⁇ m to 20 ⁇ m). Wafers having a plurality of bumps of 100 ⁇ m) can also be targeted.
  • BM h bump height
  • the bump height (BM h ) can be measured, for example, by observing a cross section of a bumped semiconductor wafer in a direction perpendicular to the bump forming surface and passing through the center of the bump with an optical microscope. can.
  • Step (S2) The outline of the step (S2) is shown in FIG.
  • the protective film forming sheet 1 of the present invention described above is attached to the bump forming surface 41a of the semiconductor wafer 41 while pressing the curable resin film (x) as the attaching surface.
  • the bump forming surface 41a of the semiconductor wafer 41 is covered with the curable resin film (x), and the curable resin film (x) is also filled between the plurality of bumps BM.
  • the pressing force when the protective film forming sheet 1 is attached to the bump forming surface 41a of the semiconductor wafer 41 is from the viewpoint of satisfactorily filling the curable resin film (x) between the plurality of bump BMs. It is preferably 1 kPa to 200 kPa, more preferably 5 kPa to 150 kPa, and even more preferably 10 kPa to 100 kPa.
  • the pressing force when the protective film forming sheet 1 is attached to the bump forming surface 41a of the semiconductor wafer 41 may be appropriately changed from the initial stage to the final stage of the attachment. For example, from the viewpoint of better filling the curable resin film (x) between the plurality of bumps BM, it is preferable to lower the pressing force at the initial stage of application and gradually increase the pressing force.
  • the curable resin film (x) is a thermosetting resin film (x1)
  • a plurality of bump BMs From the viewpoint of more satisfactorily filling the curable resin film (x) between the two, it is preferable to perform heating.
  • the thermosetting resin film (x1) is temporarily increased in fluidity by heating, and is cured by continuing heating. Therefore, by heating within the range in which the fluidity of the thermosetting resin film (x1) is improved, the thermosetting resin film (x1) can be easily distributed among the plurality of bump BMs, and the plurality of bump BMs can be easily distributed.
  • thermosetting resin film (x1) in between is further improved.
  • the specific heating temperature (sticking temperature) is preferably 50 ° C. to 150 ° C., more preferably 60 ° C. to 130 ° C., and even more preferably 70 ° C. to 110 ° C.
  • the heat treatment performed on the thermosetting resin film (x1) is not included in the curing treatment of the thermosetting resin film (x1).
  • the protective film forming sheet 1 when attached to the bump forming surface 41a of the semiconductor wafer 41, it may be performed in a reduced pressure environment. As a result, a negative pressure is generated between the plurality of bump BMs, and the curable resin film (x) is easily distributed between the plurality of bumps BMs. As a result, the filling property of the curable resin film (x) between the plurality of bumps BM is more likely to be improved.
  • the specific pressure in the reduced pressure environment is preferably 0.001 kPa to 50 kPa, more preferably 0.01 kPa to 5 kPa, and even more preferably 0.05 kPa to 1 kPa.
  • the step (S3) is carried out. Specifically, as shown in FIG. 9, the curable resin film (x) is cured to obtain a semiconductor wafer with a protective film.
  • the protective film (X) formed by curing the curable resin film (x) becomes stronger than the curable resin film (x) at room temperature (23 ° C.). Therefore, by forming the protective film (X), the bump neck is well protected.
  • the protective film forming sheet satisfying the above requirements ( ⁇ 1) to ( ⁇ 3) is used, as described above, the pitch is narrowed so that a short circuit may occur due to crushing or deformation of the bump. For a semiconductor wafer having bumps, it is possible to suppress crushing and deformation of the bumps, and it is possible to avoid a short circuit due to contact between the bumps.
  • the curable resin film (x) can be cured by either thermosetting or curing by irradiation with energy rays, depending on the type of the curable component contained in the curable resin film (x).
  • the curing temperature is preferably 90 ° C. to 200 ° C.
  • the curing time is preferably 1 hour to 3 hours.
  • the conditions for curing by energy ray irradiation are appropriately set depending on the type of energy ray to be used.
  • the illuminance is preferably 170 mw / cm 2 to 250 mw / cm 2
  • the amount of light is preferably is 300mJ / cm 2 ⁇ 3000mJ / cm 2.
  • the curable resin film (x) is preferably a thermosetting resin film (x1). That is, when the curable resin film (x) is a thermosetting resin film (x1), the thermosetting resin film (x1) is temporarily increased in fluidity by heating, and is cured by continuing heating. do. By utilizing this phenomenon, when the fluidity of the thermosetting resin film (x1) is increased, air bubbles that may enter when filling between a plurality of bumps BM with the thermosetting resin film (x1). Etc.
  • the curable resin film (x) is preferably an energy ray-curable resin film (x1).
  • the support sheet (Y) is peeled off before the curable resin film (x) is cured, and the curable resin film (x) is cured to form a protective film (X), whereby a semiconductor with a protective film is formed.
  • a wafer is obtained.
  • the present invention is not limited to such an embodiment, and a semiconductor with a protective film is formed by curing the curable resin film (x) to form a protective film (X) and then peeling off the support sheet (Y). A wafer may be obtained.
  • the surface of the semiconductor wafer 41 opposite to the bump forming surface 41a that is, the back surface of the semiconductor wafer 41
  • the back grind treatment may be performed before the curing of the curable resin film (x), or may be performed after the curing of the curable resin film (x). Further, when the back grind treatment is performed, the support sheet (Y) is preferably a back grind tape from the viewpoint of satisfactorily performing the back grind treatment.
  • the protective film (X) covering the top of the bump or the protective film (X) adhering to a part of the top of the bump is removed to expose the top of the bump.
  • the exposure treatment for exposing the top of the bump include an etching treatment such as a wet etching treatment and a dry etching treatment.
  • examples of the dry etching process include a plasma etching process and the like.
  • the method for manufacturing a semiconductor chip with a protective film of the present invention includes the following steps (T1) to (T2). -Step (T1): A step of carrying out the method for manufacturing a semiconductor wafer with a protective film of the present invention to obtain a semiconductor wafer with a protective film-Step (T2): A step of individualizing the semiconductor wafer with a protective film.
  • Step (T1) the method for manufacturing a semiconductor wafer with a protective film of the present invention described above is carried out to obtain a semiconductor wafer with a protective film.
  • the semiconductor wafer with a protective film obtained in the step (T1) is fragmented.
  • the method of individualization is not particularly limited, and a known individualization method can be appropriately adopted. Specific examples thereof include laser dicing, blade dicing, stealth dicing (registered trademark) and the like.
  • a step of forming a back surface protective film on the back surface (the surface opposite to the bump forming surface) of the semiconductor wafer with the protective film may be included.
  • the method for manufacturing a semiconductor package of the present invention includes the following steps (U1) to (U2).
  • Step (U1) A step of carrying out the method for manufacturing a semiconductor chip with a protective film of the present invention to obtain a semiconductor chip with a protective film.
  • Step (U2) A wiring substrate and the semiconductor chip with a protective film are attached to the bump. The process of electrically connecting via
  • Step (U1) the method for manufacturing a semiconductor chip with a protective film of the present invention described above is carried out to obtain a semiconductor chip with a protective film.
  • the wiring board (Z) having the wiring Z1 and the semiconductor chip CP with the protective film are electrically connected via the bump BM. More specifically, heating is performed in a state where the bump forming surface of the semiconductor chip CP with a protective film and the forming surface of the wiring Z1 of the wiring board (Z) are opposed to each other via the bump BM (hereinafter, "heating connection”). Also called “process”). As a result, the top of the bump BM and the wiring Z1 can be electrically and satisfactorily connected.
  • the protective film of the present invention although a semiconductor chip obtained from a semiconductor wafer having narrow pitched bumps, which may be short-circuited due to crushing or deformation of the bumps, is used, for forming the protective film of the present invention.
  • a semiconductor chip obtained from a semiconductor wafer having narrow pitched bumps which may be short-circuited due to crushing or deformation of the bumps.
  • the conditions of the heating connection step are, for example, a temperature of 250 ° C. to 270 ° C. for 30 seconds to 5 minutes.
  • Step (U3) A step of filling an underfill material between the wiring board and the semiconductor chip with a protective film. It can be suppressed. In other words, it is possible to suppress the proximity of bumps due to crushing or deformation of bumps. Conventionally, when bumps are close to each other, even if an attempt is made to fill the underfill material, the gap between the bumps is narrow, and it is difficult to fill the gap with the underfill material. However, in the present invention, since the proximity of the bumps is also suppressed, it is possible to satisfactorily fill the space between the protective film (X) and the wiring board (Z) with the underfill material including the gap between the bumps. be.
  • the glass transition temperature (Tg) of the polymer component (A), which will be described later, is a temperature of ⁇ 70 ° C. to 150 ° C. at a lifting temperature rate of 10 ° C./min using a differential scanning calorimeter (PYRIS Diamond DSC) manufactured by PerkinElmer Co., Ltd. Measurements were performed using the profile, and the points of variation were confirmed and determined.
  • Tg glass transition temperature
  • ⁇ Average particle size The particles to be measured are dispersed in water by ultrasonic waves, and the particle size distribution of the particles is measured on a volume basis by a dynamic light scattering method particle size distribution measuring device (LB-550, manufactured by Horiba Seisakusho Co., Ltd.), and the median diameter thereof is measured. (D 50 ) was defined as the average particle size.
  • thermosetting resin composition (x1-1) used for producing the thermosetting resin film (x1) used in the examples was prepared by the following method.
  • thermosetting resin composition (x1-1) > (Polymer component (A)) Polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Eslek® B BL-) having a structural unit represented by the following formula (i-1), the following formula (i-2), and the following formula (i-3) 10. Weight average molecular weight 25,000, glass transition temperature 59 ° C., in the following formula, p is 68 to 74 mol%, q is 1 to 3 mol%, and r is about 28 mol%).
  • Epoxy resin (B1) The following two types of epoxy resins were used.
  • Epoxy resin (B1-1) Liquid bisphenol A type epoxy resin (manufactured by DIC Corporation, EPICLON (registered trademark) EXA-4850-1000, epoxy equivalent 404-412 g / eq)
  • Epoxy resin (B1-2) Dicyclopentadiene type epoxy resin (manufactured by DIC Corporation, EPICLON (registered trademark) HP-7200, epoxy equivalent 254 to 264 g / eq)
  • thermosetting agent (B2) A novolak type phenol resin (manufactured by Showa Denko KK, Shonor (registered trademark) BRG-556) was used.
  • Fill (D) Spherical silica modified with an epoxy group (manufactured by Admatex Co., Ltd., Admanano® YA050C-MKK, average particle size 0.05 ⁇ m) was used.
  • thermosetting resin composition (x1-1) The polymer component (A), epoxy resin (B1-1), epoxy resin (B1-2), thermosetting agent (B2), curing accelerator (C), and filler (D) are composed of a thermosetting resin.
  • the active ingredient (solid content) concentration is increased by dissolving or dispersing in methyl ethyl ketone and stirring at 23 ° C. so that the content is as shown below based on the total amount (100% by mass) of the substance (x1-1).
  • a thermosetting resin composition (x1-1) having an amount of 55% by mass was prepared.
  • the protective film (X) was formed using the thermosetting resin composition (x1-1) prepared in Formulation 1 shown below.
  • thermosetting resin composition (x1-1) prepared in Formulation 2 shown below.
  • (Formulation 1) -Polymer component (A): 41.4% by mass -Epoxy resin (B1-1): 23.2% by mass -Epoxy resin (B1-2): 15.2% by mass -Thermosetting agent (B2): 11.2% by mass -Curing accelerator (C): 0.2% by mass -Filler (D): 8.8% by mass
  • thermosetting resin film (x1) ⁇ Manufacturing of thermosetting resin film (x1)>
  • a product (x1-1) was applied and dried by heating at 120 ° C. for 2 minutes to obtain a thermosetting resin film (x1: compounding 1) having a thickness of 30 ⁇ m.
  • a thermosetting resin film (x1: formulation 2) having a thickness of 50 ⁇ m was obtained by the same method except that the composition was changed to the thermosetting resin composition (x1-1) prepared in formulation 2.
  • a sticking tape (Lintec) formed by laminating a base material (thickness: 100 ⁇ m), an intermediate layer (thickness: 400 ⁇ m), and an adhesive layer (thickness: 10 ⁇ m) in this order.
  • the adhesive layer of this sticking tape and a thermosetting resin film (x1: compounding 1) having a thickness of 30 ⁇ m formed on the release material are bonded to each other to form a support sheet (1).
  • Y), a thermosetting resin film (x1), and a release material were laminated in this order to produce a protective film forming sheet 1.
  • a protective film forming sheet 2 was produced by the same procedure.
  • thermosetting resin film (x1) was cured, the tensile elastic modulus E'of the protective film (X) was measured by the following method.
  • thermosetting resin films (x1: compounding 1) having a thickness of 30 ⁇ m are laminated to prepare a sample having a thickness of 0.18 mm, a width of 4.5 mm, and a length of 20.0 mm, and the sample is pressed.
  • a protective film (X) was obtained by heat treatment in an oven (RAD-9100 manufactured by Lintec Corporation) under heating conditions of temperature: 130 ° C., time: 2 hours, and furnace pressure: 0.5 MPa.
  • the protective film (X) is subjected to a protective film using a dynamic viscoelasticity measuring device (manufactured by TA instruments, product name "DMA Q800") in a tensile mode at a frequency of 11 Hz, 23 ° C., and in an air atmosphere.
  • the tensile elastic modulus E'(23 ° C.) of (X) was measured.
  • the tensile elastic modulus E'(260 ° C.) of the protective film (X) was measured under the same conditions except that the temperature at the time of measurement was set to 260 ° C.
  • the heat-curable resin film (x1: compounding 2) is protected by the same procedure except that four heat-curable resin films (x1: compounding 2) having a thickness of 50 ⁇ m are stacked to make the thickness 0.20 mm.
  • a film (X) was obtained, and the tensile elastic modulus E'(23 ° C.) of the protective film (X) and the tensile elastic modulus E'(260 ° C.) of the protective film (X) were measured.
  • the semiconductor wafer By removing the release material from the protective film forming sheet obtained above and pressing the exposed surface (exposed surface) of the thermosetting resin layer against the bump forming surface of the wafer with ball bumps, the semiconductor wafer can be obtained.
  • a protective film forming sheet was attached to the bump forming surface.
  • the protective film forming sheet is attached using a pasting device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation), a table temperature of 90 ° C., a sticking speed of 2 mm / sec, and a sticking pressure of 0. This was performed while heating the thermosetting resin film (x1) under the condition of 5.5 MPa.
  • Table 1 shows the details (requirements ( ⁇ 1), ( ⁇ 2), ( ⁇ 3a), and ( ⁇ 4)) of the wafer with ball bumps to which the protective film forming sheets 1 and 2 are attached.
  • the support sheet (Y) of the protective film forming sheet was peeled off by irradiating with ultraviolet rays.
  • a wafer with bumps to which a thermosetting resin film (x1) is attached is heated in a pressure oven (RAD-9100 manufactured by Lintec Co., Ltd.) at a temperature of 130 ° C., a time of 2 hours, and a furnace pressure of 0.5 MPa.
  • thermosetting resin film (x1) was heat-cured to obtain semiconductor wafers (Examples 1 to 4) with a protective film (X).
  • the thickness ( XT ) of the protective film (X) is obtained by cutting a semiconductor wafer with the protective film (X) in a direction perpendicular to the bump forming surface and passing through the center of the bump, and dividing the cross section after cutting. , Measured by observing with an optical microscope. Then, a heat treatment (heat connection step) at 260 ° C. for 1 minute is performed in a state where the bump forming surface of the semiconductor wafer with the protective film (X) and the wiring forming surface of the wiring board are opposed to each other via the bumps.

Abstract

The present invention addresses the issue of providing a protective film-forming sheet that is capable of suppressing short-circuiting between narrow-pitched bumps. The issue is solved by a protective film-forming sheet that: has a laminated structure comprising a curable resin film (x) and a support sheet (Y); has a plurality of bumps; is used to form a protective film (X) on a bump-formation surface of a semiconductor wafer that fulfills a prescribed requirement that indicates the presence of narrow-pitched bumps; and fulfills a prescribed requirement specified by tensile modulus E'.

