WO2021172431A1 - Resin film, composite sheet and method for producing semiconductor device - Google Patents

Resin film, composite sheet and method for producing semiconductor device Download PDF

Info

Publication number
WO2021172431A1
WO2021172431A1 PCT/JP2021/007103 JP2021007103W WO2021172431A1 WO 2021172431 A1 WO2021172431 A1 WO 2021172431A1 JP 2021007103 W JP2021007103 W JP 2021007103W WO 2021172431 A1 WO2021172431 A1 WO 2021172431A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
bump
film
curable
meth
Prior art date
Application number
PCT/JP2021/007103
Other languages
French (fr)
Japanese (ja)
Inventor
圭亮 四宮
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN202180006372.3A priority Critical patent/CN114728508A/en
Priority to JP2022503692A priority patent/JPWO2021172431A1/ja
Priority to KR1020227014068A priority patent/KR20220147571A/en
Publication of WO2021172431A1 publication Critical patent/WO2021172431A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a method for manufacturing a resin film, a composite sheet, and a semiconductor device.
  • the present application claims priority based on Japanese Patent Application No. 2020-031717 filed in Japan on February 27, 2020, the contents of which are incorporated herein by reference.
  • a convex electrode made of eutectic solder, high temperature solder, gold, etc. (hereinafter referred to as “convex electrode”) is attached to the connection pad portion.
  • bumps Referred to as "bumps" in the present specification) are formed, and these bumps are brought into face-to-face contact with the corresponding terminal portions on the chip mounting substrate by a so-called face-down method to melt / diffuse.
  • a flip-chip mounting method for joining has been adopted.
  • the semiconductor chip used in this mounting method is, for example, a semiconductor wafer having bumps formed on the circuit surface, and the surface opposite to the circuit surface (in other words, the bump forming surface) is ground or diced to be individualized. Obtained by In the process of obtaining such a semiconductor chip, a curable resin film is usually attached to the bump forming surface and the bump forming surface is cured for the purpose of protecting the bump forming surface and the bump of the semiconductor wafer. A protective film is formed on the surface.
  • semiconductor devices are expected to have higher functions, and the size of semiconductor chips tends to increase.
  • the bumps are likely to be deformed due to the occurrence of warpage in the state of being mounted on the substrate, and in particular, the bumps located at the end of the semiconductor chip or in the vicinity thereof are likely to be cracked.
  • the protective film formed on the bump-forming surface is also expected to suppress such damage to the bumps.
  • a method of forming a protective film on the bump forming surface of the semiconductor wafer will be described with reference to FIGS. 8A to 8D.
  • a protective film forming sheet 8 as shown in FIG. 8A is used for forming the protective film.
  • the protective film forming sheet 8 is formed by laminating a buffer layer 83 and a curable resin film 82 on a base material 81 in this order.
  • the buffer layer 83 has a buffering action against the force applied to the buffer layer 83 and the layer adjacent thereto.
  • the protective film forming sheet 8 is arranged so that the curable resin film 82 faces the bump forming surface 9a of the semiconductor wafer 9.
  • the protective film forming sheet 8 is pressed against the semiconductor wafer 9, and as shown in FIG. 8B, the curable resin film 82 of the protective film forming sheet 8 is attached to the bump forming surface 9a of the semiconductor wafer 9.
  • the curable resin film 82 is bonded while heating the curable resin film 82.
  • the curable resin film 82 adheres to the bump forming surface 9a of the semiconductor wafer 9 and the surface 91a of the bump 91, but if the bump 91 penetrates the curable resin film 82, the surface 91a of the bump 91
  • the buffer layer 83 is also in close contact with the part.
  • the surface (back surface) 9b of the semiconductor wafer 9 opposite to the bump forming surface 9a is ground, and then on the back surface 9b of the semiconductor wafer 9.
  • a protective film forming sheet for protecting the back surface 9b is attached (not shown).
  • the base material 81 and the buffer layer 83 are removed from the curable resin film 82.
  • the curable resin film 82 is cured to form the protective film 82'as shown in FIG. 8D.
  • FIG. 9 shows an example of a state in which the curable resin film 82 remains on the upper portion 910 of the bump 91.
  • the protective film forming sheet capable of forming the protective film without leaving the curable resin film on the upper part of the bump has a strain of 300% on the buffer layer under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz.
  • the shear elasticity of the buffer layer when the above is generated is equal to or higher than the shear elasticity of the curable resin film when a strain of 300% is generated in the curable resin film under the same conditions.
  • a protective film forming sheet configured as described above is disclosed (see Patent Document 1).
  • the protective film forming sheet is attached to the bump forming surface of the semiconductor wafer by the curable resin film (for example).
  • the width of the curable resin film is wider than that before the application, and the curable resin film may protrude from the initial size.
  • the curable resin film capable of suppressing the residual on the upper part of the bump as described above such protrusion is likely to occur.
  • various devices are contaminated by the adhesion of the curable resin film that protrudes in each subsequent step of handling the semiconductor wafer or the semiconductor chip obtained by dividing the semiconductor wafer. It may end up. And, there is no conventional sheet for forming a protective film in consideration of suppressing the protrusion of such a curable resin film.
  • the present invention is not limited to the curable resin film, and the resin film includes other than the bump-forming surface of the semiconductor wafer. It may be affixed to the uneven surface of. Then, in the upper part of the convex portion of the uneven surface, it may be required to suppress the residual resin film as in the case of the upper part of the bump. On the other hand, there is a possibility that the resin film may protrude from the resin film in general when it is attached to such an uneven surface.
  • the present invention is a resin film that can be applied to an uneven surface, and when attached to an uneven surface, the convex portion can be penetrated, the residue on the upper portion of the convex portion can be suppressed, and the initial size. It is an object of the present invention to provide a resin film capable of suppressing protrusion from the resin film and a composite sheet provided with the resin film to be used when the resin film is attached to an uneven surface.
  • a test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm is strained under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece is measured.
  • the storage elastic modulus of the test piece is Gc1
  • the storage elastic modulus of the test piece is Gc300
  • formula: X Gc1 / Gc300
  • the resin film of the present invention may be used for sticking to an uneven surface.
  • the resin film of the present invention may be curable.
  • the present invention includes a base material, a cushioning layer provided on the base material, and a resin film provided on the cushioning layer, and the resin film is the above-mentioned resin film of the present invention.
  • a composite sheet provided.
  • the curable resin film in the composite sheet of the present invention described above is attached to a surface of a semiconductor wafer having bumps, and the crown of the bumps is projected from the resin film.
  • a cutting step for cutting the first protective film, the semiconductor chip obtained after the dividing step and the cutting step, and a first protective film provided on a surface of the semiconductor chip having bumps are provided.
  • a method for manufacturing a semiconductor device comprising a mounting step of flip-chip-connecting a semiconductor chip with a first protective film in which the crown of a bump protrudes from the first protective film to a substrate at the crown of the bump. do.
  • the present invention is a resin film that can be applied to an uneven surface, and when attached to an uneven surface, the convex portion can be penetrated, and the residue on the upper portion of the convex portion can be suppressed.
  • a resin film capable of suppressing protrusion from the size and a composite sheet provided with the resin film used when the resin film is attached to an uneven surface.
  • FIG. 3 It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 3 is used. It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 3 is used. It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 4 is used. It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 4 is used. It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 4 is used. It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 4 is used. FIG.
  • FIG. 5 is a plan view schematically showing a laminate containing a thermosetting resin film produced at the time of measuring the amount of protrusion of the thermosetting resin film in Example 1. It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. It is sectional drawing which shows typically an example of the state in which the curable resin film remains on the bump.
  • the resin film according to an embodiment of the present invention is prepared by causing strain to be generated in a test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz.
  • the storage elastic modulus of the test piece is measured, and the storage elastic modulus of the test piece is Gc1 when the strain of the test piece is 1%, and the storage of the test piece when the strain of the test piece is 300%.
  • the elastic modulus Gc300
  • the X value calculated by the above is 19 or more and less than 10000.
  • the test piece for performing strain dispersion measurement is in the form of a film, and its planar shape is circular.
  • the test piece may be a single-layer resin film having a thickness of 1 mm, but in terms of ease of production, a plurality of single-layer resin films having a thickness of less than 1 mm are laminated. It is preferably a laminated film.
  • the thicknesses of the plurality of single-layer resin films constituting the laminated film may be the same, all may be different, or only a part may be the same, but the production may be carried out. In terms of ease, they are all preferably the same.
  • the "storage elastic modulus of the test piece” is not limited to the above Gc1 and Gc300, and is "strained into a test piece of a resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz. It means the storage elastic modulus of the test piece corresponding to this strain when the above is generated.
  • the resin film of the present embodiment can form a composite sheet by laminating it with a base material and a buffer layer, for example, as will be described later.
  • FIG. 1 is a cross-sectional view schematically showing an example of a resin film according to an embodiment of the present invention.
  • the main part may be enlarged for convenience, and the dimensional ratio and the like of each component are the same as the actual ones. Is not always the case.
  • the resin film 12 shown here has a first release film 151 on one surface (sometimes referred to as a “first surface” in the present specification) 12a, and is on the opposite side to the first surface 12a.
  • a second release film 152 is provided on the other surface (sometimes referred to as "second surface” in the present specification) 12b.
  • Such a resin film 12 is suitable for storage as a roll, for example.
  • the X value of the test piece of the resin film 12 is 19 or more and less than 10,000.
  • Both the first release film 151 and the second release film 152 may be known.
  • the first release film 151 and the second release film 152 may be the same as each other, or may be different from each other, for example, the release forces required for peeling from the resin film 12 are different from each other. ..
  • either the first release film 151 or the second release film 152 is removed, and the resulting exposed surface becomes a surface to be attached to the uneven surface. Then, the other remaining of the first release film 151 and the second release film 152 is removed, and the generated exposed surface becomes a surface to which another layer (for example, a buffer layer) for forming a composite sheet described later is attached. ..
  • FIG. 1 shows an example in which the release film is provided on both sides (first surface 12a, second surface 12b) of the resin film 12, but the release film is only one surface of the resin film 12. That is, it may be provided only on the first surface 12a or only on the second surface 12b.
  • the resin film of the present embodiment may be curable or non-curable.
  • the resin film may function as a protective film (for example, a first protective film described later; the same shall apply hereinafter) by its curing, or may function as a protective film in an uncured state.
  • the curable resin film may be either thermosetting or energy ray curable, and may have both thermosetting and energy ray curable properties.
  • the resin film is preferably curable in that a protective film having a higher protective ability can be formed.
  • energy ray means an electromagnetic wave or a charged particle beam having an energy quantum.
  • energy rays include ultraviolet rays, radiation, electron beams and the like.
  • Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet source.
  • the electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
  • energy ray curable means a property of being cured by irradiating with energy rays
  • non-energy ray curable is a property of not being cured by irradiating with energy rays.
  • non-curable means a property of not being cured by any means such as heating or irradiation with energy rays.
  • a non-curable protective film-forming film is considered to be a protective film after the stage of being provided (formed) on the target object.
  • the resin film of the present embodiment contains a resin component and may or may not contain a component other than the resin component.
  • Preferred resin films include, for example, a resin component, a filler, and various additives that do not correspond to any of these (resin component and filler) and have an effect of adjusting the storage elastic modulus of the resin film. Examples include those contained.
  • Examples of the additive having an effect of adjusting the storage elastic modulus of the resin film include a rheology control agent (thixotropic agent), a surfactant, and a silicone oil.
  • the resin film of the present embodiment is soft and suitable for sticking to an uneven surface.
  • the convex portion of the uneven surface penetrates the resin film, and the upper portion of the convex portion protrudes from the resin film.
  • the softened resin film spreads between the convex portions so as to cover the convex portions, adheres to the uneven surface, and covers the surface of the convex portion, particularly the surface of the portion near the uneven surface, and the base portion of the convex portion. Embed. In this state, the residual resin film is suppressed in the upper part of the convex portion.
  • the reason why the residual and protruding of the resin film is suppressed is that the resin film satisfies the condition of the X value (19 ⁇ X value ⁇ 10000).
  • the resin film when used, in a state where the resin film and the cured product thereof are provided on the uneven surface, a region other than the upper portion of the convex portion of the uneven surface (for example, in the vicinity of the uneven surface).
  • the base) or the region near the convex portion of the uneven surface is unintentionally exposed without being covered with the resin film and its cured product, that is, so-called repelling is suppressed.
  • the reason why the basic characteristics of the resin film are good is that the resin film satisfies the condition of the X value (19 ⁇ X value ⁇ 10000).
  • the resin film of the present embodiment has extremely excellent characteristics in that the entire uneven surface can be covered with the resin film itself and the cured product thereof while exposing the convex portion.
  • the heating temperature and the attachment pressure of the resin film can be appropriately adjusted according to other attachment conditions. It can be the same as when pasted.
  • Whether or not the resin film remains on the upper portion of the convex portion of the uneven surface can be confirmed, for example, by acquiring SEM imaging data on the upper portion of the convex portion. Further, the presence or absence of the resin film protruding from the uneven surface and the presence or absence of repelling of the resin film on the uneven surface can be confirmed, for example, by acquiring SEM imaging data for the corresponding portion on the uneven surface. can.
  • the composite sheet provided with the resin film of the present embodiment can be used.
  • the composite sheet will be described in detail later.
  • a semiconductor wafer having bumps can be mentioned as an object to which the resin film is attached, which has the uneven surface. That is, the resin film can be attached to the semiconductor wafer before it is divided into semiconductor chips. In this case, the resin film is used by being attached to a surface of a semiconductor wafer having bumps.
  • the surface having the bump may be referred to as a "bump forming surface”.
  • the bump penetrates the resin film and the crown of the bump protrudes from the resin film. Then, the softened resin film spreads between the bumps so as to cover the bumps, adheres to the bump forming surface, and covers the surface of the bump, particularly the surface of the portion near the bump forming surface, and embeds the base portion of the bump. In this state, the residual resin film is suppressed in the upper part including the crown of the bump.
  • the resin film is curable, the cured product of the resin film in this state is naturally suppressed from adhering to the upper part of the bump.
  • the protrusion from the initial size is suppressed, so that the protrusion of the resin film from the bump forming surface of the semiconductor wafer is suppressed, for example.
  • the region other than the upper part of the bump or the region near the bump on the bump forming surface is intended in a state where the resin film and the cured product thereof are provided on the bump forming surface. It is suppressed that it is exposed without being exposed (that is, repellent). The reason why these effects can be obtained is as described above.
  • the resin film in this state (the state in which the base of the bump is embedded) is then cured to finally form a first protective film, and the resin film is uncured.
  • the resin film after this state (the state in which the base of the bump is embedded) becomes the first protective film.
  • the protective film provided on the bump forming surface of the semiconductor wafer or the semiconductor chip in this way is referred to as a "first protective film”.
  • the protective film provided on the surface (that is, the back surface) opposite to the bump forming surface of the semiconductor wafer or semiconductor chip is referred to as a "second protective film”.
  • the protruding resin film is viewed from above and is flat. Visually, the maximum value of the length of the line segment connecting two different points on the outer periphery of the resin film at this time is obtained, and further, at the position overlapping with the line segment indicating this maximum value, the initial value (that is, the protrusion) is obtained.
  • the amount of protrusion of the resin film can be calculated by obtaining the value of the width of the resin film (previous) and subtracting the value of the width of the resin film from the maximum value of the length of the line segment.
  • FIG. 2 is a plan view for schematically explaining the amount of protrusion of the resin film when the plane shape of the resin film is circular.
  • the same components as those shown in the already explained figures are designated by the same reference numerals as in the case of the already explained figures, and detailed description thereof will be omitted.
  • the resin film 101 shown here is in a state of being attached to the object to be attached 102 and protruding from the initial size.
  • Reference numeral 101' is a resin film having an initial size, which is shown for convenience in order to make it easier to understand the amount of protrusion.
  • the initial planar shape of the resin film 101' is circular here, but the planar shape of the resin film 101 that is in a protruding state is non-circular. However, this is only an example, and the planar shape of the resin film 101 in the protruding state is not limited to that shown here.
  • the value D 0 of the width of the initial resin film 101'at the position overlapping with the line segment showing the maximum value (that is, before protruding) may be obtained.
  • the difference between D 1 and D 0 (D 1 ⁇ D 0 ) is the amount of protrusion.
  • the line segment showing the maximum value in the resin film 101 may pass through the center of the circle in the initial resin film 101'in a plan view, and in that case, at a position overlapping the line segment showing the maximum value.
  • the value of the width of the initial resin film 101' is the diameter of the resin film 101'.
  • the amount of protrusion of the resin film when the plane shape of the resin film is circular has been described with reference to the drawings, but when the plane shape is other than circular, the protrusion of the resin film is described in the same manner. The amount can be calculated.
  • the upper part of the convex portion of the uneven surface (or the upper part of the bump if the object to be attached is a semiconductor wafer having bumps) should protrude through the resin film.
  • the degree of distortion of the resin film differs greatly between the middle stage of the process and the final stage in which the resin film embeds the base of the convex portion after the upper portion of the convex portion penetrates the resin film and protrudes. More specifically, the strain of the resin film in the middle stage is large, and the strain of the resin film in the final stage is small.
  • Gc1 is adopted as the storage elastic modulus when the strain is small
  • Gc300 is adopted as the storage elastic modulus when the strain is large so that Gc1 is high and Gc300 is low.
  • the X value may be 19 or more and less than 10000, and for example, the X value may be any of 5000 or less, 2000 or less, 1000 or less, 500 or less, 300 or less, 100 or less, and 70 or less. There may be.
  • the X value may be any of 19 to 5000, 19 to 2000, 19 to 1000, 19 to 500, 19 to 300, 19 to 100, and 19 to 70.
  • Gc1 is not particularly limited as long as the X value is 19 or more and less than 10,000. However, as described above, the effect of suppressing the residual resin film at the upper part of the convex portion, the effect of suppressing the protrusion of the resin film, and the effect of suppressing the repelling of the resin film and its cured product. However, Gc1 is preferably 1 ⁇ 10 4 to 1 ⁇ 10 6 Pa in that all of them are exhibited at a high level.
  • Gc300 is not particularly limited as long as the X value is 19 or more and less than 10,000. However, for the same reason as in the case of Gc1 described above, Gc300 is preferably 1 to 5000 Pa.
  • Gc1 is 1 ⁇ 10 4 to 1 ⁇ 10 6 Pa and Gc 300 is 1 to 5000 Pa.
  • the storage elastic modulus of the resin film is not limited to the cases of Gc1 and Gc300, and can be easily adjusted by adjusting the type or content of the components contained in the resin film.
  • the type or content of the contained component in the composition for forming the resin film may be adjusted.
  • the type or content of the main contained components such as the polymer component (A) and the filler (D) in the composition.
  • the storage elastic modulus of the resin film can be easily adjusted by adjusting the type or content of the additive (I) such as a rheology control agent, a surfactant or a silicone oil.
  • the X value tends to increase.
  • the resin film is: It may be composed of one layer (single layer), or may be composed of a plurality of layers of two or more layers. When the resin film is composed of a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
  • the resin film is preferably 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the thickness of the resin film is at least the above lower limit value, the effect of the resin film becomes higher.
  • a protective film is formed using a resin film, a protective film having a higher protective ability can be formed.
  • the thickness of the resin film is equal to or less than the upper limit value, it is possible to prevent the resin film from becoming excessively thick.
  • the "thickness of the resin film” means the thickness of the entire resin film, and for example, the thickness of the resin film composed of a plurality of layers means the total thickness of all the layers constituting the resin film. means.
  • the resin film can be formed by using a resin film forming composition containing the constituent material.
  • the resin film can be formed by applying a resin film forming composition to the surface to be formed and drying it if necessary.
  • the ratio of the contents of the components that do not vaporize at room temperature in the composition for forming a resin film is usually the same as the ratio of the contents of the components in the resin film.
  • room temperature means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • the thermosetting resin film can be formed by using a composition for forming a thermosetting resin film
  • the energy ray-curable resin film can be formed by using a composition for forming an energy ray-curable resin film, which is a non-curable resin.
  • the film can be formed by using a composition for forming a non-curable resin film.
  • the contribution of the thermosetting of the resin film to the curing is If it is greater than the contribution of energy ray curing, the resin film is treated as thermosetting.
  • the contribution of the energy ray curing of the resin film to the curing is larger than the contribution of the thermosetting, the resin film is treated as an energy ray curable one.
  • the ratio of the total content of one or more of the components described below to the total mass of the resin film does not exceed 100% by mass.
  • the ratio of the total content of one or more of the components described below to the total mass of the resin film forming composition is 100 mass. Does not exceed%.
  • the composition for forming a resin film may be coated by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and the like.
  • a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater can be mentioned.
  • the drying conditions of the composition are not particularly limited. However, when the composition for forming a resin film contains a solvent described later, it is preferably heat-dried.
  • the resin film-forming composition containing the solvent is preferably heat-dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
  • the thermosetting resin film forming composition is preferably heat-dried so that the composition itself and the thermosetting resin film formed from the composition are not heat-cured.
  • thermosetting resin film and the energy ray-curable resin film will be described in more detail.
  • thermosetting resin film When the thermosetting resin film is cured to obtain a cured product, the curing conditions when forming a protective film are such that the cured product fully exerts its function. As long as it is not particularly limited, it may be appropriately selected depending on the type of the thermosetting resin film, the use of the cured product, and the like.
  • the heating temperature of the thermosetting resin film at the time of curing is preferably 100 to 200 ° C, more preferably 110 to 170 ° C, and 120 to 150 ° C. Is particularly preferable.
  • the heating time during the thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 4 hours, and particularly preferably 1 to 3 hours.
  • composition for forming a thermosetting resin film includes, for example, a polymer component (A), a thermosetting component (B), a filler (D), and an additive (I).
  • a composition for forming a sex resin film (III) in this specification, it may be simply referred to as “composition (III)”.
  • the polymer component (A) is a polymer compound for imparting film-forming property, flexibility, etc. to the thermosetting resin film.
  • a polymer compound also includes a product of a polycondensation reaction.
  • the polymer component (A) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
  • polymer component (A) examples include polyvinyl acetal, acrylic resin, urethane resin, phenoxy resin, silicone resin, saturated polyester resin and the like.
  • the polymer component (A) is preferably polyvinyl acetal.
  • polyvinyl acetal in the polymer component (A) examples include known ones. Among them, preferable polyvinyl acetals include, for example, polyvinyl formal, polyvinyl butyral, and the like, and polyvinyl butyral is more preferable. Examples of polyvinyl butyral include those having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3.
  • the weight average molecular weight (Mw) of polyvinyl acetal is preferably 5000 to 200,000, more preferably 8,000 to 100,000.
  • Mw weight average molecular weight of polyvinyl acetal
  • the effect of suppressing the protrusion of the curable resin film from the initial size (for example, when the thermosetting resin film is attached to the bump forming surface, the initial size of the thermosetting resin film on the bump forming surface).
  • the effect of suppressing protrusion from the surface; the same shall apply hereinafter) and the effect of suppressing repelling of the thermosetting resin film and its cured product on the uneven surface (for example, the thermosetting resin film on the bump forming surface).
  • the effect of suppressing the repelling of the thermosetting resin film and its cured product on the bump-forming surface when affixed to the above; the same shall apply hereinafter) becomes higher.
  • the "weight average molecular weight” is a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the glass transition temperature (Tg) of polyvinyl acetal is preferably 40 to 80 ° C, more preferably 50 to 70 ° C.
  • Tg of polyvinyl acetal is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of suppressing the residual of the thermosetting resin film on the upper part of the convex portion of the uneven surface is obtained.
  • the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced.
  • the ratio of three or more types of monomers constituting the polyvinyl acetal can be arbitrarily selected.
  • the acrylic resin in the polymer component (A) examples include known acrylic polymers.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 5000 to 1000000, and more preferably 8000 to 800,000.
  • Mw weight average molecular weight of the acrylic resin
  • the thermosetting resin film is attached to the uneven surface, the residual thermosetting resin film is suppressed on the upper part of the convex portion of the uneven surface. The effect, the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface, and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced.
  • the glass transition temperature (Tg) of the acrylic resin is preferably -50 to 70 ° C, more preferably -30 to 60 ° C.
  • Tg of the acrylic resin is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of suppressing the residual of the thermosetting resin film on the upper part of the convex portion of the uneven surface is obtained.
  • the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced.
  • the glass transition temperature (Tg) of the acrylic resin can be calculated by using the Fox formula.
  • Tg of the monomer for inducing the structural unit used at this time the value described in the polymer data handbook or the adhesive handbook can be used.
  • the monomer constituting the acrylic resin may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • acrylic resin for example, a polymer of one kind or two or more kinds of (meth) acrylic acid esters; Copolymers of two or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like; One or more (meth) acrylic acid esters, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, etc. Examples thereof include the copolymer of.
  • (meth) acrylic acid is a concept that includes both “acrylic acid” and “methacrylic acid”.
  • (meth) acrylate is a concept that includes both “acrylate” and “methacrylate”, and is a "(meth) acryloyl group”. Is a concept that includes both an "acryloyl group” and a “methacryloyl group”.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and (meth).
  • N-butyl acrylate isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylate Heptyl, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, Undecyl (meth) acrylate, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecy
  • a glycidyl group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate; Hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxyprop
  • the acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
  • the functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound without a cross-linking agent (F).
  • F cross-linking agent
  • the ratio of the content of the polymer component (A) to the total content of all the components other than the solvent that is, the weight of the thermosetting resin film with respect to the total mass of the thermosetting resin film.
  • the content ratio of the coalesced component (A)) is preferably 5 to 25% by mass, more preferably 5 to 15% by mass, regardless of the type of the polymer component (A).
  • thermosetting component (B) is a component for having thermosetting property and heat-curing a thermosetting resin film to form a hard cured product.
  • the thermosetting component (B) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, or two or more kinds, if they are two or more kinds. The combination and ratio of are arbitrarily selectable.
  • thermosetting component (B) examples include epoxy-based thermosetting resins, polyimide resins, unsaturated polyester resins, and the like.
  • thermosetting component (B) is preferably an epoxy-based thermosetting resin.
  • the epoxy-based thermosetting resin is composed of an epoxy resin (B1) and a thermosetting agent (B2).
  • the epoxy-based thermosetting resin contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
  • Epoxy resin (B1) examples include known ones, such as polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolac epoxy resin, and dicyclopentadiene type epoxy resin.
  • Biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, and other bifunctional or higher functional epoxy compounds can be mentioned.
  • the epoxy resin (B1) may be an epoxy resin having an unsaturated hydrocarbon group.
  • Epoxy resins having unsaturated hydrocarbon groups have higher compatibility with acrylic resins than epoxy resins having no unsaturated hydrocarbon groups. Therefore, by using an epoxy resin having an unsaturated hydrocarbon group, for example, the reliability of a package obtained by using a thermosetting resin film tends to be improved.
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy group of the polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction of (meth) acrylic acid or a derivative thereof.
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (vinyl group), a 2-propenyl group (allyl group), a (meth) acryloyl group, and a (meth) group. Examples thereof include an acrylamide group, and an acryloyl group is preferable.
  • the number average molecular weight of the epoxy resin (B1) is not particularly limited, but from the viewpoint of the curability of the thermosetting resin film and the strength and heat resistance of the cured product (for example, protective film) of the thermosetting resin film. It is preferably 300 to 30,000, more preferably 400 to 10000, and particularly preferably 500 to 3000.
  • the epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g / eq, more preferably 200 to 800 g / eq.
  • epoxy resin (B1) one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
  • thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
  • thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with epoxy groups in one molecule.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group is annealed, and the like, and the phenolic hydroxyl group, an amino group, or an acid group is annealed. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolak-type phenol resins, dicyclopentadiene-type phenol resins, and aralkyl-type phenol resins. ..
  • examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter, may be abbreviated as "DICY”) and the like.
  • the thermosetting agent (B2) may have an unsaturated hydrocarbon group.
  • the thermosetting agent (B2) having an unsaturated hydrocarbon group is, for example, a compound in which a part of the hydroxyl group of the phenol resin is replaced with a group having an unsaturated hydrocarbon group, which is not suitable for the aromatic ring of the phenol resin. Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
  • the unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
  • the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene type phenol resin, and aralkyl type phenol resin is preferably 300 to 30,000. , 400 to 10000 is more preferable, and 500 to 3000 is particularly preferable.
  • the molecular weight of the non-resin component such as biphenol and dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (B2) one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
  • the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1). It is preferably 1 to 200 parts by mass, and may be, for example, any of 5 to 150 parts by mass, 10 to 100 parts by mass, and 15 to 75 parts by mass.
  • the content of the thermosetting agent (B2) is at least the lower limit value, the curing of the thermosetting resin film is more likely to proceed.
  • the content of the thermosetting agent (B2) is not more than the upper limit value, the hygroscopicity of the thermosetting resin film is reduced, and for example, the reliability of the package obtained by using the thermosetting resin film is used. Is improved.
  • the content of the thermosetting component (B) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is the polymer component (A). ) Is preferably 600 to 1000 parts by mass with respect to 100 parts by mass.
  • the content of the thermosetting component (B) is in such a range, when the thermosetting resin film is attached to the uneven surface, the thermosetting resin film is formed on the upper portion of the convex portion of the uneven surface.
  • thermosetting component (B) may be appropriately adjusted according to the type of the polymer component (A) from the viewpoint that such an effect can be obtained more remarkably.
  • the content of the thermosetting component (B) in the composition (III) and the thermosetting resin film is the content of the polymer component (A). It is preferably 600 to 1000 parts by mass, more preferably 650 to 1000 parts by mass, and particularly preferably 650 to 950 parts by mass with respect to 100 parts by mass.
  • the X value can be adjusted more easily. Further, by adjusting the amount of the filler (D) in the composition (III) and the thermosetting resin film, the thermal expansion coefficient of the cured product (for example, the protective film) of the thermosetting resin film can be more easily adjusted. By optimizing the thermal expansion coefficient of the protective film (for example, the first protective film) with respect to the object to be formed of the protective film, the reliability of the package obtained by using the thermosetting resin film can be adjusted. The sex is improved. Further, by using the thermosetting resin film containing the filler (D), the moisture absorption rate of the cured product (for example, the protective film) of the thermosetting resin film can be reduced or the heat dissipation can be improved. You can also.
  • the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride and the like; spherical beads of these inorganic fillers; surface modification of these inorganic fillers. Goods; Single crystal fibers of these inorganic fillers; Glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • the filler (D) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • the ratio of the content of the filler (D) to the total content of all the components other than the solvent is preferably 5 to 45% by mass, more preferably 5 to 40% by mass, and even more preferably 5 to 30% by mass.
  • the ratio is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of suppressing the residual of the thermosetting resin film on the upper portion of the convex portion of the uneven surface and the above-mentioned effect.
  • the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface become higher, and the above heat The expansion coefficient can be adjusted more easily.
  • the X value can be adjusted more easily by adjusting the type or amount of the additive (I) in the composition (III) and the thermosetting resin film.
  • examples of the additive (I) preferable in that the X value can be adjusted more easily include a rheology control agent, a surfactant, a silicone oil and the like.
  • examples of the rheology control agent include polyhydroxycarboxylic acid esters, polyvalent carboxylic acids, and polyamide resins.
  • examples of the surfactant include modified siloxane, acrylic polymer and the like.
  • examples of the silicone oil include aralkyl-modified silicone oil and modified polydimethylsiloxane, and examples of the modifying group include an aralkyl group; a polar group such as a hydroxy group; and a group having an unsaturated bond such as a vinyl group and a phenyl group. Can be mentioned.
  • additive (I) examples include other general-purpose additives such as a plasticizer, an antistatic agent, an antioxidant, a gettering agent, an ultraviolet absorber, a tackifier, and the like. ..
  • the additive (I) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • the contents of the composition (III) and the additive (I) of the thermosetting resin film are not particularly limited, and can be appropriately adjusted according to the type and purpose thereof.
  • the ratio of the content of the additive (I) to the total content of all the components other than the solvent in the composition (III) that is, the thermosetting resin.
  • the ratio of the content of the additive (I) to the total mass of the thermosetting resin film in the film is preferably 0.5 to 10% by mass, and preferably 0.5 to 7% by mass. More preferably, it is 0.5 to 5% by mass.
  • the composition (III) and the thermosetting resin film may contain a curing accelerator (C).
  • the curing accelerator (C) is a component for adjusting the curing rate of the composition (III).
  • Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole.
  • 2-Phenyl-4-methylimidazole 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and other imidazoles (one or more hydrogen atoms other than hydrogen atoms) (Imidazole substituted with an organic group); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (phosphine in which one or more hydrogen atoms are substituted with an organic group); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylborone salts such as tetraphenylborate.
  • the curing accelerator (C) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
  • the content of the curing accelerator (C) in the composition (III) and the thermosetting resin film is based on 100 parts by mass of the content of the thermosetting component (B). , 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass.
  • the content of the curing accelerator (C) is at least the lower limit value, the effect of using the curing accelerator (C) is more remarkable.
  • the content of the curing accelerator (C) is not more than the upper limit value, for example, the highly polar curing accelerator (C) is adhered to the thermosetting resin film under high temperature and high humidity conditions. The effect of suppressing segregation by moving to the adhesion interface side with and is enhanced, and for example, the reliability of the package obtained by using the thermosetting resin film is further improved.
  • the composition (III) and the thermosetting resin film may contain a coupling agent (E).
  • a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesiveness and adhesion of the thermosetting resin film to the adherend can be improved. Further, by using the coupling agent (E), the cured product (for example, protective film) of the thermosetting resin film has improved water resistance without impairing the heat resistance.
  • the coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional groups of the polymer component (A), the thermosetting component (B) and the like, and is preferably a silane coupling agent. More preferred.
  • Preferred silane coupling agents include, for example, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2-.
  • the coupling agent (E) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
  • the content of the coupling agent (E) in the composition (III) and the thermosetting resin film is the total of the polymer component (A) and the thermosetting component (B).
  • the content is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and particularly preferably 0.1 to 5 parts by mass with respect to 100 parts by mass.
  • the content of the coupling agent (E) is equal to or higher than the lower limit, the dispersibility of the filler (D) in the resin is improved and the adhesiveness of the thermosetting resin film to the adherend is improved.
  • the effect of using the coupling agent (E) is more remarkable.
  • the content of the coupling agent (E) is not more than the upper limit value, the generation of outgas is further suppressed.
  • Cross-linking agent (F) When a polymer component (A) having a functional group such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, or an isocyanate group that can be bonded to another compound is used, the composition (III). And the thermosetting resin film may contain a cross-linking agent (F).
  • the cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) with another compound to cross-link, and by cross-linking in this way, the initial adhesion of the thermosetting resin film is performed. The force and cohesive force can be adjusted.
  • cross-linking agent (F) examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based cross-linking agent (a cross-linking agent having a metal chelate structure), an aziridine-based cross-linking agent (a cross-linking agent having an aziridinyl group), and the like. Can be mentioned.
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyhydric isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as "aromatic polyvalent isocyanate compound and the like". (May be abbreviated); trimerics such as the aromatic polyvalent isocyanate compound, isocyanurates and adducts; terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the like with a polyol compound. And so on.
  • the "adduct” includes the aromatic polyhydric isocyanate compound, the aliphatic polyhydric isocyanate compound, or the alicyclic polyvalent isocyanate compound, and low ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, castor oil, and the like. It means a reaction product with a molecularly active hydrogen-containing compound.
  • Examples of the adduct body include a xylylene diisocyanate adduct of trimethylolpropane, which will be described later.
  • the "terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the terminal portion of the molecule.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4.
  • organic polyvalent imine compound examples include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxyamide), trimethylolpropane-tri- ⁇ -aziridinyl propionate, and tetramethylolmethane.
  • examples thereof include -tri- ⁇ -aziridinyl propionate, N, N'-toluene-2,4-bis (1-aziridinecarboxyamide) triethylene melamine and the like.
  • the cross-linking agent (F) When an organic multivalent isocyanate compound is used as the cross-linking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A).
  • a hydroxyl group-containing polymer When the cross-linking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, the reaction between the cross-linking agent (F) and the polymer component (A) causes the thermosetting resin film to have a cross-linked structure. Can be easily introduced.
  • the cross-linking agent (F) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • the content of the cross-linking agent (F) in the composition (III) is 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). It is preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass.
  • the content of the cross-linking agent (F) is at least the lower limit value, the effect of using the cross-linking agent (F) is more remarkable.
  • the content of the cross-linking agent (F) is not more than the upper limit value, the excessive use of the cross-linking agent (F) is suppressed.
  • the composition (III) and the thermosetting resin film include the above-mentioned polymer component (A), thermosetting component (B), filler (D), and the above-mentioned polymer component (A), and the filler (D), as long as the effects of the present invention are not impaired. It may contain other components that do not correspond to any of the additive (I), the curing accelerator (C), the coupling agent (E), and the cross-linking agent (F). Examples of the other components include energy ray-curable resins and photopolymerization initiators.
  • the other components contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, a combination thereof and The ratio can be selected arbitrarily.
  • the contents of the composition (III) and the other components of the thermosetting resin film are not particularly limited and may be appropriately selected depending on the intended purpose.
  • the composition (III) preferably further contains a solvent.
  • the solvent-containing composition (III) has good handleability.
  • the solvent is not particularly limited, but preferred ones are, for example, hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples thereof include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
  • the solvent contained in the composition (III) may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily selected.
  • solvents contained in the composition (III) more preferable ones include, for example, methyl ethyl ketone and the like because the components contained in the composition (III) can be mixed more uniformly.
  • the content of the solvent in the composition (III) is not particularly limited, and may be appropriately selected depending on the type of the component other than the solvent, for example.
  • the composition for forming a thermosetting resin film such as the composition (III) can be obtained by blending each component for forming the composition.
  • the order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
  • the method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
  • the temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • the curing conditions when forming a protective film are such that the cured product fully exerts its function.
  • the degree is not particularly limited, and may be appropriately selected depending on the type of the energy ray-curable resin film, the use of the cured product, and the like.
  • the illuminance of the energy ray at the time of curing the energy ray curable resin film is preferably 180 to 280 mW / cm 2.
  • the amount of light of the energy rays at the time of curing is preferably 450 to 1000 mJ / cm 2.
  • composition for forming an energy ray-curable resin film includes, for example, an energy ray-curable resin film forming composition (IV) containing an energy ray-curable component (a), a filler, and an additive. In the present specification, it may be simply referred to as "composition (IV)") and the like.
  • the energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and is also a component for imparting film-forming property, flexibility, and the like to the energy ray-curable resin film.
  • the energy ray-curable component (a) is preferably uncured, preferably sticky, and more preferably uncured and sticky.
  • Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2000000, and an energy ray-curable group having a molecular weight of 100 to 80,000.
  • the compound (a2) can be mentioned.
  • the polymer (a1) may be at least partially crosslinked by a crosslinking agent or may not be crosslinked.
  • Polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2000000 examples include an acrylic polymer (a11) having a functional group capable of reacting with a group of another compound, and the above-mentioned functional group. Examples thereof include an acrylic resin (a1-1) obtained by polymerizing a group that reacts with a group and an energy ray-curable compound (a12) having an energy ray-curable group such as an energy ray-curable double bond.
  • Examples of the functional group capable of reacting with a group of another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than the hydrogen atom. Group), epoxy group and the like.
  • the functional group is preferably a group other than a carboxy group.
  • the functional group is preferably a hydroxyl group.
  • the acrylic polymer (a11) having a functional group examples include those obtained by copolymerizing an acrylic monomer having the functional group and an acrylic monomer having no functional group, and other than these monomers. Further, a monomer other than the acrylic monomer (non-acrylic monomer) may be copolymerized. Further, the acrylic polymer (a11) may be a random copolymer or a block copolymer.
  • acrylic monomer having a functional group examples include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth).
  • (Meta) hydroxyalkyl acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic unsaturated such as vinyl alcohol and allyl alcohol Examples thereof include alcohol (unsaturated alcohol having no (meth) acrylic skeleton).
  • Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having ethylenically unsaturated bonds) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, and citracon.
  • Ethylene unsaturated dicarboxylic acids such as acids (dicarboxylic acids having ethylenically unsaturated bonds); anhydrides of the ethylenically unsaturated dicarboxylic acids; (meth) acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate and the like. Be done.
  • the acrylic monomer having the functional group is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, and more preferably a hydroxyl group-containing monomer.
  • the acrylic monomer having the functional group constituting the acrylic polymer (a11) may be only one kind, two or more kinds, and when two or more kinds, a combination thereof and The ratio can be selected arbitrarily.
  • acrylic monomer having no functional group examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n- (meth) acrylate.
  • acrylic monomer having no functional group examples include an alkoxyalkyl group such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate.
  • (Meta) acrylic acid ester (meth) acrylic acid ester having an aromatic group, including (meth) acrylic acid aryl ester such as (meth) phenyl acrylic acid; non-crosslinkable (meth) acrylamide and its derivatives; Examples thereof include (meth) acrylic acid esters having a non-crosslinkable tertiary amino group such as (meth) acrylic acid N, N-dimethylaminoethyl and (meth) acrylic acid N, N-dimethylaminopropyl.
  • the acrylic monomer having no functional group constituting the acrylic polymer (a11) may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • non-acrylic monomer examples include olefins such as ethylene and norbornene; vinyl acetate; and styrene.
  • the non-acrylic monomer constituting the acrylic polymer (a11) may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
  • the ratio (content) of the amount of the structural unit derived from the acrylic monomer having a functional group to the total amount of the structural unit constituting the acrylic polymer (a11) is 0.1 to 50% by mass. It is preferably 1 to 40% by mass, and particularly preferably 3 to 30% by mass.
  • the content of the sex group makes it possible to easily adjust the degree of curing of the cured product (for example, protective film) of the energy ray-curable resin film within a preferable range.
  • the acrylic polymer (a11) constituting the acrylic resin (a1-1) may be of only one type, may be of two or more types, and when there are two or more types, a combination thereof and The ratio can be selected arbitrarily.
  • the ratio of the content of the acrylic resin (a1-1) to the total content of the components other than the solvent is preferably 1 to 40% by mass, more preferably 2 to 30% by mass, and particularly preferably 3 to 20% by mass.
  • the energy ray-curable compound (a12) is one or more selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). It is preferable that the group has an isocyanate group, and more preferably the group has an isocyanate group.
  • the energy ray-curable compound (a12) has an isocyanate group as the group, for example, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
  • the energy ray-curable compound (a12) preferably has 1 to 5 energy ray-curable groups in one molecule, and more preferably 1 to 2 groups.
  • Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, and 1,1- (bisacryloyloxymethyl).
  • Ethyl isocyanate Acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate;
  • Examples thereof include an acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound with a polyol compound and a hydroxyethyl (meth) acrylate.
  • the energy ray-curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
  • the energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
  • the ratio of the content of the energy ray-curable group derived from the energy ray-curable compound (a12) to the content of the functional group derived from the acrylic polymer (a11). is preferably 20 to 120 mol%, more preferably 35 to 100 mol%, and particularly preferably 50 to 100 mol%.
  • the content ratio is in such a range, the adhesive force of the cured product (for example, protective film) of the energy ray-curable resin film becomes larger.
  • the energy ray-curable compound (a12) is a monofunctional compound (having one group in one molecule)
  • the upper limit of the content ratio is 100 mol%.
  • the energy ray-curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule)
  • the upper limit of the content ratio may exceed 100 mol%.
  • the weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 20,000, more preferably 300,000 to 1,500,000.
  • the above-mentioned monomer described as constituting the acrylic polymer (a11) when the polymer (a1) is at least partially crosslinked by a cross-linking agent A monomer that does not correspond to any of the above and has a group that reacts with the cross-linking agent may be polymerized and cross-linked at the group that reacts with the cross-linking agent, or the energy ray-curable compound (a12). ), Which may be crosslinked in the group that reacts with the functional group.
  • the polymer (a1) contained in the composition (IV) and the energy ray-curable resin film may be only one kind, two or more kinds, or two or more kinds, if they are two or more kinds.
  • the combination and ratio of are arbitrarily selectable.
  • Compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 Examples of the energy ray-curable group in the compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 include a group containing an energy ray-curable double bond, and preferred ones are (meth). ) Acryloyl group, vinyl group and the like can be mentioned.
  • the compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray-curable group, an epoxy resin having an energy ray-curable group, and an energy ray-curable group.
  • Examples include phenol resin.
  • examples of the low molecular weight compound having an energy ray-curable group include polyfunctional monomers or oligomers, and acrylate compounds having a (meth) acryloyl group are preferable.
  • examples of the acrylate-based compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4.
  • Bifunctional (meth) acrylate Tris (2- (meth) acryloxyethyl) isocyanurate, ⁇ -caprolactone-modified tris- (2- (meth) acryloxyethyl) isocyanurate, ethoxylated glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol poly (meth) acrylate, dipentaerythritol hexa
  • Polyfunctional (meth) acrylates such as meta) acrylates; Examples thereof include polyfunctional (meth) acrylate oligomers such as
  • an epoxy resin having an energy ray-curable group and a phenol resin having an energy ray-curable group are described in, for example, paragraph 0043 of "Japanese Patent Laid-Open No. 2013-194102". Can be used. Such a resin also corresponds to a resin constituting a thermosetting component described later, but is treated as the compound (a2) in the present invention.
  • the weight average molecular weight of the compound (a2) is preferably 100 to 30,000, more preferably 300 to 10000.
  • the compound (a2) contained in the composition (IV) and the energy ray-curable resin film may be only one kind, two or more kinds, and when two or more kinds, those compounds.
  • the combination and ratio can be selected arbitrarily.
  • composition (IV) and the energy ray-curable resin film contain the compound (a2) as the energy ray-curable component (a), they also contain a polymer (b) having no energy ray-curable group. It is preferable to do so.
  • the polymer (b) may be at least partially crosslinked by a crosslinking agent or may not be crosslinked.
  • the polymer (b) having no energy ray-curable group examples include an acrylic polymer, a phenoxy resin, a urethane resin, a polyester, a rubber resin, and an acrylic urethane resin.
  • the polymer (b) is preferably an acrylic polymer (hereinafter, may be abbreviated as "acrylic polymer (b-1)").
  • the acrylic polymer (b-1) may be a known one, and may be, for example, a homopolymer of one kind of acrylic monomer or a copolymer of two or more kinds of acrylic monomers. It may be a copolymer of one or more kinds of acrylic monomers and one or more kinds of monomers other than the acrylic monomers (non-acrylic monomers).
  • acrylic monomer constituting the acrylic polymer (b-1) examples include (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth) acrylic acid ester, and hydroxyl group-containing. Examples thereof include (meth) acrylic acid ester and (meth) acrylic acid ester containing a substituted amino group.
  • the "substituted amino group" is as described above.
  • the acrylic monomer having no functional group (alkyl group constituting the alkyl ester, which constitutes the acrylic polymer (a11) described above, has one carbon number.
  • the same as (meth) acrylic acid alkyl ester, etc., which has a chain structure of to 18) can be mentioned.
  • Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid isobornyl and (meth) acrylic acid dicyclopentanyl; (Meta) Acrylic acid aralkyl esters such as benzyl (meth) acrylic acid; (Meta) Acrylic acid cycloalkenyl ester such as (meth) acrylic acid dicyclopentenyl ester; Examples thereof include (meth) acrylic acid cycloalkenyloxyalkyl ester such as (meth) acrylic acid dicyclopentenyloxyethyl ester.
  • Examples of the glycidyl group-containing (meth) acrylic acid ester include glycidyl (meth) acrylic acid.
  • Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxy (meth) acrylate. Examples thereof include propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • Examples of the substituted amino group-containing (meth) acrylic acid ester include N-methylaminoethyl (meth) acrylic acid.
  • non-acrylic monomer constituting the acrylic polymer (b-1) examples include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
  • the polymer (b) having no energy ray-curable group, which is at least partially crosslinked by a cross-linking agent for example, a polymer (b) in which the reactive functional group in the polymer (b) has reacted with the cross-linking agent is used.
  • the reactive functional group may be appropriately selected depending on the type of the cross-linking agent and the like, and is not particularly limited.
  • the cross-linking agent is a polyisocyanate compound
  • examples of the reactive functional group include a hydroxyl group, a carboxy group, an amino group and the like, and among these, a hydroxyl group having high reactivity with an isocyanate group is preferable.
  • the reactive functional group include a carboxy group, an amino group, an amide group and the like, and among these, a carboxy group having high reactivity with an epoxy group is preferable. ..
  • the reactive functional group is preferably a group other than a carboxy group.
  • Examples of the polymer (b) having the reactive functional group and not having the energy ray-curable group include those obtained by polymerizing at least the monomer having the reactive functional group.
  • the acrylic polymer (b-1) one or both of the acrylic monomer and the non-acrylic monomer mentioned as the monomers constituting the acrylic polymer (b-1) may be those having the reactive functional group. ..
  • Examples of the polymer (b) having a hydroxyl group as a reactive functional group include those obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester, and in addition to this, the above-mentioned acrylic.
