WO2021172424A1 - Resin film, composite sheet, and method for producing first protective film-bearing semiconductor chip - Google Patents

Resin film, composite sheet, and method for producing first protective film-bearing semiconductor chip Download PDF

Info

Publication number
WO2021172424A1
WO2021172424A1 PCT/JP2021/007082 JP2021007082W WO2021172424A1 WO 2021172424 A1 WO2021172424 A1 WO 2021172424A1 JP 2021007082 W JP2021007082 W JP 2021007082W WO 2021172424 A1 WO2021172424 A1 WO 2021172424A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
protective film
film
semiconductor chip
semiconductor wafer
Prior art date
Application number
PCT/JP2021/007082
Other languages
French (fr)
Japanese (ja)
Inventor
圭亮 四宮
友尭 森下
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2022503687A priority Critical patent/JPWO2021172424A1/ja
Priority to CN202180005977.0A priority patent/CN114555697A/en
Priority to KR1020227010219A priority patent/KR20220147062A/en
Publication of WO2021172424A1 publication Critical patent/WO2021172424A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a method for manufacturing a resin film, a composite sheet, and a semiconductor chip with a first protective film.
  • the present application claims priority based on Japanese Patent Application No. 2020-031717 filed in Japan on February 27, 2020, the contents of which are incorporated herein by reference.
  • a convex electrode made of eutectic solder, high temperature solder, gold, etc. (hereinafter referred to as “convex electrode”) is attached to the connection pad portion.
  • bumps Referred to as "bumps" in the present specification) are formed, and these bumps are brought into face-to-face contact with the corresponding terminal portions on the chip mounting substrate by a so-called face-down method to melt / diffuse.
  • a flip-chip mounting method for joining has been adopted.
  • the semiconductor chip used in this mounting method is, for example, a semiconductor wafer having bumps formed on the circuit surface, and the surface opposite to the circuit surface (in other words, the bump forming surface) is ground or diced to be individualized. Obtained by In the process of obtaining such a semiconductor chip, a curable resin film is usually attached to the bump forming surface and the bump forming surface is cured for the purpose of protecting the bump forming surface and the bump of the semiconductor wafer. A protective film is formed on the surface.
  • semiconductor devices are expected to have higher functions, and the size of semiconductor chips tends to increase.
  • the bumps are likely to be deformed due to the occurrence of warpage in the state of being mounted on the substrate, and in particular, the bumps located at the end of the semiconductor chip or in the vicinity thereof are likely to be cracked.
  • the protective film formed on the bump-forming surface is also expected to suppress such damage to the bumps.
  • a method of forming a protective film on the bump forming surface of the semiconductor wafer will be described with reference to FIGS. 8A to 8D.
  • a protective film forming sheet 8 as shown in FIG. 8A is used for forming the protective film.
  • the protective film forming sheet 8 is formed by laminating the pressure-sensitive adhesive layer 83 and the curable resin film 82 on the base material 81 in this order.
  • the protective film forming sheet 8 is arranged so that the curable resin film 82 faces the bump forming surface 9a of the semiconductor wafer 9.
  • the protective film forming sheet 8 is pressed against the semiconductor wafer 9, and as shown in FIG. 8B, the curable resin film 82 of the protective film forming sheet 8 is attached to the bump forming surface 9a of the semiconductor wafer 9.
  • the curable resin film 82 is bonded while heating the curable resin film 82.
  • the curable resin film 82 adheres to the bump forming surface 9a of the semiconductor wafer 9 and the surface 91a of the bump 91, but if the bump 91 penetrates the curable resin film 82, the surface 91a of the bump 91
  • the pressure-sensitive adhesive layer 83 also adheres to a part thereof.
  • the surface (back surface) 9b of the semiconductor wafer 9 opposite to the bump forming surface 9a is ground, and then on the back surface 9b of the semiconductor wafer 9.
  • a protective film forming sheet for protecting the back surface 9b is attached (not shown).
  • the base material 81 and the pressure-sensitive adhesive layer 83 are removed from the curable resin film 82.
  • the curable resin film 82 is cured to form the protective film 82'as shown in FIG. 8D.
  • the curable resin film is thermosetting, has a melt viscosity in a specific range, and is adhesive. It is disclosed that the agent layer has a shear modulus in a specific range in a specific temperature range (see Patent Document 1).
  • various methods are known as methods for dividing a semiconductor wafer into semiconductor chips.
  • a semiconductor wafer a wafer having a bump forming surface further provided with a groove to be a division portion thereof is used, and as described above, a surface opposite to the bump forming surface of the semiconductor wafer is used.
  • a method of dividing a semiconductor wafer into semiconductor chips is known by grinding the (back surface) and causing the ground surface (back surface) to reach the groove.
  • FIG. 9 shows a semiconductor chip provided with a protective film not only on the bump forming surface but also on the side surface thereof.
  • FIG. 9 shows an example of a semiconductor chip (semiconductor chip with a protective film) having a protective film on the bump forming surface and the side surface when it is assumed that the protective film forming sheet 8 can be normally obtained. It is sectional drawing which shows typically.
  • the semiconductor chip 909 with a protective film shown here includes a semiconductor chip 9'and a first protective film 820' provided on a side surface 9c'and a bump forming surface 9a'of the semiconductor chip 9'.
  • the semiconductor chip 9' is protected by the first protective film 820' after cutting on its side surface 9c'and the bump forming surface 9a', respectively, and the protective effect obtained by the semiconductor chip 9'is remarkably high.
  • thermosetting resin film As the curable resin film, a thermosetting resin film may be used. When the filled resin film is heat-cured, the thermosetting resin film is partially cured, such as when the shape of the groove filled with the resin film is fine and the heat transfer to the resin film is not uniform. Defects may occur. When curing failure occurs, the protective effect of the chip may be lower than expected. In addition, when the protective film with poor curing is cut along the gap between the semiconductor chips, the processing debris generated during cutting may adhere to the semiconductor chip or wafer, and the cut surfaces of the protective film may reappear. There is a possibility of sticking. On the other hand, it is uncertain whether the protective film forming sheet (protective film forming film) disclosed in Patent Document 1 can solve such a problem.
  • the curable resin film is attached to the bump-forming surface of the semiconductor wafer. It may be affixed. On the other hand, there is a possibility that the resin film may be poorly cured in general sticking to such an uneven surface.
  • the present invention is a resin film that can be applied to an uneven surface and can form a protective film, and is cut after the resin film is filled in a groove on the uneven surface and heat-treated for thermal curing. If this is the case, the present invention provides a resin film in which processing waste that may be generated during cutting does not easily adhere to a semiconductor chip or wafer, and a composite sheet provided with the resin film used when the resin film is attached to an uneven surface. With the goal.
  • thermosetting resin film The resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min.
  • the resin film contains a thermosetting component (B) and contains.
  • the resin film having a diameter of 25 mm and a thickness of 1 mm is used as the second test piece, and strain is generated in the second test piece under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz to generate the second test piece.
  • the storage elastic modulus of the test piece is measured and the strain of the second test piece is 1%
  • the storage elastic modulus of the second test piece is Gc1 and the strain of the second test piece is 300%.
  • the storage elastic modulus of the second test piece is Gc300
  • the following formula: X Gc1 / Gc300
  • [4] The resin film according to any one of [1] to [3] above, wherein the resin film is for sticking to an uneven surface.
  • [5] The resin film according to any one of [1] to [4] above, wherein the resin film is for protecting the uneven surface and the side surface of the semiconductor chip.
  • a support sheet and a resin film provided on one surface of the support sheet are provided.
  • the support sheet includes a base material and an adhesive layer provided on one surface of the base material, and the pressure-sensitive adhesive layer comprises the base material, the resin film, and the like.
  • the composite sheet according to the above [6] which is arranged between the above.
  • the support sheet includes a base material and a buffer layer provided on one surface of the base material, and the buffer layer is between the base material and the resin film.
  • a method for manufacturing a semiconductor chip with a first protective film using a semiconductor wafer includes a semiconductor chip and a first protective film provided on a side surface of the semiconductor chip and a surface having bumps.
  • the semiconductor wafer has bumps and grooves serving as division points of the semiconductor wafer on one surface thereof.
  • the resin film in the composite sheet according to any one of [6] to [8] is attached to the one surface of the semiconductor wafer, whereby the resin film is attached to the one surface. It has a sticking step of producing a semiconductor wafer with a resin film, which comprises a resin film and whose grooves are filled with the resin film.
  • the resin film is thermally cured to form the first protective film, whereby the semiconductor wafer and the semiconductor wafer are provided on one surface of the semiconductor wafer and filled in the grooves.
  • a plurality of the semiconductor chips are formed by dividing the semiconductor wafer after the curing step (1) for producing the semiconductor wafer with the first protective film provided with the first protective film and the curing step (1).
  • the semiconductor chip with the first protective film is cut along the gap between the semiconductor chips in the semiconductor chip group with the first protective film.
  • a cutting step (1) to make After the pasting step and after the curing step (1), the first protective film is cut along the groove in the first protective film-attached semiconductor wafer, so that the cut semiconductor wafer with the first protective film is cut.
  • the semiconductor wafer is divided into a cutting step (2) and a dividing step (2) for producing the semiconductor chip with the first protective film by dividing the semiconductor wafer after the cutting step (2).
  • the resin film is thermally cured to form the first protective film, whereby a plurality of semiconductor chips are formed. Curing to prepare a group of semiconductor chips with a first protective film including the semiconductor chip, a surface of the plurality of semiconductor chips having the bumps, and the first protective film provided in a gap between the semiconductor chips. After the step (3) and the curing step (3), the first protective film is cut along the gap between the semiconductor chips in the semiconductor chip group with the first protective film to protect the first protective film.
  • a method for manufacturing a semiconductor chip with a first protective film which comprises a cutting step (3) for obtaining a semiconductor chip with a film.
  • the present invention is a resin film that can be applied to an uneven surface and can form a protective film.
  • the resin film is filled in a groove on the uneven surface and heat-treated for thermal curing.
  • a resin film in which processing waste that may be generated during cutting when cut later is unlikely to adhere to a semiconductor chip or wafer, and a composite sheet provided with the resin film used when the resin film is attached to an uneven surface. Will be done.
  • FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used.
  • FIG. 5 is a plan view schematically showing a laminate containing a thermosetting resin film produced at the time of measuring the amount of protrusion of the thermosetting resin film in Example 1. It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. It is sectional drawing which shows typically an example of the semiconductor chip which provided the protective film on the bump forming surface and the side surface.
  • the resin film according to the embodiment of the present invention is a thermosetting resin film, and the resin film before heat curing is used as a first test piece for differential scanning calorimetry (DSC). ) Method, the calorific value of the exothermic peak in the range of 100 to 300 ° C. obtained by analyzing the first test piece under the constant rate heating condition of 10 ° C./min is 100 J / g or less.
  • the resin film of this embodiment is suitable for sticking to an uneven surface. Further, the resin film of the present embodiment has thermosetting property, and a protective film can be formed by thermosetting. The resin film of the present embodiment is suitable for protecting the uneven surface and the side surface of the semiconductor chip.
  • the resin film means a thermosetting resin film, and the "curing" of the resin film means "thermosetting”.
  • the softened resin film spreads between the convex portions so as to cover the convex portion and adheres to the uneven surface, and the surface of the convex portion, In particular, the surface of the portion near the uneven surface is covered and the base of the convex portion is embedded.
  • the convex portion of the uneven surface penetrates the resin film, and the upper portion of the convex portion protrudes from the resin film.
  • the uneven surface has fine grooves, such grooves can be filled with the resin film, and poor curing of the resin film can be suppressed when heat treatment for thermosetting is performed after filling.
  • the reason why the curing failure of the resin film can be suppressed is that the calorific value of the first test piece of the resin film is 100 J / g or less.
  • the heating temperature and the application pressure of the resin film can be appropriately adjusted according to other application conditions and the width and depth of the grooves on the uneven surface. For example, it can be the same as when the semiconductor wafer is attached to the bump forming surface, which will be described later.
  • the degree of filling of the groove on the uneven surface by the resin film or the protective film is determined by measuring the uneven surface provided with the resin film or the protective film with an optical microscope. It can be confirmed by observing with. The degree of generation of processing debris that can be generated when the resin film after the heat treatment for thermosetting is cut can be confirmed by observing the intersection of the cutting lines with an optical microscope.
  • a composite sheet provided with the resin film of the present embodiment can be used.
  • the composite sheet will be described in detail later.
  • a semiconductor wafer having bumps can be mentioned as an object to which the resin film is attached, which has the uneven surface. That is, the resin film can be attached to the semiconductor wafer before it is divided into semiconductor chips. In this case, the resin film is used by being attached to a surface of a semiconductor wafer having bumps.
  • the surface having the bump may be referred to as a "bump forming surface”.
  • the softened resin film spreads between the bumps so as to cover the bumps and adheres to the bump forming surface, and also on the bump surface, particularly the bump forming surface. Cover the surface of the nearby part and embed the base of the bump.
  • the bumps on the bump forming surface penetrate the resin film, and the crown portion of the bumps protrudes from the resin film. Further, when the bump forming surface has fine grooves, such grooves can be filled with the resin film.
  • the resin film provided on the bump forming surface and filled in the groove is then cured to finally form the first protective film in this state.
  • the heat generation amount of the first test piece produced by using the resin film is 100 J / g or less, so that curing failure is suppressed.
  • the protective film provided on the bump forming surface of the semiconductor wafer or the semiconductor chip in this way is referred to as a "first protective film”.
  • the protective film provided on the surface (that is, the back surface) opposite to the bump forming surface of the semiconductor wafer or semiconductor chip is referred to as a "second protective film”.
  • the resin film is thermosetting and may have both thermosetting and energy ray curable properties.
  • energy ray means an electromagnetic wave or a charged particle beam having an energy quantum.
  • energy rays include ultraviolet rays, radiation, electron beams and the like.
  • Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet source.
  • the electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
  • energy ray curable means a property of being cured by irradiating with energy rays
  • non-energy ray curable is a property of not being cured by irradiating with energy rays. Means. Further, “non-curable” means a property of not being cured by any means such as heating or irradiation with energy rays.
  • the measured value of the amount of heat generated by the resin film by the differential scanning calorimetry (DSC) method is adopted.
  • the first test piece of the resin film before thermosetting is used for measuring the calorific value of the resin film.
  • the first test piece is preferably a laminated film formed by laminating a plurality of the single-layer resin films having a thickness of less than 0.5 mm. Further, it is preferable to use 5 mg or more of the test piece.
  • the calorific value is a calorific value in the range of 100 to 300 ° C.
  • the calorific value can be obtained as an integral value of the exothermic peaks in the range of 100 to 300 ° C. in the DSC curve obtained by DSC analysis.
  • the calorific value of the first test piece is 100 J / g or less, for example, 10 to 100 J / g is preferable, 50 to 90 J / g is more preferable, and 60 to 80 J / g is further preferable.
  • the calorific value is not more than the above upper limit value, the heat transfer to the resin film tends to be non-uniform, such as when the resin film filled in the fine groove is thermosetting. Hardening failure is unlikely to occur. Further, when the calorific value is at least the above lower limit value, the thermosetting performance of the resin film is satisfactorily exhibited.
  • the calorific value of the first test piece can be easily adjusted by adjusting the type or content of the components contained in the resin film.
  • the type or content of the contained component in the composition for forming the resin film may be adjusted.
  • the thermosetting component (B) in this composition for example, epoxy resin (B1) and thermosetting agent (B2)
  • the calorific value can be easily adjusted by adjusting the type or content of the main contained component such as the filler (D).
  • the content of the thermosetting component (B) of the thermosetting resin film and the composition (III) for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)
  • the calorific value tends to be small.
  • the resin film having a diameter of 25 mm and a thickness of 1 mm is used as the second test piece, and strain is generated in the second test piece under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz.
  • the storage elastic modulus of the second test piece was measured, and when the strain of the second test piece was 1%, the storage elastic modulus of the second test piece was Gc1, and the strain of the second test piece was 300%.
  • the storage elastic modulus of the second test piece is Gc300
  • the X value calculated by the above method is preferably 19 or more and less than 10000 (19 ⁇ X value ⁇ 10000).
  • a region other than the upper portion of the convex portion of the concave-convex surface for example, a base near the concave-convex surface
  • a convex portion of the concave-convex surface for example, a base near the concave-convex surface
  • Unintentional exposure of a nearby region without being covered with the resin film and its cured product, so-called cissing, is suppressed.
  • the resin film is more excellent in that the entire uneven surface can be covered with the resin film itself and the cured product thereof while exposing the convex portion. Has characteristics.
  • the second test piece for performing strain dispersion measurement is in the form of a film, and its planar shape is circular.
  • the second test piece may be the single-layer resin film having a thickness of 1 mm, but in terms of ease of production, the second test piece is configured by laminating a plurality of the single-layer resin films having a thickness of less than 1 mm. It is preferably a laminated film.
  • the thicknesses of the plurality of single-layer resin films constituting the laminated film may be the same, all may be different, or only a part may be the same, but the production may be carried out. In terms of ease, they are all preferably the same.
  • the "storage elastic modulus of the second test piece” is the second resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz.
  • a strain is generated in the test piece, it means the storage elastic modulus of the second test piece corresponding to this strain.
  • the upper part of the convex portion of the uneven surface (or the upper part of the bump if the object to be attached is a semiconductor wafer having bumps) should protrude through the resin film.
  • the degree of distortion of the resin film differs greatly between the middle stage of the process and the final stage in which the resin film embeds the base of the convex portion after the upper portion of the convex portion penetrates the resin film and protrudes. More specifically, the strain of the resin film in the middle stage is large, and the strain of the resin film in the final stage is small.
  • Gc1 is adopted as the storage elastic modulus when the strain is small
  • Gc300 is adopted as the storage elastic modulus when the strain is large so that Gc1 is high and Gc300 is low.
  • Whether or not the resin film remains on the upper portion of the convex portion of the uneven surface can be confirmed, for example, by acquiring SEM imaging data on the upper portion of the convex portion. Further, the presence or absence of the resin film protruding from the uneven surface and the presence or absence of repelling of the resin film on the uneven surface can be confirmed, for example, by acquiring SEM imaging data for the corresponding portion on the uneven surface. can.