Description

保護膜形成用シートProtective film forming sheet
 本発明は、保護膜形成用シートに関する。 The present invention relates to a protective film forming sheet.
 従来、MPUやゲートアレイ等に用いる他ピンのLSIパッケージをプリント配線基板に実装する場合には、半導体チップとして、その接続パッド部に凸状電極(以下、「バンプ」ともいう)が形成されたものが用いられてきた。そして、所謂フェースダウン方式により、それらのバンプを、チップ搭載用基板上の相対応する端子部に対面させて接触させ、溶融接合又は拡散接合するフリップチップ実装方法が採用されてきた。 Conventionally, when an LSI package of other pins used for an MPU, a gate array, or the like is mounted on a printed wiring board, a convex electrode (hereinafter, also referred to as “bump”) is formed on the connection pad portion of the semiconductor chip. Things have been used. Then, by the so-called face-down method, a flip chip mounting method has been adopted in which those bumps are brought into contact with the corresponding terminal portions on the chip mounting substrate so as to face each other, and melt-bonded or diffuse-bonded.
 近年、電子機器の小型軽量化、薄型化、及び高機能化に伴い、内蔵される電子部品に対しても高密度実装が要求されている。特許文献1~3では、高密度実装に伴う問題、すなわち、半導体集積回路のメモリセル中にα線が侵入することにより記憶内容が書き換えられるソフトエラーの問題を回避すべく、低α線量のはんだ材料が提案されている。 In recent years, with the miniaturization, weight reduction, thinning, and high functionality of electronic devices, high-density mounting is also required for built-in electronic components. In Patent Documents 1 to 3, low α-dose solder is used to avoid a problem associated with high-density mounting, that is, a soft error in which the stored contents are rewritten due to α rays entering the memory cell of a semiconductor integrated circuit. The material has been proposed.
特許第4472752号公報Japanese Patent No. 4472752 特開2011-214040号公報Japanese Unexamined Patent Publication No. 2011-21404 国際公開第2012/120982号パンフレットInternational Publication No. 2012/120982 Pamphlet
 ところで、電子部品に対する高密度実装の要求の高まりから、半導体チップが有するバンプの狭ピッチ化の要求も高まりつつある。しかしながら、半導体チップが有するバンプを狭ピッチ化すると、新たな問題が生じる。例えば、半導体チップと配線基板とを、ボールバンプを介して電気的に接続する工程において、ボールバンプが潰れて横方向に広がり、ボールバンプ同士が接触して短絡を引き起こす問題が生じる。また、さらなる高密度実装の要求に対応するため、半導体パッケージを高さ方向にスタックした3次元高密度実装も検討されており、この場合には、半導体パッケージの自重によりボールバンプが徐々に潰れることで、短絡に至る場合もある。 By the way, due to the increasing demand for high-density mounting on electronic components, the demand for narrowing the pitch of bumps of semiconductor chips is also increasing. However, when the bumps of the semiconductor chip are narrowed in pitch, a new problem arises. For example, in the process of electrically connecting the semiconductor chip and the wiring board via the ball bumps, there arises a problem that the ball bumps are crushed and spread in the lateral direction, and the ball bumps come into contact with each other to cause a short circuit. In addition, in order to meet the demand for higher-density mounting, three-dimensional high-density mounting in which semiconductor packages are stacked in the height direction is also being considered. In this case, the ball bumps are gradually crushed by the weight of the semiconductor package. In some cases, it may lead to a short circuit.
 本発明者らは、上記問題を踏まえ、鋭意検討を行い、ボールバンプが潰れて横方向に広がるのを抑えることができる保護膜を形成するためのシートを創出するに至った。また、ピラーバンプを有する半導体チップにおいても、ピラーバンプの折れ曲がり等により、ピラーバンプ同士が接触して短絡を引き起こす場合もあると考えられる。創出したシートは、ピラーバンプにおけるこのような問題を解決する上でも有効であることがわかった。 Based on the above problems, the present inventors have conducted diligent studies and have come to create a sheet for forming a protective film capable of suppressing the ball bumps from being crushed and spreading in the lateral direction. Further, even in a semiconductor chip having pillar bumps, it is considered that the pillar bumps may come into contact with each other to cause a short circuit due to bending or the like of the pillar bumps. The created sheet was also found to be effective in solving such problems in pillar bumps.
 したがって、本発明の課題は、狭ピッチ化されたバンプ同士の短絡を抑制することができる、保護膜形成用シートを提供することである。 Therefore, an object of the present invention is to provide a protective film forming sheet capable of suppressing a short circuit between bumps having a narrow pitch.
 本発明者らは、下記発明により上記課題を解決し得ることを見出した。
 すなわち、本発明は、下記[1]~[9]に関する。
[1] 硬化性樹脂フィルム(x)と、支持シート(Y)との積層構造を有する保護膜形成用シートであって、
 複数のバンプを有し、下記要件(α1)~(α2)を満たす半導体ウエハのバンプ形成面に、保護膜(X)を形成するために用いられ、
・要件(α1):前記バンプの幅(BM)(単位:μm)が、20μm~350μmである。
・要件(α2):前記バンプのピッチ(BM)(単位:μm)と前記バンプの幅(BM)(単位:μm)とが、下記式(I)を満たす。
     [(BM)/(BM)]≦1.0・・・・(I)
 下記要件(β1)~(β3)を満たす、保護膜形成用シート。
・要件(β1):前記硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における引張弾性率E’(23℃)が、1×10Pa~1×1010Paである。
・要件(β2):前記硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、260℃における引張弾性率E’(260℃)が、1×10Pa~1×10Paである。
・要件(β3):前記硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における厚さ(X)(単位:μm)と、前記バンプの高さ(BM)(単位:μm)とが、下記式(II)を満たす。
     [(X)/(BM)]≧0.2・・・(II)
[2] さらに、下記要件(α3a)を満たす、[1]に記載の保護膜形成用シート。
・要件(α3a):前記バンプの高さ(BM)と前記バンプの幅(BM)とが、下記式(IIIa)を満たす
     0.2≦[(BM)/(BM)]≦1.0・・・・(IIIa)
[3] さらに、下記要件(α3b)を満たす、[1]に記載の保護膜形成用シート。
・要件(α3b):前記バンプの高さ(BM)と前記バンプの幅(BM)とが、下記式(IIIb)を満たす
     0.5≦[(BM)/(BM)]≦5.0・・・・(IIIb)
[4] さらに、下記要件(α4)を満たす、[1]~[3]のいずれかに記載の保護膜形成用シート。
・要件(α4):前記バンプの高さ(BM)が、15μm~300μmである
[5] 前記支持シート(Y)が、バックグラインドテープである、[1]~[4]のいずれかに記載の保護膜形成用シート。
[6] 保護膜付き半導体ウエハの製造方法であって、
 下記工程(S1)~(S3)を含み、
・工程(S1):複数のバンプが設けられたバンプ形成面を有する半導体ウエハを準備する工程
・工程(S2):前記半導体ウエハの前記バンプ形成面に、[1]~[5]のいずれかに記載の保護膜形成用シートを、硬化性樹脂フィルム(x)を貼付面にして押圧しながら貼着する工程
・工程(S3):硬化性樹脂フィルム(x)を硬化させて保護膜(X)を形成する工程
 前記工程(S1)において準備する前記半導体ウエハが、下記要件(α1)~(α2)を満たす、保護膜付き半導体ウエハの製造方法。
・条件(α1):前記バンプの幅(BM)(単位:μm)が、20μm~350μmである
・条件(α2):前記バンプのピッチ(BM)(単位:μm)と前記バンプの幅(BM)(単位:μm)とが、下記式(I)を満たす
     [(BM)/(BM)]≦1.0・・・・(I)
[7] 下記工程(T1)~(T2)を含む、保護膜付き半導体チップの製造方法。
・工程(T1):[6]に記載の製造方法を実施して、保護膜付き半導体ウエハを得る工程
・工程(T2):前記保護膜付き半導体ウエハを個片化する工程
[8] 下記工程(U1)~(U2)を含む、半導体パッケージの製造方法。
・工程(U1):[7]に記載の製造方法を実施して、保護膜付き半導体チップを得る工程
・工程(U2):配線基板と前記保護膜付き半導体チップとを、前記バンプを介して電気的に接続する工程
[9] さらに、工程(U3)を有する、[8]に記載の半導体パッケージの製造方法。
・工程(U3):前記配線基板と前記保護膜付き半導体チップとの間に、アンダーフィル材を充填する工程
The present inventors have found that the above problems can be solved by the following inventions.
That is, the present invention relates to the following [1] to [9].
[1] A protective film-forming sheet having a laminated structure of a curable resin film (x) and a support sheet (Y).
It is used to form a protective film (X) on the bump forming surface of a semiconductor wafer having a plurality of bumps and satisfying the following requirements (α1) to (α2).
-Requirement (α1): The width (BM w ) (unit: μm) of the bump is 20 μm to 350 μm.
-Requirement (α2): The bump pitch (BM P ) (unit: μm) and the bump width (BM w ) (unit: μm) satisfy the following formula (I).
[(BM P ) / (BM w )] ≤ 1.0 ... (I)
A protective film forming sheet that satisfies the following requirements (β1) to (β3).
Requirement (β1): The tensile elastic modulus E'(23 ° C.) at 23 ° C. of the protective film (X) formed by curing the curable resin film (x) is 1 × 10 7 Pa to 1 ×. It is 10 10 Pa.
Requirement (β2): The tensile elastic modulus E'(260 ° C.) of the protective film (X) formed by curing the curable resin film (x) at 260 ° C. is 1 × 10 5 Pa to 1 ×. It is 10 8 Pa.
-Requirement (β3): The thickness (XT ) (unit: μm) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. and the height of the bumps (unit: μm). BM h ) (unit: μm) satisfies the following formula (II).
[( XT ) / (BM h )] ≧ 0.2 ... (II)
[2] The protective film forming sheet according to [1], which further satisfies the following requirement (α3a).
-Requirement (α3a): The height of the bump (BM h ) and the width of the bump (BM w ) satisfy the following formula (IIIa) 0.2 ≦ [(BM h ) / (BM w )] ≦ 1.0 ... (IIIa)
[3] The protective film forming sheet according to [1], which further satisfies the following requirement (α3b).
-Requirement (α3b): The height of the bump (BM h ) and the width of the bump (BM w ) satisfy the following formula (IIIb) 0.5 ≦ [(BM h ) / (BM w )] ≦ 5.0 ... (IIIb)
[4] The protective film forming sheet according to any one of [1] to [3], which further satisfies the following requirement (α4).
-Requirement (α4): The height of the bump (BM h ) is 15 μm to 300 μm [5] The support sheet (Y) is a back grind tape, any of [1] to [4]. The sheet for forming a protective film according to the above.
[6] A method for manufacturing a semiconductor wafer with a protective film.
Including the following steps (S1) to (S3),
-Step (S1): Step of preparing a semiconductor wafer having a bump-forming surface provided with a plurality of bumps-Step (S2): Any one of [1] to [5] on the bump-forming surface of the semiconductor wafer. Step / Step (S3) of attaching the protective film-forming sheet according to the above item to the protective film forming sheet with the curable resin film (x) as the affixing surface while pressing the sheet. ) Is formed. A method for manufacturing a semiconductor wafer with a protective film, wherein the semiconductor wafer prepared in the step (S1) satisfies the following requirements (α1) to (α2).
-Condition (α1): The width (BM w ) (unit: μm) of the bump is 20 μm to 350 μm.-Condition (α2): Pitch (BM P ) (unit: μm) of the bump and the width of the bump. (BM w ) (unit: μm) satisfies the following formula (I) [(BM P ) / (BM w )] ≤ 1.0 ... (I)
[7] A method for manufacturing a semiconductor chip with a protective film, which comprises the following steps (T1) to (T2).
-Step (T1): A step of obtaining a semiconductor wafer with a protective film by carrying out the manufacturing method according to [6]-Step (T2): A step of disassembling the semiconductor wafer with a protective film [8] The following steps A method for manufacturing a semiconductor package, which comprises (U1) to (U2).
Step (U1): A step of carrying out the manufacturing method according to [7] to obtain a semiconductor chip with a protective film. Step (U2): A wiring substrate and the semiconductor chip with a protective film are attached to each other via the bump. [9] The method for manufacturing a semiconductor package according to [8], which further comprises a step (U3).
Step (U3): A step of filling an underfill material between the wiring board and the semiconductor chip with a protective film.
 本発明によれば、狭ピッチ化されたバンプ同士の短絡を抑制することができる、保護膜形成用シートを提供することが可能となる。 According to the present invention, it is possible to provide a protective film forming sheet capable of suppressing a short circuit between bumps having a narrow pitch.
本発明の保護膜形成用シートの構成を示す概略断面図である。It is the schematic sectional drawing which shows the structure of the protective film formation sheet of this invention. 本発明の一態様の保護膜形成用シートの構成の一例を示す概略断面図である。It is schematic cross-sectional view which shows an example of the structure of the protective film forming sheet of one aspect of this invention. 本発明の一態様の保護膜形成用シートの構成の他の例を示す概略断面図である。It is the schematic sectional drawing which shows the other example of the structure of the protective film forming sheet of one aspect of this invention. 本発明の一態様の保護膜形成用シートの構成の更に他の例を示す概略断面図である。It is a schematic cross-sectional view which shows still another example of the structure of the protective film forming sheet of one aspect of this invention. 複数のバンプを有する半導体ウエハの一例を示す概略断面図である。It is a schematic cross-sectional view which shows an example of the semiconductor wafer which has a plurality of bumps. 複数のバンプを有する半導体ウエハの他の例を示す概略断面図である。It is the schematic sectional drawing which shows the other example of the semiconductor wafer which has a plurality of bumps. バンプのピッチ(BM)及びバンプの幅(BM)を定義するために、半導体ウエハ上の3つのバンプを拡大した上面図である。It is an enlarged top view of three bumps on a semiconductor wafer in order to define a bump pitch (BM P ) and a bump width (BM w). 本発明の一態様の保護膜付き半導体ウエハの製造方法の工程(S2)を説明する概略断面図である。It is schematic cross-sectional view explaining the process (S2) of the manufacturing method of the semiconductor wafer with a protective film of one aspect of this invention. 本発明の一態様の保護膜付き半導体ウエハの製造方法の工程(S3)を説明する概略断面図である。It is schematic cross-sectional view explaining step (S3) of the manufacturing method of the semiconductor wafer with a protective film of one aspect of this invention. 本発明の一態様の半導体パッケージの製造方法の工程(U2)を説明する概略断面図である。It is schematic cross-sectional view explaining the process (U2) of the manufacturing method of the semiconductor package of one aspect of this invention. バンプの高さ(BM)と、硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における厚さ(X)(単位:μm)との関係を示す概略断面図である。The relationship between the bump height (BM h ) and the thickness (XT ) (unit: μm) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. is shown. It is a schematic cross-sectional view.
 本明細書において、「有効成分」とは、対象となる組成物に含まれる成分のうち、水や有機溶媒等の希釈溶媒を除いた成分を指す。
 また、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」との双方を示し、他の類似用語も同様である。
 また、本明細書において、重量平均分子量及び数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
 また、本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
As used herein, the term "active ingredient" refers to a component contained in a target composition excluding a diluting solvent such as water or an organic solvent.
Further, in the present specification, "(meth) acrylic acid" means both "acrylic acid" and "methacrylic acid", and other similar terms are also used.
Further, in the present specification, the weight average molecular weight and the number average molecular weight are polystyrene-equivalent values measured by a gel permeation chromatography (GPC) method.
Further, in the present specification, with respect to a preferable numerical range (for example, a range such as content), the lower limit value and the upper limit value described stepwise can be combined independently. For example, from the description of "preferably 10 to 90, more preferably 30 to 60", the "preferable lower limit value (10)" and the "more preferable upper limit value (60)" are combined to obtain "10 to 60". You can also do it.
[保護膜形成用シートの態様]
 本発明の保護膜形成用シートは、硬化性樹脂フィルム(x)と、支持シート(Y)との積層構造を有する。
 本発明の保護膜形成用シートは、複数のバンプを有し、下記要件(α1)~(α2)を満たす半導体ウエハのバンプ形成面に、保護膜(X)を形成するために用いられる。
・要件(α1):前記バンプの幅(BM)(単位:μm)が、20μm~350μmである。
・要件(α2):前記バンプのピッチ(BM)(単位:μm)と前記バンプの幅(BM)(単位:μm)とが、下記式(I)を満たす。
     [(BM)/(BM)]≦1.0・・・・(I)
 そして、本発明の保護膜形成用シートは、下記要件(β1)~(β3)を満たす。
・要件(β1):前記硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における引張弾性率E’(23℃)が、1×10Pa~1×1010Paである。
・要件(β2):前記硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、260℃における引張弾性率E’(260℃)が、1×10Pa~1×10Paである。
・要件(β3):前記硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における厚さ(X)(単位:μm)と、前記バンプの高さ(BM)(単位:μm)とが、下記式(II)を満たす。
     [(X)/(BM)]≧0.2・・・・(II)
[Aspect of protective film forming sheet]
The protective film forming sheet of the present invention has a laminated structure of a curable resin film (x) and a support sheet (Y).
The protective film forming sheet of the present invention has a plurality of bumps and is used for forming the protective film (X) on the bump forming surface of the semiconductor wafer that satisfies the following requirements (α1) to (α2).
-Requirement (α1): The width (BM w ) (unit: μm) of the bump is 20 μm to 350 μm.
-Requirement (α2): The bump pitch (BM P ) (unit: μm) and the bump width (BM w ) (unit: μm) satisfy the following formula (I).
[(BM P ) / (BM w )] ≤ 1.0 ... (I)
The protective film forming sheet of the present invention satisfies the following requirements (β1) to (β3).
Requirement (β1): The tensile elastic modulus E'(23 ° C.) at 23 ° C. of the protective film (X) formed by curing the curable resin film (x) is 1 × 10 7 Pa to 1 ×. It is 10 10 Pa.
Requirement (β2): The tensile elastic modulus E'(260 ° C.) of the protective film (X) formed by curing the curable resin film (x) at 260 ° C. is 1 × 10 5 Pa to 1 ×. It is 10 8 Pa.
-Requirement (β3): The thickness (XT ) (unit: μm) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. and the height of the bumps (unit: μm). BM h ) (unit: μm) satisfies the following formula (II).
[( XT ) / (BM h )] ≧ 0.2 ... (II)
 つまり、本発明の保護膜形成用シートは、上記要件(α1)~(α2)を満たす、狭ピッチ化されたバンプを有する半導体ウエハのバンプ形成面に用いられる。そして、本発明の保護膜形成用シートは、具体的構成として、硬化性樹脂フィルム(x)と、支持シート(Y)との積層構造を有し、硬化性樹脂フィルム(x)に関連する上記要件(β1)~(β3)を満たす。 That is, the protective film forming sheet of the present invention is used for the bump forming surface of a semiconductor wafer having narrow pitched bumps satisfying the above requirements (α1) to (α2). The protective film-forming sheet of the present invention has a laminated structure of a curable resin film (x) and a support sheet (Y) as a specific configuration, and is related to the curable resin film (x). Satisfy requirements (β1) to (β3).
 本発明者らは、硬化性樹脂フィルム(x)と、支持シート(Y)との積層構造を有し、硬化性樹脂フィルム(x)に関連する上記要件(β1)~(β3)を満たす、保護膜形成用シートを用いて、上記要件(α1)~(α2)を満たす、狭ピッチ化されたバンプを有する半導体ウエハのバンプ形成面に保護膜(X)を形成することによって、バンプの潰れ及び変形を抑制することができ、狭ピッチ化されたバンプ同士の短絡を抑制できることを見出した。
 以下、本発明の保護膜形成用シートにおいて規定される、保護膜(X)に関連する上記要件(β1)~(β3)について説明する。
The present inventors have a laminated structure of a curable resin film (x) and a support sheet (Y), and satisfy the above requirements (β1) to (β3) related to the curable resin film (x). By forming the protective film (X) on the bump forming surface of the semiconductor wafer having the narrow pitched bumps satisfying the above requirements (α1) to (α2) by using the protective film forming sheet, the bumps are crushed. It was found that the deformation can be suppressed and the short circuit between the narrowed pitched bumps can be suppressed.
Hereinafter, the above requirements (β1) to (β3) related to the protective film (X) defined in the protective film forming sheet of the present invention will be described.
<要件(β1)>
 要件(β1)は、硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における引張弾性率E’(23℃)が、1×10Pa~1×1010Paであることを規定している。
 引張弾性率E’(23℃)が1×10Pa未満であると、保護膜(X)がバンプの潰れ及び変形を抑制できず、バンプ同士が接触して短絡する恐れがある。
 一方で、引張弾性率E’(23℃)が1×1010Pa超であると、加熱冷却時の応力が高くなり、バンプに負荷を与え信頼性が低下してしまう。
 ここで、バンプの潰れ及び変形をより抑制しやすくすると共に、加熱冷却時におけるバンプへの負荷を抑える観点から、硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における引張弾性率E’(23℃)は、好ましくは3×10Pa~8×10Pa、より好ましくは5×10Pa~7×10Pa、更に好ましくは7×10Pa~6×10Paである。
 なお、要件(β1)で規定される引張弾性率E’(23℃)を有する保護膜(X)は、硬化性樹脂フィルム(x)を硬化して形成される。保護膜(X)を形成するための硬化性樹脂フィルム(x)の調製方法は、後述する。
<Requirement (β1)>
The requirement (β1) is that the tensile elastic modulus E'(23 ° C.) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. is 1 × 10 7 Pa to 1 × 10. It stipulates that it is 10 Pa.
If the tensile elastic modulus E'(23 ° C.) is less than 1 × 10 7 Pa, the protective film (X) cannot suppress the crushing and deformation of the bumps, and the bumps may come into contact with each other to cause a short circuit.
On the other hand, if the tensile elastic modulus E'(23 ° C.) exceeds 1 × 10 10 Pa, the stress during heating and cooling becomes high, which imposes a load on the bumps and lowers the reliability.
Here, from the viewpoint of making it easier to suppress the crushing and deformation of the bumps and suppressing the load on the bumps during heating and cooling, the protective film (X) formed by curing the curable resin film (x). The tensile elastic modulus E'(23 ° C.) at 23 ° C. is preferably 3 × 10 7 Pa to 8 × 10 9 Pa, more preferably 5 × 10 7 Pa to 7 × 10 9 Pa, and even more preferably 7 × 10 7 Pa to 6 × 10 9 Pa.
The protective film (X) having a tensile elastic modulus E'(23 ° C.) defined by the requirement (β1) is formed by curing the curable resin film (x). The method for preparing the curable resin film (x) for forming the protective film (X) will be described later.
<要件(β2)>
 要件(β2)は、硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、260℃における引張弾性率E’(260℃)が、1×10Pa~1×10Paであることを規定している。
 引張弾性率E’(260℃)が5×10Pa未満であると、特に配線基板とバンプを有する半導体ウエハとを、バンプを介して電気的に接合する工程における加熱温度域(例えば、250℃~270℃)において、保護膜(X)がバンプの潰れ及び変形を抑制できず、バンプ同士が接触して短絡する恐れがある。
 一方で、引張弾性率E’(260℃)が5×10Pa超であると、加熱冷却時の応力が高くなり、バンプに負荷を与え信頼性及び接合性が低下してしまう。
 ここで、バンプの潰れ及び変形をより抑制しやすくすると共に、加熱冷却時におけるバンプへの負荷を抑える観点から、硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、260℃における引張弾性率E’(260℃)は、好ましくは7×10Pa~3×10Pa、より好ましくは9×10Pa~2×10Pa、更に好ましくは1×10Pa~1.5×10Paである。
 なお、要件(β2)で規定される引張弾性率E’(260℃)を有する保護膜(X)は、硬化性樹脂フィルム(x)を硬化して形成される。保護膜(X)を形成するための硬化性樹脂フィルム(x)の調製方法は、後述する。
<Requirement (β2)>
The requirement (β2) is that the tensile elastic modulus E'(260 ° C.) of the protective film (X) formed by curing the curable resin film (x) at 260 ° C. is 1 × 10 5 Pa to 1 × 10. It stipulates that it is 8 Pa.
When the tensile elastic modulus E'(260 ° C.) is less than 5 × 10 5 Pa, the heating temperature range (for example, 250) in the step of electrically joining the wiring substrate and the semiconductor wafer having bumps through the bumps is particularly high. (° C. to 270 ° C.), the protective film (X) cannot suppress the crushing and deformation of the bumps, and the bumps may come into contact with each other to cause a short circuit.
On the other hand, tensile if modulus E '(260 ℃) is at 5 × 10 7 Pa, greater than the stress at the time of heating and cooling is increased, reliability and bondability given load to the bump decreases.
Here, from the viewpoint of making it easier to suppress the crushing and deformation of the bumps and suppressing the load on the bumps during heating and cooling, the protective film (X) formed by curing the curable resin film (x). The tensile elastic modulus E'(260 ° C.) at 260 ° C. is preferably 7 × 10 5 Pa to 3 × 10 7 Pa, more preferably 9 × 10 5 Pa to 2 × 10 7 Pa, and even more preferably 1 × 10 6 is a Pa ~ 1.5 × 10 7 Pa.
The protective film (X) having a tensile elastic modulus E'(260 ° C.) defined by the requirement (β2) is formed by curing the curable resin film (x). The method for preparing the curable resin film (x) for forming the protective film (X) will be described later.
<要件(β3)>
 要件(β3)は、硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における厚さ(X)(単位:μm)と、前記バンプの高さ(BM)(単位:μm)との関係を規定している。具体的には、下記式(II)を満たす。
     [(X)/(BM)]≧0.2・・・・(II)
 [(X)/(BM)]<0.2であると、バンプの高さ(BM)に対する保護膜(X)の被覆高さが不十分であり、保護膜(X)がバンプの潰れ及び変形を抑制できず、バンプ同士が接触して短絡する恐れがある。
 なお、[(X)/(BM)]の上限値は、特に限定されないが、バンプ頂部を保護膜(X)から露出させる観点から、好ましくは1.0以下であり、より好ましくは1.0未満である。
 ここで、バンプの潰れ及び変形をより抑制しやすくする観点、及びバンプ頂部を保護膜(X)から露出させる観点から、要件(β3)では、下記式(IIa)を満たすことが好ましい。
<Requirement (β3)>
The requirements (β3) are the thickness (XT ) (unit: μm) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. and the height of the bump (BM). h ) (Unit: μm) and the relationship is specified. Specifically, the following formula (II) is satisfied.
[( XT ) / (BM h )] ≧ 0.2 ... (II)
When [( XT ) / (BM h )] <0.2, the coating height of the protective film (X) with respect to the bump height (BM h ) is insufficient, and the protective film (X) is bumped. Crushing and deformation cannot be suppressed, and the bumps may come into contact with each other to cause a short circuit.
The upper limit of [( XT ) / (BM h )] is not particularly limited, but is preferably 1.0 or less, more preferably 1 from the viewpoint of exposing the bump top from the protective film (X). It is less than 0.0.
Here, from the viewpoint of making it easier to suppress the crushing and deformation of the bump and from the viewpoint of exposing the bump top from the protective film (X), the requirement (β3) preferably satisfies the following formula (IIa).
     P≦[(X)/(BM)]≦Q・・・・(IIa)
 式(IIa)中、Pは、0.2であり、好ましくは0.30、より好ましくは0.40、更に好ましくは0.50である。
 また、式(IIa)中、Qは、好ましくは1.0、より好ましくは0.90、更に好ましくは0.80である。
P ≤ [( XT ) / (BM h )] ≤ Q ... (IIa)
In formula (IIa), P is 0.2, preferably 0.30, more preferably 0.40, and even more preferably 0.50.
Further, in the formula (IIa), Q is preferably 1.0, more preferably 0.90, and even more preferably 0.80.
 なお、要件(β3)で規定される関係を満たす硬化性樹脂フィルム(x)の厚さは、硬化性樹脂フィルム(x)の厚さと、硬化性樹脂フィルム(x)を硬化して形成した保護膜(X)の厚さとの関係、及び使用対象となる半導体ウエハが有するバンプの高さ等の情報に基づいて、調整することができる。
 図11に、バンプの高さ(BM)と、硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における厚さ(X)(単位:μm)との関係を示す。
 硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における厚さ(X)(単位:μm)は、図11に示すように、バンプの高さ(BM)を測定したバンプ(バンプBM)に着目し、当該バンプと保護膜(X)との接触部のうち、バンプ形成面41aから最も離れた位置50のバンプ形成面41aからの高さを意味する。
 但し、バンプ形成面41aから最も離れた位置50は、バンプ形成面41aに形成された保護膜(X)が連続的に存在している領域内で決定される。したがって、例えば、バンプ頂部に一部存在する保護膜(X)であって、後述する露出処理(プラズマエッチング処理)により除去される保護膜(X)とバンプとの接触部からは、バンプ形成面41aから最も離れた位置50は決定されない。また、後述する露出処理(プラズマエッチング処理)を行う場合には、当該露出処理による保護膜(X)の後退後の厚さが、上記式(II)を満たす(0.2μm以上である)必要がある。つまり、後述する露出処理の有無によらず、保護膜(X)の厚さは、当然、半導体チップと配線基板とを、ボールバンプを介して電気的に接続する工程の直前において、上記式(II)を満たす(0.2μm以上である)必要がある。
 バンプの高さ(BM)と保護膜(X)の厚さ(X)は、例えば、保護膜(X)付き半導体ウエハを、バンプ形成面と垂直な方向で且つバンプの中心を通過するように割断し、割断後の断面を、光学顕微鏡観察することにより測定することができる。
The thickness of the curable resin film (x) satisfying the relationship specified in the requirement (β3) is the thickness of the curable resin film (x) and the protection formed by curing the curable resin film (x). It can be adjusted based on the relationship with the thickness of the film (X) and the height of bumps of the semiconductor wafer to be used.
FIG. 11 shows the height of the bump (BM h ) and the thickness (XT ) (unit: μm) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. The relationship is shown.
The thickness (XT ) (unit: μm) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. is the bump height (BM) as shown in FIG. Focusing on the bump (bump BM) for which h ) was measured, it means the height from the bump forming surface 41a at the position 50 farthest from the bump forming surface 41a among the contact portions between the bump and the protective film (X). do.
However, the position 50 farthest from the bump forming surface 41a is determined within the region where the protective film (X) formed on the bump forming surface 41a is continuously present. Therefore, for example, the protective film (X) partially present on the top of the bump, and the contact portion between the protective film (X) and the bump, which is removed by the exposure treatment (plasma etching treatment) described later, is a bump forming surface. The position 50 farthest from 41a is not determined. Further, when the exposure treatment (plasma etching treatment) described later is performed, the thickness of the protective film (X) after the retreat due to the exposure treatment must satisfy the above formula (II) (0.2 μm or more). There is. That is, regardless of the presence or absence of the exposure treatment described later, the thickness of the protective film (X) is naturally determined by the above formula (X) immediately before the step of electrically connecting the semiconductor chip and the wiring board via the ball bumps. II) must be satisfied (0.2 μm or more).
The bump height (BM h ) and the protective film (X) thickness ( XT ) pass, for example, a semiconductor wafer with the protective film (X) in a direction perpendicular to the bump forming surface and through the center of the bump. It can be measured by observing the cross section after cutting with an optical microscope.
 以下、本発明の保護膜形成用シートについて、要件(β1)及び要件(β2)を満たす保護膜(X)を形成するための硬化性樹脂フィルム(x)の調製方法も踏まえつつ、詳細に説明する。 Hereinafter, the protective film forming sheet of the present invention will be described in detail with reference to a method for preparing a curable resin film (x) for forming a protective film (X) satisfying the requirement (β1) and the requirement (β2). do.
<<保護膜形成用シートの構成>>
 本発明の保護膜形成用シートの構成例を図1に示す。
 本発明の一態様の保護膜形成用シートは、図1に示す保護膜形成用シート1のように、支持シート(Y)の一方の面に硬化性樹脂フィルム(x)が備えられている。支持シート(Y)の一方の面に硬化性樹脂フィルム(x)が備えられることで、製品パッケージとして硬化性樹脂フィルム(x)を運搬したり、工程内において硬化性樹脂フィルム(x)を搬送したりする際に、硬化性樹脂フィルム(x)が安定的に支持・保護される。
<< Structure of protective film forming sheet >>
FIG. 1 shows a configuration example of the protective film forming sheet of the present invention.
The protective film-forming sheet of one aspect of the present invention is provided with a curable resin film (x) on one surface of the support sheet (Y) like the protective film-forming sheet 1 shown in FIG. By providing the curable resin film (x) on one surface of the support sheet (Y), the curable resin film (x) can be transported as a product package, or the curable resin film (x) can be transported in the process. The curable resin film (x) is stably supported and protected when it is used.
 また、本発明の一態様の保護膜形成用シートの構成例を図2~4に示す。
 本発明の一態様の保護膜形成用シートは、図2に示す保護膜形成用シート1aのように、支持シート(Y)は基材11であり、基材11の一方の面に硬化性樹脂フィルム(x)が備えられている。
 また、本発明の一態様の保護膜形成用シートは、図3に示す保護膜形成用シート1bのように、支持シート(Y)は基材11と粘着剤層21とを積層した粘着シートであり、当該粘着シートの粘着剤層21と硬化性樹脂フィルム(x)とが貼合されていてもよい。
 さらに、本発明の一態様の保護膜形成用シートは、図4に示す保護膜形成用シート1cのように、支持シート(Y)は基材11と中間層31と粘着剤層21とをこの順で積層した粘着シートであり、当該粘着シートの粘着剤層21と硬化性樹脂フィルム(x)とが貼合されていてもよい。基材11と中間層31と粘着剤層21とをこの順で積層した粘着シートは、バックグラインドテープとして好適に用いることができる。すなわち、図4に示す保護膜形成用シート1cは、支持シート(Y)としてバックグラインドテープを有するため、保護膜形成用シート1cの硬化性樹脂フィルム(x)と、複数のバンプを有する半導体ウエハのバンプ形成面とを貼合した後、半導体ウエハのバンプ形成面とは反対側の面(以下、「半導体ウエハの裏面」ともいう)を研削して半導体ウエハを薄化処理する際に、好適に用いることができる。
Further, FIGS. 2 to 4 show structural examples of the protective film forming sheet according to one aspect of the present invention.
In the protective film forming sheet of one aspect of the present invention, as in the protective film forming sheet 1a shown in FIG. 2, the support sheet (Y) is the base material 11, and a curable resin is formed on one surface of the base material 11. A film (x) is provided.
Further, the protective film forming sheet according to one aspect of the present invention is an adhesive sheet in which a base material 11 and an adhesive layer 21 are laminated, as in the protective film forming sheet 1b shown in FIG. Yes, the pressure-sensitive adhesive layer 21 of the pressure-sensitive adhesive sheet and the curable resin film (x) may be bonded together.
Further, in the protective film forming sheet of one aspect of the present invention, as in the protective film forming sheet 1c shown in FIG. 4, the support sheet (Y) includes the base material 11, the intermediate layer 31, and the adhesive layer 21. The pressure-sensitive adhesive sheets are laminated in this order, and the pressure-sensitive adhesive layer 21 of the pressure-sensitive adhesive sheet and the curable resin film (x) may be bonded to each other. The pressure-sensitive adhesive sheet in which the base material 11, the intermediate layer 31, and the pressure-sensitive adhesive layer 21 are laminated in this order can be suitably used as a back grind tape. That is, since the protective film forming sheet 1c shown in FIG. 4 has a back grind tape as the supporting sheet (Y), the curable resin film (x) of the protective film forming sheet 1c and the semiconductor wafer having a plurality of bumps. Suitable for thinning a semiconductor wafer by grinding a surface of the semiconductor wafer opposite to the bump forming surface (hereinafter, also referred to as “back surface of the semiconductor wafer”) after bonding the bump forming surface of the semiconductor wafer. Can be used for.
 以下、本発明の保護膜形成用シートに用いられる硬化性樹脂フィルム(x)及び支持シート(Y)について説明する。 Hereinafter, the curable resin film (x) and the support sheet (Y) used for the protective film forming sheet of the present invention will be described.
<<硬化性樹脂フィルム(x)>>
 硬化性樹脂フィルム(x)は、複数のバンプを有する半導体ウエハのバンプ形成面を保護するためのフィルムであり、加熱又はエネルギー線照射による硬化により、保護膜(X)を形成する。すなわち、硬化性樹脂フィルム(x)は、加熱により硬化する熱硬化性樹脂フィルム(x1)であってもよく、エネルギー線照射により硬化するエネルギー線硬化性樹脂フィルム(x2)であってもよい。
 なお、本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味する。その例として、紫外線、電子線等が挙げられ、好ましくは紫外線が挙げられる。
<< Curable resin film (x) >>
The curable resin film (x) is a film for protecting the bump-forming surface of a semiconductor wafer having a plurality of bumps, and forms the protective film (X) by curing by heating or energy ray irradiation. That is, the curable resin film (x) may be a thermosetting resin film (x1) that is cured by heating, or an energy ray-curable resin film (x2) that is cured by energy ray irradiation.
In addition, in this specification, an "energy ray" means an electromagnetic wave or a charged particle beam having an energy quantum. Examples thereof include ultraviolet rays, electron beams, and the like, and ultraviolet rays are preferable.
 硬化性樹脂フィルム(x)の物性は、硬化性樹脂フィルム(x)の含有成分の種類及び量のいずれか一方又は両方を調整することにより調整できる。 The physical characteristics of the curable resin film (x) can be adjusted by adjusting either or both of the types and amounts of the components contained in the curable resin film (x).
 以下、熱硬化性樹脂フィルム(x1)及びエネルギー線硬化性樹脂フィルム(x2)について説明する。 Hereinafter, the thermosetting resin film (x1) and the energy ray-curable resin film (x2) will be described.
<熱硬化性樹脂フィルム(x1)>
 熱硬化性樹脂フィルム(x1)は、重合体成分(A)及び熱硬化性成分(B)を含有する。
 熱硬化性樹脂フィルム(x1)は、例えば、重合体成分(A)及び熱硬化性成分(B)を含有する熱硬化性樹脂組成物(x1-1)から形成される。
 重合体成分(A)は、重合性化合物が重合反応して形成されたとみなせる成分である。また、熱硬化性成分(B)は、熱を反応のトリガーとして、硬化(重合)反応し得る成分である。なお、当該硬化(重合)反応には、重縮合反応も含まれる。
 なお、本明細書の以下の記載において、「熱硬化性樹脂組成物(x1-1)の有効成分の全量での各成分の含有量」は、「熱硬化性樹脂組成物(x1-1)から形成される熱硬化性樹脂フィルム(x1)の各成分の含有量」と同義である。
<Thermosetting resin film (x1)>
The thermosetting resin film (x1) contains a polymer component (A) and a thermosetting component (B).
The thermosetting resin film (x1) is formed from, for example, a thermosetting resin composition (x1-1) containing a polymer component (A) and a thermosetting component (B).
The polymer component (A) is a component that can be regarded as being formed by a polymerization reaction of a polymerizable compound. The thermosetting component (B) is a component capable of undergoing a curing (polymerization) reaction using heat as a trigger for the reaction. The curing (polymerization) reaction also includes a polycondensation reaction.
In the following description of the present specification, "the content of each component in the total amount of the active component of the thermosetting resin composition (x1-1)" is referred to as "thermosetting resin composition (x1-1)". It is synonymous with "content of each component of the thermosetting resin film (x1) formed from".
(重合体成分(A))
 熱硬化性樹脂フィルム(x1)及び熱硬化性樹脂組成物(x1-1)は、重合体成分(A)を含有する。
 重合体成分(A)は、熱硬化性樹脂フィルム(x1)に造膜性や可撓性等を付与するための重合体化合物である。重合体成分(A)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。重合体成分(A)を2種以上組み合わせて用いる場合、それらの組み合わせ及び比率は任意に選択できる。
(Polymer component (A))
The thermosetting resin film (x1) and the thermosetting resin composition (x1-1) contain the polymer component (A).
The polymer component (A) is a polymer compound for imparting film-forming property, flexibility, etc. to the thermosetting resin film (x1). As the polymer component (A), one type may be used alone, or two or more types may be used in combination. When two or more kinds of polymer components (A) are used in combination, their combinations and ratios can be arbitrarily selected.
 重合体成分(A)としては、例えば、ポリビニルアセタール、アクリル系樹脂((メタ)アクリロイル基を有する樹脂)、ポリエステル、ウレタン系樹脂(ウレタン結合を有する樹脂)、アクリルウレタン樹脂、シリコーン系樹脂(シロキサン結合を有する樹脂)、ゴム系樹脂(ゴム構造を有する樹脂)、フェノキシ樹脂、及び熱硬化性ポリイミド等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
 これらの中でも、ポリビニルアセタール及びアクリル系樹脂から選択される1種以上が好ましい。
 以下、重合体成分(A)として好ましい、ポリビニルアセタール及びアクリル系樹脂を例に挙げて説明する。
Examples of the polymer component (A) include polyvinyl acetal, acrylic resin (resin having (meth) acryloyl group), polyester, urethane resin (resin having urethane bond), acrylic urethane resin, and silicone resin (siloxane). Examples thereof include a resin having a bond), a rubber-based resin (a resin having a rubber structure), a phenoxy resin, and a thermosetting polyimide. These can be used alone or in combination of two or more.
Among these, one or more selected from polyvinyl acetal and acrylic resin is preferable.
Hereinafter, polyvinyl acetal and an acrylic resin, which are preferable as the polymer component (A), will be described as an example.
・ポリビニルアセタール
 重合体成分(A)として用いるポリビニルアセタールとしては、特に限定されず、例えば、公知のポリビニルアセタールを用いることができる。
 ここでポリビニルアセタールの中でも、例えば、ポリビニルホルマール、ポリビニルブチラール等が挙げられ、ポリビニルブチラールがより好ましい。
 ポリビニルブチラールとしては、下記式(i-1)、(i-2)、及び(i-3)で表される構成単位を有するものが、半導体ウエハのバンプ形成面と保護膜(X)との密着性向上の観点から好ましい。
-Polyvinyl acetal The polyvinyl acetal used as the polymer component (A) is not particularly limited, and for example, a known polyvinyl acetal can be used.
Here, among the polyvinyl acetals, for example, polyvinyl formal, polyvinyl butyral and the like can be mentioned, and polyvinyl butyral is more preferable.
The polyvinyl butyral having the structural units represented by the following formulas (i-1), (i-2), and (i-3) is a semiconductor wafer having a bump forming surface and a protective film (X). It is preferable from the viewpoint of improving adhesion.
Figure JPOXMLDOC01-appb-C000001