  • the monomer or non-acrylic monomer include those obtained by polymerizing a monomer in which one or more hydrogen atoms are substituted with the reactive functional group.
  • the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total amount of the structural units constituting the polymer (b) is 1 to 20. It is preferably by mass%, more preferably 2 to 10% by mass. When the ratio is in such a range, the degree of cross-linking in the polymer (b) becomes a more preferable range.
  • the weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is preferably 10,000 to 2000000, preferably 100,000 to 20000, from the viewpoint of improving the film-forming property of the composition (IV). More preferably, it is 1500,000.
  • the polymer (b) having no energy ray-curable group contained in the composition (IV) and the energy ray-curable resin film may be only one kind or two or more kinds. When there are two or more types, their combinations and ratios can be arbitrarily selected.
  • compositions (IV) include those containing either or both of the polymer (a1) and the compound (a2).
  • the composition (IV) contains the compound (a2), it preferably also contains a polymer (b) having no energy ray-curable group.
  • the composition (a1) is further contained. It is also preferable to do so.
  • the composition (IV) may not contain the compound (a2) and may contain both the polymer (a1) and the polymer (b) having no energy ray-curable group.
  • the compound (a2) contains the polymer (a1), the compound (a2), and the polymer (b) having no energy ray-curable group
  • the compound (a2) The content of is preferably 10 to 400 parts by mass, preferably 30 to 350 parts by mass, based on 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray-curable group. More preferably, it is by mass.
  • the ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total mass of the film in the ray-curable resin film) is 5 to 90 mass. %, More preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass. When the ratio is in such a range, the energy ray curability of the energy ray curable resin film becomes better.
  • the X value can be adjusted more easily. Further, by adjusting the amount of the filler in the composition (IV) and the energy ray-curable resin film, the thermal expansion coefficient of the cured product (for example, the protective film) of the energy ray-curable resin film can be more easily adjusted.
  • the reliability of the package obtained using the energy raysetting resin film which can be adjusted, for example, by optimizing the thermal expansion coefficient of the protective film (for example, the first protective film) with respect to the object to be formed of the protective film. The sex is improved.
  • an energy ray-curable resin film containing a filler it is possible to reduce the moisture absorption rate of a cured product (for example, a protective film) of the energy ray-curable resin film and improve the heat dissipation. can.
  • the filler contained in the composition (IV) and the energy ray-curable resin film is the same as the filler (D) contained in the composition (III) and the thermosetting resin film described above.
  • the mode of containing the filler of the composition (IV) and the energy ray-curable resin film may be the same as the mode of containing the filler (D) of the composition (III) and the thermosetting resin film.
  • the filler contained in the composition (IV) and the energy ray-curable resin film may be only one kind, two or more kinds, and when two or more kinds, a combination and ratio thereof. Can be selected arbitrarily.
  • the ratio of the content of the filler to the total content of all the components other than the solvent (that is, the ratio of the filler to the total mass of the energy ray-curable resin film in the energy ray-curable resin film).
  • the content ratio may be, for example, 5 to 45% by mass.
  • the effect of suppressing the protrusion of the energy ray-curable resin film on the uneven surface and the effect of suppressing the repelling of the energy ray-curable resin film and its cured product on the uneven surface are further enhanced.
  • the above thermal expansion coefficient can be adjusted more easily.
  • the X value can be adjusted more easily by adjusting the type or amount of the additive in the composition (IV) and the energy ray-curable resin film.
  • the additive contained in the composition (IV) and the energy ray-curable resin film is the same as the additive (I) contained in the composition (III) and the thermosetting resin film described above.
  • preferable additives in that the X value can be adjusted more easily include rheology control agents, surfactants, silicone oils and the like.
  • the mode of containing the additive of the composition (IV) and the energy ray-curable resin film may be the same as the mode of containing the additive (I) of the composition (III) and the thermosetting resin film.
  • the additive contained in the composition (IV) and the energy ray-curable resin film may be only one kind, two or more kinds, and when two or more kinds, a combination and a ratio thereof. Can be selected arbitrarily.
  • the content of the additive of the composition (IV) and the energy ray-curable resin film is not particularly limited, and can be appropriately adjusted according to the type and purpose thereof.
  • the ratio of the content of the additive to the total mass of the energy ray-curable resin film may be, for example, 0.5 to 10% by mass.
  • the composition (IV) and the energy ray-curable resin film contain the energy ray-curable component (a), the filler, the additive, and the energy ray-curable group within a range that does not impair the effects of the present invention. It may contain other components which do not correspond to any of the polymer (b) which does not have. Examples of the other components include thermosetting components, photopolymerization initiators, coupling agents, cross-linking agents and the like.
  • the composition (IV) containing the energy ray-curable component (a) and the thermosetting component the energy ray-curable resin film is improved in adhesive strength to the adherend by its heating. The strength of the cured product (for example, protective film) of this energy ray-curable resin film is also improved.
  • thermosetting component, photopolymerization initiator, coupling agent and cross-linking agent in the composition (IV) include the thermosetting component (B), the photopolymerization initiator and the coupling agent in the composition (III), respectively.
  • thermosetting component (B) the thermosetting component
  • photopolymerization initiator and the coupling agent in the composition (III) respectively.
  • the same as (E) and the cross-linking agent (F) can be mentioned.
  • the other components contained in the composition (IV) and the energy ray-curable resin film may be only one kind, two or more kinds, and when two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • the contents of the other components of the composition (IV) and the energy ray-curable resin film are not particularly limited and may be appropriately selected depending on the intended purpose.
  • the composition (IV) preferably further contains a solvent.
  • the composition (IV) containing a solvent has good handleability.
  • Examples of the solvent contained in the composition (IV) include the same solvents contained in the composition (III) described above.
  • the solvent contained in the composition (IV) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent in the composition (IV) is not particularly limited, and may be appropriately selected depending on the type of the component other than the solvent, for example.
  • An energy ray-curable resin film-forming composition such as composition (IV) can be obtained by blending each component for forming the composition.
  • the energy ray-curable resin film-forming composition can be produced, for example, by the same method as in the case of the thermosetting resin film-forming composition described above, except that the types of compounding components are different.
  • An example of a preferable resin film of the present embodiment is a resin film. Strain was generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece was measured. When the storage elastic modulus of the test piece is Gc1 and the strain of the test piece is 300%, the storage elastic modulus of the test piece is Gc300.
  • X Gc1 / Gc300 The X value calculated by is 19 or more and less than 10000.
  • the resin film is a thermosetting resin film containing a polymer component (A), an epoxy resin (B1), a thermosetting agent (B2), a filler (D), and an additive (I).
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is 5 to 25% by mass.
  • the content of the thermosetting agent (B2) in the resin film is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1).
  • the total content of the epoxy resin (B1) and the thermosetting agent (B2) in the resin film is 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
  • the ratio of the content of the filler (D) to the total mass of the resin film in the resin film is 5 to 45% by mass.
  • the ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass.
  • the total content of the polymer component (A), the epoxy resin (B1), the heat curing agent (B2), the filler (D) and the additive (I) is contained in the total mass of the resin film.
  • the ratio of the amount does not exceed 100% by mass, and examples thereof include a resin film.
  • Another example of the preferred resin film of the present embodiment is a resin film. Strain was generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece was measured. When the storage elastic modulus of the test piece is Gc1 and the strain of the test piece is 300%, the storage elastic modulus of the test piece is Gc300.
  • X Gc1 / Gc300 The X value calculated by is 19 or more and less than 10000.
  • the resin film is a thermosetting resin film containing a polymer component (A), an epoxy resin (B1), a thermosetting agent (B2), a filler (D), and an additive (I).
  • the polymer component (A) is polyvinyl acetal.
  • the additive (I) is one or more selected from the group consisting of rheology control agents, surfactants and silicone oils.
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is 5 to 25% by mass.
  • the content of the thermosetting agent (B2) in the resin film is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1).
  • the total content of the epoxy resin (B1) and the thermosetting agent (B2) in the resin film is 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
  • the ratio of the content of the filler (D) to the total mass of the resin film in the resin film is 5 to 45% by mass.
  • the ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass.
  • the total content of the polymer component (A), the epoxy resin (B1), the heat curing agent (B2), the filler (D) and the additive (I) is contained in the total mass of the resin film.
  • the ratio of the amount does not exceed 100% by mass, and examples thereof include a resin film.
  • the composite sheet according to an embodiment of the present invention includes a base material, a cushioning layer provided on the base material, and a resin film provided on the cushioning layer, and the resin film comprises a base material.
  • the resin film according to the above-described embodiment of the present invention By using the composite sheet of the present embodiment, as described above, the resin film can be satisfactorily attached to the uneven surface of the object to be attached, and at this time, the resin film is formed on the convex portion of the uneven surface. It is possible to obtain an excellent effect that the residue of the resin film is suppressed, the protrusion of the resin film from the initial size is suppressed, and the repelling of the resin film and its cured product is suppressed on the uneven surface.
  • the composite sheet when the resin film is used for forming the first protective film, the composite sheet is referred to as a "first protective film forming sheet" in the first protective film forming sheet.
  • the base material is referred to as a "first base material”.
  • a second protective film forming film for forming the second protective film is provided in order to provide the second protective film on the surface (back surface) opposite to the bump forming surface of the semiconductor wafer or semiconductor chip.
  • the constructed second protective film forming sheet is used.
  • the second protective film forming sheet include a dicing sheet and a second protective film forming film provided on the dicing sheet.
  • this base material is referred to as a "second base material”.
  • FIG. 3 is a cross-sectional view schematically showing an example of the composite sheet of the present embodiment.
  • the composite sheet 1 shown here is provided on the base material 11, the buffer layer 13 provided on the base material 11, and on the buffer layer 13 (the upper portion of the buffer layer 13 opposite to the base material 11 side). It is configured to include a resin film 12. That is, the composite sheet 1 is configured by laminating the base material 11, the buffer layer 13, and the resin film 12 in this order in the thickness direction.
  • Reference numeral 13a indicates a surface (hereinafter, may be referred to as “first surface”) of the buffer layer 13 on the side where the resin film 12 is provided.
  • FIG. 4 is a cross-sectional view schematically showing another example of the composite sheet of the present embodiment.
  • the composite sheet 2 shown here includes an adhesion layer 14 between the base material 11 and the buffer layer 13 (in other words, the adhesion layer 14 provided on the base material 11 and the adhesion layer 14 provided on the adhesion layer 14). It is the same as the composite sheet 1 shown in FIG. 3, except that the buffer layer 13 is provided). That is, the composite sheet 2 is configured by laminating the base material 11, the adhesion layer 14, the buffer layer 13, and the resin film 12 in this order in the thickness direction.
  • the composite sheet of the present embodiment is not limited to the one shown in FIGS. 3 and 4, and a part of the configurations shown in FIGS. 3 and 4 are changed or deleted within the range not impairing the effect of the present invention. Alternatively, it may be added.
  • the composite sheet of the present embodiment may include a release film on the outermost layer (resin film 12 in the composite sheet shown in FIGS. 3 and 4) on the opposite side of the base material. Next, each layer constituting the composite sheet of the present embodiment will be described.
  • the base material is in the form of a sheet or a film, and examples of the constituent material thereof include various resins.
  • the resin include polyethylenes such as low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and high-density polyethylene (HDPE); other than polyethylenes such as polypropylene, polybutene, polybutadiene, polymethylpentene, and norbornene resin.
  • Polyethylene ethylene-based copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as monomer) (Copolymers obtained using); Vinyl chloride-based resins such as polyvinyl chloride and vinyl chloride copolymers (resins obtained using vinyl chloride as a monomer); Polystyrene; Polycycloolefins; Polyethylene terephthalate, polyethylene Polymers such as naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, all aromatic polyesters in which all constituent units have aromatic cyclic groups; co-polymers of two or more of the above polymers.
  • ethylene-based copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth)
  • Polymers poly (meth) acrylic acid esters; polyurethanes; polyurethane acrylates; polyimides; polyamides; polycarbonates; fluororesins; polyacetals; modified polyphenylene oxides; polyphenylene sulfides; polysulfones; polyether ketones and the like.
  • the resin include polymer alloys such as a mixture of the polyester and other resins.
  • the polymer alloy of the polyester and the resin other than the polyester preferably has a relatively small amount of the resin other than the polyester.
  • the resin for example, a crosslinked resin in which one or more of the resins exemplified above are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resin is also mentioned.
  • the resin constituting the base material may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the base material may be only one layer (single layer), may be a plurality of layers of two or more layers, and when there are a plurality of layers, the plurality of layers may be the same or different from each other.
  • the combination of multiple layers is not particularly limited.
  • the thickness of the base material is preferably 5 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, further preferably 15 to 300 ⁇ m, and particularly preferably 20 to 150 ⁇ m.
  • the "thickness of the base material” means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material. means.
  • the base material has a high thickness accuracy, that is, a base material in which the variation in thickness is suppressed regardless of the site.
  • a material that can be used to construct a base material having such a high accuracy of thickness for example, polyethylene, polyolefin other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer and the like are used. Can be mentioned.
  • the base material contains various known additives such as fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and softeners (plasticizers). You may.
  • the base material may be transparent, opaque, colored depending on the purpose, or another layer may be vapor-deposited.
  • the base material is preferably one that allows energy rays to pass through.
  • the base material can be produced by a known method.
  • a base material containing a resin can be produced by molding a resin composition containing the resin.
  • the buffer layer has a buffering action against the force applied to the buffer layer and the layer adjacent thereto.
  • the "layer adjacent to the buffer layer” is mainly the resin film and a layer corresponding to a cured product thereof (for example, a protective film such as a first protective film).
  • the constituent material of the buffer layer is not particularly limited.
  • buffer layer for example, one containing urethane (meth) acrylate or the like can be mentioned.
  • the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm is strained under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece is measured.
  • Gb300 is preferably Gc300 or more (Gb300 ⁇ Gc300).
  • the test piece of the buffer layer is strained in the range of 0.01% to 1000%, the storage elastic modulus Gb of the test piece is measured, and the test piece of the resin film is 0.01%.
  • the strain is all 0.01% to 1000%.
  • Gb is more preferably Gc or more (Gb ⁇ Gc), and in all ranges of strain of 10% to 1000%, Gb is more preferably Gc or more.
  • the buffer layer may be only one layer (single layer), may be two or more layers, and when there are a plurality of layers, these multiple layers may be the same or different from each other.
  • the combination of multiple layers is not particularly limited.
  • the thickness of the buffer layer is preferably 150 to 1000 ⁇ m, more preferably 150 to 800 ⁇ m, further preferably 200 to 600 ⁇ m, and particularly preferably 250 to 500 ⁇ m.
  • the "thickness of the buffer layer” means the thickness of the entire buffer layer, and for example, the thickness of the buffer layer composed of a plurality of layers means the total thickness of all the layers constituting the buffer layer. means.
  • the buffer layer can be formed by using a composition for forming a buffer layer containing a constituent material of the buffer layer, such as the resin.
  • the buffer layer can be formed at a target site by extrusion-molding the composition for forming the buffer layer on the surface to be formed of the buffer layer.
  • a more specific method for forming the buffer layer will be described in detail later together with a method for forming the other layers.
  • the ratio of the contents of the components that do not vaporize at room temperature in the composition for forming the buffer layer is usually the same as the ratio of the contents of the components in the buffer layer.
  • composition for forming a buffer layer (V) examples include a buffer layer forming composition (V) containing urethane (meth) acrylate.
  • the content of the buffer layer forming composition (V) and the urethane (meth) acrylate of the buffer layer is preferably 80 to 100% by mass.
  • composition for forming a buffer layer (V) and the buffer layer may contain other components other than urethane (meth) acrylate as long as the effects of the present invention are not impaired.
  • the other component is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the buffer layer forming composition (V) and the other components contained in the buffer layer may be only one kind, two or more kinds, and when two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • the content of the buffer layer forming composition (V) and the other components of the buffer layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Adhesive layer improves the adhesiveness between the base material and the buffer layer, and highly suppresses the peeling of the base material and the buffer layer in the composite sheet. Therefore, the composite sheet provided with the adhesion layer can maintain the laminated structure of the base material, the adhesion layer and the buffer layer more stably at the time of use.
  • the adhesion layer is in the form of a sheet or a film.
  • Preferred adhesion layers include, for example, those containing ethylene-vinyl acetate copolymer resin (EVA) and the like.
  • the adhesion layer may be only one layer (single layer), may be two or more layers, and when there are a plurality of layers, these multiple layers may be the same or different from each other.
  • the combination of multiple layers is not particularly limited.
  • the thickness of the adhesion layer is preferably 10 to 100 ⁇ m, more preferably 25 to 85 ⁇ m, and particularly preferably 40 to 70 ⁇ m.
  • the "thickness of the adhesion layer” means the thickness of the entire adhesion layer, and for example, the thickness of the adhesion layer composed of a plurality of layers is the total thickness of all the layers constituting the adhesion layer. means.
  • the adhesion layer can be formed by using a composition for forming an adhesion layer containing the constituent material.
  • the adhesion layer can be formed at a target portion by extrusion-molding the composition for forming the adhesion layer on the surface to be formed of the adhesion layer.
  • a more specific method for forming the adhesion layer will be described in detail later together with other methods for forming the layer.
  • the ratio of the contents of the components that do not vaporize at room temperature in the composition for forming the adhesion layer is usually the same as the ratio of the contents of the components in the adhesion layer.
  • composition for forming an adhesive layer examples include a composition for forming an adhesive layer (VI) containing an ethylene-vinyl acetate copolymer resin (EVA).
  • EVA ethylene-vinyl acetate copolymer resin
  • the density of the ethylene-vinyl acetate copolymer resin is preferably 1100 kg / m 3 or less, more preferably 850 to 1100 kg / m 3 , and particularly preferably 900 to 1000 kg / m 3.
  • density of ethylene-vinyl acetate copolymer resin means a value measured in accordance with JIS K7112: 1999 unless otherwise specified.
  • the melting point of the ethylene-vinyl acetate copolymer resin is preferably 50 to 95 ° C, more preferably 65 to 85 ° C.
  • melt flow rate (MFR) of the ethylene-vinyl acetate copolymer resin at 190 ° C. is preferably 1 to 10 g / 10 minutes, more preferably 3 to 8 g / 10 minutes.
  • melt flow rate of ethylene-vinyl acetate copolymer resin means a value measured in accordance with JIS K7210: 1999 unless otherwise specified.
  • the content of the adhesive layer forming composition (VI) and the ethylene-vinyl acetate copolymer resin of the adhesive layer is preferably 80 to 100% by mass.
  • composition for forming an adhesive layer (VI) and the adhesive layer may contain other components other than the ethylene-vinyl acetate copolymer resin as long as the effects of the present invention are not impaired.
  • the other component is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the composition for forming an adhesive layer (VI) and the other components contained in the adhesive layer may be only one type, two or more types, or a combination thereof when two or more types are used. And the ratio can be selected arbitrarily.
  • the content of the composition for forming an adhesive layer (VI) and the other components of the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a base material As an example of a preferable composite sheet of the present embodiment, a base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer are provided. Strain was generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece was measured. When the storage elastic modulus of the test piece is Gc1 and the strain of the test piece is 300%, the storage elastic modulus of the test piece is Gc300.
  • X Gc1 / Gc300 The X value calculated by is 19 or more and less than 10000.
  • the resin film is a thermosetting resin film containing a polymer component (A), an epoxy resin (B1), a thermosetting agent (B2), a filler (D), and an additive (I).
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is 5 to 25% by mass.
  • the content of the thermosetting agent (B2) in the resin film is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1).
  • the total content of the epoxy resin (B1) and the thermosetting agent (B2) in the resin film is 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
  • the ratio of the content of the filler (D) to the total mass of the resin film in the resin film is 5 to 45% by mass.
  • the ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass.
  • the resin film contains the total amount of the polymer component (A), epoxy resin (B1), thermosetting agent (B2), filler (D) and additive (I) with respect to the total mass of the resin film.
  • the ratio of the amount does not exceed 100% by mass, and examples thereof include composite sheets.
  • a base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer are provided.
  • strain is generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm
  • the storage elastic modulus of the test piece of the resin film is measured, and the test piece of the resin film is measured.
  • the storage elastic modulus of the test piece of the resin film is Gc1
  • the storage elastic modulus of the test piece of the resin film is Gc300.
  • X Gc1 / Gc300
  • the X value calculated by is 19 or more and less than 10000.
  • strain is generated in the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm
  • the storage elastic modulus of the test piece of the buffer layer is measured, and the test piece of the buffer layer is measured.
  • the strain of the buffer layer is 300% and the storage elastic modulus of the test piece of the buffer layer is Gb300, a composite sheet in which the Gb300 is Gc300 or more can be mentioned.
  • Still another example of the preferred composite sheet of the present embodiment includes a base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer.
  • a temperature of 90 ° C. and a frequency of 1 Hz strain is generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece of the resin film is measured, and the test piece of the resin film is measured.
  • the strain of the resin film is 1%
  • the storage elastic modulus of the test piece of the resin film is Gc1
  • the storage elastic modulus of the test piece of the resin film is Gc300.
  • X Gc1 / Gc300
  • the X value calculated by is 19 or more and less than 10000.
  • strain is generated in the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm in the range of 0.01% to 1000%, and the storage elasticity of the test piece of the buffer layer is generated.
  • the rate Gb was measured, strain was generated in the test piece of the resin film in the range of 0.01% to 1000%, and the storage elastic modulus Gc of the test piece of the resin film was measured, and the strain was the same.
  • a composite sheet in which the Gb is equal to or greater than the Gc in the entire range of the strain of 0.01% to 1000% can be mentioned.
  • Still another example of the preferred composite sheet of the present embodiment includes a base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer.
  • a temperature of 90 ° C. and a frequency of 1 Hz strain is generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece of the resin film is measured, and the test piece of the resin film is measured.
  • the strain of the resin film is 1%
  • the storage elastic modulus of the test piece of the resin film is Gc1
  • the storage elastic modulus of the test piece of the resin film is Gc300.
  • X Gc1 / Gc300
  • the X value calculated by is 19 or more and less than 10000.
  • strain is generated in the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm
  • the storage elastic modulus of the test piece of the buffer layer is measured, and the test piece of the buffer layer is measured.
  • the storage elastic modulus of the test piece of the buffer layer is Gb300 when the strain of is 300%
  • the Gb300 is the Gc300 or more.
  • the resin film is a thermosetting resin film containing a polymer component (A), an epoxy resin (B1), a thermosetting agent (B2), a filler (D), and an additive (I).
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is 5 to 25% by mass.
  • the content of the thermosetting agent (B2) in the resin film is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1).
  • the total content of the epoxy resin (B1) and the thermosetting agent (B2) in the resin film is 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
  • the ratio of the content of the filler (D) to the total mass of the resin film in the resin film is 5 to 45% by mass.
  • the ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass.
  • the resin film contains the total amount of the polymer component (A), epoxy resin (B1), thermosetting agent (B2), filler (D) and additive (I) with respect to the total mass of the resin film.
  • the ratio of the amount does not exceed 100% by mass, and examples thereof include composite sheets.
  • Still another example of the preferred composite sheet of the present embodiment includes a base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer.
  • a temperature of 90 ° C. and a frequency of 1 Hz strain is generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece of the resin film is measured, and the test piece of the resin film is measured.
  • the strain of the resin film is 1%
  • the storage elastic modulus of the test piece of the resin film is Gc1
  • the storage elastic modulus of the test piece of the resin film is Gc300.
  • X Gc1 / Gc300
  • the X value calculated by is 19 or more and less than 10000.
  • strain is generated in the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm in the range of 0.01% to 1000%, and the storage elasticity of the test piece of the buffer layer is generated.
  • the rate Gb was measured, strain was generated in the test piece of the resin film in the range of 0.01% to 1000%, and the storage elastic modulus Gc of the test piece of the resin film was measured, and the strain was the same.
  • the resin film is a thermosetting resin film containing a polymer component (A), an epoxy resin (B1), a thermosetting agent (B2), a filler (D), and an additive (I).
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is 5 to 25% by mass.
  • the content of the thermosetting agent (B2) in the resin film is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1).
  • the total content of the epoxy resin (B1) and the thermosetting agent (B2) in the resin film is 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
  • the ratio of the content of the filler (D) to the total mass of the resin film in the resin film is 5 to 45% by mass.
  • the ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass.
  • the resin film contains the total amount of the polymer component (A), epoxy resin (B1), thermosetting agent (B2), filler (D) and additive (I) with respect to the total mass of the resin film.
  • the ratio of the amount does not exceed 100% by mass, and examples thereof include composite sheets.
  • the composite sheet can be manufactured by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship.
  • the method of forming each layer is as described above.
  • a composite sheet in which a base material, a buffer layer, and a resin film are laminated in this order in the thickness direction thereof can be produced by the method shown below. That is, the buffer layer is laminated on the base material by extrusion-molding the composition for forming the buffer layer on the base material. Further, the resin film is laminated by applying the above-mentioned resin film forming composition on the peeling-treated surface of the release film and drying it if necessary. Then, by laminating the resin film on the release film with the cushioning layer on the base material, a composite sheet composed of the base material, the cushioning layer, the resin film and the release film laminated in this order is obtained. The release film on the resin film may be removed when the composite sheet is used.
  • the composite sheet provided with other layers other than the above-mentioned layers is one of the above-mentioned other layer forming step and the above-mentioned laminating step so that the laminating position of the other layer is an appropriate position. It can be manufactured by appropriately adding one or both of them.
  • a composite sheet in which a base material, an adhesion layer, a buffer layer, and a resin film are laminated in this order in the thickness direction thereof can be produced by the method shown below. That is, the adhesion layer forming composition and the buffer layer forming composition are co-extruded onto the base material, so that the adhesion layer and the buffer layer are laminated on the base material in this order. Then, a resin film is separately laminated on the release film by the same method as described above. Next, the resin film on the release film is bonded to the base material and the cushioning layer on the adhesion layer, so that the base material, the adhesion layer, the cushioning layer, the resin film and the release film are laminated in this order to form a composite. Get a sheet. The release film on the resin film may be removed when the composite sheet is used.
  • the resin film of the present embodiment when the resin film of the present embodiment is applied to the uneven surface of the object to be attached, the resin film can cover the entire uneven surface while penetrating the convex portion and exposing the upper portion thereof. And has extremely excellent characteristics. That is, the resin film of the present embodiment is suitable for sticking an object to be attached having an uneven surface to the uneven surface.
  • a resin film of the present embodiment includes, for example, a semiconductor chip and a first protective film provided on a surface (bump forming surface) of the semiconductor chip having bumps. It is particularly suitable for use in the production of.
  • the uneven surface is a bump forming surface of the semiconductor chip
  • the convex portion is a bump.
  • the semiconductor chip with the first protective film is suitable for use in the manufacture of a semiconductor device by flip-chip connecting the bumps in the chip to the substrate.
  • the resin film of this embodiment is suitable for use in the form of the composite sheet described above. Hereinafter, a method for manufacturing a semiconductor device when the composite sheet is used will be described.
  • the curable resin film in the composite sheet according to the embodiment of the present invention described above is formed on a surface having bumps of a semiconductor wafer (bump forming surface). ), And the top of the bump is projected from the resin film to provide the composite sheet on the semiconductor wafer.
  • the composite sheet other than the resin film is used.
  • the curing step of forming the first protective film by curing the resin film after the removing step, and the curing step the semiconductor wafer is divided.
  • a semiconductor chip with a first protective film which is provided with a first protective film provided on a surface having the bumps (bump forming surface), and the crown of the bumps protrudes from the first protective film, is attached to the bump. At the crown, it has a mounting step of flip-chip connecting to the substrate.
  • FIG. 5A to 5D are cross-sectional views schematically showing an example of a method for manufacturing a semiconductor device when the composite sheet 1 shown in FIG. 3 is used.
  • the curable resin film is used for forming the first protective film
  • the "composite sheet 1" is referred to as the "first protective film forming sheet 1”
  • the "base material 11” is referred to as the "first base material 11”. ".
  • the curable resin film 12 in the first protective film forming sheet 1 is attached to the bump forming surface 9a of the semiconductor wafer 9, and the crown portion of the bump 91 is attached.
  • the semiconductor wafer 9 is provided with the first protective film forming sheet 1.
  • the first protective film forming sheet 1 is arranged so that the curable resin film 12 faces the bump forming surface 9a of the semiconductor wafer 9.
  • the height of the bump 91 is not particularly limited, but is preferably 120 to 300 ⁇ m, more preferably 150 to 270 ⁇ m, and particularly preferably 180 to 240 ⁇ m.
  • the function of the bump 91 can be further improved.
  • the height of the bump 91 is not more than the upper limit value, the effect of suppressing the residual of the curable resin film 12 on the upper part of the bump 91 becomes higher.
  • the "bump height” means the height of the bump at the highest position from the bump forming surface.
  • the width of the bump 91 is not particularly limited, but is preferably 170 to 350 ⁇ m, more preferably 200 to 320 ⁇ m, and particularly preferably 230 to 290 ⁇ m.
  • the width of the bump 91 is equal to or larger than the lower limit value, the function of the bump 91 can be further improved.
  • the width of the bump 91 is equal to or less than the upper limit value, the effect of suppressing the residual of the curable resin film 12 on the upper portion of the bump 91 becomes higher.
  • the "bump width" is a line segment obtained by connecting two different points on the bump surface with a straight line when the bump is viewed in a plan view from a direction perpendicular to the bump forming surface. Means the maximum value of the length of.
  • the distance between the adjacent bumps 91 is not particularly limited, but is preferably 250 to 800 ⁇ m, more preferably 300 to 600 ⁇ m, and particularly preferably 350 to 500 ⁇ m. When the distance is equal to or greater than the lower limit value, the function of the bump 91 can be further improved. When the distance is not more than the upper limit value, the effect of suppressing the residual of the curable resin film 12 on the upper part of the bump 91 becomes higher.
  • the "distance between adjacent bumps" means the minimum value of the distance between the surfaces of adjacent bumps.
  • the curable resin film 12 is brought into contact with the bump 91 on the semiconductor wafer 9 and the first protective film forming sheet 1 is pressed against the semiconductor wafer 9.
  • the first surface 12a of the curable resin film 12 is sequentially crimped to the surface 91a of the bump 91 and the bump forming surface 9a of the semiconductor wafer 9.
  • the curable resin film 12 is softened, spreads between the bumps 91 so as to cover the bumps 91, adheres to the bump forming surface 9a, and is adhered to the bump 91 surface 91a.
  • the surface 91a in the vicinity of the bump forming surface 9a is covered and the base portion of the bump 91 is embedded.
  • the curable resin film 12 in the first protective film forming sheet 1 is attached to the bump forming surface 9a of the semiconductor wafer 9.
  • a known method of crimping and attaching various sheets to an object can be applied, for example, a method using a laminate roller or the like. Can be mentioned.
  • the heating temperature of the first protective film forming sheet 1 (curable resin film 12) when crimped to the semiconductor wafer 9 may be such that the curing of the curable resin film 12 does not proceed at all or excessively. For example, it may be 80 to 100 ° C. However, the effect of suppressing the residual of the curable resin film 12 on the upper part of the bump 91, the effect of suppressing the protrusion of the curable resin film 12 on the bump forming surface 9a, and the curability on the bump forming surface 9a surface.
  • the heating temperature is more preferably 85 to 95 ° C. in terms of the effect of suppressing repelling of the resin film 12 and the higher effect.
  • the pressure at which the first protective film forming sheet 1 (curable resin film 12) is pressed against the semiconductor wafer 9 is not particularly limited, and may be, for example, 0.1 to 1.5 MPa. However, the effect of suppressing the residual of the curable resin film 12 on the upper part of the bump 91, the effect of suppressing the protrusion of the curable resin film 12 on the bump forming surface 9a, and the curability on the bump forming surface 9a surface.
  • the pressure is more preferably 0.3 to 1 MPa from the viewpoint of increasing the effect of suppressing repelling of the resin film 12 and increasing the effect.
  • the curable resin film 12 and the buffer layer 13 in the first protective film forming sheet 1 are pressured from the bumps 91.
  • the first surface 12a of the curable resin film 12 and the first surface 13a of the buffer layer 13 are deformed in a concave shape.
  • the curable resin film 12 to which the pressure is applied from the bump 91 as it is is torn.
  • the upper portion 910 including the crown 9101 of the bump 91 penetrates the curable resin film 12. It becomes a protruding state.
  • the upper portion 910 of the bump 91 usually does not penetrate the buffer layer 13. This is because the buffer layer 13 has a buffering action against the pressure applied from the bump 91.
  • the curable resin film 12 does not remain at all or almost on the upper part 910 including the crown 9101 of the bump 91, and the upper part 910 of the bump 91 is cured.
  • the residual of the sex resin film 12 is suppressed.
  • "almost no curable resin film remains on the upper part of the bump” means that, unless otherwise specified, a small amount of the curable resin film remains on the upper part of the bump, but the residual amount is This means that when a semiconductor chip provided with this bump is flip-chip connected to a substrate, the amount does not interfere with the electrical connection between the semiconductor chip and the substrate.
  • the curable resin film 12 is suppressed from protruding from the initial size, so that the curable resin film 12 protrudes from the bump forming surface 9a of the semiconductor wafer 9. Is suppressed.
  • the repelling of the curable resin film 12 is suppressed on the bump forming surface 9a. More specifically, in a state where the curable resin film 12 is provided on the bump forming surface 9a, a region other than the upper portion 910 of the bump 91 (for example, a base near the bump forming surface 9a) or bump forming. The phenomenon that the region near the bump 91 on the surface 9a is unintentionally exposed without being covered with the curable resin film 12 is suppressed.
  • the residue of the curable resin film 12 is suppressed at the upper portion 910 of the bump 91, the protrusion of the curable resin film 12 on the bump forming surface 9a is suppressed, and the curable resin film 12 on the bump forming surface 9a is suppressed.
  • the reason why the repelling is suppressed is that the curable resin film 12 satisfies the condition of the X value (19 ⁇ X value ⁇ 10000) as described above.
  • the surface (back surface) 9b of the semiconductor wafer 9 opposite to the bump forming surface 9a is ground, and then a second protective film forming sheet (not shown) is formed on the back surface 9b. ) Is pasted.
  • the layer other than the curable resin film 12 in the first protective film forming sheet 1 is removed from the curable resin film 12. More specifically, the layers removed here are the first base material 11 and the buffer layer 13.
  • the removing step a semiconductor wafer with a resin film including the semiconductor wafer 9 and the curable resin film 12 provided on the bump forming surface 9a of the semiconductor wafer 9 can be obtained.
  • the curable resin film 12 is cured to form a first protective film.
  • the curable resin film 12 when the curable resin film 12 is thermosetting, the curable resin film 12 is cured by heating, and when the curable resin film 12 is energy ray curable, it is curable.
  • the resin film 12 is cured by irradiation with energy rays. The heating conditions and energy ray irradiation conditions at this time are as described above.
  • dividing step the semiconductor wafer 9 is divided to produce a semiconductor chip 9', and in the cutting step, the first protective film is cut.
  • the dividing step and the cutting step can be carried out by a known method.
  • the order in which the dividing step and the cutting step are performed is not particularly limited, but it is preferable that the dividing step and the cutting step are performed at the same time, or the dividing step and the cutting step are performed in this order.
  • the dividing step and the cutting step are performed in this order, for example, the dividing step may be performed by a known dicing, and then the cutting step may be continuously performed immediately.
  • the first protective film is cut along the planned division portion or the divided portion (in other words, the outer circumference of the semiconductor chip 9') of the semiconductor wafer 9.
  • a semiconductor chip 9120'with a first protective film is obtained, which is configured by comprising (sometimes referred to simply as a "first protective film") 120'.
  • the crown 9101 of the bump 91 protrudes from the first protective film 120', and the first protective film is completely or almost on the upper portion 910 including the crown 9101 of the bump 91. It is not adhered, and the adhesion of the first protective film on the upper portion 910 of the bump 91 is suppressed. Further, in the semiconductor chip 9120'with the first protective film, the protrusion of the first protective film 120'on the bump forming surface 9a' of the semiconductor chip 9'is suppressed. Further, the repelling of the first protective film 120'on the bump forming surface 9a' of the semiconductor chip 9'is suppressed.
  • the area other than the upper portion 910 of the bump 91 for example, the base near the bump forming surface 9a'
  • the phenomenon that the region near the bump 91 of the bump forming surface 9a'is unintentionally exposed without being covered by the first protective film 120' is suppressed.
  • the semiconductor chip 9120'with the first protective film is flip-chip connected to the substrate at the crown portion 9101 of the bump 91 (not shown). At this time, the semiconductor chip 9120'with the first protective film is connected to the circuit forming surface of the substrate. Since the upper part 910 of the bump 91 in the semiconductor chip 9120'with the first protective film is suppressed from adhering to the first protective film, the degree of electrical connection between the semiconductor chip 9'and the substrate is high in this step. ..
  • the semiconductor chip 9120'with the first protective film is separated from the dicing sheet (not shown) in the second protective film forming sheet prior to the flip chip connection. , Pick up.
  • the semiconductor chip 9120'with the first protective film can be picked up by a known method.
  • the semiconductor chip 9'in the semiconductor chip 9120'with the first protective film has a second protective film after cutting on the back surface 9b'(not shown). ..
  • the second protective film forming film in the second protective film forming sheet is curable, the second protective film forming film is cured at an appropriate timing according to the type of the second protective film forming sheet. 2 Use as a protective film. Then, the second protective film is cut at an appropriate timing according to the type.
  • the film for forming the second protective film can be cured in the same manner as in the case of the curable resin film 12, and may be cured at the same time as the curable resin film 12, or may be cured separately from the curable resin film 12. You may let me.
  • the second protective film can be cut in the same manner as in the case of the first protective film.
  • the order in which the division step and the cutting of the second protective film are performed is not particularly limited, but the division step and the cutting of the second protective film are performed at the same time, or the second protective film is subjected to the division step. It is preferable to perform cutting.
  • the dividing step and the cutting of the second protective film are performed in this order, for example, the dividing step may be performed by a known dicing, and then the second protective film may be cut immediately thereafter.
  • the second protective film is cut along the planned division portion or the divided portion (in other words, the outer circumference of the semiconductor chip 9') of the semiconductor wafer 9.
  • FIGS. 6A to 6D are cross-sectional views schematically showing an example of a method for manufacturing a semiconductor device when the composite sheet (first protective film forming sheet) 2 shown in FIG. 4 is used.
  • the curable resin film 12 in the first protective film forming sheet 2 is attached to the semiconductor wafer 9.
  • the first protective film forming sheet 2 is provided on the semiconductor wafer 9 by sticking the bump 91 to the bump forming surface 9a and projecting the crown 9101 of the bump 91 from the curable resin film 12.
  • the first protective film forming sheet 2 is arranged so that the curable resin film 12 faces the bump forming surface 9a of the semiconductor wafer 9.
  • the curable resin film 12 is brought into contact with the bump 91 on the semiconductor wafer 9 and the first protective film forming sheet 2 is pressed against the semiconductor wafer 9.
  • the first surface 12a of the curable resin film 12 is sequentially crimped to the surface 91a of the bump 91 and the bump forming surface 9a of the semiconductor wafer 9.
  • the curable resin film 12 in the first protective film forming sheet 2 is attached to the bump forming surface 9a of the semiconductor wafer 9.
  • the first protective film forming sheet 2 can be crimped to the semiconductor wafer 9 in the same manner as when the first protective film forming sheet 1 is used.
  • the curable resin film 12 and the buffer layer 13 in the first protective film forming sheet 2 are pressured from the bumps 91. Initially, the first surface 12a of the curable resin film 12 and the first surface 13a of the buffer layer 13 are deformed in a concave shape. Then, the curable resin film 12 to which the pressure is applied from the bump 91 as it is is torn. Finally, at the stage where the first surface 12a of the curable resin film 12 is crimped to the bump forming surface 9a of the semiconductor wafer 9, the upper portion 910 including the crown 9101 of the bump 91 penetrates the curable resin film 12. It becomes a protruding state.
  • the upper portion 910 of the bump 91 usually does not penetrate the buffer layer 13.
  • the adhesion layer 14 is the first group. The peeling of the material 11 and the buffer layer 13 is highly suppressed, and the laminated structure of the first base material 11, the adhesion layer 14 and the buffer layer 13 is maintained more stably.
  • the curable resin film 12 is applied to the upper portion 910 including the crown portion 9101 of the bump 91 by the same action as in the case of the first protective film forming sheet 1. It does not remain at all or almost. Further, at the stage when the pasting step is completed, the curable resin film 12 is suppressed from protruding from the initial size by the same action as in the case of the first protective film forming sheet 1, so that the semiconductor wafer The protrusion of the curable resin film 12 from the bump forming surface 9a of 9 is suppressed. Further, at the stage when the sticking step is completed, the repelling of the curable resin film 12 is suppressed on the bump forming surface 9a by the same action as in the case of the first protective film forming sheet 1.
  • the surface (back surface) 9b of the semiconductor wafer 9 opposite to the bump forming surface 9a is ground, and then a second protective film forming sheet (not shown) is formed on the back surface 9b. ) Is pasted.
  • the removing step after the sticking step as shown in FIG. 6C, among the first protective film forming sheets 2, other than the curable resin film 12.
  • the layer is removed from the curable resin film 12. More specifically, the layers removed here are the first base material 11, the adhesion layer 14, and the buffer layer 13.
  • the semiconductor device can be manufactured by the same method as when the first protective film forming sheet 1 is used. That is, after the removal step, the first protective film is formed by curing the curable resin film 12 in the curing step in the same manner as when the first protective film forming sheet 1 is used. After the curing step, a semiconductor chip 9'is produced by dividing the semiconductor wafer 9 in the dividing step in the same manner as when the first protective film forming sheet 1 is used, and in the cutting step, the semiconductor chip 9'is produced. , The first protective film is cut. By performing the curing step and the dividing step, as shown in FIG. 6D, the semiconductor chip 9120'with the first protective film is obtained.
  • the semiconductor chip 9120'with the first protective film obtained here is the same as that obtained when the first protective film forming sheet 1 is used. Further, the mounting step is performed in the same manner as when the first protective film forming sheet 1 is used, and a semiconductor package is produced using the circuit board on which the semiconductor chip 9'is mounted, which is obtained by the mounting step. (Not shown).
  • the presence or absence of residual curable resin film or protective film on the bump can be confirmed, for example, by acquiring SEM imaging data for the bump. Further, the presence or absence of protrusion of the curable resin film on the bump forming surface of the semiconductor wafer and the presence or absence of repelling of the curable resin film on the bump forming surface both correspond to, for example, on the bump forming surface of the semiconductor wafer. The site can be confirmed by acquiring SEM imaging data.
  • (A) -1 Polyvinyl butyral having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3 ("Eslek BL-10" manufactured by Sekisui Chemical Co., Ltd., weight average) Molecular weight 25,000, glass transition temperature 59 ° C.).
  • (A) -2 Copolymerization of butyl acrylate (55 parts by mass), methyl acrylate (10 parts by mass), glycidyl methacrylate (20 parts by mass) and -2-hydroxyethyl acrylate (15 parts by mass). The obtained acrylic resin (weight average molecular weight 800,000, glass transition temperature ⁇ 28 ° C.).
  • l 1 is about 28
  • m 1 is 1-3
  • n 1 is an integer of 68-74.
  • composition (III) having a total concentration of all components other than the solvent of 45% by mass was obtained as a composition for forming a thermosetting resin film.
  • the blending amounts of the components other than the solvent shown here are all the blending amounts of the target product containing no solvent.
  • a release film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 ⁇ m) in which one side of a polyethylene terephthalate film was peeled by a silicone treatment was used, and the composition (III) obtained above was used on the peeled surface. was applied and dried by heating at 120 ° C. for 2 minutes to form a thermosetting resin film having a thickness of 30 ⁇ m.
  • a laminated sheet (“E-9485” manufactured by Lintec Corporation, thickness 485 ⁇ m) corresponding to a laminate of the first base material, the adhesion layer, and the buffer layer was used, and the buffer layer in the laminated sheet and the above.
  • the thermosetting resin film on the obtained release film was laminated.
  • the first base material, the adhesion layer, the cushioning layer, the thermosetting resin film, and the release film are laminated in this order in the thickness direction of these, as shown in FIG.
  • a sheet for forming the first protective film was obtained.
  • thermosetting resin films having a thickness of 50 ⁇ m were prepared by the same method as described above except that the coating amount of the composition (III) was changed. Next, these thermosetting resin films were laminated, and the obtained laminated film was cut into a disk shape having a diameter of 25 mm to prepare a test piece of a thermosetting resin film having a thickness of 1 mm. In the viscoelasticity measuring device (“MCR301” manufactured by Anton Pearl Co., Ltd.), the installation location of the test piece is kept warm at 90 ° C. in advance, and the test piece of the thermosetting resin film obtained above is placed in this installation location.
  • MCR301 manufactured by Anton Pearl Co., Ltd.
  • the test piece was placed and fixed to the installation location by pressing the measuring jig against the upper surface of the test piece. Next, under the conditions of a temperature of 90 ° C. and a measurement frequency of 1 Hz, the strain generated in the test piece was gradually increased in the range of 0.01% to 1000%, and the storage elastic modulus Gc of the test piece was measured. Then, the X value was calculated from the measured values of Gc1 and Gc300. The results are shown in Table 1.
  • thermosetting resin film ⁇ Measurement of protrusion of thermosetting resin film>
  • a release film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 ⁇ m) in which one side of a polyethylene terephthalate film was peeled by a silicone treatment was used, and the composition (III) obtained above was used on the peeled surface.
  • this thermosetting resin film was processed together with the release film into a circular shape having a diameter of 170 mm to prepare a test piece with the release film.
  • FIG. 7 is a plan view schematically showing a state in which the obtained laminate is viewed from above on the back grind tape side.
  • the test piece 120 thermosetting resin film 12
  • the release film are laminated in this order in these thickness directions. ,It is configured.
  • the release film is removed from the obtained laminate, and the newly generated exposed surface of the test piece (in other words, the surface of the test piece opposite to the side on which the back grind tape is provided) is removed.
  • the test piece was attached to the surface of the silicon wafer by crimping it onto one surface of the silicon wafer having a diameter of 12 inches.
  • the test piece is attached by using a pasting device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation), table temperature 90 ° C., pasting speed 2 mm / sec, pasting pressure 0.5 MPa, roller.
  • the process was carried out while heating the thermosetting resin film under the condition of a sticking height of ⁇ 200 ⁇ m.
  • the maximum value of the length of the line segment connecting two different points on the outer circumference thereof is measured, and the measured value (the line segment) is measured.
  • the amount of protrusion (mm) of the test piece in other words, the thermosetting resin film was calculated by the method described with reference to FIG.
  • the release film is removed, and the surface (exposed surface) of the heat-curable resin film exposed thereby is the bump forming surface of a semiconductor wafer having a diameter of 8 inches and having bumps.
  • the first protective film forming sheet from which the release film was removed was attached to the bump forming surface of the semiconductor wafer.
  • the semiconductor wafer one having a bump height of 210 ⁇ m, a bump width of 250 ⁇ m, and a distance between the bumps of 400 ⁇ m was used.
  • the first protective film forming sheet is attached using a pasting device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation) at a table temperature of 90 ° C., a sticking speed of 2 mm / sec, and a sticking pressure of 0. This was performed while heating the first protective film forming sheet under the conditions of 5.5 MPa and a roller attachment height of ⁇ 200 ⁇ m.
  • a multi-wafer mounter (“RAD-2700 F / 12” manufactured by Lintec Corporation)
  • the first base material, the adhesion layer and the buffer layer were removed from the thermosetting resin film to expose the thermosetting resin film. ..
  • thermosetting resin film on the bump forming surface Using the same semiconductor wafer, a first protective film forming sheet is attached to the bump forming surface in the same manner as in the case of "confirmation of the presence or absence of the remaining thermosetting resin film on the bump", and the thermosetting is performed.
  • the first base material, the adhesion layer and the buffer layer were removed from the sex resin film.
  • the thermosetting resin film attached to the semiconductor wafer was heated in a pressure oven (“RAD-9100” manufactured by Lintec) at a temperature of 130 ° C. for a time of 2 hours and a furnace pressure of 0.5 MPa.
  • the thermosetting resin film was heat-cured by heat treatment.
  • the entire laminate of the cured product (in other words, the first protective film) of the thermosetting resin film and the semiconductor wafer was cured. Observed from the object side. Then, when there is a region where the bump base or the bump forming surface of the semiconductor wafer can be directly confirmed, it is determined that there is a cissing, and the bump base or the bump forming surface of the semiconductor wafer can be directly confirmed. If does not exist, it was determined that there was no repellent.
  • Example 2 Comparative Examples 1 to 3
  • ⁇ Manufacture and evaluation of first protective film forming sheet As shown in Table 1, the types and contents of the components contained in the composition for forming a thermosetting resin film are the types and amounts of the components to be blended during the production of the composition for forming a thermosetting resin film. A first protective film-forming sheet was produced and evaluated in the same manner as in Example 1 except that one or both of the above was changed. The results are shown in Table 1. In addition, the description of "-" in the column of the contained component in Table 1 means that the composition for forming a thermosetting resin film does not contain the component.
  • thermosetting resin film As is clear from the above results, in Examples 1 and 2, the amount of protrusion of the thermosetting resin film was 0 mm (no protrusion of the thermosetting resin film was observed), and the heat at the upper part of the bump was observed. No residual curable resin film was observed. Further, in Examples 1 and 2, no repelling of the thermosetting resin film was observed on the bump forming surface, and the basic characteristics of the thermosetting resin film were good. At the same time, as a result of observing the upper part of the bump, a thermosetting product of the thermosetting resin film was not naturally recognized. In Examples 1 and 2, the X value was 29 to 65.
  • Comparative Example 1 the protrusion of the thermosetting resin film was not suppressed.
  • the X value was 18, which was clearly smaller than that in Examples 1 and 2. This was because Gc1 was too low in Comparative Example 1.
  • Comparative Example 2 repelling of the thermosetting resin film on the bump-forming surface was observed, and the basic characteristics of the thermosetting resin film were inferior.
  • the X value was 10,000 or more, which was clearly larger than that in Examples 1 and 2. This was because Gc300 was too low in Comparative Example 2. In Comparative Example 2, it was impossible to specify because Gc300 was below the detection limit value, and it was only possible to specify that the X value was 10,000 or more.
  • thermosetting resin film remained on the upper part of the bump. At the same time as confirming the presence or absence of repelling of the thermosetting resin film, the upper part of the bump was observed, and as a result, the thermosetting resin film was also found to be thermosetting. In Comparative Example 3, the X value was 18, which was clearly smaller than that in Examples 1 and 2. This was because Gc300 was too high in Comparative Example 3.
  • a test piece (a disk shape having a diameter of 25 mm and a thickness of 1 mm) similar to the test piece of the thermosetting resin film described above was prepared.
  • the strain generated in the test piece of the buffer layer is gradually increased in the range of 0.01% to 1000%, and the storage elastic modulus of the test piece of the buffer layer is increased.
  • Gb was measured.
  • Gb was Gc or more (Gb ⁇ Gc) in the entire range of the strains of 0.01% to 1000%.
  • the present invention can be used for manufacturing a semiconductor chip or the like having a bump on the connection pad portion used in the flip chip connection method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Dicing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Mechanical Engineering (AREA)