  • the X value may be, for example, any of 5000 or less, 2000 or less, 1000 or less, 500 or less, 300 or less, 100 or less, and 70 or less.
  • the X value may be any of 19-5000, 25-2000, 30-1000, 35-500, 40-300, 45-100, and 50-70. The larger the X value, the better the filling suitability of the groove.
  • Gc1 preferably has an X value of 19 or more and less than 10,000.
  • Gc1 is preferably 1 ⁇ 10 4 to 1 ⁇ 10 6 Pa, and more preferably 1 ⁇ 10 5 to 7 ⁇ 10 5 Pa, in that all of them are exhibited at a high level.
  • Gc300 is not particularly limited as long as the X value is 19 or more and less than 10,000. However, for the same reason as in the case of Gc1 described above, Gc300 is preferably 1 to 30000 Pa, and may be, for example, 1 to 5000 Pa or 5000 to 30000 Pa.
  • Gc1 is 1 ⁇ 10 4 to 1 ⁇ 10 6 Pa, preferably 1 ⁇ 10 5 to 7 ⁇ 10 5 Pa, and Gc300 is 1 to 30000 Pa. It is preferably 1 to 5000 Pa, or 5000 to 30000 Pa.
  • the storage elastic modulus of the resin film is not limited to the cases of Gc1 and Gc300, and can be easily adjusted by adjusting the type or content of the components contained in the resin film.
  • the type or content of the contained component in the composition for forming the resin film may be adjusted.
  • the type or content of the main contained components such as the polymer component (A) and the filler (D) in the composition.
  • the storage elastic modulus of the resin film can be easily adjusted by adjusting the type or content of the additive (I) such as a rheology control agent, a surfactant or a silicone oil.
  • the X value tends to increase.
  • the resin film of the present embodiment can form a composite sheet by laminating it with a support sheet, for example, as will be described later.
  • FIG. 1 is a cross-sectional view schematically showing an example of a resin film according to an embodiment of the present invention.
  • the main part may be enlarged for convenience, and the dimensional ratio and the like of each component are the same as the actual ones. Is not always the case.
  • the resin film 12 shown here has a first release film 151 on one surface (sometimes referred to as a “first surface” in the present specification) 12a, and is on the opposite side to the first surface 12a.
  • a second release film 152 is provided on the other surface (sometimes referred to as "second surface” in the present specification) 12b.
  • Such a resin film 12 is suitable for storage as a roll, for example.
  • the calorific value of the first test piece of the resin film 12 is 100 J / g or less.
  • the X value of the second test piece of the resin film 12 is preferably 19 or more and less than 10,000.
  • Both the first release film 151 and the second release film 152 may be known.
  • the first release film 151 and the second release film 152 may be the same as each other, or may be different from each other, for example, the release forces required for peeling from the resin film 12 are different from each other. ..
  • either the first release film 151 or the second release film 152 is removed, and the resulting exposed surface becomes a surface to be attached to the uneven surface. Then, the other remaining of the first release film 151 and the second release film 152 is removed, and the generated exposed surface is a layer (for example, a buffer layer, an adhesive layer, etc.) for forming a composite sheet described later. It will be the sticking surface.
  • a layer for example, a buffer layer, an adhesive layer, etc.
  • FIG. 1 shows an example in which the release film is provided on both sides (first surface 12a, second surface 12b) of the resin film 12, but the release film is only one surface of the resin film 12. That is, it may be provided only on the first surface 12a or only on the second surface 12b.
  • the resin film of the present embodiment contains a resin component and may or may not contain a component other than the resin component.
  • a preferable resin film contains, for example, a resin component, a thermosetting component, and a filler, and if necessary, does not fall under any of these (resin component, thermosetting component, and filler).
  • resin component thermosetting component, and filler
  • those containing various additives having an effect of adjusting the storage elastic modulus of the resin film can be mentioned.
  • Examples of the additive having an effect of adjusting the storage elastic modulus of the resin film include a rheology control agent (thixotropic agent), a surfactant, and a silicone oil.
  • the protruding resin film is viewed from above and is flat. Visually, the maximum value of the length of the line segment connecting two different points on the outer periphery of the resin film at this time is obtained, and further, at the position overlapping with the line segment indicating this maximum value, the initial value (that is, the protrusion) is obtained.
  • the amount of protrusion of the resin film can be calculated by obtaining the value of the width of the resin film (previous) and subtracting the value of the width of the resin film from the maximum value of the length of the line segment.
  • FIG. 2 is a plan view for schematically explaining the amount of protrusion of the resin film when the plane shape of the resin film is circular.
  • the same components as those shown in the already explained figures are designated by the same reference numerals as in the case of the already explained figures, and detailed description thereof will be omitted.
  • the resin film 101 shown here is in a state of being attached to the object to be attached 102 and protruding from the initial size.
  • Reference numeral 101' is a resin film having an initial size, which is shown for convenience in order to make it easier to understand the amount of protrusion.
  • the initial planar shape of the resin film 101' is circular here, but the planar shape of the resin film 101 that is in a protruding state is non-circular. However, this is only an example, and the planar shape of the resin film 101 in the protruding state is not limited to that shown here.
  • the value D 0 of the width of the initial resin film 101'at the position overlapping with the line segment showing the maximum value (that is, before protruding) may be obtained.
  • the difference between D 1 and D 0 (D 1 ⁇ D 0 ) is the amount of protrusion.
  • the line segment showing the maximum value in the resin film 101 may pass through the center of the circle in the initial resin film 101'in a plan view, and in that case, at a position overlapping the line segment showing the maximum value.
  • the value of the width of the initial resin film 101' is the diameter of the resin film 101'.
  • the amount of protrusion of the resin film when the plane shape of the resin film is circular has been described with reference to the drawings, but when the plane shape is other than circular, the protrusion of the resin film is described in the same manner. The amount can be calculated.
  • the resin film may be composed of one layer (single layer) or may be composed of two or more layers.
  • the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
  • the thickness of the resin film is preferably 1 to 100 ⁇ m, more preferably 5 to 80 ⁇ m, and particularly preferably 5 to 60 ⁇ m.
  • the thickness of the resin film is at least the above lower limit value, the effect of the resin film becomes higher.
  • a protective film is formed using a resin film, a protective film having a higher protective ability can be formed.
  • the thickness of the resin film is equal to or less than the upper limit value, it is possible to prevent the resin film from becoming excessively thick.
  • the "thickness of the resin film” means the thickness of the entire resin film, and for example, the thickness of the resin film composed of a plurality of layers means the total thickness of all the layers constituting the resin film. means.
  • "thickness" is a constant pressure thickness measuring device according to JIS K7130 as a value represented by an average of thickness measured at five randomly selected points, unless otherwise specified. Can be obtained using.
  • the resin film can be formed by using a resin film forming composition containing the constituent material.
  • the resin film can be formed by applying a resin film forming composition to the surface to be formed and drying it if necessary.
  • the ratio of the contents of the components that do not vaporize at room temperature in the composition for forming a resin film is usually the same as the ratio of the contents of the components in the resin film.
  • room temperature means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • thermosetting resin film can be formed by using a composition for forming a thermosetting resin film.
  • the contribution of the thermosetting of the resin film to the curing is If it is greater than the contribution of energy ray curing, the resin film is treated as thermosetting.
  • the contribution of the energy ray curing of the resin film to the curing is larger than the contribution of the thermosetting, the resin film is treated as an energy ray curable one.
  • the composition for forming a resin film may be coated by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and the like.
  • a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater can be mentioned.
  • the drying conditions of the resin film forming composition are not particularly limited. However, when the composition for forming a resin film contains a solvent described later, it is preferably heat-dried.
  • the resin film-forming composition containing the solvent is preferably heat-dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
  • the thermosetting resin film forming composition is preferably heat-dried so that the composition itself and the thermosetting resin film formed from the composition are not heat-cured.
  • thermosetting resin film and the energy ray-curable resin film will be described in more detail.
  • thermosetting resin film When the thermosetting resin film is cured to obtain a cured product, the curing conditions when forming a protective film are such that the cured product fully exerts its function. As long as it is not particularly limited, it may be appropriately selected depending on the type of the thermosetting resin film, the use of the cured product, and the like.
  • the heating temperature of the thermosetting resin film at the time of curing is preferably 100 to 200 ° C, more preferably 110 to 170 ° C, and 120 to 150 ° C. Is particularly preferable.
  • the heating time during the thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 4 hours, and particularly preferably 1 to 4 hours.
  • the thermosetting resin film may be cured while being pressurized, and the pressurizing pressure in that case is preferably 0.1 to 1 MPa.
  • composition for forming a thermosetting resin film includes, for example, a polymer component (A), a thermosetting component (B), and a filler (D).
  • composition (III) in this specification, it may be simply referred to as “composition (III)”) and the like.
  • the polymer component (A) is a polymer compound for imparting film-forming property, flexibility, etc. to the thermosetting resin film.
  • a polymer compound also includes a product of a polycondensation reaction.
  • the polymer component (A) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
  • polymer component (A) examples include polyvinyl acetal, acrylic resin, urethane resin, phenoxy resin, silicone resin, saturated polyester resin and the like.
  • the polymer component (A) is preferably polyvinyl acetal.
  • polyvinyl acetal in the polymer component (A) examples include known ones. Among them, preferable polyvinyl acetals include, for example, polyvinyl formal, polyvinyl butyral, and the like, and polyvinyl butyral is more preferable. Examples of polyvinyl butyral include those having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3.
  • the weight average molecular weight (Mw) of polyvinyl acetal is preferably 5000 to 200,000, more preferably 8,000 to 100,000.
  • Mw weight average molecular weight of polyvinyl acetal
  • the weight average molecular weight of polyvinyl acetal is in such a range, when the thermosetting resin film is attached to the uneven surface, the fine grooves on the uneven surface are sufficiently filled and the protective film from the uneven surface is sufficiently filled. Effect of suppressing peeling (for example, when a thermosetting resin film is attached to the bump forming surface, the fine grooves on the bump forming surface are sufficiently filled to suppress peeling of the protective film from the bump forming surface.
  • thermosetting resin film on the upper part of the convex portion of the uneven surface (for example, thermosetting) when the thermosetting resin film is attached to the uneven surface.
  • the effect of suppressing the residue of the thermosetting resin film on the upper part of the bump when the thermosetting resin film is attached to the uneven surface.
  • the initial state of the thermosetting resin film on the uneven surface Effect of suppressing protrusion from the size of (for example, when the thermosetting resin film is attached to the bump forming surface, the protrusion of the thermosetting resin film from the initial size on the bump forming surface is suppressed. Effect.
  • thermosetting resin film and its cured product on the uneven surface for example, when the thermosetting resin film is attached to the bump forming surface.
  • the effect of suppressing the repelling of the thermosetting resin film and the cured product thereof on the bump forming surface becomes higher.
  • the "weight average molecular weight” is a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the glass transition temperature (Tg) of polyvinyl acetal is preferably 40 to 80 ° C, more preferably 50 to 70 ° C.
  • Tg of polyvinyl acetal is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of suppressing the residual of the thermosetting resin film on the upper portion of the convex portion of the uneven surface is suppressed.
  • the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced.
  • the ratio of three or more types of monomers constituting the polyvinyl acetal can be arbitrarily selected.
  • the acrylic resin in the polymer component (A) examples include known acrylic polymers.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 5000 to 1000000, and more preferably 8000 to 800,000.
  • Mw weight average molecular weight of the acrylic resin
  • the thermosetting resin film is attached to the uneven surface, the residual thermosetting resin film is suppressed on the upper part of the convex portion of the uneven surface.
  • the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced. ..
  • the glass transition temperature (Tg) of the acrylic resin is preferably -50 to 70 ° C, more preferably -30 to 60 ° C.
  • Tg of the acrylic resin is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of suppressing the residual of the thermosetting resin film on the upper portion of the convex portion of the uneven surface is suppressed.
  • the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced.
  • the glass transition temperature (Tg) of the acrylic resin can be calculated by using the Fox formula.
  • Tg of the monomer for inducing the structural unit used at this time the value described in the polymer data handbook or the adhesive handbook can be used.
  • the monomer constituting the acrylic resin may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • acrylic resin for example, a polymer of one kind or two or more kinds of (meth) acrylic acid esters; Copolymers of two or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like; One or more (meth) acrylic acid esters, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, etc. Examples thereof include the copolymer of.
  • (meth) acrylic acid is a concept that includes both “acrylic acid” and “methacrylic acid”.
  • (meth) acrylate is a concept that includes both “acrylate” and “methacrylate”, and is a "(meth) acryloyl group”. Is a concept that includes both an "acryloyl group” and a “methacryloyl group”.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and (meth).
  • N-butyl acrylate isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylate Heptyl, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, Undecyl (meth) acrylate, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecy
  • a glycidyl group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate; Hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxyprop
  • the acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
  • the functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound without a cross-linking agent (F).
  • F cross-linking agent
  • the ratio of the content of the polymer component (A) to the total content of all the components other than the solvent that is, the weight of the thermosetting resin film with respect to the total mass of the thermosetting resin film.
  • the content ratio of the coalesced component (A)) is preferably 5 to 35% by mass, more preferably 5 to 27% by mass, regardless of the type of the polymer component (A).
  • thermosetting component (B) is a component for having thermosetting property and heat-curing a thermosetting resin film to form a hard cured product.
  • the thermosetting component (B) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, or two or more kinds, if they are two or more kinds. The combination and ratio of are arbitrarily selectable.
  • thermosetting component (B) examples include epoxy-based thermosetting resins, polyimide resins, unsaturated polyester resins, and the like.
  • thermosetting component (B) is preferably an epoxy-based thermosetting resin.
  • the epoxy-based thermosetting resin is composed of an epoxy resin (B1) and a thermosetting agent (B2).
  • the epoxy-based thermosetting resin contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
  • Epoxy resin (B1) examples include known ones, such as polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolac epoxy resin, and dicyclopentadiene type epoxy resin.
  • Biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, and other bifunctional or higher functional epoxy compounds can be mentioned.
  • the epoxy resin (B1) may be an epoxy resin having an unsaturated hydrocarbon group.
  • Epoxy resins having unsaturated hydrocarbon groups have higher compatibility with acrylic resins than epoxy resins having no unsaturated hydrocarbon groups. Therefore, by using an epoxy resin having an unsaturated hydrocarbon group, for example, the reliability of a package obtained by using a thermosetting resin film tends to be improved.
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy group of the polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction of (meth) acrylic acid or a derivative thereof.
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (vinyl group), a 2-propenyl group (allyl group), a (meth) acryloyl group, and a (meth) group. Examples thereof include an acrylamide group, and an acryloyl group is preferable.
  • the number average molecular weight of the epoxy resin (B1) is not particularly limited, but from the viewpoint of the curability of the thermosetting resin film and the strength and heat resistance of the cured product (for example, protective film) of the thermosetting resin film. It is preferably 300 to 30,000, more preferably 400 to 10000, and particularly preferably 500 to 3000.
  • the epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g / eq, more preferably 100 to 600 g / eq.
  • epoxy resin (B1) one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
  • thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
  • thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with epoxy groups in one molecule.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group is annealed, and the like, and the phenolic hydroxyl group, an amino group, or an acid group is annealed. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolak-type phenol resins, dicyclopentadiene-type phenol resins, and aralkyl-type phenol resins. ..
  • examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter, may be abbreviated as "DICY”) and the like.
  • the thermosetting agent (B2) may have an unsaturated hydrocarbon group.
  • the thermosetting agent (B2) having an unsaturated hydrocarbon group is, for example, a compound in which a part of the hydroxyl group of the phenol resin is replaced with a group having an unsaturated hydrocarbon group, which is not suitable for the aromatic ring of the phenol resin. Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
  • the unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
  • the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene type phenol resin, and aralkyl type phenol resin is preferably 300 to 30,000. , 400 to 10000 is more preferable, and 500 to 3000 is particularly preferable.
  • the molecular weight of the non-resin component such as biphenol and dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (B2) one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
  • the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1). It is preferably 1 to 200 parts by mass, and may be, for example, any of 5 to 150 parts by mass, 10 to 100 parts by mass, and 15 to 75 parts by mass.
  • the content of the thermosetting agent (B2) is at least the lower limit value, the curing of the thermosetting resin film is more likely to proceed.
  • the content of the thermosetting agent (B2) is not more than the upper limit value, the hygroscopicity of the thermosetting resin film is reduced, and for example, the reliability of the package obtained by using the thermosetting resin film is used. Is improved.
  • the ratio of the content of the thermosetting component (B) to the total content of all the components other than the solvent for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)).
  • the ratio of the content of the thermosetting component (B) to the total mass of the thermosetting resin film in the thermosetting resin film is preferably 10 to 75% by mass, preferably 15 to 73 mass. It is more preferably%, and it may be any of 35 to 70% by mass and 55 to 70% by mass.
  • the effect of suppressing the residual of the thermosetting resin film on the convex portion of the uneven surface, the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface, and the thermosetting property on the uneven surface is higher, and a hard cured product (for example, a protective film) can be formed.
  • a hard cured product for example, a protective film
  • the lower the ratio of the content of the thermosetting component (B) to the total mass of the resin film the easier it is to reduce the value of the calorific value of the first test piece, and the poor curing of the resin film. Can be effectively suppressed.
  • thermosetting component (B) the higher the ratio of the content of the thermosetting component (B) to the total mass of the resin film, the more effectively the filling suitability of the groove can be improved. It is presumed that this is because the thermosetting component (B) before curing is a small molecule and exhibits excellent fluidity. Further, the content of the thermosetting component (B) may be appropriately adjusted according to the type of the polymer component (A) from the viewpoint that such an effect can be obtained more remarkably.
  • the X value can be adjusted more easily.
  • the content of the thermosetting component can be adjusted to be small, and the calorific value of the first test piece can be reduced. Is easy.
  • the thermosetting resin film containing the filler (D) it is possible to reduce the moisture absorption rate of the cured product (for example, the protective film) of the thermosetting resin film and improve the heat dissipation. ..