 上記式(i-1)、(i-2)、及び(i-3)中、p、q、及びrは、それぞれの構成単位の含有割合(モル%)である。
Figure JPOXMLDOC01-appb-C000001

In the above formulas (i-1), (i-2), and (i-3), p, q, and r are the content ratios (mol%) of the respective constituent units.
 ポリビニルアセタールの重量平均分子量(Mw)は、5,000~200,000であることが好ましく、8,000~100,000であることがより好ましく、9,000~80,000であることが更に好ましく、10,000~50,000であることがより更に好ましい。ポリビニルアセタールの重量平均分子量がこのような範囲であることで、半導体ウエハのバンプ形成面と保護膜(X)との密着性を向上させやすい。また、バンプの上部(バンプの頂部とその近傍領域)での保護膜(X)の残存を抑制する効果がより高くなる。 The weight average molecular weight (Mw) of the polyvinyl acetal is preferably 5,000 to 200,000, more preferably 8,000 to 100,000, and further preferably 9,000 to 80,000. It is preferably 10,000 to 50,000, and even more preferably 10,000 to 50,000. When the weight average molecular weight of the polyvinyl acetal is in such a range, it is easy to improve the adhesion between the bump forming surface of the semiconductor wafer and the protective film (X). Further, the effect of suppressing the residual of the protective film (X) at the upper part of the bump (the top of the bump and the region in the vicinity thereof) becomes higher.
 上記式(i-1)で表されるブチラール基の構成単位の含有割合p(ブチラール化度)は、重合体成分(A)の全構成単位基準で、40~90モル%が好ましく、50~85モル%がより好ましく、60~76モル%が更に好ましい。 The content ratio p (degree of butyralization) of the structural unit of the butyral group represented by the above formula (i-1) is preferably 40 to 90 mol%, preferably 50 to 90 mol%, based on the total structural unit of the polymer component (A). 85 mol% is more preferable, and 60 to 76 mol% is further preferable.
 上記式(i-2)で表されるアセチル基を有する構成単位の含有割合qは、重合体成分(A)の全構成単位基準で、0.1~9モル%が好ましく、0.5~8モル%がより好ましく、1~7モル%が更に好ましい。 The content ratio q of the structural unit having an acetyl group represented by the above formula (i-2) is preferably 0.1 to 9 mol%, preferably 0.5 to 9 mol%, based on all the structural units of the polymer component (A). 8 mol% is more preferable, and 1 to 7 mol% is further preferable.
 上記式(i-3)で表される水酸基を有する構成単位の含有割合rは、重合体成分(A)の全構成単位基準で、10~60モル%が好ましく、10~50モル%がより好ましく、20~40モル%が更に好ましい。 The content ratio r of the structural unit having a hydroxyl group represented by the above formula (i-3) is preferably 10 to 60 mol%, more preferably 10 to 50 mol%, based on all the structural units of the polymer component (A). It is preferable, and more preferably 20 to 40 mol%.
 ポリビニルアセタールのガラス転移温度(Tg)は、40~80℃であることが好ましく、50~70℃であることがより好ましい。ポリビニルアセタールのTgがこのような範囲であることで、熱硬化性樹脂フィルム(x1)をバンプ付きウエハのバンプ形成面に貼付したときに、バンプの前記上部での保護膜(X)の残存を抑制する効果がより高くなり、また、熱硬化性樹脂層を熱硬化することで形成される保護膜の硬さを十分なものとできる。
 なお、本明細書において、重合体(樹脂)のガラス転移温度(Tg)は、後述する実施例に記載の方法により測定される値である。
The glass transition temperature (Tg) of polyvinyl acetal is preferably 40 to 80 ° C, more preferably 50 to 70 ° C. When the Tg of polyvinyl acetal is in such a range, when the thermosetting resin film (x1) is attached to the bump forming surface of the bumped wafer, the protective film (X) on the upper portion of the bump remains. The effect of suppressing the film becomes higher, and the hardness of the protective film formed by thermosetting the thermosetting resin layer can be made sufficient.
In this specification, the glass transition temperature (Tg) of the polymer (resin) is a value measured by the method described in Examples described later.
 ポリビニルブチラールを構成する上記3種の構成単位の含有比率は、所望の物性に応じて任意に調整してもよい。
 また、ポリビニルブチラールは、上記3種の構成単位以外の構成単位を有していてもよいが、上記3種の構成単位の含有量は、ポリビニルブチラールの全量基準で、好ましくは80~100モル%、より好ましくは90~100モル%、更に好ましくは100モル%である。
The content ratio of the above three types of structural units constituting polyvinyl butyral may be arbitrarily adjusted according to desired physical properties.
Further, polyvinyl butyral may have a structural unit other than the above three types of structural units, but the content of the above three types of structural units is preferably 80 to 100 mol% based on the total amount of polyvinyl butyral. , More preferably 90 to 100 mol%, still more preferably 100 mol%.
・アクリル系樹脂
 アクリル系樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル系樹脂の重量平均分子量(Mw)は、10,000~2,000,000であることが好ましく、100,000~1,500,000であることがより好ましい。
 アクリル系樹脂の重量平均分子量が上記の下限値以上であることで、熱硬化性樹脂フィルム(x1)の形状安定性(保管時の経時安定性)を向上させやすい。また、アクリル系樹脂の重量平均分子量が上記の上限値以下であることで、被着体の凹凸面へ熱硬化性樹脂フィルム(x1)が追従し易くなり、例えば、被着体と熱硬化性樹脂フィルム(x1)との間でボイド等の発生を抑制させやすい。
-Acrylic resin Examples of the acrylic resin include known acrylic polymers.
The weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1,500,000.
When the weight average molecular weight of the acrylic resin is at least the above lower limit value, it is easy to improve the shape stability (stability with time during storage) of the thermosetting resin film (x1). Further, when the weight average molecular weight of the acrylic resin is not more than the above upper limit value, the thermosetting resin film (x1) can easily follow the uneven surface of the adherend, for example, the adherend and the thermosetting. It is easy to suppress the generation of voids and the like with the resin film (x1).
 アクリル系樹脂のガラス転移温度(Tg)は、-60~70℃であることが好ましく、-30~50℃であることがより好ましい。
 アクリル系樹脂のガラス転移温度(Tg)が上記の下限値以上であることで、保護膜(X)と支持シート(Y)との接着力が抑制されて、支持シート(Y)の剥離性が向上する。また、アクリル系樹脂のガラス転移温度(Tg)が上記の上限値以下であることで、熱硬化性樹脂フィルム(x1)及び保護膜(X)の被着体との接着力が向上する。
The glass transition temperature (Tg) of the acrylic resin is preferably -60 to 70 ° C, more preferably -30 to 50 ° C.
When the glass transition temperature (Tg) of the acrylic resin is equal to or higher than the above lower limit, the adhesive force between the protective film (X) and the support sheet (Y) is suppressed, and the peelability of the support sheet (Y) becomes high. improves. Further, when the glass transition temperature (Tg) of the acrylic resin is not more than the above upper limit value, the adhesive force of the thermosetting resin film (x1) and the protective film (X) with the adherend is improved.
 アクリル系樹脂としては、例えば、1種又は2種以上の(メタ)アクリル酸エステルの重合体;(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン、及びN-メチロールアクリルアミド等から選択される2種以上のモノマーの共重合体等が挙げられる。 The acrylic resin is selected from, for example, a polymer of one or more (meth) acrylic acid esters; (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylol acrylamide, and the like. Examples thereof include copolymers of two or more kinds of monomers.
 アクリル系樹脂を構成する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、及び(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル及び(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、及び(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
(メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。
 本明細書において、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。
Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and (meth). N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylate Heptyl, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, Undecyl (meth) acrylate, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecyl (meth) acrylate , (Meta) hexadecyl acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, and octadecyl (meth) acrylate (stearyl (meth) acrylate), and other alkyl groups constituting the alkyl ester (Meta) acrylic acid alkyl ester having a chain structure with 1 to 18 carbon atoms;
(Meta) Acrylic acid cycloalkyl esters such as (meth) acrylate isobornyl and (meth) acrylate dicyclopentanyl;
(Meta) Acrylic acid aralkyl esters such as benzyl (meth) acrylic acid;
(Meta) Acrylic acid cycloalkenyl ester such as (meth) acrylic acid dicyclopentenyl ester;
(Meta) Acrylic acid cycloalkenyloxyalkyl ester such as (meth) acrylic acid dicyclopentenyloxyethyl ester;
(Meta) acrylate imide;
A glycidyl group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate;
Hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth) ) Hydroxyl-containing (meth) acrylic acid esters such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylate;
Examples thereof include substituted amino group-containing (meth) acrylic acid esters such as N-methylaminoethyl (meth) acrylic acid.
As used herein, the term "substituted amino group" means a group in which one or two hydrogen atoms of an amino group are substituted with a group other than a hydrogen atom.
 アクリル系樹脂は、例えば、(メタ)アクリル酸エステル以外に、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、及びスチレン及びN-メチロールアクリルアミド等から選択される1種以上のモノマーが共重合してなるものでもよい。 In the acrylic resin, for example, in addition to the (meth) acrylic acid ester, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like are copolymerized. It may be made of
 アクリル系樹脂を構成するモノマーは、1種単独であってもよく、2種以上であってもよい。アクリル系樹脂を構成するモノマーが2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The monomer constituting the acrylic resin may be one kind alone or two or more kinds. When there are two or more types of monomers constituting the acrylic resin, their combinations and ratios can be arbitrarily selected.
 アクリル系樹脂は、ビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、及びイソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。
 アクリル系樹脂の前記官能基は、後述する架橋剤(F)を介して他の化合物と結合してもよいし、架橋剤(F)を介さずに他の化合物と直接結合していてもよい。アクリル系樹脂が前記官能基によって他の化合物と結合することで、熱硬化性樹脂フィルム(x1)を用いて得られたパッケージの信頼性が向上する傾向がある。
The acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
The functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound without a cross-linking agent (F). .. When the acrylic resin is bonded to another compound by the functional group, the reliability of the package obtained by using the thermosetting resin film (x1) tends to be improved.
・他の樹脂
 ここで、本発明の一態様では、重合体成分(A)として、ポリビニルアセタール及びアクリル系樹脂以外の熱可塑性樹脂(以下、単に「熱可塑性樹脂」と略記することがある)を、アクリル系樹脂を用いずに単独で用いてもよいし、ポリビニルアセタール及び/又はアクリル系樹脂と併用してもよい。
 熱可塑性樹脂を用いることで、保護膜(X)の支持シート(Y)からの剥離性が向上したり、被着体の凹凸面へ熱硬化性樹脂フィルム(x1)が追従し易くなり、被着体と熱硬化性樹脂フィルム(x1)との間でボイド等の発生がより抑制されたりすることがある。
-Other Resins Here, in one aspect of the present invention, as the polymer component (A), a thermoplastic resin other than polyvinyl acetal and acrylic resin (hereinafter, may be simply abbreviated as "thermoplastic resin") is used. , It may be used alone without using an acrylic resin, or it may be used in combination with polyvinyl acetal and / or an acrylic resin.
By using the thermoplastic resin, the peelability of the protective film (X) from the support sheet (Y) is improved, and the thermosetting resin film (x1) easily follows the uneven surface of the adherend, so that the cover can be covered. The generation of voids and the like may be further suppressed between the adherend and the thermosetting resin film (x1).
 熱可塑性樹脂の重量平均分子量は1,000~100,000であることが好ましく、3,000~80,000であることがより好ましい。 The weight average molecular weight of the thermoplastic resin is preferably 1,000 to 100,000, more preferably 3,000 to 80,000.
 前記熱可塑性樹脂のガラス転移温度(Tg)は、-30~150℃であることが好ましく、-20~120℃であることがより好ましい。 The glass transition temperature (Tg) of the thermoplastic resin is preferably −30 to 150 ° C., more preferably −20 to 120 ° C.
 熱可塑性樹脂としては、例えば、ポリエステル、ポリウレタン、フェノキシ樹脂、ポリブテン、ポリブタジエン、及びポリスチレン等が挙げられる。 Examples of the thermoplastic resin include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, polystyrene and the like.
 熱可塑性樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。熱可塑性樹脂が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 One type of thermoplastic resin may be used alone, or two or more types may be used in combination. When there are two or more types of thermoplastic resins, their combinations and ratios can be arbitrarily selected.
・重合体成分(A)の含有量
 重合体成分(A)の含有量は、要件(β1)及び要件(β2)を満たす保護膜(X)を得やすくする観点から、熱硬化性樹脂組成物(x1-1)の有効成分の全量基準で、5~85質量%であることが好ましく、10~80質量%であることがより好ましく、15~70質量%であることが更に好ましく、15~60質量%であることがより更に好ましく、15~50質量%であることが更になお好ましい。
-Content of the polymer component (A) The content of the polymer component (A) is a thermosetting resin composition from the viewpoint of facilitating the acquisition of the protective film (X) satisfying the requirements (β1) and the requirements (β2). Based on the total amount of the active ingredient of (x1-1), it is preferably 5 to 85% by mass, more preferably 10 to 80% by mass, further preferably 15 to 70% by mass, and 15 to 15 to 70% by mass. It is even more preferably 60% by mass, and even more preferably 15 to 50% by mass.
・好ましい重合体成分(A)の態様
 上記のとおり、重合体成分(A)としては、ポリビニルアセタール及びアクリル系樹脂から選択される1種以上が好ましいが、要件(β1)及び要件(β2)を満たす保護膜(X)をより得やすくする観点から、重合体成分(A)はポリビニルアセタールであることが好ましい。
 なお、重合体成分(A)は、熱硬化性成分(B)にも該当する場合がある。本発明では、熱硬化性樹脂組成物(x1-1)が、このような重合体成分(A)及び熱硬化性成分(B)の両方に該当する成分を含有する場合、熱硬化性樹脂組成物(x1-1)は、重合体成分(A)及び熱硬化性成分(B)の両方を含有するとみなす。
-Preferable Aspects of Polymer Component (A) As described above, as the polymer component (A), one or more selected from polyvinyl acetal and acrylic resin is preferable, but requirements (β1) and requirements (β2) are satisfied. From the viewpoint of making it easier to obtain the protective film (X) to be filled, the polymer component (A) is preferably polyvinyl acetal.
The polymer component (A) may also correspond to the thermosetting component (B). In the present invention, when the thermosetting resin composition (x1-1) contains a component corresponding to both the polymer component (A) and the thermosetting component (B), the thermosetting resin composition The product (x1-1) is considered to contain both the polymer component (A) and the thermosetting component (B).
(熱硬化性成分(B))
 熱硬化性樹脂フィルム(x1)及び熱硬化性樹脂組成物(x1-1)は、熱硬化性成分(B)を含有する。
 熱硬化性成分(B)は、熱硬化性樹脂フィルム(x1)を硬化させて、硬質の保護膜(X)を形成するための成分である。
 熱硬化性成分(B)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。熱硬化性成分(B)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Thermosetting component (B))
The thermosetting resin film (x1) and the thermosetting resin composition (x1-1) contain a thermosetting component (B).
The thermosetting component (B) is a component for curing the thermosetting resin film (x1) to form a hard protective film (X).
As the thermosetting component (B), one type may be used alone, or two or more types may be used in combination. When there are two or more thermosetting components (B), their combinations and ratios can be arbitrarily selected.
 熱硬化性成分(B)としては、例えば、エポキシ系熱硬化性樹脂、熱硬化性ポリイミド、ポリウレタン、不飽和ポリエステル、及びシリコーン樹脂等が挙げられる。これらの中でも、エポキシ系熱硬化性樹脂が好ましい。 Examples of the thermosetting component (B) include epoxy-based thermosetting resins, thermosetting polyimides, polyurethanes, unsaturated polyesters, and silicone resins. Among these, epoxy-based thermosetting resins are preferable.
 エポキシ系熱硬化性樹脂は、エポキシ樹脂(B1)及び熱硬化剤(B2)からなる。
 エポキシ系熱硬化性樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。エポキシ系熱硬化性樹脂が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
The epoxy-based thermosetting resin is composed of an epoxy resin (B1) and a thermosetting agent (B2).
One type of epoxy thermosetting resin may be used alone, or two or more types may be used in combination. When there are two or more types of epoxy thermosetting resins, their combinations and ratios can be arbitrarily selected.
・エポキシ樹脂(B1)
 エポキシ樹脂(B1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、及び2官能以上のエポキシ化合物が挙げられる。
・ Epoxy resin (B1)
Examples of the epoxy resin (B1) include known ones, such as polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolac epoxy resin, and dicyclopentadiene type epoxy resin. Examples thereof include biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, and bifunctional or higher functional epoxy compounds.
 エポキシ樹脂(B1)としては、不飽和炭化水素基を有するエポキシ樹脂を用いてもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル系樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、熱硬化性樹脂フィルム(x1)を用いて得られたパッケージの信頼性が向上する。 As the epoxy resin (B1), an epoxy resin having an unsaturated hydrocarbon group may be used. Epoxy resins having unsaturated hydrocarbon groups have higher compatibility with acrylic resins than epoxy resins having no unsaturated hydrocarbon groups. Therefore, by using an epoxy resin having an unsaturated hydrocarbon group, the reliability of the package obtained by using the thermosetting resin film (x1) is improved.
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基に(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、及び(メタ)アクリルアミド基等が挙げられる。これらの中でも、アクリロイル基が好ましい。
Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy group of the polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction of (meth) acrylic acid or a derivative thereof. Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
The unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (vinyl group), a 2-propenyl group (allyl group), a (meth) acryloyl group, and a (meth) acryloyl group. ) Examples thereof include an acrylamide group. Of these, the acryloyl group is preferable.
 エポキシ樹脂(B1)の数平均分子量は、特に限定されないが、熱硬化性樹脂フィルム(x1)の硬化性、並びに硬化後の保護膜(X)の強度及び耐熱性の点から、300~30,000であることが好ましく、400~10,000であることがより好ましく、500~3,000であることが更に好ましい。
 エポキシ樹脂(B1)のエポキシ当量は、100~1,000g/eqであることが好ましく、300~800g/eqであることがより好ましい。
The number average molecular weight of the epoxy resin (B1) is not particularly limited, but is 300 to 30, from the viewpoint of the curability of the thermosetting resin film (x1) and the strength and heat resistance of the protective film (X) after curing. It is preferably 000, more preferably 400 to 10,000, and even more preferably 500 to 3,000.
The epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1,000 g / eq, more preferably 300 to 800 g / eq.
 エポキシ樹脂(B1)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。エポキシ樹脂(B1)を2種以上で併用する場合、それらの組み合わせ及び比率は任意に選択できる。 One type of epoxy resin (B1) may be used alone, or two or more types may be used in combination. When two or more types of epoxy resin (B1) are used in combination, the combination and ratio thereof can be arbitrarily selected.
・熱硬化剤(B2)
 熱硬化剤(B2)は、エポキシ樹脂(B1)に対する硬化剤として機能する。
 熱硬化剤(B2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、及び酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
・ Thermosetting agent (B2)
The thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
Examples of the thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with epoxy groups in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, and a group in which an acid group is annealed, and the phenolic hydroxyl group, an amino group, or an acid group is annealed. It is preferably a group, and more preferably a phenolic hydroxyl group or an amino group.
 熱硬化剤(B2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、及びアラルキルフェノール樹脂等が挙げられる。
 熱硬化剤(B2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド(以下、「DICY」と略記することがある)等が挙げられる。
Among the heat-curing agents (B2), examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolak-type phenol resins, dicyclopentadiene-based phenol resins, and aralkylphenol resins. ..
Among the thermosetting agents (B2), examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter, may be abbreviated as "DICY") and the like.
 熱硬化剤(B2)は、不飽和炭化水素基を有するものでもよい。
 不飽和炭化水素基を有する熱硬化剤(B2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、又は、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。熱硬化剤(B2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。
The thermosetting agent (B2) may have an unsaturated hydrocarbon group.
Examples of the thermosetting agent (B2) having an unsaturated hydrocarbon group include a compound in which a part of the hydroxyl groups of the phenol resin is replaced with a group having an unsaturated hydrocarbon group, or an aromatic ring of the phenol resin. , Compounds in which a group having an unsaturated hydrocarbon group is directly bonded, and the like can be mentioned. The unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
 熱硬化剤(B2)としてフェノール系硬化剤を用いる場合には、保護膜(X)の支持シート(Y)からの剥離性を向上させやすくする観点から、熱硬化剤(B2)は軟化点又はガラス転移温度が高いものが好ましい。 When a phenolic curing agent is used as the thermosetting agent (B2), the thermosetting agent (B2) has a softening point or a softening point from the viewpoint of facilitating the improvement of the peelability of the protective film (X) from the support sheet (Y). Those having a high glass transition temperature are preferable.
 熱硬化剤(B2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、及びアラルキルフェノール樹脂等の樹脂成分の数平均分子量は、300~30,000であることが好ましく、400~10,000であることがより好ましく、500~3,000であることが更に好ましい。
 熱硬化剤(B2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。
Among the thermosetting agents (B2), the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene phenol resin, and aralkyl phenol resin shall be 300 to 30,000. , More preferably 400 to 10,000, and even more preferably 500 to 3,000.
The molecular weight of the non-resin component such as biphenol and dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
 熱硬化剤(B2)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。熱硬化剤(B2)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the thermosetting agent (B2), one type may be used alone, or two or more types may be used in combination. When there are two or more types of thermosetting agents (B2), their combinations and ratios can be arbitrarily selected.
 熱硬化性樹脂組成物(x1-1)において、熱硬化剤(B2)の含有量は、エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましい。熱硬化剤(B2)の含有量が上記の下限値以上であることで、熱硬化性樹脂フィルム(x1)の硬化がより進行し易くなる。また、熱硬化剤(B2)の含有量が上記の上限値以下であることで、熱硬化性樹脂フィルム(x1)の吸湿率が低減されて、熱硬化性樹脂フィルム(x1)を用いて得られたパッケージの信頼性がより向上する。 In the thermosetting resin composition (x1-1), the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1). It is preferably 1 to 200 parts by mass, and more preferably 1 to 200 parts by mass. When the content of the thermosetting agent (B2) is at least the above lower limit value, the curing of the thermosetting resin film (x1) becomes easier to proceed. Further, when the content of the thermosetting agent (B2) is not more than the above upper limit value, the moisture absorption rate of the thermosetting resin film (x1) is reduced, and the thermosetting resin film (x1) can be used. The reliability of the package is improved.
 熱硬化性樹脂組成物(x1-1)において、熱硬化性成分(B)の含有量(エポキシ樹脂(B1)及び熱硬化剤(B2)の合計含有量)は、重合体成分(A)の含有量100質量部に対して、50~1000質量部であることが好ましく、70~800質量部であることがより好ましく、80~600質量部であることが更に好ましく、90~500質量部であることがより更に好ましく、100~400質量部であることが更になお好ましい。熱硬化性成分(B)の含有量がこのような範囲であることで、保護膜(X)と支持シート(Y)との接着力が抑制されて、支持シート(Y)の剥離性が向上する。また、要件(β1)及び要件(β2)を満たす保護膜(X)を得やすくできる。なお、重合体成分(A)に対して熱硬化性成分(B)の量を増加する程、引張弾性率E’を高めやすい傾向がある。逆に、重合体成分(A)に対して熱硬化性成分(B)の量を減らす程、引張弾性率E’を低下させやすい傾向がある。 In the thermosetting resin composition (x1-1), the content of the thermosetting component (B) (the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is that of the polymer component (A). The content is preferably 50 to 1000 parts by mass, more preferably 70 to 800 parts by mass, further preferably 80 to 600 parts by mass, and 90 to 500 parts by mass with respect to 100 parts by mass. It is even more preferable that the amount is 100 to 400 parts by mass. When the content of the thermosetting component (B) is in such a range, the adhesive force between the protective film (X) and the support sheet (Y) is suppressed, and the peelability of the support sheet (Y) is improved. do. Further, the protective film (X) satisfying the requirement (β1) and the requirement (β2) can be easily obtained. In addition, as the amount of the thermosetting component (B) increases with respect to the polymer component (A), the tensile elastic modulus E'tends to increase easily. On the contrary, as the amount of the thermosetting component (B) is reduced with respect to the polymer component (A), the tensile elastic modulus E'tends to be lowered more easily.
(硬化促進剤(C))
 熱硬化性樹脂フィルム(x1)及び熱硬化性樹脂組成物(x1-1)は、硬化促進剤(C)を含有していてもよい。
 硬化促進剤(C)は、熱硬化性樹脂組成物(x1-1)の硬化速度を調整するための成分である。
 好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(1個以上の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(1個以上の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
(Curing accelerator (C))
The thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain a curing accelerator (C).
The curing accelerator (C) is a component for adjusting the curing rate of the thermosetting resin composition (x1-1).
Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole. , 2-Phenyl-4-methylimidazole, 2-Phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and other imidazoles (one or more hydrogen atoms other than hydrogen atoms) (Imidazole substituted with an organic group); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (phosphine in which one or more hydrogen atoms are substituted with an organic group); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylborone salts such as tetraphenylborate.
 硬化促進剤(C)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。硬化促進剤(C)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the curing accelerator (C), one type may be used alone, or two or more types may be used in combination. When there are two or more types of curing accelerators (C), their combinations and ratios can be arbitrarily selected.
 熱硬化性樹脂組成物(x1-1)において、硬化促進剤(C)を用いる場合の、硬化促進剤(C)の含有量は、熱硬化性成分(B)の含有量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。硬化促進剤(C)の含有量が上記の下限値以上であることで、硬化促進剤(C)を用いたことによる効果がより顕著に得られやすい。また、硬化促進剤(C)の含有量が上記の上限値以下であることで、例えば、高極性の硬化促進剤(C)が、高温・高湿度条件下で、熱硬化性樹脂フィルム(x1)中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、熱硬化性樹脂フィルム(x1)を用いて得られたパッケージの信頼性がより向上する。 In the thermosetting resin composition (x1-1), when the curing accelerator (C) is used, the content of the curing accelerator (C) is based on 100 parts by mass of the content of the thermosetting component (B). The amount is preferably 0.01 to 10 parts by mass, and more preferably 0.1 to 5 parts by mass. When the content of the curing accelerator (C) is at least the above lower limit value, the effect of using the curing accelerator (C) can be more remarkably obtained. Further, when the content of the curing accelerator (C) is not more than the above upper limit value, for example, the highly polar curing accelerator (C) is a thermosetting resin film (x1) under high temperature and high humidity conditions. ), The effect of suppressing segregation by moving to the adhesion interface side with the adherend is enhanced, and the reliability of the package obtained by using the thermosetting resin film (x1) is further improved.
(充填材(D))
 熱硬化性樹脂フィルム(x1)及び熱硬化性樹脂組成物(x1-1)は、充填材(D)を含有していてもよい。
 充填材(D)を含有することにより、硬化性樹脂フィルム(x1)を硬化して得られた保護膜(X)の熱膨張係数を適切な範囲に調整しやすくなり、熱硬化性樹脂フィルム(x1)を用いて得られたパッケージの信頼性がより向上する。また、熱硬化性樹脂フィルム(x1)が充填材(D)を含有することにより、保護膜(X)の吸湿率を低減したり、放熱性を向上させたりすることもできる。
(Filler (D))
The thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain a filler (D).
By containing the filler (D), it becomes easy to adjust the coefficient of thermal expansion of the protective film (X) obtained by curing the curable resin film (x1) within an appropriate range, and the thermosetting resin film (x1) can be easily adjusted. The reliability of the package obtained by using x1) is further improved. Further, when the thermosetting resin film (x1) contains the filler (D), the hygroscopicity of the protective film (X) can be reduced and the heat dissipation can be improved.
 充填材(D)は、有機充填材及び無機充填材のいずれでもよいが、無機充填材であることが好ましい。好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましい。 The filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler. Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride and the like; spherical beads of these inorganic fillers; surface modification of these inorganic fillers. Goods; Single crystal fibers of these inorganic fillers; Glass fibers and the like. Among these, the inorganic filler is preferably silica or alumina.
 充填材(D)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 充填材(D)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
As the filler (D), one type may be used alone, or two or more types may be used in combination.
When there are two or more kinds of fillers (D), their combinations and ratios can be arbitrarily selected.
 充填材(D)を用いる場合の充填材(D)の含有量は、熱硬化性樹脂組成物(x1-1)の有効成分の全量基準で、5~80質量%であることが好ましく、7~60質量%であることがより好ましい。充填材(D)の含有量がこのような範囲であることで、上記の熱膨張係数の調整がより容易となる。 When the filler (D) is used, the content of the filler (D) is preferably 5 to 80% by mass based on the total amount of the active ingredients of the thermosetting resin composition (x1-1), 7 More preferably, it is in an amount of about 60% by mass. When the content of the filler (D) is in such a range, the above-mentioned coefficient of thermal expansion can be easily adjusted.
 充填材(D)の平均粒子径は、5nm~1,000nmであることが好ましく、5nm~500nmであることがより好ましく、10nm~300nmであることが更に好ましい。上記の平均粒子径は、1個の粒子における外径を数カ所で測定し、その平均値を求めたものである。 The average particle size of the filler (D) is preferably 5 nm to 1,000 nm, more preferably 5 nm to 500 nm, and even more preferably 10 nm to 300 nm. The above average particle size is obtained by measuring the outer diameter of one particle at several places and obtaining the average value.
(カップリング剤(E))
 熱硬化性樹脂フィルム(x1)及び熱硬化性樹脂組成物(x1-1)は、カップリング剤(E)を含有していてもよい。
 カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、熱硬化性樹脂フィルム(x1)の被着体に対する接着性及び密着性を向上させやすい。また、カップリング剤(E)を用いることで、熱硬化性樹脂フィルム(x1)を硬化して得られた保護膜(X)は、耐熱性を損なうことなく、また、耐水性が向上しやすい。
(Coupling agent (E))
The thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain a coupling agent (E).
By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, it is easy to improve the adhesiveness and adhesion of the thermosetting resin film (x1) to the adherend. Further, the protective film (X) obtained by curing the thermosetting resin film (x1) by using the coupling agent (E) does not impair the heat resistance and easily improves the water resistance. ..
 カップリング剤(E)は、重合体成分(A)及び熱硬化性成分(B)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。好ましいシランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、及びイミダゾールシラン等が挙げられる。 The coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional groups of the polymer component (A), the thermosetting component (B) and the like, and is preferably a silane coupling agent. More preferred. Preferred silane coupling agents include, for example, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2-( 3,4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-aminoethyl) Amino) propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxy Examples thereof include silane, bis (3-triethoxysilylpropyl) tetrasulfan, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and imidazolesilane.
 カップリング剤(E)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。カップリング剤(E)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the coupling agent (E), one type may be used alone, or two or more types may be used in combination. When there are two or more kinds of coupling agents (E), their combinations and ratios can be arbitrarily selected.
 熱硬化性樹脂組成物(x1-1)において、カップリング剤(E)を用いる場合の、カップリング剤(E)の含有量は、重合体成分(A)及び熱硬化性成分(B)の合計含有量100質量部に対して、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが更に好ましい。カップリング剤(E)の含有量が上記の下限値以上であることで、充填材(D)の樹脂への分散性の向上や、熱硬化性樹脂フィルム(x1)の被着体との接着性の向上など、カップリング剤(E)を用いたことによる効果がより顕著に得られる。また、カップリング剤(E)の含有量が上記の上限値以下であることで、アウトガスの発生がより抑制される。 In the thermosetting resin composition (x1-1), when the coupling agent (E) is used, the content of the coupling agent (E) is the content of the polymer component (A) and the thermosetting component (B). The total content is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and further preferably 0.1 to 5 parts by mass with respect to 100 parts by mass. .. When the content of the coupling agent (E) is equal to or higher than the above lower limit, the dispersibility of the filler (D) in the resin is improved and the thermosetting resin film (x1) is adhered to the adherend. The effect of using the coupling agent (E), such as improvement of the property, can be obtained more remarkably. Further, when the content of the coupling agent (E) is not more than the above upper limit value, the generation of outgas is further suppressed.
(架橋剤(F))
 重合体成分(A)として、上述のアクリル系樹脂等の、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、又はイソシアネート基等の官能基を有するものを用いる場合、熱硬化性樹脂フィルム(x1)及び熱硬化性樹脂組成物(x1-1)は、前記官能基を他の化合物と結合させて架橋するための架橋剤(F)を含有していてもよい。
 架橋剤(F)を用いて架橋することにより、熱硬化性樹脂フィルム(x1)の初期接着力及び凝集力を調節できる。
(Crosslinking agent (F))
The polymer component (A) has a functional group such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, or an isocyanate group that can be bonded to other compounds such as the above-mentioned acrylic resin. When the above is used, the thermosetting resin film (x1) and the thermosetting resin composition (x1-1) contain a cross-linking agent (F) for bonding the functional group with another compound and cross-linking. You may.