Abstract

A resin film which is characterized in that if a test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm is subjected to strain at a temperature of 90°C at a frequency of 1 Hz so as to measure the storage elastic modulus of the test piece, and Gc1 is the storage elastic modulus of the test piece when the strain of the test piece is 1% and Gc300 is the storage elastic modulus of the test piece when the strain of the test piece is 300%, the value of X that is calculated by formula X = Gc1/Gc300 is 19 or more but less than 10,000. A composite sheet which comprises a base material, a buffering layer that is provided on the base material, and the above-described resin film that is provided on the buffering layer.

Description

樹脂フィルム、複合シート、及び半導体装置の製造方法Manufacturing method for resin films, composite sheets, and semiconductor devices
 本発明は、樹脂フィルム、複合シート、及び半導体装置の製造方法に関する。
 本願は、2020年2月27日に日本に出願された特願2020-031717号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for manufacturing a resin film, a composite sheet, and a semiconductor device.
The present application claims priority based on Japanese Patent Application No. 2020-031717 filed in Japan on February 27, 2020, the contents of which are incorporated herein by reference.
 従来、MPUやゲートアレー等に用いる多ピンのLSIパッケージをプリント配線基板に実装する場合には、半導体チップとして、その接続パッド部に共晶ハンダ、高温ハンダ、金等からなる凸状電極(以下、本明細書においては「バンプ」と称する)が形成されたものを用い、所謂フェースダウン方式により、それらのバンプをチップ搭載用基板上の相対応する端子部に対面、接触させ、溶融/拡散接合するフリップチップ実装方法が採用されてきた。 Conventionally, when a multi-pin LSI package used for MPU, gate array, etc. is mounted on a printed wiring board, as a semiconductor chip, a convex electrode made of eutectic solder, high temperature solder, gold, etc. (hereinafter referred to as “convex electrode”) is attached to the connection pad portion. , Referred to as "bumps" in the present specification) are formed, and these bumps are brought into face-to-face contact with the corresponding terminal portions on the chip mounting substrate by a so-called face-down method to melt / diffuse. A flip-chip mounting method for joining has been adopted.
 この実装方法で用いる半導体チップは、例えば、回路面にバンプが形成された半導体ウエハの、回路面(換言するとバンプ形成面)とは反対側の面を研削したり、ダイシングして個片化することにより得られる。このような半導体チップを得る過程においては、通常、半導体ウエハのバンプ形成面及びバンプを保護する目的で、硬化性樹脂フィルムをバンプ形成面に貼付し、このフィルムを硬化させることによって、バンプ形成面に保護膜を形成する。 The semiconductor chip used in this mounting method is, for example, a semiconductor wafer having bumps formed on the circuit surface, and the surface opposite to the circuit surface (in other words, the bump forming surface) is ground or diced to be individualized. Obtained by In the process of obtaining such a semiconductor chip, a curable resin film is usually attached to the bump forming surface and the bump forming surface is cured for the purpose of protecting the bump forming surface and the bump of the semiconductor wafer. A protective film is formed on the surface.
 一方で、半導体装置には、より高い機能を有することが期待され、半導体チップのサイズが拡大する傾向にある。しかし、サイズが拡大された半導体チップは、基板に実装された状態での反りの発生によって、バンプが変形し易く、特に半導体チップの端部やその近傍に位置するバンプにクラックが発生し易い。バンプ形成面に形成された保護膜には、このようなバンプの破損を抑制することも期待される。 On the other hand, semiconductor devices are expected to have higher functions, and the size of semiconductor chips tends to increase. However, in the semiconductor chip whose size has been increased, the bumps are likely to be deformed due to the occurrence of warpage in the state of being mounted on the substrate, and in particular, the bumps located at the end of the semiconductor chip or in the vicinity thereof are likely to be cracked. The protective film formed on the bump-forming surface is also expected to suppress such damage to the bumps.
 半導体ウエハのバンプ形成面における保護膜の形成方法について、図8A~図8Dを参照しながら説明する。
 保護膜の形成には、図8Aに示すような保護膜形成用シート8を用いる。保護膜形成用シート8は、基材81上に緩衝層83及び硬化性樹脂フィルム82がこの順に積層されて、構成されている。緩衝層83は、緩衝層83とこれに隣接する層へ加えられる力に対して、緩衝作用を有する。
A method of forming a protective film on the bump forming surface of the semiconductor wafer will be described with reference to FIGS. 8A to 8D.
A protective film forming sheet 8 as shown in FIG. 8A is used for forming the protective film. The protective film forming sheet 8 is formed by laminating a buffer layer 83 and a curable resin film 82 on a base material 81 in this order. The buffer layer 83 has a buffering action against the force applied to the buffer layer 83 and the layer adjacent thereto.
 まず、保護膜形成用シート8を、その硬化性樹脂フィルム82が半導体ウエハ9のバンプ形成面9aに対向するように配置する。
 次いで、保護膜形成用シート8を半導体ウエハ9に圧着させて、図8Bに示すように、半導体ウエハ9のバンプ形成面9aに、保護膜形成用シート8の硬化性樹脂フィルム82を貼り合わせる。このときの硬化性樹脂フィルム82の貼り合わせは、硬化性樹脂フィルム82を加熱しながら行う。これにより、半導体ウエハ9のバンプ形成面9aと、バンプ91の表面91aには、硬化性樹脂フィルム82が密着するが、バンプ91が硬化性樹脂フィルム82を貫通すれば、バンプ91の表面91aの一部には、緩衝層83も密着する。
 このような硬化性樹脂フィルム82の貼り合わせの後、さらに必要に応じて、半導体ウエハ9のバンプ形成面9aとは反対側の面(裏面)9bを研削した後、半導体ウエハ9の裏面9bに別途、この裏面9bを保護するための保護膜形成用シートを貼付する(図示略)。
First, the protective film forming sheet 8 is arranged so that the curable resin film 82 faces the bump forming surface 9a of the semiconductor wafer 9.
Next, the protective film forming sheet 8 is pressed against the semiconductor wafer 9, and as shown in FIG. 8B, the curable resin film 82 of the protective film forming sheet 8 is attached to the bump forming surface 9a of the semiconductor wafer 9. At this time, the curable resin film 82 is bonded while heating the curable resin film 82. As a result, the curable resin film 82 adheres to the bump forming surface 9a of the semiconductor wafer 9 and the surface 91a of the bump 91, but if the bump 91 penetrates the curable resin film 82, the surface 91a of the bump 91 The buffer layer 83 is also in close contact with the part.
After the curable resin film 82 is bonded, the surface (back surface) 9b of the semiconductor wafer 9 opposite to the bump forming surface 9a is ground, and then on the back surface 9b of the semiconductor wafer 9. Separately, a protective film forming sheet for protecting the back surface 9b is attached (not shown).
 次いで、図8Cに示すように、硬化性樹脂フィルム82から基材81及び緩衝層83を取り除く。
 次いで、硬化性樹脂フィルム82を硬化させて、図8Dに示すように、保護膜82’を形成する。
Then, as shown in FIG. 8C, the base material 81 and the buffer layer 83 are removed from the curable resin film 82.
Next, the curable resin film 82 is cured to form the protective film 82'as shown in FIG. 8D.
 このような保護膜の形成方法では、バンプ91の上部910が保護膜82’を貫通して突出した状態となることが必要である。そのためには、基材81及び緩衝層83を剥離させた段階で、上記のように、バンプ91の上部910が硬化性樹脂フィルム82を貫通して突出しており、バンプ91の上部910に、硬化性樹脂フィルム82が残存していない状態とすることが重要である。これとは逆に、バンプ91の上部910に、硬化性樹脂フィルム82が残存してしまっている状態の一例を図9に示す。ここでは、バンプ91の表面91aの全面が硬化性樹脂フィルム82で被覆されてしまっている例を示しているが、これは硬化性樹脂フィルム82の残存状態の一例であり、例えば、バンプ91の上部910において、表面91aの一部が硬化性樹脂フィルム82によって被覆されずに露出している場合もある。 In such a method of forming the protective film, it is necessary that the upper portion 910 of the bump 91 penetrates the protective film 82'and protrudes. For that purpose, at the stage where the base material 81 and the buffer layer 83 are peeled off, the upper portion 910 of the bump 91 penetrates the curable resin film 82 and protrudes, and is cured on the upper portion 910 of the bump 91 as described above. It is important that the sex resin film 82 does not remain. On the contrary, FIG. 9 shows an example of a state in which the curable resin film 82 remains on the upper portion 910 of the bump 91. Here, an example in which the entire surface 91a of the bump 91 is covered with the curable resin film 82 is shown, but this is an example of the residual state of the curable resin film 82, for example, the bump 91. In the upper part 910, a part of the surface 91a may be exposed without being covered with the curable resin film 82.
 このように、バンプの上部での硬化性樹脂フィルムの残存を伴わずに保護膜を形成可能な保護膜形成用シートとしては、温度90℃、周波数1Hzの条件で、緩衝層に300%のひずみを発生させたときの、緩衝層のせん断弾性率が、同じ条件で硬化性樹脂フィルムに300%のひずみを発生させたときの、硬化性樹脂フィルムのせん断弾性率に対して、同等以上となるように構成された保護膜形成用シートが開示されている(特許文献1参照)。 As described above, the protective film forming sheet capable of forming the protective film without leaving the curable resin film on the upper part of the bump has a strain of 300% on the buffer layer under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz. The shear elasticity of the buffer layer when the above is generated is equal to or higher than the shear elasticity of the curable resin film when a strain of 300% is generated in the curable resin film under the same conditions. A protective film forming sheet configured as described above is disclosed (see Patent Document 1).
日本国特許第6344811号公報Japanese Patent No. 6344811
 一方、先に説明したように、保護膜形成用シート中の硬化性樹脂フィルムを加熱しながら、この硬化性樹脂フィルムによって、保護膜形成用シートを半導体ウエハのバンプ形成面に貼付した段階(例えば、図8Bの段階)では、貼付前の段階よりも、硬化性樹脂フィルムの幅が広がってしまい、硬化性樹脂フィルムが当初の大きさからはみ出してしまうことがある。そして、上記のような、バンプの上部での残存を抑制できる硬化性樹脂フィルムでは、このようなはみ出しが生じ易い。このように硬化性樹脂フィルムのはみ出しが生じると、半導体ウエハ又はこれを分割して得られた半導体チップを取り扱う以降の各工程において、各種装置が、はみ出した硬化性樹脂フィルムの付着によって、汚染されてしまうことがある。そして、従来の保護膜形成用シートには、このような硬化性樹脂フィルムのはみ出しの抑制を考慮されたものがない。 On the other hand, as described above, while heating the curable resin film in the protective film forming sheet, the protective film forming sheet is attached to the bump forming surface of the semiconductor wafer by the curable resin film (for example). At the stage shown in FIG. 8B), the width of the curable resin film is wider than that before the application, and the curable resin film may protrude from the initial size. Then, in the curable resin film capable of suppressing the residual on the upper part of the bump as described above, such protrusion is likely to occur. When the curable resin film protrudes in this way, various devices are contaminated by the adhesion of the curable resin film that protrudes in each subsequent step of handling the semiconductor wafer or the semiconductor chip obtained by dividing the semiconductor wafer. It may end up. And, there is no conventional sheet for forming a protective film in consideration of suppressing the protrusion of such a curable resin film.
 ここまでは、半導体ウエハのバンプ形成面に、硬化性樹脂フィルムを貼付する場合を例に挙げて説明したが、硬化性樹脂フィルムに限定されず、樹脂フィルムには、半導体ウエハのバンプ形成面以外の凹凸面に貼付されることがある。そして、凹凸面の凸部の上部において、バンプの上部の場合と同様に、樹脂フィルムの残存の抑制が求められることがある。これに対して、このような凹凸面への貼付全般で、樹脂フィルムのはみ出しが生じる可能性がある。 Up to this point, the case where the curable resin film is attached to the bump-forming surface of the semiconductor wafer has been described as an example, but the present invention is not limited to the curable resin film, and the resin film includes other than the bump-forming surface of the semiconductor wafer. It may be affixed to the uneven surface of. Then, in the upper part of the convex portion of the uneven surface, it may be required to suppress the residual resin film as in the case of the upper part of the bump. On the other hand, there is a possibility that the resin film may protrude from the resin film in general when it is attached to such an uneven surface.
 本発明は、凹凸面への貼付に適用可能な樹脂フィルムであって、凹凸面への貼付時に、凸部の貫通が可能であり、凸部の上部での残存を抑制でき、当初の大きさからのはみ出しを抑制できる樹脂フィルムと、前記樹脂フィルムの凹凸面への貼付時に用いる、前記樹脂フィルムを備えた複合シートと、を提供することを目的とする。 The present invention is a resin film that can be applied to an uneven surface, and when attached to an uneven surface, the convex portion can be penetrated, the residue on the upper portion of the convex portion can be suppressed, and the initial size. It is an object of the present invention to provide a resin film capable of suppressing protrusion from the resin film and a composite sheet provided with the resin film to be used when the resin film is attached to an uneven surface.
 本発明は、樹脂フィルムであって、温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記樹脂フィルムの試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが1%のときの、前記試験片の貯蔵弾性率をGc1とし、前記試験片のひずみが300%のときの、前記試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満である、樹脂フィルムを提供する。
In the present invention, a test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm is strained under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece is measured. When the strain of the test piece is 1%, the storage elastic modulus of the test piece is Gc1, and when the strain of the test piece is 300%, the storage elastic modulus of the test piece is Gc300. formula:
X = Gc1 / Gc300
Provided is a resin film having an X value calculated by 19 or more and less than 10000.
 本発明の樹脂フィルムは、凹凸面への貼付用であってもよい。
 本発明の樹脂フィルムは、硬化性であってもよい。
The resin film of the present invention may be used for sticking to an uneven surface.
The resin film of the present invention may be curable.
 また、本発明は、基材と、前記基材上に設けられた緩衝層と、前記緩衝層上に設けられた樹脂フィルムと、を備え、前記樹脂フィルムが、上述の本発明の樹脂フィルムである、複合シートを提供する。
 また、本発明は、上述の本発明の複合シート中の、硬化性である前記樹脂フィルムを、半導体ウエハのバンプを有する面に貼付し、前記バンプの頭頂部を前記樹脂フィルムから突出させることにより、前記半導体ウエハに前記複合シートを設ける貼付工程と、前記貼付工程の後に、前記複合シートのうち、前記樹脂フィルム以外の層を、前記樹脂フィルムから取り除く除去工程と、前記除去工程の後に、前記樹脂フィルムを硬化させることにより、第1保護膜を形成する硬化工程と、前記硬化工程の後に、前記半導体ウエハを分割することにより、半導体チップを作製する分割工程と、前記硬化工程の後に、前記第1保護膜を切断する切断工程と、前記分割工程及び切断工程の後に得られた、前記半導体チップと、前記半導体チップのバンプを有する面に設けられた第1保護膜と、を備え、前記バンプの頭頂部が前記第1保護膜から突出している第1保護膜付き半導体チップを、前記バンプの頭頂部において、基板にフリップチップ接続する実装工程と、を有する、半導体装置の製造方法を提供する。
Further, the present invention includes a base material, a cushioning layer provided on the base material, and a resin film provided on the cushioning layer, and the resin film is the above-mentioned resin film of the present invention. There is a composite sheet provided.
Further, in the present invention, the curable resin film in the composite sheet of the present invention described above is attached to a surface of a semiconductor wafer having bumps, and the crown of the bumps is projected from the resin film. After the sticking step of providing the composite sheet on the semiconductor wafer, the removing step of removing the layer other than the resin film from the resin film of the composite sheet, and the removing step, the said step. After the curing step of forming the first protective film by curing the resin film, the dividing step of producing the semiconductor chip by dividing the semiconductor wafer after the curing step, and the curing step, the above-mentioned A cutting step for cutting the first protective film, the semiconductor chip obtained after the dividing step and the cutting step, and a first protective film provided on a surface of the semiconductor chip having bumps are provided. Provided is a method for manufacturing a semiconductor device, comprising a mounting step of flip-chip-connecting a semiconductor chip with a first protective film in which the crown of a bump protrudes from the first protective film to a substrate at the crown of the bump. do.
 本発明によれば、凹凸面への貼付に適用可能な樹脂フィルムであって、凹凸面への貼付時に、凸部の貫通が可能であり、凸部の上部での残存を抑制でき、当初の大きさからのはみ出しを抑制できる樹脂フィルムと、前記樹脂フィルムの凹凸面への貼付時に用いる、前記樹脂フィルムを備えた複合シートと、が提供される。 According to the present invention, it is a resin film that can be applied to an uneven surface, and when attached to an uneven surface, the convex portion can be penetrated, and the residue on the upper portion of the convex portion can be suppressed. Provided are a resin film capable of suppressing protrusion from the size, and a composite sheet provided with the resin film used when the resin film is attached to an uneven surface.
本発明の一実施形態に係る樹脂フィルムの一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the resin film which concerns on one Embodiment of this invention. 樹脂フィルムの平面形状が円形である場合の、樹脂フィルムのはみ出し量を模式的に説明するための平面図である。It is a top view for schematically explaining the amount of protrusion of a resin film when the plane shape of a resin film is circular. 本発明の一実施形態に係る複合シートの一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the composite sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る複合シートの他の例を模式的に示す断面図である。It is sectional drawing which shows typically another example of the composite sheet which concerns on one Embodiment of this invention. 図3に示す複合シートを用いた場合の、半導体装置の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、半導体装置の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、半導体装置の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、半導体装置の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 3 is used. 図4に示す複合シートを用いた場合の、半導体装置の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 4 is used. 図4に示す複合シートを用いた場合の、半導体装置の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 4 is used. 図4に示す複合シートを用いた場合の、半導体装置の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 4 is used. 図4に示す複合シートを用いた場合の、半導体装置の製造方法の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor device when the composite sheet shown in FIG. 4 is used. 実施例1において、熱硬化性樹脂フィルムのはみ出し量の測定時に作製した、熱硬化性樹脂フィルムを含む積層物を、模式的に示す平面図である。FIG. 5 is a plan view schematically showing a laminate containing a thermosetting resin film produced at the time of measuring the amount of protrusion of the thermosetting resin film in Example 1. 半導体ウエハのバンプ形成面における保護膜の形成方法を模式的に説明するための断面図である。It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. 半導体ウエハのバンプ形成面における保護膜の形成方法を模式的に説明するための断面図である。It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. 半導体ウエハのバンプ形成面における保護膜の形成方法を模式的に説明するための断面図である。It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. 半導体ウエハのバンプ形成面における保護膜の形成方法を模式的に説明するための断面図である。It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. バンプの上部に硬化性樹脂フィルムが残存している状態の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the state in which the curable resin film remains on the bump.
◇樹脂フィルム及びその製造方法
 本発明の一実施形態に係る樹脂フィルムは、温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記樹脂フィルムの試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが1%のときの、前記試験片の貯蔵弾性率をGc1とし、前記試験片のひずみが300%のときの、前記試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満となるものである。
-Resin film and its manufacturing method The resin film according to an embodiment of the present invention is prepared by causing strain to be generated in a test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz. The storage elastic modulus of the test piece is measured, and the storage elastic modulus of the test piece is Gc1 when the strain of the test piece is 1%, and the storage of the test piece when the strain of the test piece is 300%. When the elastic modulus is Gc300, the following formula:
X = Gc1 / Gc300
The X value calculated by the above is 19 or more and less than 10000.
 ひずみ分散測定を行う前記試験片は、フィルム状であり、その平面形状は円形である。
 前記試験片は、厚さ1mmの単層の前記樹脂フィルムであってもよいが、作製が容易である点では、厚さ1mm未満の単層の前記樹脂フィルムが複数枚積層されて構成された積層フィルムであることが好ましい。
 前記積層フィルムを構成する複数枚の単層の前記樹脂フィルムの厚さは、すべて同じであってもよいし、すべて異なっていてもよいし、一部のみ同じであってもよいが、作製が容易である点では、すべて同じであることが好ましい。
The test piece for performing strain dispersion measurement is in the form of a film, and its planar shape is circular.
The test piece may be a single-layer resin film having a thickness of 1 mm, but in terms of ease of production, a plurality of single-layer resin films having a thickness of less than 1 mm are laminated. It is preferably a laminated film.
The thicknesses of the plurality of single-layer resin films constituting the laminated film may be the same, all may be different, or only a part may be the same, but the production may be carried out. In terms of ease, they are all preferably the same.
 本明細書においては、前記Gc1及びGc300に限らず、「試験片の貯蔵弾性率」とは、「温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの樹脂フィルムの試験片にひずみを発生させたときの、このひずみに対応した試験片の貯蔵弾性率」を意味する。 In the present specification, the "storage elastic modulus of the test piece" is not limited to the above Gc1 and Gc300, and is "strained into a test piece of a resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz. It means the storage elastic modulus of the test piece corresponding to this strain when the above is generated.
 本実施形態の樹脂フィルムは、例えば、後述するように、基材及び緩衝層と積層することで、複合シートを構成できる。 The resin film of the present embodiment can form a composite sheet by laminating it with a base material and a buffer layer, for example, as will be described later.
 図1は、本発明の一実施形態に係る樹脂フィルムの一例を模式的に示す断面図である。
 なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
FIG. 1 is a cross-sectional view schematically showing an example of a resin film according to an embodiment of the present invention.
In addition, in the figure used in the following description, in order to make it easy to understand the features of the present invention, the main part may be enlarged for convenience, and the dimensional ratio and the like of each component are the same as the actual ones. Is not always the case.
 ここに示す樹脂フィルム12は、その一方の面(本明細書においては、「第1面」と称することがある)12a上に第1剥離フィルム151を備え、前記第1面12aとは反対側の他方の面(本明細書においては、「第2面」と称することがある)12b上に第2剥離フィルム152を備えている。
 このような樹脂フィルム12は、例えば、ロール状として保存するのに好適である。
The resin film 12 shown here has a first release film 151 on one surface (sometimes referred to as a “first surface” in the present specification) 12a, and is on the opposite side to the first surface 12a. A second release film 152 is provided on the other surface (sometimes referred to as "second surface" in the present specification) 12b.
Such a resin film 12 is suitable for storage as a roll, for example.
 樹脂フィルム12の試験片のX値は、19以上10000未満である。 The X value of the test piece of the resin film 12 is 19 or more and less than 10,000.
 第1剥離フィルム151及び第2剥離フィルム152は、いずれも公知のものでよい。
 第1剥離フィルム151及び第2剥離フィルム152は、互いに同じものであってもよいし、例えば、樹脂フィルム12から剥離させるときに必要な剥離力が互いに異なるなど、互いに異なるものであってもよい。
Both the first release film 151 and the second release film 152 may be known.
The first release film 151 and the second release film 152 may be the same as each other, or may be different from each other, for example, the release forces required for peeling from the resin film 12 are different from each other. ..
 図1に示す樹脂フィルム12は、第1剥離フィルム151及び第2剥離フィルム152のいずれか一方が取り除かれ、生じた露出面が、前記凹凸面への貼付面となる。そして、第1剥離フィルム151及び第2剥離フィルム152の残りの他方が取り除かれ、生じた露出面が、後述する複合シートを構成するための他の層(例えば緩衝層等)の貼付面となる。 In the resin film 12 shown in FIG. 1, either the first release film 151 or the second release film 152 is removed, and the resulting exposed surface becomes a surface to be attached to the uneven surface. Then, the other remaining of the first release film 151 and the second release film 152 is removed, and the generated exposed surface becomes a surface to which another layer (for example, a buffer layer) for forming a composite sheet described later is attached. ..
 図1においては、剥離フィルムが樹脂フィルム12の両面(第1面12a、第2面12b)に設けられている例を示しているが、剥離フィルムは、樹脂フィルム12のいずれか一方の面のみ、すなわち、第1面12aのみ、又は第2面12bのみに、設けられていてもよい。 FIG. 1 shows an example in which the release film is provided on both sides (first surface 12a, second surface 12b) of the resin film 12, but the release film is only one surface of the resin film 12. That is, it may be provided only on the first surface 12a or only on the second surface 12b.
 本実施形態の樹脂フィルムは、硬化性であってもよいし、非硬化性であってもよい。例えば、前記樹脂フィルムは、その硬化によって保護膜(例えば、後述する第1保護膜。以下同様。)として機能するものであってもよいし、硬化していない状態で保護膜として機能するものであってもよい。
 硬化性の樹脂フィルムは、熱硬化性及びエネルギー線硬化性のいずれであってもよく、熱硬化性及びエネルギー線硬化性の両方の特性を有していてもよい。
The resin film of the present embodiment may be curable or non-curable. For example, the resin film may function as a protective film (for example, a first protective film described later; the same shall apply hereinafter) by its curing, or may function as a protective film in an uncured state. There may be.
The curable resin film may be either thermosetting or energy ray curable, and may have both thermosetting and energy ray curable properties.
 本実施形態の樹脂フィルムを用いて保護膜を形成する場合には、より保護能が高い保護膜を形成可能である点では、前記樹脂フィルムは硬化性であることが好ましい。 When a protective film is formed using the resin film of the present embodiment, the resin film is preferably curable in that a protective film having a higher protective ability can be formed.
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味する。エネルギー線の例としては、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 また、本明細書において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
 また、「非硬化性」とは、加熱やエネルギー線の照射等、如何なる手段によっても、硬化しない性質を意味する。非硬化性の保護膜形成用フィルムは、目的とする対象物に設けられた(形成された)段階以降、保護膜であるとみなす。
As used herein, the term "energy ray" means an electromagnetic wave or a charged particle beam having an energy quantum. Examples of energy rays include ultraviolet rays, radiation, electron beams and the like. Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet source. The electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
Further, in the present specification, "energy ray curable" means a property of being cured by irradiating with energy rays, and "non-energy ray curable" is a property of not being cured by irradiating with energy rays. Means.
Further, "non-curable" means a property of not being cured by any means such as heating or irradiation with energy rays. A non-curable protective film-forming film is considered to be a protective film after the stage of being provided (formed) on the target object.
 本実施形態の樹脂フィルムは、樹脂成分を含有し、樹脂成分以外の成分を含有していてもよいし、含有していなくてもよい。
 好ましい樹脂フィルムとしては、例えば、樹脂成分と、充填材と、これら(樹脂成分と充填材)のいずれにも該当せず、かつ樹脂フィルムの貯蔵弾性率の調節効果を有する各種添加剤と、を含有するものが挙げられる。
The resin film of the present embodiment contains a resin component and may or may not contain a component other than the resin component.
Preferred resin films include, for example, a resin component, a filler, and various additives that do not correspond to any of these (resin component and filler) and have an effect of adjusting the storage elastic modulus of the resin film. Examples include those contained.
 樹脂フィルムの貯蔵弾性率の調節効果を有する前記添加剤としては、例えば、レオロジーコントロール剤(チキソトロピック剤)、界面活性剤、シリコーンオイル等が挙げられる。 Examples of the additive having an effect of adjusting the storage elastic modulus of the resin film include a rheology control agent (thixotropic agent), a surfactant, and a silicone oil.
 本実施形態の樹脂フィルムは、軟質であり、凹凸面への貼付用として好適である。
 本実施形態の樹脂フィルムを、加熱しながら凹凸面へ貼付したときには、凹凸面の凸部が前記樹脂フィルムを貫通し、前記凸部の上部が前記樹脂フィルムから突出する。そして、軟化した樹脂フィルムは、前記凸部を覆うようにして凸部間に広がり、凹凸面と密着するとともに、凸部の表面、特に凹凸面の近傍部位の表面を覆って、凸部の基部を埋め込む。この状態で、前記凸部の上部においては、樹脂フィルムの残存が抑制される。そして、樹脂フィルムが硬化性である場合には、この状態の樹脂フィルムの硬化物も当然に、前記凸部の上部においては、その付着が抑制される。さらに、この貼付後の樹脂フィルムにおいては、当初の大きさからのはみ出しが抑制されるため、例えば、前記凹凸面からの樹脂フィルムのはみ出しが抑制される。このように、前記樹脂フィルムの残存とはみ出しが抑制される理由は、樹脂フィルムが前記X値の条件(19≦X値<10000)を満たしているためである。
 さらに、前記樹脂フィルムを用いた場合には、前記樹脂フィルム及びその硬化物が前記凹凸面に設けられた状態で、凹凸面の凸部のうち、その上部以外の領域(例えば、凹凸面近傍の基部)、又は、凹凸面の凸部近傍の領域が、意図せずに前記樹脂フィルム及びその硬化物で覆われずに露出してしまうこと、いわゆるハジキが抑制される。このように、前記樹脂フィルムの基本的特性が良好である理由も、樹脂フィルムが前記X値の条件(19≦X値<10000)を満たしているためである。
 このように、本実施形態の樹脂フィルムは、凸部を露出させつつ、樹脂フィルム自体及びその硬化物によって、凹凸面全体を被覆できる点で、極めて優れた特性を有する。
The resin film of the present embodiment is soft and suitable for sticking to an uneven surface.
When the resin film of the present embodiment is attached to the uneven surface while heating, the convex portion of the uneven surface penetrates the resin film, and the upper portion of the convex portion protrudes from the resin film. Then, the softened resin film spreads between the convex portions so as to cover the convex portions, adheres to the uneven surface, and covers the surface of the convex portion, particularly the surface of the portion near the uneven surface, and the base portion of the convex portion. Embed. In this state, the residual resin film is suppressed in the upper part of the convex portion. When the resin film is curable, the cured product of the resin film in this state is naturally suppressed from adhering to the upper part of the convex portion. Further, in the resin film after the sticking, the protrusion from the initial size is suppressed, so that the protrusion of the resin film from the uneven surface is suppressed, for example. As described above, the reason why the residual and protruding of the resin film is suppressed is that the resin film satisfies the condition of the X value (19 ≦ X value <10000).
Further, when the resin film is used, in a state where the resin film and the cured product thereof are provided on the uneven surface, a region other than the upper portion of the convex portion of the uneven surface (for example, in the vicinity of the uneven surface). The base) or the region near the convex portion of the uneven surface is unintentionally exposed without being covered with the resin film and its cured product, that is, so-called repelling is suppressed. As described above, the reason why the basic characteristics of the resin film are good is that the resin film satisfies the condition of the X value (19 ≦ X value <10000).
As described above, the resin film of the present embodiment has extremely excellent characteristics in that the entire uneven surface can be covered with the resin film itself and the cured product thereof while exposing the convex portion.
 本実施形態の樹脂フィルムを凹凸面へ貼付するときの、樹脂フィルムの加熱温度、貼付圧力は、その他の貼付条件に応じて、適宜調節できるが、例えば、後述する半導体ウエハのバンプ形成面への貼付時と、同じとすることができる。 When the resin film of the present embodiment is attached to the uneven surface, the heating temperature and the attachment pressure of the resin film can be appropriately adjusted according to other attachment conditions. It can be the same as when pasted.
 凹凸面の凸部の上部における、樹脂フィルムの残存の有無は、例えば、前記凸部の上部について、SEMの撮像データを取得することにより、確認できる。
 また、前記凹凸面からの樹脂フィルムのはみ出しの有無と、凹凸面上における、樹脂フィルムのハジキの有無は、例えば、前記凹凸面上の該当部位について、SEMの撮像データを取得することにより、確認できる。
Whether or not the resin film remains on the upper portion of the convex portion of the uneven surface can be confirmed, for example, by acquiring SEM imaging data on the upper portion of the convex portion.
Further, the presence or absence of the resin film protruding from the uneven surface and the presence or absence of repelling of the resin film on the uneven surface can be confirmed, for example, by acquiring SEM imaging data for the corresponding portion on the uneven surface. can.
 本実施形態の樹脂フィルムの凹凸面への貼付時には、本実施形態の樹脂フィルムを備えた前記複合シートを用いることができる。複合シートについては、後ほど詳しく説明する。 When the resin film of the present embodiment is attached to the uneven surface, the composite sheet provided with the resin film of the present embodiment can be used. The composite sheet will be described in detail later.
 前記凹凸面を備えた、前記樹脂フィルムの貼付対象物として、より具体的には、例えば、バンプを有する半導体ウエハが挙げられる。
 すなわち、前記樹脂フィルムは、半導体チップへと分割する前の半導体ウエハに対して貼付できる。この場合、前記樹脂フィルムは、半導体ウエハのバンプを有する面に貼付して使用される。
More specifically, a semiconductor wafer having bumps can be mentioned as an object to which the resin film is attached, which has the uneven surface.
That is, the resin film can be attached to the semiconductor wafer before it is divided into semiconductor chips. In this case, the resin film is used by being attached to a surface of a semiconductor wafer having bumps.
 本明細書においては、半導体ウエハ及び半導体チップのいずれにおいても、そのバンプを有する面のことを「バンプ形成面」と称することがある。 In the present specification, in both the semiconductor wafer and the semiconductor chip, the surface having the bump may be referred to as a "bump forming surface".
 このとき、前記樹脂フィルムを加熱しながらバンプ形成面に貼付することで、バンプは樹脂フィルムを貫通し、バンプの頭頂部が前記樹脂フィルムから突出する。そして、軟化した樹脂フィルムは、バンプを覆うようにしてバンプ間に広がり、バンプ形成面と密着するとともに、バンプの表面、特にバンプ形成面の近傍部位の表面を覆って、バンプの基部を埋め込む。この状態で、バンプの頭頂部をはじめとする上部においては、樹脂フィルムの残存が抑制される。そして、樹脂フィルムが硬化性である場合には、この状態の樹脂フィルムの硬化物も当然に、バンプの上部においては、その付着が抑制される。さらに、この貼付後の樹脂フィルムにおいては、当初の大きさからのはみ出しが抑制されるため、例えば、半導体ウエハのバンプ形成面からの樹脂フィルムのはみ出しが抑制される。さらに、前記樹脂フィルムを用いた場合には、前記樹脂フィルム及びその硬化物がバンプ形成面に設けられた状態で、バンプの上部以外の領域、又は、バンプ形成面のバンプ近傍の領域が、意図せずに露出してしまうこと(すなわちハジキ)が抑制される。これらの効果が得られる理由は、上述のとおりである。 At this time, by attaching the resin film to the bump forming surface while heating, the bump penetrates the resin film and the crown of the bump protrudes from the resin film. Then, the softened resin film spreads between the bumps so as to cover the bumps, adheres to the bump forming surface, and covers the surface of the bump, particularly the surface of the portion near the bump forming surface, and embeds the base portion of the bump. In this state, the residual resin film is suppressed in the upper part including the crown of the bump. When the resin film is curable, the cured product of the resin film in this state is naturally suppressed from adhering to the upper part of the bump. Further, in the resin film after the sticking, the protrusion from the initial size is suppressed, so that the protrusion of the resin film from the bump forming surface of the semiconductor wafer is suppressed, for example. Further, when the resin film is used, the region other than the upper part of the bump or the region near the bump on the bump forming surface is intended in a state where the resin film and the cured product thereof are provided on the bump forming surface. It is suppressed that it is exposed without being exposed (that is, repellent). The reason why these effects can be obtained is as described above.
 前記樹脂フィルムが硬化性である場合には、この状態(バンプの基部を埋め込んだ状態)の樹脂フィルムは、この後、硬化によって最終的に第1保護膜を形成し、前記樹脂フィルムが非硬化性である場合には、この状態(バンプの基部を埋め込んだ状態)以降の樹脂フィルムが第1保護膜となる。 When the resin film is curable, the resin film in this state (the state in which the base of the bump is embedded) is then cured to finally form a first protective film, and the resin film is uncured. In the case of sex, the resin film after this state (the state in which the base of the bump is embedded) becomes the first protective film.
 本明細書においては、このように、半導体ウエハ又は半導体チップのバンプ形成面に設けられている保護膜を「第1保護膜」と称する。そして、半導体ウエハ又は半導体チップのバンプ形成面とは反対側の面(すなわち裏面)に設けられている保護膜を「第2保護膜」と称する。 In the present specification, the protective film provided on the bump forming surface of the semiconductor wafer or the semiconductor chip in this way is referred to as a "first protective film". The protective film provided on the surface (that is, the back surface) opposite to the bump forming surface of the semiconductor wafer or semiconductor chip is referred to as a "second protective film".
 樹脂フィルムを凹凸面へ貼付したときなど、貼付対象物へ貼付したときに、樹脂フィルムが当初の大きさからはみ出した場合には、このはみ出している状態の樹脂フィルムを、その上方から見下ろして平面視し、このときの樹脂フィルムの外周上の異なる二点間を結ぶ線分の長さの最大値を求め、さらに、この最大値を示す前記線分と重なる位置での、当初(すなわち、はみ出す前)の樹脂フィルムの幅の値を求め、前記線分の長さの最大値から、前記樹脂フィルムの幅の値を減じることにより、樹脂フィルムのはみ出し量を算出できる。 If the resin film protrudes from its original size when it is attached to an object to be attached, such as when the resin film is attached to an uneven surface, the protruding resin film is viewed from above and is flat. Visually, the maximum value of the length of the line segment connecting two different points on the outer periphery of the resin film at this time is obtained, and further, at the position overlapping with the line segment indicating this maximum value, the initial value (that is, the protrusion) is obtained. The amount of protrusion of the resin film can be calculated by obtaining the value of the width of the resin film (previous) and subtracting the value of the width of the resin film from the maximum value of the length of the line segment.
 図2は、樹脂フィルムの平面形状が円形である場合の、樹脂フィルムのはみ出し量を模式的に説明するための平面図である。
 なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。
FIG. 2 is a plan view for schematically explaining the amount of protrusion of the resin film when the plane shape of the resin film is circular.
In the drawings after FIG. 2, the same components as those shown in the already explained figures are designated by the same reference numerals as in the case of the already explained figures, and detailed description thereof will be omitted.
 ここに示す樹脂フィルム101は、貼付対象物102に貼付された状態で、当初の大きさからはみ出した状態となっている。符号101’で示しているのは、当初の大きさの樹脂フィルムであり、はみ出し量を理解し易くするために、便宜的に示している。当初の樹脂フィルム101’の平面形状は、ここでは円形であるが、はみ出した状態となっている樹脂フィルム101の平面形状は、非円形である。ただし、これは一例であり、はみ出した状態となっている樹脂フィルム101の平面形状は、ここに示すものに限定されない。 The resin film 101 shown here is in a state of being attached to the object to be attached 102 and protruding from the initial size. Reference numeral 101'is a resin film having an initial size, which is shown for convenience in order to make it easier to understand the amount of protrusion. The initial planar shape of the resin film 101'is circular here, but the planar shape of the resin film 101 that is in a protruding state is non-circular. However, this is only an example, and the planar shape of the resin film 101 in the protruding state is not limited to that shown here.
 樹脂フィルム101のはみ出し量を求めるためには、樹脂フィルム101の外周1010上のうちの一点1010aと、これとは異なる他の一点1010bと、の間を結ぶ線分の長さDの最大値を求め、さらに、この最大値を示す前記線分と重なる位置での、当初(すなわち、はみ出す前)の樹脂フィルム101’の幅の値Dを求めればよい。DとDとの差(D-D)が、前記はみ出し量となる。
 樹脂フィルム101における、最大値を示す前記線分は、平面視にて、当初の樹脂フィルム101’における円の中心を通ることがあり、その場合、この最大値を示す前記線分と重なる位置での、当初の樹脂フィルム101’の幅の値は、樹脂フィルム101’の直径となる。
In order to obtain the amount of protrusion of the resin film 101, the maximum value of the length D 1 of the line segment connecting one point 1010a on the outer circumference 1010 of the resin film 101 and another point 1010b different from this point 1010a. , And further, the value D 0 of the width of the initial resin film 101'at the position overlapping with the line segment showing the maximum value (that is, before protruding) may be obtained. The difference between D 1 and D 0 (D 1 − D 0 ) is the amount of protrusion.
The line segment showing the maximum value in the resin film 101 may pass through the center of the circle in the initial resin film 101'in a plan view, and in that case, at a position overlapping the line segment showing the maximum value. The value of the width of the initial resin film 101'is the diameter of the resin film 101'.
 ここでは、図面を参照して、樹脂フィルムの平面形状が円形である場合の、樹脂フィルムのはみ出し量について説明したが、平面形状が円形以外である場合にも、同様の方法で樹脂フィルムのはみ出し量を算出できる。 Here, the amount of protrusion of the resin film when the plane shape of the resin film is circular has been described with reference to the drawings, but when the plane shape is other than circular, the protrusion of the resin film is described in the same manner. The amount can be calculated.
 樹脂フィルムを貼付対象物の凹凸面へ貼付するときには、凹凸面の凸部の上部(貼付対象物がバンプを有する半導体ウエハである場合には、バンプの上部)が樹脂フィルムを貫通して突出しようとする中盤段階と、凸部の上部が樹脂フィルムを貫通して突出した後に、樹脂フィルムが凸部の基部を埋め込む終盤段階とでは、樹脂フィルムのひずみの程度は、大きく異なる。より具体的には、前記中盤段階での樹脂フィルムのひずみは大きく、前記終盤段階での樹脂フィルムのひずみは小さい。
 本実施形態の樹脂フィルムは、そのひずみが小さいときの貯蔵弾性率としてGc1を採用し、そのひずみが大きいときの貯蔵弾性率としてGc300を採用して、Gc1が高く、Gc300が低くなるようにして、X値(=Gc1/Gc300)を特定範囲に規定することにより、先に説明した優れた効果を奏する。
When the resin film is attached to the uneven surface of the object to be attached, the upper part of the convex portion of the uneven surface (or the upper part of the bump if the object to be attached is a semiconductor wafer having bumps) should protrude through the resin film. The degree of distortion of the resin film differs greatly between the middle stage of the process and the final stage in which the resin film embeds the base of the convex portion after the upper portion of the convex portion penetrates the resin film and protrudes. More specifically, the strain of the resin film in the middle stage is large, and the strain of the resin film in the final stage is small.
In the resin film of the present embodiment, Gc1 is adopted as the storage elastic modulus when the strain is small, and Gc300 is adopted as the storage elastic modulus when the strain is large so that Gc1 is high and Gc300 is low. By defining the X value (= Gc1 / Gc300) in a specific range, the excellent effect described above can be obtained.
 前記樹脂フィルムにおいて、X値は、19以上10000未満であればよいが、例えば、X値は、5000以下、2000以下、1000以下、500以下、300以下、100以下、及び70以下のいずれかであってもよい。
 例えば、X値は、19~5000、19~2000、19~1000、19~500、19~300、19~100、及び19~70のいずれかであってもよい。
In the resin film, the X value may be 19 or more and less than 10000, and for example, the X value may be any of 5000 or less, 2000 or less, 1000 or less, 500 or less, 300 or less, 100 or less, and 70 or less. There may be.
For example, the X value may be any of 19 to 5000, 19 to 2000, 19 to 1000, 19 to 500, 19 to 300, 19 to 100, and 19 to 70.
 本実施形態の樹脂フィルムとは異なり、X値が10000以上である他の樹脂フィルムは、凹凸面への貼付によって、凸部の上部が他の樹脂フィルムから突出しても、ハジキの抑制効果が見られず、他の樹脂フィルムの硬化物も、ハジキが生じている状態のままとなる。 Unlike the resin film of the present embodiment, other resin films having an X value of 10,000 or more have an effect of suppressing repelling even if the upper part of the convex portion protrudes from the other resin film by being attached to the uneven surface. The cured product of the other resin film remains in a state where repelling is generated.
 前記樹脂フィルムにおいて、Gc1は、X値が19以上10000未満となる限り、特に限定されない。
 ただし、先に説明したように、凸部の上部において樹脂フィルムの残存が抑制される効果と、樹脂フィルムのはみ出しが抑制される効果と、樹脂フィルム及びその硬化物のハジキが抑制される効果とが、いずれも高い次元で発揮される点では、Gc1は、1×10~1×10Paであることが好ましい。
In the resin film, Gc1 is not particularly limited as long as the X value is 19 or more and less than 10,000.
However, as described above, the effect of suppressing the residual resin film at the upper part of the convex portion, the effect of suppressing the protrusion of the resin film, and the effect of suppressing the repelling of the resin film and its cured product. However, Gc1 is preferably 1 × 10 4 to 1 × 10 6 Pa in that all of them are exhibited at a high level.
 前記樹脂フィルムにおいて、Gc300は、X値が19以上10000未満となる限り、特に限定されない。
 ただし、上記のGc1の場合と同様の理由で、Gc300は、1~5000Paであることが好ましい。
In the resin film, Gc300 is not particularly limited as long as the X value is 19 or more and less than 10,000.
However, for the same reason as in the case of Gc1 described above, Gc300 is preferably 1 to 5000 Pa.
 前記樹脂フィルムにおいては、上述の条件をともに満たすこと、すなわち、Gc1が1×10~1×10Paであり、かつGc300が1~5000Paであることが好ましい。 In the resin film, it is preferable that both of the above conditions are satisfied, that is, Gc1 is 1 × 10 4 to 1 × 10 6 Pa and Gc 300 is 1 to 5000 Pa.
 前記樹脂フィルムの貯蔵弾性率は、Gc1及びGc300の場合に限らず、樹脂フィルムの含有成分の種類又は含有量を調節することで、容易に調節できる。そのためには、樹脂フィルムを形成するための組成物中の含有成分の種類又は含有量を調節すればよい。例えば、後述する熱硬化性樹脂フィルム形成用組成物(III)を用いる場合には、この組成物中の重合体成分(A)、充填材(D)等の、主たる含有成分の種類又は含有量を調節したり、レオロジーコントロール剤、界面活性剤又はシリコーンオイル等の添加剤(I)の種類又は含有量を調節することで、樹脂フィルムの貯蔵弾性率を容易に調節できる。
 例えば、熱硬化性樹脂フィルム及び前記組成物(III)の前記充填材(D)又は添加剤(I)の含有量を増大させると、X値は大きくなり易い。
The storage elastic modulus of the resin film is not limited to the cases of Gc1 and Gc300, and can be easily adjusted by adjusting the type or content of the components contained in the resin film. For that purpose, the type or content of the contained component in the composition for forming the resin film may be adjusted. For example, when the thermosetting resin film forming composition (III) described later is used, the type or content of the main contained components such as the polymer component (A) and the filler (D) in the composition. The storage elastic modulus of the resin film can be easily adjusted by adjusting the type or content of the additive (I) such as a rheology control agent, a surfactant or a silicone oil.
For example, when the content of the filler (D) or the additive (I) of the thermosetting resin film and the composition (III) is increased, the X value tends to increase.
 前記樹脂フィルムが硬化性及び非硬化性のいずれであるかによらず、そして、硬化性である場合には、熱硬化性及びエネルギー線硬化性のいずれであるかによらず、樹脂フィルムは、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよい。樹脂フィルムが複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 Regardless of whether the resin film is curable or non-curable, and if it is curable, whether it is thermosetting or energy ray curable, the resin film is: It may be composed of one layer (single layer), or may be composed of a plurality of layers of two or more layers. When the resin film is composed of a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
 本明細書においては、前記樹脂フィルムの場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよいし、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。 In the present specification, not only in the case of the resin film, but also "a plurality of layers may be the same or different from each other" means "all layers may be the same or all layers are different". It may mean that only a part of the layers may be the same, and further, "a plurality of layers are different from each other" means that "at least one of the constituent materials and the thickness of each layer is different from each other". Means.
 前記樹脂フィルムが硬化性及び非硬化性のいずれであるかによらず、そして、硬化性である場合には、熱硬化性及びエネルギー線硬化性のいずれであるかによらず、前記樹脂フィルムの厚さは、1~100μmであることが好ましく、5~75μmであることがより好ましく、5~50μmであることが特に好ましい。樹脂フィルムの厚さが前記下限値以上であることで、樹脂フィルムが奏する効果が、より高くなる。例えば、樹脂フィルムを用いて保護膜を形成する場合には、保護能がより高い保護膜を形成できる。一方、樹脂フィルムの厚さが前記上限値以下であることで、過剰な厚さとなることが抑制される。
 ここで、「樹脂フィルムの厚さ」とは、樹脂フィルム全体の厚さを意味し、例えば、複数層からなる樹脂フィルムの厚さとは、樹脂フィルムを構成するすべての層の合計の厚さを意味する。
Regardless of whether the resin film is curable or non-curable, and if it is curable, regardless of whether it is thermosetting or energy ray curable, the resin film The thickness is preferably 1 to 100 μm, more preferably 5 to 75 μm, and particularly preferably 5 to 50 μm. When the thickness of the resin film is at least the above lower limit value, the effect of the resin film becomes higher. For example, when a protective film is formed using a resin film, a protective film having a higher protective ability can be formed. On the other hand, when the thickness of the resin film is equal to or less than the upper limit value, it is possible to prevent the resin film from becoming excessively thick.
Here, the "thickness of the resin film" means the thickness of the entire resin film, and for example, the thickness of the resin film composed of a plurality of layers means the total thickness of all the layers constituting the resin film. means.
<<樹脂フィルム形成用組成物>>
 前記樹脂フィルムは、その構成材料を含有する樹脂フィルム形成用組成物を用いて形成できる。例えば、前記樹脂フィルムは、その形成対象面に樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることで、形成できる。樹脂フィルム形成用組成物における、常温で気化しない成分同士の含有量の比率は、通常、樹脂フィルムにおける前記成分同士の含有量の比率と同じとなる。本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