  • the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride and the like; spherical beads of these inorganic fillers; surface modification of these inorganic fillers. Goods; Single crystal fibers of these inorganic fillers; Glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • the filler (D) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • the ratio of the content of the filler (D) to the total content of all the components other than the solvent is preferably 10 to 65% by mass, more preferably 15 to 55% by mass, and for example, 15 to 40% by mass or 15 to 30% by mass. It may be either 30 to 55% by mass and 40 to 55% by mass.
  • thermosetting resin film The effect of suppressing the residual of the thermosetting resin film on the convex portion of the uneven surface, the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface, and the thermosetting property on the uneven surface.
  • the effect of suppressing repelling of the resin film and its cured product becomes higher.
  • the composition (III) and the thermosetting resin film may contain the additive (I).
  • the additive (I) include a component for adjusting the X value.
  • examples of the additive (I) preferable in that the X value can be adjusted more easily include a rheology control agent, a surfactant, a silicone oil and the like.
  • examples of the rheology control agent include polyhydroxycarboxylic acid esters, polyvalent carboxylic acids, and polyamide resins.
  • examples of the surfactant include modified siloxane, acrylic polymer and the like.
  • examples of the silicone oil include aralkyl-modified silicone oil and modified polydimethylsiloxane, and examples of the modifying group include an aralkyl group; a polar group such as a hydroxy group; and a group having an unsaturated bond such as a vinyl group and a phenyl group. Can be mentioned.
  • additive (I) examples include other general-purpose additives such as a plasticizer, an antistatic agent, an antioxidant, a gettering agent, an ultraviolet absorber, a tackifier, and the like. ..
  • the additive (I) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • the contents of the composition (III) and the additive (I) of the thermosetting resin film are not particularly limited, and can be appropriately adjusted according to the type and purpose thereof.
  • the ratio of the content of the additive (I) to the total content of all the components other than the solvent in the composition (III) that is, the thermosetting resin.
  • the ratio of the content of the additive (I) to the total mass of the thermosetting resin film in the film is preferably 0.5 to 10% by mass, and preferably 0.5 to 7% by mass. More preferably, it is 0.5 to 5% by mass.
  • the composition (III) and the thermosetting resin film may contain a curing accelerator (C).
  • the curing accelerator (C) is a component for adjusting the curing rate of the composition (III).
  • Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole.
  • 2-Phenyl-4-methylimidazole 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and other imidazoles (one or more hydrogen atoms other than hydrogen atoms) (Imidazole substituted with an organic group); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (phosphine in which one or more hydrogen atoms are substituted with an organic group); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylborone salts such as tetraphenylborate.
  • the curing accelerator (C) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
  • the content of the curing accelerator (C) in the composition (III) and the thermosetting resin film is based on 100 parts by mass of the content of the thermosetting component (B). , 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass.
  • the content of the curing accelerator (C) is at least the lower limit value, the effect of using the curing accelerator (C) is more remarkable.
  • the content of the curing accelerator (C) is not more than the upper limit value, for example, the highly polar curing accelerator (C) is adhered to the thermosetting resin film under high temperature and high humidity conditions. The effect of suppressing segregation by moving to the adhesion interface side with and is enhanced, and for example, the reliability of the package obtained by using the thermosetting resin film is further improved.
  • the composition (III) and the thermosetting resin film may contain a coupling agent (E).
  • a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesiveness and adhesion of the thermosetting resin film to the adherend can be improved. Further, by using the coupling agent (E), the cured product (for example, protective film) of the thermosetting resin film has improved water resistance without impairing the heat resistance.
  • the coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional groups of the polymer component (A), the thermosetting component (B) and the like, and is preferably a silane coupling agent. More preferred.
  • Preferred silane coupling agents include, for example, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2-.
  • the coupling agent (E) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
  • the content of the coupling agent (E) in the composition (III) and the thermosetting resin film is the total of the polymer component (A) and the thermosetting component (B).
  • the content is preferably 0.03 to 10 parts by mass, more preferably 0.05 to 6 parts by mass, and particularly preferably 0.1 to 3 parts by mass with respect to 100 parts by mass.
  • the content of the coupling agent (E) is equal to or higher than the lower limit, the dispersibility of the filler (D) in the resin is improved and the adhesiveness of the thermosetting resin film to the adherend is improved.
  • the effect of using the coupling agent (E) is more remarkable.
  • the content of the coupling agent (E) is not more than the upper limit value, the generation of outgas is further suppressed.
  • Cross-linking agent (F) When a polymer component (A) having a functional group such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, or an isocyanate group that can be bonded to another compound is used, the composition (III). And the thermosetting resin film may contain a cross-linking agent (F).
  • the cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) with another compound to cross-link, and by cross-linking in this way, the initial adhesion of the thermosetting resin film is performed. The force and cohesive force can be adjusted.
  • cross-linking agent (F) examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based cross-linking agent (a cross-linking agent having a metal chelate structure), an aziridine-based cross-linking agent (a cross-linking agent having an aziridinyl group), and the like. Can be mentioned.
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyhydric isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as "aromatic polyvalent isocyanate compound and the like". (May be abbreviated); trimerics such as the aromatic polyvalent isocyanate compound, isocyanurates and adducts; terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the like with a polyol compound. And so on.
  • the "adduct” includes the aromatic polyhydric isocyanate compound, the aliphatic polyhydric isocyanate compound, or the alicyclic polyvalent isocyanate compound, and low ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, castor oil, and the like. It means a reaction product with a molecularly active hydrogen-containing compound.
  • Examples of the adduct body include a xylylene diisocyanate adduct of trimethylolpropane, which will be described later.
  • the "terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the terminal portion of the molecule.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4.
  • organic polyvalent imine compound examples include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxyamide), trimethylolpropane-tri- ⁇ -aziridinyl propionate, and tetramethylolmethane.
  • examples thereof include -tri- ⁇ -aziridinyl propionate, N, N'-toluene-2,4-bis (1-aziridinecarboxyamide) triethylene melamine and the like.
  • the cross-linking agent (F) When an organic multivalent isocyanate compound is used as the cross-linking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A).
  • a hydroxyl group-containing polymer When the cross-linking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, the reaction between the cross-linking agent (F) and the polymer component (A) causes the thermosetting resin film to have a cross-linked structure. Can be easily introduced.
  • the cross-linking agent (F) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • the content of the cross-linking agent (F) in the composition (III) is 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). It is preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass.
  • the content of the cross-linking agent (F) is at least the lower limit value, the effect of using the cross-linking agent (F) is more remarkable.
  • the content of the cross-linking agent (F) is not more than the upper limit value, the excessive use of the cross-linking agent (F) is suppressed.
  • the composition (III) and the thermosetting resin film include the above-mentioned polymer component (A), thermosetting component (B), filler (D), and the above-mentioned polymer component (A), and the filler (D), as long as the effects of the present invention are not impaired. It may contain other components that do not correspond to any of the additive (I), the curing accelerator (C), the coupling agent (E), and the cross-linking agent (F). Examples of the other components include energy ray-curable resins and photopolymerization initiators.
  • the other components contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, a combination thereof and The ratio can be selected arbitrarily.
  • the contents of the composition (III) and the other components of the thermosetting resin film are not particularly limited and may be appropriately selected depending on the intended purpose.
  • the composition (III) preferably further contains a solvent.
  • the solvent-containing composition (III) has good handleability.
  • the solvent is not particularly limited, but preferred ones are, for example, hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples thereof include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
  • the solvent contained in the composition (III) may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily selected.
  • solvents contained in the composition (III) more preferable ones include, for example, methyl ethyl ketone and the like because the components contained in the composition (III) can be mixed more uniformly.
  • the content of the solvent in the composition (III) is not particularly limited, and may be appropriately selected depending on the type of the component other than the solvent, for example.
  • the composition for forming a thermosetting resin film such as the composition (III) can be obtained by blending each component for forming the composition.
  • the order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
  • the method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
  • the temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • An example of a preferable resin film of the present embodiment is a thermosetting resin film.
  • the resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min.
  • the calorific value in the range of 100 to 300 ° C. is 100 J / g or less, 10 to 100 J / g, 50 to 90 J / g, and 60 to 80 J / g.
  • the resin film contains a polymer component (A) and a thermosetting component (B).
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
  • the ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass.
  • An example of a preferable resin film of the present embodiment is a thermosetting resin film.
  • the resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min.
  • the calorific value in the range of 100 to 300 ° C. is 100 J / g or less, 10 to 100 J / g, 50 to 90 J / g, and 60 to 80 J / g.
  • the resin film contains a polymer component (A), a thermosetting component (B), and a filler (D).
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
  • the ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass.
  • thermosetting resin film Another example of the preferred resin film of the present embodiment is a thermosetting resin film.
  • the resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min.
  • the calorific value in the range of 100 to 300 ° C. is 100 J / g or less, 10 to 100 J / g, 50 to 90 J / g, and 60 to 80 J / g.
  • the X value is 19 or more and less than 10000, 19 to 5000, 25 to 2000, 30 to 1000, 35 to 500, 40 to 300, 45 to 100, and 50 to 70.
  • the resin film contains a polymer component (A), a thermosetting component (B), a filler (D), and an additive (I).
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
  • the ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass. can be,
  • the ratio of the content of the filler (D) to the total mass of the resin film in the resin film is either 10 to 65% by mass or 15 to 55% by mass.
  • the ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass, 0.5 to 7% by mass, and 0.5 to 5% by mass.
  • a resin film, which is one of the above, can be mentioned.
  • the composite sheet according to the embodiment of the present invention includes a support sheet and a resin film provided on one surface of the support sheet, and the resin film is the above-described embodiment of the present invention. It is a resin film according to the form.
  • the resin film can be satisfactorily attached to the uneven surface of the object to be attached, and at this time, fine grooves on the uneven surface can be filled. It is possible to suppress poor curing of the resin film.
  • the composite sheet when the resin film is used for forming the first protective film, the composite sheet is referred to as a "first protective film forming sheet", and the said in the first protective film forming sheet.
  • the support sheet is referred to as a "first support sheet”.
  • a second protective film forming film for forming the second protective film is provided in order to provide the second protective film on the surface (back surface) opposite to the bump forming surface of the semiconductor wafer or semiconductor chip.
  • the constructed second protective film forming sheet is used.
  • the second protective film forming sheet include a dicing sheet and a second protective film forming film provided on the dicing sheet.
  • the support sheet is referred to as a "second support sheet”.
  • first support sheet includes a base material and an adhesive layer
  • first base material and “first pressure-sensitive adhesive layer”
  • second base material and “second pressure-sensitive adhesive layer”.
  • FIG. 3 is a cross-sectional view schematically showing an example of the composite sheet of the present embodiment.
  • the composite sheet 1 shown here includes a support sheet 10 and a resin film 12 provided on one surface of the support sheet 10 (sometimes referred to as a "first surface” in the present specification) 10a. It is configured to prepare.
  • the support sheet 10 is a base material 11, a buffer layer 13 provided on one surface of the base material 11 (sometimes referred to as a “first surface” in the present specification) 11a, and a buffer layer 13. It is configured to include an adhesive layer 14 provided on a surface (sometimes referred to as a "first surface” in the present specification) 13a opposite to the base material 11 side.
  • the composite sheet 1 is configured by laminating the base material 11, the buffer layer 13, the pressure-sensitive adhesive layer 14, and the resin film 12 in this order in the thickness direction.
  • the pressure-sensitive adhesive layer 14 is the outermost layer of one of the support sheets 10 (resin film 12 side), and may be referred to as a surface (in the present specification, the "first surface") opposite to the buffer layer 13 side.
  • 14a is the same as the first surface 10a of the support sheet 10.
  • both the buffer layer 13 and the pressure-sensitive adhesive layer 14 are arranged between the base material 11 and the resin film 12.
  • the resin film 12 is the resin film according to the above-described embodiment of the present invention.
  • the surface (first surface) 12a of the resin film 12 opposite to the buffer layer 13 side is a surface on which the resin film 12 (in other words, the composite sheet 1) is attached to the uneven surface.
  • the composite sheet of the present embodiment is not limited to the one shown in FIG. 3, and a part of the composite sheet shown in FIG. 3 has been changed, deleted or added within the range not impairing the effect of the present invention. There may be.
  • the support sheet is composed of only the base material in addition to the above-mentioned base material, the buffer layer and the pressure-sensitive adhesive layer; the base material and the above. It is configured with an adhesive layer provided on one surface of the substrate; it is configured with a substrate and a buffer layer provided on one surface of the substrate. Some are also mentioned.
  • the support sheet includes a base material and an adhesive layer
  • the pressure-sensitive adhesive layer is arranged between the base material and the resin film in the composite sheet.
  • the support sheet includes a base material and a buffer layer
  • the buffer layer is arranged between the base material and the resin film in the composite sheet.
  • those provided with the above-mentioned base material, buffer layer and adhesive layer are more preferable.
  • the support sheet (support sheet 10 in the composite sheet 1 shown in FIG. 3) is a base material (base material 11 in the composite sheet 1 shown in FIG. 3) and a buffer layer (FIG. 3).
  • an adhesion layer may be provided between the composite sheet 1 and the buffer layer 13).
  • the adhesion layer improves the adhesion between the base material and the buffer layer, and highly suppresses the peeling of the base material and the buffer layer in the composite sheet. Therefore, the composite sheet provided with the adhesion layer can maintain the laminated structure of the base material, the adhesion layer and the buffer layer more stably at the time of use.
  • the adhesion layer is in the form of a sheet or a film.
  • Preferred adhesion layers include, for example, those containing ethylene-vinyl acetate copolymer resin (EVA) and the like.
  • the composite sheet of the present embodiment may include a release film on the outermost layer (resin film 12 in the composite sheet 1 shown in FIG. 3) on the opposite side of the base material.
  • a release film on the outermost layer resin film 12 in the composite sheet 1 shown in FIG. 3
  • each layer constituting the composite sheet of the present embodiment will be described.
  • the base material is in the form of a sheet or a film, and examples of the constituent material thereof include various resins.
  • the resin include polyethylenes such as low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and high-density polyethylene (HDPE); other than polyethylenes such as polypropylene, polybutene, polybutadiene, polymethylpentene, and norbornene resin.
  • Polyethylene ethylene-based copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as monomer) (Copolymers obtained using); Vinyl chloride-based resins such as polyvinyl chloride and vinyl chloride copolymers (resins obtained using vinyl chloride as a monomer); Polystyrene; Polycycloolefins; Polyethylene terephthalate, polyethylene Polymers such as naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, all aromatic polyesters in which all constituent units have aromatic cyclic groups; co-polymers of two or more of the above polymers.
  • ethylene-based copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth)
  • Polymers poly (meth) acrylic acid esters; polyurethanes; polyurethane acrylates; polyimides; polyamides; polycarbonates; fluororesins; polyacetals; modified polyphenylene oxides; polyphenylene sulfides; polysulfones; polyether ketones and the like.
  • the resin include polymer alloys such as a mixture of the polyester and other resins.
  • the polymer alloy of the polyester and the resin other than the polyester preferably has a relatively small amount of the resin other than the polyester.
  • the resin for example, a crosslinked resin in which one or more of the resins exemplified above are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resin is also mentioned.
  • the resin constituting the base material may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the base material may be only one layer (single layer), may be a plurality of layers of two or more layers, and when there are a plurality of layers, the plurality of layers may be the same or different from each other.
  • the combination of multiple layers is not particularly limited.
  • the thickness of the base material is preferably 5 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, further preferably 15 to 300 ⁇ m, and particularly preferably 20 to 180 ⁇ m.
  • the "thickness of the base material” means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material. means.
  • the base material has a high thickness accuracy, that is, a base material in which the variation in thickness is suppressed regardless of the site.
  • a material that can be used to construct a base material having such a high accuracy of thickness for example, polyethylene, polyolefin other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer and the like are used. Can be mentioned.
  • the base material contains various known additives such as fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and softeners (plasticizers). You may.
  • the base material may be transparent, opaque, colored depending on the purpose, or another layer may be vapor-deposited.
  • the base material is preferably one that allows energy rays to pass through.
  • the base material can be produced by a known method.
  • a base material containing a resin can be produced by molding a resin composition containing the resin.
  • the buffer layer is in the form of a sheet or a film, and has a buffering action against the force applied to the buffer layer and the layer adjacent thereto.
  • the "layer adjacent to the buffer layer” include the resin film, a layer corresponding to a cured product thereof (for example, a protective film such as a first protective film), and an adhesive layer.
  • the constituent material of the buffer layer is not particularly limited.
  • buffer layer for example, one containing urethane (meth) acrylate or the like can be mentioned.
  • the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm is strained under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece is measured.
  • Gb300 is preferably Gc300 or more (Gb300 ⁇ Gc300).
  • the test piece of the buffer layer is strained in the range of 0.01% to 1000%, the storage elastic modulus Gb of the test piece is measured, and the test piece of the resin film is 0.01%.
  • the strain is all 0.01% to 1000%.
  • Gb is more preferably Gc or more (Gb ⁇ Gc), and in all ranges of strain of 10% to 1000%, Gb is more preferably Gc or more.
  • the buffer layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these multiple layers are the same or different from each other.
  • the combination of these plurality of layers may be not particularly limited.
  • the thickness of the buffer layer is preferably 150 to 1000 ⁇ m, more preferably 150 to 800 ⁇ m, further preferably 200 to 600 ⁇ m, and particularly preferably 250 to 500 ⁇ m.
  • the "thickness of the buffer layer” means the thickness of the entire buffer layer, and for example, the thickness of the buffer layer composed of a plurality of layers means the total thickness of all the layers constituting the buffer layer. means.
  • the buffer layer can be formed by using a composition for forming a buffer layer containing a constituent material of the buffer layer, such as the resin.
  • the buffer layer can be formed at a target site by extrusion-molding the composition for forming the buffer layer on the surface to be formed of the buffer layer.
  • a more specific method for forming the buffer layer will be described in detail later together with a method for forming the other layers.
  • the ratio of the contents of the components that do not vaporize at room temperature in the composition for forming the buffer layer is usually the same as the ratio of the contents of the components in the buffer layer.