By cross-linking with the cross-linking agent (F), the initial adhesive force and cohesive force of the thermosetting resin film (x1) can be adjusted.
 架橋剤(F)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(金属キレート構造を有する架橋剤)、及びアジリジン系架橋剤(アジリジニル基を有する架橋剤)等が挙げられる。 Examples of the cross-linking agent (F) include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based cross-linking agent (a cross-linking agent having a metal chelate structure), and an aziridine-based cross-linking agent (a cross-linking agent having an aziridinyl group). And so on.
 有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味し、その例としては、トリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。 Examples of the organic polyvalent isocyanate compound include an aromatic polyvalent isocyanate compound, an aliphatic polyhydric isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively abbreviated as "aromatic polyvalent isocyanate compound and the like". ); Trimerics such as the aromatic polyvalent isocyanate compound, isocyanurates and adducts; terminal isocyanate urethane prepolymers obtained by reacting the aromatic polyvalent isocyanate compounds with polyol compounds, etc. Can be mentioned. The "adduct" includes the aromatic polyhydric isocyanate compound, the aliphatic polyhydric isocyanate compound, or the alicyclic polyvalent isocyanate compound, and low amounts of ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, castor oil, and the like. It means a reaction product with a molecularly active hydrogen-containing compound, and examples thereof include a xylylene diisocyanate adduct of trimethylolpropane.
 有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。 More specifically, as the organic polyvalent isocyanate compound, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4, 4'-diisocyanate; diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylolpropane Compounds in which any one or more of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate are added to all or some hydroxylates of the polyols such as lysine diisocyanate.
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、及びN,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。 Examples of the organic polyvalent imine compound include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxyamide), trimethylolpropane-tri-β-aziridinyl propionate, and tetramethylolmethane. Examples thereof include -tri-β-aziridinyl propionate and N, N'-toluene-2,4-bis (1-aziridinecarboxyamide) triethylene melamine.
 架橋剤(F)として有機多価イソシアネート化合物を用いる場合、重合体成分(A)としては、水酸基含有重合体を用いることが好ましい。架橋剤(F)がイソシアネート基を有し、重合体成分(A)が水酸基を有する場合、架橋剤(F)と重合体成分(A)との反応によって、熱硬化性樹脂フィルム(x1)に架橋構造を簡便に導入できる。 When an organic multivalent isocyanate compound is used as the cross-linking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A). When the cross-linking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, the reaction between the cross-linking agent (F) and the polymer component (A) results in a thermosetting resin film (x1). The crosslinked structure can be easily introduced.
 架橋剤(F)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。架橋剤(F)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the cross-linking agent (F), one type may be used alone, or two or more types may be used in combination. When there are two or more cross-linking agents (F), their combinations and ratios can be arbitrarily selected.
 熱硬化性樹脂組成物(x1-1)において、架橋剤(F)を用いる場合の、架橋剤(F)の含有量は、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが更に好ましい。架橋剤(F)の前記含有量が前記下限値以上であることで、架橋剤(F)を用いたことによる効果がより顕著に得られる。また、架橋剤(F)の前記含有量が前記上限値以下であることで、架橋剤(F)の過剰使用が抑制される。 In the thermosetting resin composition (x1-1), when the cross-linking agent (F) is used, the content of the cross-linking agent (F) is 0 with respect to 100 parts by mass of the content of the polymer component (A). It is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and even more preferably 0.5 to 5 parts by mass. When the content of the cross-linking agent (F) is at least the lower limit value, the effect of using the cross-linking agent (F) is more remarkable. Further, when the content of the cross-linking agent (F) is not more than the upper limit value, the excessive use of the cross-linking agent (F) is suppressed.
(エネルギー線硬化性樹脂(G))
 熱硬化性樹脂フィルム(x1)及び熱硬化性樹脂組成物(x1-1)は、エネルギー線硬化性樹脂(G)を含有していてもよい。
 熱硬化性樹脂フィルム(x1)が、エネルギー線硬化性樹脂(G)を含有していることにより、エネルギー線の照射によって特性を変化させることができる。
(Energy ray curable resin (G))
The thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain an energy ray-curable resin (G).
Since the thermosetting resin film (x1) contains the energy ray-curable resin (G), the characteristics can be changed by irradiation with energy rays.
 エネルギー線硬化性樹脂(G)は、エネルギー線硬化性化合物を重合(硬化)して得られたものである。エネルギー線硬化性化合物としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。 The energy ray-curable resin (G) is obtained by polymerizing (curing) an energy ray-curable compound. Examples of the energy ray-curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate-based compounds having a (meth) acryloyl group are preferable.
 アクリレート系化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の鎖状脂肪族骨格含有(メタ)アクリレート;ジシクロペンタニルジ(メタ)アクリレート等の環状脂肪族骨格含有(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;オリゴエステル(メタ)アクリレート;ウレタン(メタ)アクリレートオリゴマー;エポキシ変性(メタ)アクリレート;前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート;イタコン酸オリゴマー等が挙げられる。 Examples of the acrylate-based compound include trimethylolpropantri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol monohydroxypenta (meth). ) Acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate and other chain aliphatic skeleton-containing (meth) acrylate; dicyclo Cyclic aliphatic skeleton-containing (meth) acrylate such as pentanyldi (meth) acrylate; Polyalkylene glycol (meth) acrylate such as polyethylene glycol di (meth) acrylate; Oligoester (meth) acrylate; Urethane (meth) acrylate oligomer; Epoxy-modified (meth) acrylates; polyether (meth) acrylates other than the polyalkylene glycol (meth) acrylates; itaconic acid oligomers and the like can be mentioned.
 エネルギー線硬化性化合物の重量平均分子量は、100~30,000であることが好ましく、300~10,000であることがより好ましい。 The weight average molecular weight of the energy ray-curable compound is preferably 100 to 30,000, more preferably 300 to 10,000.
 重合に用いるエネルギー線硬化性化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。重合に用いるエネルギー線硬化性化合物が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the energy ray-curable compound used for polymerization, one type may be used alone, or two or more types may be used in combination. When there are two or more energy ray-curable compounds used for polymerization, their combinations and ratios can be arbitrarily selected.
 エネルギー線硬化性樹脂(G)を用いる場合の、エネルギー線硬化性樹脂(G)の含有量は、熱硬化性樹脂組成物(x1-1)の有効成分の全量基準で、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが更に好ましい。 When the energy ray-curable resin (G) is used, the content of the energy ray-curable resin (G) is 1 to 95% by mass based on the total amount of the active ingredients of the thermosetting resin composition (x1-1). It is preferably 5 to 90% by mass, more preferably 10 to 85% by mass.
(光重合開始剤(H))
 熱硬化性樹脂フィルム(x1)及び熱硬化性樹脂組成物(x1-1)が、エネルギー線硬化性樹脂(G)を含有する場合、エネルギー線硬化性樹脂(G)の重合反応を効率よく進めるために、熱硬化性樹脂フィルム(x1)及び熱硬化性樹脂組成物(x1-1)は、光重合開始剤(H)を含有していてもよい。
(Photopolymerization Initiator (H))
When the thermosetting resin film (x1) and the thermosetting resin composition (x1-1) contain the energy ray-curable resin (G), the polymerization reaction of the energy ray-curable resin (G) is efficiently promoted. Therefore, the thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain a photopolymerization initiator (H).
 光重合開始剤(H)としては、例えば、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルスルフィド、テトラメチルチウラムモノスルフィド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、1,2-ジフェニルメタン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、及び2-クロロアントラキノン等が挙げられる。 Examples of the photopolymerization initiator (H) include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2,4. -Diethylthioxanthone, 1-hydroxycyclohexylphenyl ketone, benzyldiphenylsulfide, tetramethylthium monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, 1,2-diphenylmethane, 2-hydroxy-2-methyl-1- [4- (1-Methylvinyl) phenyl] propanone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-chloroanthraquinone and the like can be mentioned.
 光重合開始剤(H)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。光重合開始剤(H)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the photopolymerization initiator (H), one type may be used alone, or two or more types may be used in combination. When there are two or more photopolymerization initiators (H), their combinations and ratios can be arbitrarily selected.
 熱硬化性樹脂組成物(x1-1)において、光重合開始剤(H)の含有量は、エネルギー線硬化性樹脂(G)の含有量100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、2~5質量部であることが更に好ましい。 In the thermosetting resin composition (x1-1), the content of the photopolymerization initiator (H) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the content of the energy ray-curable resin (G). It is preferably 1 to 10 parts by mass, more preferably 2 to 5 parts by mass.
(汎用添加剤(I))
 熱硬化性樹脂フィルム(x1)及び熱硬化性樹脂組成物(x1-1)は、本発明の効果を損なわない範囲内において、汎用添加剤(I)を含有していてもよい。汎用添加剤(I)は、公知のものでよく、目的に応じて任意に選択でき、特に限定されない。
 好ましい汎用添加剤(I)としては、例えば、可塑剤、帯電防止剤、酸化防止剤、着色剤(染料、顔料)、及びゲッタリング剤等が挙げられる。
(General-purpose additive (I))
The thermosetting resin film (x1) and the thermosetting resin composition (x1-1) may contain the general-purpose additive (I) as long as the effects of the present invention are not impaired. The general-purpose additive (I) may be a known one, and may be arbitrarily selected depending on the intended purpose, and is not particularly limited.
Preferred general-purpose additives (I) include, for example, plasticizers, antistatic agents, antioxidants, colorants (dye, pigment), gettering agents and the like.
 汎用添加剤(I)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。汎用添加剤(I)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 汎用添加剤(I)の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
As the general-purpose additive (I), one type may be used alone, or two or more types may be used in combination. When there are two or more general-purpose additives (I), their combinations and ratios can be arbitrarily selected.
The content of the general-purpose additive (I) is not particularly limited, and may be appropriately selected depending on the intended purpose.
(溶媒)
 熱硬化性樹脂組成物(x1-1)は、さらに溶媒を含有することが好ましい。
 溶媒を含有する熱硬化性樹脂組成物(x1-1)は、取り扱い性が良好となる。
 溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
 溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。溶媒が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 溶媒は、熱硬化性樹脂組成物(x1-1)中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。
(solvent)
The thermosetting resin composition (x1-1) preferably further contains a solvent.
The thermosetting resin composition (x1-1) containing a solvent has good handleability.
The solvent is not particularly limited, but preferred ones are, for example, hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol; Examples thereof include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides (compounds having an amide bond) such as dimethylformamide and N-methylpyrrolidone.
As the solvent, one type may be used alone, or two or more types may be used in combination. When there are two or more solvents, their combinations and ratios can be arbitrarily selected.
The solvent is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the thermosetting resin composition (x1-1) can be mixed more uniformly.
(熱硬化性樹脂組成物(x1-1)の調製方法)
 熱硬化性樹脂組成物(x1-1)は、これを構成するための各成分を配合して調製される。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。溶媒を用いる場合には、溶媒を、この溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
(Method for preparing thermosetting resin composition (x1-1))
The thermosetting resin composition (x1-1) is prepared by blending each component for constituting the thermosetting resin composition (x1-1).
The order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time. When a solvent is used, the solvent may be mixed with any compounding component other than this solvent and the compounding component may be diluted in advance, or any compounding component other than the solvent may be used in advance. You may use it by mixing the solvent with these compounding components without diluting.
The method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
The temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
<エネルギー線硬化性樹脂フィルム(x2)>
 エネルギー線硬化性樹脂フィルム(x2)は、エネルギー線硬化性成分(a)を含有する。
 エネルギー線硬化性樹脂フィルム(x2)は、例えば、エネルギー線硬化性成分(a)を含有するエネルギー線硬化性樹脂組成物(x2-1)から形成される。
 エネルギー線硬化性成分(a)は、未硬化であることが好ましく、粘着性を有することが好ましく、未硬化で且つ粘着性を有することがより好ましい。
 なお、本明細書の以下の記載において、「エネルギー線硬化性樹脂組成物(x2-1)の有効成分の全量基準での各成分の含有量」は、「エネルギー線硬化性樹脂組成物(x2-1)から形成されるエネルギー線硬化性樹脂フィルム(x2)の各成分の含有量」と同義である。
<Energy ray curable resin film (x2)>
The energy ray-curable resin film (x2) contains the energy ray-curable component (a).
The energy ray-curable resin film (x2) is formed from, for example, an energy ray-curable resin composition (x2-1) containing an energy ray-curable component (a).
The energy ray-curable component (a) is preferably uncured, preferably has adhesiveness, and more preferably uncured and has adhesiveness.
In the following description of the present specification, "the content of each component of the energy ray-curable resin composition (x2-1) based on the total amount of the active component" is referred to as "energy ray-curable resin composition (x2)". It is synonymous with "content of each component of the energy ray-curable resin film (x2) formed from -1)".
(エネルギー線硬化性成分(a))
 エネルギー線硬化性成分(a)は、エネルギー線の照射によって硬化する成分であり、エネルギー線硬化性樹脂フィルム(x2)に造膜性や可撓性等を付与するための成分でもある。
 エネルギー線硬化性成分(a)としては、例えば、エネルギー線硬化性基を有する、重量平均分子量が80,000~2,000,000の重合体(a1)、及びエネルギー線硬化性基を有する、分子量が100~80,000の化合物(a2)が挙げられる。重合体(a1)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。
(Energy ray curable component (a))
The energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and is also a component for imparting film-forming property, flexibility, and the like to the energy ray-curable resin film (x2).
Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000, and an energy ray-curable group. Examples thereof include a compound (a2) having a molecular weight of 100 to 80,000. The polymer (a1) may be at least partially crosslinked by a crosslinking agent or may not be crosslinked.
(重合体(a1))
 エネルギー線硬化性基を有する、重量平均分子量が80,000~2,000,000の重合体(a1)としては、例えば、他の化合物が有する基と反応可能な官能基を有するアクリル系重合体(a11)と、前記官能基と反応する基、及びエネルギー線硬化性二重結合等のエネルギー線硬化性基を有するエネルギー線硬化性化合物(a12)と、が重合してなるアクリル系樹脂(a1-1)が挙げられる。
(Polymer (a1))
Examples of the polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2,000,000 include an acrylic polymer having a functional group capable of reacting with a group of another compound. An acrylic resin (a1) obtained by polymerizing (a11), a group that reacts with the functional group, and an energy ray-curable compound (a12) having an energy ray-curable group such as an energy ray-curable double bond. -1) can be mentioned.
 他の化合物が有する基と反応可能な官能基としては、例えば、水酸基、カルボキシ基、アミノ基、置換アミノ基(アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基)、及びエポキシ基等が挙げられる。ただし、半導体ウエハや半導体チップ等の回路の腐食を防止するという点では、前記官能基はカルボキシ基以外の基であることが好ましい。これらの中でも、前記官能基は、水酸基であることが好ましい。 Examples of the functional group capable of reacting with the group of another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than the hydrogen atom. Group), an epoxy group, and the like. However, in terms of preventing corrosion of circuits such as semiconductor wafers and semiconductor chips, the functional group is preferably a group other than a carboxy group. Among these, the functional group is preferably a hydroxyl group.
・官能基を有するアクリル系重合体(a11)
 官能基を有するアクリル系重合体(a11)としては、例えば、官能基を有するアクリル系モノマーと、官能基を有しないアクリル系モノマーと、が共重合してなるものが挙げられ、これらモノマー以外に、さらにアクリル系モノマー以外のモノマー(非アクリル系モノマー)が共重合したものであってもよい。また、アクリル系重合体(a11)は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。
-Acrylic polymer having a functional group (a11)
Examples of the acrylic polymer (a11) having a functional group include those obtained by copolymerizing an acrylic monomer having a functional group and an acrylic monomer having no functional group, and other than these monomers. Further, a monomer other than the acrylic monomer (non-acrylic monomer) may be copolymerized. Further, the acrylic polymer (a11) may be a random copolymer or a block copolymer.
 官能基を有するアクリル系モノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、置換アミノ基含有モノマー、及びエポキシ基含有モノマー等が挙げられる。 Examples of the acrylic monomer having a functional group include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
 水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル系不飽和アルコール((メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられる。 Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylic. Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acid, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic unsaturateds such as vinyl alcohols and allyl alcohols. Alcohol (unsaturated alcohol having no (meth) acrylic skeleton) and the like can be mentioned.
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);前記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having ethylenically unsaturated bonds) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, and citraconic acid. Such as ethylenically unsaturated dicarboxylic acid (dicarboxylic acid having an ethylenically unsaturated bond); anhydride of the ethylenically unsaturated dicarboxylic acid; (meth) acrylic acid carboxyalkyl ester such as 2-carboxyethyl methacrylate. ..
 官能基を有するアクリル系モノマーは、水酸基含有モノマー、又はカルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。 As the acrylic monomer having a functional group, a hydroxyl group-containing monomer or a carboxy group-containing monomer is preferable, and a hydroxyl group-containing monomer is more preferable.
 アクリル系重合体(a11)を構成する、官能基を有するアクリル系モノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。アクリル系重合体(a11)を構成する、官能基を有するアクリル系モノマーが2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the acrylic monomer having a functional group constituting the acrylic polymer (a11), one type may be used alone, or two or more types may be used in combination. When there are two or more kinds of acrylic monomers having a functional group constituting the acrylic polymer (a11), their combinations and ratios can be arbitrarily selected.
 官能基を有しないアクリル系モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、及び(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル等が挙げられる。 Examples of the acrylic monomer having no functional group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n- (meth) acrylate. Butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (meth) ) 2-Ethylhexyl acrylate, (meth) isooctyl acrylate, (meth) n-octyl acrylate, (meth) n-nonyl acrylate, (meth) isononyl acrylate, (meth) decyl acrylate, (meth) acrylic Undecyl acid, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl acrylate), pentadecyl (meth) acrylate, (meth) Alkyl groups constituting alkyl esters such as hexadecyl acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, and octadecyl (meth) acrylate (stearyl (meth) acrylate) have one carbon number. Examples thereof include (meth) acrylic acid alkyl esters having a chain structure of to 18.
 官能基を有しないアクリル系モノマーとしては、例えば、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル等のアルコキシアルキル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル等を含む、芳香族基を有する(メタ)アクリル酸エステル;非架橋性の(メタ)アクリルアミド及びその誘導体;(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸N,N-ジメチルアミノプロピル等の非架橋性の3級アミノ基を有する(メタ)アクリル酸エステル等も挙げられる。 Examples of the acrylic monomer having no functional group include an alkoxyalkyl group such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate. (Meta) acrylic acid ester; (meth) acrylic acid ester having an aromatic group, including (meth) acrylic acid aryl ester such as (meth) phenyl acrylate; non-crosslinkable (meth) acrylamide and derivatives thereof; Examples thereof include (meth) acrylic acid esters having a non-crosslinkable tertiary amino group such as (meth) acrylic acid N, N-dimethylaminoethyl and (meth) acrylic acid N, N-dimethylaminopropyl.
 アクリル系重合体(a11)を構成する、官能基を有しないアクリル系モノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。アクリル系重合体(a11)を構成する、官能基を有しないアクリル系モノマーが2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the acrylic monomer having no functional group constituting the acrylic polymer (a11), one type may be used alone, or two or more types may be used in combination. When there are two or more kinds of non-functional acrylic monomers constituting the acrylic polymer (a11), their combinations and ratios can be arbitrarily selected.
 非アクリル系モノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。 Examples of the non-acrylic monomer include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
 アクリル系重合体(a11)を構成する非アクリル系モノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。アクリル系重合体(a11)を構成する非アクリル系モノマーが2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the non-acrylic monomer constituting the acrylic polymer (a11), one type may be used alone, or two or more types may be used in combination. When the number of non-acrylic monomers constituting the acrylic polymer (a11) is two or more, the combination and ratio thereof can be arbitrarily selected.
 アクリル系重合体(a11)において、これを構成する構成単位の全質量に対する、官能基を有するアクリル系モノマーから誘導された構成単位の量の割合(含有量)は、0.1~50質量%であることが好ましく、1~40質量%であることがより好ましく、3~30質量%であることが更に好ましい。前記割合がこのような範囲であることで、アクリル系重合体(a11)とエネルギー線硬化性化合物(a12)との共重合によって得られたアクリル系樹脂(a1-1)において、エネルギー線硬化性基の含有量は、保護膜(X)の硬化の程度を好ましい範囲に容易に調節可能となる。 In the acrylic polymer (a11), the ratio (content) of the amount of the structural unit derived from the acrylic monomer having a functional group to the total mass of the constituent units constituting the polymer is 0.1 to 50% by mass. It is preferably 1 to 40% by mass, more preferably 3 to 30% by mass. When the ratio is in such a range, the energy ray curable in the acrylic resin (a1-1) obtained by the copolymerization of the acrylic polymer (a11) and the energy ray curable compound (a12). The content of the group can be easily adjusted to a preferable range for the degree of curing of the protective film (X).
 アクリル系樹脂(a1-1)を構成するアクリル系重合体(a11)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。アクリル系樹脂(a1-1)を構成するアクリル系重合体(a11)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the acrylic polymer (a11) constituting the acrylic resin (a1-1), one type may be used alone, or two or more types may be used in combination. When there are two or more kinds of acrylic polymers (a11) constituting the acrylic resin (a1-1), their combinations and ratios can be arbitrarily selected.
 アクリル系樹脂(a1-1)の含有量は、エネルギー線硬化性樹脂組成物(x2-1)の有効成分の全量基準で、1~60質量%であることが好ましく、3~50質量%であることがより好ましく、5~40質量%であることが更に好ましい。 The content of the acrylic resin (a1-1) is preferably 1 to 60% by mass, preferably 3 to 50% by mass, based on the total amount of the active ingredients of the energy ray-curable resin composition (x2-1). More preferably, it is more preferably 5 to 40% by mass.
・エネルギー線硬化性化合物(a12)
 エネルギー線硬化性化合物(a12)は、アクリル系重合体(a11)が有する官能基と反応可能な基として、イソシアネート基、エポキシ基、及びカルボキシ基からなる群より選択される1種又は2種以上を有するものが好ましく、前記基としてイソシアネート基を有するものがより好ましい。
 エネルギー線硬化性化合物(a12)は、例えば、前記基としてイソシアネート基を有する場合、このイソシアネート基が、前記官能基として水酸基を有するアクリル系重合体(a11)のこの水酸基と容易に反応する。
-Energy ray curable compound (a12)
The energy ray-curable compound (a12) is one or more selected from the group consisting of an isocyanate group, an epoxy group, and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). The one having an isocyanate group is preferable, and the one having an isocyanate group as the group is more preferable.
When the energy ray-curable compound (a12) has an isocyanate group as the group, for example, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
 エネルギー線硬化性化合物(a12)は、1分子中にエネルギー線硬化性基を1~5個有することが好ましく、1~2個有することがより好ましい。 The energy ray-curable compound (a12) preferably has 1 to 5 energy ray-curable groups in one molecule, and more preferably 1 to 2 energy ray-curable groups.
 エネルギー線硬化性化合物(a12)としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物又はポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物又はポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物等が挙げられる。これらの中でも、エネルギー線硬化性化合物(a12)は、2-メタクリロイルオキシエチルイソシアネートであることが好ましい。 Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, and 1,1- (bisacryloyloxymethyl) ethyl. Isocyanate; Acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; Obtained by reacting a diisocyanate compound or polyisocyanate compound with a polyol compound and hydroxyethyl (meth) acrylate. Examples thereof include acryloyl monoisocyanate compounds. Among these, the energy ray-curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
 アクリル系樹脂(a1-1)を構成するエネルギー線硬化性化合物(a12)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。アクリル系樹脂(a1-1)を構成するエネルギー線硬化性化合物(a12)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be used alone or in combination of two or more. When there are two or more types of energy ray-curable compounds (a12) constituting the acrylic resin (a1-1), their combinations and ratios can be arbitrarily selected.
 アクリル系樹脂(a1-1)において、アクリル系重合体(a11)に由来する前記官能基の含有量に対する、エネルギー線硬化性化合物(a12)に由来するエネルギー線硬化性基の含有量の割合は、20~120モル%であることが好ましく、35~100モル%であることがより好ましく、50~100モル%であることが更に好ましい。前記含有量の割合がこのような範囲であることで、硬化後の保護膜(X)の接着力がより大きくなる。なお、エネルギー線硬化性化合物(a12)が一官能(前記基を1分子中に1個有する)化合物である場合には、前記含有量の割合の上限値は100モル%となるが、前記エネルギー線硬化性化合物(a12)が多官能(前記基を1分子中に2個以上有する)化合物である場合には、前記含有量の割合の上限値は100モル%を超えることがある。 In the acrylic resin (a1-1), the ratio of the content of the energy ray-curable group derived from the energy ray-curable compound (a12) to the content of the functional group derived from the acrylic polymer (a11) is , 20 to 120 mol%, more preferably 35 to 100 mol%, and even more preferably 50 to 100 mol%. When the content ratio is in such a range, the adhesive force of the protective film (X) after curing becomes larger. When the energy ray-curable compound (a12) is a monofunctional compound (having one group in one molecule), the upper limit of the content ratio is 100 mol%, but the energy. When the linear curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule), the upper limit of the content ratio may exceed 100 mol%.
 重合体(a1)の重量平均分子量(Mw)は、100,000~2,000,000であることが好ましく、300,000~1,500,000であることがより好ましい。 The weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 2,000,000, more preferably 300,000 to 1,500,000.
 重合体(a1)が、その少なくとも一部が架橋剤によって架橋されたものである場合、重合体(a1)は、アクリル系重合体(a11)を構成するものとして説明した、上述のモノマーのいずれにも該当せず、かつ架橋剤と反応する基を有するモノマーが重合して、前記架橋剤と反応する基において架橋されたものであってもよいし、エネルギー線硬化性化合物(a12)に由来する、前記官能基と反応する基において、架橋されたものであってもよい。 When the polymer (a1) is at least partially crosslinked by a cross-linking agent, the polymer (a1) is any of the above-mentioned monomers described as constituting the acrylic polymer (a11). A monomer having a group that reacts with the cross-linking agent may be polymerized and cross-linked at the group that reacts with the cross-linking agent, or is derived from the energy ray-curable compound (a12). The group that reacts with the functional group may be crosslinked.
 重合体(a1)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。重合体(a1)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the polymer (a1), one type may be used alone, or two or more types may be used in combination. When there are two or more kinds of polymers (a1), their combinations and ratios can be arbitrarily selected.
(化合物(a2))
 エネルギー線硬化性基を有する、重量平均分子量が100~80,000の化合物(a2)が有するエネルギー線硬化性基としては、エネルギー線硬化性二重結合を含む基が挙げられ、好ましいものとしては、(メタ)アクリロイル基、又はビニル基等が挙げられる。
(Compound (a2))
Examples of the energy ray-curable group contained in the compound (a2) having an energy ray-curable group and having a weight average molecular weight of 100 to 80,000 include a group containing an energy ray-curable double bond, and preferred ones. , (Meta) acryloyl group, vinyl group and the like.
 化合物(a2)は、上記の条件を満たすものであれば、特に限定されないが、エネルギー線硬化性基を有する低分子量化合物、エネルギー線硬化性基を有するエポキシ樹脂、及びエネルギー線硬化性基を有するフェノール樹脂等が挙げられる。 The compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray-curable group, an epoxy resin having an energy ray-curable group, and an energy ray-curable group. Examples include phenol resin.
 化合物(a2)のうち、エネルギー線硬化性基を有する低分子量化合物としては、例えば、多官能のモノマー又はオリゴマー等が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。アクリレート系化合物としては、例えば、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピルメタクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシジエトキシ)フェニル]プロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、2,2-ビス[4-((メタ)アクリロキシポリプロポキシ)フェニル]プロパン、トリシクロデカンジメタノールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシエトキシ)フェニル]プロパン、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン等の2官能(メタ)アクリレート;トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート;ウレタン(メタ)アクリレートオリゴマー等の多官能(メタ)アクリレートオリゴマー等が挙げられる。 Among the compounds (a2), examples of the low molecular weight compound having an energy ray-curable group include polyfunctional monomers or oligomers, and acrylate compounds having a (meth) acryloyl group are preferable. Examples of the acrylate-based compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4-. ((Meta) acryloxipolyethoxy) phenyl] propane, ethoxylated bisphenol A di (meth) acrylate, 2,2-bis [4-((meth) acryloxidiethoxy) phenyl] propane, 9,9-bis [ 4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, 2,2-bis [4-((meth) acryloyloxypolypropoxy) phenyl] propane, tricyclodecanedimethanol di (meth) acrylate, 1, 10-decanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) Acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 2,2-bis [ 4-((Meta) acryloxyethoxy) phenyl] propane, neopentyl glycol di (meth) acrylate, ethoxylated polypropylene glycol di (meth) acrylate, 2-hydroxy-1,3-di (meth) acryloxypropane, etc. Bifunctional (meth) acrylate; tris (2- (meth) acryloxyethyl) isocyanurate, ε-caprolactone-modified tris- (2- (meth) acryloxyethyl) isocyanurate, ethoxylated glycerin tri (meth) acrylate, penta Elythritol tri (meth) acrylate, trimethylolpropantri (meth) acrylate, ditrimethylolpropantetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol poly (meth) Polyfunctional (meth) acrylates such as acrylates and dipentaerythritol hexa (meth) acrylates; polyfunctional (meth) acrylate oligomers such as urethane (meth) acrylate oligomers. I can get rid of it.
 化合物(a2)のうち、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂としては、例えば、「特開2013-194102号公報」の段落0043等に記載されているものを用いることができる。 Among the compounds (a2), examples of the epoxy resin having an energy ray-curable group and the phenol resin having an energy ray-curable group are described in paragraph 0043 of "Japanese Patent Laid-Open No. 2013-194102". Can be used.
 化合物(a2)は、重量平均分子量が100~30,000であることが好ましく、300~10,000であることがより好ましい。 The weight average molecular weight of compound (a2) is preferably 100 to 30,000, more preferably 300 to 10,000.
 化合物(a2)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。化合物(a2)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The compound (a2) may be used alone or in combination of two or more. When the compound (a2) is two or more kinds, the combination and the ratio thereof can be arbitrarily selected.
(エネルギー線硬化性基を有しない重合体(b))
 エネルギー線硬化性樹脂組成物(x2-1)及びエネルギー線硬化性樹脂フィルム(x2)が、エネルギー線硬化性成分(a)として化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましい。
 エネルギー線硬化性基を有しない重合体(b)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。
(Polymer without energy ray-curable group (b))
When the energy ray-curable resin composition (x2-1) and the energy ray-curable resin film (x2) contain the compound (a2) as the energy ray-curable component (a), they further have an energy ray-curable group. It is preferable that the polymer (b) that does not contain the polymer (b) is also contained.
The polymer (b) having no energy ray-curable group may have at least a part thereof crosslinked by a crosslinking agent or may not be crosslinked.
 エネルギー線硬化性基を有しない重合体(b)としては、例えば、アクリル系重合体、フェノキシ樹脂、ウレタン樹脂、ポリエステル、ゴム系樹脂、及びアクリルウレタン樹脂等が挙げられる。これらの中でも、前記重合体(b)は、アクリル系重合体(以下、「アクリル系重合体(b-1)」と略記することがある)であることが好ましい。 Examples of the polymer (b) having no energy ray-curable group include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, and acrylic urethane resins. Among these, the polymer (b) is preferably an acrylic polymer (hereinafter, may be abbreviated as "acrylic polymer (b-1)").