<< Composition for forming a resin film >>
The resin film can be formed by using a resin film forming composition containing the constituent material. For example, the resin film can be formed by applying a resin film forming composition to the surface to be formed and drying it if necessary. The ratio of the contents of the components that do not vaporize at room temperature in the composition for forming a resin film is usually the same as the ratio of the contents of the components in the resin film. In the present specification, "room temperature" means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
 熱硬化性樹脂フィルムは、熱硬化性樹脂フィルム形成用組成物を用いて形成でき、エネルギー線硬化性樹脂フィルムは、エネルギー線硬化性樹脂フィルム形成用組成物を用いて形成でき、非硬化性樹脂フィルムは、非硬化性樹脂フィルム形成用組成物を用いて形成できる。なお、本明細書においては、樹脂フィルムが、熱硬化性及びエネルギー線硬化性の両方の特性を有する場合、その硬化(例えば、保護膜の形成)に対して、樹脂フィルムの熱硬化の寄与が、エネルギー線硬化の寄与よりも大きい場合には、樹脂フィルムを熱硬化性のものとして取り扱う。反対に、その硬化に対して、樹脂フィルムのエネルギー線硬化の寄与が、熱硬化の寄与よりも大きい場合には、樹脂フィルムをエネルギー線硬化性のものとして取り扱う。 The thermosetting resin film can be formed by using a composition for forming a thermosetting resin film, and the energy ray-curable resin film can be formed by using a composition for forming an energy ray-curable resin film, which is a non-curable resin. The film can be formed by using a composition for forming a non-curable resin film. In the present specification, when the resin film has both thermosetting and energy ray curable properties, the contribution of the thermosetting of the resin film to the curing (for example, formation of a protective film) is If it is greater than the contribution of energy ray curing, the resin film is treated as thermosetting. On the contrary, when the contribution of the energy ray curing of the resin film to the curing is larger than the contribution of the thermosetting, the resin film is treated as an energy ray curable one.
 前記樹脂フィルムにおいて、樹脂フィルムの総質量に対する、樹脂フィルムの1種又は2種以上の後述する含有成分の合計含有量の割合は、100質量%を超えない。
 同様に、樹脂フィルム形成用組成物において、樹脂フィルム形成用組成物の総質量に対する、樹脂フィルム形成用組成物の1種又は2種以上の後述する含有成分の合計含有量の割合は、100質量%を超えない。
In the resin film, the ratio of the total content of one or more of the components described below to the total mass of the resin film does not exceed 100% by mass.
Similarly, in the resin film forming composition, the ratio of the total content of one or more of the components described below to the total mass of the resin film forming composition is 100 mass. Does not exceed%.
 樹脂フィルム形成用組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。 The composition for forming a resin film may be coated by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and the like. A method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater can be mentioned.
 前記樹脂フィルムが硬化性及び非硬化性のいずれであるかによらず、そして、硬化性である場合には、熱硬化性及びエネルギー線硬化性のいずれであるかによらず、樹脂フィルム形成用組成物の乾燥条件は、特に限定されない。ただし、樹脂フィルム形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。そして、溶媒を含有する樹脂フィルム形成用組成物は、例えば、70~130℃で10秒~5分の条件で、加熱乾燥させることが好ましい。ただし、熱硬化性樹脂フィルム形成用組成物は、この組成物自体と、この組成物から形成された熱硬化性樹脂フィルムと、が熱硬化しないように、加熱乾燥させることが好ましい。 For forming a resin film regardless of whether the resin film is curable or non-curable, and when it is curable, regardless of whether it is thermosetting or energy ray curable. The drying conditions of the composition are not particularly limited. However, when the composition for forming a resin film contains a solvent described later, it is preferably heat-dried. The resin film-forming composition containing the solvent is preferably heat-dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example. However, the thermosetting resin film forming composition is preferably heat-dried so that the composition itself and the thermosetting resin film formed from the composition are not heat-cured.
 以下、熱硬化性樹脂フィルム及びエネルギー線硬化性樹脂フィルムについて、さらに詳細に説明する。 Hereinafter, the thermosetting resin film and the energy ray-curable resin film will be described in more detail.
◎熱硬化性樹脂フィルム
 熱硬化性樹脂フィルムを硬化させて、硬化物とするとき、特に保護膜を形成するときの硬化条件は、前記硬化物が十分にその機能を発揮する程度の硬化度となる限り、特に限定されず、熱硬化性樹脂フィルムの種類、前記硬化物の用途等に応じて、適宜選択すればよい。
 例えば、保護膜を形成する場合であれば、熱硬化性樹脂フィルムの硬化時の加熱温度は、100~200℃であることが好ましく、110~170℃であることがより好ましく、120~150℃であることが特に好ましい。そして、前記熱硬化時の加熱時間は、0.5~5時間であることが好ましく、0.5~4時間であることがより好ましく、1~3時間であることが特に好ましい。
◎ Thermosetting resin film When the thermosetting resin film is cured to obtain a cured product, the curing conditions when forming a protective film are such that the cured product fully exerts its function. As long as it is not particularly limited, it may be appropriately selected depending on the type of the thermosetting resin film, the use of the cured product, and the like.
For example, in the case of forming a protective film, the heating temperature of the thermosetting resin film at the time of curing is preferably 100 to 200 ° C, more preferably 110 to 170 ° C, and 120 to 150 ° C. Is particularly preferable. The heating time during the thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 4 hours, and particularly preferably 1 to 3 hours.
<熱硬化性樹脂フィルム形成用組成物>
 熱硬化性樹脂フィルム形成用組成物としては、例えば、重合体成分(A)と、熱硬化性成分(B)と、充填材(D)と、添加剤(I)と、を含有する熱硬化性樹脂フィルム形成用組成物(III)(本明細書においては、単に「組成物(III)」と称することがある)等が挙げられる。
<Composition for forming a thermosetting resin film>
The composition for forming a thermosetting resin film includes, for example, a polymer component (A), a thermosetting component (B), a filler (D), and an additive (I). Examples thereof include a composition for forming a sex resin film (III) (in this specification, it may be simply referred to as “composition (III)”).
[重合体成分(A)]
 重合体成分(A)は、熱硬化性樹脂フィルムに造膜性や可撓性等を付与するための重合体化合物である。なお、本明細書において重合体化合物には、重縮合反応の生成物も含まれる。
 組成物(III)及び熱硬化性樹脂フィルムが含有する重合体成分(A)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Polymer component (A)]
The polymer component (A) is a polymer compound for imparting film-forming property, flexibility, etc. to the thermosetting resin film. In addition, in this specification, a polymer compound also includes a product of a polycondensation reaction.
The polymer component (A) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
 重合体成分(A)としては、例えば、ポリビニルアセタール、アクリル樹脂、ウレタン樹脂、フェノキシ樹脂、シリコーン樹脂、飽和ポリエステル樹脂等が挙げられる。
 これらの中でも、重合体成分(A)は、ポリビニルアセタールであることが好ましい。
Examples of the polymer component (A) include polyvinyl acetal, acrylic resin, urethane resin, phenoxy resin, silicone resin, saturated polyester resin and the like.
Among these, the polymer component (A) is preferably polyvinyl acetal.
 重合体成分(A)における前記ポリビニルアセタールとしては、公知のものが挙げられる。
 なかでも、好ましいポリビニルアセタールとしては、例えば、ポリビニルホルマール、ポリビニルブチラール等が挙げられ、ポリビニルブチラールがより好ましい。
 ポリビニルブチラールとしては、下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するものが挙げられる。
Examples of the polyvinyl acetal in the polymer component (A) include known ones.
Among them, preferable polyvinyl acetals include, for example, polyvinyl formal, polyvinyl butyral, and the like, and polyvinyl butyral is more preferable.
Examples of polyvinyl butyral include those having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3.
Figure JPOXMLDOC01-appb-C000001
 (式中、l、m及びnは、それぞれ独立に1以上の整数である。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, l, m, and n are each independently an integer of 1 or more.)
 ポリビニルアセタールの重量平均分子量(Mw)は、5000~200000であることが好ましく、8000~100000であることがより好ましい。ポリビニルアセタールの重量平均分子量がこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果(例えば、熱硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプの上部での熱硬化性樹脂フィルムの残存を抑制する効果。以下、同様。)と、前記凹凸面での熱硬化性樹脂フィルムの当初の大きさからのはみ出しを抑制する効果(例えば、熱硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ形成面での熱硬化性樹脂フィルムの当初の大きさからのはみ出しを抑制する効果。以下、同様。)と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果(例えば、熱硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ形成面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果。以下、同様。)と、がより高くなる。 The weight average molecular weight (Mw) of polyvinyl acetal is preferably 5000 to 200,000, more preferably 8,000 to 100,000. When the weight average molecular weight of polyvinyl acetal is in such a range, when the thermosetting resin film is attached to the uneven surface, the residual thermosetting resin film is suppressed on the upper part of the convex portion of the uneven surface. The effect (for example, the effect of suppressing the residual of the thermosetting resin film on the upper part of the bump when the thermosetting resin film is attached to the bump forming surface; the same applies hereinafter) and the heat on the uneven surface. The effect of suppressing the protrusion of the curable resin film from the initial size (for example, when the thermosetting resin film is attached to the bump forming surface, the initial size of the thermosetting resin film on the bump forming surface). The effect of suppressing protrusion from the surface; the same shall apply hereinafter) and the effect of suppressing repelling of the thermosetting resin film and its cured product on the uneven surface (for example, the thermosetting resin film on the bump forming surface). The effect of suppressing the repelling of the thermosetting resin film and its cured product on the bump-forming surface when affixed to the above; the same shall apply hereinafter) becomes higher.
 なお、本明細書において、「重量平均分子量」とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。 In the present specification, the "weight average molecular weight" is a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
 ポリビニルアセタールのガラス転移温度(Tg)は、40~80℃であることが好ましく、50~70℃であることがより好ましい。ポリビニルアセタールのTgがこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面での熱硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなる。 The glass transition temperature (Tg) of polyvinyl acetal is preferably 40 to 80 ° C, more preferably 50 to 70 ° C. When the Tg of polyvinyl acetal is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of suppressing the residual of the thermosetting resin film on the upper part of the convex portion of the uneven surface is obtained. The effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced.
 ポリビニルアセタールを構成する3種以上のモノマーの比率は任意に選択できる。 The ratio of three or more types of monomers constituting the polyvinyl acetal can be arbitrarily selected.
 重合体成分(A)における前記アクリル樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル樹脂の重量平均分子量(Mw)は、5000~1000000であることが好ましく、8000~800000であることがより好ましい。アクリル樹脂の重量平均分子量がこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面での熱硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなる。
Examples of the acrylic resin in the polymer component (A) include known acrylic polymers.
The weight average molecular weight (Mw) of the acrylic resin is preferably 5000 to 1000000, and more preferably 8000 to 800,000. When the weight average molecular weight of the acrylic resin is in such a range, when the thermosetting resin film is attached to the uneven surface, the residual thermosetting resin film is suppressed on the upper part of the convex portion of the uneven surface. The effect, the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface, and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced.
 アクリル樹脂のガラス転移温度(Tg)は、-50~70℃であることが好ましく、-30~60℃であることがより好ましい。アクリル樹脂のTgがこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面での熱硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなる。 The glass transition temperature (Tg) of the acrylic resin is preferably -50 to 70 ° C, more preferably -30 to 60 ° C. When the Tg of the acrylic resin is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of suppressing the residual of the thermosetting resin film on the upper part of the convex portion of the uneven surface is obtained. The effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced.
 アクリル樹脂が2種以上の構成単位を有する場合には、そのアクリル樹脂のガラス転移温度(Tg)は、Foxの式を用いて算出できる。このとき用いる、前記構成単位を誘導するモノマーのTgとしては、高分子データ・ハンドブック又は粘着ハンドブックに記載されている値を使用できる。 When the acrylic resin has two or more kinds of structural units, the glass transition temperature (Tg) of the acrylic resin can be calculated by using the Fox formula. As the Tg of the monomer for inducing the structural unit used at this time, the value described in the polymer data handbook or the adhesive handbook can be used.
 アクリル樹脂を構成するモノマーは、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The monomer constituting the acrylic resin may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 アクリル樹脂としては、例えば、1種又は2種以上の(メタ)アクリル酸エステルの重合体;
 (メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される2種以上のモノマーの共重合体;
 1種又は2種以上の(メタ)アクリル酸エステルと、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーと、の共重合体等が挙げられる。
As the acrylic resin, for example, a polymer of one kind or two or more kinds of (meth) acrylic acid esters;
Copolymers of two or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like;
One or more (meth) acrylic acid esters, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, etc. Examples thereof include the copolymer of.
 本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語につても同様であり、例えば、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念であり、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念である。 In the present specification, "(meth) acrylic acid" is a concept that includes both "acrylic acid" and "methacrylic acid". The same applies to terms similar to (meth) acrylic acid, for example, "(meth) acrylate" is a concept that includes both "acrylate" and "methacrylate", and is a "(meth) acryloyl group". Is a concept that includes both an "acryloyl group" and a "methacryloyl group".
 アクリル樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。
Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and (meth). N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylate Heptyl, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, Undecyl (meth) acrylate, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecyl (meth) acrylate , (Meta) hexadecyl acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, octadecyl (meth) acrylate (stearyl (meth) acrylate), etc., the alkyl group constituting the alkyl ester is carbon. (Meta) acrylic acid alkyl ester having a chain structure of 1 to 18;
(Meta) Acrylic acid cycloalkyl esters such as (meth) acrylate isobornyl, (meth) acrylate dicyclopentanyl;
(Meta) Acrylic acid aralkyl esters such as benzyl (meth) acrylic acid;
(Meta) Acrylic acid cycloalkenyl ester such as (meth) acrylic acid dicyclopentenyl ester;
(Meta) Acrylic acid cycloalkenyloxyalkyl ester such as (meth) acrylic acid dicyclopentenyloxyethyl ester;
(Meta) acrylate imide;
A glycidyl group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate;
Hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth) ) Hydroxyl-containing (meth) acrylic acid esters such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylate;
Examples thereof include substituted amino group-containing (meth) acrylic acid esters such as N-methylaminoethyl (meth) acrylic acid. Here, the "substituted amino group" means a group in which one or two hydrogen atoms of the amino group are substituted with a group other than the hydrogen atom.
 アクリル樹脂は、ビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル樹脂の前記官能基は、後述する架橋剤(F)を介して他の化合物と結合してもよいし、架橋剤(F)を介さずに他の化合物と直接結合していてもよい。アクリル樹脂が前記官能基により他の化合物と結合することで、例えば、熱硬化性樹脂フィルムを用いて得られたパッケージの信頼性が向上する傾向がある。 The acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group. The functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound without a cross-linking agent (F). When the acrylic resin is bonded to another compound by the functional group, for example, the reliability of the package obtained by using the thermosetting resin film tends to be improved.
 組成物(III)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合(すなわち、熱硬化性樹脂フィルムにおける、熱硬化性樹脂フィルムの総質量に対する、重合体成分(A)の含有量の割合)は、重合体成分(A)の種類によらず、5~25質量%であることが好ましく、5~15質量%であることがより好ましい。 In the composition (III), the ratio of the content of the polymer component (A) to the total content of all the components other than the solvent (that is, the weight of the thermosetting resin film with respect to the total mass of the thermosetting resin film). The content ratio of the coalesced component (A)) is preferably 5 to 25% by mass, more preferably 5 to 15% by mass, regardless of the type of the polymer component (A).
[熱硬化性成分(B)]
 熱硬化性成分(B)は、熱硬化性を有し、熱硬化性樹脂フィルムを熱硬化させて、硬質の硬化物を形成するための成分である。
 組成物(III)及び熱硬化性樹脂フィルムが含有する熱硬化性成分(B)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Thermosetting component (B)]
The thermosetting component (B) is a component for having thermosetting property and heat-curing a thermosetting resin film to form a hard cured product.
The thermosetting component (B) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, or two or more kinds, if they are two or more kinds. The combination and ratio of are arbitrarily selectable.
 熱硬化性成分(B)としては、例えば、エポキシ系熱硬化性樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂等が挙げられる。
 これらの中でも、熱硬化性成分(B)は、エポキシ系熱硬化性樹脂であることが好ましい。
Examples of the thermosetting component (B) include epoxy-based thermosetting resins, polyimide resins, unsaturated polyester resins, and the like.
Among these, the thermosetting component (B) is preferably an epoxy-based thermosetting resin.
(エポキシ系熱硬化性樹脂)
 エポキシ系熱硬化性樹脂は、エポキシ樹脂(B1)及び熱硬化剤(B2)からなる。
 組成物(III)及び熱硬化性樹脂フィルムが含有するエポキシ系熱硬化性樹脂は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Epoxy thermosetting resin)
The epoxy-based thermosetting resin is composed of an epoxy resin (B1) and a thermosetting agent (B2).
The epoxy-based thermosetting resin contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
・エポキシ樹脂(B1)
 エポキシ樹脂(B1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。
・ Epoxy resin (B1)
Examples of the epoxy resin (B1) include known ones, such as polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolac epoxy resin, and dicyclopentadiene type epoxy resin. Biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, and other bifunctional or higher functional epoxy compounds can be mentioned.
 エポキシ樹脂(B1)は、不飽和炭化水素基を有するエポキシ樹脂であってもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、例えば、熱硬化性樹脂フィルムを用いて得られたパッケージの信頼性が向上する傾向がある。 The epoxy resin (B1) may be an epoxy resin having an unsaturated hydrocarbon group. Epoxy resins having unsaturated hydrocarbon groups have higher compatibility with acrylic resins than epoxy resins having no unsaturated hydrocarbon groups. Therefore, by using an epoxy resin having an unsaturated hydrocarbon group, for example, the reliability of a package obtained by using a thermosetting resin film tends to be improved.
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。
 また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。
Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy group of the polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction of (meth) acrylic acid or a derivative thereof.
Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
The unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (vinyl group), a 2-propenyl group (allyl group), a (meth) acryloyl group, and a (meth) group. Examples thereof include an acrylamide group, and an acryloyl group is preferable.
 エポキシ樹脂(B1)の数平均分子量は、特に限定されないが、熱硬化性樹脂フィルムの硬化性、並びに、熱硬化性樹脂フィルムの硬化物(例えば、保護膜)の強度及び耐熱性の点から、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 エポキシ樹脂(B1)のエポキシ当量は、100~1000g/eqであることが好ましく、200~800g/eqであることがより好ましい。
The number average molecular weight of the epoxy resin (B1) is not particularly limited, but from the viewpoint of the curability of the thermosetting resin film and the strength and heat resistance of the cured product (for example, protective film) of the thermosetting resin film. It is preferably 300 to 30,000, more preferably 400 to 10000, and particularly preferably 500 to 3000.
The epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g / eq, more preferably 200 to 800 g / eq.
 エポキシ樹脂(B1)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 As the epoxy resin (B1), one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
・熱硬化剤(B2)
 熱硬化剤(B2)は、エポキシ樹脂(B1)に対する硬化剤として機能する。
 熱硬化剤(B2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
・ Thermosetting agent (B2)
The thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
Examples of the thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with epoxy groups in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group is annealed, and the like, and the phenolic hydroxyl group, an amino group, or an acid group is annealed. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
 熱硬化剤(B2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等が挙げられる。
 熱硬化剤(B2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド(以下、「DICY」と略記することがある)等が挙げられる。
Among the heat-curing agents (B2), examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolak-type phenol resins, dicyclopentadiene-type phenol resins, and aralkyl-type phenol resins. ..
Among the thermosetting agents (B2), examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter, may be abbreviated as "DICY") and the like.
 熱硬化剤(B2)は、不飽和炭化水素基を有していてもよい。
 不飽和炭化水素基を有する熱硬化剤(B2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
 熱硬化剤(B2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。
The thermosetting agent (B2) may have an unsaturated hydrocarbon group.
The thermosetting agent (B2) having an unsaturated hydrocarbon group is, for example, a compound in which a part of the hydroxyl group of the phenol resin is replaced with a group having an unsaturated hydrocarbon group, which is not suitable for the aromatic ring of the phenol resin. Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
The unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
 熱硬化剤(B2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等の樹脂成分の数平均分子量は、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 熱硬化剤(B2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。
Among the thermosetting agents (B2), the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene type phenol resin, and aralkyl type phenol resin is preferably 300 to 30,000. , 400 to 10000 is more preferable, and 500 to 3000 is particularly preferable.
The molecular weight of the non-resin component such as biphenol and dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
 熱硬化剤(B2)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 As the thermosetting agent (B2), one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
 組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化剤(B2)の含有量は、エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましく、例えば、5~150質量部、10~100質量部、及び15~75質量部のいずれかであってもよい。熱硬化剤(B2)の前記含有量が前記下限値以上であることで、熱硬化性樹脂フィルムの硬化がより進行し易くなる。熱硬化剤(B2)の前記含有量が前記上限値以下であることで、熱硬化性樹脂フィルムの吸湿率が低減されて、例えば、熱硬化性樹脂フィルムを用いて得られたパッケージの信頼性がより向上する。 In the composition (III) and the thermosetting resin film, the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1). It is preferably 1 to 200 parts by mass, and may be, for example, any of 5 to 150 parts by mass, 10 to 100 parts by mass, and 15 to 75 parts by mass. When the content of the thermosetting agent (B2) is at least the lower limit value, the curing of the thermosetting resin film is more likely to proceed. When the content of the thermosetting agent (B2) is not more than the upper limit value, the hygroscopicity of the thermosetting resin film is reduced, and for example, the reliability of the package obtained by using the thermosetting resin film is used. Is improved.
 組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化性成分(B)の含有量(例えば、エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量)は、重合体成分(A)の含有量100質量部に対して、600~1000質量部であることが好ましい。熱硬化性成分(B)の前記含有量がこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面での熱硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなり、かつ硬質な硬化物(例えば、保護膜)を形成できる。
 さらに、このような効果がより顕著に得られる点から、熱硬化性成分(B)の含有量は、重合体成分(A)の種類に応じて、適宜調節してもよい。
In the composition (III) and the thermosetting resin film, the content of the thermosetting component (B) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is the polymer component (A). ) Is preferably 600 to 1000 parts by mass with respect to 100 parts by mass. When the content of the thermosetting component (B) is in such a range, when the thermosetting resin film is attached to the uneven surface, the thermosetting resin film is formed on the upper portion of the convex portion of the uneven surface. The effect of suppressing the residual of the thermosetting resin film, the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface, and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface. Is higher, and a hard cured product (for example, a protective film) can be formed.
Further, the content of the thermosetting component (B) may be appropriately adjusted according to the type of the polymer component (A) from the viewpoint that such an effect can be obtained more remarkably.
 例えば、重合体成分(A)が前記ポリビニルアセタールである場合、組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化性成分(B)の含有量は、重合体成分(A)の含有量100質量部に対して、600~1000質量部であることが好ましく、650~1000質量部であることがより好ましく、650~950質量部であることが特に好ましい。 For example, when the polymer component (A) is the polyvinyl acetal, the content of the thermosetting component (B) in the composition (III) and the thermosetting resin film is the content of the polymer component (A). It is preferably 600 to 1000 parts by mass, more preferably 650 to 1000 parts by mass, and particularly preferably 650 to 950 parts by mass with respect to 100 parts by mass.
[充填材(D)]
 組成物(III)及び熱硬化性樹脂フィルム中の充填材(D)の量を調節することで、前記X値をより容易に調節できる。また、組成物(III)及び熱硬化性樹脂フィルム中の充填材(D)の量を調節することで、熱硬化性樹脂フィルムの硬化物(例えば、保護膜)の熱膨張係数を、より容易に調節でき、例えば、保護膜(例えば、第1保護膜)の熱膨張係数を保護膜の形成対象物に対して最適化することで、熱硬化性樹脂フィルムを用いて得られたパッケージの信頼性がより向上する。また、充填材(D)を含有する熱硬化性樹脂フィルムを用いることにより、熱硬化性樹脂フィルムの硬化物(例えば、保護膜)の吸湿率を低減したり、放熱性を向上させたりすることもできる。
[Filler (D)]
By adjusting the amount of the filler (D) in the composition (III) and the thermosetting resin film, the X value can be adjusted more easily. Further, by adjusting the amount of the filler (D) in the composition (III) and the thermosetting resin film, the thermal expansion coefficient of the cured product (for example, the protective film) of the thermosetting resin film can be more easily adjusted. By optimizing the thermal expansion coefficient of the protective film (for example, the first protective film) with respect to the object to be formed of the protective film, the reliability of the package obtained by using the thermosetting resin film can be adjusted. The sex is improved. Further, by using the thermosetting resin film containing the filler (D), the moisture absorption rate of the cured product (for example, the protective film) of the thermosetting resin film can be reduced or the heat dissipation can be improved. You can also.
 充填材(D)は、有機充填材及び無機充填材のいずれであってもよいが、無機充填材であることが好ましい。
 好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましい。
The filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride and the like; spherical beads of these inorganic fillers; surface modification of these inorganic fillers. Goods; Single crystal fibers of these inorganic fillers; Glass fibers and the like.
Among these, the inorganic filler is preferably silica or alumina.
 組成物(III)及び熱硬化性樹脂フィルムが含有する充填材(D)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The filler (D) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
 組成物(III)において、溶媒以外の全ての成分の総含有量に対する充填材(D)の含有量の割合(すなわち、熱硬化性樹脂フィルムにおける、熱硬化性樹脂フィルムの総質量に対する、充填材(D)の含有量の割合)は、5~45質量%であることが好ましく、5~40質量%であることがより好ましく、5~30質量%であることがさらに好ましい。前記割合がこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面での熱硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなるとともに、上記の熱膨張係数を、さらに容易に調節できる。 In the composition (III), the ratio of the content of the filler (D) to the total content of all the components other than the solvent (that is, the filler with respect to the total mass of the thermosetting resin film in the thermosetting resin film). The content ratio of (D)) is preferably 5 to 45% by mass, more preferably 5 to 40% by mass, and even more preferably 5 to 30% by mass. When the ratio is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of suppressing the residual of the thermosetting resin film on the upper portion of the convex portion of the uneven surface and the above-mentioned effect. The effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface become higher, and the above heat The expansion coefficient can be adjusted more easily.
[添加剤(I)]
 組成物(III)及び熱硬化性樹脂フィルム中の添加剤(I)の種類又は量を調節することで、前記X値をより容易に調節できる。
 なかでも、前記X値をより容易に調節できる点で好ましい添加剤(I)としては、例えば、レオロジーコントロール剤、界面活性剤、シリコーンオイル等が挙げられる。
[Additive (I)]
The X value can be adjusted more easily by adjusting the type or amount of the additive (I) in the composition (III) and the thermosetting resin film.
Among them, examples of the additive (I) preferable in that the X value can be adjusted more easily include a rheology control agent, a surfactant, a silicone oil and the like.
 より具体的には、前記レオロジーコントロール剤としては、例えば、ポリヒドロキシカルボン酸エステル、多価カルボン酸、ポリアミド樹脂等が挙げられる。
 前記界面活性剤としては、例えば、変性シロキサン、アクリル重合体等が挙げられる。
 前記シリコーンオイルとしては、例えば、アラルキル変性シリコーンオイル、変性ポリジメチルシロキサン等が挙げられ、変性基としては、アラルキル基;ヒドロキシ基等の極性基;ビニル基、フェニル基等の不飽和結合を有する基が挙げられる。
More specifically, examples of the rheology control agent include polyhydroxycarboxylic acid esters, polyvalent carboxylic acids, and polyamide resins.
Examples of the surfactant include modified siloxane, acrylic polymer and the like.
Examples of the silicone oil include aralkyl-modified silicone oil and modified polydimethylsiloxane, and examples of the modifying group include an aralkyl group; a polar group such as a hydroxy group; and a group having an unsaturated bond such as a vinyl group and a phenyl group. Can be mentioned.
 添加剤(I)としては、上記以外のものとして、例えば、可塑剤、帯電防止剤、酸化防止剤、ゲッタリング剤、紫外線吸収剤、粘着付与剤等の、他の各種汎用添加剤も挙げられる。 Examples of the additive (I) include other general-purpose additives such as a plasticizer, an antistatic agent, an antioxidant, a gettering agent, an ultraviolet absorber, a tackifier, and the like. ..
 組成物(III)及び熱硬化性樹脂フィルムが含有する添加剤(I)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The additive (I) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
 組成物(III)及び熱硬化性樹脂フィルムの添加剤(I)の含有量は、特に限定されず、その種類や目的に応じて、適宜調節できる。
 例えば、前記X値の調節が目的である場合には、組成物(III)において、溶媒以外の全ての成分の総含有量に対する添加剤(I)の含有量の割合(すなわち、熱硬化性樹脂フィルムにおける、熱硬化性樹脂フィルムの総質量に対する、添加剤(I)の含有量の割合)は、0.5~10質量%であることが好ましく、0.5~7質量%であることがより好ましく、0.5~5質量%であることがさらに好ましい。
The contents of the composition (III) and the additive (I) of the thermosetting resin film are not particularly limited, and can be appropriately adjusted according to the type and purpose thereof.
For example, when the purpose is to adjust the X value, the ratio of the content of the additive (I) to the total content of all the components other than the solvent in the composition (III) (that is, the thermosetting resin). The ratio of the content of the additive (I) to the total mass of the thermosetting resin film in the film) is preferably 0.5 to 10% by mass, and preferably 0.5 to 7% by mass. More preferably, it is 0.5 to 5% by mass.
[硬化促進剤(C)]
 組成物(III)及び熱硬化性樹脂フィルムは、硬化促進剤(C)を含有していてもよい。硬化促進剤(C)は、組成物(III)の硬化速度を調整するための成分である。
 好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(1個以上の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(1個以上の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
[Curing accelerator (C)]
The composition (III) and the thermosetting resin film may contain a curing accelerator (C). The curing accelerator (C) is a component for adjusting the curing rate of the composition (III).
Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole. , 2-Phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and other imidazoles (one or more hydrogen atoms other than hydrogen atoms) (Imidazole substituted with an organic group); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (phosphine in which one or more hydrogen atoms are substituted with an organic group); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylborone salts such as tetraphenylborate.
 組成物(III)及び熱硬化性樹脂フィルムが含有する硬化促進剤(C)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The curing accelerator (C) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
 硬化促進剤(C)を用いる場合、組成物(III)及び熱硬化性樹脂フィルムにおいて、硬化促進剤(C)の含有量は、熱硬化性成分(B)の含有量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。硬化促進剤(C)の前記含有量が前記下限値以上であることで、硬化促進剤(C)を用いたことによる効果がより顕著に得られる。硬化促進剤(C)の前記含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(C)が、高温・高湿度条件下で熱硬化性樹脂フィルム中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、例えば、熱硬化性樹脂フィルムを用いて得られたパッケージの信頼性がより向上する。 When the curing accelerator (C) is used, the content of the curing accelerator (C) in the composition (III) and the thermosetting resin film is based on 100 parts by mass of the content of the thermosetting component (B). , 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass. When the content of the curing accelerator (C) is at least the lower limit value, the effect of using the curing accelerator (C) is more remarkable. When the content of the curing accelerator (C) is not more than the upper limit value, for example, the highly polar curing accelerator (C) is adhered to the thermosetting resin film under high temperature and high humidity conditions. The effect of suppressing segregation by moving to the adhesion interface side with and is enhanced, and for example, the reliability of the package obtained by using the thermosetting resin film is further improved.
[カップリング剤(E)]
 組成物(III)及び熱硬化性樹脂フィルムは、カップリング剤(E)を含有していてもよい。カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、熱硬化性樹脂フィルムの被着体に対する接着性及び密着性を向上させることができる。また、カップリング剤(E)を用いることで、熱硬化性樹脂フィルムの硬化物(例えば、保護膜)は、耐熱性を損なうことなく、耐水性が向上する。
[Coupling agent (E)]
The composition (III) and the thermosetting resin film may contain a coupling agent (E). By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesiveness and adhesion of the thermosetting resin film to the adherend can be improved. Further, by using the coupling agent (E), the cured product (for example, protective film) of the thermosetting resin film has improved water resistance without impairing the heat resistance.
 カップリング剤(E)は、重合体成分(A)、熱硬化性成分(B)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。
The coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional groups of the polymer component (A), the thermosetting component (B) and the like, and is preferably a silane coupling agent. More preferred.
Preferred silane coupling agents include, for example, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2-. (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino) Ethylamino) propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyl Examples thereof include dimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and imidazolesilane.
 組成物(III)及び熱硬化性樹脂フィルムが含有するカップリング剤(E)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The coupling agent (E) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
 カップリング剤(E)を用いる場合、組成物(III)及び熱硬化性樹脂フィルムにおいて、カップリング剤(E)の含有量は、重合体成分(A)及び熱硬化性成分(B)の総含有量100質量部に対して、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが特に好ましい。カップリング剤(E)の前記含有量が前記下限値以上であることで、充填材(D)の樹脂への分散性の向上や、熱硬化性樹脂フィルムの被着体との接着性の向上など、カップリング剤(E)を用いたことによる効果がより顕著に得られる。カップリング剤(E)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。 When the coupling agent (E) is used, the content of the coupling agent (E) in the composition (III) and the thermosetting resin film is the total of the polymer component (A) and the thermosetting component (B). The content is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and particularly preferably 0.1 to 5 parts by mass with respect to 100 parts by mass. When the content of the coupling agent (E) is equal to or higher than the lower limit, the dispersibility of the filler (D) in the resin is improved and the adhesiveness of the thermosetting resin film to the adherend is improved. The effect of using the coupling agent (E) is more remarkable. When the content of the coupling agent (E) is not more than the upper limit value, the generation of outgas is further suppressed.
[架橋剤(F)]
 重合体成分(A)として、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、組成物(III)及び熱硬化性樹脂フィルムは、架橋剤(F)を含有していてもよい。架橋剤(F)は、重合体成分(A)中の前記官能基を他の化合物と結合させて架橋するための成分であり、このように架橋することにより、熱硬化性樹脂フィルムの初期接着力及び凝集力を調節できる。
[Crosslinking agent (F)]
When a polymer component (A) having a functional group such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, or an isocyanate group that can be bonded to another compound is used, the composition (III). And the thermosetting resin film may contain a cross-linking agent (F). The cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) with another compound to cross-link, and by cross-linking in this way, the initial adhesion of the thermosetting resin film is performed. The force and cohesive force can be adjusted.
 架橋剤(F)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(金属キレート構造を有する架橋剤)、アジリジン系架橋剤(アジリジニル基を有する架橋剤)等が挙げられる。 Examples of the cross-linking agent (F) include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based cross-linking agent (a cross-linking agent having a metal chelate structure), an aziridine-based cross-linking agent (a cross-linking agent having an aziridinyl group), and the like. Can be mentioned.
 前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、ウレタン結合を有するとともに、分子の末端部にイソシアネート基を有するプレポリマーを意味する。 Examples of the organic polyvalent isocyanate compound include an aromatic polyvalent isocyanate compound, an aliphatic polyhydric isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as "aromatic polyvalent isocyanate compound and the like". (May be abbreviated); trimerics such as the aromatic polyvalent isocyanate compound, isocyanurates and adducts; terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the like with a polyol compound. And so on. The "adduct" includes the aromatic polyhydric isocyanate compound, the aliphatic polyhydric isocyanate compound, or the alicyclic polyvalent isocyanate compound, and low ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, castor oil, and the like. It means a reaction product with a molecularly active hydrogen-containing compound. Examples of the adduct body include a xylylene diisocyanate adduct of trimethylolpropane, which will be described later. Further, the "terminal isocyanate urethane prepolymer" means a prepolymer having a urethane bond and an isocyanate group at the terminal portion of the molecule.
 前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。 More specifically, as the organic polyvalent isocyanate compound, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4. , 4'-diisocyanate; diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Compounds in which one or more of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate are added to all or some hydroxyl groups of a polyol such as propane; lysine diisocyanate and the like can be mentioned.
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。 Examples of the organic polyvalent imine compound include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxyamide), trimethylolpropane-tri-β-aziridinyl propionate, and tetramethylolmethane. Examples thereof include -tri-β-aziridinyl propionate, N, N'-toluene-2,4-bis (1-aziridinecarboxyamide) triethylene melamine and the like.
 架橋剤(F)として有機多価イソシアネート化合物を用いる場合、重合体成分(A)としては、水酸基含有重合体を用いることが好ましい。架橋剤(F)がイソシアネート基を有し、重合体成分(A)が水酸基を有する場合、架橋剤(F)と重合体成分(A)との反応によって、熱硬化性樹脂フィルムに架橋構造を簡便に導入できる。 When an organic multivalent isocyanate compound is used as the cross-linking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A). When the cross-linking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, the reaction between the cross-linking agent (F) and the polymer component (A) causes the thermosetting resin film to have a cross-linked structure. Can be easily introduced.
 組成物(III)及び熱硬化性樹脂フィルムが含有する架橋剤(F)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The cross-linking agent (F) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
 架橋剤(F)を用いる場合、組成物(III)において、架橋剤(F)の含有量は、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが特に好ましい。架橋剤(F)の前記含有量が前記下限値以上であることで、架橋剤(F)を用いたことによる効果がより顕著に得られる。架橋剤(F)の前記含有量が前記上限値以下であることで、架橋剤(F)の過剰使用が抑制される。 When the cross-linking agent (F) is used, the content of the cross-linking agent (F) in the composition (III) is 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). It is preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass. When the content of the cross-linking agent (F) is at least the lower limit value, the effect of using the cross-linking agent (F) is more remarkable. When the content of the cross-linking agent (F) is not more than the upper limit value, the excessive use of the cross-linking agent (F) is suppressed.
[他の成分]
 組成物(III)及び熱硬化性樹脂フィルムは、本発明の効果を損なわない範囲内において、上述の重合体成分(A)と、熱硬化性成分(B)と、充填材(D)と、添加剤(I)と、硬化促進剤(C)と、カップリング剤(E)と、架橋剤(F)と、のいずれにも該当しない、他の成分を含有していてもよい。
 前記他の成分としては、例えば、エネルギー線硬化性樹脂、光重合開始剤等が挙げられる。
[Other ingredients]
The composition (III) and the thermosetting resin film include the above-mentioned polymer component (A), thermosetting component (B), filler (D), and the above-mentioned polymer component (A), and the filler (D), as long as the effects of the present invention are not impaired. It may contain other components that do not correspond to any of the additive (I), the curing accelerator (C), the coupling agent (E), and the cross-linking agent (F).
Examples of the other components include energy ray-curable resins and photopolymerization initiators.
 組成物(III)及び熱硬化性樹脂フィルムが含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 組成物(III)及び熱硬化性樹脂フィルムの前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The other components contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, a combination thereof and The ratio can be selected arbitrarily.
The contents of the composition (III) and the other components of the thermosetting resin film are not particularly limited and may be appropriately selected depending on the intended purpose.
[溶媒]
 組成物(III)は、さらに溶媒を含有することが好ましい。溶媒を含有する組成物(III)は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
 組成物(III)が含有する溶媒は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[solvent]
The composition (III) preferably further contains a solvent. The solvent-containing composition (III) has good handleability.
The solvent is not particularly limited, but preferred ones are, for example, hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples thereof include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
The solvent contained in the composition (III) may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily selected.
 組成物(III)が含有する溶媒で、より好ましいものとしては、例えば、組成物(III)中の含有成分をより均一に混合できる点から、メチルエチルケトン等が挙げられる。 Among the solvents contained in the composition (III), more preferable ones include, for example, methyl ethyl ketone and the like because the components contained in the composition (III) can be mixed more uniformly.
 組成物(III)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。 The content of the solvent in the composition (III) is not particularly limited, and may be appropriately selected depending on the type of the component other than the solvent, for example.
<熱硬化性樹脂フィルム形成用組成物の製造方法>
 組成物(III)等の熱硬化性樹脂フィルム形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<Manufacturing method of composition for forming a thermosetting resin film>
The composition for forming a thermosetting resin film such as the composition (III) can be obtained by blending each component for forming the composition.
The order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
The method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
The temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
◎エネルギー線硬化性樹脂フィルム
 エネルギー線硬化性樹脂フィルムを硬化させて、硬化物とするとき、特に保護膜を形成するときの硬化条件は、前記硬化物が十分にその機能を発揮する程度の硬化度となる限り、特に限定されず、エネルギー線硬化性樹脂フィルムの種類、前記硬化物の用途等に応じて、適宜選択すればよい。
 例えば、保護膜を形成する場合であれば、エネルギー線硬化性樹脂フィルムの硬化時における、エネルギー線の照度は、180~280mW/cmであることが好ましい。そして、前記硬化時における、エネルギー線の光量は、450~1000mJ/cmであることが好ましい。
◎ Energy ray-curable resin film When the energy ray-curable resin film is cured to obtain a cured product, the curing conditions when forming a protective film are such that the cured product fully exerts its function. The degree is not particularly limited, and may be appropriately selected depending on the type of the energy ray-curable resin film, the use of the cured product, and the like.
For example, in the case of forming a protective film, the illuminance of the energy ray at the time of curing the energy ray curable resin film is preferably 180 to 280 mW / cm 2. The amount of light of the energy rays at the time of curing is preferably 450 to 1000 mJ / cm 2.
<エネルギー線硬化性樹脂フィルム形成用組成物>
 エネルギー線硬化性樹脂フィルム形成用組成物としては、例えば、エネルギー線硬化性成分(a)と、充填材と、添加剤と、を含有するエネルギー線硬化性樹脂フィルム形成用組成物(IV)(本明細書においては、単に「組成物(IV)」と称することがある)等が挙げられる。
<Composition for forming an energy ray-curable resin film>
The composition for forming an energy ray-curable resin film includes, for example, an energy ray-curable resin film forming composition (IV) containing an energy ray-curable component (a), a filler, and an additive. In the present specification, it may be simply referred to as "composition (IV)") and the like.