  • composition for forming a buffer layer (V) examples include a buffer layer forming composition (V) containing urethane (meth) acrylate.
  • the content of the buffer layer forming composition (V) and the urethane (meth) acrylate of the buffer layer is preferably 80 to 100% by mass.
  • composition for forming a buffer layer (V) and the buffer layer may contain other components other than urethane (meth) acrylate as long as the effects of the present invention are not impaired.
  • the other component is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the buffer layer forming composition (V) and the other components contained in the buffer layer may be only one kind, two or more kinds, and when two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
  • the content of the buffer layer forming composition (V) and the other components of the buffer layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Adhesive layer is in the form of a sheet or a film and contains an adhesive.
  • the pressure-sensitive adhesive include adhesive resins such as acrylic resin, urethane resin, rubber-based resin, silicone resin, epoxy-based resin, polyvinyl ether, polycarbonate, and ester-based resin, and acrylic resin is preferable.
  • the "adhesive resin” includes both a resin having adhesiveness and a resin having adhesiveness.
  • the adhesive resin includes not only the resin itself having adhesiveness, but also a resin showing adhesiveness when used in combination with other components such as additives, and adhesiveness due to the presence of a trigger such as heat or water. Also included are resins and the like.
  • the pressure-sensitive adhesive layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, the plurality of layers may be the same or different from each other.
  • the combination of these plurality of layers is not particularly limited.
  • the thickness of the pressure-sensitive adhesive layer is preferably 10 to 180 ⁇ m, more preferably 30 to 120 ⁇ m, and particularly preferably 40 to 80 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer is at least the above lower limit value, the effect of providing the pressure-sensitive adhesive layer can be obtained more remarkably.
  • the thickness of the pressure-sensitive adhesive layer is not more than the upper limit value, the support sheet can be thinned.
  • the "thickness of the pressure-sensitive adhesive layer” means the thickness of the entire pressure-sensitive adhesive layer, and for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the sum of all the layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
  • the pressure-sensitive adhesive layer may be formed by using an energy ray-curable pressure-sensitive adhesive or may be formed by using a non-energy ray-curable pressure-sensitive adhesive. That is, the pressure-sensitive adhesive layer may be either energy ray-curable or non-energy ray-curable.
  • the energy ray-curable pressure-sensitive adhesive layer can easily adjust its physical properties before and after curing. For example, the semiconductor chip with the first protective film can be more easily picked up by curing the energy ray-curable pressure-sensitive adhesive layer before picking up the semiconductor chip with the first protective film, which will be described later.
  • the pressure-sensitive adhesive layer can be formed by using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer can be formed on a target portion by applying the pressure-sensitive adhesive composition to the surface to be formed of the pressure-sensitive adhesive layer and drying it if necessary.
  • the ratio of the contents of the components that do not vaporize at room temperature in the pressure-sensitive adhesive composition is usually the same as the ratio of the contents of the components in the pressure-sensitive adhesive layer.
  • the coating of the pressure-sensitive adhesive composition can be performed by, for example, the same method as in the case of coating the composition for forming a resin film described above.
  • the drying conditions of the pressure-sensitive adhesive composition are not particularly limited. When the pressure-sensitive adhesive composition contains a solvent described later, it is preferably heat-dried.
  • the solvent-containing pressure-sensitive adhesive composition is preferably dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
  • the pressure-sensitive adhesive composition is applied onto the base material or the buffer layer and dried as necessary, thereby forming the pressure-sensitive adhesive layer on the base material or the buffer layer.
  • the pressure-sensitive adhesive layer may be laminated.
  • the pressure-sensitive adhesive layer is provided on the base material or the buffer layer, for example, the pressure-sensitive adhesive composition is applied onto the release film and dried as necessary to form the pressure-sensitive adhesive layer on the release film.
  • the pressure-sensitive adhesive layer may be laminated on the base material or the buffer layer by forming the exposed surface of the pressure-sensitive adhesive layer and laminating it with one surface of the base material or the buffer layer.
  • the release film in this case may be removed at any timing of the manufacturing process or the use process of the composite sheet.
  • the energy ray-curable pressure-sensitive adhesive composition includes, for example, a non-energy ray-curable pressure-sensitive adhesive resin (I-1a) (hereinafter, "sticky resin (I-)”. 1a) ”) and an energy ray-curable compound (adhesive composition (I-1); an unsaturated group is introduced into the side chain of the adhesive resin (I-1a).
  • Adhesive composition (I-2) containing the energy ray-curable adhesive resin (I-2a) (hereinafter, may be abbreviated as "adhesive resin (I-2a)"); Examples thereof include a pressure-sensitive adhesive composition (I-3) containing a sex resin (I-2a) and an energy ray-curable low-molecular-weight compound.
  • Examples of the pressure-sensitive adhesive composition (I-1), the pressure-sensitive adhesive composition (I-2), and the pressure-sensitive adhesive composition (I-3) are described in paragraphs 0045 to 0105 of "International Publication No. 2017/078047". Examples thereof include the first pressure-sensitive adhesive composition (I-1), the first pressure-sensitive adhesive composition (I-2), and the first pressure-sensitive adhesive composition (I-3) described above.
  • examples of the non-energy ray-curable pressure-sensitive adhesive composition include, for example, the pressure-sensitive adhesive composition (I-4) containing the pressure-sensitive adhesive resin (I-1a). Can be mentioned.
  • the pressure-sensitive adhesive compositions such as the pressure-sensitive adhesive compositions (I-1) to (I-4) are for forming a pressure-sensitive adhesive composition such as the pressure-sensitive adhesive and, if necessary, components other than the pressure-sensitive adhesive. Obtained by blending each component.
  • the order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
  • the method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
  • the temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
  • An example of a preferable composite sheet of the present embodiment is a composite sheet including a support sheet and a resin film provided on one surface of the support sheet.
  • the support sheet comprises a base material, a buffer layer provided on one surface of the base material, and an adhesive layer provided on a surface of the buffer layer opposite to the base material side.
  • the buffer layer and the pressure-sensitive adhesive layer are arranged between the base material and the resin film.
  • the resin film is a thermosetting resin film.
  • the resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min.
  • the calorific value in the range of 100 to 300 ° C.
  • the resin film contains a polymer component (A) and a thermosetting component (B).
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
  • the ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass.
  • the composite sheet of the present embodiment is a composite sheet including a support sheet and a resin film provided on one surface of the support sheet.
  • the support sheet comprises a base material, a buffer layer provided on one surface of the base material, and an adhesive layer provided on a surface of the buffer layer opposite to the base material side.
  • the buffer layer and the pressure-sensitive adhesive layer are arranged between the base material and the resin film.
  • the resin film is a thermosetting resin film.
  • the resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min.
  • the calorific value in the range of 100 to 300 ° C.
  • the resin film contains a polymer component (A), a thermosetting component (B), and a filler (D).
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
  • the ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass.
  • Composite sheet can be mentioned.
  • Still another example of the preferred composite sheet of the present embodiment is a composite sheet including a support sheet and a resin film provided on one surface of the support sheet.
  • the support sheet comprises a base material, a buffer layer provided on one surface of the base material, and an adhesive layer provided on a surface of the buffer layer opposite to the base material side.
  • the buffer layer and the pressure-sensitive adhesive layer are arranged between the base material and the resin film.
  • the resin film is a thermosetting resin film.
  • the resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min.
  • the calorific value in the range of 100 to 300 ° C.
  • the resin film contains a polymer component (A), a thermosetting component (B), a filler (D), and an additive (I).
  • the ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
  • the ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass. can be,
  • the ratio of the content of the filler (D) to the total mass of the resin film in the resin film is either 10 to 65% by mass or 15 to 55% by mass.
  • the ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass, 0.5 to 7% by mass, and 0.5 to 5% by mass.
  • a composite sheet which is one of the above, can be mentioned.
  • the composite sheet can be manufactured by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship.
  • the method of forming each layer is as described above.
  • a composite sheet in which a base material, a buffer layer, an adhesive layer, and a resin film are laminated in this order in the thickness direction thereof can be produced by the method shown below. That is, the buffer layer is laminated on the base material by extrusion-molding the composition for forming the buffer layer on the base material. Further, the pressure-sensitive adhesive layer is laminated by applying the above-mentioned pressure-sensitive adhesive composition on the peel-processed surface of the release film and drying it if necessary. Then, by laminating the pressure-sensitive adhesive layer on the release film with the cushioning layer on the base material, the base material, the cushioning layer, the pressure-sensitive adhesive layer and the release film are laminated in this order in these thickness directions.
  • the resin film is laminated by applying the above-mentioned resin film forming composition on the peeling-treated surface of the release film and drying it if necessary. Then, the release film is removed from the laminated sheet obtained above, and the exposed surface of the newly generated pressure-sensitive adhesive layer and the exposed surface of the resin film on the above-mentioned release film are bonded to each other to form a base material. , A buffer layer, an adhesive layer, a resin film, and a release film are laminated in this order in this order to obtain a composite sheet. The release film on the resin film may be removed when the composite sheet is used.
  • the composite sheet provided with other layers other than the above-mentioned layers is one of the above-mentioned other layer forming step and the above-mentioned laminating step so that the laminating position of the other layer is an appropriate position. It can be manufactured by appropriately adding one or both of them.
  • the resin film of the present embodiment when the resin film of the present embodiment is applied to the uneven surface of the object to be attached, the resin film can cover the entire uneven surface while penetrating the convex portion and exposing the upper portion thereof. And has extremely excellent characteristics. That is, the resin film of the present embodiment is suitable for sticking an object to be attached having an uneven surface to the uneven surface. Further, when the uneven surface has fine grooves, such grooves can be filled with the resin film, and as a result, the grooves can be filled with the protective film.
  • the processing waste that may be generated when the protective film is cut is the semiconductor chip. Alternatively, it can be suppressed from adhering to the wafer.
  • a resin film of the present embodiment is suitable for protecting the uneven surface and the side surface of the semiconductor chip.
  • the resin film is provided on the semiconductor chip and the side surface of the semiconductor chip and the surface having bumps (bump forming surface). It is particularly suitable for use in the production of a semiconductor chip with a first protective film provided with the first protective film.
  • the uneven surface is a bump forming surface of the semiconductor chip
  • the convex portion is a bump.
  • the recess includes a groove on the bump forming surface.
  • the semiconductor chip with the first protective film is suitable for use in the manufacture of a semiconductor device by flip-chip connecting the bumps in the chip to the substrate.
  • the resin film of this embodiment is suitable for use in the form of the composite sheet described above.
  • a method for manufacturing a semiconductor chip with a first protective film when the composite sheet is used will be described.
  • the method for manufacturing a semiconductor chip with a first protective film is a method for manufacturing a semiconductor chip with a first protective film using a semiconductor wafer, and the semiconductor chip with the first protective film is a method.
  • a semiconductor chip and a first protective film provided on a side surface of the semiconductor chip and a surface having bumps are provided, and the semiconductor wafer has bumps and a division portion of the semiconductor wafer on one surface thereof.
  • the manufacturing method comprises attaching the thermosetting resin film in the composite sheet according to the embodiment of the present invention to the one surface of the semiconductor wafer.
  • the manufacturing method further comprises a sticking step of producing a semiconductor wafer with a resin film, wherein the resin film is provided on one of the surfaces and the grooves are filled with the resin film.
  • the semiconductor wafer and the first protective film provided on the one surface of the semiconductor wafer and filled in the groove can be obtained.
  • a plurality of the semiconductor chips and a plurality of the above-mentioned semiconductor chips are formed by dividing the semiconductor wafer after the curing step (1) for producing the semiconductor wafer with the first protective film and the curing step (1).
  • a cutting step of producing the semiconductor chip with the first protective film by cutting the first protective film along the gap between the semiconductor chips in the semiconductor chip group with the first protective film.
  • the resin film is thermally cured.
  • the first protective film By forming the first protective film, the plurality of the semiconductor chips, the surface of the plurality of semiconductor chips having the bumps, and the first protective film provided in the gap between the semiconductor chips can be formed.
  • the curing step (3) for producing the provided semiconductor chip group with the first protective film and the curing step (3) the said, along the gap between the semiconductor chips in the semiconductor chip group with the first protective film. It has a cutting step (3) for obtaining the semiconductor chip with the first protective film by cutting the first protective film (the manufacturing method in this case is referred to as "manufacturing method (3)" in the present specification. Sometimes).
  • manufacturing method (3) the manufacturing method in this case is referred to as "manufacturing method (3)" in the present specification. Sometimes).
  • FIG. 3 4A to 4E are cross-sectional views schematically showing the manufacturing method (1) as an example of the manufacturing method of the semiconductor chip with the first protective film when the composite sheet 1 shown in FIG. 3 is used.
  • the resin film is used for forming the first protective film
  • the "composite sheet 1" is referred to as the "first protective film forming sheet 1”
  • the "base material 11” is referred to as the "first base material 11”.
  • the resin film 12 in the first protective film forming sheet 1 is attached to one surface of the semiconductor wafer 9 (hereinafter, “bump forming”). It is affixed to 9a) (sometimes referred to as "face").
  • the semiconductor wafer 9 has a plurality of bumps 91 and a plurality of grooves 90 serving as division points of the semiconductor wafer 9 on the bump forming surface 9a.
  • the resin film 12 is provided on the bump forming surface 9a of the semiconductor wafer 9 and the groove 90 is filled with the resin film 12.
  • a semiconductor wafer 901 with a plastic wafer is manufactured.
  • the top portion 9101 of the bump 91 is shown to protrude from the resin film 12.
  • the degree to which the crown portion 9101 of the bump 91 protrudes from the resin film 12 can be adjusted by adjusting the composition and thickness of the resin film 12 or the application conditions of the resin film 12.
  • the first protective film forming sheet 1 is formed so that the resin film 12 faces the bump forming surface 9a of the semiconductor wafer 9. Deploy.
  • the thickness of the semiconductor wafer 9 to which the resin film 12 is attached is not particularly limited, but is preferably 100 to 1000 ⁇ m, more preferably 200 to 900 ⁇ m, and even more preferably 300 to 800 ⁇ m.
  • the thickness of the semiconductor wafer 9 is at least the above lower limit value, it becomes easy to suppress the warp of the resin film 12 due to shrinkage during curing.
  • the thickness of the semiconductor wafer 9 is not more than the upper limit value, the division time of the semiconductor wafer 9, which will be described later, can be further shortened.
  • the "thickness of the semiconductor wafer” means the thickness of the semiconductor wafer in the region where the groove does not exist when the semiconductor wafer has the groove.
  • the height of the bump 91 is not particularly limited, but is preferably 120 to 300 ⁇ m, more preferably 150 to 270 ⁇ m, and particularly preferably 180 to 240 ⁇ m.
  • the function of the bump 91 can be further improved.
  • the height of the bump 91 is equal to or less than the upper limit value, the effect of suppressing the residual of the resin film 12 on the upper portion of the bump 91 becomes higher.
  • the "bump height” means the height of the bump at the highest position from the bump forming surface.
  • the width of the bump 91 is not particularly limited, but is preferably 170 to 350 ⁇ m, more preferably 200 to 320 ⁇ m, and particularly preferably 230 to 290 ⁇ m.
  • the width of the bump 91 is equal to or larger than the lower limit value, the function of the bump 91 can be further improved.
  • the width of the bump 91 is equal to or less than the upper limit value, the effect of suppressing the residual of the resin film 12 on the upper portion of the bump 91 becomes higher.
  • the "bump width" is a line segment obtained by connecting two different points on the bump surface with a straight line when the bump is viewed in a plan view from a direction perpendicular to the bump forming surface. Means the maximum value of the length of.
  • the distance between the adjacent bumps 91 is not particularly limited, but is preferably 250 to 800 ⁇ m, more preferably 300 to 600 ⁇ m, and particularly preferably 350 to 500 ⁇ m. When the distance is equal to or greater than the lower limit value, the function of the bump 91 can be further improved. When the distance is not more than the upper limit value, the effect of suppressing the residual of the resin film 12 on the upper part of the bump 91 becomes higher.
  • the "distance between adjacent bumps" means the minimum value of the distance between the surfaces of adjacent bumps.
  • the depth of the groove 90 is not particularly limited as long as it is equal to or larger than the thickness of the final target chip and less than the thickness of the semiconductor wafer 9 before grinding described later, but is 30 to 700 ⁇ m. , More preferably 60 to 600 ⁇ m, and even more preferably 100 to 500 ⁇ m.
  • the depth of the groove 90 is equal to or greater than the lower limit value, the semiconductor wafer 9 described later can be more easily divided.
  • the depth of the groove 90 is not more than the upper limit value, the semiconductor wafer 9 has higher strength.
  • the maximum value of the groove depth is adopted as the “groove depth”.
  • the width of the groove 90 is not particularly limited, but is preferably 10 to 2000 ⁇ m, more preferably 30 to 1000 ⁇ m, further preferably 40 to 500 ⁇ m, and particularly preferably 50 to 300 ⁇ m.
  • the width of the groove 90 is equal to or larger than the lower limit value, the effect of preventing contact between adjacent semiconductor chips at the time of dividing the semiconductor wafer 9, which will be described later, is enhanced.
  • the width of the groove 90 is equal to or less than the upper limit value, the semiconductor wafer 9 has higher strength.
  • the groove width is not a constant value, the maximum value of the groove width is adopted as the “groove width”.
  • the resin film 12 is brought into contact with the bump 91 on the semiconductor wafer 9 and the first protective film forming sheet 1 is pressed against the semiconductor wafer 9.
  • the first surface 12a of the resin film 12 is sequentially crimped to the surface 91a of the bump 91 and the bump forming surface 9a of the semiconductor wafer 9.
  • the resin film 12 is softened, spreads between the bumps 91 so as to cover the bumps 91, adheres to the bump forming surface 9a, and forms the surface 91a of the bumps 91, particularly the bumps.
  • the base portion of the bump 91 is embedded so as to cover the surface 91a in the vicinity of the surface 9a.
  • the resin film 12 is sufficiently adhered to the bump forming surface 9a and the base of the bump 91, and the groove 90 on the semiconductor wafer 9 is filled with the resin film 12.
  • the semiconductor wafer 901 with a resin film is obtained.