 アクリル系重合体(b-1)は、公知のものでよく、例えば、1種のアクリル系モノマーの単独重合体であってもよいし、2種以上のアクリル系モノマーの共重合体であってもよい。また、アクリル系重合体(b-1)は、1種又は2種以上のアクリル系モノマーと、1種又は2種以上のアクリル系モノマー以外のモノマー(非アクリル系モノマー)と、の共重合体であってもよい。 The acrylic polymer (b-1) may be a known one, and may be, for example, a homopolymer of one kind of acrylic monomer or a copolymer of two or more kinds of acrylic monomers. May be good. Further, the acrylic polymer (b-1) is a copolymer of one or more kinds of acrylic monomers and one or more kinds of monomers other than the acrylic monomers (non-acrylic monomers). It may be.
 アクリル系重合体(b-1)を構成する前記アクリル系モノマーとしては、例えば、(メタ)アクリル酸アルキルエステル、環状骨格を有する(メタ)アクリル酸エステル、グリシジル基含有(メタ)アクリル酸エステル、水酸基含有(メタ)アクリル酸エステル、及び置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。 Examples of the acrylic monomer constituting the acrylic polymer (b-1) include (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, and (meth) acrylic acid ester containing a glycidyl group. Examples thereof include a hydroxyl group-containing (meth) acrylic acid ester and a substituted amino group-containing (meth) acrylic acid ester.
 (メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、及び(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である、(メタ)アクリル酸アルキルエステル等が挙げられる。 Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n-butyl (meth) acrylic acid. , (Meta) isobutyl acrylate, (meth) sec-butyl acrylate, (meth) tert-butyl acrylate, (meth) pentyl acrylate, (meth) hexyl acrylate, (meth) heptyl acrylate, (meth) 2-Ethylhexyl acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, decyl (meth) acrylate Undecyl, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl acrylate), pentadecyl (meth) acrylate, (meth) acrylic Alkyl groups constituting alkyl esters such as hexadecyl acid (palmityl (meth) acrylate), heptadecyl (meth) acrylate, and octadecyl (meth) acrylate (stearyl (meth) acrylate) have 1 to 1 to carbon atoms. Examples thereof include (meth) acrylic acid alkyl ester having a chain structure of 18.
 環状骨格を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;(メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;(メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル等が挙げられる。 Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl ester such as (meth) acrylic acid isobornyl and (meth) acrylic acid dicyclopentanyl; and (meth) acrylic acid benzyl and the like. (Meta) Acrylic acid aralkyl ester; (Meta) Acrylic acid cycloalkenyl ester such as (meth) Acrylic acid dicyclopentenyl ester; (Meta) Acrylic acid cycloalkenyloxyalkyl such as (meth) Acrylic acid dicyclopentenyloxyethyl ester Esters and the like can be mentioned.
 グリシジル基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸グリシジル等が挙げられる。前記水酸基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、及び(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。
 前記置換アミノ基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸N-メチルアミノエチル等が挙げられる。
Examples of the glycidyl group-containing (meth) acrylic acid ester include glycidyl (meth) acrylic acid. Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxy (meth) acrylate. Examples thereof include propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
Examples of the substituted amino group-containing (meth) acrylic acid ester include N-methylaminoethyl (meth) acrylic acid.
 アクリル系重合体(b-1)を構成する非アクリル系モノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。 Examples of the non-acrylic monomer constituting the acrylic polymer (b-1) include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
 少なくとも一部が架橋剤によって架橋された、エネルギー線硬化性基を有しない重合体(b)としては、例えば、重合体(b)中の反応性官能基が架橋剤と反応したものが挙げられる。
 反応性官能基は、架橋剤の種類等に応じて適宜選択すればよく、特に限定されない。例えば、架橋剤がポリイソシアネート化合物である場合には、前記反応性官能基としては、水酸基、カルボキシ基、及びアミノ基等が挙げられ、これらの中でも、イソシアネート基との反応性が高い水酸基が好ましい。
また、架橋剤がエポキシ系化合物である場合には、前記反応性官能基としては、カルボキシ基、アミノ基、及びアミド基等が挙げられ、これらの中でもエポキシ基との反応性が高いカルボキシ基が好ましい。
 ただし、半導体ウエハや半導体チップの回路の腐食を防止するという点では、前記反応性官能基はカルボキシ基以外の基であることが好ましい。
Examples of the polymer (b) having no energy ray-curable group, which is at least partially crosslinked by a cross-linking agent, include those in which the reactive functional group in the polymer (b) has reacted with the cross-linking agent. ..
The reactive functional group may be appropriately selected depending on the type of the cross-linking agent and the like, and is not particularly limited. For example, when the cross-linking agent is a polyisocyanate compound, examples of the reactive functional group include a hydroxyl group, a carboxy group, an amino group and the like, and among these, a hydroxyl group having a high reactivity with an isocyanate group is preferable. ..
When the cross-linking agent is an epoxy compound, examples of the reactive functional group include a carboxy group, an amino group, an amide group and the like, and among these, a carboxy group having high reactivity with an epoxy group is used. preferable.
However, in terms of preventing corrosion of circuits of semiconductor wafers and semiconductor chips, the reactive functional group is preferably a group other than a carboxy group.
 反応性官能基を有する、エネルギー線硬化性基を有しない重合体(b)としては、例えば、少なくとも反応性官能基を有するモノマーを重合させて得られたものが挙げられる。アクリル系重合体(b-1)の場合であれば、これを構成するモノマーとして挙げた、アクリル系モノマー及び非アクリル系モノマーのいずれか一方又は両方として、反応性官能基を有するものを用いればよい。例えば、反応性官能基として水酸基を有する重合体(b)としては、例えば、水酸基含有(メタ)アクリル酸エステルを重合して得られたものが挙げられ、これ以外にも、先に挙げた前記アクリル系モノマー又は非アクリル系モノマーにおいて、1個又は2個以上の水素原子が前記反応性官能基で置換されてなるモノマーを重合して得られたものが挙げられる。 Examples of the polymer (b) having a reactive functional group and not having an energy ray-curable group include those obtained by polymerizing at least a monomer having a reactive functional group. In the case of the acrylic polymer (b-1), if one or both of the acrylic monomer and the non-acrylic monomer listed as the monomers constituting the polymer is used, those having a reactive functional group may be used. good. For example, as the polymer (b) having a hydroxyl group as a reactive functional group, for example, a polymer obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester can be mentioned, and in addition to this, the above-mentioned polymer (b) mentioned above can be mentioned. Examples thereof include acrylic monomers and non-acrylic monomers obtained by polymerizing a monomer in which one or more hydrogen atoms are substituted with the reactive functional groups.
 反応性官能基を有する重合体(b)において、これを構成する構成単位の全質量に対する、反応性官能基を有するモノマーから誘導された構成単位の量の割合(含有量)は、1~20質量%であることが好ましく、2~10質量%であることがより好ましい。前記割合がこのような範囲であることで、重合体(b)において、架橋の程度がより好ましい範囲となる。 In the polymer (b) having a reactive functional group, the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total mass of the constituent units constituting the polymer (b) is 1 to 20. It is preferably by mass, more preferably 2 to 10% by mass. When the ratio is in such a range, the degree of cross-linking in the polymer (b) becomes a more preferable range.
 エネルギー線硬化性基を有しない重合体(b)の重量平均分子量(Mw)は、エネルギー線硬化性樹脂組成物(x2-1)の造膜性がより良好となる点から、10,000~2,000,000であることが好ましく、100,000~1,500,000であることがより好ましい。 The weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is 10,000 to higher because the film-forming property of the energy ray-curable resin composition (x2-1) becomes better. It is preferably 2,000,000, more preferably 100,000 to 1,500,000.
 エネルギー線硬化性基を有しない重合体(b)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。エネルギー線硬化性基を有しない重合体(b)が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the polymer (b) having no energy ray-curable group, one type may be used alone, or two or more types may be used in combination. When there are two or more polymers (b) having no energy ray-curable group, their combinations and ratios can be arbitrarily selected.
 エネルギー線硬化性樹脂組成物(x2-1)としては、重合体(a1)及び化合物(a2)のいずれか一方又は両方を含有するものが挙げられる。
 そして、エネルギー線硬化性樹脂組成物(x2-1)が化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましく、この場合、さらに重合体(a1)を含有することも好ましい。
 また、エネルギー線硬化性樹脂組成物(x2-1)は、化合物(a2)を含有せず、重合体(a1)、及びエネルギー線硬化性基を有しない重合体(b)をともに含有していてもよい。
Examples of the energy ray-curable resin composition (x2-1) include those containing either one or both of the polymer (a1) and the compound (a2).
When the energy ray-curable resin composition (x2-1) contains the compound (a2), it is preferable that the polymer (b) having no energy ray-curable group is also contained, and in this case, the weight is further increased. It is also preferable to contain the coalescence (a1).
Further, the energy ray-curable resin composition (x2-1) does not contain the compound (a2) and contains both the polymer (a1) and the polymer (b) having no energy ray-curable group. You may.
 エネルギー線硬化性樹脂組成物(x2-1)が、重合体(a1)、化合物(a2)、及びエネルギー線硬化性基を有しない重合体(b)を含有する場合、化合物(a2)の含有量は、重合体(a1)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量100質量部に対して、10~400質量部であることが好ましく、30~350質量部であることがより好ましい。 When the energy ray-curable resin composition (x2-1) contains the polymer (a1), the compound (a2), and the polymer (b) having no energy ray-curable group, the compound (a2) is contained. The amount is preferably 10 to 400 parts by mass, preferably 30 to 350 parts by mass, based on 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray-curable group. More preferably.
エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量は、エネルギー線硬化性樹脂組成物(x2-1)の有効成分の全量基準で、5~90質量%であることが好ましく、10~80質量%であることがより好ましく、20~70質量%であることが更に好ましい。エネルギー線硬化性成分の含有量がこのような範囲であることで、エネルギー線硬化性樹脂フィルム(x2)のエネルギー線硬化性がより良好となる。 The total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group is 5 to 5 based on the total amount of the active ingredients of the energy ray-curable resin composition (x2-1). It is preferably 90% by mass, more preferably 10 to 80% by mass, and even more preferably 20 to 70% by mass. When the content of the energy ray-curable component is in such a range, the energy ray-curable property of the energy ray-curable resin film (x2) becomes better.
 エネルギー線硬化性樹脂組成物(x2-1)は、エネルギー線硬化性成分以外に、目的に応じて、熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤及び汎用添加剤からなる群より選択される1種又は2種以上を含有していてもよい。
 例えば、エネルギー線硬化性成分及び熱硬化性成分を含有するエネルギー線硬化性樹脂組成物(x2-1)を用いることにより、形成されるエネルギー線硬化性樹脂フィルム(x2)は、加熱によって被着体に対する接着力が向上し、このエネルギー線硬化性樹脂フィルム(x2)から形成された保護膜(X)の強度も向上する。
In addition to the energy ray-curable component, the energy ray-curable resin composition (x2-1) contains a thermosetting component, a photopolymerization initiator, a filler, a coupling agent, a cross-linking agent, and a general-purpose additive, depending on the purpose. It may contain one kind or two or more kinds selected from the group consisting of.
For example, the energy ray-curable resin film (x2) formed by using the energy ray-curable resin composition (x2-1) containing the energy ray-curable component and the thermosetting component is adhered by heating. The adhesive force to the body is improved, and the strength of the protective film (X) formed from the energy ray-curable resin film (x2) is also improved.
 エネルギー線硬化性樹脂組成物(x2-1)における熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤、及び汎用添加剤としては、それぞれ、エネルギー線硬化性樹脂組成物(x2-1)における熱硬化性成分(B)、光重合開始剤(H)、充填材(D)、カップリング剤(E)、架橋剤(F)、及び汎用添加剤(I)と同じものが挙げられる。 The thermosetting component, photopolymerization initiator, filler, coupling agent, cross-linking agent, and general-purpose additive in the energy ray-curable resin composition (x2-1) are energy ray-curable resin compositions (respectively). Same as the thermosetting component (B), photopolymerization initiator (H), filler (D), coupling agent (E), cross-linking agent (F), and general-purpose additive (I) in x2-1). Can be mentioned.
 エネルギー線硬化性樹脂組成物(x2-1)において、熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤及び汎用添加剤は、それぞれ、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合、それらの組み合わせ及び比率は任意に選択できる。
 エネルギー線硬化性樹脂組成物(x2-1)における熱硬化性成分、光重合開始剤、充填材、カップリング剤、架橋剤、及び汎用添加剤の含有量は、目的に応じて適宜調節すればよく、特に限定されない。
In the energy ray-curable resin composition (x2-1), one kind of thermosetting component, photopolymerization initiator, filler, coupling agent, cross-linking agent and general-purpose additive may be used alone. However, two or more types may be used in combination. When two or more types are used in combination, their combinations and ratios can be arbitrarily selected.
The contents of the thermosetting component, the photopolymerization initiator, the filler, the coupling agent, the cross-linking agent, and the general-purpose additive in the energy ray-curable resin composition (x2-1) can be appropriately adjusted according to the purpose. Well, there is no particular limitation.
 エネルギー線硬化性樹脂組成物(x2-1)は、希釈によってその取り扱い性が向上することから、さらに溶媒を含有するものが好ましい。
 エネルギー線硬化性樹脂組成物(x2-1)が含有する溶媒としては、例えば、熱硬化性樹脂組成物(x1-1)における溶媒と同じものが挙げられる。
 エネルギー線硬化性樹脂組成物(x2-1)が含有する溶媒は、種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上を組み合わせて用いる場合、それらの組み合わせ及び比率は任意に選択できる。
The energy ray-curable resin composition (x2-1) is preferably further containing a solvent because its handleability is improved by dilution.
Examples of the solvent contained in the energy ray-curable resin composition (x2-1) include the same solvents as those in the thermosetting resin composition (x1-1).
As the solvent contained in the energy ray-curable resin composition (x2-1), seeds may be used alone, or two or more kinds may be used in combination. When two or more types are used in combination, their combinations and ratios can be arbitrarily selected.
(その他の成分)
 エネルギー線硬化性樹脂組成物(x2-1)は、上記のエネルギー線硬化性成分の他、先に説明した熱硬化性樹脂フィルム(x1)の場合と同様、硬化性成分以外の成分、即ち、硬化促進剤(C)や充填材(D)、カップリング剤(E)等を、適量で含有することができる。
(Other ingredients)
In the energy ray-curable resin composition (x2-1), in addition to the above energy ray-curable component, as in the case of the thermosetting resin film (x1) described above, a component other than the curable component, that is, An appropriate amount of the curing accelerator (C), the filler (D), the coupling agent (E) and the like can be contained.
(エネルギー線硬化性樹脂組成物(x2-1)の製造方法)
 エネルギー線硬化性樹脂組成物(x2-1)は、これを構成するための各成分を配合することで得られる。各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を、この溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
(Manufacturing method of energy ray curable resin composition (x2-1))
The energy ray-curable resin composition (x2-1) can be obtained by blending each component for constituting the energy ray-curable resin composition (x2-1). The order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
When a solvent is used, the solvent may be mixed with any compounding component other than this solvent and the compounding component may be diluted in advance, or any compounding component other than the solvent may be used in advance. You may use it by mixing the solvent with these compounding components without diluting. The method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
The temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
<<支持シート(Y)>>
 支持シート(Y)は、硬化性樹脂フィルム(x)を支持するための支持体として機能する。
 支持シート(Y)は、図2に示すように、基材11のみから構成されていてもよく、図3に示すように、基材11と粘着剤層21との積層体であってもよく、図4に示すように、基材11と中間層31と粘着剤層21とがこの順で積層された積層体であってもよい。基材11と中間層31と粘着剤層21とがこの順で積層された積層体は、バックグラインドテープとしての使用に好適である。
<< Support sheet (Y) >>
The support sheet (Y) functions as a support for supporting the curable resin film (x).
As shown in FIG. 2, the support sheet (Y) may be composed of only the base material 11, or may be a laminate of the base material 11 and the pressure-sensitive adhesive layer 21 as shown in FIG. , As shown in FIG. 4, the base material 11, the intermediate layer 31, and the pressure-sensitive adhesive layer 21 may be laminated in this order. A laminate in which the base material 11, the intermediate layer 31, and the pressure-sensitive adhesive layer 21 are laminated in this order is suitable for use as a back grind tape.
 以下、支持シート(Y)が有する基材、支持シート(Y)が有していてもよい粘着剤層及び中間層について説明する。 Hereinafter, the base material of the support sheet (Y), the adhesive layer that the support sheet (Y) may have, and the intermediate layer will be described.
<基材>
 基材は、シート状又はフィルム状のものであり、その構成材料としては、例えば、以下の各種樹脂が挙げられる。
 基材を構成する樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、基材を構成する樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、基材を構成する樹脂としては、例えば、ここまでに例示した前記樹脂のうちの1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂のうちの1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
<Base material>
The base material is in the form of a sheet or a film, and examples of the constituent material thereof include the following various resins.
Examples of the resin constituting the base material include polyethylenes such as low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and high-density polyethylene (HDPE); polypropylene, polybutene, polybutadiene, polymethylpentene, norbornene resin, and the like. Polyethylenes other than polyethylene; ethylene-vinyl acetate copolymers, ethylene- (meth) acrylic acid copolymers, ethylene- (meth) acrylic acid ester copolymers, ethylene-norbornene copolymers and other ethylene-based copolymers. (Polymer obtained by using ethylene as a monomer); Vinyl chloride-based resin such as polyvinyl chloride and vinyl chloride copolymer (resin obtained by using vinyl chloride as a monomer); Polystyrene; Polycycloolefin; Polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, polymers such as all aromatic polyesters in which all constituent units have aromatic cyclic groups; two or more Examples thereof include the polymer of the polyester; poly (meth) acrylic acid ester; polyurethane; polyurethane acrylate; polyimide; polyamide; polycarbonate; fluororesin; polyacetal; modified polyphenylene oxide; polyphenylene sulfide; polysulfone; polyether ketone and the like.
Further, as the resin constituting the base material, for example, a polymer alloy such as a mixture of the polyester and other resins can be mentioned. The polymer alloy of the polyester and the resin other than the polyester preferably has a relatively small amount of the resin other than the polyester.
Further, as the resin constituting the base material, for example, a crosslinked resin in which one or more of the resins exemplified so far is crosslinked; one or two of the resins exemplified so far. Modified resins such as ionomer using the above can also be mentioned.
 基材を構成する樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。基材を構成する樹脂が2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As the resin constituting the base material, one type may be used alone, or two or more types may be used in combination. When two or more kinds of resins constituting the base material are used, the combination and ratio thereof can be arbitrarily selected.
 基材は1層(単層)のみでもよいし、2層以上の複数層でもよい。基材が複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The base material may be only one layer (single layer) or may have two or more layers. When the base material has a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
 基材の厚さは、5μm~1,000μmであることが好ましく、10μm~500μmであることがより好ましく、15μm~300μmであることが更に好ましく、20μm~150μmであることがより更に好ましい。
 ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、複数層からなる基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。
The thickness of the base material is preferably 5 μm to 1,000 μm, more preferably 10 μm to 500 μm, further preferably 15 μm to 300 μm, and even more preferably 20 μm to 150 μm.
Here, the "thickness of the base material" means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material. means.
 基材は、厚さの精度が高いもの、即ち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような、基材を構成するのに使用可能な厚さの精度が高い材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体等が挙げられる。 It is preferable that the base material has a high thickness accuracy, that is, a material in which the variation in thickness is suppressed regardless of the part. Among the above-mentioned constituent materials, such materials having high thickness accuracy that can be used to form a base material include, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, and ethylene-vinyl acetate copolymers. And so on.
 基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。 In addition to the main constituent materials such as the resin, the base material contains various known additives such as fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and softeners (plasticizers). You may.
 基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、あるいは、他の層が蒸着されていてもよい。また、硬化性樹脂フィルム(x)がエネルギー線硬化性樹脂フィルム(x2)である場合、及び粘着剤層がエネルギー性硬化性の粘着剤層である場合、基材はエネルギー線を透過させるものであることが好ましい。 The base material may be transparent, opaque, colored depending on the purpose, or another layer may be vapor-deposited. When the curable resin film (x) is an energy ray-curable resin film (x2) and the pressure-sensitive adhesive layer is an energy-curable pressure-sensitive adhesive layer, the base material transmits energy rays. It is preferable to have.
 基材は、公知の方法で製造できる。例えば、樹脂を含有する基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。 The base material can be produced by a known method. For example, a base material containing a resin can be produced by molding a resin composition containing the resin.
<粘着剤層>
 粘着剤層は、シート状又はフィルム状であり、粘着剤を含有する。
 粘着剤としては、例えば、アクリル系樹脂((メタ)アクリロイル基を有する樹脂からなる粘着剤)、ウレタン系樹脂(ウレタン結合を有する樹脂からなる粘着剤)、ゴム系樹脂(ゴム構造を有する樹脂からなる粘着剤)、シリコーン系樹脂(シロキサン結合を有する樹脂からなる粘着剤)、エポキシ系樹脂(エポキシ基を有する樹脂からなる粘着剤)、ポリビニルエーテル、ポリカーボネート等の粘着性樹脂が挙げられる。これらの中でも、アクリル系樹脂が好ましい。
<Adhesive layer>
The pressure-sensitive adhesive layer is in the form of a sheet or a film and contains a pressure-sensitive adhesive.
Examples of the pressure-sensitive adhesive include an acrylic resin (a pressure-sensitive adhesive made of a resin having a (meth) acryloyl group), a urethane-based resin (a pressure-sensitive adhesive made of a resin having a urethane bond), and a rubber-based resin (a resin having a rubber structure). (Adhesives made of Among these, an acrylic resin is preferable.
 なお、本発明において、「粘着性樹脂」とは、粘着性を有する樹脂と、接着性を有する樹脂と、の両方を含む概念であり、例えば、樹脂自体が粘着性を有するものだけでなく、添加剤等の他の成分との併用によって粘着性を示す樹脂や、熱又は水等のトリガーの存在によって接着性を示す樹脂等も含む。 In the present invention, the "adhesive resin" is a concept including both a resin having adhesiveness and a resin having adhesiveness. For example, not only the resin itself has adhesiveness but also the resin itself has adhesiveness. It also includes a resin that exhibits adhesiveness when used in combination with other components such as additives, and a resin that exhibits adhesiveness due to the presence of a trigger such as heat or water.
 粘着剤層は1層(単層)のみでもよいし、2層以上の複数層でもよい。粘着剤層が複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The adhesive layer may be only one layer (single layer), or may be two or more layers. When the pressure-sensitive adhesive layer is a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
 粘着剤層の厚さは1μm~1,000μmであることが好ましく、5μm~500μmであることがより好ましく、10μm~100μmであることが更に好ましい。ここで、「粘着剤層の厚さ」とは、粘着剤層全体の厚さを意味し、例えば、複数層からなる粘着剤層の厚さとは、粘着剤層を構成するすべての層の合計の厚さを意味する。 The thickness of the pressure-sensitive adhesive layer is preferably 1 μm to 1,000 μm, more preferably 5 μm to 500 μm, and even more preferably 10 μm to 100 μm. Here, the "thickness of the pressure-sensitive adhesive layer" means the thickness of the entire pressure-sensitive adhesive layer, and for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the sum of all the layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
 粘着剤層は、エネルギー線硬化性粘着剤を用いて形成されたものでもよいし、非エネルギー線硬化性粘着剤を用いて形成されたものでもよい。エネルギー線硬化性の粘着剤を用いて形成された粘着剤層は、硬化前及び硬化後での物性を容易に調節できる。 The pressure-sensitive adhesive layer may be formed by using an energy ray-curable pressure-sensitive adhesive or may be formed by using a non-energy ray-curable pressure-sensitive adhesive. The pressure-sensitive adhesive layer formed by using the energy ray-curable pressure-sensitive adhesive can easily adjust the physical properties before and after curing.
<中間層>
 中間層は、シート状又はフィルム状であり、その構成材料は目的に応じて適宜選択すればよく、特に限定されない。例えば、半導体表面を覆う保護膜に、半導体表面に存在するバンプの形状が反映されることによって、保護膜(X)が変形してしまうのを抑制することを目的とする場合、中間層の好ましい構成材料としては、凹凸追従性を高める観点、バンプ貫通性を良好にする観点、及び中間層の貼付性をより向上させる観点から、ウレタン(メタ)アクリレート等が挙げられる。
<Middle class>
The intermediate layer is in the form of a sheet or a film, and the constituent material thereof may be appropriately selected depending on the intended purpose and is not particularly limited. For example, when the purpose is to prevent the protective film (X) from being deformed by reflecting the shape of the bumps existing on the semiconductor surface on the protective film covering the semiconductor surface, the intermediate layer is preferable. Examples of the constituent material include urethane (meth) acrylate and the like from the viewpoint of improving the unevenness followability, improving the bump penetration property, and further improving the stickability of the intermediate layer.
 中間層は1層(単層)のみでもよいし、2層以上の複数層でもよい。中間層が複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The intermediate layer may be only one layer (single layer), or may be two or more layers. When the intermediate layer is a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
 中間層の厚さは、保護対象となる半導体表面のバンプの高さに応じて適宜調節できるが、比較的高さが高いバンプの影響も容易に吸収できる点から、50μm~600μmであることが好ましく、70μm~500μmであることがより好ましく、80μm~400μmであることが更に好ましい。ここで、「中間層の厚さ」とは、中間層全体の厚さを意味し、例えば、複数層からなる中間層の厚さとは、中間層を構成するすべての層の合計の厚さを意味する。 The thickness of the intermediate layer can be appropriately adjusted according to the height of the bumps on the surface of the semiconductor to be protected, but it may be 50 μm to 600 μm because the influence of the bumps having a relatively high height can be easily absorbed. It is preferably 70 μm to 500 μm, more preferably 80 μm to 400 μm. Here, the "thickness of the intermediate layer" means the thickness of the entire intermediate layer, and for example, the thickness of the intermediate layer composed of a plurality of layers is the total thickness of all the layers constituting the intermediate layer. means.
 次に、保護膜形成用シートの製造方法について説明する。 Next, a method for manufacturing a protective film forming sheet will be described.
[保護膜形成用シートの製造方法]
 保護膜形成用シートは、上記の各層を対応する位置関係となるように順次積層することで製造することができる。
 例えば、支持シートを製造する際に、基材上に粘着剤層又は中間層を積層する場合には、基材上に粘着剤組成物又は中間層形成用組成物を塗工し、必要に応じて乾燥させるか、又はエネルギー線を照射することで、粘着剤層又は中間層を積層できる。
 塗工方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ロールナイフコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
[Manufacturing method of protective film forming sheet]
The protective film forming sheet can be produced by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship.
For example, when a pressure-sensitive adhesive layer or an intermediate layer is laminated on a base material when manufacturing a support sheet, a pressure-sensitive adhesive composition or a composition for forming an intermediate layer is applied on the base material, and if necessary. The pressure-sensitive adhesive layer or the intermediate layer can be laminated by drying and irradiating with energy rays.
Examples of the coating method include a spin coating method, a spray coating method, a bar coating method, a knife coating method, a roll coating method, a roll knife coating method, a blade coating method, a die coating method, and a gravure coating method.
 一方、例えば、基材上に積層済みの粘着剤層の上に、さらに硬化性樹脂フィルム(x)を積層する場合には、粘着剤層上に熱硬化性樹脂組成物(x1-1)又はエネルギー線硬化性樹脂組成物(x2-1)を塗工して、硬化性樹脂フィルム(x)を直接形成することが可能である。
 同様に、基材上に積層済みの中間層の上に、さらに粘着剤層を積層する場合には、中間層上に粘着剤組成物を塗工して、粘着剤層を直接形成することが可能である。
On the other hand, for example, when the curable resin film (x) is further laminated on the pressure-sensitive adhesive layer already laminated on the base material, the thermosetting resin composition (x1-1) or the heat-curable resin composition (x1-1) or It is possible to directly form the curable resin film (x) by applying the energy ray-curable resin composition (x2-1).
Similarly, when the pressure-sensitive adhesive layer is further laminated on the intermediate layer already laminated on the base material, the pressure-sensitive adhesive composition may be applied on the intermediate layer to directly form the pressure-sensitive adhesive layer. It is possible.
 このように、いずれかの組成物を用いて、連続する2層の積層構造を形成する場合には、前記組成物から形成された層の上に、さらに組成物を塗工して新たに層を形成することが可能である。ただし、これら2層のうちの後から積層する層は、別の剥離フィルム上に前記組成物を用いてあらかじめ形成しておき、この形成済みの層の前記剥離フィルムと接触している側とは反対側の露出面を、既に形成済みの残りの層の露出面と貼り合わせることで、連続する2層の積層構造を形成することが好ましい。このとき、前記組成物は、剥離フィルムの剥離処理面に塗工することが好ましい。剥離フィルムは、積層構造の形成後、必要に応じて取り除けばよい。 As described above, when a continuous two-layer laminated structure is formed by using any of the compositions, the composition is further applied on the layer formed from the composition to form a new layer. Is possible to form. However, of these two layers, the layer to be laminated afterwards is formed in advance on another release film using the composition, and the side of the formed layer that is in contact with the release film is It is preferable to form a laminated structure of two continuous layers by laminating the exposed surface on the opposite side with the exposed surface of the remaining layers that have already been formed. At this time, it is preferable that the composition is applied to the peeled surface of the peeling film. The release film may be removed if necessary after the laminated structure is formed.
[保護膜形成用シートを用いた保護膜付き半導体ウエハの製造方法]
 本発明の保護膜付き半導体ウエハの製造方法は、上記した本発明の保護膜形成用シートを用いて実施される。
 具体的には、下記工程(S1)~(S3)を含む。
・工程(S1):複数のバンプが設けられたバンプ形成面を有する半導体ウエハを準備する工程
・工程(S2):前記半導体ウエハの前記バンプ形成面に、上記した本発明の保護膜形成用シートを、硬化性樹脂フィルム(x)を貼付面にして押圧しながら貼着する工程
・工程(S3):硬化性樹脂フィルム(x)を硬化させて保護膜(X)を形成する工程
 以下、本発明の保護膜付き半導体ウエハの製造方法について、適用対象となる半導体ウエハについて詳述しつつ、説明する。
[Manufacturing method of semiconductor wafer with protective film using protective film forming sheet]
The method for producing a semiconductor wafer with a protective film of the present invention is carried out using the above-mentioned sheet for forming a protective film of the present invention.
Specifically, the following steps (S1) to (S3) are included.
-Step (S1): Step of preparing a semiconductor wafer having a bump-forming surface provided with a plurality of bumps-Step (S2): The protective film-forming sheet of the present invention described above on the bump-forming surface of the semiconductor wafer. Step (S3): A step of curing the curable resin film (x) to form a protective film (X). The method for manufacturing a semiconductor wafer with a protective film of the present invention will be described in detail with respect to the semiconductor wafer to be applied.
<工程(S1)>
 工程(S1)では、複数のバンプが設けられたバンプ形成面を有する半導体ウエハを準備する。
 本発明の保護膜付き半導体ウエハの製造方法において用いられる、複数のバンプが設けられたバンプ形成面を有する半導体ウエハの一例を図5に示す。バンプを備える半導体ウエハ40は、半導体ウエハ41のバンプ形成面(回路面)41aに、複数のバンプBMを備える。
 以降の説明では、「バンプを備える半導体ウエハ」を、「バンプ付きウエハ」ともいう。「半導体ウエハ」を、単に「ウエハ」ともいう。
<Process (S1)>
In the step (S1), a semiconductor wafer having a bump forming surface provided with a plurality of bumps is prepared.
FIG. 5 shows an example of a semiconductor wafer having a bump forming surface provided with a plurality of bumps, which is used in the method for manufacturing a semiconductor wafer with a protective film of the present invention. The semiconductor wafer 40 provided with bumps includes a plurality of bump BMs on the bump forming surface (circuit surface) 41a of the semiconductor wafer 41.
In the following description, the "semiconductor wafer having bumps" is also referred to as a "wafer with bumps". The "semiconductor wafer" is also simply referred to as a "wafer".
 ウエハ41は、例えば、配線、キャパシタ、ダイオード、及びトランジスタ等の回路が表面に形成されている。当該ウエハの材質は特に限定されず、例えば、シリコンウエハ、シリコンカーバイドウエハ、化合物半導体ウエハ、サファイアウエハ、及びガラスウエハ等が挙げられる。 The wafer 41 has circuits such as wiring, capacitors, diodes, and transistors formed on the surface thereof, for example. The material of the wafer is not particularly limited, and examples thereof include silicon wafers, silicon carbide wafers, compound semiconductor wafers, sapphire wafers, and glass wafers.
 ウエハ41のサイズは、特に限定されないが、バッチ処理効率を高める観点から、通常8インチ(直径200mm)以上であり、好ましくは12インチ(直径300mm)以上である。なお、ウエハの形状は、円形には限定されず、例えば正方形や長方形等の角型であってもよい。角型のウエハの場合、ウエハ41のサイズは、バッチ処理効率を高める観点から、最も長い辺の長さが、上記サイズ(直径)以上であることが好ましい。 The size of the wafer 41 is not particularly limited, but is usually 8 inches (diameter 200 mm) or more, preferably 12 inches (diameter 300 mm) or more from the viewpoint of improving batch processing efficiency. The shape of the wafer is not limited to a circle, and may be a square shape such as a square or a rectangle. In the case of a square wafer, the size of the wafer 41 is preferably such that the length of the longest side is equal to or larger than the above size (diameter) from the viewpoint of increasing batch processing efficiency.