[エネルギー線硬化性成分(a)]
 エネルギー線硬化性成分(a)は、エネルギー線の照射によって硬化する成分であり、エネルギー線硬化性樹脂フィルムに造膜性や、可撓性等を付与するための成分でもある。
 エネルギー線硬化性成分(a)は、未硬化であることが好ましく、粘着性を有することが好ましく、未硬化でかつ粘着性を有することがより好ましい。
[Energy ray curable component (a)]
The energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and is also a component for imparting film-forming property, flexibility, and the like to the energy ray-curable resin film.
The energy ray-curable component (a) is preferably uncured, preferably sticky, and more preferably uncured and sticky.
 エネルギー線硬化性成分(a)としては、例えば、エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)、及びエネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)が挙げられる。前記重合体(a1)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。 Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2000000, and an energy ray-curable group having a molecular weight of 100 to 80,000. The compound (a2) can be mentioned. The polymer (a1) may be at least partially crosslinked by a crosslinking agent or may not be crosslinked.
(エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1))
 エネルギー線硬化性基を有する、重量平均分子量が80000~2000000の重合体(a1)としては、例えば、他の化合物が有する基と反応可能な官能基を有するアクリル重合体(a11)と、前記官能基と反応する基、及びエネルギー線硬化性二重結合等のエネルギー線硬化性基を有するエネルギー線硬化性化合物(a12)と、が重合してなるアクリル樹脂(a1-1)が挙げられる。
(Polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2000000)
Examples of the polymer (a1) having an energy ray-curable group and having a weight average molecular weight of 80,000 to 2000000 include an acrylic polymer (a11) having a functional group capable of reacting with a group of another compound, and the above-mentioned functional group. Examples thereof include an acrylic resin (a1-1) obtained by polymerizing a group that reacts with a group and an energy ray-curable compound (a12) having an energy ray-curable group such as an energy ray-curable double bond.
 他の化合物が有する基と反応可能な前記官能基としては、例えば、水酸基、カルボキシ基、アミノ基、置換アミノ基(アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基)、エポキシ基等が挙げられる。ただし、半導体ウエハや半導体チップ等の回路の腐食を防止するという点では、前記官能基はカルボキシ基以外の基であることが好ましい。
 これらの中でも、前記官能基は、水酸基であることが好ましい。
Examples of the functional group capable of reacting with a group of another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than the hydrogen atom. Group), epoxy group and the like. However, in terms of preventing corrosion of circuits such as semiconductor wafers and semiconductor chips, the functional group is preferably a group other than a carboxy group.
Among these, the functional group is preferably a hydroxyl group.
・官能基を有するアクリル重合体(a11)
 前記官能基を有するアクリル重合体(a11)としては、例えば、前記官能基を有するアクリルモノマーと、前記官能基を有しないアクリルモノマーと、が共重合してなるものが挙げられ、これらモノマー以外に、さらにアクリルモノマー以外のモノマー(非アクリルモノマー)が共重合したものであってもよい。
 また、前記アクリル重合体(a11)は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。
-Acrylic polymer having a functional group (a11)
Examples of the acrylic polymer (a11) having a functional group include those obtained by copolymerizing an acrylic monomer having the functional group and an acrylic monomer having no functional group, and other than these monomers. Further, a monomer other than the acrylic monomer (non-acrylic monomer) may be copolymerized.
Further, the acrylic polymer (a11) may be a random copolymer or a block copolymer.
 前記官能基を有するアクリルモノマーとしては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、置換アミノ基含有モノマー、エポキシ基含有モノマー等が挙げられる。 Examples of the acrylic monomer having a functional group include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
 前記水酸基含有モノマーとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル;ビニルアルコール、アリルアルコール等の非(メタ)アクリル不飽和アルコール((メタ)アクリロイル骨格を有しない不飽和アルコール)等が挙げられる。 Examples of the hydroxyl group-containing monomer include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth). (Meta) hydroxyalkyl acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic unsaturated such as vinyl alcohol and allyl alcohol Examples thereof include alcohol (unsaturated alcohol having no (meth) acrylic skeleton).
 前記カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸(エチレン性不飽和結合を有するモノカルボン酸);フマル酸、イタコン酸、マレイン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸(エチレン性不飽和結合を有するジカルボン酸);前記エチレン性不飽和ジカルボン酸の無水物;2-カルボキシエチルメタクリレート等の(メタ)アクリル酸カルボキシアルキルエステル等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having ethylenically unsaturated bonds) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, and citracon. Ethylene unsaturated dicarboxylic acids such as acids (dicarboxylic acids having ethylenically unsaturated bonds); anhydrides of the ethylenically unsaturated dicarboxylic acids; (meth) acrylic acid carboxyalkyl esters such as 2-carboxyethyl methacrylate and the like. Be done.
 前記官能基を有するアクリルモノマーは、水酸基含有モノマー、カルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。 The acrylic monomer having the functional group is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, and more preferably a hydroxyl group-containing monomer.
 前記アクリル重合体(a11)を構成する、前記官能基を有するアクリルモノマーは、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The acrylic monomer having the functional group constituting the acrylic polymer (a11) may be only one kind, two or more kinds, and when two or more kinds, a combination thereof and The ratio can be selected arbitrarily.
 前記官能基を有しないアクリルモノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル等が挙げられる。 Examples of the acrylic monomer having no functional group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n- (meth) acrylate. Butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (meth) ) 2-Ethylhexyl acrylate, (meth) isooctyl acrylate, (meth) n-octyl acrylate, (meth) n-nonyl acrylate, (meth) isononyl acrylate, (meth) decyl acrylate, (meth) acrylic Undecyl acid, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl acrylate), pentadecyl (meth) acrylate, (meth) Alkyl groups constituting alkyl esters such as hexadecyl acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, and octadecyl (meth) acrylate (stearyl (meth) acrylate) have 1 to 1 to carbon atoms. Examples thereof include (meth) acrylic acid alkyl ester having a chain structure of 18.
 前記官能基を有しないアクリルモノマーとしては、例えば、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル等のアルコキシアルキル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル等を含む、芳香族基を有する(メタ)アクリル酸エステル;非架橋性の(メタ)アクリルアミド及びその誘導体;(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸N,N-ジメチルアミノプロピル等の非架橋性の3級アミノ基を有する(メタ)アクリル酸エステル等も挙げられる。 Examples of the acrylic monomer having no functional group include an alkoxyalkyl group such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate. (Meta) acrylic acid ester; (meth) acrylic acid ester having an aromatic group, including (meth) acrylic acid aryl ester such as (meth) phenyl acrylic acid; non-crosslinkable (meth) acrylamide and its derivatives; Examples thereof include (meth) acrylic acid esters having a non-crosslinkable tertiary amino group such as (meth) acrylic acid N, N-dimethylaminoethyl and (meth) acrylic acid N, N-dimethylaminopropyl.
 前記アクリル重合体(a11)を構成する、前記官能基を有しないアクリルモノマーは、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The acrylic monomer having no functional group constituting the acrylic polymer (a11) may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
 前記非アクリルモノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。
 前記アクリル重合体(a11)を構成する前記非アクリルモノマーは、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
Examples of the non-acrylic monomer include olefins such as ethylene and norbornene; vinyl acetate; and styrene.
The non-acrylic monomer constituting the acrylic polymer (a11) may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and the ratio thereof are arbitrary. You can choose.
 前記アクリル重合体(a11)において、これを構成する構成単位の全量に対する、前記官能基を有するアクリルモノマーから誘導された構成単位の量の割合(含有量)は、0.1~50質量%であることが好ましく、1~40質量%であることがより好ましく、3~30質量%であることが特に好ましい。前記割合がこのような範囲であることで、前記アクリル重合体(a11)と前記エネルギー線硬化性化合物(a12)との共重合によって得られた前記アクリル樹脂(a1-1)において、エネルギー線硬化性基の含有量は、エネルギー線硬化性樹脂フィルムの硬化物(例えば、保護膜)の硬化の程度を好ましい範囲に容易に調節可能となる。 In the acrylic polymer (a11), the ratio (content) of the amount of the structural unit derived from the acrylic monomer having a functional group to the total amount of the structural unit constituting the acrylic polymer (a11) is 0.1 to 50% by mass. It is preferably 1 to 40% by mass, and particularly preferably 3 to 30% by mass. When the ratio is in such a range, the energy ray-curable in the acrylic resin (a1-1) obtained by copolymerization of the acrylic polymer (a11) and the energy ray-curable compound (a12). The content of the sex group makes it possible to easily adjust the degree of curing of the cured product (for example, protective film) of the energy ray-curable resin film within a preferable range.
 前記アクリル樹脂(a1-1)を構成する前記アクリル重合体(a11)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The acrylic polymer (a11) constituting the acrylic resin (a1-1) may be of only one type, may be of two or more types, and when there are two or more types, a combination thereof and The ratio can be selected arbitrarily.
 組成物(IV)において、溶媒以外の成分の総含有量に対する、アクリル樹脂(a1-1)の含有量の割合(すなわち、エネルギー線硬化性樹脂フィルムにおける、前記フィルムの総質量に対する、アクリル樹脂(a1-1)の含有量の割合)は、1~40質量%であることが好ましく、2~30質量%であることがより好ましく、3~20質量%であることが特に好ましい。 In the composition (IV), the ratio of the content of the acrylic resin (a1-1) to the total content of the components other than the solvent (that is, the acrylic resin (that is, the total mass of the film in the energy ray-curable resin film). The content ratio of a1-1)) is preferably 1 to 40% by mass, more preferably 2 to 30% by mass, and particularly preferably 3 to 20% by mass.
・エネルギー線硬化性化合物(a12)
 前記エネルギー線硬化性化合物(a12)は、前記アクリル重合体(a11)が有する官能基と反応可能な基として、イソシアネート基、エポキシ基及びカルボキシ基からなる群より選択される1種又は2種以上を有するものが好ましく、前記基としてイソシアネート基を有するものがより好ましい。前記エネルギー線硬化性化合物(a12)は、例えば、前記基としてイソシアネート基を有する場合、このイソシアネート基が、前記官能基として水酸基を有するアクリル重合体(a11)のこの水酸基と容易に反応する。
-Energy ray curable compound (a12)
The energy ray-curable compound (a12) is one or more selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). It is preferable that the group has an isocyanate group, and more preferably the group has an isocyanate group. When the energy ray-curable compound (a12) has an isocyanate group as the group, for example, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
 前記エネルギー線硬化性化合物(a12)は、1分子中に前記エネルギー線硬化性基を1~5個有することが好ましく、1~2個有することがより好ましい。 The energy ray-curable compound (a12) preferably has 1 to 5 energy ray-curable groups in one molecule, and more preferably 1 to 2 groups.
 前記エネルギー線硬化性化合物(a12)としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;
 ジイソシアネート化合物又はポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;
 ジイソシアネート化合物又はポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物等が挙げられる。
 これらの中でも、前記エネルギー線硬化性化合物(a12)は、2-メタクリロイルオキシエチルイソシアネートであることが好ましい。
Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, and 1,1- (bisacryloyloxymethyl). Ethyl isocyanate;
Acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate;
Examples thereof include an acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound with a polyol compound and a hydroxyethyl (meth) acrylate.
Among these, the energy ray-curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
 前記アクリル樹脂(a1-1)を構成する前記エネルギー線硬化性化合物(a12)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
 前記アクリル樹脂(a1-1)において、前記アクリル重合体(a11)に由来する前記官能基の含有量に対する、前記エネルギー線硬化性化合物(a12)に由来するエネルギー線硬化性基の含有量の割合は、20~120モル%であることが好ましく、35~100モル%であることがより好ましく、50~100モル%であることが特に好ましい。前記含有量の割合がこのような範囲であることで、エネルギー線硬化性樹脂フィルムの硬化物(例えば、保護膜)の接着力がより大きくなる。なお、前記エネルギー線硬化性化合物(a12)が一官能(前記基を1分子中に1個有する)化合物である場合には、前記含有量の割合の上限値は100モル%となるが、前記エネルギー線硬化性化合物(a12)が多官能(前記基を1分子中に2個以上有する)化合物である場合には、前記含有量の割合の上限値は100モル%を超えることがある。 In the acrylic resin (a1-1), the ratio of the content of the energy ray-curable group derived from the energy ray-curable compound (a12) to the content of the functional group derived from the acrylic polymer (a11). Is preferably 20 to 120 mol%, more preferably 35 to 100 mol%, and particularly preferably 50 to 100 mol%. When the content ratio is in such a range, the adhesive force of the cured product (for example, protective film) of the energy ray-curable resin film becomes larger. When the energy ray-curable compound (a12) is a monofunctional compound (having one group in one molecule), the upper limit of the content ratio is 100 mol%. When the energy ray-curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule), the upper limit of the content ratio may exceed 100 mol%.
 前記重合体(a1)の重量平均分子量(Mw)は、100000~2000000であることが好ましく、300000~1500000であることがより好ましい。 The weight average molecular weight (Mw) of the polymer (a1) is preferably 100,000 to 20,000, more preferably 300,000 to 1,500,000.
 前記重合体(a1)が、その少なくとも一部が架橋剤によって架橋されたものである場合、前記重合体(a1)は、前記アクリル重合体(a11)を構成するものとして説明した、上述のモノマーのいずれにも該当せず、かつ架橋剤と反応する基を有するモノマーが重合して、前記架橋剤と反応する基において架橋されたものであってもよいし、前記エネルギー線硬化性化合物(a12)に由来する、前記官能基と反応する基において、架橋されたものであってもよい。 The above-mentioned monomer described as constituting the acrylic polymer (a11) when the polymer (a1) is at least partially crosslinked by a cross-linking agent. A monomer that does not correspond to any of the above and has a group that reacts with the cross-linking agent may be polymerized and cross-linked at the group that reacts with the cross-linking agent, or the energy ray-curable compound (a12). ), Which may be crosslinked in the group that reacts with the functional group.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する前記重合体(a1)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The polymer (a1) contained in the composition (IV) and the energy ray-curable resin film may be only one kind, two or more kinds, or two or more kinds, if they are two or more kinds. The combination and ratio of are arbitrarily selectable.
(エネルギー線硬化性基を有する、分子量が100~80000の化合物(a2))
 エネルギー線硬化性基を有する、分子量が100~80000の化合物(a2)中の前記エネルギー線硬化性基としては、エネルギー線硬化性二重結合を含む基が挙げられ、好ましいものとしては、(メタ)アクリロイル基、ビニル基等が挙げられる。
(Compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000)
Examples of the energy ray-curable group in the compound (a2) having an energy ray-curable group and having a molecular weight of 100 to 80,000 include a group containing an energy ray-curable double bond, and preferred ones are (meth). ) Acryloyl group, vinyl group and the like can be mentioned.
 前記化合物(a2)は、上記の条件を満たすものであれば、特に限定されないが、エネルギー線硬化性基を有する低分子量化合物、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂等が挙げられる。 The compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray-curable group, an epoxy resin having an energy ray-curable group, and an energy ray-curable group. Examples include phenol resin.
 前記化合物(a2)のうち、エネルギー線硬化性基を有する低分子量化合物としては、例えば、多官能のモノマー又はオリゴマー等が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
 前記アクリレート系化合物としては、例えば、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピルメタクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシジエトキシ)フェニル]プロパン、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、2,2-ビス[4-((メタ)アクリロキシポリプロポキシ)フェニル]プロパン、トリシクロデカンジメタノールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、2,2-ビス[4-((メタ)アクリロキシエトキシ)フェニル]プロパン、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン等の2官能(メタ)アクリレート;
 トリス(2-(メタ)アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、エトキシ化グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレート;
 ウレタン(メタ)アクリレートオリゴマー等の多官能(メタ)アクリレートオリゴマー等が挙げられる。
Among the compounds (a2), examples of the low molecular weight compound having an energy ray-curable group include polyfunctional monomers or oligomers, and acrylate compounds having a (meth) acryloyl group are preferable.
Examples of the acrylate-based compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4. -((Meta) acryloxipolyethoxy) phenyl] propane, ethoxylated bisphenol A di (meth) acrylate, 2,2-bis [4-((meth) acryloxidiethoxy) phenyl] propane, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, 2,2-bis [4-((meth) acryloyloxypolypropoxy) phenyl] propane, tricyclodecanedimethanol di (meth) acrylate, 1 , 10-decanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 2,2-bis [4-((Meta) acryloxyethoxy) phenyl] propane, neopentyl glycol di (meth) acrylate, ethoxylated polypropylene glycol di (meth) acrylate, 2-hydroxy-1,3-di (meth) acryloxypropane, etc. Bifunctional (meth) acrylate;
Tris (2- (meth) acryloxyethyl) isocyanurate, ε-caprolactone-modified tris- (2- (meth) acryloxyethyl) isocyanurate, ethoxylated glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, Trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol poly (meth) acrylate, dipentaerythritol hexa ( Polyfunctional (meth) acrylates such as meta) acrylates;
Examples thereof include polyfunctional (meth) acrylate oligomers such as urethane (meth) acrylate oligomers.
 前記化合物(a2)のうち、エネルギー線硬化性基を有するエポキシ樹脂、エネルギー線硬化性基を有するフェノール樹脂としては、例えば、「特開2013-194102号公報」の段落0043等に記載されているものを用いることができる。このような樹脂は、後述する熱硬化性成分を構成する樹脂にも該当するが、本発明においては前記化合物(a2)として取り扱う。 Among the compounds (a2), an epoxy resin having an energy ray-curable group and a phenol resin having an energy ray-curable group are described in, for example, paragraph 0043 of "Japanese Patent Laid-Open No. 2013-194102". Can be used. Such a resin also corresponds to a resin constituting a thermosetting component described later, but is treated as the compound (a2) in the present invention.
 前記化合物(a2)の重量平均分子量は、100~30000であることが好ましく、300~10000であることがより好ましい。 The weight average molecular weight of the compound (a2) is preferably 100 to 30,000, more preferably 300 to 10000.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する前記化合物(a2)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The compound (a2) contained in the composition (IV) and the energy ray-curable resin film may be only one kind, two or more kinds, and when two or more kinds, those compounds. The combination and ratio can be selected arbitrarily.
[エネルギー線硬化性基を有しない重合体(b)]
 組成物(IV)及びエネルギー線硬化性樹脂フィルムは、前記エネルギー線硬化性成分(a)として前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましい。
 前記重合体(b)は、その少なくとも一部が架橋剤によって架橋されたものであってもよいし、架橋されていないものであってもよい。
[Polymer without energy ray-curable group (b)]
When the composition (IV) and the energy ray-curable resin film contain the compound (a2) as the energy ray-curable component (a), they also contain a polymer (b) having no energy ray-curable group. It is preferable to do so.
The polymer (b) may be at least partially crosslinked by a crosslinking agent or may not be crosslinked.
 エネルギー線硬化性基を有しない重合体(b)としては、例えば、アクリル重合体、フェノキシ樹脂、ウレタン樹脂、ポリエステル、ゴム系樹脂、アクリルウレタン樹脂等が挙げられる。
 これらの中でも、前記重合体(b)は、アクリル重合体(以下、「アクリル重合体(b-1)」と略記することがある)であることが好ましい。
Examples of the polymer (b) having no energy ray-curable group include an acrylic polymer, a phenoxy resin, a urethane resin, a polyester, a rubber resin, and an acrylic urethane resin.
Among these, the polymer (b) is preferably an acrylic polymer (hereinafter, may be abbreviated as "acrylic polymer (b-1)").
 アクリル重合体(b-1)は、公知のものでよく、例えば、1種のアクリルモノマーの単独重合体であってもよいし、2種以上のアクリルモノマーの共重合体であってもよいし、1種又は2種以上のアクリルモノマーと、1種又は2種以上のアクリルモノマー以外のモノマー(非アクリルモノマー)と、の共重合体であってもよい。 The acrylic polymer (b-1) may be a known one, and may be, for example, a homopolymer of one kind of acrylic monomer or a copolymer of two or more kinds of acrylic monomers. It may be a copolymer of one or more kinds of acrylic monomers and one or more kinds of monomers other than the acrylic monomers (non-acrylic monomers).
 アクリル重合体(b-1)を構成する前記アクリルモノマーとしては、例えば、(メタ)アクリル酸アルキルエステル、環状骨格を有する(メタ)アクリル酸エステル、グリシジル基含有(メタ)アクリル酸エステル、水酸基含有(メタ)アクリル酸エステル、置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、先に説明したとおりである。 Examples of the acrylic monomer constituting the acrylic polymer (b-1) include (meth) acrylic acid alkyl ester, (meth) acrylic acid ester having a cyclic skeleton, glycidyl group-containing (meth) acrylic acid ester, and hydroxyl group-containing. Examples thereof include (meth) acrylic acid ester and (meth) acrylic acid ester containing a substituted amino group. Here, the "substituted amino group" is as described above.
 前記(メタ)アクリル酸アルキルエステルとしては、例えば、先に説明した、アクリル重合体(a11)を構成する、前記官能基を有しないアクリルモノマー(アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である、(メタ)アクリル酸アルキルエステル等)と同じものが挙げられる。 As the (meth) acrylic acid alkyl ester, for example, the acrylic monomer having no functional group (alkyl group constituting the alkyl ester, which constitutes the acrylic polymer (a11) described above, has one carbon number. The same as (meth) acrylic acid alkyl ester, etc., which has a chain structure of to 18) can be mentioned.
 前記環状骨格を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル等が挙げられる。
Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid isobornyl and (meth) acrylic acid dicyclopentanyl;
(Meta) Acrylic acid aralkyl esters such as benzyl (meth) acrylic acid;
(Meta) Acrylic acid cycloalkenyl ester such as (meth) acrylic acid dicyclopentenyl ester;
Examples thereof include (meth) acrylic acid cycloalkenyloxyalkyl ester such as (meth) acrylic acid dicyclopentenyloxyethyl ester.
 前記グリシジル基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸グリシジル等が挙げられる。
 前記水酸基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等が挙げられる。
 前記置換アミノ基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸N-メチルアミノエチル等が挙げられる。
Examples of the glycidyl group-containing (meth) acrylic acid ester include glycidyl (meth) acrylic acid.
Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxy (meth) acrylate. Examples thereof include propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
Examples of the substituted amino group-containing (meth) acrylic acid ester include N-methylaminoethyl (meth) acrylic acid.
 アクリル重合体(b-1)を構成する前記非アクリルモノマーとしては、例えば、エチレン、ノルボルネン等のオレフィン;酢酸ビニル;スチレン等が挙げられる。 Examples of the non-acrylic monomer constituting the acrylic polymer (b-1) include olefins such as ethylene and norbornene; vinyl acetate; styrene and the like.
 少なくとも一部が架橋剤によって架橋された、前記エネルギー線硬化性基を有しない重合体(b)としては、例えば、前記重合体(b)中の反応性官能基が架橋剤と反応したものが挙げられる。
 前記反応性官能基は、架橋剤の種類等に応じて適宜選択すればよく、特に限定されない。例えば、架橋剤がポリイソシアネート化合物である場合には、前記反応性官能基としては、水酸基、カルボキシ基、アミノ基等が挙げられ、これらの中でも、イソシアネート基との反応性が高い水酸基が好ましい。また、架橋剤がエポキシ系化合物である場合には、前記反応性官能基としては、カルボキシ基、アミノ基、アミド基等が挙げられ、これらの中でもエポキシ基との反応性が高いカルボキシ基が好ましい。ただし、半導体ウエハや半導体チップの回路の腐食を防止するという点では、前記反応性官能基はカルボキシ基以外の基であることが好ましい。
As the polymer (b) having no energy ray-curable group, which is at least partially crosslinked by a cross-linking agent, for example, a polymer (b) in which the reactive functional group in the polymer (b) has reacted with the cross-linking agent is used. Can be mentioned.
The reactive functional group may be appropriately selected depending on the type of the cross-linking agent and the like, and is not particularly limited. For example, when the cross-linking agent is a polyisocyanate compound, examples of the reactive functional group include a hydroxyl group, a carboxy group, an amino group and the like, and among these, a hydroxyl group having high reactivity with an isocyanate group is preferable. When the cross-linking agent is an epoxy compound, examples of the reactive functional group include a carboxy group, an amino group, an amide group and the like, and among these, a carboxy group having high reactivity with an epoxy group is preferable. .. However, in terms of preventing corrosion of circuits of semiconductor wafers and semiconductor chips, the reactive functional group is preferably a group other than a carboxy group.
 前記反応性官能基を有する、エネルギー線硬化性基を有しない重合体(b)としては、例えば、少なくとも前記反応性官能基を有するモノマーを重合させて得られたものが挙げられる。アクリル重合体(b-1)の場合であれば、これを構成するモノマーとして挙げた、前記アクリルモノマー及び非アクリルモノマーのいずれか一方又は両方として、前記反応性官能基を有するものを用いればよい。反応性官能基として水酸基を有する前記重合体(b)としては、例えば、水酸基含有(メタ)アクリル酸エステルを重合して得られたものが挙げられ、これ以外にも、先に挙げた前記アクリルモノマー又は非アクリルモノマーにおいて、1個又は2個以上の水素原子が前記反応性官能基で置換されてなるモノマーを重合して得られたものが挙げられる。 Examples of the polymer (b) having the reactive functional group and not having the energy ray-curable group include those obtained by polymerizing at least the monomer having the reactive functional group. In the case of the acrylic polymer (b-1), one or both of the acrylic monomer and the non-acrylic monomer mentioned as the monomers constituting the acrylic polymer (b-1) may be those having the reactive functional group. .. Examples of the polymer (b) having a hydroxyl group as a reactive functional group include those obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester, and in addition to this, the above-mentioned acrylic. Examples of the monomer or non-acrylic monomer include those obtained by polymerizing a monomer in which one or more hydrogen atoms are substituted with the reactive functional group.
 反応性官能基を有する前記重合体(b)において、これを構成する構成単位の全量に対する、反応性官能基を有するモノマーから誘導された構成単位の量の割合(含有量)は、1~20質量%であることが好ましく、2~10質量%であることがより好ましい。前記割合がこのような範囲であることで、前記重合体(b)において、架橋の程度がより好ましい範囲となる。 In the polymer (b) having a reactive functional group, the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total amount of the structural units constituting the polymer (b) is 1 to 20. It is preferably by mass%, more preferably 2 to 10% by mass. When the ratio is in such a range, the degree of cross-linking in the polymer (b) becomes a more preferable range.
 エネルギー線硬化性基を有しない重合体(b)の重量平均分子量(Mw)は、組成物(IV)の造膜性がより良好となる点から、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。 The weight average molecular weight (Mw) of the polymer (b) having no energy ray-curable group is preferably 10,000 to 2000000, preferably 100,000 to 20000, from the viewpoint of improving the film-forming property of the composition (IV). More preferably, it is 1500,000.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する、エネルギー線硬化性基を有しない重合体(b)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The polymer (b) having no energy ray-curable group contained in the composition (IV) and the energy ray-curable resin film may be only one kind or two or more kinds. When there are two or more types, their combinations and ratios can be arbitrarily selected.
 組成物(IV)としては、前記重合体(a1)及び前記化合物(a2)のいずれか一方又は両方を含有するものが挙げられる。そして、組成物(IV)は、前記化合物(a2)を含有する場合、さらにエネルギー線硬化性基を有しない重合体(b)も含有することが好ましく、この場合、さらに前記(a1)を含有することも好ましい。また、組成物(IV)は、前記化合物(a2)を含有せず、前記重合体(a1)、及びエネルギー線硬化性基を有しない重合体(b)をともに含有していてもよい。 Examples of the composition (IV) include those containing either or both of the polymer (a1) and the compound (a2). When the composition (IV) contains the compound (a2), it preferably also contains a polymer (b) having no energy ray-curable group. In this case, the composition (a1) is further contained. It is also preferable to do so. Further, the composition (IV) may not contain the compound (a2) and may contain both the polymer (a1) and the polymer (b) having no energy ray-curable group.
 組成物(IV)が、前記重合体(a1)、前記化合物(a2)及びエネルギー線硬化性基を有しない重合体(b)を含有する場合、組成物(IV)において、前記化合物(a2)の含有量は、前記重合体(a1)及びエネルギー線硬化性基を有しない重合体(b)の総含有量100質量部に対して、10~400質量部であることが好ましく、30~350質量部であることがより好ましい。 When the composition (IV) contains the polymer (a1), the compound (a2), and the polymer (b) having no energy ray-curable group, in the composition (IV), the compound (a2) The content of is preferably 10 to 400 parts by mass, preferably 30 to 350 parts by mass, based on 100 parts by mass of the total content of the polymer (a1) and the polymer (b) having no energy ray-curable group. More preferably, it is by mass.
 組成物(IV)において、溶媒以外の成分の総含有量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合(すなわち、エネルギー線硬化性樹脂フィルムにおける、前記フィルムの総質量に対する、前記エネルギー線硬化性成分(a)及びエネルギー線硬化性基を有しない重合体(b)の合計含有量の割合)は、5~90質量%であることが好ましく、10~80質量%であることがより好ましく、20~70質量%であることが特に好ましい。前記割合がこのような範囲であることで、エネルギー線硬化性樹脂フィルムのエネルギー線硬化性がより良好となる。 In the composition (IV), the ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total content of the components other than the solvent (that is, energy). The ratio of the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group to the total mass of the film in the ray-curable resin film) is 5 to 90 mass. %, More preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass. When the ratio is in such a range, the energy ray curability of the energy ray curable resin film becomes better.
[充填材]
 組成物(IV)及びエネルギー線硬化性樹脂フィルム中の充填材の量を調節することで、前記X値をより容易に調節できる。また、組成物(IV)及びエネルギー線硬化性樹脂フィルム中の充填材の量を調節することで、エネルギー線硬化性樹脂フィルムの硬化物(例えば、保護膜)の熱膨張係数を、より容易に調節でき、例えば、保護膜(例えば、第1保護膜)の熱膨張係数を保護膜の形成対象物に対して最適化することで、エネルギー線硬化性樹脂フィルムを用いて得られたパッケージの信頼性がより向上する。また、充填材を含有するエネルギー線硬化性樹脂フィルムを用いることにより、エネルギー線硬化性樹脂フィルムの硬化物(例えば、保護膜)の吸湿率を低減したり、放熱性を向上させたりすることもできる。
[Filler]
By adjusting the amount of the filler in the composition (IV) and the energy ray-curable resin film, the X value can be adjusted more easily. Further, by adjusting the amount of the filler in the composition (IV) and the energy ray-curable resin film, the thermal expansion coefficient of the cured product (for example, the protective film) of the energy ray-curable resin film can be more easily adjusted. The reliability of the package obtained using the energy raysetting resin film, which can be adjusted, for example, by optimizing the thermal expansion coefficient of the protective film (for example, the first protective film) with respect to the object to be formed of the protective film. The sex is improved. Further, by using an energy ray-curable resin film containing a filler, it is possible to reduce the moisture absorption rate of a cured product (for example, a protective film) of the energy ray-curable resin film and improve the heat dissipation. can.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する前記充填材は、先に説明した組成物(III)及び熱硬化性樹脂フィルムが含有する充填材(D)と同じである。 The filler contained in the composition (IV) and the energy ray-curable resin film is the same as the filler (D) contained in the composition (III) and the thermosetting resin film described above.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムの充填材の含有の態様は、組成物(III)及び熱硬化性樹脂フィルムの充填材(D)の含有の態様と同様であってよい。 The mode of containing the filler of the composition (IV) and the energy ray-curable resin film may be the same as the mode of containing the filler (D) of the composition (III) and the thermosetting resin film.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する充填材は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The filler contained in the composition (IV) and the energy ray-curable resin film may be only one kind, two or more kinds, and when two or more kinds, a combination and ratio thereof. Can be selected arbitrarily.
 組成物(IV)において、溶媒以外の全ての成分の総含有量に対する充填材の含有量の割合(すなわち、エネルギー線硬化性樹脂フィルムにおける、エネルギー線硬化性樹脂フィルムの総質量に対する、充填材の含有量の割合)は、例えば、5~45質量%であってよい。前記割合がこのような範囲であることで、エネルギー線硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面の凸部の上部でのエネルギー線硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面でのエネルギー線硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、エネルギー線硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなるとともに、上記の熱膨張係数を、さらに容易に調節できる。 In the composition (IV), the ratio of the content of the filler to the total content of all the components other than the solvent (that is, the ratio of the filler to the total mass of the energy ray-curable resin film in the energy ray-curable resin film). The content ratio) may be, for example, 5 to 45% by mass. When the ratio is in such a range, when the energy ray-curable resin film is attached to the uneven surface, the effect of suppressing the residual energy ray-curable resin film on the upper portion of the convex portion of the uneven surface is obtained. The effect of suppressing the protrusion of the energy ray-curable resin film on the uneven surface and the effect of suppressing the repelling of the energy ray-curable resin film and its cured product on the uneven surface are further enhanced. , The above thermal expansion coefficient can be adjusted more easily.
[添加剤]
 組成物(IV)及びエネルギー線硬化性樹脂フィルム中の添加剤の種類又は量を調節することで、前記X値をより容易に調節できる。
[Additive]
The X value can be adjusted more easily by adjusting the type or amount of the additive in the composition (IV) and the energy ray-curable resin film.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する前記添加剤は、先に説明した組成物(III)及び熱硬化性樹脂フィルムが含有する添加剤(I)と同じである。
 例えば、前記X値をより容易に調節できる点で好ましい添加剤としては、レオロジーコントロール剤、界面活性剤、シリコーンオイル等が挙げられる。
The additive contained in the composition (IV) and the energy ray-curable resin film is the same as the additive (I) contained in the composition (III) and the thermosetting resin film described above.
For example, preferable additives in that the X value can be adjusted more easily include rheology control agents, surfactants, silicone oils and the like.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムの添加剤の含有の態様は、組成物(III)及び熱硬化性樹脂フィルムの添加剤(I)の含有の態様と同様であってよい。 The mode of containing the additive of the composition (IV) and the energy ray-curable resin film may be the same as the mode of containing the additive (I) of the composition (III) and the thermosetting resin film.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する添加剤は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The additive contained in the composition (IV) and the energy ray-curable resin film may be only one kind, two or more kinds, and when two or more kinds, a combination and a ratio thereof. Can be selected arbitrarily.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムの添加剤の含有量は、特に限定されず、その種類や目的に応じて、適宜調節できる。
 例えば、前記X値の調節が目的である場合には、組成物(IV)において、溶媒以外の全ての成分の総含有量に対する添加剤の含有量の割合(すなわち、エネルギー線硬化性樹脂フィルムにおける、エネルギー線硬化性樹脂フィルムの総質量に対する、添加剤の含有量の割合)は、例えば、0.5~10質量%であってもよい。
The content of the additive of the composition (IV) and the energy ray-curable resin film is not particularly limited, and can be appropriately adjusted according to the type and purpose thereof.
For example, when the purpose is to adjust the X value, in the composition (IV), the ratio of the content of the additive to the total content of all the components other than the solvent (that is, in the energy ray-curable resin film). , The ratio of the content of the additive to the total mass of the energy ray-curable resin film) may be, for example, 0.5 to 10% by mass.
[他の成分]
 組成物(IV)及びエネルギー線硬化性樹脂フィルムは、本発明の効果を損なわない範囲内において、エネルギー線硬化性成分(a)と、前記充填材と、前記添加剤と、エネルギー線硬化性基を有しない重合体(b)と、のいずれにも該当しない、他の成分を含有していてもよい。
 前記他の成分としては、例えば、熱硬化性成分、光重合開始剤、カップリング剤、架橋剤等が挙げられる。例えば、前記エネルギー線硬化性成分(a)及び熱硬化性成分を含有する組成物(IV)を用いることにより、エネルギー線硬化性樹脂フィルムは、その加熱によって被着体に対する接着力が向上し、このエネルギー線硬化性樹脂フィルムの硬化物(例えば、保護膜)の強度も向上する。
[Other ingredients]
The composition (IV) and the energy ray-curable resin film contain the energy ray-curable component (a), the filler, the additive, and the energy ray-curable group within a range that does not impair the effects of the present invention. It may contain other components which do not correspond to any of the polymer (b) which does not have.
Examples of the other components include thermosetting components, photopolymerization initiators, coupling agents, cross-linking agents and the like. For example, by using the composition (IV) containing the energy ray-curable component (a) and the thermosetting component, the energy ray-curable resin film is improved in adhesive strength to the adherend by its heating. The strength of the cured product (for example, protective film) of this energy ray-curable resin film is also improved.
 組成物(IV)における前記熱硬化性成分、光重合開始剤、カップリング剤及び架橋剤としては、それぞれ、組成物(III)における熱硬化性成分(B)、光重合開始剤、カップリング剤(E)及び架橋剤(F)と同じものが挙げられる。 The thermosetting component, photopolymerization initiator, coupling agent and cross-linking agent in the composition (IV) include the thermosetting component (B), the photopolymerization initiator and the coupling agent in the composition (III), respectively. The same as (E) and the cross-linking agent (F) can be mentioned.
 組成物(IV)及びエネルギー線硬化性樹脂フィルムが含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 組成物(IV)及びエネルギー線硬化性樹脂フィルムの前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The other components contained in the composition (IV) and the energy ray-curable resin film may be only one kind, two or more kinds, and when two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
The contents of the other components of the composition (IV) and the energy ray-curable resin film are not particularly limited and may be appropriately selected depending on the intended purpose.
[溶媒]
 組成物(IV)は、さらに溶媒を含有することが好ましい。溶媒を含有する組成物(IV)は、取り扱い性が良好となる。
 組成物(IV)が含有する溶媒としては、例えば、先に説明した組成物(III)が含有する溶媒と同じものが挙げられる。
 組成物(IV)が含有する溶媒は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 組成物(IV)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。
[solvent]
The composition (IV) preferably further contains a solvent. The composition (IV) containing a solvent has good handleability.
Examples of the solvent contained in the composition (IV) include the same solvents contained in the composition (III) described above.
The solvent contained in the composition (IV) may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
The content of the solvent in the composition (IV) is not particularly limited, and may be appropriately selected depending on the type of the component other than the solvent, for example.
<エネルギー線硬化性樹脂フィルム形成用組成物の製造方法>
 組成物(IV)等のエネルギー線硬化性樹脂フィルム形成用組成物は、これを構成するための各成分を配合することで得られる。
 エネルギー線硬化性樹脂フィルム形成用組成物は、例えば、配合成分の種類が異なる点を除けば、先に説明した熱硬化性樹脂フィルム形成用組成物の場合と同じ方法で製造できる。
<Manufacturing method of composition for forming energy ray-curable resin film>
An energy ray-curable resin film-forming composition such as composition (IV) can be obtained by blending each component for forming the composition.
The energy ray-curable resin film-forming composition can be produced, for example, by the same method as in the case of the thermosetting resin film-forming composition described above, except that the types of compounding components are different.
 本実施形態の好ましい樹脂フィルムの一例としては、樹脂フィルムであって、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記樹脂フィルムの試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが1%のときの、前記試験片の貯蔵弾性率をGc1とし、前記試験片のひずみが300%のときの、前記試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満であり、
 前記樹脂フィルムが、重合体成分(A)、エポキシ樹脂(B1)、熱硬化剤(B2)、充填材(D)及び添加剤(I)を含有する熱硬化性樹脂フィルムであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~25質量%であり、
 前記樹脂フィルムにおける、前記熱硬化剤(B2)の含有量が、前記エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であり、
 前記樹脂フィルムにおける、前記エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量が、前記重合体成分(A)の含有量100質量部に対して、600~1000質量部であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記充填材(D)の含有量の割合が、5~45質量%であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記添加剤(I)の含有量の割合が、0.5~10質量%であり、
 ただし、前記樹脂フィルムにおいて、前記樹脂フィルムの総質量に対する、前記重合体成分(A)、エポキシ樹脂(B1)、熱硬化剤(B2)、充填材(D)及び添加剤(I)の合計含有量の割合は、100質量%を超えない、樹脂フィルムが挙げられる。
An example of a preferable resin film of the present embodiment is a resin film.
Strain was generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece was measured. When the storage elastic modulus of the test piece is Gc1 and the strain of the test piece is 300%, the storage elastic modulus of the test piece is Gc300.
X = Gc1 / Gc300
The X value calculated by is 19 or more and less than 10000.
The resin film is a thermosetting resin film containing a polymer component (A), an epoxy resin (B1), a thermosetting agent (B2), a filler (D), and an additive (I).
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is 5 to 25% by mass.
The content of the thermosetting agent (B2) in the resin film is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1).
The total content of the epoxy resin (B1) and the thermosetting agent (B2) in the resin film is 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
The ratio of the content of the filler (D) to the total mass of the resin film in the resin film is 5 to 45% by mass.
The ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass.
However, in the resin film, the total content of the polymer component (A), the epoxy resin (B1), the heat curing agent (B2), the filler (D) and the additive (I) is contained in the total mass of the resin film. The ratio of the amount does not exceed 100% by mass, and examples thereof include a resin film.
 本実施形態の好ましい樹脂フィルムの他の例としては、樹脂フィルムであって、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記樹脂フィルムの試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが1%のときの、前記試験片の貯蔵弾性率をGc1とし、前記試験片のひずみが300%のときの、前記試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満であり、
 前記樹脂フィルムが、重合体成分(A)、エポキシ樹脂(B1)、熱硬化剤(B2)、充填材(D)及び添加剤(I)を含有する熱硬化性樹脂フィルムであり、
 前記重合体成分(A)がポリビニルアセタールであり、
 前記添加剤(I)が、レオロジーコントロール剤、界面活性剤及びシリコーンオイルからなる群より選択される1種又は2種以上であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~25質量%であり、
 前記樹脂フィルムにおける、前記熱硬化剤(B2)の含有量が、前記エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であり、
 前記樹脂フィルムにおける、前記エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量が、前記重合体成分(A)の含有量100質量部に対して、600~1000質量部であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記充填材(D)の含有量の割合が、5~45質量%であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記添加剤(I)の含有量の割合が、0.5~10質量%であり、
 ただし、前記樹脂フィルムにおいて、前記樹脂フィルムの総質量に対する、前記重合体成分(A)、エポキシ樹脂(B1)、熱硬化剤(B2)、充填材(D)及び添加剤(I)の合計含有量の割合は、100質量%を超えない、樹脂フィルムが挙げられる。
Another example of the preferred resin film of the present embodiment is a resin film.
Strain was generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece was measured. When the storage elastic modulus of the test piece is Gc1 and the strain of the test piece is 300%, the storage elastic modulus of the test piece is Gc300.
X = Gc1 / Gc300
The X value calculated by is 19 or more and less than 10000.
The resin film is a thermosetting resin film containing a polymer component (A), an epoxy resin (B1), a thermosetting agent (B2), a filler (D), and an additive (I).
The polymer component (A) is polyvinyl acetal.
The additive (I) is one or more selected from the group consisting of rheology control agents, surfactants and silicone oils.
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is 5 to 25% by mass.
The content of the thermosetting agent (B2) in the resin film is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1).
The total content of the epoxy resin (B1) and the thermosetting agent (B2) in the resin film is 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
The ratio of the content of the filler (D) to the total mass of the resin film in the resin film is 5 to 45% by mass.
The ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass.
However, in the resin film, the total content of the polymer component (A), the epoxy resin (B1), the heat curing agent (B2), the filler (D) and the additive (I) is contained in the total mass of the resin film. The ratio of the amount does not exceed 100% by mass, and examples thereof include a resin film.
◇複合シート
 本発明の一実施形態に係る複合シートは、基材と、前記基材上に設けられた緩衝層と、前記緩衝層上に設けられた樹脂フィルムと、を備え、前記樹脂フィルムが、上述の本発明の一実施形態に係る樹脂フィルムである。
 本実施形態の複合シートを用いることで、先に説明したように、前記樹脂フィルムを、その貼付対象物の凹凸面に良好に貼付でき、このとき、凹凸面の凸部の上部において、樹脂フィルムの残存が抑制され、樹脂フィルムの当初の大きさ状からのはみ出しが抑制され、凹凸面上において、樹脂フィルム及びその硬化物のハジキが抑制されるという優れた効果が得られる。
◇ Composite sheet The composite sheet according to an embodiment of the present invention includes a base material, a cushioning layer provided on the base material, and a resin film provided on the cushioning layer, and the resin film comprises a base material. , The resin film according to the above-described embodiment of the present invention.
By using the composite sheet of the present embodiment, as described above, the resin film can be satisfactorily attached to the uneven surface of the object to be attached, and at this time, the resin film is formed on the convex portion of the uneven surface. It is possible to obtain an excellent effect that the residue of the resin film is suppressed, the protrusion of the resin film from the initial size is suppressed, and the repelling of the resin film and its cured product is suppressed on the uneven surface.
 なお、本明細書においては、前記樹脂フィルムを前記第1保護膜の形成用として用いる場合には、前記複合シートを「第1保護膜形成用シート」と称し、第1保護膜形成用シート中の前記基材を「第1基材」と称する。
 一方、半導体ウエハ又は半導体チップのバンプ形成面とは反対側の面(裏面)に第2保護膜を設けるためには、第2保護膜を形成するための第2保護膜形成用フィルムを備えて構成された、第2保護膜形成用シートを用いる。第2保護膜形成用シートとしては、例えば、ダイシングシートと、前記ダイシングシート上に設けられた第2保護膜形成用フィルムと、を備えて構成されたものが挙げられる。ダイシングシートが、前記基材と同様のものを備えている場合には、この基材を「第2基材」と称する。
In the present specification, when the resin film is used for forming the first protective film, the composite sheet is referred to as a "first protective film forming sheet" in the first protective film forming sheet. The base material is referred to as a "first base material".
On the other hand, in order to provide the second protective film on the surface (back surface) opposite to the bump forming surface of the semiconductor wafer or semiconductor chip, a second protective film forming film for forming the second protective film is provided. The constructed second protective film forming sheet is used. Examples of the second protective film forming sheet include a dicing sheet and a second protective film forming film provided on the dicing sheet. When the dicing sheet includes the same material as the base material, this base material is referred to as a "second base material".
 図3は、本実施形態の複合シートの一例を模式的に示す断面図である。