  • a known method of crimping and attaching various sheets to an object can be applied, for example, a method using a laminate roller or the like. Can be mentioned.
  • the heating temperature of the first protective film forming sheet 1 (resin film 12) when crimped to the semiconductor wafer 9 may be a temperature at which the curing of the resin film 12 does not proceed at all or excessively, for example, 80 to. It may be 100 ° C.
  • the heating temperature is 85 to 95 ° C. in that the resin film 12 is sufficiently adhered to the bump forming surface 9a and the base of the bump 91, and the effect of sufficiently filling the groove 90 with the resin film 12 is enhanced. Is preferable.
  • the pressure at which the first protective film forming sheet 1 (resin film 12) is pressed against the semiconductor wafer 9 is not particularly limited, and may be, for example, 0.1 to 1.5 MPa.
  • the pressure is 0.3 to 1 MPa in that the resin film 12 is sufficiently adhered to the bump forming surface 9a and the base of the bump 91, and the effect of sufficiently filling the groove 90 with the resin film 12 is enhanced. Is preferable.
  • the resin film 12, the adhesive layer 14, and the buffer layer 13 in the first protective film forming sheet 1 are pressed from the bump 91.
  • the first surface 12a of the resin film 12, the first surface 14a of the pressure-sensitive adhesive layer 14, and the first surface 13a of the buffer layer 13 are deformed in a concave shape.
  • the resin film 12 to which the pressure is applied from the bump 91 as it is may be torn.
  • the X value is 19 or more and less than 10000 (19 ⁇ X value ⁇ 10000), such tearing of the resin film 12 occurs.
  • the upper portion 910 including the crown 9101 of the bump 91 penetrates the resin film 12. It will be in a protruding state.
  • the upper portion 910 of the bump 91 usually does not penetrate the buffer layer 13. This is because the buffer layer 13 has a buffering action against the pressure applied from the bump 91.
  • the resin film 12 does not remain at all or almost on the upper portion 910 including the crown portion 9101 of the bump 91, and the residual resin film 12 is suppressed on the upper portion 910 of the bump 91. It shows the case where it was done.
  • "almost no resin film remains on the bumps” means that, unless otherwise specified, a small amount of resin film remains on the bumps, but the remaining amount of the bumps causes the bumps. This means that when the provided semiconductor chip is flip-chip connected to the substrate, the amount does not interfere with the electrical connection between the semiconductor chip and the substrate.
  • the resin film 12 is prevented from protruding from the initial size, so that bumps are formed on the semiconductor wafer 9. The protrusion of the resin film 12 from the surface 9a is suppressed.
  • the repelling of the resin film 12 is further suppressed on the bump forming surface 9a at the stage when the pasting step is completed. More specifically, with the resin film 12 provided on the bump forming surface 9a, the area of the bump 91 other than the upper portion 910 (for example, the base near the bump forming surface 9a) or the bump forming surface 9a. The phenomenon that the region near the bump 91 is unintentionally exposed without being covered with the resin film 12 is suppressed.
  • ⁇ Curing step (1)> In the curing step (1) after the pasting step of the manufacturing method (1), the first support sheet 10 is removed from the semiconductor wafer 901 with the resin film, and then the resin film 12 is cured as shown in FIG. 4C. By forming the first protective film 12', the semiconductor wafer 9 and the first protective film 12' provided on the bump forming surface 9a of the semiconductor wafer 9 and filled in the groove 90 are provided. 1 A semiconductor wafer 902 with a protective film is manufactured. In the curing step (1), the resin film 12 is cured by heating. The heating conditions at this time are as described above. In the resin film 12, the calorific value of the first test piece produced by using the resin film 12 is 100 J / g or less, and curing failure is suppressed.
  • Reference numeral 9b indicates a surface (back surface) of the semiconductor wafer 9 opposite to the bump forming surface 9a.
  • the first protective film 12' is sufficiently formed in the groove 90 by the curing step (1).
  • a packed semiconductor wafer 902 with a first protective film is obtained.
  • the semiconductor wafer 9 is divided into a plurality of semiconductor chips 9'and a plurality of semiconductor chips 9', as shown in FIG. 4D.
  • a first protective film including a surface having bumps hereinafter, may be referred to as a "bump forming surface”
  • 9a'and a first protective film 12' provided in a gap 90'between the semiconductor chips 9'.
  • the semiconductor chip group 903 is manufactured.
  • the gap 90'between the semiconductor chips 9' is a region sandwiched between the side surfaces 9c'of the adjacent semiconductor chips 9'.
  • the semiconductor wafer 9 can be divided by a known method, and in the present embodiment, for example, the back surface 9b of the semiconductor wafer 9 can be ground by using a grinding means such as a grinder. .. At this time, until the ground surface (back surface 9b) reaches the groove 90 in the direction from the back surface 9b of the semiconductor wafer 9 toward the bump forming surface 9a (in other words, until the groove 90 appears, in other words, the said Grind the semiconductor wafer 9 until a gap 90'is formed). By doing so, the thickness of the semiconductor wafer 9 becomes thin, and the groove 90 serves as a dividing portion to divide the semiconductor wafer 9, and at the same time, the gap 90'is formed from the groove 90.
  • a grinding means such as a grinder. ..
  • Grinding of the back surface 9b of the semiconductor wafer 9 is performed until the thickness of the semiconductor chip 9'reaches the target value. For example, grinding may be stopped when the grinding surface reaches the groove 90, or the grinding surface may be stopped.
  • the back surface 9b may be ground together with the first protective film 12'existing inside the gap 90'even after the wafer reaches the groove 90.
  • a back grind tape may be attached to the surface of the semiconductor wafer 902 with the first protective film on the bump forming surface 9a side to grind the back surface 9b of the semiconductor wafer 9. good.
  • reference numeral 9b is also attached to the back surface of the semiconductor wafer 9 being ground for convenience.
  • Reference numeral 9b' indicates a surface (back surface) of the semiconductor chip 9'on the side opposite to the bump forming surface 9a'.
  • all the semiconductor chips 9' are integrally held by one first protective film 12'.
  • all the semiconductor chips 9' are on the bump forming surface 9a'side of one first protective film 12'and the semiconductor chip group 903 with the first protective film. It is integrally held by the back grind tape attached to the surface.
  • ⁇ Cut step (1)> In the cutting step (1) after the dividing step (1), the first protective film 12'is cut along the gap 90'between the semiconductor chips 9'in the semiconductor chip group 903 with the first protective film. As a result, as shown in FIG. 4E, the semiconductor chip 900 with the first protective film is manufactured.
  • the heat generation amount of the first test piece produced by using the resin film is 100 J / g or less, so that the curing failure is suppressed. Therefore, the processing waste that may be generated at the time of cutting is the semiconductor chip. Hard to adhere to 9'.
  • the semiconductor chip 900 with the first protective film includes a semiconductor chip 9'and a first protective film 120'provided on the side surface 9c'and the bump forming surface 9a' of the semiconductor chip 9'.
  • the semiconductor chip 9' is protected by the first protective film 120' after cutting on its side surface 9c'and the bump forming surface 9a', respectively, and the protective effect obtained by the semiconductor chip 9'is remarkably high.
  • the semiconductor chip 9' When the semiconductor chip 9'is viewed in a plan view from above on the bump forming surface 9a' side, when the planar shape of the semiconductor chip 9'is square, one semiconductor chip 9'has four side surfaces. It has 9c'. Therefore, in the semiconductor chip 900 with the first protective film, the first protection after cutting is integrally provided on all (that is, four) side surfaces 9c'and one bump forming surface 9a' of the semiconductor chip 9'. A membrane 120'is provided. In the present specification, the "first protective film after cutting" may be simply referred to as the "first protective film".
  • the first protective film 12' is cut along the outer circumference (in other words, the side surface 9c') of the semiconductor chip 9'.
  • the first protective film 12'filled in the gap 90'between the adjacent semiconductor chips 9' is cut along the outer circumference (in other words, the side surface 9c') of the semiconductor chip 9'and divided into two. Is preferable.
  • the first protective film 120'after cutting which has a more uniform shape, can be provided on each side surface 9c'of the semiconductor chip 9'.
  • the first protective film 12' can be cut by a known method such as blade dicing or laser dicing.
  • the first protective film 12' is cut, for example, in a state where a known dicing sheet is attached to the back surface 9b'of the semiconductor chip 9'in the semiconductor chip group 903 with the first protective film and the back grind tape is removed. It can be carried out.
  • the back grind tape has an energy ray-curable adhesive layer
  • the back grind tape can be more easily obtained from the semiconductor chip group 903 with the first protective film by curing the adhesive layer by irradiation with energy rays. Can be removed.
  • the first protective film 120' is sufficiently adhered to the bump forming surface 9a'of the semiconductor chip 9', the base of the bump 91, and the side surface 9c'. The peeling of the first protective film 120'from the surface is suppressed. A first protective film 120'with a sufficient thickness is provided on the side surface 9c'of the semiconductor chip 9'.
  • the crown portion 9101 of the bump 91 protrudes from the first protective film 120', and the bump 91
  • the first protective film 120' is not attached at all or almost to the upper portion 910 including the crown portion 9101, and the attachment of the first protective film 120'at the upper portion 910 of the bump 91 is suppressed.
  • the protrusion of the first protective film 120'on the bump forming surface 9a'of the semiconductor chip 9' is suppressed.
  • the repelling of the first protective film 120'on the bump forming surface 9a' of the semiconductor chip 9' is suppressed.
  • the area other than the upper portion 910 of the bump 91 for example, the base near the bump forming surface 9a'
  • the phenomenon that the region near the bump 91 of the bump forming surface 9a'is unintentionally exposed without being covered by the first protective film 120' is suppressed.
  • 5A to 5E are cross-sectional views schematically showing the manufacturing method (2) as another example of the manufacturing method of the semiconductor chip with the first protective film when the composite sheet 1 shown in FIG. 3 is used. ..
  • ⁇ Cut step (2)> In the cutting step (2) after the curing step (1) of the manufacturing method (2), the first protective film 12'is cut along the groove 90 in the semiconductor wafer 902 with the first protective film. As shown in FIG. 5D, a cut-out semiconductor wafer 904 with a first protective film is produced. In this step, it is preferable to cut the first protective film 12'filled in the groove 90 along the side surface 90c of the groove 90. By doing so, it is possible to finally provide the first protective film after cutting having a more uniform shape on each side surface of the semiconductor chip.
  • the first protective film 12' is cut from the surface 12b'on the side opposite to the semiconductor wafer 9 side of the first protective film 12' toward the surface 12a' on the semiconductor wafer 9 side. ..
  • the notch of the first protective film 12'does not have to reach the tip of the first protective film 12'in the depth direction of the groove 90, but the semiconductor wafer 9 described later becomes easier to divide.
  • the reaching position of the cut is closer to the tip portion, and it is more preferable that the cut reaches the tip portion, that is, the first protective film 12'is cut.
  • 5D shows a case where the notch of the first protective film 12'is reached to the tip portion and the first protective film 12' is cut (referred to as the first protective film 120' after cutting).
  • the semiconductor wafer 9 is divided into semiconductor chips by grinding the back surface 9b of the semiconductor wafer 9, which will be described later, cracks or chips at the corners of the semiconductor chip and the first protection existing near the corners of the semiconductor chip are present.
  • the cracking or chipping of the film 12' is suppressed, does the reaching position of the notch of the first protective film 12' coincide with the position where the back surface of the semiconductor chip is expected to be finally formed?
  • it is preferably in the vicinity of such a location.
  • the first protective film 12' can be cut by a known method such as blade dicing or laser dicing, as in the case of the cutting step (1).
  • ⁇ Division process (2)> In the division step (2) after the cutting step (2), the semiconductor wafer 9 is divided to produce a semiconductor chip 900 with a first protective film as shown in FIG. 5E.
  • the semiconductor chip 900 with the first protective film obtained in the dividing step (2) is the same as the semiconductor chip 900 with the first protective film obtained in the cutting step (1).
  • the semiconductor wafer 9 can be divided by a known method as in the case of the division step (1).
  • the grinding surface (back surface 9b) reaches the groove 90 in the direction from the back surface 9b toward the bump forming surface 9a.
  • the back surface 9b is ground.
  • the cutting step (2) when the notch of the first protective film 12'does not reach the tip of the first protective film 12'in the depth direction of the groove 90, the ground surface is further protected by the first protection.
  • the back surface 9b is ground together with the first protective film 12'until the cut in the film 12'is reached.
  • the semiconductor chip 900 with the first protective film obtained in the dividing step (2) Similar to the case of the manufacturing method (1), in the semiconductor chip 900 with the first protective film obtained in the dividing step (2), the bump forming surface 9a'of the semiconductor chip 9', the base of the bump 91, and the side surface thereof. The peeling of the first protective film 120'from 9c'and is suppressed. A first protective film 120'with a sufficient thickness is provided on the side surface 9c'of the semiconductor chip 9'.
  • the above-mentioned bump is found in the semiconductor chip 900 with the first protective film obtained in the dividing step (2), as in the case of the manufacturing method (1).
  • the effect of suppressing the repelling of the first protective film 120' can be obtained.
  • 6A to 6E are cross-sectional views schematically showing the manufacturing method (3) as still another example of the manufacturing method of the semiconductor chip with the first protective film when the composite sheet 1 shown in FIG. 3 is used. be.
  • the semiconductor wafer 9 is divided into a plurality of semiconductor chips 9'and a plurality of semiconductor chips as shown in FIG. 6C.
  • a semiconductor chip group 905 with a resin film is produced, which comprises a resin film 12 provided in a gap 90'between a bump forming surface 9a'of 9'and a semiconductor chip 9'.
  • the semiconductor wafer 9 can be divided by a known method as in the case of the division step (1).
  • ⁇ Curing step (3)> In the curing step (3) after the dividing step (3), the first support sheet 10 is removed from the semiconductor chip group 905, and then the resin film 12 is cured to form the first protective film. As shown in FIG. 6D, the plurality of semiconductor chips 9'and the first protective film 12'provided in the gap 90'between the bump forming surfaces 9a'and the semiconductor chips 9'of the plurality of semiconductor chips 9'.
  • the semiconductor chip group 903 with the first protective film provided with the above is produced.
  • the semiconductor chip group 903 with the first protective film obtained in the curing step (3) is the same as the semiconductor chip group 903 with the first protective film obtained in the dividing step (1).
  • the resin film 12 can be cured by a known method as in the case of the curing step (1).
  • ⁇ Cut step (3)> In the cutting step (3) after the curing step (3), the first protective film 12'is cut along the gap 90'between the semiconductor chips 9'in the semiconductor chip group 903 with the first protective film. As a result, the semiconductor chip 900 with the first protective film is manufactured.
  • the semiconductor chip 900 with the first protective film obtained in the cutting step (3) is the same as the semiconductor chip 900 with the first protective film obtained in the cutting step (1).
  • the first protective film 12' can be cut by a known method as in the case of the cutting step (1).
  • the semiconductor chip 900 with the first protective film obtained in the cutting step (3) Similar to the case of the manufacturing method (1), in the semiconductor chip 900 with the first protective film obtained in the cutting step (3), the bump forming surface 9a'of the semiconductor chip 9', the base of the bump 91, and the side surface thereof. The peeling of the first protective film 120'from 9c'and is suppressed. A first protective film 120'with a sufficient thickness is provided on the side surface 9c'of the semiconductor chip 9'.
  • the above-mentioned bump is found in the semiconductor chip 900 with the first protective film obtained in the cutting step (3) as in the case of the manufacturing method (1).
  • the effect of suppressing the repelling of the first protective film 120' can be obtained.
  • the above-mentioned manufacturing methods (1) to (3) may have other steps different from the steps described so far, as long as the gist of the present invention is not deviated.
  • the manufacturing methods (1) to (3) are performed at any timing in the second protective film forming sheet on the back surface of the semiconductor chip.
  • the step of attaching the second protective film forming film, the step of curing the second protective film forming film to form the second protective film when the second protective film forming film is curable, the second It may have a step of cutting the protective film forming film or the second protective film along the outer periphery (side surface) of the semiconductor chip.
  • the resin film 12, the first protective film 12'or the first protective film 120'after cutting remains on the upper portion 910 including the crown 9101 of the bump 91 at any stage after the pasting step.
  • the manufacturing method (1) to the manufacturing method (3) are the remnants of the resin film 12, the first protective film 12'or the first protective film 120'after cutting at any timing after the sticking step. May have a removal step of removing from the top 910 of the bump 91.
  • the residue of the resin film 12, the first protective film 12'or the first protective film 120' after cutting in the upper part 910 of the bump 91 can be removed by a known method such as plasma irradiation.
  • a support sheet or back grind tape has been provided on the bump forming surface of the semiconductor wafer or the bump forming surface of the semiconductor chip group via a resin film or the first protective film, and the back surface of the semiconductor wafer or the semiconductor chip group has been provided.
  • a resin sheet other than these is provided instead of these support sheets or back grind tapes, and the back surface of the semiconductor wafer or the back surface of the semiconductor chip group is provided. Grinding or the like may be performed.
  • the resin sheet uses a fluid resin to embed a resin film or a first protective film on the bump forming surface of the semiconductor wafer or on the bump forming surface of the semiconductor chip group, and further embeds the surface of the bump. It can be formed by embedding and then curing.
  • a resin sheet before using the fluid resin, another resin film or first protective film on the bump forming surface and another having flexibility to follow the surface of the bump are provided.
  • a resin film may be formed to cover them with a resin, and the resin sheet may be provided through the resin film.
  • a semiconductor device By using the semiconductor chip with the first protective film, a semiconductor device can be manufactured.
  • the semiconductor chip with the first protective film is flip-chip connected (mounted) to the circuit forming surface of the circuit board at the crown of the bump in the chip.
  • the dicing sheet in the second protective film forming sheet is provided with the second protective film prior to the flip-chip connection of the semiconductor chip with the first protective film.
  • the semiconductor chip with the protective film is pulled apart and picked up.
  • the semiconductor chip with the first protective film provided with the second protective film can be picked up by a known method.