 ウエハ41の厚さは、特に限定されないが、硬化性樹脂フィルム(x)を硬化させることに伴うウエハ41の反りを抑制しやすくする観点から、好ましくは100μm~1,000μm、より好ましくは200μm~900μm、更に好ましくは300μm~800μmである。 The thickness of the wafer 41 is not particularly limited, but is preferably 100 μm to 1,000 μm, more preferably 200 μm or more, from the viewpoint of facilitating the suppression of warpage of the wafer 41 due to curing of the curable resin film (x). It is 900 μm, more preferably 300 μm to 800 μm.
 バンプBMの形状は、特に限定されず、チップ搭載用の基板上の電極等に接触させて固定させることが可能であれば、いかなる形状であってもよい。例えば、図5では、バンプBMをボール形状としているが、バンプBMは回転楕円体であってもよい。当該回転楕円体は、例えば、ウエハ41のバンプ形成面41aに対して垂直方向に引き延ばされた回転楕円体であってもよいし、ウエハ41のバンプ形成面41aに対して水平方向に引き延ばされた回転楕円体であってもよい。
 また、バンプBMは、図6に示すように、ピラー(柱)形状であってもよい。
 なお、バンプBMの材質としては、例えば、ハンダが挙げられる。
The shape of the bump BM is not particularly limited, and may be any shape as long as it can be brought into contact with and fixed to an electrode or the like on a substrate for mounting the chip. For example, in FIG. 5, the bump BM has a ball shape, but the bump BM may be a spheroid. The spheroid may be, for example, a spheroid stretched in the direction perpendicular to the bump forming surface 41a of the wafer 41, or may be pulled in the horizontal direction with respect to the bump forming surface 41a of the wafer 41. It may be a stretched spheroid.
Further, the bump BM may have a pillar shape as shown in FIG.
Examples of the material of the bump BM include solder.
 ここで、本発明では、以下に説明する要件にて規定される、狭ピッチ化されたバンプを有する半導体ウエハが適用対象となる。
 つまり、本発明では、保護膜形成用シートを用いて、狭ピッチ化されたバンプを有する半導体ウエハのバンプ形成面に保護膜(X)を形成することで、狭ピッチ化されたバンプの潰れや変形を抑制し、バンプ同士の短絡を防ぐようにしている。換言すれば、本発明を適用する対象となる半導体ウエハは、保護膜(X)が形成されていない場合に、バンプの潰れや変形によって短絡する恐れのある、狭ピッチ化されたバンプを有する半導体ウエハである。
 以下に説明する半導体ウエハは、保護膜(X)が形成されていない場合に、バンプの潰れや変形によって短絡する恐れのある、狭ピッチ化されたバンプを有する半導体ウエハである。
Here, in the present invention, a semiconductor wafer having narrow pitched bumps defined by the requirements described below is applied.
That is, in the present invention, by forming the protective film (X) on the bump forming surface of the semiconductor wafer having the narrow pitched bumps by using the protective film forming sheet, the narrowed pitched bumps can be crushed. Deformation is suppressed and short circuits between bumps are prevented. In other words, the semiconductor wafer to which the present invention is applied is a semiconductor having narrow pitched bumps, which may be short-circuited due to crushing or deformation of the bumps when the protective film (X) is not formed. It is a wafer.
The semiconductor wafer described below is a semiconductor wafer having narrow pitched bumps, which may cause a short circuit due to crushing or deformation of the bumps when the protective film (X) is not formed.
<<半導体ウエハ>>
 本発明の保護膜形成用シートは、下記要件(α1)~(α2)を満たす半導体ウエハのバンプ形成面に、保護膜(X)を形成するために用いられる。
 また、本発明の保護膜付き半導体ウエハの製造方法は、下記要件(α1)~(α2)を満たす半導体ウエハを用いて実施される。
・要件(α1):前記バンプの幅(BM)(単位:μm)が、20μm~350μmである。
・要件(α2):前記バンプのピッチ(BM)(単位:μm)と前記バンプの幅(BM)(単位:μm)とが、下記式(I)を満たす。
     [(BM)/(BM)]≦1.0・・・・(I)
<< Semiconductor Wafer >>
The protective film forming sheet of the present invention is used to form the protective film (X) on the bump forming surface of the semiconductor wafer satisfying the following requirements (α1) to (α2).
Further, the method for manufacturing a semiconductor wafer with a protective film of the present invention is carried out using semiconductor wafers that satisfy the following requirements (α1) to (α2).
-Requirement (α1): The width (BM w ) (unit: μm) of the bump is 20 μm to 350 μm.
-Requirement (α2): The bump pitch (BM P ) (unit: μm) and the bump width (BM w ) (unit: μm) satisfy the following formula (I).
[(BM P ) / (BM w )] ≤ 1.0 ... (I)
 上記要件(α1)~(α2)は、狭ピッチ化されたバンプを有する半導体ウエハであることを示す指標である。すなわち、バンプの潰れや変形による短絡が起こりやすいことを示す指標である。
 バンプのピッチ(BM)(単位:μm)とバンプの幅(BM)(単位:μm)の定義を示すために、ウエハ41のバンプ形成面に形成されている3つのバンプBM_a、BM_b、及びBM_cを拡大した上面図を図7に示す。
 バンプのピッチ(BM)は、2点のバンプ間の最短距離である。図7では、バンプBM_aとバンプBM_bの最短距離は、Pである。また、バンプBM_bとバンプBM_cの最短距離は、Pである。
 バンプの幅(BM)は、バンプBM_aとバンプBM_bとを結ぶ直線Pの、バンプBM_bとの接点bと、バンプBM_bとバンプBM_cとを結ぶ直線Pの、バンプBM_bとの接点bとを結ぶ直線b-bの長さである。
 なお、バンプのピッチ(BM)(単位:μm)とバンプの幅(BM)(単位:μm)は、上記の定義に基づき、例えば、光学顕微鏡観察により測定することができる。
The above requirements (α1) to (α2) are indexes indicating that the wafer is a semiconductor wafer having narrow pitched bumps. That is, it is an index showing that a short circuit due to crushing or deformation of the bump is likely to occur.
Three bumps BM_a, BM_b, formed on the bump forming surface of the wafer 41 to show the definitions of the bump pitch (BM P ) (unit: μm) and the bump width (BM w) (unit: μm). And an enlarged top view of BM_c is shown in FIG.
The bump pitch (BM P ) is the shortest distance between two bumps. In Figure 7, the shortest distance of the bump BM_a and bumps BM_b is P 1. The shortest distance between bump BM_b and bump BM_c is P 2 .
Bump width (BM w) is the straight line P 1 connecting the bumps BM_a and bumps BM_b, the contact b 1 between the bumps BM_b, linear P 2 connecting the bump BM_b and the bump BM_c, contact b of the bump BM_b It is the length of a straight line b 1- b 2 connecting 2 and 2.
The bump pitch (BM P ) (unit: μm) and the bump width (BM w ) (unit: μm) can be measured, for example, by observation with an optical microscope based on the above definitions.
 なお、ウエハ上に存在する複数のバンプのうち、少なくともいずれか1つのバンプ間において、上記要件(α1)~(α2)を満たすと、当該バンプ間が狭ピッチであるために、当該バンプ間にて短絡が生じる恐れがある。
 したがって、本発明を適用する対象となるウエハは、ウエハ上に存在する複数のバンプのうち、少なくともいずれか1つのバンプ間において、上記要件(α1)~(α2)を満たすウエハである。
If the above requirements (α1) to (α2) are satisfied between at least one of the plurality of bumps existing on the wafer, the bumps have a narrow pitch, so that the bumps are between the bumps. There is a risk of short circuit.
Therefore, the wafer to which the present invention is applied is a wafer that satisfies the above requirements (α1) to (α2) between at least one of the plurality of bumps existing on the wafer.
 ここで、要件(α1)で規定される、バンプの幅(BM)(単位:μm)は、20μm~350μmである。つまり、本発明によれば、バンプの幅(BM)の小さな20μm以上150μm未満(特に、20μm~100μm)のバンプを複数備えるウエハを対象とすることもできる。換言すれば、狭ピッチであり且つ微小バンプを複数備えるウエハを対象とすることもできる。また、バンプの幅(BM)の大きな150μm~350μmのバンプを複数備えるウエハを対象とすることもできる。換言すれば、狭ピッチであり且つ幅の大きなバンプを複数備えるウエハを対象にすることもできる。狭ピッチであり且つ幅の大きなバンプを複数備えるウエハは、特にバンプ間の短絡が起こりやすいが、本発明によれば、このようなウエハにおけるバンプ間の短絡を抑制し得る。 Here, the bump width (BM w ) (unit: μm) defined by the requirement (α1) is 20 μm to 350 μm. That is, according to the present invention, it is also possible to target a wafer having a plurality of bumps having a small bump width (BM w ) of 20 μm or more and less than 150 μm (particularly, 20 μm to 100 μm). In other words, a wafer having a narrow pitch and having a plurality of minute bumps can be targeted. Further, it is also possible to target a wafer having a plurality of bumps having a large bump width (BM w) of 150 μm to 350 μm. In other words, it is possible to target a wafer having a plurality of bumps having a narrow pitch and a large width. Wafers having a plurality of bumps having a narrow pitch and a large width are particularly prone to short circuits between bumps, but according to the present invention, short circuits between bumps in such a wafer can be suppressed.
 ここで、要件(α2)で規定される[(BM)/(BM)]の値は、バンプ同士の短絡のしやすさを示す指標の1つであり、この値は、0.9以下であってもよく、0.8以下であってもよい。 Here, the value of [(BM P ) / (BM w )] specified in the requirement (α2) is one of the indexes indicating the ease of short-circuiting between bumps, and this value is 0.9. It may be less than or equal to or less than or equal to 0.8.
 ここで、ウエハが、さらに下記要件(α3a)又は下記要件(α3b)を満たしていてもよい。
 ・要件(α3a):前記バンプの高さ(BM)と前記バンプの幅(BM)とが、下記式(IIIa)を満たす
     0.2≦[(BM)/(BM)]≦1.0・・・・(IIIa)
・要件(α3b):前記バンプの高さ(BM)と前記バンプの幅(BM)とが、下記式(IIIb)を満たす
     0.5≦[(BM)/(BM)]≦5.0・・・・(IIIb)
Here, the wafer may further satisfy the following requirement (α3a) or the following requirement (α3b).
-Requirement (α3a): The height of the bump (BM h ) and the width of the bump (BM w ) satisfy the following formula (IIIa) 0.2 ≦ [(BM h ) / (BM w )] ≦ 1.0 ... (IIIa)
-Requirement (α3b): The height of the bump (BM h ) and the width of the bump (BM w ) satisfy the following formula (IIIb) 0.5 ≦ [(BM h ) / (BM w )] ≦ 5.0 ... (IIIb)
 上記要件(α3a)は、バンプが、ボールバンプであることを示す指標であり、[(BM)/(BM)]の値が1.0に近づく程、真球状に近づき、0.2に近づく程、ウエハ41のバンプ形成面41aに対して水平方向に引き延ばされた回転楕円体であることを示している。
 このようなボールバンプを有する半導体ウエハは、これを個片化して半導体チップとし、当該半導体チップと配線基板とを、ボールバンプを介して電気的に接続する工程において、ボールバンプが潰れて横方向に広がり、ボールバンプ同士が接触して短絡を引き起こす問題が生じる。また、さらなる高密度実装の要求に対応するため、半導体パッケージを高さ方向にスタックした3次元高密度実装も検討されており、この場合には、半導体パッケージの自重によりボールバンプが徐々に潰れることで、短絡に至る場合もある。本発明によれば、ボールバンプ同士の接触による短絡を抑制し得る。
The above requirement (α3a) is an index indicating that the bump is a ball bump, and the closer the value of [(BM h ) / (BM w )] is to 1.0, the closer to a spherical shape, 0.2. The closer to, the more it is a spheroid that is stretched horizontally with respect to the bump forming surface 41a of the wafer 41.
A semiconductor wafer having such ball bumps is individualized into a semiconductor chip, and in the process of electrically connecting the semiconductor chip and the wiring substrate via the ball bumps, the ball bumps are crushed in the lateral direction. The problem arises that the ball bumps come into contact with each other and cause a short circuit. In addition, in order to meet the demand for higher-density mounting, three-dimensional high-density mounting in which semiconductor packages are stacked in the height direction is also being considered. In this case, the ball bumps are gradually crushed by the weight of the semiconductor package. In some cases, it may lead to a short circuit. According to the present invention, a short circuit due to contact between ball bumps can be suppressed.
 上記要件(α3b)は、バンプが、ピラーバンプであることを示す指標であり、[(BM)/(BM)]の値が5.0に近づく程、アスペクト比が高いピラーバンプであり、0.5に近づく程、アスペクト比が低いピラーバンプであることを示している。
 このようなピラーバンプを有する半導体ウエハは、これを個片化して半導体チップとし、当該半導体チップと配線基板とを、ボールバンプを介して電気的に接続する工程において、ピラーバンプが変形して折れ曲がり、ピラーバンプ同士が接触して短絡を引き起こす問題が生じる。加えて、ピラーバンプが変形して折れ曲がることで接続不良が生じる問題もある。また、さらなる高密度実装の要求に対応するため、半導体パッケージを高さ方向にスタックした3次元高密度実装も検討されており、この場合には、半導体パッケージの自重によりピラーバンプが徐々に変形することで、短絡に至る場合もある。本発明によれば、ピラーバンプ同士の接触による短絡を抑制し得る。また、ピラーバンプの変形により引き起こされることのある接続不良も抑制し得る。
The above requirement (α3b) is an index indicating that the bump is a pillar bump, and the closer the value of [(BM h ) / (BM w )] is to 5.0, the higher the aspect ratio of the pillar bump, which is 0. The closer it is to .5, the lower the aspect ratio of the pillar bumps.
A semiconductor wafer having such a pillar bump is separated into a semiconductor chip, and in a process of electrically connecting the semiconductor chip and a wiring board via a ball bump, the pillar bump is deformed and bent, and the pillar bump is bent. There is a problem that they come into contact with each other and cause a short circuit. In addition, there is a problem that the pillar bump is deformed and bent, resulting in poor connection. In addition, in order to meet the demand for higher-density mounting, three-dimensional high-density mounting in which semiconductor packages are stacked in the height direction is also being considered. In this case, the pillar bumps are gradually deformed by the weight of the semiconductor package. In some cases, it may lead to a short circuit. According to the present invention, a short circuit due to contact between pillar bumps can be suppressed. In addition, poor connection that may be caused by deformation of the pillar bumps can be suppressed.
 なお、バンプの高さ(BM)とは、1つのバンプに着目したときに、バンプ形成面のバンプとの接点と、バンプ形成面から最も遠い位置にあるバンプの部位との間を結ぶ直線の距離を意味する。
 バンプの高さ(BM)は、具体的には、下記要件(α4)で規定される値であってもよい。
・要件(α4):前記バンプの高さ(BM)が、15μm~300μmである
 つまり、本発明の一態様では、バンプの高さ(BM)が低い20μm以上150μm未満(特に、20μm~100μm)のバンプを複数備えるウエハを対象とすることもできる。また、バンプの高さ(BM)が高い150μm~350μmのバンプを複数備えるウエハを対象とすることもできる。
 バンプの高さ(BM)は、例えば、バンプ付き半導体ウエハを、バンプ形成面と垂直な方向で且つバンプの中心を通過するように割断した断面を、光学顕微鏡観察することにより測定することができる。
The bump height (BM h ) is a straight line connecting the contact point of the bump forming surface with the bump and the part of the bump farthest from the bump forming surface when focusing on one bump. Means the distance of.
Specifically, the bump height (BM h ) may be a value specified by the following requirement (α4).
-Requirement (α4): The bump height (BM h ) is 15 μm to 300 μm. That is, in one aspect of the present invention, the bump height (BM h ) is low, 20 μm or more and less than 150 μm (particularly, 20 μm to 20 μm). Wafers having a plurality of bumps of 100 μm) can also be targeted. Further, it is also possible to target a wafer having a plurality of bumps having a high bump height (BM h) of 150 μm to 350 μm.
The bump height (BM h ) can be measured, for example, by observing a cross section of a bumped semiconductor wafer in a direction perpendicular to the bump forming surface and passing through the center of the bump with an optical microscope. can.
<工程(S2)>
 工程(S2)の概略を図8に示す。
 工程(S2)では、半導体ウエハ41のバンプ形成面41aに、上記した本発明の保護膜形成用シート1を、硬化性樹脂フィルム(x)を貼付面にして押圧しながら貼着する。
 これにより、半導体ウエハ41のバンプ形成面41aを硬化性樹脂フィルム(x)で被覆すると共に、複数のバンプBMの間にも、硬化性樹脂フィルム(x)が充填される。
<Process (S2)>
The outline of the step (S2) is shown in FIG.
In the step (S2), the protective film forming sheet 1 of the present invention described above is attached to the bump forming surface 41a of the semiconductor wafer 41 while pressing the curable resin film (x) as the attaching surface.
As a result, the bump forming surface 41a of the semiconductor wafer 41 is covered with the curable resin film (x), and the curable resin film (x) is also filled between the plurality of bumps BM.
 なお、保護膜形成用シート1を、半導体ウエハ41のバンプ形成面41aに貼着する際の押圧力は、複数のバンプBMの間に硬化性樹脂フィルム(x)を良好に充填する観点から、好ましくは1kPa~200kPa、より好ましくは5kPa~150kPa、更に好ましくは10kPa~100kPaである。
 なお、保護膜形成用シート1を、半導体ウエハ41のバンプ形成面41aに貼着する際の押圧力は、貼着初期から終期にかけて適宜変動させてもよい。例えば、複数のバンプBMの間に硬化性樹脂フィルム(x)をより良好に充填する観点から、押圧力を、貼付初期には低くし、徐々に押圧力を高めることが好ましい。
The pressing force when the protective film forming sheet 1 is attached to the bump forming surface 41a of the semiconductor wafer 41 is from the viewpoint of satisfactorily filling the curable resin film (x) between the plurality of bump BMs. It is preferably 1 kPa to 200 kPa, more preferably 5 kPa to 150 kPa, and even more preferably 10 kPa to 100 kPa.
The pressing force when the protective film forming sheet 1 is attached to the bump forming surface 41a of the semiconductor wafer 41 may be appropriately changed from the initial stage to the final stage of the attachment. For example, from the viewpoint of better filling the curable resin film (x) between the plurality of bumps BM, it is preferable to lower the pressing force at the initial stage of application and gradually increase the pressing force.
 また、保護膜形成用シート1を、半導体ウエハ41のバンプ形成面41aに貼着する際、硬化性樹脂フィルム(x)が熱硬化性樹脂フィルム(x1)である場合には、複数のバンプBMの間に硬化性樹脂フィルム(x)をさらに良好に充填する観点から、加熱を行うことが好ましい。硬化性樹脂フィルム(x)が熱硬化性樹脂フィルム(x1)である場合、熱硬化性樹脂フィルム(x1)は、加熱することで流動性が一時的に高まり、加熱を続けることで硬化する。そこで、熱硬化性樹脂フィルム(x1)の流動性が向上する範囲内で加熱を行うことにより、熱硬化性樹脂フィルム(x1)が複数のバンプBMの間に行き渡りやすくなり、複数のバンプBMの間への熱硬化性樹脂フィルム(x1)の充填性がより向上する。
 具体的な加熱温度(貼着温度)としては、好ましくは50℃~150℃、より好ましくは60℃~130℃、更に好ましくは70℃~110℃である。
 なお、熱硬化性樹脂フィルム(x1)に対して行う当該加熱処理は、熱硬化性樹脂フィルム(x1)の硬化処理には含まれない。
Further, when the protective film forming sheet 1 is attached to the bump forming surface 41a of the semiconductor wafer 41, if the curable resin film (x) is a thermosetting resin film (x1), a plurality of bump BMs From the viewpoint of more satisfactorily filling the curable resin film (x) between the two, it is preferable to perform heating. When the curable resin film (x) is a thermosetting resin film (x1), the thermosetting resin film (x1) is temporarily increased in fluidity by heating, and is cured by continuing heating. Therefore, by heating within the range in which the fluidity of the thermosetting resin film (x1) is improved, the thermosetting resin film (x1) can be easily distributed among the plurality of bump BMs, and the plurality of bump BMs can be easily distributed. The filling property of the thermosetting resin film (x1) in between is further improved.
The specific heating temperature (sticking temperature) is preferably 50 ° C. to 150 ° C., more preferably 60 ° C. to 130 ° C., and even more preferably 70 ° C. to 110 ° C.
The heat treatment performed on the thermosetting resin film (x1) is not included in the curing treatment of the thermosetting resin film (x1).
 さらに、保護膜形成用シート1を、半導体ウエハ41のバンプ形成面41aに貼着する際、減圧環境下で行うようにしてもよい。これにより、複数のバンプBMの間が負圧となり、硬化性樹脂フィルム(x)が複数のバンプBMの間に行き渡りやすくなる。その結果、複数のバンプBMの間への硬化性樹脂フィルム(x)の充填性がより向上しやすくなる。減圧環境の具体的な圧力としては、好ましくは0.001kPa~50kPa、より好ましくは0.01kPa~5kPa、更に好ましいくは0.05kPa~1kPaである。 Further, when the protective film forming sheet 1 is attached to the bump forming surface 41a of the semiconductor wafer 41, it may be performed in a reduced pressure environment. As a result, a negative pressure is generated between the plurality of bump BMs, and the curable resin film (x) is easily distributed between the plurality of bumps BMs. As a result, the filling property of the curable resin film (x) between the plurality of bumps BM is more likely to be improved. The specific pressure in the reduced pressure environment is preferably 0.001 kPa to 50 kPa, more preferably 0.01 kPa to 5 kPa, and even more preferably 0.05 kPa to 1 kPa.
<工程(S3)>
 工程(S2)を実施した後、工程(S3)を実施する。具体的には、図9に示すように、硬化性樹脂フィルム(x)を硬化させて、保護膜付き半導体ウエハを得る。
 硬化性樹脂フィルム(x)を硬化することに形成される保護膜(X)は、常温(23℃)において、硬化性樹脂フィルム(x)よりも強固になる。そのため、保護膜(X)を形成することによって、バンプネックが良好に保護される。
 また、本発明では、上記要件(β1)~(β3)を満たす保護膜形成用シートを用いているため、既述のように、バンプの潰れや変形によって短絡する恐れのある、狭ピッチ化されたバンプを有する半導体ウエハに対し、バンプの潰れや変形を抑制することができ、バンプ同士の接触による短絡を回避することができる。
<Process (S3)>
After carrying out the step (S2), the step (S3) is carried out. Specifically, as shown in FIG. 9, the curable resin film (x) is cured to obtain a semiconductor wafer with a protective film.
The protective film (X) formed by curing the curable resin film (x) becomes stronger than the curable resin film (x) at room temperature (23 ° C.). Therefore, by forming the protective film (X), the bump neck is well protected.
Further, in the present invention, since the protective film forming sheet satisfying the above requirements (β1) to (β3) is used, as described above, the pitch is narrowed so that a short circuit may occur due to crushing or deformation of the bump. For a semiconductor wafer having bumps, it is possible to suppress crushing and deformation of the bumps, and it is possible to avoid a short circuit due to contact between the bumps.
 硬化性樹脂フィルム(x)の硬化は、硬化性樹脂フィルム(x)に含まれている硬化性成分の種類に応じて、熱硬化及びエネルギー線の照射による硬化のいずれかにより行うことができる。
 熱硬化を行う場合の条件としては、硬化温度が好ましくは90℃~200℃であり、硬化時間が好ましくは1時間~3時間である。
 エネルギー線照射による硬化を行う場合の条件としては、使用するエネルギー線の種類により適宜設定される、例えば、紫外線を用いる場合、照度は好ましくは170mw/cm~250mw/cmであり、光量は好ましくは300mJ/cm~3000mJ/cmである。
The curable resin film (x) can be cured by either thermosetting or curing by irradiation with energy rays, depending on the type of the curable component contained in the curable resin film (x).
As conditions for thermosetting, the curing temperature is preferably 90 ° C. to 200 ° C., and the curing time is preferably 1 hour to 3 hours.
The conditions for curing by energy ray irradiation are appropriately set depending on the type of energy ray to be used. For example, when ultraviolet rays are used, the illuminance is preferably 170 mw / cm 2 to 250 mw / cm 2 , and the amount of light is preferably is 300mJ / cm 2 ~ 3000mJ / cm 2.
 ここで、硬化性樹脂フィルム(x)を硬化させて保護膜(X)を形成する過程において、工程(S2)において硬化性樹脂フィルム(x)で複数のバンプBMの間を充填する際に入り込むことのある気泡等を除去する観点から、硬化性樹脂フィルム(x)は、熱硬化性樹脂フィルム(x1)であることが好ましい。すなわち、硬化性樹脂フィルム(x)が熱硬化性樹脂フィルム(x1)である場合、熱硬化性樹脂フィルム(x1)は、加熱することで流動性が一時的に高まり、加熱を続けることで硬化する。この現象を利用することで、熱硬化性樹脂フィルム(x1)の流動性が高まった際に、熱硬化性樹脂フィルム(x1)で複数のバンプBMの間を充填する際に入り込むことのある気泡等が除去され、熱硬化性樹脂フィルム(x1)の複数のバンプBMの間への充填性をより良好なものとした状態とした上で、熱硬化性樹脂フィルム(x1)を硬化することができる。
 また、硬化時間の短縮の観点から、硬化性樹脂フィルム(x)は、エネルギー線硬化性樹脂フィルム(x1)であることが好ましい。
Here, in the process of curing the curable resin film (x) to form the protective film (X), it enters when the curable resin film (x) is filled between the plurality of bumps BM in the step (S2). From the viewpoint of removing air bubbles and the like, the curable resin film (x) is preferably a thermosetting resin film (x1). That is, when the curable resin film (x) is a thermosetting resin film (x1), the thermosetting resin film (x1) is temporarily increased in fluidity by heating, and is cured by continuing heating. do. By utilizing this phenomenon, when the fluidity of the thermosetting resin film (x1) is increased, air bubbles that may enter when filling between a plurality of bumps BM with the thermosetting resin film (x1). Etc. can be removed to improve the filling property of the thermosetting resin film (x1) between the plurality of bumps BM, and then the thermosetting resin film (x1) can be cured. can.
Further, from the viewpoint of shortening the curing time, the curable resin film (x) is preferably an energy ray-curable resin film (x1).
 なお、支持シート(Y)は、硬化性樹脂フィルム(x)を硬化する前に剥離し、硬化性樹脂フィルム(x)を硬化して保護膜(X)を形成することで、保護膜付き半導体ウエハが得られる。但し、このような実施の態様には限定されず、硬化性樹脂フィルム(x)を硬化して保護膜(X)を形成した後、支持シート(Y)を剥離することで、保護膜付き半導体ウエハを得るようにしてもよい。
 また、支持シート(Y)を剥離することなく、半導体ウエハ41のバンプ形成面41aとは反対面(すなわち、半導体ウエハ41の裏面)を研削(バックグラインド処理)し、半導体ウエハ41を薄化処理してもよい。バックグラインド処理は、硬化性樹脂フィルム(x)の硬化前に行うようにしてもよいし、硬化性樹脂フィルム(x)の硬化後に行うようにしてもよい。
 また、バックグラインド処理を行う場合には、バックグラインド処理を良好に実施する観点から、支持シート(Y)は、バックグラインドテープであることが好ましい。
The support sheet (Y) is peeled off before the curable resin film (x) is cured, and the curable resin film (x) is cured to form a protective film (X), whereby a semiconductor with a protective film is formed. A wafer is obtained. However, the present invention is not limited to such an embodiment, and a semiconductor with a protective film is formed by curing the curable resin film (x) to form a protective film (X) and then peeling off the support sheet (Y). A wafer may be obtained.
Further, without peeling off the support sheet (Y), the surface of the semiconductor wafer 41 opposite to the bump forming surface 41a (that is, the back surface of the semiconductor wafer 41) is ground (back grinded) to thin the semiconductor wafer 41. You may. The back grind treatment may be performed before the curing of the curable resin film (x), or may be performed after the curing of the curable resin film (x).
Further, when the back grind treatment is performed, the support sheet (Y) is preferably a back grind tape from the viewpoint of satisfactorily performing the back grind treatment.
 また、硬化性樹脂フィルム(x)の硬化後に、バンプの頂部を覆う保護膜(X)、又はバンプの頂部の一部に付着した保護膜(X)を除去して、バンプ頂部を露出させる処理を行うようにしてもよい。
 バンプの頂部を露出させる露出処理としては、例えばウェットエッチング処理やドライエッチング処理等のエッチング処理が挙げられる。
 ここで、ドライエッチング処理としては、例えばプラズマエッチング処理等が挙げられる。
 なお、露出処理は、保護膜の表面にバンプの頂部が露出していない場合、バンプの頂部が露出するまで保護膜を後退させる目的で実施してもよい。
Further, after the curable resin film (x) is cured, the protective film (X) covering the top of the bump or the protective film (X) adhering to a part of the top of the bump is removed to expose the top of the bump. May be done.
Examples of the exposure treatment for exposing the top of the bump include an etching treatment such as a wet etching treatment and a dry etching treatment.
Here, examples of the dry etching process include a plasma etching process and the like.
When the top of the bump is not exposed on the surface of the protective film, the exposure treatment may be performed for the purpose of retracting the protective film until the top of the bump is exposed.
[保護膜付き半導体チップの製造方法]
 本発明の保護膜付き半導体チップの製造方法は、下記工程(T1)~(T2)を含む。
・工程(T1):本発明の保護膜付き半導体ウエハの製造方法を実施して、保護膜付き半導体ウエハを得る工程
・工程(T2):前記保護膜付き半導体ウエハを個片化する工程
[Manufacturing method of semiconductor chip with protective film]
The method for manufacturing a semiconductor chip with a protective film of the present invention includes the following steps (T1) to (T2).
-Step (T1): A step of carrying out the method for manufacturing a semiconductor wafer with a protective film of the present invention to obtain a semiconductor wafer with a protective film-Step (T2): A step of individualizing the semiconductor wafer with a protective film.
<工程(T1)>
 工程(T1)では、上述した本発明の保護膜付き半導体ウエハの製造方法を実施して、保護膜付き半導体ウエハを得る。
<Process (T1)>
In the step (T1), the method for manufacturing a semiconductor wafer with a protective film of the present invention described above is carried out to obtain a semiconductor wafer with a protective film.
<工程(T2)>
 工程(T2)では、工程(T1)で得られた保護膜付き半導体ウエハを個片化する。
 個片化の方法は、特に限定されず、公知の個片化方法を適宜採用することができる。具体的には、例えば、レーザーダイシング、ブレードダイシング、及びステルスダイシング(登録商標)等が挙げられる。
<Process (T2)>
In the step (T2), the semiconductor wafer with a protective film obtained in the step (T1) is fragmented.
The method of individualization is not particularly limited, and a known individualization method can be appropriately adopted. Specific examples thereof include laser dicing, blade dicing, stealth dicing (registered trademark) and the like.
 なお、工程(T1)を実施する前に、保護膜付き半導体ウエハの裏面(バンプ形成面とは反対側の面)に裏面保護膜を形成する工程を含むようにしてもよい。 Before carrying out the step (T1), a step of forming a back surface protective film on the back surface (the surface opposite to the bump forming surface) of the semiconductor wafer with the protective film may be included.
[半導体パッケージの製造方法]
 本発明の半導体パッケージの製造方法は、下記工程(U1)~(U2)を含む。
・工程(U1):本発明の保護膜付き半導体チップの製造方法を実施して、保護膜付き半導体チップを得る工程
・工程(U2):配線基板と前記保護膜付き半導体チップとを、前記バンプを介して電気的に接続する工程
[Manufacturing method of semiconductor package]
The method for manufacturing a semiconductor package of the present invention includes the following steps (U1) to (U2).
Step (U1): A step of carrying out the method for manufacturing a semiconductor chip with a protective film of the present invention to obtain a semiconductor chip with a protective film. Step (U2): A wiring substrate and the semiconductor chip with a protective film are attached to the bump. The process of electrically connecting via
<工程(U1)>
 工程(U1)では、上述した本発明の保護膜付き半導体チップの製造方法を実施して、保護膜付き半導体チップを得る。
<Process (U1)>
In the step (U1), the method for manufacturing a semiconductor chip with a protective film of the present invention described above is carried out to obtain a semiconductor chip with a protective film.
<工程(U2)>
 工程(U2)では、図10に示すように、配線Z1を有する配線基板(Z)と、保護膜付き半導体チップCPとを、バンプBMを介して電気的に接続する。
 より詳細には、保護膜付き半導体チップCPのバンプ形成面と、配線基板(Z)の配線Z1の形成面とを、バンプBMを介して対向させた状態で加熱を行う(以下、「加熱接続工程」ともいう)。これにより、バンプBMの頂部と配線Z1とを電気的に良好に接続することができる。
 しかも、本発明では、バンプの潰れや変形によって短絡する恐れのある、狭ピッチ化されたバンプを有する半導体ウエハから得られた半導体チップを用いているにもかかわらず、本発明の保護膜形成用シートが、上記要件(β1)~(β3)を満たすことで、この中でも特に上記要件(β2)を満たすことで、加熱接続工程において、バンプの潰れや変形による、バンプ同士の接触を抑えることができ、バンプ同士の接触に起因する短絡を回避することができる。
 加熱接続工程の条件は、例えば、温度250℃~270℃で、30秒間~5分間である。
<Process (U2)>
In the step (U2), as shown in FIG. 10, the wiring board (Z) having the wiring Z1 and the semiconductor chip CP with the protective film are electrically connected via the bump BM.
More specifically, heating is performed in a state where the bump forming surface of the semiconductor chip CP with a protective film and the forming surface of the wiring Z1 of the wiring board (Z) are opposed to each other via the bump BM (hereinafter, "heating connection"). Also called "process"). As a result, the top of the bump BM and the wiring Z1 can be electrically and satisfactorily connected.
Moreover, in the present invention, although a semiconductor chip obtained from a semiconductor wafer having narrow pitched bumps, which may be short-circuited due to crushing or deformation of the bumps, is used, for forming the protective film of the present invention. By satisfying the above requirements (β1) to (β3), and particularly satisfying the above requirements (β2), it is possible to suppress contact between bumps due to crushing or deformation of bumps in the heating connection step. It is possible to avoid a short circuit caused by contact between bumps.
The conditions of the heating connection step are, for example, a temperature of 250 ° C. to 270 ° C. for 30 seconds to 5 minutes.
<工程(U3)>
 本発明の一態様の半導体パッケージの製造方法は、さらに、下記工程(U3)を含む。
・工程(U3):前記配線基板と前記保護膜付き半導体チップとの間に、アンダーフィル材を充填する工程
 本発明では、既述のように、バンプの潰れや変形による、バンプ同士の接触を抑えることができる。換言すれば、バンプの潰れや変形による、バンプ同士の近接を抑えることができる。従来、バンプが近接してしまうと、アンダーフィル材を充填しようとしてもバンプ間の隙間が狭いため、当該隙間をアンダーフィル材で充填することが困難であった。しかし、本発明では、バンプの近接も抑えられるため、保護膜(X)と配線基板(Z)との間を、バンプ間の隙間も含めて、アンダーフィル材で良好に充填することが可能である。
<Process (U3)>
The method for manufacturing a semiconductor package according to one aspect of the present invention further includes the following step (U3).
Step (U3): A step of filling an underfill material between the wiring board and the semiconductor chip with a protective film. It can be suppressed. In other words, it is possible to suppress the proximity of bumps due to crushing or deformation of bumps. Conventionally, when bumps are close to each other, even if an attempt is made to fill the underfill material, the gap between the bumps is narrow, and it is difficult to fill the gap with the underfill material. However, in the present invention, since the proximity of the bumps is also suppressed, it is possible to satisfactorily fill the space between the protective film (X) and the wiring board (Z) with the underfill material including the gap between the bumps. be.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the following examples.
[各種物性値の測定方法]
 以下の実施例及び比較例における物性値は、以下の方法により測定した値である。
[Measurement method of various physical property values]
The physical property values in the following Examples and Comparative Examples are values measured by the following methods.
<重量平均分子量>
 ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
・カラム:「TSK guard column HXL-L」「TSK gel G2500HXL」「TSK gel G2000HXL」「TSK gel G1000HXL」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・流速:1.0mL/min
<Weight average molecular weight>
It was measured under the following conditions using a gel permeation chromatograph device (manufactured by Tosoh Corporation, product name "HLC-8020"), and the value measured in terms of standard polystyrene was used.
(Measurement condition)
-Column: "TSK guard volume HXL-L""TSK gel G2500HXL""TSK gel G2000HXL""TSK gel G1000HXL" (all manufactured by Tosoh Corporation) are connected in sequence.-Column temperature: 40 ° C.
-Development solvent: tetrahydrofuran-Flow velocity: 1.0 mL / min
<各層の厚さの測定>
 保護膜(硬化後)の厚さ(X)以外の厚さは、株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783、Z1702、Z1709に準拠)を用いて測定した。
<Measurement of thickness of each layer>
The thickness of the protective film (after curing) (X T) other than the thickness, Ltd. Teclock made of constant pressure thickness measuring device (model number: "PG-02J", Standard: conforms to the JIS K6783, Z1702, Z1709) Was measured using.
<ガラス転移温度>
 後述する重合体成分(A)のガラス転移温度(Tg)は、パーキンエルマー株式会社製示差走査熱量計(PYRIS Diamond DSC)を用い、昇降温速度10℃/分で-70℃から150℃の温度プロファイルでの測定を実施し、変曲点を確認して求めた。
<Glass transition temperature>
The glass transition temperature (Tg) of the polymer component (A), which will be described later, is a temperature of −70 ° C. to 150 ° C. at a lifting temperature rate of 10 ° C./min using a differential scanning calorimeter (PYRIS Diamond DSC) manufactured by PerkinElmer Co., Ltd. Measurements were performed using the profile, and the points of variation were confirmed and determined.
<エポキシ当量>
 JIS K 7236:2009に準拠して測定した。
<Epoxy equivalent>
Measured according to JIS K 7236: 2009.
<平均粒径>
 測定対象となる粒子を水中で超音波により分散させ、動的光散乱法式粒度分布測定装置(株式会社堀場製作所製、LB-550)により、粒子の粒度分布を体積基準で測定し、そのメディアン径(D50)を平均粒径とした。
<Average particle size>
The particles to be measured are dispersed in water by ultrasonic waves, and the particle size distribution of the particles is measured on a volume basis by a dynamic light scattering method particle size distribution measuring device (LB-550, manufactured by Horiba Seisakusho Co., Ltd.), and the median diameter thereof is measured. (D 50 ) was defined as the average particle size.
[実施例1-4、比較例1-2]
 実施例で使用した熱硬化性樹脂フィルム(x1)の製造に用いる熱硬化性樹脂組成物(x1-1)は、以下の方法により調製した。
[Example 1-4, Comparative Example 1-2]
The thermosetting resin composition (x1-1) used for producing the thermosetting resin film (x1) used in the examples was prepared by the following method.
<熱硬化性樹脂組成物(x1-1)の原料>
(重合体成分(A))
 下記式(i-1)、下記式(i-2)、及び下記式(i-3)で表される構成単位を有するポリビニルブチラール(積水化学工業株式会社製、エスレック(登録商標)B BL-10、重量平均分子量25,000、ガラス転移温度59℃、下記式中、pは68~74モル%、qは1~3モル%、rは約28モル%である。)を用いた。
Figure JPOXMLDOC01-appb-C000002