 ここに示す複合シート1は、基材11と、基材11上に設けられた緩衝層13と、緩衝層13上(緩衝層13の基材11側とは反対側の上部)に設けられた樹脂フィルム12と、を備えて構成されている。
 すなわち、複合シート1は、基材11、緩衝層13及び樹脂フィルム12がこの順に、これらの厚さ方向において積層されて構成されている。
 符号13aは、緩衝層13の樹脂フィルム12が設けられている側の面(以下、「第1面」と称することがある)を示している。
FIG. 3 is a cross-sectional view schematically showing an example of the composite sheet of the present embodiment.
The composite sheet 1 shown here is provided on the base material 11, the buffer layer 13 provided on the base material 11, and on the buffer layer 13 (the upper portion of the buffer layer 13 opposite to the base material 11 side). It is configured to include a resin film 12.
That is, the composite sheet 1 is configured by laminating the base material 11, the buffer layer 13, and the resin film 12 in this order in the thickness direction.
Reference numeral 13a indicates a surface (hereinafter, may be referred to as “first surface”) of the buffer layer 13 on the side where the resin film 12 is provided.
 図4は、本実施形態の複合シートの他の例を模式的に示す断面図である。
 ここに示す複合シート2は、基材11と緩衝層13との間に、密着層14を備えている(換言すると、基材11上に設けられた密着層14と、密着層14上に設けられた緩衝層13と、を備えている)点以外は、図3に示す複合シート1と同じである。
 すなわち、複合シート2は、基材11、密着層14、緩衝層13及び樹脂フィルム12がこの順に、これらの厚さ方向において積層されて構成されている。
FIG. 4 is a cross-sectional view schematically showing another example of the composite sheet of the present embodiment.
The composite sheet 2 shown here includes an adhesion layer 14 between the base material 11 and the buffer layer 13 (in other words, the adhesion layer 14 provided on the base material 11 and the adhesion layer 14 provided on the adhesion layer 14). It is the same as the composite sheet 1 shown in FIG. 3, except that the buffer layer 13 is provided).
That is, the composite sheet 2 is configured by laminating the base material 11, the adhesion layer 14, the buffer layer 13, and the resin film 12 in this order in the thickness direction.
 本実施形態の複合シートは、図3及び図4に示すものに限定されず、本発明の効果を損なわない範囲内において、図3及び図4に示すものにおいて、一部の構成が変更、削除又は追加されたものであってもよい。
 例えば、本実施形態の複合シートは、基材とは反対側の最表層(図3及び図4に示す複合シートにおいては樹脂フィルム12)上に、剥離フィルムを備えていてもよい。
 次に、本実施形態の複合シートを構成する各層について説明する。
The composite sheet of the present embodiment is not limited to the one shown in FIGS. 3 and 4, and a part of the configurations shown in FIGS. 3 and 4 are changed or deleted within the range not impairing the effect of the present invention. Alternatively, it may be added.
For example, the composite sheet of the present embodiment may include a release film on the outermost layer (resin film 12 in the composite sheet shown in FIGS. 3 and 4) on the opposite side of the base material.
Next, each layer constituting the composite sheet of the present embodiment will be described.
◎基材
 前記基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
 前記樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
◎ Base material The base material is in the form of a sheet or a film, and examples of the constituent material thereof include various resins.
Examples of the resin include polyethylenes such as low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and high-density polyethylene (HDPE); other than polyethylenes such as polypropylene, polybutene, polybutadiene, polymethylpentene, and norbornene resin. Polyethylene; ethylene-based copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as monomer) (Copolymers obtained using); Vinyl chloride-based resins such as polyvinyl chloride and vinyl chloride copolymers (resins obtained using vinyl chloride as a monomer); Polystyrene; Polycycloolefins; Polyethylene terephthalate, polyethylene Polymers such as naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, all aromatic polyesters in which all constituent units have aromatic cyclic groups; co-polymers of two or more of the above polymers. Polymers; poly (meth) acrylic acid esters; polyurethanes; polyurethane acrylates; polyimides; polyamides; polycarbonates; fluororesins; polyacetals; modified polyphenylene oxides; polyphenylene sulfides; polysulfones; polyether ketones and the like.
Further, examples of the resin include polymer alloys such as a mixture of the polyester and other resins. The polymer alloy of the polyester and the resin other than the polyester preferably has a relatively small amount of the resin other than the polyester.
Further, as the resin, for example, a crosslinked resin in which one or more of the resins exemplified above are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resin is also mentioned.
 基材を構成する樹脂は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The resin constituting the base material may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 基材は1層(単層)のみであってもよいし、2層以上の複数層であってもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The base material may be only one layer (single layer), may be a plurality of layers of two or more layers, and when there are a plurality of layers, the plurality of layers may be the same or different from each other. The combination of multiple layers is not particularly limited.
 基材の厚さは、5~1000μmであることが好ましく、10~500μmであることがより好ましく、15~300μmであることがさらに好ましく、20~150μmであることが特に好ましい。
 ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、複数層からなる基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。
The thickness of the base material is preferably 5 to 1000 μm, more preferably 10 to 500 μm, further preferably 15 to 300 μm, and particularly preferably 20 to 150 μm.
Here, the "thickness of the base material" means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material. means.
 基材は、厚さの精度が高いもの、すなわち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような厚さの精度が高い基材を構成するのに使用可能な材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体等が挙げられる。 It is preferable that the base material has a high thickness accuracy, that is, a base material in which the variation in thickness is suppressed regardless of the site. Among the above-mentioned constituent materials, as a material that can be used to construct a base material having such a high accuracy of thickness, for example, polyethylene, polyolefin other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer and the like are used. Can be mentioned.
 基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。 In addition to the main constituent materials such as the resin, the base material contains various known additives such as fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and softeners (plasticizers). You may.
 基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、他の層が蒸着されていてもよい。
 前記樹脂フィルムがエネルギー線硬化性である場合、基材はエネルギー線を透過させるものが好ましい。
The base material may be transparent, opaque, colored depending on the purpose, or another layer may be vapor-deposited.
When the resin film is energy ray curable, the base material is preferably one that allows energy rays to pass through.
 基材は、公知の方法で製造できる。例えば、樹脂を含有する基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。 The base material can be produced by a known method. For example, a base material containing a resin can be produced by molding a resin composition containing the resin.
◎緩衝層
 緩衝層は、緩衝層とこれに隣接する層へ加えられる力に対して、緩衝作用を有する。ここで「緩衝層と隣接する層」とは、主に前記樹脂フィルムと、その硬化物に相当する層(例えば、第1保護膜等の保護膜)である。
◎ Buffer layer The buffer layer has a buffering action against the force applied to the buffer layer and the layer adjacent thereto. Here, the "layer adjacent to the buffer layer" is mainly the resin film and a layer corresponding to a cured product thereof (for example, a protective film such as a first protective film).
 緩衝層の構成材料は、特に限定されない。 The constituent material of the buffer layer is not particularly limited.
 好ましい緩衝層としては、例えば、ウレタン(メタ)アクリレート等を含有するものが挙げられる。 As a preferable buffer layer, for example, one containing urethane (meth) acrylate or the like can be mentioned.
 上述の前記樹脂フィルムの場合と同様に、温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの緩衝層の試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが300%のときの、前記試験片の貯蔵弾性率をGb300としたとき、Gb300はGc300以上(Gb300≧Gc300)であることが好ましい。このような条件を満たす前記複合シートを用いて、前記樹脂フィルムを凹凸面へ貼付することにより、凹凸面の凸部(例えば、半導体ウエハのバンプ)の上部が、より容易に樹脂フィルムを貫通する。 Similar to the case of the resin film described above, the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm is strained under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece is measured. When the strain of the test piece is 300% and the storage elastic modulus of the test piece is Gb300, Gb300 is preferably Gc300 or more (Gb300 ≧ Gc300). By attaching the resin film to the uneven surface using the composite sheet satisfying such conditions, the upper portion of the convex portion (for example, the bump of the semiconductor wafer) of the uneven surface penetrates the resin film more easily. ..
 上述のように、緩衝層の試験片に0.01%~1000%の範囲でひずみを発生させて、前記試験片の貯蔵弾性率Gbを測定し、前記樹脂フィルムの試験片に0.01%~1000%の範囲でひずみを発生させて、前記試験片の貯蔵弾性率Gcを測定し、ひずみが同じである場合のGbとGcを比較したとき、ひずみが0.01%~1000%のすべての範囲で、GbはGc以上(Gb≧Gc)であることがより好ましく、ひずみが10%~1000%のすべての範囲で、GbはGc以上であることがさらに好ましい。このような条件を満たす前記複合シートを用いて、前記樹脂フィルムを凹凸面へ貼付することにより、凹凸面の凸部(例えば、半導体ウエハのバンプ)の上部が、さらに容易に樹脂フィルムを貫通する。 As described above, the test piece of the buffer layer is strained in the range of 0.01% to 1000%, the storage elastic modulus Gb of the test piece is measured, and the test piece of the resin film is 0.01%. When strain is generated in the range of ~ 1000%, the storage elastic modulus Gc of the test piece is measured, and Gb and Gc when the strain is the same are compared, the strain is all 0.01% to 1000%. In the range of, Gb is more preferably Gc or more (Gb ≧ Gc), and in all ranges of strain of 10% to 1000%, Gb is more preferably Gc or more. By attaching the resin film to the uneven surface using the composite sheet satisfying such conditions, the upper portion of the convex portion (for example, the bump of the semiconductor wafer) of the uneven surface penetrates the resin film more easily. ..
 緩衝層は1層(単層)のみであってもよいし、2層以上の複数層であってもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The buffer layer may be only one layer (single layer), may be two or more layers, and when there are a plurality of layers, these multiple layers may be the same or different from each other. The combination of multiple layers is not particularly limited.
 緩衝層の厚さは、150~1000μmであることが好ましく、150~800μmであることがより好ましく、200~600μmであることがさらに好ましく、250~500μmであることが特に好ましい。
 ここで、「緩衝層の厚さ」とは、緩衝層全体の厚さを意味し、例えば、複数層からなる緩衝層の厚さとは、緩衝層を構成するすべての層の合計の厚さを意味する。
The thickness of the buffer layer is preferably 150 to 1000 μm, more preferably 150 to 800 μm, further preferably 200 to 600 μm, and particularly preferably 250 to 500 μm.
Here, the "thickness of the buffer layer" means the thickness of the entire buffer layer, and for example, the thickness of the buffer layer composed of a plurality of layers means the total thickness of all the layers constituting the buffer layer. means.
<<緩衝層形成用組成物>>
 緩衝層は、前記樹脂等の、緩衝層の構成材料を含有する緩衝層形成用組成物を用いて形成できる。例えば、緩衝層の形成対象面に対して、緩衝層形成用組成物を押出成形することにより、目的とする部位に緩衝層を形成できる。緩衝層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。緩衝層形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、緩衝層の前記成分同士の含有量の比率と同じとなる。
<< Composition for forming a buffer layer >>
The buffer layer can be formed by using a composition for forming a buffer layer containing a constituent material of the buffer layer, such as the resin. For example, the buffer layer can be formed at a target site by extrusion-molding the composition for forming the buffer layer on the surface to be formed of the buffer layer. A more specific method for forming the buffer layer will be described in detail later together with a method for forming the other layers. The ratio of the contents of the components that do not vaporize at room temperature in the composition for forming the buffer layer is usually the same as the ratio of the contents of the components in the buffer layer.
<緩衝層形成用組成物(V)>
 緩衝層形成用組成物としては、例えば、ウレタン(メタ)アクリレートを含有する緩衝層形成用組成物(V)等が挙げられる。
<Composition for forming a buffer layer (V)>
Examples of the buffer layer forming composition include a buffer layer forming composition (V) containing urethane (meth) acrylate.
 緩衝層形成用組成物(V)及び緩衝層のウレタン(メタ)アクリレートの含有量は、80~100質量%であることが好ましい。 The content of the buffer layer forming composition (V) and the urethane (meth) acrylate of the buffer layer is preferably 80 to 100% by mass.
[他の成分]
 緩衝層形成用組成物(V)及び緩衝層は、本発明の効果を損なわない範囲内において、ウレタン(メタ)アクリレート以外の、他の成分を含有していてもよい。
 前記他の成分としては、特に限定されず、目的に応じて適宜選択できる。
[Other ingredients]
The composition for forming a buffer layer (V) and the buffer layer may contain other components other than urethane (meth) acrylate as long as the effects of the present invention are not impaired.
The other component is not particularly limited and may be appropriately selected depending on the intended purpose.
 緩衝層形成用組成物(V)及び緩衝層が含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 緩衝層形成用組成物(V)及び緩衝層の前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The buffer layer forming composition (V) and the other components contained in the buffer layer may be only one kind, two or more kinds, and when two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
The content of the buffer layer forming composition (V) and the other components of the buffer layer is not particularly limited and may be appropriately selected depending on the intended purpose.
◎樹脂フィルム
 本実施形態の複合シートにおける樹脂フィルムは、先に説明したものと同じであるため、ここでは、その詳細な説明を省略する。
(6) Resin film Since the resin film in the composite sheet of the present embodiment is the same as that described above, detailed description thereof will be omitted here.
◎密着層
 密着層は、基材及び緩衝層の密着性を向上させ、複合シートにおいて、基材及び緩衝層の剥離を高度に抑制する。したがって、密着層を備えた複合シートは、その使用時において、基材、密着層及び緩衝層の積層構造をより安定して維持できる。
◎ Adhesive layer The adhesive layer improves the adhesiveness between the base material and the buffer layer, and highly suppresses the peeling of the base material and the buffer layer in the composite sheet. Therefore, the composite sheet provided with the adhesion layer can maintain the laminated structure of the base material, the adhesion layer and the buffer layer more stably at the time of use.
 密着層は、シート状又はフィルム状である。
 好ましい密着層としては、例えば、エチレン-酢酸ビニル共重合樹脂(EVA)等を含有するものが挙げられる。
The adhesion layer is in the form of a sheet or a film.
Preferred adhesion layers include, for example, those containing ethylene-vinyl acetate copolymer resin (EVA) and the like.
 密着層は1層(単層)のみであってもよいし、2層以上の複数層であってもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The adhesion layer may be only one layer (single layer), may be two or more layers, and when there are a plurality of layers, these multiple layers may be the same or different from each other. The combination of multiple layers is not particularly limited.
 密着層の厚さは、10~100μmであることが好ましく、25~85μmであることがより好ましく、40~70μmであることが特に好ましい。
 ここで、「密着層の厚さ」とは、密着層全体の厚さを意味し、例えば、複数層からなる密着層の厚さとは、密着層を構成するすべての層の合計の厚さを意味する。
The thickness of the adhesion layer is preferably 10 to 100 μm, more preferably 25 to 85 μm, and particularly preferably 40 to 70 μm.
Here, the "thickness of the adhesion layer" means the thickness of the entire adhesion layer, and for example, the thickness of the adhesion layer composed of a plurality of layers is the total thickness of all the layers constituting the adhesion layer. means.
<<密着層形成用組成物>>
 密着層は、その構成材料を含有する密着層形成用組成物を用いて形成できる。例えば、密着層の形成対象面に対して、密着層形成用組成物を押出成形することにより、目的とする部位に密着層を形成できる。密着層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。密着層形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、密着層の前記成分同士の含有量の比率と同じとなる。
<< Composition for forming an adhesive layer >>
The adhesion layer can be formed by using a composition for forming an adhesion layer containing the constituent material. For example, the adhesion layer can be formed at a target portion by extrusion-molding the composition for forming the adhesion layer on the surface to be formed of the adhesion layer. A more specific method for forming the adhesion layer will be described in detail later together with other methods for forming the layer. The ratio of the contents of the components that do not vaporize at room temperature in the composition for forming the adhesion layer is usually the same as the ratio of the contents of the components in the adhesion layer.
<密着層形成用組成物(VI)>
 密着層形成用組成物としては、例えば、エチレン-酢酸ビニル共重合樹脂(EVA)を含有する密着層形成用組成物(VI)等が挙げられる。
<Composition for forming an adhesive layer (VI)>
Examples of the composition for forming an adhesive layer include a composition for forming an adhesive layer (VI) containing an ethylene-vinyl acetate copolymer resin (EVA).
 エチレン-酢酸ビニル共重合樹脂の密度は、1100kg/m以下であることが好ましく、850~1100kg/mであることがより好ましく、900~1000kg/mであることが特に好ましい。
 本明細書において、「エチレン-酢酸ビニル共重合樹脂の密度」とは、特に断りのない限り、JIS K7112:1999に準拠して測定した値を意味する。
The density of the ethylene-vinyl acetate copolymer resin is preferably 1100 kg / m 3 or less, more preferably 850 to 1100 kg / m 3 , and particularly preferably 900 to 1000 kg / m 3.
In the present specification, "density of ethylene-vinyl acetate copolymer resin" means a value measured in accordance with JIS K7112: 1999 unless otherwise specified.
 エチレン-酢酸ビニル共重合樹脂の融点は、50~95℃であることが好ましく、65~85℃であることがより好ましい。 The melting point of the ethylene-vinyl acetate copolymer resin is preferably 50 to 95 ° C, more preferably 65 to 85 ° C.
 エチレン-酢酸ビニル共重合樹脂の190℃でのメルトフローレイト(MFR)は、1~10g/10分であることが好ましく、3~8g/10分であることがより好ましい。
 本明細書において、「エチレン-酢酸ビニル共重合樹脂のメルトフローレイト」とは、特に断りのない限り、JIS K7210:1999に準拠して測定した値を意味する。
The melt flow rate (MFR) of the ethylene-vinyl acetate copolymer resin at 190 ° C. is preferably 1 to 10 g / 10 minutes, more preferably 3 to 8 g / 10 minutes.
In the present specification, "melt flow rate of ethylene-vinyl acetate copolymer resin" means a value measured in accordance with JIS K7210: 1999 unless otherwise specified.
 密着層形成用組成物(VI)及び密着層のエチレン-酢酸ビニル共重合樹脂の含有量は、80~100質量%であることが好ましい。 The content of the adhesive layer forming composition (VI) and the ethylene-vinyl acetate copolymer resin of the adhesive layer is preferably 80 to 100% by mass.
[他の成分]
 密着層形成用組成物(VI)及び密着層は、本発明の効果を損なわない範囲内において、エチレン-酢酸ビニル共重合樹脂以外の、他の成分を含有していてもよい。
 前記他の成分としては、特に限定されず、目的に応じて適宜選択できる。
[Other ingredients]
The composition for forming an adhesive layer (VI) and the adhesive layer may contain other components other than the ethylene-vinyl acetate copolymer resin as long as the effects of the present invention are not impaired.
The other component is not particularly limited and may be appropriately selected depending on the intended purpose.
 密着層形成用組成物(VI)及び密着層が含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 密着層形成用組成物(VI)及び密着層の前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The composition for forming an adhesive layer (VI) and the other components contained in the adhesive layer may be only one type, two or more types, or a combination thereof when two or more types are used. And the ratio can be selected arbitrarily.
The content of the composition for forming an adhesive layer (VI) and the other components of the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose.
 本実施形態の好ましい複合シートの一例としては、基材と、前記基材上に設けられた緩衝層と、前記緩衝層上に設けられた樹脂フィルムと、を備え、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記樹脂フィルムの試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが1%のときの、前記試験片の貯蔵弾性率をGc1とし、前記試験片のひずみが300%のときの、前記試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満であり、
 前記樹脂フィルムが、重合体成分(A)、エポキシ樹脂(B1)、熱硬化剤(B2)、充填材(D)及び添加剤(I)を含有する熱硬化性樹脂フィルムであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~25質量%であり、
 前記樹脂フィルムにおける、前記熱硬化剤(B2)の含有量が、前記エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であり、
 前記樹脂フィルムにおける、前記エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量が、前記重合体成分(A)の含有量100質量部に対して、600~1000質量部であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記充填材(D)の含有量の割合が、5~45質量%であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記添加剤(I)の含有量の割合が、0.5~10質量%であり、
 ただし、前記樹脂フィルムにおいて、前記樹脂フィルムの総質量に対する、前記重合体成分(A)、エポキシ樹脂(B1)、熱硬化剤(B2)、充填材(D)及び添加剤(I)の合計含有量の割合は、100質量%を超えない、複合シートが挙げられる。
As an example of a preferable composite sheet of the present embodiment, a base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer are provided.
Strain was generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece was measured. When the storage elastic modulus of the test piece is Gc1 and the strain of the test piece is 300%, the storage elastic modulus of the test piece is Gc300.
X = Gc1 / Gc300
The X value calculated by is 19 or more and less than 10000.
The resin film is a thermosetting resin film containing a polymer component (A), an epoxy resin (B1), a thermosetting agent (B2), a filler (D), and an additive (I).
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is 5 to 25% by mass.
The content of the thermosetting agent (B2) in the resin film is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1).
The total content of the epoxy resin (B1) and the thermosetting agent (B2) in the resin film is 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
The ratio of the content of the filler (D) to the total mass of the resin film in the resin film is 5 to 45% by mass.
The ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass.
However, the resin film contains the total amount of the polymer component (A), epoxy resin (B1), thermosetting agent (B2), filler (D) and additive (I) with respect to the total mass of the resin film. The ratio of the amount does not exceed 100% by mass, and examples thereof include composite sheets.
 本実施形態の好ましい複合シートの他の例としては、基材と、前記基材上に設けられた緩衝層と、前記緩衝層上に設けられた樹脂フィルムと、を備え、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記樹脂フィルムの試験片にひずみを発生させて、前記樹脂フィルムの試験片の貯蔵弾性率を測定し、前記樹脂フィルムの試験片のひずみが1%のときの、前記樹脂フィルムの試験片の貯蔵弾性率をGc1とし、前記樹脂フィルムの試験片のひずみが300%のときの、前記樹脂フィルムの試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満であり、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記緩衝層の試験片にひずみを発生させて、前記緩衝層の試験片の貯蔵弾性率を測定し、前記緩衝層の試験片のひずみが300%のときの、前記緩衝層の試験片の貯蔵弾性率をGb300としたとき、前記Gb300が前記Gc300以上である、複合シートが挙げられる。
As another example of the preferable composite sheet of the present embodiment, a base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer are provided.
Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece of the resin film is measured, and the test piece of the resin film is measured. When the strain of the resin film is 1%, the storage elastic modulus of the test piece of the resin film is Gc1, and when the strain of the test piece of the resin film is 300%, the storage elastic modulus of the test piece of the resin film is Gc300. Then, the following formula:
X = Gc1 / Gc300
The X value calculated by is 19 or more and less than 10000.
Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece of the buffer layer is measured, and the test piece of the buffer layer is measured. When the strain of the buffer layer is 300% and the storage elastic modulus of the test piece of the buffer layer is Gb300, a composite sheet in which the Gb300 is Gc300 or more can be mentioned.
 本実施形態の好ましい複合シートのさらに他の例としては、基材と、前記基材上に設けられた緩衝層と、前記緩衝層上に設けられた樹脂フィルムと、を備え、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記樹脂フィルムの試験片にひずみを発生させて、前記樹脂フィルムの試験片の貯蔵弾性率を測定し、前記樹脂フィルムの試験片のひずみが1%のときの、前記樹脂フィルムの試験片の貯蔵弾性率をGc1とし、前記樹脂フィルムの試験片のひずみが300%のときの、前記樹脂フィルムの試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満であり、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記緩衝層の試験片に、0.01%~1000%の範囲でひずみを発生させて、前記緩衝層の試験片の貯蔵弾性率Gbを測定し、前記樹脂フィルムの試験片に0.01%~1000%の範囲でひずみを発生させて、前記樹脂フィルムの試験片の貯蔵弾性率Gcを測定し、前記ひずみが同じである場合の前記Gbと前記Gcを比較したとき、前記ひずみが0.01%~1000%のすべての範囲で、前記Gbが前記Gc以上である、複合シートが挙げられる。
Still another example of the preferred composite sheet of the present embodiment includes a base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer.
Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece of the resin film is measured, and the test piece of the resin film is measured. When the strain of the resin film is 1%, the storage elastic modulus of the test piece of the resin film is Gc1, and when the strain of the test piece of the resin film is 300%, the storage elastic modulus of the test piece of the resin film is Gc300. Then, the following formula:
X = Gc1 / Gc300
The X value calculated by is 19 or more and less than 10000.
Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm in the range of 0.01% to 1000%, and the storage elasticity of the test piece of the buffer layer is generated. The rate Gb was measured, strain was generated in the test piece of the resin film in the range of 0.01% to 1000%, and the storage elastic modulus Gc of the test piece of the resin film was measured, and the strain was the same. When the Gb and the Gc of the case are compared, a composite sheet in which the Gb is equal to or greater than the Gc in the entire range of the strain of 0.01% to 1000% can be mentioned.
 本実施形態の好ましい複合シートのさらに他の例としては、基材と、前記基材上に設けられた緩衝層と、前記緩衝層上に設けられた樹脂フィルムと、を備え、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記樹脂フィルムの試験片にひずみを発生させて、前記樹脂フィルムの試験片の貯蔵弾性率を測定し、前記樹脂フィルムの試験片のひずみが1%のときの、前記樹脂フィルムの試験片の貯蔵弾性率をGc1とし、前記樹脂フィルムの試験片のひずみが300%のときの、前記樹脂フィルムの試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満であり、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記緩衝層の試験片にひずみを発生させて、前記緩衝層の試験片の貯蔵弾性率を測定し、前記緩衝層の試験片のひずみが300%のときの、前記緩衝層の試験片の貯蔵弾性率をGb300としたとき、前記Gb300が前記Gc300以上であり、
 前記樹脂フィルムが、重合体成分(A)、エポキシ樹脂(B1)、熱硬化剤(B2)、充填材(D)及び添加剤(I)を含有する熱硬化性樹脂フィルムであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~25質量%であり、
 前記樹脂フィルムにおける、前記熱硬化剤(B2)の含有量が、前記エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であり、
 前記樹脂フィルムにおける、前記エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量が、前記重合体成分(A)の含有量100質量部に対して、600~1000質量部であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記充填材(D)の含有量の割合が、5~45質量%であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記添加剤(I)の含有量の割合が、0.5~10質量%であり、
 ただし、前記樹脂フィルムにおいて、前記樹脂フィルムの総質量に対する、前記重合体成分(A)、エポキシ樹脂(B1)、熱硬化剤(B2)、充填材(D)及び添加剤(I)の合計含有量の割合は、100質量%を超えない、複合シートが挙げられる。
Still another example of the preferred composite sheet of the present embodiment includes a base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer.
Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece of the resin film is measured, and the test piece of the resin film is measured. When the strain of the resin film is 1%, the storage elastic modulus of the test piece of the resin film is Gc1, and when the strain of the test piece of the resin film is 300%, the storage elastic modulus of the test piece of the resin film is Gc300. Then, the following formula:
X = Gc1 / Gc300
The X value calculated by is 19 or more and less than 10000.
Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece of the buffer layer is measured, and the test piece of the buffer layer is measured. When the storage elastic modulus of the test piece of the buffer layer is Gb300 when the strain of is 300%, the Gb300 is the Gc300 or more.
The resin film is a thermosetting resin film containing a polymer component (A), an epoxy resin (B1), a thermosetting agent (B2), a filler (D), and an additive (I).
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is 5 to 25% by mass.
The content of the thermosetting agent (B2) in the resin film is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1).
The total content of the epoxy resin (B1) and the thermosetting agent (B2) in the resin film is 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
The ratio of the content of the filler (D) to the total mass of the resin film in the resin film is 5 to 45% by mass.
The ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass.
However, the resin film contains the total amount of the polymer component (A), epoxy resin (B1), thermosetting agent (B2), filler (D) and additive (I) with respect to the total mass of the resin film. The ratio of the amount does not exceed 100% by mass, and examples thereof include composite sheets.
 本実施形態の好ましい複合シートのさらに他の例としては、基材と、前記基材上に設けられた緩衝層と、前記緩衝層上に設けられた樹脂フィルムと、を備え、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記樹脂フィルムの試験片にひずみを発生させて、前記樹脂フィルムの試験片の貯蔵弾性率を測定し、前記樹脂フィルムの試験片のひずみが1%のときの、前記樹脂フィルムの試験片の貯蔵弾性率をGc1とし、前記樹脂フィルムの試験片のひずみが300%のときの、前記樹脂フィルムの試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満であり、
 温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記緩衝層の試験片に、0.01%~1000%の範囲でひずみを発生させて、前記緩衝層の試験片の貯蔵弾性率Gbを測定し、前記樹脂フィルムの試験片に0.01%~1000%の範囲でひずみを発生させて、前記樹脂フィルムの試験片の貯蔵弾性率Gcを測定し、前記ひずみが同じである場合の前記Gbと前記Gcを比較したとき、前記ひずみが0.01%~1000%のすべての範囲で、前記Gbが前記Gc以上であり、
 前記樹脂フィルムが、重合体成分(A)、エポキシ樹脂(B1)、熱硬化剤(B2)、充填材(D)及び添加剤(I)を含有する熱硬化性樹脂フィルムであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~25質量%であり、
 前記樹脂フィルムにおける、前記熱硬化剤(B2)の含有量が、前記エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であり、
 前記樹脂フィルムにおける、前記エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量が、前記重合体成分(A)の含有量100質量部に対して、600~1000質量部であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記充填材(D)の含有量の割合が、5~45質量%であり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記添加剤(I)の含有量の割合が、0.5~10質量%であり、
 ただし、前記樹脂フィルムにおいて、前記樹脂フィルムの総質量に対する、前記重合体成分(A)、エポキシ樹脂(B1)、熱硬化剤(B2)、充填材(D)及び添加剤(I)の合計含有量の割合は、100質量%を超えない、複合シートが挙げられる。
Still another example of the preferred composite sheet of the present embodiment includes a base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer.
Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm, the storage elastic modulus of the test piece of the resin film is measured, and the test piece of the resin film is measured. When the strain of the resin film is 1%, the storage elastic modulus of the test piece of the resin film is Gc1, and when the strain of the test piece of the resin film is 300%, the storage elastic modulus of the test piece of the resin film is Gc300. Then, the following formula:
X = Gc1 / Gc300
The X value calculated by is 19 or more and less than 10000.
Under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, strain is generated in the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm in the range of 0.01% to 1000%, and the storage elasticity of the test piece of the buffer layer is generated. The rate Gb was measured, strain was generated in the test piece of the resin film in the range of 0.01% to 1000%, and the storage elastic modulus Gc of the test piece of the resin film was measured, and the strain was the same. When the Gb and the Gc are compared, the Gb is equal to or greater than the Gc in the entire range of 0.01% to 1000% of the strain.
The resin film is a thermosetting resin film containing a polymer component (A), an epoxy resin (B1), a thermosetting agent (B2), a filler (D), and an additive (I).
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is 5 to 25% by mass.
The content of the thermosetting agent (B2) in the resin film is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1).
The total content of the epoxy resin (B1) and the thermosetting agent (B2) in the resin film is 600 to 1000 parts by mass with respect to 100 parts by mass of the content of the polymer component (A).
The ratio of the content of the filler (D) to the total mass of the resin film in the resin film is 5 to 45% by mass.
The ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass.
However, the resin film contains the total amount of the polymer component (A), epoxy resin (B1), thermosetting agent (B2), filler (D) and additive (I) with respect to the total mass of the resin film. The ratio of the amount does not exceed 100% by mass, and examples thereof include composite sheets.
◇複合シートの製造方法
 前記複合シートは、上述の各層を対応する位置関係となるように順次積層することで製造できる。各層の形成方法は、先に説明したとおりである。
◇ Method for manufacturing composite sheet The composite sheet can be manufactured by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship. The method of forming each layer is as described above.
 例えば、基材、緩衝層及び樹脂フィルムがこの順に、これらの厚さ方向において積層されて構成されている複合シートは、以下に示す方法で製造できる。
 すなわち、基材に対して、緩衝層形成用組成物を押出成形することにより、基材上に緩衝層を積層する。また、剥離フィルムの剥離処理面上に、上述の樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることで、樹脂フィルムを積層する。そして、この剥離フィルム上の樹脂フィルムを、基材上の緩衝層と貼り合わせることで、基材、緩衝層、樹脂フィルム及び剥離フィルムがこの順に積層されて構成された複合シートを得る。樹脂フィルム上の剥離フィルムは、複合シートの使用時に取り除けばよい。
For example, a composite sheet in which a base material, a buffer layer, and a resin film are laminated in this order in the thickness direction thereof can be produced by the method shown below.
That is, the buffer layer is laminated on the base material by extrusion-molding the composition for forming the buffer layer on the base material. Further, the resin film is laminated by applying the above-mentioned resin film forming composition on the peeling-treated surface of the release film and drying it if necessary. Then, by laminating the resin film on the release film with the cushioning layer on the base material, a composite sheet composed of the base material, the cushioning layer, the resin film and the release film laminated in this order is obtained. The release film on the resin film may be removed when the composite sheet is used.
 上述の各層以外の他の層を備えた複合シートは、上述の製造方法において、前記他の層の積層位置が適切な位置となるように、前記他の層の形成工程及び積層工程のいずれか一方又は両方を適宜追加して行うことで、製造できる。 In the above-mentioned manufacturing method, the composite sheet provided with other layers other than the above-mentioned layers is one of the above-mentioned other layer forming step and the above-mentioned laminating step so that the laminating position of the other layer is an appropriate position. It can be manufactured by appropriately adding one or both of them.
 例えば、基材、密着層、緩衝層及び樹脂フィルムがこの順に、これらの厚さ方向において積層されて構成された複合シートは、以下に示す方法で製造できる。
 すなわち、基材に対して、密着層形成用組成物及び緩衝層形成用組成物を共押出成形することにより、基材上に密着層及び緩衝層をこの順に積層する。そして、上記と同じ方法で、別途、剥離フィルム上に樹脂フィルムを積層する。次いで、この剥離フィルム上の樹脂フィルムを、基材及び密着層上の緩衝層と貼り合わせることで、基材、密着層、緩衝層、樹脂フィルム及び剥離フィルムがこの順に積層されて構成された複合シートを得る。樹脂フィルム上の剥離フィルムは、複合シートの使用時に取り除けばよい。
For example, a composite sheet in which a base material, an adhesion layer, a buffer layer, and a resin film are laminated in this order in the thickness direction thereof can be produced by the method shown below.
That is, the adhesion layer forming composition and the buffer layer forming composition are co-extruded onto the base material, so that the adhesion layer and the buffer layer are laminated on the base material in this order. Then, a resin film is separately laminated on the release film by the same method as described above. Next, the resin film on the release film is bonded to the base material and the cushioning layer on the adhesion layer, so that the base material, the adhesion layer, the cushioning layer, the resin film and the release film are laminated in this order to form a composite. Get a sheet. The release film on the resin film may be removed when the composite sheet is used.
◇半導体装置の製造方法(樹脂フィルム及び複合シートの使用方法)
 先の説明のように、本実施形態の樹脂フィルムは、その貼付対象物の凹凸面に対して貼付したときに、凸部を貫通させてその上部を露出させつつ、凹凸面全体を被覆できる点で、極めて優れた特性を有する。すなわち、本実施形態の樹脂フィルムは、凹凸面を有する貼付対象物の前記凹凸面への貼付用として、好適である。
 このような本実施形態の樹脂フィルムは、例えば、半導体チップと、前記半導体チップのバンプを有する面(バンプ形成面)に設けられた第1保護膜と、を備えた第1保護膜付き半導体チップの製造に用いるのに、特に好適である。この場合、前記凹凸面は半導体チップのバンプ形成面であり、凸部はバンプである。そして、第1保護膜付き半導体チップは、その中のバンプにおいて、基板にフリップチップ接続することにより、半導体装置の製造に用いるのに好適である。
 本実施形態の樹脂フィルムは、上述の複合シートの形態で用いるのに好適である。
 以下、前記複合シートを用いた場合の、半導体装置の製造方法について説明する。
◇ Manufacturing method of semiconductor devices (How to use resin film and composite sheet)
As described above, when the resin film of the present embodiment is applied to the uneven surface of the object to be attached, the resin film can cover the entire uneven surface while penetrating the convex portion and exposing the upper portion thereof. And has extremely excellent characteristics. That is, the resin film of the present embodiment is suitable for sticking an object to be attached having an uneven surface to the uneven surface.
Such a resin film of the present embodiment includes, for example, a semiconductor chip and a first protective film provided on a surface (bump forming surface) of the semiconductor chip having bumps. It is particularly suitable for use in the production of. In this case, the uneven surface is a bump forming surface of the semiconductor chip, and the convex portion is a bump. The semiconductor chip with the first protective film is suitable for use in the manufacture of a semiconductor device by flip-chip connecting the bumps in the chip to the substrate.
The resin film of this embodiment is suitable for use in the form of the composite sheet described above.
Hereinafter, a method for manufacturing a semiconductor device when the composite sheet is used will be described.
 本発明の一実施形態に係る半導体装置の製造方法は、上述の本発明の一実施形態に係る複合シート中の、硬化性である前記樹脂フィルムを、半導体ウエハのバンプを有する面(バンプ形成面)に貼付し、前記バンプの頭頂部を前記樹脂フィルムから突出させることにより、前記半導体ウエハに前記複合シートを設ける貼付工程と、前記貼付工程の後に、前記複合シートのうち、前記樹脂フィルム以外の層を、前記樹脂フィルムから取り除く除去工程と、前記除去工程の後に、前記樹脂フィルムを硬化させることにより、第1保護膜を形成する硬化工程と、前記硬化工程の後に、前記半導体ウエハを分割することにより、半導体チップを作製する分割工程と、前記硬化工程の後に、前記第1保護膜を切断する切断工程と、前記分割工程及び切断工程の後に得られた、前記半導体チップと、前記半導体チップのバンプを有する面(バンプ形成面)に設けられた第1保護膜と、を備え、前記バンプの頭頂部が前記第1保護膜から突出している第1保護膜付き半導体チップを、前記バンプの頭頂部において、基板にフリップチップ接続する実装工程と、を有する。 In the method for manufacturing a semiconductor device according to an embodiment of the present invention, the curable resin film in the composite sheet according to the embodiment of the present invention described above is formed on a surface having bumps of a semiconductor wafer (bump forming surface). ), And the top of the bump is projected from the resin film to provide the composite sheet on the semiconductor wafer. After the pasting step, the composite sheet other than the resin film is used. After the removing step of removing the layer from the resin film, the curing step of forming the first protective film by curing the resin film after the removing step, and the curing step, the semiconductor wafer is divided. Thereby, the semiconductor chip obtained after the dividing step for producing the semiconductor chip, the cutting step for cutting the first protective film after the curing step, and the semiconductor chip and the semiconductor chip obtained after the dividing step and the cutting step. A semiconductor chip with a first protective film, which is provided with a first protective film provided on a surface having the bumps (bump forming surface), and the crown of the bumps protrudes from the first protective film, is attached to the bump. At the crown, it has a mounting step of flip-chip connecting to the substrate.
 図5A~図5Dは、図3に示す複合シート1を用いた場合の、半導体装置の製造方法の一例を模式的に示す断面図である。
 ここでは、硬化性樹脂フィルムを第1保護膜の形成用として用いるため、「複合シート1」を「第1保護膜形成用シート1」と称し、「基材11」を「第1基材11」と称する。
5A to 5D are cross-sectional views schematically showing an example of a method for manufacturing a semiconductor device when the composite sheet 1 shown in FIG. 3 is used.
Here, since the curable resin film is used for forming the first protective film, the "composite sheet 1" is referred to as the "first protective film forming sheet 1", and the "base material 11" is referred to as the "first base material 11". ".
<貼付工程>
 前記貼付工程においては、図5A~図5Bに示すように、第1保護膜形成用シート1中の硬化性樹脂フィルム12を、半導体ウエハ9のバンプ形成面9aに貼付し、バンプ91の頭頂部9101を硬化性樹脂フィルム12から突出させることにより、半導体ウエハ9に第1保護膜形成用シート1を設ける。
<Attachment process>
In the attachment step, as shown in FIGS. 5A to 5B, the curable resin film 12 in the first protective film forming sheet 1 is attached to the bump forming surface 9a of the semiconductor wafer 9, and the crown portion of the bump 91 is attached. By projecting 9101 from the curable resin film 12, the semiconductor wafer 9 is provided with the first protective film forming sheet 1.
 前記貼付工程においては、例えば、まず図5Aに示すように、第1保護膜形成用シート1を、その硬化性樹脂フィルム12が半導体ウエハ9のバンプ形成面9aに対向するように配置する。 In the pasting step, for example, as shown in FIG. 5A, the first protective film forming sheet 1 is arranged so that the curable resin film 12 faces the bump forming surface 9a of the semiconductor wafer 9.
 バンプ91の高さは特に限定されないが、120~300μmであることが好ましく、150~270μmであることがより好ましく、180~240μmであることが特に好ましい。バンプ91の高さが前記下限値以上であることで、バンプ91の機能をより向上させることができる。バンプ91の高さが前記上限値以下であることで、バンプ91上部での硬化性樹脂フィルム12の残存を抑制する効果がより高くなる。
 本明細書において、「バンプの高さ」とは、バンプのうち、バンプ形成面から最も高い位置に存在する部位での高さを意味する。
The height of the bump 91 is not particularly limited, but is preferably 120 to 300 μm, more preferably 150 to 270 μm, and particularly preferably 180 to 240 μm. When the height of the bump 91 is equal to or higher than the lower limit value, the function of the bump 91 can be further improved. When the height of the bump 91 is not more than the upper limit value, the effect of suppressing the residual of the curable resin film 12 on the upper part of the bump 91 becomes higher.
In the present specification, the "bump height" means the height of the bump at the highest position from the bump forming surface.
 バンプ91の幅は特に限定されないが、170~350μmであることが好ましく、200~320μmであることがより好ましく、230~290μmであることが特に好ましい。バンプ91の幅が前記下限値以上であることで、バンプ91の機能をより向上させることができる。バンプ91の幅が前記上限値以下であることで、バンプ91上部での硬化性樹脂フィルム12の残存を抑制する効果がより高くなる。
 本明細書において、「バンプの幅」とは、バンプ形成面に対して垂直な方向からバンプを見下ろして平面視したときに、バンプ表面上の異なる2点間を直線で結んで得られる線分の長さの最大値を意味する。
The width of the bump 91 is not particularly limited, but is preferably 170 to 350 μm, more preferably 200 to 320 μm, and particularly preferably 230 to 290 μm. When the width of the bump 91 is equal to or larger than the lower limit value, the function of the bump 91 can be further improved. When the width of the bump 91 is equal to or less than the upper limit value, the effect of suppressing the residual of the curable resin film 12 on the upper portion of the bump 91 becomes higher.
In the present specification, the "bump width" is a line segment obtained by connecting two different points on the bump surface with a straight line when the bump is viewed in a plan view from a direction perpendicular to the bump forming surface. Means the maximum value of the length of.
 隣り合うバンプ91間の距離は、特に限定されないが、250~800μmであることが好ましく、300~600μmであることがより好ましく、350~500μmであることが特に好ましい。前記距離が前記下限値以上であることで、バンプ91の機能をより向上させることができる。前記距離が前記上限値以下であることで、バンプ91上部での硬化性樹脂フィルム12の残存を抑制する効果がより高くなる。
 本明細書において、「隣り合うバンプ間の距離」とは、隣り合うバンプ同士の表面間の距離の最小値を意味する。
The distance between the adjacent bumps 91 is not particularly limited, but is preferably 250 to 800 μm, more preferably 300 to 600 μm, and particularly preferably 350 to 500 μm. When the distance is equal to or greater than the lower limit value, the function of the bump 91 can be further improved. When the distance is not more than the upper limit value, the effect of suppressing the residual of the curable resin film 12 on the upper part of the bump 91 becomes higher.
As used herein, the "distance between adjacent bumps" means the minimum value of the distance between the surfaces of adjacent bumps.
 次いで、前記貼付工程においては、半導体ウエハ9上のバンプ91に硬化性樹脂フィルム12を接触させて、第1保護膜形成用シート1を半導体ウエハ9に押し付ける。これにより、硬化性樹脂フィルム12の第1面12aを、バンプ91の表面91a及び半導体ウエハ9のバンプ形成面9aに、順次圧着させる。このとき、硬化性樹脂フィルム12を加熱することで、硬化性樹脂フィルム12は軟化し、バンプ91を覆うようにしてバンプ91間に広がり、バンプ形成面9aに密着するとともに、バンプ91の表面91a、特にバンプ形成面9aの近傍部位の表面91aを覆って、バンプ91の基部を埋め込む。
 以上により、図5Bに示すように、半導体ウエハ9のバンプ形成面9aに、第1保護膜形成用シート1中の硬化性樹脂フィルム12を貼付する。
Next, in the pasting step, the curable resin film 12 is brought into contact with the bump 91 on the semiconductor wafer 9 and the first protective film forming sheet 1 is pressed against the semiconductor wafer 9. As a result, the first surface 12a of the curable resin film 12 is sequentially crimped to the surface 91a of the bump 91 and the bump forming surface 9a of the semiconductor wafer 9. At this time, by heating the curable resin film 12, the curable resin film 12 is softened, spreads between the bumps 91 so as to cover the bumps 91, adheres to the bump forming surface 9a, and is adhered to the bump 91 surface 91a. In particular, the surface 91a in the vicinity of the bump forming surface 9a is covered and the base portion of the bump 91 is embedded.
As described above, as shown in FIG. 5B, the curable resin film 12 in the first protective film forming sheet 1 is attached to the bump forming surface 9a of the semiconductor wafer 9.
 上記のように、第1保護膜形成用シート1を半導体ウエハ9に圧着させる方法としては、各種シートを対象物に圧着させて貼付する公知の方法を適用でき、例えば、ラミネートローラーを用いる方法等が挙げられる。 As described above, as a method of crimping the first protective film forming sheet 1 to the semiconductor wafer 9, a known method of crimping and attaching various sheets to an object can be applied, for example, a method using a laminate roller or the like. Can be mentioned.
 半導体ウエハ9に圧着させるときの第1保護膜形成用シート1(硬化性樹脂フィルム12)の加熱温度は、硬化性樹脂フィルム12の硬化が全く又は過度に進行しない程度の温度であればよく、例えば、80~100℃であってもよい。
 ただし、バンプ91の上部での硬化性樹脂フィルム12の残存を抑制する効果と、バンプ形成面9aでの硬化性樹脂フィルム12のはみ出しを抑制する効果と、バンプ形成面9a面上での硬化性樹脂フィルム12のハジキを抑制する効果と、がより高くなる点では、前記加熱温度は、85~95℃であることがより好ましい。
The heating temperature of the first protective film forming sheet 1 (curable resin film 12) when crimped to the semiconductor wafer 9 may be such that the curing of the curable resin film 12 does not proceed at all or excessively. For example, it may be 80 to 100 ° C.
However, the effect of suppressing the residual of the curable resin film 12 on the upper part of the bump 91, the effect of suppressing the protrusion of the curable resin film 12 on the bump forming surface 9a, and the curability on the bump forming surface 9a surface. The heating temperature is more preferably 85 to 95 ° C. in terms of the effect of suppressing repelling of the resin film 12 and the higher effect.