  • (A) -1 Polyvinyl butyral having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3 ("Eslek BL-10" manufactured by Sekisui Chemical Co., Ltd., weight average) Molecular weight 25,000, glass transition temperature 59 ° C.).
  • l 1 is about 28
  • m 1 is 1-3
  • n 1 is an integer of 68-74.
  • thermosetting resin film ⁇ Manufacture of first protective film forming sheet >> ⁇ Manufacturing of composition for forming thermosetting resin film> Polymer component (A) -1 (100 parts by mass), epoxy resin (B1) -1 (290 parts by mass), epoxy resin (B1) -2 (220 parts by mass), (B2) -1 (160 parts by mass) , Hardening Accelerator (C) -1 (2 parts by mass), Filler (D) -1 (200 parts by mass), Additive (I) -1 (25 parts by mass) and Additive (I) -2 (3) By dissolving or dispersing (part by mass) in methyl ethyl ketone and stirring at 23 ° C., the composition for forming a thermosetting resin film has a total concentration of all components other than the solvent of 45% by mass (by mass). III) was obtained.
  • the blending amounts of the components other than the solvent shown here are all the blending amounts of the target product containing no solvent.
  • thermosetting resin film ⁇ Manufacturing of thermosetting resin film> A release film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 ⁇ m) in which one side of a polyethylene terephthalate film was peeled by a silicone treatment was used, and the composition (III) obtained above was used on the peeled surface. was applied and dried by heating at 120 ° C. for 2 minutes to form a thermosetting resin film having a thickness of 45 ⁇ m.
  • SP-PET38131 manufactured by Lintec Corporation, thickness 38 ⁇ m
  • first protective film forming sheet A laminated sheet (back grind tape, "E-8510HR” manufactured by Lintec Corporation, also corresponding to the support sheet) corresponding to the laminate of the first base material, the buffer layer, and the first adhesive layer is used.
  • the first pressure-sensitive adhesive layer in the laminated sheet and the thermosetting resin film on the release film obtained above were bonded together.
  • the first base material, the cushioning layer, the first pressure-sensitive adhesive layer, the thermosetting resin film, and the release film are laminated in this order in the thickness direction of FIG. 3
  • a sheet for forming a first protective film having the constitution shown in the above was obtained.
  • thermosetting resin film having a thickness of 45 ⁇ m was produced by the same method as described above except that the coating amount of the composition (III) was changed.
  • the obtained thermosetting resin film was laminated to a thickness of 225 ⁇ m, and 5 mg of the thermosetting resin film was separated. This was used as the first test piece of the resin film before thermosetting.
  • a 5 mg first test piece is sealed in an aluminum pan, and a temperature rise rate of 10 ° C./min is used from room temperature to 300 ° C. under a nitrogen atmosphere using a DSC device (“Q-2000” manufactured by TA Instruments). And scanned in the range of 50-300 ° C. The exothermic peaks in the range of 100 to 300 ° C. were integrated from the scanning chart, and the amount of heat generated by the reaction was calculated.
  • thermosetting resin film ⁇ Evaluation of filling suitability of grooves on the wafer surface of thermosetting resin film>
  • a width of 60 ⁇ m and a depth of 60 ⁇ m can be obtained on the surface of a silicon wafer (diameter 12 inches, thickness 750 ⁇ m) so that a chip with a size of 6 mm ⁇ 6 mm can be obtained.
  • a plurality of grooves having a diameter of 230 ⁇ m were formed in a mesh pattern.
  • thermosetting resin film obtained above was attached to the surface of the silicon wafer on which the grooves were formed by a thermosetting resin film therein.
  • the laminated sheet (support sheet) was peeled off from the first protective film forming sheet to prepare a silicon wafer with a thermosetting resin film.
  • this thermosetting resin film after being attached to the surface of the silicon wafer on which the grooves are formed is subjected to a furnace at a temperature of 130 ° C.
  • the first protective film was formed by thermosetting by heat treatment under the heating condition of an internal pressure of 0.5 MPa. From the above, a silicon wafer with a first protective film was produced.
  • a dicing tape (“D” manufactured by Lintec Corporation) was applied to the back surface (ground surface) of all the silicon chips obtained above. -686H ”) was attached.
  • a blade dicer (“DFD6362” manufactured by DISCO Corporation)
  • the first protective film was cut along the outer periphery of the obtained silicon chip by blade dicing.
  • the moving speed of the blade was set to 10 mm / s
  • the rotating speed of the blade was set to 50,000 rpm
  • the base material of the dicing tape was cut by the blade to a depth of 20 ⁇ m from the surface on the silicon chip side.
  • a plurality of silicon chips with a first protective film were obtained in a state of being fixed on a dicing tape.
  • thermosetting resin film and calculation of X value> [Manufacturing of thermosetting resin film and second test piece] Twenty thermosetting resin films having a thickness of 50 ⁇ m were prepared by the same method as described above except that the coating amount of the composition (III) was changed. Next, these thermosetting resin films were laminated, and the obtained laminated film was cut into a disk shape having a diameter of 25 mm to prepare a second test piece of the thermosetting resin film having a thickness of 1 mm.
  • thermosetting resin film ⁇ Measurement of protrusion of thermosetting resin film>
  • a release film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 ⁇ m) in which one side of a polyethylene terephthalate film was peeled by a silicone treatment was used, and the composition (III) obtained above was used on the peeled surface.
  • this thermosetting resin film was processed together with the release film into a circular shape having a diameter of 170 mm to prepare a third test piece with the release film.
  • the entire exposed surface of the obtained third test piece (in other words, the surface opposite to the side provided with the release film) is the surface of a transparent strip-shaped back grind tape (“E-8180” manufactured by Lintec Corporation).
  • the laminate shown in FIG. 7 was obtained by laminating with.
  • FIG. 7 is a plan view schematically showing a state in which the obtained laminate is viewed from above on the back grind tape side. As shown here, in the obtained laminate 101, the back grind tape 7, the third test piece 120 (thermosetting resin film 12), and the release film are arranged in this order in these thickness directions. It is laminated and configured.
  • the release film was removed from the obtained laminate, and the newly generated exposed surface of the third test piece (in other words, the surface of the third test piece on the side opposite to the side provided with the back grind tape). ) was crimped onto one surface of a silicon wafer having a diameter of 12 inches to attach the third test piece to the surface of the silicon wafer.
  • the third test piece is attached using a pasting device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation), a table temperature of 90 ° C., a pasting speed of 2 mm / s, and a pasting pressure of 0.5 MPa.
  • the third test piece was heated while the roller attachment height was ⁇ 200 ⁇ m.
  • the maximum value of the length of the line segment connecting two different points on the outer circumference thereof is measured, and the measured value (the line segment) is measured.
  • the amount of protrusion (mm) of the third test piece (in other words, the heat-curable resin film) was calculated by the method described with reference to FIG. The results are shown in Table 1.
  • thermosetting resin film and first protective film forming sheet, and evaluation of thermosetting resin film are the types and amounts of the components to be blended during the production of the composition for forming a thermosetting resin film.
  • a thermosetting resin film and a sheet for forming a first protective film were produced in the same manner as in Example 1 except that one or both of the above was changed, and the thermosetting resin film was evaluated. The results are shown in Table 1.
  • the description of "-" in the column of the contained component in Table 1 means that the composition for forming a thermosetting resin film does not contain the component.
  • Example 1 in which the ratio of the content of the thermosetting component (B) and the ratio of the content of the filler (D) are high and the X value is also high, the surface of the silicon wafer of the thermosetting resin film The filling suitability of the groove was particularly good.
  • Example 1 Example 2 has not been evaluated
  • the amount of protrusion of the third test piece is 0 mm (no protrusion of the thermosetting resin film is observed), and the basics of this thermosetting resin film.
  • the characteristics were good.
  • the X value is 27 to 65
  • the thermosetting resin film of Examples 1 and 2 has a convex portion (for example, a bump forming surface of a semiconductor wafer) when attached to the uneven surface (for example, a bump forming surface of a semiconductor wafer).
  • bumps can be penetrated, residual on the upper part of the convex portion can be suppressed, protrusion on the uneven surface can be suppressed, and the thermosetting resin film itself and its cured product on the uneven surface can be suppressed. It was judged that it was possible to suppress the repellent.
  • the present invention can be used for manufacturing a semiconductor chip or the like having a bump on the connection pad portion used in the flip chip connection method.
  • first protective film forming sheet 10 ... Support sheet (first support sheet), 10a ... One surface of support sheet, 11 ... Base material (first base) Material), 11a ... One surface of the base material, 12 ... Resin film, 12a ... First surface of the resin film, 12'... 1st protective film, 120'... 1st protection Film (first protective film after cutting), 13 ... buffer layer, 9 ... semiconductor wafer, 90 ... semiconductor wafer groove, 9a ... semiconductor wafer bump forming surface, 9'... Semiconductor chip, 9a'... bump forming surface of semiconductor chip, 9c'... side surface of semiconductor chip, 91 ... bump, 900 ... semiconductor chip with first protective film, 901 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Dicing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Mechanical Engineering (AREA)

Abstract

This resin film is a thermosetting resin film and exhibits an amount of heat generation of not more than 100 J/g in the temperature range of 100-300°C when, using the pre-thermoset resin film as a first test specimen, the first test specimen is analyzed by differential scanning calorimetry (DSC) using conditions of a constant rate of temperature rise at a rate of temperature rise of 10°C/min.

Description

樹脂フィルム、複合シート、及び第1保護膜付き半導体チップの製造方法Method for manufacturing resin film, composite sheet, and semiconductor chip with first protective film
 本発明は、樹脂フィルム、複合シート、及び第1保護膜付き半導体チップの製造方法に関する。
 本願は、2020年2月27日に日本に出願された特願2020-031717号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for manufacturing a resin film, a composite sheet, and a semiconductor chip with a first protective film.
The present application claims priority based on Japanese Patent Application No. 2020-031717 filed in Japan on February 27, 2020, the contents of which are incorporated herein by reference.
 従来、MPUやゲートアレー等に用いる多ピンのLSIパッケージをプリント配線基板に実装する場合には、半導体チップとして、その接続パッド部に共晶ハンダ、高温ハンダ、金等からなる凸状電極(以下、本明細書においては「バンプ」と称する)が形成されたものを用い、所謂フェースダウン方式により、それらのバンプをチップ搭載用基板上の相対応する端子部に対面、接触させ、溶融/拡散接合するフリップチップ実装方法が採用されてきた。 Conventionally, when a multi-pin LSI package used for MPU, gate array, etc. is mounted on a printed wiring board, as a semiconductor chip, a convex electrode made of eutectic solder, high temperature solder, gold, etc. (hereinafter referred to as “convex electrode”) is attached to the connection pad portion. , Referred to as "bumps" in the present specification) are formed, and these bumps are brought into face-to-face contact with the corresponding terminal portions on the chip mounting substrate by a so-called face-down method to melt / diffuse. A flip-chip mounting method for joining has been adopted.
 この実装方法で用いる半導体チップは、例えば、回路面にバンプが形成された半導体ウエハの、回路面(換言するとバンプ形成面)とは反対側の面を研削したり、ダイシングして個片化することにより得られる。このような半導体チップを得る過程においては、通常、半導体ウエハのバンプ形成面及びバンプを保護する目的で、硬化性樹脂フィルムをバンプ形成面に貼付し、このフィルムを硬化させることによって、バンプ形成面に保護膜を形成する。 The semiconductor chip used in this mounting method is, for example, a semiconductor wafer having bumps formed on the circuit surface, and the surface opposite to the circuit surface (in other words, the bump forming surface) is ground or diced to be individualized. Obtained by In the process of obtaining such a semiconductor chip, a curable resin film is usually attached to the bump forming surface and the bump forming surface is cured for the purpose of protecting the bump forming surface and the bump of the semiconductor wafer. A protective film is formed on the surface.
 一方で、半導体装置には、より高い機能を有することが期待され、半導体チップのサイズが拡大する傾向にある。しかし、サイズが拡大された半導体チップは、基板に実装された状態での反りの発生によって、バンプが変形し易く、特に半導体チップの端部やその近傍に位置するバンプにクラックが発生し易い。バンプ形成面に形成された保護膜には、このようなバンプの破損を抑制することも期待される。 On the other hand, semiconductor devices are expected to have higher functions, and the size of semiconductor chips tends to increase. However, in the semiconductor chip whose size has been increased, the bumps are likely to be deformed due to the occurrence of warpage in the state of being mounted on the substrate, and in particular, the bumps located at the end of the semiconductor chip or in the vicinity thereof are likely to be cracked. The protective film formed on the bump-forming surface is also expected to suppress such damage to the bumps.
 半導体ウエハのバンプ形成面における保護膜の形成方法について、図8A~図8Dを参照しながら説明する。
 保護膜の形成には、図8Aに示すような保護膜形成用シート8を用いる。保護膜形成用シート8は、基材81上に粘着剤層83及び硬化性樹脂フィルム82がこの順に積層されて、構成されている。
A method of forming a protective film on the bump forming surface of the semiconductor wafer will be described with reference to FIGS. 8A to 8D.
A protective film forming sheet 8 as shown in FIG. 8A is used for forming the protective film. The protective film forming sheet 8 is formed by laminating the pressure-sensitive adhesive layer 83 and the curable resin film 82 on the base material 81 in this order.
 まず、保護膜形成用シート8を、その硬化性樹脂フィルム82が半導体ウエハ9のバンプ形成面9aに対向するように配置する。
 次いで、保護膜形成用シート8を半導体ウエハ9に圧着させて、図8Bに示すように、半導体ウエハ9のバンプ形成面9aに、保護膜形成用シート8の硬化性樹脂フィルム82を貼り合わせる。このときの硬化性樹脂フィルム82の貼り合わせは、硬化性樹脂フィルム82を加熱しながら行う。これにより、半導体ウエハ9のバンプ形成面9aと、バンプ91の表面91aには、硬化性樹脂フィルム82が密着するが、バンプ91が硬化性樹脂フィルム82を貫通すれば、バンプ91の表面91aの一部には、粘着剤層83も密着する。
 このような硬化性樹脂フィルム82の貼り合わせの後、さらに必要に応じて、半導体ウエハ9のバンプ形成面9aとは反対側の面(裏面)9bを研削した後、半導体ウエハ9の裏面9bに別途、この裏面9bを保護するための保護膜形成用シートを貼付する(図示略)。
First, the protective film forming sheet 8 is arranged so that the curable resin film 82 faces the bump forming surface 9a of the semiconductor wafer 9.
Next, the protective film forming sheet 8 is pressed against the semiconductor wafer 9, and as shown in FIG. 8B, the curable resin film 82 of the protective film forming sheet 8 is attached to the bump forming surface 9a of the semiconductor wafer 9. At this time, the curable resin film 82 is bonded while heating the curable resin film 82. As a result, the curable resin film 82 adheres to the bump forming surface 9a of the semiconductor wafer 9 and the surface 91a of the bump 91, but if the bump 91 penetrates the curable resin film 82, the surface 91a of the bump 91 The pressure-sensitive adhesive layer 83 also adheres to a part thereof.
After the curable resin film 82 is bonded, the surface (back surface) 9b of the semiconductor wafer 9 opposite to the bump forming surface 9a is ground, and then on the back surface 9b of the semiconductor wafer 9. Separately, a protective film forming sheet for protecting the back surface 9b is attached (not shown).
 次いで、図8Cに示すように、硬化性樹脂フィルム82から基材81及び粘着剤層83を取り除く。
 次いで、硬化性樹脂フィルム82を硬化させて、図8Dに示すように、保護膜82’を形成する。
Next, as shown in FIG. 8C, the base material 81 and the pressure-sensitive adhesive layer 83 are removed from the curable resin film 82.
Next, the curable resin film 82 is cured to form the protective film 82'as shown in FIG. 8D.
 このように、半導体ウエハのバンプ形成面に保護膜を形成可能とされている保護膜形成用シートとしては、硬化性樹脂フィルムが熱硬化性で、特定範囲の溶融粘度を有し、かつ、粘着剤層が特定の温度範囲で特定範囲のせん断弾性率を有するものが開示されている(特許文献1参照)。 As described above, as a protective film forming sheet capable of forming a protective film on the bump forming surface of the semiconductor wafer, the curable resin film is thermosetting, has a melt viscosity in a specific range, and is adhesive. It is disclosed that the agent layer has a shear modulus in a specific range in a specific temperature range (see Patent Document 1).
日本国特開2015-092594号公報Japanese Patent Application Laid-Open No. 2015-092594
 一方、半導体ウエハを半導体チップへ分割する方法としては、各種のものが知られている。その一例としては、半導体ウエハとして、そのバンプ形成面に、さらに、その分割箇所となる溝が設けられているものを用い、先の説明のとおり、半導体ウエハのバンプ形成面とは反対側の面(裏面)を研削していき、研削面(裏面)を前記溝に到達させることで、半導体ウエハを半導体チップへ分割する方法が知られている。この方法を採用する場合には、半導体ウエハの分割に先立って、半導体ウエハのバンプ形成面に、保護膜形成用シート中の硬化性樹脂フィルムを貼り合わせたとき、前記溝に硬化性樹脂フィルムを十分に充填することが出来れば、半導体ウエハを分割し、硬化性樹脂フィルムを硬化させることによって、半導体チップのバンプ形成面だけでなく、その側面も保護膜で被覆できる。このように、バンプ形成面だけでなく、その側面にも保護膜を備えた半導体チップを、図9に示す。図9は、上述の保護膜形成用シート8を用いた場合に、正常に得られると仮定した場合の、バンプ形成面と側面に保護膜を備えた半導体チップ(保護膜付き半導体チップ)の一例を模式的に示す断面図である。 On the other hand, various methods are known as methods for dividing a semiconductor wafer into semiconductor chips. As an example, as a semiconductor wafer, a wafer having a bump forming surface further provided with a groove to be a division portion thereof is used, and as described above, a surface opposite to the bump forming surface of the semiconductor wafer is used. A method of dividing a semiconductor wafer into semiconductor chips is known by grinding the (back surface) and causing the ground surface (back surface) to reach the groove. When this method is adopted, when the curable resin film in the protective film forming sheet is attached to the bump forming surface of the semiconductor wafer prior to the division of the semiconductor wafer, the curable resin film is placed in the groove. If it can be sufficiently filled, not only the bump forming surface of the semiconductor chip but also the side surface thereof can be covered with the protective film by dividing the semiconductor wafer and curing the curable resin film. As described above, FIG. 9 shows a semiconductor chip provided with a protective film not only on the bump forming surface but also on the side surface thereof. FIG. 9 shows an example of a semiconductor chip (semiconductor chip with a protective film) having a protective film on the bump forming surface and the side surface when it is assumed that the protective film forming sheet 8 can be normally obtained. It is sectional drawing which shows typically.