 
<Raw material for thermosetting resin composition (x1-1)>
(Polymer component (A))
Polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Eslek® B BL-) having a structural unit represented by the following formula (i-1), the following formula (i-2), and the following formula (i-3) 10. Weight average molecular weight 25,000, glass transition temperature 59 ° C., in the following formula, p is 68 to 74 mol%, q is 1 to 3 mol%, and r is about 28 mol%).
Figure JPOXMLDOC01-appb-C000002

(エポキシ樹脂(B1))
 以下の2種のエポキシ樹脂を用いた。
・エポキシ樹脂(B1-1):液状ビスフェノールA型エポキシ樹脂(DIC株式会社製、EPICLON(登録商標) EXA-4850-1000、エポキシ当量404~412g/eq)
・エポキシ樹脂(B1-2):ジシクロペンタジエン型エポキシ樹脂(DIC株式会社製、EPICLON(登録商標) HP-7200、エポキシ当量254~264g/eq)
(Epoxy resin (B1))
The following two types of epoxy resins were used.
Epoxy resin (B1-1): Liquid bisphenol A type epoxy resin (manufactured by DIC Corporation, EPICLON (registered trademark) EXA-4850-1000, epoxy equivalent 404-412 g / eq)
Epoxy resin (B1-2): Dicyclopentadiene type epoxy resin (manufactured by DIC Corporation, EPICLON (registered trademark) HP-7200, epoxy equivalent 254 to 264 g / eq)
(熱硬化剤(B2))
 ノボラック型フェノール樹脂(昭和電工株式会社製、ショウノール(登録商標) BRG-556)を用いた。
(Thermosetting agent (B2))
A novolak type phenol resin (manufactured by Showa Denko KK, Shonor (registered trademark) BRG-556) was used.
(硬化促進剤(C))
 2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業株式会社製、キュアゾール(登録商標) 2PHZ)を用いた。
(Curing accelerator (C))
2-Phenyl-4,5-dihydroxymethylimidazole (Curesol® 2PHZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.) was used.
(充填材(D))
 エポキシ基で修飾された球状シリカ(株式会社アドマテックス製、アドマナノ(登録商標) YA050C-MKK、平均粒径0.05μm)を用いた。
(Filler (D))
Spherical silica modified with an epoxy group (manufactured by Admatex Co., Ltd., Admanano® YA050C-MKK, average particle size 0.05 μm) was used.
<熱硬化性樹脂組成物(x1-1)の調製>
 重合体成分(A)、エポキシ樹脂(B1-1)、エポキシ樹脂(B1-2)、熱硬化剤(B2)、硬化促進剤(C)、及び充填材(D)を、熱硬化性樹脂組成物(x1-1)の全量(100質量%)基準で、以下に示す含有量となるように、メチルエチルケトンに溶解又は分散させて、23℃で撹拌することにより、有効成分(固形分)濃度が55質量%である熱硬化性樹脂組成物(x1-1)を調製した。
 なお、実施例1及び2では、以下に示す配合1で調製した熱硬化性樹脂組成物(x1-1)を使用して保護膜(X)を形成した。また、実施例3及び4では、以下に示す配合2で調製した熱硬化性樹脂組成物(x1-1)を使用して保護膜(X)を形成した。
(配合1)
・重合体成分(A):41.4質量%
・エポキシ樹脂(B1-1):23.2質量%
・エポキシ樹脂(B1-2):15.2質量%
・熱硬化剤(B2):11.2質量%
・硬化促進剤(C):0.2質量%
・充填材(D):8.8質量%
(配合2)
・重合体成分(A):19.9質量%
・エポキシ樹脂(B1-1):33.1質量%
・エポキシ樹脂(B1-2):21.7質量%
・熱硬化剤(B2):16.1質量%
・硬化促進剤(C):0.2質量%
・充填材(D):9.0質量%
<Preparation of thermosetting resin composition (x1-1)>
The polymer component (A), epoxy resin (B1-1), epoxy resin (B1-2), thermosetting agent (B2), curing accelerator (C), and filler (D) are composed of a thermosetting resin. The active ingredient (solid content) concentration is increased by dissolving or dispersing in methyl ethyl ketone and stirring at 23 ° C. so that the content is as shown below based on the total amount (100% by mass) of the substance (x1-1). A thermosetting resin composition (x1-1) having an amount of 55% by mass was prepared.
In Examples 1 and 2, the protective film (X) was formed using the thermosetting resin composition (x1-1) prepared in Formulation 1 shown below. Further, in Examples 3 and 4, a protective film (X) was formed using the thermosetting resin composition (x1-1) prepared in Formulation 2 shown below.
(Formulation 1)
-Polymer component (A): 41.4% by mass
-Epoxy resin (B1-1): 23.2% by mass
-Epoxy resin (B1-2): 15.2% by mass
-Thermosetting agent (B2): 11.2% by mass
-Curing accelerator (C): 0.2% by mass
-Filler (D): 8.8% by mass
(Formulation 2)
-Polymer component (A): 19.9% by mass
-Epoxy resin (B1-1): 33.1% by mass
-Epoxy resin (B1-2): 21.7% by mass
-Thermosetting agent (B2): 16.1% by mass
-Curing accelerator (C): 0.2% by mass
-Filler (D): 9.0% by mass
<熱硬化性樹脂フィルム(x1)の製造>
 シリコーンによる剥離処理が施された剥離処理面を有するポリエチレンテレフタレート製の剥離材(リンテック株式会社製、SP-PET381031、厚さ38μm)の前記剥離処理面に、配合1で調製した熱硬化性樹脂組成物(x1-1)を塗布し、120℃で2分間加熱乾燥させて、厚さ30μmの熱硬化性樹脂フィルム(x1:配合1)を得た。また、配合2で調製した熱硬化性樹脂組成物(x1-1)に変更したこと以外は同様の方法で、厚さ50μmの熱硬化性樹脂フィルム(x1:配合2)を得た。
<Manufacturing of thermosetting resin film (x1)>
The thermosetting resin composition prepared in Formulation 1 on the peeled surface of a polyethylene terephthalate peeling material (SP-PET38131, thickness 38 μm, manufactured by Lintec Co., Ltd.) having a peeled surface treated with silicone. A product (x1-1) was applied and dried by heating at 120 ° C. for 2 minutes to obtain a thermosetting resin film (x1: compounding 1) having a thickness of 30 μm. Further, a thermosetting resin film (x1: formulation 2) having a thickness of 50 μm was obtained by the same method except that the composition was changed to the thermosetting resin composition (x1-1) prepared in formulation 2.
<保護膜形成用シートの製造>
 支持シート(Y)として、基材(厚さ:100μm)と、中間層(厚さ:400μm)と、粘着剤層(厚さ:10μm)とを、この順で積層してなる貼付テープ(リンテック株式会社製、E-8510HR)を用い、この貼付テープの粘着剤層と、剥離材上に形成した厚さ30μmの熱硬化性樹脂フィルム(x1:配合1)とを貼り合せて、支持シート(Y)、熱硬化性樹脂フィルム(x1)、及び剥離材がこの順に積層された、保護膜形成用シート1を製造した。
 厚さ50μmの熱硬化性樹脂フィルム(x1:配合2)についても、同様の手順により、保護膜形成用シート2を製造した。
<Manufacturing of protective film forming sheet>
As the support sheet (Y), a sticking tape (Lintec) formed by laminating a base material (thickness: 100 μm), an intermediate layer (thickness: 400 μm), and an adhesive layer (thickness: 10 μm) in this order. Using E-8510HR manufactured by Co., Ltd., the adhesive layer of this sticking tape and a thermosetting resin film (x1: compounding 1) having a thickness of 30 μm formed on the release material are bonded to each other to form a support sheet (1). Y), a thermosetting resin film (x1), and a release material were laminated in this order to produce a protective film forming sheet 1.
For a thermosetting resin film (x1: compounding 2) having a thickness of 50 μm, a protective film forming sheet 2 was produced by the same procedure.
[保護膜(X)の引張弾性率E’の測定]
 熱硬化性樹脂フィルム(x1)を硬化させた後、保護膜(X)の引張弾性率E’を、次の方法により測定した。
 まず、厚さ30μmの熱硬化性樹脂フィルム(x1:配合1)を6枚重ね、厚さ0.18mm、幅4.5mm、長さ20.0mmのサンプルを作製し、当該サンプルを、加圧オーブン(リンテック株式会社製 RAD-9100)にて、温度:130℃、時間:2h、炉内圧力:0.5MPaの加熱条件で熱処理して、保護膜(X)を得た。
 次いで、保護膜(X)を、動的粘弾性測定装置(TA instruments社製、製品名「DMA Q800」)を用いて、引張モードで、周波数11Hz、23℃、大気雰囲気下にて、保護膜(X)の引張弾性率E’(23℃)を測定した。また、測定時の温度を260℃に設定したこと以外は同様の条件として、保護膜(X)の引張弾性率E’(260℃)を測定した。
 熱硬化性樹脂フィルム(x1:配合2)については、厚さ50μmの熱硬化性樹脂フィルム(x1:配合2)を4枚重ね、厚さ0.20mmにしたこと以外は、同様の手順で保護膜(X)を得て、保護膜(X)の引張弾性率E’(23℃)、保護膜(X)の引張弾性率E’(260℃)を測定した。
[Measurement of tensile elastic modulus E'of protective film (X)]
After the thermosetting resin film (x1) was cured, the tensile elastic modulus E'of the protective film (X) was measured by the following method.
First, six thermosetting resin films (x1: compounding 1) having a thickness of 30 μm are laminated to prepare a sample having a thickness of 0.18 mm, a width of 4.5 mm, and a length of 20.0 mm, and the sample is pressed. A protective film (X) was obtained by heat treatment in an oven (RAD-9100 manufactured by Lintec Corporation) under heating conditions of temperature: 130 ° C., time: 2 hours, and furnace pressure: 0.5 MPa.
Next, the protective film (X) is subjected to a protective film using a dynamic viscoelasticity measuring device (manufactured by TA instruments, product name "DMA Q800") in a tensile mode at a frequency of 11 Hz, 23 ° C., and in an air atmosphere. The tensile elastic modulus E'(23 ° C.) of (X) was measured. Further, the tensile elastic modulus E'(260 ° C.) of the protective film (X) was measured under the same conditions except that the temperature at the time of measurement was set to 260 ° C.
The heat-curable resin film (x1: compounding 2) is protected by the same procedure except that four heat-curable resin films (x1: compounding 2) having a thickness of 50 μm are stacked to make the thickness 0.20 mm. A film (X) was obtained, and the tensile elastic modulus E'(23 ° C.) of the protective film (X) and the tensile elastic modulus E'(260 ° C.) of the protective film (X) were measured.
[短絡評価]
 上記で得られた保護膜形成用シートから剥離材を取り除き、これにより露出した熱硬化性樹脂層の表面(露出面)を、ボールバンプ付きウエハのバンプ形成面に圧着させることで、半導体ウエハのバンプ形成面に保護膜形成用シートを貼付した。このとき、保護膜形成用シートの貼付は、貼付装置(ローラー式ラミネータ、リンテック株式会社製「RAD-3510 F/12」)を用いて、テーブル温度90℃、貼付速度2mm/sec、貼付圧力0.5MPaの条件で、熱硬化性樹脂フィルム(x1)を加熱しながら行った。保護膜形成用シート1及び2を貼付したボールバンプ付きウエハの詳細(要件(α1)、(α2)、(α3a)、及び(α4))を表1に示す。
 次いで、リンテック株式会社製、RAD-2700を用い、紫外線照射を行って保護膜形成用シートの支持シート(Y)を剥離した。
 熱硬化性樹脂フィルム(x1)が貼付されたバンプ付きウエハを加圧オーブン(リンテック株式会社製 RAD-9100)にて、温度:130℃、時間:2h、炉内圧力:0.5MPaの加熱条件で熱処理して、熱硬化性樹脂フィルム(x1)を熱硬化させ、保護膜(X)付きの半導体ウエハ(実施例1~4)を得た。
 保護膜(X)の厚さ(X)は、保護膜(X)付きの半導体ウエハを、バンプ形成面と垂直な方向で且つバンプの中心を通過するように割断し、割断後の断面を、光学顕微鏡観察することにより測定した。
 そして、保護膜(X)付きの半導体ウエハのバンプ形成面と、配線基板の配線形成面とを、バンプを介して対向させた状態で、260℃で1分間の加熱処理(加熱接続工程)を行い、バンプ間の接触の有無(短絡の有無)を評価した。
 なお、比較試験として、実施例1及び3並びに実施例2及び4と同様のバンプ付きウエハであって保護膜(X)を形成していないウエハに対し、加熱接続工程を実施し、短絡の有無を評価した(比較例1及び2)。
 結果を表1に示す。
[Short-circuit evaluation]
By removing the release material from the protective film forming sheet obtained above and pressing the exposed surface (exposed surface) of the thermosetting resin layer against the bump forming surface of the wafer with ball bumps, the semiconductor wafer can be obtained. A protective film forming sheet was attached to the bump forming surface. At this time, the protective film forming sheet is attached using a pasting device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation), a table temperature of 90 ° C., a sticking speed of 2 mm / sec, and a sticking pressure of 0. This was performed while heating the thermosetting resin film (x1) under the condition of 5.5 MPa. Table 1 shows the details (requirements (α1), (α2), (α3a), and (α4)) of the wafer with ball bumps to which the protective film forming sheets 1 and 2 are attached.
Next, using RAD-2700 manufactured by Lintec Corporation, the support sheet (Y) of the protective film forming sheet was peeled off by irradiating with ultraviolet rays.
A wafer with bumps to which a thermosetting resin film (x1) is attached is heated in a pressure oven (RAD-9100 manufactured by Lintec Co., Ltd.) at a temperature of 130 ° C., a time of 2 hours, and a furnace pressure of 0.5 MPa. The thermosetting resin film (x1) was heat-cured to obtain semiconductor wafers (Examples 1 to 4) with a protective film (X).
The thickness ( XT ) of the protective film (X) is obtained by cutting a semiconductor wafer with the protective film (X) in a direction perpendicular to the bump forming surface and passing through the center of the bump, and dividing the cross section after cutting. , Measured by observing with an optical microscope.
Then, a heat treatment (heat connection step) at 260 ° C. for 1 minute is performed in a state where the bump forming surface of the semiconductor wafer with the protective film (X) and the wiring forming surface of the wiring board are opposed to each other via the bumps. This was performed, and the presence or absence of contact between bumps (presence or absence of short circuit) was evaluated.
As a comparative test, a heating connection step was performed on the same bumped wafers as in Examples 1 and 3 and Examples 2 and 4 but not forming the protective film (X), and the presence or absence of a short circuit was performed. Was evaluated (Comparative Examples 1 and 2).
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から以下のことがわかる。
 実施例1~4では、狭ピッチ化されたバンプを有する半導体ウエハを使用しているにもかかわらず、バンプの短絡を抑制できていることがわかる。
 一方、比較例1及び2のように、保護膜(X)を設けない場合には、狭ピッチ化されたバンプを有する半導体ウエハのバンプの短絡を抑制できないことがわかる。
The following can be seen from Table 1.
In Examples 1 to 4, it can be seen that the short circuit of the bumps can be suppressed even though the semiconductor wafers having the bumps with narrow pitches are used.
On the other hand, it can be seen that when the protective film (X) is not provided as in Comparative Examples 1 and 2, the short circuit of the bumps of the semiconductor wafer having the narrow pitched bumps cannot be suppressed.
1、1a、1b、1c 保護膜形成用シート
x   硬化性樹脂フィルム
x1  熱硬化性樹脂フィルム
x2  エネルギー線硬化性樹脂フィルム
X   保護膜
Y   支持シート
11  基材
21  粘着剤層
31  中間層
40  バンプ付き半導体ウエハ
41  半導体ウエハ
41a バンプ形成面
BM  バンプ
CP  保護膜付き半導体チップ
Z   配線基板
Z1  配線
1, 1a, 1b, 1c Protective film forming sheet x Curable resin film x 1 Thermosetting resin film x 2 Energy ray curable resin film X Protective film Y Support sheet 11 Base material 21 Adhesive layer 31 Intermediate layer 40 Bump semiconductor Wafer 41 Semiconductor wafer 41a Bump forming surface BM Bump CP Semiconductor chip with protective film Z Wiring board Z1 Wiring