 第1保護膜形成用シート1(硬化性樹脂フィルム12)を半導体ウエハ9に圧着させるときの圧力は、特に限定されず、例えば、0.1~1.5MPaであってもよい。
 ただし、バンプ91の上部での硬化性樹脂フィルム12の残存を抑制する効果と、バンプ形成面9aでの硬化性樹脂フィルム12のはみ出しを抑制する効果と、バンプ形成面9a面上での硬化性樹脂フィルム12のハジキを抑制する効果と、がより高くなる点では、前記圧力は、0.3~1MPaであることがより好ましい。
The pressure at which the first protective film forming sheet 1 (curable resin film 12) is pressed against the semiconductor wafer 9 is not particularly limited, and may be, for example, 0.1 to 1.5 MPa.
However, the effect of suppressing the residual of the curable resin film 12 on the upper part of the bump 91, the effect of suppressing the protrusion of the curable resin film 12 on the bump forming surface 9a, and the curability on the bump forming surface 9a surface. The pressure is more preferably 0.3 to 1 MPa from the viewpoint of increasing the effect of suppressing repelling of the resin film 12 and increasing the effect.
 上記のように、第1保護膜形成用シート1を半導体ウエハ9に圧着させると、第1保護膜形成用シート1中の硬化性樹脂フィルム12及び緩衝層13は、バンプ91から圧力を加えられ、初期には、硬化性樹脂フィルム12の第1面12a及び緩衝層13の第1面13aが凹状に変形する。そして、このままバンプ91から圧力を加えられた硬化性樹脂フィルム12において、破れが生じる。最終的に、硬化性樹脂フィルム12の第1面12aが半導体ウエハ9のバンプ形成面9aに圧着された段階では、バンプ91の頭頂部9101を含む上部910が、硬化性樹脂フィルム12を貫通して突出した状態となる。なお、この最終段階において、通常、バンプ91の上部910は、緩衝層13を貫通しない。これは、緩衝層13がバンプ91から加えられる圧力に対して、緩衝作用を有するためである。 When the first protective film forming sheet 1 is pressed against the semiconductor wafer 9 as described above, the curable resin film 12 and the buffer layer 13 in the first protective film forming sheet 1 are pressured from the bumps 91. Initially, the first surface 12a of the curable resin film 12 and the first surface 13a of the buffer layer 13 are deformed in a concave shape. Then, the curable resin film 12 to which the pressure is applied from the bump 91 as it is is torn. Finally, at the stage where the first surface 12a of the curable resin film 12 is crimped to the bump forming surface 9a of the semiconductor wafer 9, the upper portion 910 including the crown 9101 of the bump 91 penetrates the curable resin film 12. It becomes a protruding state. In this final stage, the upper portion 910 of the bump 91 usually does not penetrate the buffer layer 13. This is because the buffer layer 13 has a buffering action against the pressure applied from the bump 91.
 図5Bに示すように、前記貼付工程が終了した段階では、バンプ91の頭頂部9101を含む上部910に、硬化性樹脂フィルム12は全く又はほぼ残存せず、バンプ91の上部910においては、硬化性樹脂フィルム12の残存が抑制される。なお、本明細書において「バンプの上部に硬化性樹脂フィルムがほぼ残存しない」とは、特に断りのない限り、バンプの上部に硬化性樹脂フィルムが僅かに残存しているものの、その残存量が、このバンプを備えた半導体チップを基板にフリップチップ接続したときに、半導体チップと基板との電気的接続を妨げない程度の量であることを意味する。 As shown in FIG. 5B, at the stage when the pasting step is completed, the curable resin film 12 does not remain at all or almost on the upper part 910 including the crown 9101 of the bump 91, and the upper part 910 of the bump 91 is cured. The residual of the sex resin film 12 is suppressed. In the present specification, "almost no curable resin film remains on the upper part of the bump" means that, unless otherwise specified, a small amount of the curable resin film remains on the upper part of the bump, but the residual amount is This means that when a semiconductor chip provided with this bump is flip-chip connected to a substrate, the amount does not interfere with the electrical connection between the semiconductor chip and the substrate.
 さらに、前記貼付工程が終了した段階では、硬化性樹脂フィルム12においては、当初の大きさからのはみ出しが抑制されるため、半導体ウエハ9のバンプ形成面9aからの、硬化性樹脂フィルム12のはみ出しが抑制される。 Further, at the stage when the pasting step is completed, the curable resin film 12 is suppressed from protruding from the initial size, so that the curable resin film 12 protrudes from the bump forming surface 9a of the semiconductor wafer 9. Is suppressed.
 さらに、前記貼付工程が終了した段階では、バンプ形成面9a上において、硬化性樹脂フィルム12のハジキが抑制される。より具体的には、バンプ形成面9aに硬化性樹脂フィルム12が設けられた状態で、バンプ91のうち、その上部910以外の領域(例えば、バンプ形成面9a近傍の基部)、又は、バンプ形成面9aのバンプ91近傍の領域が、意図せずに硬化性樹脂フィルム12で覆われずに露出してしまう現象が抑制される。 Further, at the stage where the pasting step is completed, the repelling of the curable resin film 12 is suppressed on the bump forming surface 9a. More specifically, in a state where the curable resin film 12 is provided on the bump forming surface 9a, a region other than the upper portion 910 of the bump 91 (for example, a base near the bump forming surface 9a) or bump forming. The phenomenon that the region near the bump 91 on the surface 9a is unintentionally exposed without being covered with the curable resin film 12 is suppressed.
 このように、バンプ91の上部910において、硬化性樹脂フィルム12の残存が抑制され、バンプ形成面9aでの硬化性樹脂フィルム12のはみ出しが抑制され、バンプ形成面9aでの硬化性樹脂フィルム12のハジキが抑制される理由は、先の説明のように、硬化性樹脂フィルム12が前記X値の条件(19≦X値<10000)を満たしているためである。 In this way, the residue of the curable resin film 12 is suppressed at the upper portion 910 of the bump 91, the protrusion of the curable resin film 12 on the bump forming surface 9a is suppressed, and the curable resin film 12 on the bump forming surface 9a is suppressed. The reason why the repelling is suppressed is that the curable resin film 12 satisfies the condition of the X value (19 ≦ X value <10000) as described above.
 前記貼付工程の後は、さらに必要に応じて、半導体ウエハ9のバンプ形成面9aとは反対側の面(裏面)9bを研削した後、この裏面9bに第2保護膜形成用シート(図示略)を貼付する。 After the pasting step, if necessary, the surface (back surface) 9b of the semiconductor wafer 9 opposite to the bump forming surface 9a is ground, and then a second protective film forming sheet (not shown) is formed on the back surface 9b. ) Is pasted.
<除去工程>
 前記貼付工程の後、前記除去工程においては、図5Cに示すように、第1保護膜形成用シート1のうち、硬化性樹脂フィルム12以外の層を、硬化性樹脂フィルム12から取り除く。ここで取り除く層は、より具体的には、第1基材11及び緩衝層13である。
 除去工程を行うことによって、半導体ウエハ9と、半導体ウエハ9のバンプ形成面9aに設けられた硬化性樹脂フィルム12と、を備えた樹脂フィルム付き半導体ウエハが得られる。
<Removal process>
After the sticking step, in the removing step, as shown in FIG. 5C, the layer other than the curable resin film 12 in the first protective film forming sheet 1 is removed from the curable resin film 12. More specifically, the layers removed here are the first base material 11 and the buffer layer 13.
By performing the removing step, a semiconductor wafer with a resin film including the semiconductor wafer 9 and the curable resin film 12 provided on the bump forming surface 9a of the semiconductor wafer 9 can be obtained.
<硬化工程>
 前記除去工程の後、前記硬化工程においては、硬化性樹脂フィルム12を硬化させることにより、第1保護膜を形成する。
 前記硬化工程においては、硬化性樹脂フィルム12が熱硬化性である場合には、硬化性樹脂フィルム12を加熱によって硬化させ、硬化性樹脂フィルム12がエネルギー線硬化性である場合には、硬化性樹脂フィルム12をエネルギー線の照射によって硬化させる。このときの加熱条件及びエネルギー線の照射条件は、先に説明したとおりである。
<Curing process>
After the removing step, in the curing step, the curable resin film 12 is cured to form a first protective film.
In the curing step, when the curable resin film 12 is thermosetting, the curable resin film 12 is cured by heating, and when the curable resin film 12 is energy ray curable, it is curable. The resin film 12 is cured by irradiation with energy rays. The heating conditions and energy ray irradiation conditions at this time are as described above.
<分割工程、切断工程>
 前記硬化工程の後、前記分割工程においては、半導体ウエハ9を分割することにより、半導体チップ9’を作製し、前記切断工程においては、前記第1保護膜を切断する。
 前記分割工程及び切断工程は、公知の方法で行うことができる。
<Division process, cutting process>
After the curing step, in the dividing step, the semiconductor wafer 9 is divided to produce a semiconductor chip 9', and in the cutting step, the first protective film is cut.
The dividing step and the cutting step can be carried out by a known method.
 前記分割工程及び切断工程を行う順序は、特に限定されないが、分割工程及び切断工程を同時に行うか、又は、分割工程及び切断工程の順に行うことが好ましい。分割工程及び切断工程をこの順に行う場合には、例えば、公知のダイシングによって、分割工程を行い、その後に連続して直ちに切断工程を行ってもよい。
 前記切断工程においては、半導体ウエハ9の分割予定箇所又は分割された箇所(換言すると、半導体チップ9’の外周)に沿って、第1保護膜を切断する。
The order in which the dividing step and the cutting step are performed is not particularly limited, but it is preferable that the dividing step and the cutting step are performed at the same time, or the dividing step and the cutting step are performed in this order. When the dividing step and the cutting step are performed in this order, for example, the dividing step may be performed by a known dicing, and then the cutting step may be continuously performed immediately.
In the cutting step, the first protective film is cut along the planned division portion or the divided portion (in other words, the outer circumference of the semiconductor chip 9') of the semiconductor wafer 9.
 前記硬化工程、分割工程及び切断工程を行うことにより、図5Dに示すように、半導体チップ9’と、半導体チップ9’のバンプ形成面9a’に設けられた、切断後の第1保護膜(本明細書においては、単に「第1保護膜」と称することがある)120’と、を備えて構成された第1保護膜付き半導体チップ9120’が得られる。 By performing the curing step, the dividing step, and the cutting step, as shown in FIG. 5D, the semiconductor chip 9'and the first protective film after cutting provided on the bump forming surface 9a'of the semiconductor chip 9'( In the present specification, a semiconductor chip 9120'with a first protective film is obtained, which is configured by comprising (sometimes referred to simply as a "first protective film") 120'.
 第1保護膜付き半導体チップ9120’においては、バンプ91の頭頂部9101が第1保護膜120’ から突出しており、バンプ91の頭頂部9101を含む上部910に、第1保護膜は全く又はほぼ付着しておらず、バンプ91の上部910での第1保護膜の付着が抑制されている。
 さらに、第1保護膜付き半導体チップ9120’においては、半導体チップ9’のバンプ形成面9a’での第1保護膜120’のはみ出しが抑制されている。
 さらに、半導体チップ9’のバンプ形成面9a’での第1保護膜120’のハジキが抑制される。より具体的には、バンプ形成面9a’に第1保護膜120’が設けられた状態で、バンプ91のうち、その上部910以外の領域(例えば、バンプ形成面9a’近傍の基部)、又は、バンプ形成面9a’のバンプ91近傍の領域が、意図せずに第1保護膜120’で覆われずに露出してしまう現象が抑制される。
In the semiconductor chip 9120'with the first protective film, the crown 9101 of the bump 91 protrudes from the first protective film 120', and the first protective film is completely or almost on the upper portion 910 including the crown 9101 of the bump 91. It is not adhered, and the adhesion of the first protective film on the upper portion 910 of the bump 91 is suppressed.
Further, in the semiconductor chip 9120'with the first protective film, the protrusion of the first protective film 120'on the bump forming surface 9a' of the semiconductor chip 9'is suppressed.
Further, the repelling of the first protective film 120'on the bump forming surface 9a' of the semiconductor chip 9'is suppressed. More specifically, in a state where the first protective film 120'is provided on the bump forming surface 9a', the area other than the upper portion 910 of the bump 91 (for example, the base near the bump forming surface 9a') or The phenomenon that the region near the bump 91 of the bump forming surface 9a'is unintentionally exposed without being covered by the first protective film 120' is suppressed.
<実装工程>
 前記分割工程及び切断工程の後、前記実装工程においては、第1保護膜付き半導体チップ9120’を、バンプ91の頭頂部9101において、基板にフリップチップ接続する(図示略)。このとき、第1保護膜付き半導体チップ9120’は、基板の回路形成面に接続する。
 第1保護膜付き半導体チップ9120’中のバンプ91の上部910は、第1保護膜の付着が抑制されているため、本工程においては、半導体チップ9’と基板との電気的接続度が高い。
<Mounting process>
After the dividing step and the cutting step, in the mounting step, the semiconductor chip 9120'with the first protective film is flip-chip connected to the substrate at the crown portion 9101 of the bump 91 (not shown). At this time, the semiconductor chip 9120'with the first protective film is connected to the circuit forming surface of the substrate.
Since the upper part 910 of the bump 91 in the semiconductor chip 9120'with the first protective film is suppressed from adhering to the first protective film, the degree of electrical connection between the semiconductor chip 9'and the substrate is high in this step. ..
 第2保護膜形成用シートを用いた場合には、第1保護膜付き半導体チップ9120’は、そのフリップチップ接続に先立ち、第2保護膜形成用シート中のダイシングシート(図示略)から引き離して、ピックアップする。
 第1保護膜付き半導体チップ9120’は、公知の方法でピックアップできる。
 第2保護膜形成用シートを用いた場合には、第1保護膜付き半導体チップ9120’中の半導体チップ9’は、その裏面9b’に、切断後の第2保護膜を備える(図示略)。
When the second protective film forming sheet is used, the semiconductor chip 9120'with the first protective film is separated from the dicing sheet (not shown) in the second protective film forming sheet prior to the flip chip connection. , Pick up.
The semiconductor chip 9120'with the first protective film can be picked up by a known method.
When the second protective film forming sheet is used, the semiconductor chip 9'in the semiconductor chip 9120'with the first protective film has a second protective film after cutting on the back surface 9b'(not shown). ..
 第2保護膜形成用シート中の第2保護膜形成用フィルムが、硬化性である場合には、第2保護膜形成用フィルムは、その種類に応じて、適切なタイミングで硬化させることで第2保護膜とする。そして、第2保護膜は、その種類に応じて、適切なタイミングで切断する。 When the second protective film forming film in the second protective film forming sheet is curable, the second protective film forming film is cured at an appropriate timing according to the type of the second protective film forming sheet. 2 Use as a protective film. Then, the second protective film is cut at an appropriate timing according to the type.
 第2保護膜形成用フィルムは、硬化性樹脂フィルム12の場合と同じ方法で硬化させることができ、硬化性樹脂フィルム12と同時に硬化させてもよいし、硬化性樹脂フィルム12とは別々に硬化させてもよい。 The film for forming the second protective film can be cured in the same manner as in the case of the curable resin film 12, and may be cured at the same time as the curable resin film 12, or may be cured separately from the curable resin film 12. You may let me.
 第2保護膜は、第1保護膜の場合と同じ方法で切断できる。
 前記分割工程と、第2保護膜の切断と、を行う順序は、特に限定されないが、分割工程と、第2保護膜の切断と、を同時に行うか、又は、分割工程後に第2保護膜の切断を行うことが好ましい。分割工程と第2保護膜の切断をこの順に行う場合には、例えば、公知のダイシングによって、分割工程を行い、その後に連続して直ちに、第2保護膜の切断を行ってもよい。
 第2保護膜は、半導体ウエハ9の分割予定箇所又は分割された箇所(換言すると、半導体チップ9’の外周)に沿って、切断する。
The second protective film can be cut in the same manner as in the case of the first protective film.
The order in which the division step and the cutting of the second protective film are performed is not particularly limited, but the division step and the cutting of the second protective film are performed at the same time, or the second protective film is subjected to the division step. It is preferable to perform cutting. When the dividing step and the cutting of the second protective film are performed in this order, for example, the dividing step may be performed by a known dicing, and then the second protective film may be cut immediately thereafter.
The second protective film is cut along the planned division portion or the divided portion (in other words, the outer circumference of the semiconductor chip 9') of the semiconductor wafer 9.
 以降は、このようにして得られた、半導体チップ9’を実装済みの回路基板を用い、公知の方法に従って、半導体パッケージを作製し、この半導体パッケージを用いることにより、目的とする半導体装置を製造できる(図示略)。 Hereinafter, using the circuit board on which the semiconductor chip 9'is mounted thus obtained, a semiconductor package is manufactured according to a known method, and the target semiconductor device is manufactured by using this semiconductor package. Yes (not shown).
 ここでは、図3に示す複合シート(第1保護膜形成用シート)1を用いた場合について説明したが、図4に示す複合シート2等、他の実施形態の複合シートを用いた場合も、この複合シートは複合シート1を用いた場合と同様の効果を奏する。 Here, the case where the composite sheet (first protective film forming sheet) 1 shown in FIG. 3 is used has been described, but the case where the composite sheet of another embodiment such as the composite sheet 2 shown in FIG. 4 is also used. This composite sheet has the same effect as when the composite sheet 1 is used.
 図6A~図6Dは、図4に示す複合シート(第1保護膜形成用シート)2を用いた場合の、半導体装置の製造方法の一例を模式的に示す断面図である。
 第1保護膜形成用シート2の使用時にも、前記貼付工程においては、図6A~図6Bに示すように、第1保護膜形成用シート2中の、硬化性樹脂フィルム12を、半導体ウエハ9のバンプ形成面9aに貼付し、バンプ91の頭頂部9101を硬化性樹脂フィルム12から突出させることにより、半導体ウエハ9に第1保護膜形成用シート2を設ける。
6A to 6D are cross-sectional views schematically showing an example of a method for manufacturing a semiconductor device when the composite sheet (first protective film forming sheet) 2 shown in FIG. 4 is used.
Even when the first protective film forming sheet 2 is used, in the pasting step, as shown in FIGS. 6A to 6B, the curable resin film 12 in the first protective film forming sheet 2 is attached to the semiconductor wafer 9. The first protective film forming sheet 2 is provided on the semiconductor wafer 9 by sticking the bump 91 to the bump forming surface 9a and projecting the crown 9101 of the bump 91 from the curable resin film 12.
 前記貼付工程においては、例えば、まず図6Aに示すように、第1保護膜形成用シート2を、その硬化性樹脂フィルム12が半導体ウエハ9のバンプ形成面9aに対向するように配置する。 In the pasting step, for example, as shown in FIG. 6A, the first protective film forming sheet 2 is arranged so that the curable resin film 12 faces the bump forming surface 9a of the semiconductor wafer 9.
 次いで、前記貼付工程においては、半導体ウエハ9上のバンプ91に硬化性樹脂フィルム12を接触させて、第1保護膜形成用シート2を半導体ウエハ9に押し付ける。これにより、硬化性樹脂フィルム12の第1面12aを、バンプ91の表面91a及び半導体ウエハ9のバンプ形成面9aに、順次圧着させる。以上により、図6Bに示すように、半導体ウエハ9のバンプ形成面9aに、第1保護膜形成用シート2中の硬化性樹脂フィルム12を貼付する。
 このとき、第1保護膜形成用シート2は、第1保護膜形成用シート1を用いた場合と同様の方法で、半導体ウエハ9に圧着させることができる。
Next, in the pasting step, the curable resin film 12 is brought into contact with the bump 91 on the semiconductor wafer 9 and the first protective film forming sheet 2 is pressed against the semiconductor wafer 9. As a result, the first surface 12a of the curable resin film 12 is sequentially crimped to the surface 91a of the bump 91 and the bump forming surface 9a of the semiconductor wafer 9. As described above, as shown in FIG. 6B, the curable resin film 12 in the first protective film forming sheet 2 is attached to the bump forming surface 9a of the semiconductor wafer 9.
At this time, the first protective film forming sheet 2 can be crimped to the semiconductor wafer 9 in the same manner as when the first protective film forming sheet 1 is used.
 上記のように、第1保護膜形成用シート2を半導体ウエハ9に圧着させると、第1保護膜形成用シート2中の硬化性樹脂フィルム12及び緩衝層13は、バンプ91から圧力を加えられ、初期には、硬化性樹脂フィルム12の第1面12a及び緩衝層13の第1面13aが凹状に変形する。そして、このままバンプ91から圧力を加えられた硬化性樹脂フィルム12において、破れが生じる。最終的に、硬化性樹脂フィルム12の第1面12aが半導体ウエハ9のバンプ形成面9aに圧着された段階では、バンプ91の頭頂部9101を含む上部910が、硬化性樹脂フィルム12を貫通して突出した状態となる。この最終段階において、通常、バンプ91の上部910は、緩衝層13を貫通しない。
 また、第1保護膜形成用シート2を用いていることにより、上記のように、半導体ウエハ9のバンプ形成面9aに硬化性樹脂フィルム12を貼り合わせる過程において、密着層14は、第1基材11及び緩衝層13の剥離を高度に抑制し、第1基材11、密着層14及び緩衝層13の積層構造がより安定して維持される。
When the first protective film forming sheet 2 is pressed against the semiconductor wafer 9 as described above, the curable resin film 12 and the buffer layer 13 in the first protective film forming sheet 2 are pressured from the bumps 91. Initially, the first surface 12a of the curable resin film 12 and the first surface 13a of the buffer layer 13 are deformed in a concave shape. Then, the curable resin film 12 to which the pressure is applied from the bump 91 as it is is torn. Finally, at the stage where the first surface 12a of the curable resin film 12 is crimped to the bump forming surface 9a of the semiconductor wafer 9, the upper portion 910 including the crown 9101 of the bump 91 penetrates the curable resin film 12. It becomes a protruding state. In this final stage, the upper portion 910 of the bump 91 usually does not penetrate the buffer layer 13.
Further, by using the first protective film forming sheet 2, as described above, in the process of adhering the curable resin film 12 to the bump forming surface 9a of the semiconductor wafer 9, the adhesion layer 14 is the first group. The peeling of the material 11 and the buffer layer 13 is highly suppressed, and the laminated structure of the first base material 11, the adhesion layer 14 and the buffer layer 13 is maintained more stably.
 図6Bに示すように、前記貼付工程が終了した段階では、第1保護膜形成用シート1の場合と同様の作用により、バンプ91の頭頂部9101を含む上部910に、硬化性樹脂フィルム12は全く又はほぼ残存しない。
 さらに、前記貼付工程が終了した段階では、第1保護膜形成用シート1の場合と同様の作用により、硬化性樹脂フィルム12においては、当初の大きさからのはみ出しが抑制されるため、半導体ウエハ9のバンプ形成面9aからの、硬化性樹脂フィルム12のはみ出しが抑制される。
 さらに、前記貼付工程が終了した段階では、第1保護膜形成用シート1の場合と同様の作用により、バンプ形成面9a上において、硬化性樹脂フィルム12のハジキが抑制される。
As shown in FIG. 6B, at the stage when the pasting step is completed, the curable resin film 12 is applied to the upper portion 910 including the crown portion 9101 of the bump 91 by the same action as in the case of the first protective film forming sheet 1. It does not remain at all or almost.
Further, at the stage when the pasting step is completed, the curable resin film 12 is suppressed from protruding from the initial size by the same action as in the case of the first protective film forming sheet 1, so that the semiconductor wafer The protrusion of the curable resin film 12 from the bump forming surface 9a of 9 is suppressed.
Further, at the stage when the sticking step is completed, the repelling of the curable resin film 12 is suppressed on the bump forming surface 9a by the same action as in the case of the first protective film forming sheet 1.
 前記貼付工程の後は、さらに必要に応じて、半導体ウエハ9のバンプ形成面9aとは反対側の面(裏面)9bを研削した後、この裏面9bに第2保護膜形成用シート(図示略)を貼付する。 After the pasting step, if necessary, the surface (back surface) 9b of the semiconductor wafer 9 opposite to the bump forming surface 9a is ground, and then a second protective film forming sheet (not shown) is formed on the back surface 9b. ) Is pasted.
 第1保護膜形成用シート2の使用時にも、前記貼付工程の後、前記除去工程においては、図6Cに示すように、第1保護膜形成用シート2のうち、硬化性樹脂フィルム12以外の層を、硬化性樹脂フィルム12から取り除く。ここで取り除く層は、より具体的には、第1基材11、密着層14及び緩衝層13である。
 除去工程を行うことによって、樹脂フィルム付き半導体ウエハが得られるが、これは、第1保護膜形成用シート1の使用時に得られるものと同じである。
Even when the first protective film forming sheet 2 is used, in the removing step after the sticking step, as shown in FIG. 6C, among the first protective film forming sheets 2, other than the curable resin film 12. The layer is removed from the curable resin film 12. More specifically, the layers removed here are the first base material 11, the adhesion layer 14, and the buffer layer 13.
By performing the removing step, a semiconductor wafer with a resin film can be obtained, which is the same as that obtained when the first protective film forming sheet 1 is used.
 以降は、第1保護膜形成用シート1の使用時と同じ方法で、半導体装置を製造できる。
 すなわち、前記除去工程の後、第1保護膜形成用シート1の使用時と同じ方法で、前記硬化工程においては、硬化性樹脂フィルム12を硬化させることにより、第1保護膜を形成する。
 前記硬化工程の後、第1保護膜形成用シート1の使用時と同じ方法で、前記分割工程においては、半導体ウエハ9を分割することにより、半導体チップ9’を作製し、前記切断工程においては、前記第1保護膜を切断する。
 硬化工程及び分割工程を行うことにより、図6Dに示すように、第1保護膜付き半導体チップ9120’が得られる。ここで得られる第1保護膜付き半導体チップ9120’は、第1保護膜形成用シート1の使用時に得られるものと同じである。
 さらに、第1保護膜形成用シート1の使用時と同じ方法で、前記実装工程を行い、これにより得られた、半導体チップ9’を実装済みの回路基板を用い、半導体パッケージを作製し、目的とする半導体装置を製造できる(図示略)。
After that, the semiconductor device can be manufactured by the same method as when the first protective film forming sheet 1 is used.
That is, after the removal step, the first protective film is formed by curing the curable resin film 12 in the curing step in the same manner as when the first protective film forming sheet 1 is used.
After the curing step, a semiconductor chip 9'is produced by dividing the semiconductor wafer 9 in the dividing step in the same manner as when the first protective film forming sheet 1 is used, and in the cutting step, the semiconductor chip 9'is produced. , The first protective film is cut.
By performing the curing step and the dividing step, as shown in FIG. 6D, the semiconductor chip 9120'with the first protective film is obtained. The semiconductor chip 9120'with the first protective film obtained here is the same as that obtained when the first protective film forming sheet 1 is used.
Further, the mounting step is performed in the same manner as when the first protective film forming sheet 1 is used, and a semiconductor package is produced using the circuit board on which the semiconductor chip 9'is mounted, which is obtained by the mounting step. (Not shown).
 本実施形態の半導体装置の製造方法においては、バンプの上部での、硬化性樹脂フィルム又は保護膜の残存の有無は、例えば、バンプについてSEMの撮像データを取得することにより、確認できる。
 また、半導体ウエハのバンプ形成面での硬化性樹脂フィルムのはみ出しの有無と、バンプ形成面上での硬化性樹脂フィルムのハジキの有無は、いずれも、例えば、半導体ウエハのバンプ形成面上の該当部位について、SEMの撮像データを取得することにより、確認できる。
In the method for manufacturing a semiconductor device of the present embodiment, the presence or absence of residual curable resin film or protective film on the bump can be confirmed, for example, by acquiring SEM imaging data for the bump.
Further, the presence or absence of protrusion of the curable resin film on the bump forming surface of the semiconductor wafer and the presence or absence of repelling of the curable resin film on the bump forming surface both correspond to, for example, on the bump forming surface of the semiconductor wafer. The site can be confirmed by acquiring SEM imaging data.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples shown below.
<樹脂フィルム形成用組成物の製造原料>
 樹脂フィルム形成用組成物の製造に用いた原料を以下に示す。
[重合体成分(A)]
 (A)-1:下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するポリビニルブチラール(積水化学工業社製「エスレックBL-10」、重量平均分子量25000、ガラス転移温度59℃)。
 (A)-2:アクリル酸ブチル(55質量部)、アクリル酸メチル(10質量部)、メタクリル酸グリシジル(20質量部)及びアクリル酸-2-ヒドロキシエチル(15質量部)を共重合して得られたアクリル樹脂(重量平均分子量800000、ガラス転移温度-28℃)。
<Manufacturing raw material for resin film forming composition>
The raw materials used for producing the resin film forming composition are shown below.
[Polymer component (A)]
(A) -1: Polyvinyl butyral having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3 ("Eslek BL-10" manufactured by Sekisui Chemical Co., Ltd., weight average) Molecular weight 25,000, glass transition temperature 59 ° C.).
(A) -2: Copolymerization of butyl acrylate (55 parts by mass), methyl acrylate (10 parts by mass), glycidyl methacrylate (20 parts by mass) and -2-hydroxyethyl acrylate (15 parts by mass). The obtained acrylic resin (weight average molecular weight 800,000, glass transition temperature −28 ° C.).
Figure JPOXMLDOC01-appb-C000002
 (式中、lは約28であり、mは1~3であり、nは68~74の整数である。)
Figure JPOXMLDOC01-appb-C000002
(In the equation, l 1 is about 28, m 1 is 1-3, and n 1 is an integer of 68-74.)
[エポキシ樹脂(B1)]
 (B1)-1:液状変性ビスフェノールA型エポキシ樹脂(DIC社製「エピクロンEXA-4850-150」、分子量900、エポキシ当量450g/eq)
 (B1)-2:液状ビスフェノールF型エポキシ樹脂(三菱化学社製「YL983U」、エポキシ当量165~175g/eq)
 (B1)-3:多官能芳香族型エポキシ樹脂(日本化薬社製「EPPN-502H」)、エポキシ当量158~178g/eq)
 (B1)-4:ジシクロペンタジエン型エポキシ樹脂(DIC社製「エピクロンHP-7200HH」、エポキシ当量254~264g/eq)
[熱硬化剤(B2)]
 (B2)-1:O-クレゾール型ノボラック樹脂(DIC社製「フェノライトKA-1160」)
 (B2)-2:ノボラック型フェノール樹脂(昭和電工社製「BRG-556」)
[充填材(D)]
 (D)-1:エポキシ基で修飾された球状シリカ(アドマテックス社製「アドマナノ YA050C-MKK」、平均粒子径50nm)
[添加剤(I)]
 (I)-1:レオロジーコントロール剤(ポリヒドロキシカルボン酸エステル、BYK社製「BYK-R606」)
 (I)-2:界面活性剤(アクリル重合体、BYK社製「BYK-361N」)
 (I)-3:シリコーンオイル(アラルキル変性シリコーンオイル、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製「XF42-334」)
[硬化促進剤(C)]
 (C)-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ-PW」)
[Epoxy resin (B1)]
(B1) -1: Liquid-modified bisphenol A type epoxy resin ("Epiclon EXA-4850-150" manufactured by DIC Corporation, molecular weight 900, epoxy equivalent 450 g / eq)
(B1) -2: Liquid bisphenol F type epoxy resin ("YL983U" manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 165 to 175 g / eq)
(B1) -3: Polyfunctional aromatic epoxy resin (“EPPN-502H” manufactured by Nippon Kayaku Co., Ltd.), epoxy equivalent 158 to 178 g / eq)
(B1) -4: Dicyclopentadiene type epoxy resin ("Epiclon HP-7200HH" manufactured by DIC Corporation, epoxy equivalent 254 to 264 g / eq)
[Thermosetting agent (B2)]
(B2) -1: O-cresol type novolak resin ("Phenolite KA-1160" manufactured by DIC Corporation)
(B2) -2: Novolac type phenol resin ("BRG-556" manufactured by Showa Denko Co., Ltd.)
[Filler (D)]
(D) -1: Spherical silica modified with an epoxy group (“Admanano YA050C-MKK” manufactured by Admatex, average particle size 50 nm)
[Additive (I)]
(I) -1: Rheology control agent (polyhydroxycarboxylic acid ester, "BYK-R606" manufactured by BYK)
(I) -2: Surfactant (acrylic polymer, "BYK-361N" manufactured by BYK)
(I) -3: Silicone oil (Aralkill-modified silicone oil, "XF42-334" manufactured by Momentive Performance Materials Japan)
[Curing accelerator (C)]
(C) -1: 2-Phenyl-4,5-dihydroxymethylimidazole ("Curesol 2PHZ-PW" manufactured by Shikoku Chemicals Corporation)
[実施例1]
<<第1保護膜形成用シートの製造>>
<熱硬化性樹脂フィルム形成用組成物の製造>
 重合体成分(A)-1(100質量部)、エポキシ樹脂(B1)-1(350質量部)、エポキシ樹脂(B1)-4(270質量部)、(B2)-1(190質量部)、硬化促進剤(C)-1(2質量部)、充填材(D)-1(90質量部)及び添加剤(I)-1(9質量部)を、メチルエチルケトンに溶解又は分散させて、23℃で撹拌することで、熱硬化性樹脂フィルム形成用組成物として、溶媒以外のすべての成分の合計濃度が45質量%である組成物(III)を得た。なお、ここに示す溶媒以外の成分の配合量はすべて、溶媒を含まない目的物の配合量である。
[Example 1]
<< Manufacture of first protective film forming sheet >>
<Manufacturing of composition for forming thermosetting resin film>
Polymer component (A) -1 (100 parts by mass), epoxy resin (B1) -1 (350 parts by mass), epoxy resin (B1) -4 (270 parts by mass), (B2) -1 (190 parts by mass) , Curing accelerator (C) -1 (2 parts by mass), filler (D) -1 (90 parts by mass) and additive (I) -1 (9 parts by mass) were dissolved or dispersed in methyl ethyl ketone. By stirring at 23 ° C., a composition (III) having a total concentration of all components other than the solvent of 45% by mass was obtained as a composition for forming a thermosetting resin film. The blending amounts of the components other than the solvent shown here are all the blending amounts of the target product containing no solvent.
<第1保護膜形成用シートの製造>
 ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた組成物(III)を塗工し、120℃で2分加熱乾燥させることにより、厚さ30μmの熱硬化性樹脂フィルムを形成した。
<Manufacturing of first protective film forming sheet>
A release film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 μm) in which one side of a polyethylene terephthalate film was peeled by a silicone treatment was used, and the composition (III) obtained above was used on the peeled surface. Was applied and dried by heating at 120 ° C. for 2 minutes to form a thermosetting resin film having a thickness of 30 μm.
 第1基材と、密着層と、緩衝層と、の積層物に相当する積層シート(リンテック社製「E-9485」、厚さ485μm)を用い、この積層シート中の緩衝層と、上記で得られた剥離フィルム上の熱硬化性樹脂フィルムと、を貼り合わせた。これにより、第1基材と、密着層と、緩衝層と、熱硬化性樹脂フィルムと、剥離フィルムと、がこの順に、これらの厚さ方向において積層されて構成された、図4に示す構成の第1保護膜形成用シートを得た。 A laminated sheet (“E-9485” manufactured by Lintec Corporation, thickness 485 μm) corresponding to a laminate of the first base material, the adhesion layer, and the buffer layer was used, and the buffer layer in the laminated sheet and the above. The thermosetting resin film on the obtained release film was laminated. As a result, the first base material, the adhesion layer, the cushioning layer, the thermosetting resin film, and the release film are laminated in this order in the thickness direction of these, as shown in FIG. A sheet for forming the first protective film was obtained.
<<第1保護膜形成用シートの評価>>
<熱硬化性樹脂フィルムのGc1及びGc300の測定、並びにX値の算出>
 組成物(III)の塗工量を変更した点以外は、上記と同様の方法で、厚さ50μmの熱硬化性樹脂フィルムを20枚作製した。次いで、これら熱硬化性樹脂フィルムを積層し、得られた積層フィルムを直径25mmの円板状に裁断することにより、厚さ1mmの熱硬化性樹脂フィルムの試験片を作製した。
 粘弾性測定装置(アントンパール社製「MCR301」)における、試験片の設置箇所を、あらかじめ90℃で保温しておき、この設置箇所へ、上記で得られた熱硬化性樹脂フィルムの試験片を載置し、この試験片の上面に測定治具を押し当てることで、試験片を前記設置箇所に固定した。
 次いで、温度90℃、測定周波数1Hzの条件で、試験片に発生させるひずみを0.01%~1000%の範囲で段階的に上昇させ、試験片の貯蔵弾性率Gcを測定した。そして、Gc1及びGc300の測定値から、X値を算出した。結果を表1に示す。
<< Evaluation of the first protective film forming sheet >>
<Measurement of Gc1 and Gc300 of thermosetting resin film and calculation of X value>
Twenty thermosetting resin films having a thickness of 50 μm were prepared by the same method as described above except that the coating amount of the composition (III) was changed. Next, these thermosetting resin films were laminated, and the obtained laminated film was cut into a disk shape having a diameter of 25 mm to prepare a test piece of a thermosetting resin film having a thickness of 1 mm.
In the viscoelasticity measuring device (“MCR301” manufactured by Anton Pearl Co., Ltd.), the installation location of the test piece is kept warm at 90 ° C. in advance, and the test piece of the thermosetting resin film obtained above is placed in this installation location. The test piece was placed and fixed to the installation location by pressing the measuring jig against the upper surface of the test piece.
Next, under the conditions of a temperature of 90 ° C. and a measurement frequency of 1 Hz, the strain generated in the test piece was gradually increased in the range of 0.01% to 1000%, and the storage elastic modulus Gc of the test piece was measured. Then, the X value was calculated from the measured values of Gc1 and Gc300. The results are shown in Table 1.
<熱硬化性樹脂フィルムのはみ出し量の測定>
 ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた組成物(III)を塗工し、120℃で2分加熱乾燥させることにより、厚さ30μmの熱硬化性樹脂フィルムを形成した。
 次いで、この熱硬化性樹脂フィルムを、前記剥離フィルムとともに、直径170mmの円形状に加工することにより、剥離フィルム付きの試験片を作製した。
 得られた試験片の露出面(換言すると、剥離フィルムを備えている側とは反対側の面)全面を、透明な帯状のバックグラインドテープ(リンテック社製「E-8180」)の表面と貼り合わせることにより、図7に示す積層物を得た。図7は、得られた積層物を、その中のバックグラインドテープ側の上方から見下ろしたときの状態を、模式的に示す平面図である。
 ここに示すように、得られた積層物101は、バックグラインドテープ7と、試験片120(熱硬化性樹脂フィルム12)と、剥離フィルムと、がこの順に、これらの厚さ方向において積層されて、構成されている。
<Measurement of protrusion of thermosetting resin film>
A release film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 μm) in which one side of a polyethylene terephthalate film was peeled by a silicone treatment was used, and the composition (III) obtained above was used on the peeled surface. Was applied and dried by heating at 120 ° C. for 2 minutes to form a thermosetting resin film having a thickness of 30 μm.
Next, this thermosetting resin film was processed together with the release film into a circular shape having a diameter of 170 mm to prepare a test piece with the release film.
The entire exposed surface of the obtained test piece (in other words, the surface opposite to the side provided with the release film) is attached to the surface of a transparent strip-shaped back grind tape (Lintec's "E-8180"). By combining them, the laminate shown in FIG. 7 was obtained. FIG. 7 is a plan view schematically showing a state in which the obtained laminate is viewed from above on the back grind tape side.
As shown here, in the obtained laminate 101, the back grind tape 7, the test piece 120 (thermosetting resin film 12), and the release film are laminated in this order in these thickness directions. ,It is configured.
 次いで、得られた積層物から前記剥離フィルムを取り除き、新たに生じた前記試験片の露出面(換言すると、前記試験片の、前記バックグラインドテープを備えている側とは反対側の面)を、直径12インチのシリコンウエハの一方の表面に圧着させることで、シリコンウエハの表面に前記試験片を貼付した。このとき、試験片の貼付は、貼付装置(ローラー式ラミネータ、リンテック社製「RAD-3510 F/12」)を用いて、テーブル温度90℃、貼付速度2mm/sec、貼付圧力0.5MPa、ローラー貼付高さ-200μmの条件で、熱硬化性樹脂フィルムを加熱しながら行った。
 次いで、シリコンウエハに貼付されている、バックグラインドテープ付きの前記試験片について、その外周上の異なる二点間を結ぶ線分の長さの最大値を測定し、その測定値(前記線分の長さの最大値)を用いて、図2を参照して説明した方法により、前記試験片(換言すると熱硬化性樹脂フィルム)のはみ出し量(mm)を算出した。
Next, the release film is removed from the obtained laminate, and the newly generated exposed surface of the test piece (in other words, the surface of the test piece opposite to the side on which the back grind tape is provided) is removed. The test piece was attached to the surface of the silicon wafer by crimping it onto one surface of the silicon wafer having a diameter of 12 inches. At this time, the test piece is attached by using a pasting device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation), table temperature 90 ° C., pasting speed 2 mm / sec, pasting pressure 0.5 MPa, roller. The process was carried out while heating the thermosetting resin film under the condition of a sticking height of −200 μm.
Next, with respect to the test piece with the back grind tape attached to the silicon wafer, the maximum value of the length of the line segment connecting two different points on the outer circumference thereof is measured, and the measured value (the line segment) is measured. Using the maximum length), the amount of protrusion (mm) of the test piece (in other words, the thermosetting resin film) was calculated by the method described with reference to FIG.
<バンプの上部での熱硬化性樹脂フィルムの残存有無の確認>
 上記で得られた第1保護膜形成用シートにおいて、剥離フィルムを取り除き、これにより露出した熱硬化性樹脂フィルムの表面(露出面)を、バンプを有する、直径8インチの半導体ウエハのバンプ形成面に圧着させることで、剥離フィルムを取り除いた第1保護膜形成用シートを半導体ウエハのバンプ形成面に貼付した。このとき、半導体ウエハとしては、バンプの高さが210μmであり、バンプの幅が250μmであり、バンプ間の距離が400μmであるものを用いた。また、第1保護膜形成用シートの貼付は、貼付装置(ローラー式ラミネータ、リンテック社製「RAD-3510 F/12」)を用いて、テーブル温度90℃、貼付速度2mm/sec、貼付圧力0.5MPa、ローラー貼付高さ-200μmの条件で、第1保護膜形成用シートを加熱しながら行った。
 次いで、マルチウェハマウンター(リンテック社製「RAD-2700 F/12」)を用いて、熱硬化性樹脂フィルムから第1基材、密着層及び緩衝層を取り除き、熱硬化性樹脂フィルムを露出させた。
 次いで、走査型電子顕微鏡(SEM、キーエンス社製「VE-9700」)を用いて、半導体ウエハのバンプ形成面に対して垂直な方向と60°の角度を為す方向から、半導体ウエハのバンプの表面を観察し、バンプの上部での熱硬化性樹脂フィルムの残存の有無を確認した。結果を表1に示す。
<Confirmation of residual thermosetting resin film on the top of the bump>
In the first protective film forming sheet obtained above, the release film is removed, and the surface (exposed surface) of the heat-curable resin film exposed thereby is the bump forming surface of a semiconductor wafer having a diameter of 8 inches and having bumps. The first protective film forming sheet from which the release film was removed was attached to the bump forming surface of the semiconductor wafer. At this time, as the semiconductor wafer, one having a bump height of 210 μm, a bump width of 250 μm, and a distance between the bumps of 400 μm was used. Further, the first protective film forming sheet is attached using a pasting device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation) at a table temperature of 90 ° C., a sticking speed of 2 mm / sec, and a sticking pressure of 0. This was performed while heating the first protective film forming sheet under the conditions of 5.5 MPa and a roller attachment height of −200 μm.
Next, using a multi-wafer mounter (“RAD-2700 F / 12” manufactured by Lintec Corporation), the first base material, the adhesion layer and the buffer layer were removed from the thermosetting resin film to expose the thermosetting resin film. ..
Next, using a scanning electron microscope (SEM, "VE-9700" manufactured by KEYENCE CORPORATION), the surface of the bump of the semiconductor wafer is formed from a direction perpendicular to the bump forming surface of the semiconductor wafer and an angle of 60 °. It was confirmed whether or not the thermosetting resin film remained on the upper part of the bump. The results are shown in Table 1.
<バンプ形成面での熱硬化性樹脂フィルムの熱硬化物のハジキ有無の確認>
 上述の「バンプの上部での熱硬化性樹脂フィルムの残存有無の確認」の場合と同じ方法で、同じ半導体ウエハを用い、そのバンプ形成面に第1保護膜形成用シートを貼付し、熱硬化性樹脂フィルムから第1基材、密着層及び緩衝層を取り除いた。
 次いで、半導体ウエハに貼付されている熱硬化性樹脂フィルムを、加圧オーブン(リンテック社製「RAD-9100」)を用いて、温度130℃、時間2h、炉内圧力0.5MPaの加熱条件で加熱処理することにより、熱硬化性樹脂フィルムを熱硬化させた。
 次いで、走査型電子顕微鏡(SEM、キーエンス社製「VE-9700」)を用いて、熱硬化性樹脂フィルムの硬化物(換言すると第1保護膜)と半導体ウエハとの積層物全体を、前記硬化物側から観察した。そして、バンプの基部、又は、半導体ウエハのバンプ形成面を直接確認できる領域が存在する場合には「ハジキあり」と判定し、バンプの基部、又は、半導体ウエハのバンプ形成面を直接確認できる領域が存在しない場合には「ハジキなし」と判定した。
<Confirmation of the presence or absence of repelling of the thermosetting resin film on the bump forming surface>
Using the same semiconductor wafer, a first protective film forming sheet is attached to the bump forming surface in the same manner as in the case of "confirmation of the presence or absence of the remaining thermosetting resin film on the bump", and the thermosetting is performed. The first base material, the adhesion layer and the buffer layer were removed from the sex resin film.
Next, the thermosetting resin film attached to the semiconductor wafer was heated in a pressure oven (“RAD-9100” manufactured by Lintec) at a temperature of 130 ° C. for a time of 2 hours and a furnace pressure of 0.5 MPa. The thermosetting resin film was heat-cured by heat treatment.
Next, using a scanning electron microscope (SEM, "VE-9700" manufactured by KEYENCE CORPORATION), the entire laminate of the cured product (in other words, the first protective film) of the thermosetting resin film and the semiconductor wafer was cured. Observed from the object side. Then, when there is a region where the bump base or the bump forming surface of the semiconductor wafer can be directly confirmed, it is determined that there is a cissing, and the bump base or the bump forming surface of the semiconductor wafer can be directly confirmed. If does not exist, it was determined that there was no repellent.
[実施例2、比較例1~3]
<<第1保護膜形成用シートの製造及び評価>>
 熱硬化性樹脂フィルム形成用組成物の含有成分の種類及び含有量が、表1に示すとおりとなるように、熱硬化性樹脂フィルム形成用組成物の製造時における、配合成分の種類及び配合量のいずれか一方又は両方を変更した点以外は、実施例1の場合と同じ方法で、第1保護膜形成用シートを製造し、評価した。結果を表1に示す。
 なお、表1中の含有成分の欄の「-」との記載は、熱硬化性樹脂フィルム形成用組成物がその成分を含有していないことを意味する。
[Example 2, Comparative Examples 1 to 3]
<< Manufacture and evaluation of first protective film forming sheet >>
As shown in Table 1, the types and contents of the components contained in the composition for forming a thermosetting resin film are the types and amounts of the components to be blended during the production of the composition for forming a thermosetting resin film. A first protective film-forming sheet was produced and evaluated in the same manner as in Example 1 except that one or both of the above was changed. The results are shown in Table 1.
In addition, the description of "-" in the column of the contained component in Table 1 means that the composition for forming a thermosetting resin film does not contain the component.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記結果から明らかなように、実施例1~2においては、熱硬化性樹脂フィルムのはみ出し量が0mmであり(熱硬化性樹脂フィルムのはみ出しが認められず)、また、バンプの上部での熱硬化性樹脂フィルムの残存が認められなかった。
 さらに、実施例1~2においては、バンプ形成面での熱硬化性樹脂フィルムの熱硬化物のハジキが認められず、熱硬化性樹脂フィルムの基本的特性が良好であった。また、このとき同時に、バンプの上部を観察した結果、熱硬化性樹脂フィルムの熱硬化物は、当然に認められなかった。
 実施例1~2においては、X値が29~65であった。
As is clear from the above results, in Examples 1 and 2, the amount of protrusion of the thermosetting resin film was 0 mm (no protrusion of the thermosetting resin film was observed), and the heat at the upper part of the bump was observed. No residual curable resin film was observed.
Further, in Examples 1 and 2, no repelling of the thermosetting resin film was observed on the bump forming surface, and the basic characteristics of the thermosetting resin film were good. At the same time, as a result of observing the upper part of the bump, a thermosetting product of the thermosetting resin film was not naturally recognized.
In Examples 1 and 2, the X value was 29 to 65.
 これに対して、比較例1においては、熱硬化性樹脂フィルムのはみ出しが抑制されていなかった。
 比較例1においては、X値が18であり、実施例1~2の場合よりも明らかに小さかった。これは、比較例1においては、Gc1が低過ぎたからであった。
On the other hand, in Comparative Example 1, the protrusion of the thermosetting resin film was not suppressed.
In Comparative Example 1, the X value was 18, which was clearly smaller than that in Examples 1 and 2. This was because Gc1 was too low in Comparative Example 1.
 比較例2においては、バンプ形成面での熱硬化性樹脂フィルムの熱硬化物のハジキが認められ、熱硬化性樹脂フィルムの基本的特性が劣っていた。
 比較例2においては、X値が10000以上であり、実施例1~2の場合よりも明らかに大きかった。これは、比較例2においては、Gc300が低過ぎたからであった。比較例2においては、Gc300が検出限界値以下であるために特定不能であり、X値は、10000以上であることを特定できるのにとどまった。
In Comparative Example 2, repelling of the thermosetting resin film on the bump-forming surface was observed, and the basic characteristics of the thermosetting resin film were inferior.
In Comparative Example 2, the X value was 10,000 or more, which was clearly larger than that in Examples 1 and 2. This was because Gc300 was too low in Comparative Example 2. In Comparative Example 2, it was impossible to specify because Gc300 was below the detection limit value, and it was only possible to specify that the X value was 10,000 or more.
 比較例3においては、バンプの上部での熱硬化性樹脂フィルムの残存が認められた。熱硬化性樹脂フィルムの熱硬化物のハジキの有無の確認時に、同時に、バンプの上部を観察した結果、熱硬化性樹脂フィルムの熱硬化物も認められた。
 比較例3においては、X値が18であり、実施例1~2の場合よりも明らかに小さかった。これは、比較例3においては、Gc300が高過ぎたからであった。
In Comparative Example 3, the thermosetting resin film remained on the upper part of the bump. At the same time as confirming the presence or absence of repelling of the thermosetting resin film, the upper part of the bump was observed, and as a result, the thermosetting resin film was also found to be thermosetting.
In Comparative Example 3, the X value was 18, which was clearly smaller than that in Examples 1 and 2. This was because Gc300 was too high in Comparative Example 3.
 なお、実施例1~2においては、前記積層シート中の緩衝層について、上述の熱硬化性樹脂フィルムの試験片と同様の試験片(直径25mm、厚さ1mmの円板状)を作製し、熱硬化性樹脂フィルムの試験片の場合と同様に、この緩衝層の試験片に発生させるひずみを0.01%~1000%の範囲で段階的に上昇させ、緩衝層の試験片の貯蔵弾性率Gbを測定した。
 その結果、ひずみが同じである場合のGbとGcを比較したとき、ひずみが0.01%~1000%のすべての範囲で、GbはGc以上(Gb≧Gc)であった。
In Examples 1 and 2, for the buffer layer in the laminated sheet, a test piece (a disk shape having a diameter of 25 mm and a thickness of 1 mm) similar to the test piece of the thermosetting resin film described above was prepared. As in the case of the test piece of the thermosetting resin film, the strain generated in the test piece of the buffer layer is gradually increased in the range of 0.01% to 1000%, and the storage elastic modulus of the test piece of the buffer layer is increased. Gb was measured.
As a result, when Gb and Gc when the strains were the same were compared, Gb was Gc or more (Gb ≧ Gc) in the entire range of the strains of 0.01% to 1000%.
 本発明は、フリップチップ接続方法で使用される、接続パッド部にバンプを有する半導体チップ等の製造に利用可能である。 The present invention can be used for manufacturing a semiconductor chip or the like having a bump on the connection pad portion used in the flip chip connection method.
 1,2・・・複合シート(第1保護膜形成用シート)、11・・・基材(第1基材)、12・・・樹脂フィルム(硬化性樹脂フィルム)、12a・・・樹脂フィルム(硬化性樹脂フィルム)の第1面、120’・・・第1保護膜(切断後の第1保護膜)、13・・・緩衝層、13a・・・緩衝層の第1面、14・・・密着層、9・・・半導体ウエハ、9a・・・半導体ウエハのバンプ形成面、9’・・・半導体チップ、9a’・・・半導体チップのバンプ形成面、91・・・バンプ、91a・・・バンプの表面、910・・・バンプの上部、9101・・・バンプの頭頂部 1, 2, ... Composite sheet (sheet for forming first protective film), 11 ... Base material (first base material), 12 ... Resin film (curable resin film), 12a ... Resin film 1st surface of (curable resin film), 120'... 1st protective film (first protective film after cutting), 13 ... buffer layer, 13a ... 1st surface of buffer layer, 14. Adhesion layer, 9 ... semiconductor wafer, 9a ... semiconductor wafer bump forming surface, 9'... semiconductor chip, 9a'... semiconductor chip bump forming surface, 91 ... bump, 91a ... the surface of the bump, 910 ... the top of the bump, 9101 ... the crown of the bump