 ここに示す保護膜付き半導体チップ909は、半導体チップ9’と、半導体チップ9’の側面9c’及びバンプ形成面9a’に設けられた第1保護膜820’と、を備えている。半導体チップ9’は、それぞれ、その側面9c’及びバンプ形成面9a’において、切断後の第1保護膜820’で保護されており、半導体チップ9’が得られる保護効果は、顕著に高い。 The semiconductor chip 909 with a protective film shown here includes a semiconductor chip 9'and a first protective film 820' provided on a side surface 9c'and a bump forming surface 9a'of the semiconductor chip 9'. The semiconductor chip 9'is protected by the first protective film 820' after cutting on its side surface 9c'and the bump forming surface 9a', respectively, and the protective effect obtained by the semiconductor chip 9'is remarkably high.
 硬化性樹脂フィルムは、熱硬化性の樹脂フィルムが用いられる場合がある。充填された樹脂フィルムを熱硬化させる場合、樹脂フィルムが充填された溝の形状が微細であり、樹脂フィルムへの熱の伝わり方が均等ではない場合など、熱硬化性樹脂フィルムの部分的な硬化不良が生じる場合がある。硬化不良が生じると、チップの保護効果が、想定される値よりも低下してしまうおそれがある。また、半導体チップ間の隙間に沿って、硬化不良が生じた保護膜が切断されるとき、切断時に生じる加工屑が半導体チップ又はウエハに付着してしまうことや、保護膜の切断面同士が再接着してしまう可能性がある。
 これに対して、特許文献1で開示されている保護膜形成用シート(保護膜形成用フィルム)は、このような問題点を解決できるか定かではない。
As the curable resin film, a thermosetting resin film may be used. When the filled resin film is heat-cured, the thermosetting resin film is partially cured, such as when the shape of the groove filled with the resin film is fine and the heat transfer to the resin film is not uniform. Defects may occur. When curing failure occurs, the protective effect of the chip may be lower than expected. In addition, when the protective film with poor curing is cut along the gap between the semiconductor chips, the processing debris generated during cutting may adhere to the semiconductor chip or wafer, and the cut surfaces of the protective film may reappear. There is a possibility of sticking.
On the other hand, it is uncertain whether the protective film forming sheet (protective film forming film) disclosed in Patent Document 1 can solve such a problem.
 ここまでは、半導体ウエハのバンプ形成面に硬化性樹脂フィルムを貼付する場合を例に挙げて説明したが、これに限定されず、樹脂フィルムには、半導体ウエハのバンプ形成面以外の凹凸面に貼付されることがある。これに対して、このような凹凸面への貼付全般で、樹脂フィルムの硬化不良が生じる可能性がある。 Up to this point, the case where the curable resin film is attached to the bump-forming surface of the semiconductor wafer has been described as an example, but the present invention is not limited to this, and the resin film is applied to an uneven surface other than the bump-forming surface of the semiconductor wafer. It may be affixed. On the other hand, there is a possibility that the resin film may be poorly cured in general sticking to such an uneven surface.
 本発明は、凹凸面への貼付に適用可能で、保護膜を形成可能な樹脂フィルムであって、樹脂フィルムが凹凸面上の溝に充填され、熱硬化のための熱処理が施された後に切断された場合、切断時に生じ得る加工屑が、半導体チップ又はウエハに付着し難い樹脂フィルムと、前記樹脂フィルムの凹凸面への貼付時に用いる、前記樹脂フィルムを備えた複合シートと、を提供することを目的とする。 The present invention is a resin film that can be applied to an uneven surface and can form a protective film, and is cut after the resin film is filled in a groove on the uneven surface and heat-treated for thermal curing. If this is the case, the present invention provides a resin film in which processing waste that may be generated during cutting does not easily adhere to a semiconductor chip or wafer, and a composite sheet provided with the resin film used when the resin film is attached to an uneven surface. With the goal.
 本発明は、以下の態様を有する。
[1] 熱硬化性の樹脂フィルムであって、
 熱硬化前の前記樹脂フィルムを第1試験片として用い、示差走査熱量分析(DSC)法によって第1試験片を昇温速度10℃/minの等速昇温条件にて分析して得られる、100~300℃の範囲の発熱量が100J/g以下である、樹脂フィルム。
[2] 前記樹脂フィルムが、熱硬化性成分(B)を含有し、
 前記樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が、10~75質量%である、前記[1]に記載の樹脂フィルム。
[3] 前記樹脂フィルムで、直径25mm、厚さ1mmであるものを第2試験片として用い、温度90℃、周波数1Hzの条件で、前記第2試験片にひずみを発生させて、前記第2試験片の貯蔵弾性率を測定し、前記第2試験片のひずみが1%のときの、前記第2試験片の貯蔵弾性率をGc1とし、前記第2試験片のひずみが300%のときの、前記第2試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満である、前記[1]又は[2]に記載の樹脂フィルム。
[4] 前記樹脂フィルムが凹凸面への貼付用である、前記[1]~[3]のいずれか一つに記載の樹脂フィルム。
[5] 前記樹脂フィルムが、半導体チップの凹凸面及び側面の保護用である、前記[1]~[4]のいずれか一つに記載の樹脂フィルム。
[6] 支持シートと、前記支持シートの一方の面上に設けられた樹脂フィルムと、を備え、
 前記樹脂フィルムが、前記[1]~[5]のいずれか一つに記載の樹脂フィルムである、複合シート。
[7] 前記支持シートが、基材と、前記基材の一方の面上に設けられた粘着剤層と、を備えており、前記粘着剤層が、前記基材と、前記樹脂フィルムと、の間に配置されている、前記[6]に記載の複合シート。
[8] 前記支持シートが、基材と、前記基材の一方の面上に設けられた緩衝層と、を備えており、前記緩衝層が、前記基材と、前記樹脂フィルムと、の間に配置されている、前記[6]又は[7]に記載の複合シート。
[9] 半導体ウエハを用いた、第1保護膜付き半導体チップの製造方法であって、
 前記第1保護膜付き半導体チップは、半導体チップと、前記半導体チップの側面及びバンプを有する面に設けられた第1保護膜と、を備えており、
 前記半導体ウエハは、その一方の面に、バンプと、前記半導体ウエハの分割箇所となる溝と、を有し、
 前記製造方法は、前記[6]~[8]のいずれか一つに記載の複合シート中の前記樹脂フィルムを、前記半導体ウエハの前記一方の面に貼付することにより、前記一方の面に前記樹脂フィルムを備え、かつ、前記溝が前記樹脂フィルムで充填された、樹脂フィルム付き半導体ウエハを作製する貼付工程を有し、
 前記製造方法は、さらに、
 前記貼付工程後に、前記樹脂フィルムを熱硬化させて、前記第1保護膜を形成することにより、前記半導体ウエハと、前記半導体ウエハの前記一方の面に設けられ、かつ前記溝に充填された前記第1保護膜と、を備えた第1保護膜付き半導体ウエハを作製する硬化工程(1)と、前記硬化工程(1)後に、前記半導体ウエハを分割することにより、複数個の前記半導体チップと、複数個の前記半導体チップの前記バンプを有する面及び前記半導体チップ間の隙間に設けられた前記第1保護膜と、を備えた第1保護膜付き半導体チップ群を作製する分割工程(1)と、前記分割工程(1)後に、前記第1保護膜付き半導体チップ群中の前記半導体チップ間の隙間に沿って、前記第1保護膜を切断することにより、前記第1保護膜付き半導体チップを作製する切断工程(1)を有するか、
 前記貼付工程後で、かつ前記硬化工程(1)後に、前記第1保護膜付き半導体ウエハ中の前記溝に沿って、前記第1保護膜を切り込むことにより、切り込み済み第1保護膜付き半導体ウエハを作製する切断工程(2)と、前記切断工程(2)後に、前記半導体ウエハを分割することにより、前記第1保護膜付き半導体チップを作製する分割工程(2)を有するか、又は、
 前記貼付工程後に、前記半導体ウエハを分割することにより、複数個の前記半導体チップと、複数個の前記半導体チップの前記バンプを有する面及び前記半導体チップ間の隙間に設けられた前記樹脂フィルムと、を備えた樹脂フィルム付き半導体チップ群を作製する分割工程(3)と、前記分割工程(3)後に、前記樹脂フィルムを熱硬化させて、前記第1保護膜を形成することにより、複数個の前記半導体チップと、複数個の前記半導体チップの前記バンプを有する面及び前記半導体チップ間の隙間に設けられた前記第1保護膜と、を備えた第1保護膜付き半導体チップ群を作製する硬化工程(3)と、前記硬化工程(3)後に、前記第1保護膜付き半導体チップ群中の前記半導体チップ間の隙間に沿って、前記第1保護膜を切断することにより、前記第1保護膜付き半導体チップを得る切断工程(3)を有する、第1保護膜付き半導体チップの製造方法。
The present invention has the following aspects.
[1] A thermosetting resin film
The resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min. A resin film having a calorific value in the range of 100 to 300 ° C. of 100 J / g or less.
[2] The resin film contains a thermosetting component (B) and contains.
The resin film according to the above [1], wherein the ratio of the content of the thermosetting component (B) to the total mass of the resin film is 10 to 75% by mass.
[3] The resin film having a diameter of 25 mm and a thickness of 1 mm is used as the second test piece, and strain is generated in the second test piece under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz to generate the second test piece. When the storage elastic modulus of the test piece is measured and the strain of the second test piece is 1%, the storage elastic modulus of the second test piece is Gc1 and the strain of the second test piece is 300%. , When the storage elastic modulus of the second test piece is Gc300, the following formula:
X = Gc1 / Gc300
The resin film according to the above [1] or [2], wherein the X value calculated by the above method is 19 or more and less than 10000.
[4] The resin film according to any one of [1] to [3] above, wherein the resin film is for sticking to an uneven surface.
[5] The resin film according to any one of [1] to [4] above, wherein the resin film is for protecting the uneven surface and the side surface of the semiconductor chip.
[6] A support sheet and a resin film provided on one surface of the support sheet are provided.
A composite sheet in which the resin film is the resin film according to any one of the above [1] to [5].
[7] The support sheet includes a base material and an adhesive layer provided on one surface of the base material, and the pressure-sensitive adhesive layer comprises the base material, the resin film, and the like. The composite sheet according to the above [6], which is arranged between the above.
[8] The support sheet includes a base material and a buffer layer provided on one surface of the base material, and the buffer layer is between the base material and the resin film. The composite sheet according to the above [6] or [7], which is arranged in.
[9] A method for manufacturing a semiconductor chip with a first protective film using a semiconductor wafer.
The semiconductor chip with a first protective film includes a semiconductor chip and a first protective film provided on a side surface of the semiconductor chip and a surface having bumps.
The semiconductor wafer has bumps and grooves serving as division points of the semiconductor wafer on one surface thereof.
In the manufacturing method, the resin film in the composite sheet according to any one of [6] to [8] is attached to the one surface of the semiconductor wafer, whereby the resin film is attached to the one surface. It has a sticking step of producing a semiconductor wafer with a resin film, which comprises a resin film and whose grooves are filled with the resin film.
The manufacturing method further
After the pasting step, the resin film is thermally cured to form the first protective film, whereby the semiconductor wafer and the semiconductor wafer are provided on one surface of the semiconductor wafer and filled in the grooves. A plurality of the semiconductor chips are formed by dividing the semiconductor wafer after the curing step (1) for producing the semiconductor wafer with the first protective film provided with the first protective film and the curing step (1). (1) After the division step (1), the semiconductor chip with the first protective film is cut along the gap between the semiconductor chips in the semiconductor chip group with the first protective film. Have a cutting step (1) to make
After the pasting step and after the curing step (1), the first protective film is cut along the groove in the first protective film-attached semiconductor wafer, so that the cut semiconductor wafer with the first protective film is cut. The semiconductor wafer is divided into a cutting step (2) and a dividing step (2) for producing the semiconductor chip with the first protective film by dividing the semiconductor wafer after the cutting step (2).
By dividing the semiconductor wafer after the pasting step, the plurality of the semiconductor chips, the resin film provided in the surface of the plurality of semiconductor chips having the bumps and the gap between the semiconductor chips, and the semiconductor chips. After the dividing step (3) for producing the semiconductor chip group with the resin film and the dividing step (3), the resin film is thermally cured to form the first protective film, whereby a plurality of semiconductor chips are formed. Curing to prepare a group of semiconductor chips with a first protective film including the semiconductor chip, a surface of the plurality of semiconductor chips having the bumps, and the first protective film provided in a gap between the semiconductor chips. After the step (3) and the curing step (3), the first protective film is cut along the gap between the semiconductor chips in the semiconductor chip group with the first protective film to protect the first protective film. A method for manufacturing a semiconductor chip with a first protective film, which comprises a cutting step (3) for obtaining a semiconductor chip with a film.
 本発明によれば、凹凸面への貼付に適用可能で、保護膜を形成可能な樹脂フィルムであって、樹脂フィルムが凹凸面上の溝に充填され、熱硬化のための熱処理が施された後に切断された場合、切断時に生じ得る加工屑が、半導体チップ又はウエハに付着し難い樹脂フィルムと、前記樹脂フィルムの凹凸面への貼付時に用いる、前記樹脂フィルムを備えた複合シートと、が提供される。 According to the present invention, it is a resin film that can be applied to an uneven surface and can form a protective film. The resin film is filled in a groove on the uneven surface and heat-treated for thermal curing. Provided are a resin film in which processing waste that may be generated during cutting when cut later is unlikely to adhere to a semiconductor chip or wafer, and a composite sheet provided with the resin film used when the resin film is attached to an uneven surface. Will be done.
本発明の一実施形態に係る樹脂フィルムの一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the resin film which concerns on one Embodiment of this invention. 樹脂フィルムの平面形状が円形である場合の、樹脂フィルムのはみ出し量を模式的に説明するための平面図である。It is a top view for schematically explaining the amount of protrusion of a resin film when the plane shape of a resin film is circular. 本発明の一実施形態に係る複合シートの一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the composite sheet which concerns on one Embodiment of this invention. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法の一例を、模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor chip with the 1st protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法の一例を、模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor chip with the 1st protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法の一例を、模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor chip with the 1st protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法の一例を、模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor chip with the 1st protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法の一例を、模式的に示す断面図である。It is sectional drawing which shows typically an example of the manufacturing method of the semiconductor chip with the 1st protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法の他の例を、模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法の他の例を、模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法の他の例を、模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法の他の例を、模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法の他の例を、模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法のさらに他の例を、模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法のさらに他の例を、模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法のさらに他の例を、模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法のさらに他の例を、模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used. 図3に示す複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法のさらに他の例を、模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing still another example of a method for manufacturing a semiconductor chip with a first protective film when the composite sheet shown in FIG. 3 is used. 実施例1において、熱硬化性樹脂フィルムのはみ出し量の測定時に作製した、熱硬化性樹脂フィルムを含む積層物を、模式的に示す平面図である。FIG. 5 is a plan view schematically showing a laminate containing a thermosetting resin film produced at the time of measuring the amount of protrusion of the thermosetting resin film in Example 1. 半導体ウエハのバンプ形成面における保護膜の形成方法を模式的に説明するための断面図である。It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. 半導体ウエハのバンプ形成面における保護膜の形成方法を模式的に説明するための断面図である。It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. 半導体ウエハのバンプ形成面における保護膜の形成方法を模式的に説明するための断面図である。It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. 半導体ウエハのバンプ形成面における保護膜の形成方法を模式的に説明するための断面図である。It is sectional drawing for schematically explaining the method of forming a protective film on the bump formation surface of a semiconductor wafer. バンプ形成面と側面に保護膜を備えた半導体チップの一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the semiconductor chip which provided the protective film on the bump forming surface and the side surface.
◇樹脂フィルム及びその製造方法
 本発明の一実施形態に係る樹脂フィルムは、熱硬化性の樹脂フィルムであって、熱硬化前の前記樹脂フィルムを第1試験片として用い、示差走査熱量分析(DSC)法によって第1試験片を昇温速度10℃/minの等速昇温条件にて分析して得られる、100~300℃の範囲の発熱ピークの発熱量が100J/g以下である。
-Resin film and method for producing the same The resin film according to the embodiment of the present invention is a thermosetting resin film, and the resin film before heat curing is used as a first test piece for differential scanning calorimetry (DSC). ) Method, the calorific value of the exothermic peak in the range of 100 to 300 ° C. obtained by analyzing the first test piece under the constant rate heating condition of 10 ° C./min is 100 J / g or less.
 本実施形態の樹脂フィルムは、凹凸面への貼付用として好適である。また、本実施形態の樹脂フィルムは、熱硬化性を有し、熱硬化によって保護膜を形成できる。本実施形態の樹脂フィルムは、半導体チップの凹凸面及び側面の保護用として好適である。以下、本明細書において、特に断りのない場合は、樹脂フィルムとは、熱硬化性の樹脂フィルムを意味し、樹脂フィルムの「硬化」とは「熱硬化」を意味する。 The resin film of this embodiment is suitable for sticking to an uneven surface. Further, the resin film of the present embodiment has thermosetting property, and a protective film can be formed by thermosetting. The resin film of the present embodiment is suitable for protecting the uneven surface and the side surface of the semiconductor chip. Hereinafter, in the present specification, unless otherwise specified, the resin film means a thermosetting resin film, and the "curing" of the resin film means "thermosetting".