Claims (9)

  1.  硬化性樹脂フィルム(x)と、支持シート(Y)との積層構造を有する保護膜形成用シートであって、
     複数のバンプを有し、下記要件(α1)~(α2)を満たす半導体ウエハのバンプ形成面に、保護膜(X)を形成するために用いられ、
    ・要件(α1):前記バンプの幅(BM)(単位:μm)が、20μm~350μmである。
    ・要件(α2):前記バンプのピッチ(BM)(単位:μm)と前記バンプの幅(BM)(単位:μm)とが、下記式(I)を満たす。
         [(BM)/(BM)]≦1.0・・・・(I)
     下記要件(β1)~(β3)を満たす、保護膜形成用シート。
    ・要件(β1):前記硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における引張弾性率E’(23℃)が、1×10Pa~1×1010Paである。
    ・要件(β2):前記硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、260℃における引張弾性率E’(260℃)が、1×10Pa~1×10Paである。
    ・要件(β3):前記硬化性樹脂フィルム(x)を硬化して形成される保護膜(X)の、23℃における厚さ(X)(単位:μm)と、前記バンプの高さ(BM)(単位:μm)とが、下記式(II)を満たす。
         [(X)/(BM)]≧0.2・・・・(II)
    A protective film forming sheet having a laminated structure of a curable resin film (x) and a support sheet (Y).
    It is used to form a protective film (X) on the bump forming surface of a semiconductor wafer having a plurality of bumps and satisfying the following requirements (α1) to (α2).
    -Requirement (α1): The width (BM w ) (unit: μm) of the bump is 20 μm to 350 μm.
    -Requirement (α2): The bump pitch (BM P ) (unit: μm) and the bump width (BM w ) (unit: μm) satisfy the following formula (I).
    [(BM P ) / (BM w )] ≤ 1.0 ... (I)
    A protective film forming sheet that satisfies the following requirements (β1) to (β3).
    Requirement (β1): The tensile elastic modulus E'(23 ° C.) at 23 ° C. of the protective film (X) formed by curing the curable resin film (x) is 1 × 10 7 Pa to 1 ×. It is 10 10 Pa.
    Requirement (β2): The tensile elastic modulus E'(260 ° C.) of the protective film (X) formed by curing the curable resin film (x) at 260 ° C. is 1 × 10 5 Pa to 1 ×. It is 10 8 Pa.
    -Requirement (β3): The thickness (XT ) (unit: μm) of the protective film (X) formed by curing the curable resin film (x) at 23 ° C. and the height of the bumps (unit: μm). BM h ) (unit: μm) satisfies the following formula (II).
    [( XT ) / (BM h )] ≧ 0.2 ... (II)
  2.  さらに、下記要件(α3a)を満たす、請求項1に記載の保護膜形成用シート。
    ・要件(α3a):前記バンプの高さ(BM)と前記バンプの幅(BM)とが、下記式(IIIa)を満たす
         0.2≦[(BM)/(BM)]≦1.0・・・・(IIIa)
    The protective film forming sheet according to claim 1, further satisfying the following requirement (α3a).
    -Requirement (α3a): The height of the bump (BM h ) and the width of the bump (BM w ) satisfy the following formula (IIIa) 0.2 ≦ [(BM h ) / (BM w )] ≦ 1.0 ... (IIIa)
  3.  さらに、下記要件(α3b)を満たす、請求項1に記載の保護膜形成用シート。
    ・要件(α3b):前記バンプの高さ(BM)と前記バンプの幅(BM)とが、下記式(IIIb)を満たす
         0.5≦[(BM)/(BM)]≦5.0・・・・(IIIb)
    The protective film forming sheet according to claim 1, further satisfying the following requirement (α3b).
    -Requirement (α3b): The height of the bump (BM h ) and the width of the bump (BM w ) satisfy the following formula (IIIb) 0.5 ≦ [(BM h ) / (BM w )] ≦ 5.0 ... (IIIb)
  4.  さらに、下記要件(α4)を満たす、請求項1~3のいずれか1項に記載の保護膜形成用シート。
    ・要件(α4):前記バンプの高さ(BM)が、15μm~300μmである
    Further, the protective film forming sheet according to any one of claims 1 to 3, which satisfies the following requirement (α4).
    -Requirement (α4): The height of the bump (BM h ) is 15 μm to 300 μm.
  5.  前記支持シート(Y)が、バックグラインドテープである、請求項1~4のいずれか1項に記載の保護膜形成用シート。 The protective film forming sheet according to any one of claims 1 to 4, wherein the support sheet (Y) is a back grind tape.
  6.  保護膜付き半導体ウエハの製造方法であって、
     下記工程(S1)~(S3)を含み、
    ・工程(S1):複数のバンプが設けられたバンプ形成面を有する半導体ウエハを準備する工程
    ・工程(S2):前記半導体ウエハの前記バンプ形成面に、請求項1~5のいずれか1項に記載の保護膜形成用シートを、硬化性樹脂フィルム(x)を貼付面にして押圧しながら貼着する工程
    ・工程(S3):硬化性樹脂フィルム(x)を硬化させて保護膜(X)を形成する工程
     前記工程(S1)において準備する前記半導体ウエハが、下記要件(α1)~(α2)を満たす、保護膜付き半導体ウエハの製造方法。
    ・条件(α1):前記バンプの幅(BM)(単位:μm)が、20μm~350μmである
    ・条件(α2):前記バンプのピッチ(BM)(単位:μm)と前記バンプの幅(BM)(単位:μm)とが、下記式(I)を満たす
         [(BM)/(BM)]≦1.0・・・・(I)
    A method for manufacturing semiconductor wafers with a protective film.
    Including the following steps (S1) to (S3),
    -Step (S1): Step of preparing a semiconductor wafer having a bump-forming surface provided with a plurality of bumps-Step (S2): Any one of claims 1 to 5 on the bump-forming surface of the semiconductor wafer. Step / Step (S3) of attaching the protective film forming sheet according to the above item to the protective film forming sheet with the curable resin film (x) as the affixing surface while pressing the sheet. ) Is formed. A method for manufacturing a semiconductor wafer with a protective film, wherein the semiconductor wafer prepared in the step (S1) satisfies the following requirements (α1) to (α2).
    -Condition (α1): The width (BM w ) (unit: μm) of the bump is 20 μm to 350 μm.-Condition (α2): Pitch (BM P ) (unit: μm) of the bump and the width of the bump. (BM w ) (unit: μm) satisfies the following formula (I) [(BM P ) / (BM w )] ≤ 1.0 ... (I)
  7.  下記工程(T1)~(T2)を含む、保護膜付き半導体チップの製造方法。
    ・工程(T1):請求項6に記載の製造方法を実施して、保護膜付き半導体ウエハを得る工程
    ・工程(T2):前記保護膜付き半導体ウエハを個片化する工程
    A method for manufacturing a semiconductor chip with a protective film, which comprises the following steps (T1) to (T2).
    -Step (T1): A step of carrying out the manufacturing method according to claim 6 to obtain a semiconductor wafer with a protective film-Step (T2): A step of individualizing the semiconductor wafer with a protective film.
  8.  下記工程(U1)~(U2)を含む、半導体パッケージの製造方法。
    ・工程(U1):請求項7に記載の製造方法を実施して、保護膜付き半導体チップを得る工程
    ・工程(U2):配線基板と前記保護膜付き半導体チップとを、前記バンプを介して電気的に接続する工程
    A method for manufacturing a semiconductor package, which comprises the following steps (U1) to (U2).
    Step (U1): A step of carrying out the manufacturing method according to claim 7 to obtain a semiconductor chip with a protective film. Step (U2): A wiring substrate and the semiconductor chip with a protective film are attached to each other via the bump. The process of electrically connecting
  9.  さらに、工程(U3)を有する、請求項8に記載の半導体パッケージの製造方法。
    ・工程(U3):前記配線基板と前記保護膜付き半導体チップとの間に、アンダーフィル材を充填する工程
     

     
    The method for manufacturing a semiconductor package according to claim 8, further comprising a step (U3).
    Step (U3): A step of filling an underfill material between the wiring board and the semiconductor chip with a protective film.

PCT/JP2021/009704 2020-03-12 2021-03-11 Protective film-forming sheet WO2021182554A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022507270A JPWO2021182554A1 (en) 2020-03-12 2021-03-11
KR1020227029886A KR20220152208A (en) 2020-03-12 2021-03-11 Sheet for forming protective film
CN202180020576.2A CN115244654A (en) 2020-03-12 2021-03-11 Protective film forming sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-043406 2020-03-12
JP2020043406 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021182554A1 true WO2021182554A1 (en) 2021-09-16

Family

ID=77670655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009704 WO2021182554A1 (en) 2020-03-12 2021-03-11 Protective film-forming sheet

Country Status (5)

Country Link
JP (1) JPWO2021182554A1 (en)
KR (1) KR20220152208A (en)
CN (1) CN115244654A (en)
TW (1) TW202138190A (en)
WO (1) WO2021182554A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359446A (en) * 2001-05-31 2002-12-13 Hitachi Ltd Wiring board and manufacturing method therefor
JP2012196906A (en) * 2011-03-22 2012-10-18 Lintec Corp Base film, and pressure-sensitive adhesive sheet provided with the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101213326B (en) 2005-07-01 2010-11-17 日矿金属株式会社 High-purity tin or tin alloy and process for producing high-purity tin
JP5822250B2 (en) 2010-03-31 2015-11-24 Jx日鉱日石金属株式会社 Silver with low alpha dose or silver-containing alloy and method for producing the same
US9597754B2 (en) 2011-03-07 2017-03-21 Jx Nippon Mining & Metals Corporation Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359446A (en) * 2001-05-31 2002-12-13 Hitachi Ltd Wiring board and manufacturing method therefor
JP2012196906A (en) * 2011-03-22 2012-10-18 Lintec Corp Base film, and pressure-sensitive adhesive sheet provided with the same

Also Published As

Publication number Publication date
KR20220152208A (en) 2022-11-15
TW202138190A (en) 2021-10-16
JPWO2021182554A1 (en) 2021-09-16
CN115244654A (en) 2022-10-25

Similar Documents

Publication Publication Date Title
US11594458B2 (en) Curable resin film and first protective film forming sheet
TWI641494B (en) Sheet for forming first protective film, method for forming first protective film and method for manufacturing semiconductor chip
JP7461298B2 (en) Manufacturing method of semiconductor device
WO2021172431A1 (en) Resin film, composite sheet and method for producing semiconductor device
WO2018066302A1 (en) First protection film forming sheet
US11781033B2 (en) Method of forming first protective film
CN108243614B (en) Curable resin film and 1 st protective film-forming sheet
JP6438181B1 (en) Semiconductor device and manufacturing method thereof
JP7176072B2 (en) Manufacturing method of kit and semiconductor chip
JP6273542B2 (en) Curable resin film and first protective film forming sheet
JP6821580B2 (en) Thermosetting resin film and first protective film forming sheet
WO2021132680A1 (en) Kit and method for manufacturing semiconductor chip
WO2021182554A1 (en) Protective film-forming sheet
WO2017078039A1 (en) Thermosetting resin film, first protective film forming sheet, and method for forming first protective film
TWI758479B (en) Film-like transparent adhesive and infrared sensor module
JP6907122B2 (en) Curable resin film and first protective film forming sheet
WO2021132678A1 (en) Semiconductor chip production method
WO2021235005A1 (en) Production method for semiconductor device
JP7453208B2 (en) Method for manufacturing workpiece with first protective film
WO2020195761A1 (en) Thermosetting resin film, first protective film forming sheet, kit, and method for manufacturing first protective film-attached workpiece
JP2023148425A (en) Protective film forming film, roll body, and use of protective film forming film
JP2023102567A (en) Sheet for forming first protective film, method for manufacturing semiconductor device and use of sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21769021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507270

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21769021

Country of ref document: EP

Kind code of ref document: A1