Claims (5)

  1.  樹脂フィルムであって、
     温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの前記樹脂フィルムの試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが1%のときの、前記試験片の貯蔵弾性率をGc1とし、前記試験片のひずみが300%のときの、前記試験片の貯蔵弾性率をGc300としたとき、下記式:
     X=Gc1/Gc300
    により算出されるX値が、19以上10000未満である、樹脂フィルム。
    It ’s a resin film,
    Strain was generated in the test piece of the resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece was measured. When the storage elastic modulus of the test piece is Gc1 and the strain of the test piece is 300%, the storage elastic modulus of the test piece is Gc300.
    X = Gc1 / Gc300
    A resin film having an X value calculated by 19 or more and less than 10000.
  2.  前記樹脂フィルムが凹凸面への貼付用である、請求項1に記載の樹脂フィルム。 The resin film according to claim 1, wherein the resin film is for sticking to an uneven surface.
  3.  前記樹脂フィルムが硬化性である、請求項1に記載の樹脂フィルム。 The resin film according to claim 1, wherein the resin film is curable.
  4.  基材と、前記基材上に設けられた緩衝層と、前記緩衝層上に設けられた樹脂フィルムと、を備え、
     前記樹脂フィルムが、請求項1~3のいずれか一項に記載の樹脂フィルムである、複合シート。
    A base material, a buffer layer provided on the base material, and a resin film provided on the buffer layer are provided.
    A composite sheet in which the resin film is the resin film according to any one of claims 1 to 3.
  5.  請求項4に記載の複合シート中の、硬化性である前記樹脂フィルムを、半導体ウエハのバンプを有する面に貼付し、前記バンプの頭頂部を前記樹脂フィルムから突出させることにより、前記半導体ウエハに前記複合シートを設ける貼付工程と、
     前記貼付工程の後に、前記複合シートのうち、前記樹脂フィルム以外の層を、前記樹脂フィルムから取り除く除去工程と、
     前記除去工程の後に、前記樹脂フィルムを硬化させることにより、第1保護膜を形成する硬化工程と、
     前記硬化工程の後に、前記半導体ウエハを分割することにより、半導体チップを作製する分割工程と、
     前記硬化工程の後に、前記第1保護膜を切断する切断工程と、
     前記分割工程及び切断工程の後に得られた、前記半導体チップと、前記半導体チップのバンプを有する面に設けられた第1保護膜と、を備え、前記バンプの頭頂部が前記第1保護膜から突出している第1保護膜付き半導体チップを、前記バンプの頭頂部において、基板にフリップチップ接続する実装工程と、を有する、半導体装置の製造方法。
    The curable resin film in the composite sheet according to claim 4 is attached to a surface of the semiconductor wafer having bumps, and the crown of the bumps is projected from the resin film to form the semiconductor wafer. The pasting process for providing the composite sheet and
    After the pasting step, a removing step of removing the layer other than the resin film from the resin film from the composite sheet,
    After the removal step, a curing step of forming a first protective film by curing the resin film, and a curing step.
    After the curing step, a splitting step of producing a semiconductor chip by splitting the semiconductor wafer, and
    After the curing step, a cutting step of cutting the first protective film and
    The semiconductor chip obtained after the dividing step and the cutting step and a first protective film provided on a surface of the semiconductor chip having a bump are provided, and the crown of the bump is formed from the first protective film. A method for manufacturing a semiconductor device, comprising a mounting step of flip-chip-connecting a protruding semiconductor chip with a first protective film to a substrate at the crown of the bump.
PCT/JP2021/007103 2020-02-27 2021-02-25 Resin film, composite sheet and method for producing semiconductor device WO2021172431A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180006372.3A CN114728508A (en) 2020-02-27 2021-02-25 Resin film, composite sheet, and method for manufacturing semiconductor device
JP2022503692A JPWO2021172431A1 (en) 2020-02-27 2021-02-25
KR1020227014068A KR20220147571A (en) 2020-02-27 2021-02-25 Resin film, composite sheet, and manufacturing method of a semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020031717 2020-02-27
JP2020-031717 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172431A1 true WO2021172431A1 (en) 2021-09-02

Family

ID=77490089

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2021/003161 WO2021171898A1 (en) 2020-02-27 2021-01-29 Protective coating formation sheet, method for producing chip equipped with protective coating, and layered product
PCT/JP2021/007049 WO2021172410A1 (en) 2020-02-27 2021-02-25 Thermosetting resin film, composite sheet, and method for manufacturing first protective film-equipped semiconductor chip
PCT/JP2021/007082 WO2021172424A1 (en) 2020-02-27 2021-02-25 Resin film, composite sheet, and method for producing first protective film-bearing semiconductor chip
PCT/JP2021/007103 WO2021172431A1 (en) 2020-02-27 2021-02-25 Resin film, composite sheet and method for producing semiconductor device
PCT/JP2021/007087 WO2021172426A1 (en) 2020-02-27 2021-02-25 Resin film, composite sheet and method for producing semiconductor chip with first protective film

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2021/003161 WO2021171898A1 (en) 2020-02-27 2021-01-29 Protective coating formation sheet, method for producing chip equipped with protective coating, and layered product
PCT/JP2021/007049 WO2021172410A1 (en) 2020-02-27 2021-02-25 Thermosetting resin film, composite sheet, and method for manufacturing first protective film-equipped semiconductor chip
PCT/JP2021/007082 WO2021172424A1 (en) 2020-02-27 2021-02-25 Resin film, composite sheet, and method for producing first protective film-bearing semiconductor chip

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007087 WO2021172426A1 (en) 2020-02-27 2021-02-25 Resin film, composite sheet and method for producing semiconductor chip with first protective film

Country Status (5)

Country Link
JP (5) JPWO2021171898A1 (en)
KR (5) KR20220147084A (en)
CN (5) CN115176333A (en)
TW (5) TW202136448A (en)
WO (5) WO2021171898A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138946A1 (en) * 2020-12-25 2022-06-30 リンテック株式会社 Method for manufacturing semiconductor chip
JP7095780B1 (en) 2021-06-09 2022-07-05 住友ベークライト株式会社 Manufacturing method of release film and molded product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024047022A (en) * 2022-09-26 2024-04-05 株式会社レゾナック Manufacturing method of semiconductor device and adhesive film for semiconductor wafer processing
JP2024047019A (en) * 2022-09-26 2024-04-05 株式会社レゾナック Manufacturing method of semiconductor device and adhesive film for semiconductor wafer processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024431A (en) * 2008-06-17 2010-02-04 Hitachi Chem Co Ltd Adhesive composition, film type adhesive, adhesive sheet, and semiconductor device
WO2019098334A1 (en) * 2017-11-17 2019-05-23 リンテック株式会社 Semiconductor chip with first protective film, method for manufacturing semiconductor chip with first protective film, and method for evaluating laminate of semiconductor chip and first protective film
WO2019098329A1 (en) * 2017-11-17 2019-05-23 リンテック株式会社 Thermosetting resin film, and first protective film-forming sheet

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205426A (en) 1983-05-06 1984-11-21 Nippon Mining Co Ltd Converter operating method
WO2003003445A1 (en) * 2001-06-29 2003-01-09 Fujitsu Limited Sheet for underfill, method for underfilling semiconductor chip, and method for mounting semiconductor chip
JP4776188B2 (en) * 2004-08-03 2011-09-21 古河電気工業株式会社 Semiconductor device manufacturing method and wafer processing tape
JP4532358B2 (en) * 2005-06-15 2010-08-25 株式会社ディスコ Manufacturing method of semiconductor chip
JP2011171712A (en) * 2010-01-21 2011-09-01 Hitachi Chem Co Ltd Adhesive tape for semiconductor wafer processing, method of manufacturing semiconductor wafer with adhesive tape for semiconductor wafer processing, method of manufacturing semiconductor device, and semiconductor device
JP5738263B2 (en) * 2012-12-25 2015-06-17 日立化成株式会社 Manufacturing method of semiconductor device
KR102177881B1 (en) * 2013-03-19 2020-11-12 린텍 가부시키가이샤 Film for forming protection film, chip with protection film and method for producing chip with protection film
JP6328987B2 (en) * 2014-04-22 2018-05-23 デクセリアルズ株式会社 Manufacturing method of semiconductor device
JP2015092594A (en) 2014-12-10 2015-05-14 日東電工株式会社 Protection layer formation film
JP6213757B2 (en) * 2015-11-04 2017-10-18 リンテック株式会社 Curable resin film and first protective film forming sheet
JP6950907B2 (en) 2015-11-04 2021-10-13 リンテック株式会社 Manufacturing method of semiconductor devices
KR102412725B1 (en) * 2016-10-05 2022-06-23 린텍 가부시키가이샤 Sheet for forming the first protective film
JP6438181B1 (en) * 2017-05-17 2018-12-12 リンテック株式会社 Semiconductor device and manufacturing method thereof
JP7098221B2 (en) * 2017-09-08 2022-07-11 株式会社ディスコ Wafer processing method
JP7064184B2 (en) * 2017-12-11 2022-05-10 日東電工株式会社 Manufacturing method of dicing tape integrated sealing sheet and semiconductor device
TWI825080B (en) * 2018-03-30 2023-12-11 日商琳得科股份有限公司 Method for manufacturing semiconductor chip

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024431A (en) * 2008-06-17 2010-02-04 Hitachi Chem Co Ltd Adhesive composition, film type adhesive, adhesive sheet, and semiconductor device
WO2019098334A1 (en) * 2017-11-17 2019-05-23 リンテック株式会社 Semiconductor chip with first protective film, method for manufacturing semiconductor chip with first protective film, and method for evaluating laminate of semiconductor chip and first protective film
WO2019098329A1 (en) * 2017-11-17 2019-05-23 リンテック株式会社 Thermosetting resin film, and first protective film-forming sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138946A1 (en) * 2020-12-25 2022-06-30 リンテック株式会社 Method for manufacturing semiconductor chip
JP7095780B1 (en) 2021-06-09 2022-07-05 住友ベークライト株式会社 Manufacturing method of release film and molded product
WO2022260003A1 (en) * 2021-06-09 2022-12-15 住友ベークライト株式会社 Release film and method for manufacturing molded product
JP2022188694A (en) * 2021-06-09 2022-12-21 住友ベークライト株式会社 Release film and method for manufacturing molded product

Also Published As

Publication number Publication date
WO2021171898A1 (en) 2021-09-02
WO2021172426A1 (en) 2021-09-02
TW202200373A (en) 2022-01-01
JPWO2021172424A1 (en) 2021-09-02
WO2021172410A1 (en) 2021-09-02
WO2021172424A1 (en) 2021-09-02
JPWO2021172431A1 (en) 2021-09-02
TW202146540A (en) 2021-12-16
CN114728508A (en) 2022-07-08
CN114729142A (en) 2022-07-08
KR20220147571A (en) 2022-11-03
TW202136448A (en) 2021-10-01
TW202140664A (en) 2021-11-01
KR20220147064A (en) 2022-11-02
CN115176333A (en) 2022-10-11
CN114585683A (en) 2022-06-03
JPWO2021172426A1 (en) 2021-09-02
KR20220147084A (en) 2022-11-02
KR20220147062A (en) 2022-11-02
TW202200374A (en) 2022-01-01
KR20220147063A (en) 2022-11-02
JPWO2021171898A1 (en) 2021-09-02
JPWO2021172410A1 (en) 2021-09-02
CN114555697A (en) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2021172431A1 (en) Resin film, composite sheet and method for producing semiconductor device
JP7233377B2 (en) Thermosetting resin film and sheet for forming first protective film
JP6344811B1 (en) First protective film forming sheet
CN107615454B (en) Composite sheet for forming protective film
WO2020085220A1 (en) Semiconductor device manufacturing method
JP6438181B1 (en) Semiconductor device and manufacturing method thereof
CN108140622B (en) Kit of thermosetting resin film and 2 nd protective film forming film, and method for forming same
JP7033237B2 (en) How to manufacture kits and semiconductor chips
JP7218297B2 (en) Semiconductor chip with first protective film, method for manufacturing semiconductor chip with first protective film, and method for evaluating semiconductor chip/first protective film laminate
JPWO2019189173A1 (en) Semiconductor chip manufacturing method
JP6907122B2 (en) Curable resin film and first protective film forming sheet
JP7323734B1 (en) Sheet for forming first protective film, method for manufacturing semiconductor device, and use of sheet
WO2021235005A1 (en) Production method for semiconductor device
WO2020195761A1 (en) Thermosetting resin film, first protective film forming sheet, kit, and method for manufacturing first protective film-attached workpiece
KR102594248B1 (en) A semiconductor chip with a first protective film, a method of manufacturing a semiconductor chip with a first protective film, and an evaluation method of a semiconductor chip first protective film laminate.
JP2023102566A (en) Sheet for forming first protective film, method for manufacturing semiconductor device and use of sheet
JP2023102567A (en) Sheet for forming first protective film, method for manufacturing semiconductor device and use of sheet
JPWO2020175421A1 (en) Thermosetting resin film and first protective film forming sheet
JPWO2020175423A1 (en) Thermosetting resin film and first protective film forming sheet
JPWO2020175428A1 (en) Method for manufacturing a workpiece with a first protective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761068

Country of ref document: EP

Kind code of ref document: A1