 本実施形態の樹脂フィルムを、加熱しながら凹凸面へ貼付したときには、軟化した樹脂フィルムが、前記凸部を覆うようにして凸部間に広がり、凹凸面と密着するとともに、凸部の表面、特に凹凸面の近傍部位の表面を覆って、凸部の基部を埋め込む。このとき、好ましくは、凹凸面の凸部が前記樹脂フィルムを貫通し、前記凸部の上部が前記樹脂フィルムから突出する。さらに、凹凸面が微細な溝を有する場合、前記樹脂フィルムによりこのような溝を充填でき、充填後に熱硬化のための熱処理が施された場合の、樹脂フィルムの硬化不良を抑制できる。このように、樹脂フィルムの硬化不良を抑制できる理由は、前記樹脂フィルムの前記第1試験片の前記発熱量が100J/g以下であるためである。 When the resin film of the present embodiment is attached to the uneven surface while heating, the softened resin film spreads between the convex portions so as to cover the convex portion and adheres to the uneven surface, and the surface of the convex portion, In particular, the surface of the portion near the uneven surface is covered and the base of the convex portion is embedded. At this time, preferably, the convex portion of the uneven surface penetrates the resin film, and the upper portion of the convex portion protrudes from the resin film. Further, when the uneven surface has fine grooves, such grooves can be filled with the resin film, and poor curing of the resin film can be suppressed when heat treatment for thermosetting is performed after filling. As described above, the reason why the curing failure of the resin film can be suppressed is that the calorific value of the first test piece of the resin film is 100 J / g or less.
 本実施形態の樹脂フィルムを凹凸面へ貼付するときの、樹脂フィルムの加熱温度、貼付圧力は、その他の貼付条件、並びに凹凸面上の溝の幅及び深さに応じて、適宜調節できるが、例えば、後述する半導体ウエハのバンプ形成面への貼付時と、同じとすることができる。 When the resin film of the present embodiment is attached to the uneven surface, the heating temperature and the application pressure of the resin film can be appropriately adjusted according to other application conditions and the width and depth of the grooves on the uneven surface. For example, it can be the same as when the semiconductor wafer is attached to the bump forming surface, which will be described later.
 樹脂フィルム又は保護膜による、凹凸面上の溝の充填の程度(本明細書においては「溝の充填適性」と称することがある)は、樹脂フィルム又は保護膜を備えた凹凸面を、光学顕微鏡を用いて観察することで、確認できる。
 熱硬化のための熱処理後の樹脂フィルムを切断した際に生じ得る加工屑の発生の程度は、切断ラインの交差部を、光学顕微鏡を用いて観察することで、確認できる。
The degree of filling of the groove on the uneven surface by the resin film or the protective film (referred to as “groove filling suitability” in the present specification) is determined by measuring the uneven surface provided with the resin film or the protective film with an optical microscope. It can be confirmed by observing with.
The degree of generation of processing debris that can be generated when the resin film after the heat treatment for thermosetting is cut can be confirmed by observing the intersection of the cutting lines with an optical microscope.
 本実施形態の樹脂フィルムの凹凸面への貼付時には、本実施形態の樹脂フィルムを備えた複合シートを用いることができる。複合シートについては、後ほど詳しく説明する。 When the resin film of the present embodiment is attached to the uneven surface, a composite sheet provided with the resin film of the present embodiment can be used. The composite sheet will be described in detail later.
 前記凹凸面を備えた、前記樹脂フィルムの貼付対象物として、より具体的には、例えば、バンプを有する半導体ウエハが挙げられる。
 すなわち、前記樹脂フィルムは、半導体チップへと分割する前の半導体ウエハに対して貼付できる。この場合、前記樹脂フィルムは、半導体ウエハのバンプを有する面に貼付して使用される。
More specifically, a semiconductor wafer having bumps can be mentioned as an object to which the resin film is attached, which has the uneven surface.
That is, the resin film can be attached to the semiconductor wafer before it is divided into semiconductor chips. In this case, the resin film is used by being attached to a surface of a semiconductor wafer having bumps.
 本明細書においては、半導体ウエハ及び半導体チップのいずれにおいても、そのバンプを有する面のことを「バンプ形成面」と称することがある。 In the present specification, in both the semiconductor wafer and the semiconductor chip, the surface having the bump may be referred to as a "bump forming surface".
 前記樹脂フィルムを加熱しながらバンプ形成面に貼付することで、軟化した樹脂フィルムは、バンプを覆うようにしてバンプ間に広がり、バンプ形成面と密着するとともに、バンプの表面、特にバンプ形成面の近傍部位の表面を覆って、バンプの基部を埋め込む。このとき、好ましくは、バンプ形成面のバンプが前記樹脂フィルムを貫通し、バンプの頭頂部が前記樹脂フィルムから突出する。さらに、バンプ形成面が微細な溝を有する場合、前記樹脂フィルムによりこのような溝を充填できる。 By attaching the resin film to the bump forming surface while heating, the softened resin film spreads between the bumps so as to cover the bumps and adheres to the bump forming surface, and also on the bump surface, particularly the bump forming surface. Cover the surface of the nearby part and embed the base of the bump. At this time, preferably, the bumps on the bump forming surface penetrate the resin film, and the crown portion of the bumps protrudes from the resin film. Further, when the bump forming surface has fine grooves, such grooves can be filled with the resin film.
 バンプ形成面に設けられ、溝に充填されている樹脂フィルムは、この後、この状態のまま、硬化によって最終的に第1保護膜を形成する。実施形態の樹脂フィルムは、前記樹脂フィルムを用いて作製した前記第1試験片の前記発熱量が100J/g以下であることで、硬化不良が抑制される。 The resin film provided on the bump forming surface and filled in the groove is then cured to finally form the first protective film in this state. In the resin film of the embodiment, the heat generation amount of the first test piece produced by using the resin film is 100 J / g or less, so that curing failure is suppressed.
 本明細書においては、このように、半導体ウエハ又は半導体チップのバンプ形成面に設けられている保護膜を「第1保護膜」と称する。そして、半導体ウエハ又は半導体チップのバンプ形成面とは反対側の面(すなわち裏面)に設けられている保護膜を「第2保護膜」と称する。 In the present specification, the protective film provided on the bump forming surface of the semiconductor wafer or the semiconductor chip in this way is referred to as a "first protective film". The protective film provided on the surface (that is, the back surface) opposite to the bump forming surface of the semiconductor wafer or semiconductor chip is referred to as a "second protective film".
 前記樹脂フィルムは、熱硬化性であり、熱硬化性及びエネルギー線硬化性の両方の特性を有していてもよい。 The resin film is thermosetting and may have both thermosetting and energy ray curable properties.
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味する。エネルギー線の例としては、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 また、本明細書において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
 また、「非硬化性」とは、加熱やエネルギー線の照射等、如何なる手段によっても、硬化しない性質を意味する。
As used herein, the term "energy ray" means an electromagnetic wave or a charged particle beam having an energy quantum. Examples of energy rays include ultraviolet rays, radiation, electron beams and the like. Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet source. The electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
Further, in the present specification, "energy ray curable" means a property of being cured by irradiating with energy rays, and "non-energy ray curable" is a property of not being cured by irradiating with energy rays. Means.
Further, "non-curable" means a property of not being cured by any means such as heating or irradiation with energy rays.
 樹脂フィルムの硬化時の反応熱に相当する熱量を分析するため、本実施形態では、示差走査熱量分析(DSC)法による、樹脂フィルムの発熱量の測定値を採用する。樹脂フィルムの発熱量の測定には、熱硬化前の前記樹脂フィルムの第1試験片を用いる。DSC分析に好適で作製が容易である点では、前記第1試験片は、厚さ0.5mm未満の単層の前記樹脂フィルムが複数枚積層されて構成された積層フィルムであることが好ましい。また、試験片は5mg以上を用いることが好ましい。
 前記発熱量は、第1試験片を昇温速度10℃/minの等速昇温条件で計測されたDSC分析にて得られる、100~300℃の範囲の発熱量とする。前記発熱量は、DSC分析により得られたDSC曲線における、100~300℃の範囲の発熱ピークの積分値として求めることができる。
In order to analyze the amount of heat corresponding to the heat of reaction at the time of curing the resin film, in this embodiment, the measured value of the amount of heat generated by the resin film by the differential scanning calorimetry (DSC) method is adopted. The first test piece of the resin film before thermosetting is used for measuring the calorific value of the resin film. From the viewpoint of being suitable for DSC analysis and easy to prepare, the first test piece is preferably a laminated film formed by laminating a plurality of the single-layer resin films having a thickness of less than 0.5 mm. Further, it is preferable to use 5 mg or more of the test piece.
The calorific value is a calorific value in the range of 100 to 300 ° C. obtained by DSC analysis of the first test piece measured under a constant heating rate of 10 ° C./min. The calorific value can be obtained as an integral value of the exothermic peaks in the range of 100 to 300 ° C. in the DSC curve obtained by DSC analysis.
 前記第1試験片の前記発熱量は100J/g以下であり、例えば、10~100J/gが好ましく、50~90J/gがより好ましく、60~80J/gがさらに好ましい。前記発熱量が上記上限値以下であることで、微細な溝に充填された樹脂フィルムを熱硬化させる場合など、樹脂フィルムへの熱の伝わりが不均一となり易い状態であっても、樹脂フィルムの硬化不良が生じ難い。また、前記発熱量が上記下限値以上であることで、樹脂フィルム熱硬化性能が良好に発揮される。 The calorific value of the first test piece is 100 J / g or less, for example, 10 to 100 J / g is preferable, 50 to 90 J / g is more preferable, and 60 to 80 J / g is further preferable. When the calorific value is not more than the above upper limit value, the heat transfer to the resin film tends to be non-uniform, such as when the resin film filled in the fine groove is thermosetting. Hardening failure is unlikely to occur. Further, when the calorific value is at least the above lower limit value, the thermosetting performance of the resin film is satisfactorily exhibited.
 前記第1試験片の前記発熱量は、前記樹脂フィルムの含有成分の種類又は含有量を調節することで、容易に調節できる。そのためには、樹脂フィルムを形成するための組成物中の含有成分の種類又は含有量を調節すればよい。例えば、後述する熱硬化性樹脂フィルム形成用組成物(III)を用いる場合には、この組成物中の熱硬化性成分(B)(例えば、エポキシ樹脂(B1)及び熱硬化剤(B2))、充填材(D)等の、主たる含有成分の種類又は含有量を調節することで、前記発熱量を容易に調節できる。
 例えば、熱硬化性樹脂フィルム及び前記組成物(III)の熱硬化性成分(B)の含有量(例えば、エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量)を低減すると、前記発熱量の値は小さくなり易い。
The calorific value of the first test piece can be easily adjusted by adjusting the type or content of the components contained in the resin film. For that purpose, the type or content of the contained component in the composition for forming the resin film may be adjusted. For example, when the thermosetting resin film forming composition (III) described later is used, the thermosetting component (B) in this composition (for example, epoxy resin (B1) and thermosetting agent (B2)). , The calorific value can be easily adjusted by adjusting the type or content of the main contained component such as the filler (D).
For example, when the content of the thermosetting component (B) of the thermosetting resin film and the composition (III) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) is reduced, The calorific value tends to be small.
 本実施形態においては、前記樹脂フィルムで、直径25mm、厚さ1mmであるものを第2試験片として用い、温度90℃、周波数1Hzの条件で、前記第2試験片にひずみを発生させて、前記第2試験片の貯蔵弾性率を測定し、前記第2試験片のひずみが1%のときの、前記第2試験片の貯蔵弾性率をGc1とし、前記第2試験片のひずみが300%のときの、前記第2試験片の貯蔵弾性率をGc300としたとき、下記式:
 X=Gc1/Gc300
により算出されるX値が、19以上10000未満である(19≦X値<10000である)ことが好ましい。このような樹脂フィルムを凹凸面へ貼付した場合には、凹凸面の凸部が樹脂フィルムを貫通し、前記凸部の上部が前記樹脂フィルムから突出したとき、凸部の上部において、樹脂フィルムの残存が抑制される。そして、この状態の樹脂フィルムの硬化物も当然に、前記凸部の上部においては、その付着が抑制される。さらに、この貼付後の樹脂フィルムにおいては、当初の大きさからのはみ出しが抑制されるため、例えば、前記凹凸面からの樹脂フィルムのはみ出しが抑制される。さらに、前記樹脂フィルム及びその硬化物が前記凹凸面に設けられた状態で、凹凸面の凸部のうち、その上部以外の領域(例えば、凹凸面近傍の基部)、又は、凹凸面の凸部近傍の領域が、意図せずに前記樹脂フィルム及びその硬化物で覆われずに露出してしまうこと、いわゆるハジキが抑制される。
 このように、前記X値が19以上10000未満であることにより、前記樹脂フィルムは、凸部を露出させつつ、樹脂フィルム自体及びその硬化物によって、凹凸面全体を被覆できる点で、より優れた特性を有する。
In the present embodiment, the resin film having a diameter of 25 mm and a thickness of 1 mm is used as the second test piece, and strain is generated in the second test piece under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz. The storage elastic modulus of the second test piece was measured, and when the strain of the second test piece was 1%, the storage elastic modulus of the second test piece was Gc1, and the strain of the second test piece was 300%. When the storage elastic modulus of the second test piece is Gc300, the following formula:
X = Gc1 / Gc300
The X value calculated by the above method is preferably 19 or more and less than 10000 (19 ≦ X value <10000). When such a resin film is attached to the uneven surface, when the convex portion of the uneven surface penetrates the resin film and the upper portion of the convex portion protrudes from the resin film, the resin film is formed on the upper portion of the convex portion. Remaining is suppressed. As a matter of course, the cured product of the resin film in this state is also suppressed from adhering to the upper part of the convex portion. Further, in the resin film after the sticking, the protrusion from the initial size is suppressed, so that the protrusion of the resin film from the uneven surface is suppressed, for example. Further, in a state where the resin film and the cured product thereof are provided on the uneven surface, a region other than the upper portion of the convex portion of the concave-convex surface (for example, a base near the concave-convex surface) or a convex portion of the concave-convex surface. Unintentional exposure of a nearby region without being covered with the resin film and its cured product, so-called cissing, is suppressed.
As described above, when the X value is 19 or more and less than 10000, the resin film is more excellent in that the entire uneven surface can be covered with the resin film itself and the cured product thereof while exposing the convex portion. Has characteristics.
 ひずみ分散測定を行う前記第2試験片は、フィルム状であり、その平面形状は円形である。
 第2試験片は、厚さ1mmの単層の前記樹脂フィルムであってもよいが、作製が容易である点では、厚さ1mm未満の単層の前記樹脂フィルムが複数枚積層されて構成された積層フィルムであることが好ましい。
 前記積層フィルムを構成する複数枚の単層の前記樹脂フィルムの厚さは、すべて同じであってもよいし、すべて異なっていてもよいし、一部のみ同じであってもよいが、作製が容易である点では、すべて同じであることが好ましい。
The second test piece for performing strain dispersion measurement is in the form of a film, and its planar shape is circular.
The second test piece may be the single-layer resin film having a thickness of 1 mm, but in terms of ease of production, the second test piece is configured by laminating a plurality of the single-layer resin films having a thickness of less than 1 mm. It is preferably a laminated film.
The thicknesses of the plurality of single-layer resin films constituting the laminated film may be the same, all may be different, or only a part may be the same, but the production may be carried out. In terms of ease, they are all preferably the same.
 本明細書においては、前記Gc1及びGc300に限らず、「第2試験片の貯蔵弾性率」とは、「温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの樹脂フィルムの第2試験片にひずみを発生させたときの、このひずみに対応した第2試験片の貯蔵弾性率」を意味する。 In the present specification, not limited to the Gc1 and Gc300, the "storage elastic modulus of the second test piece" is the second resin film having a diameter of 25 mm and a thickness of 1 mm under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz. When a strain is generated in the test piece, it means the storage elastic modulus of the second test piece corresponding to this strain.
 樹脂フィルムを貼付対象物の凹凸面へ貼付するときには、凹凸面の凸部の上部(貼付対象物がバンプを有する半導体ウエハである場合には、バンプの上部)が樹脂フィルムを貫通して突出しようとする中盤段階と、凸部の上部が樹脂フィルムを貫通して突出した後に、樹脂フィルムが凸部の基部を埋め込む終盤段階とでは、樹脂フィルムのひずみの程度は、大きく異なる。より具体的には、前記中盤段階での樹脂フィルムのひずみは大きく、前記終盤段階での樹脂フィルムのひずみは小さい。
 本実施形態の樹脂フィルムは、そのひずみが小さいときの貯蔵弾性率としてGc1を採用し、そのひずみが大きいときの貯蔵弾性率としてGc300を採用して、Gc1が高く、Gc300が低くなるようにして、X値(=Gc1/Gc300)を特定範囲に規定することにより、先に説明した優れた効果を奏する。
When the resin film is attached to the uneven surface of the object to be attached, the upper part of the convex portion of the uneven surface (or the upper part of the bump if the object to be attached is a semiconductor wafer having bumps) should protrude through the resin film. The degree of distortion of the resin film differs greatly between the middle stage of the process and the final stage in which the resin film embeds the base of the convex portion after the upper portion of the convex portion penetrates the resin film and protrudes. More specifically, the strain of the resin film in the middle stage is large, and the strain of the resin film in the final stage is small.
In the resin film of the present embodiment, Gc1 is adopted as the storage elastic modulus when the strain is small, and Gc300 is adopted as the storage elastic modulus when the strain is large so that Gc1 is high and Gc300 is low. By defining the X value (= Gc1 / Gc300) in a specific range, the excellent effect described above can be obtained.
 凹凸面の凸部の上部における、樹脂フィルムの残存の有無は、例えば、前記凸部の上部について、SEMの撮像データを取得することにより、確認できる。
 また、前記凹凸面からの樹脂フィルムのはみ出しの有無と、凹凸面上における、樹脂フィルムのハジキの有無は、例えば、前記凹凸面上の該当部位について、SEMの撮像データを取得することにより、確認できる。
Whether or not the resin film remains on the upper portion of the convex portion of the uneven surface can be confirmed, for example, by acquiring SEM imaging data on the upper portion of the convex portion.
Further, the presence or absence of the resin film protruding from the uneven surface and the presence or absence of repelling of the resin film on the uneven surface can be confirmed, for example, by acquiring SEM imaging data for the corresponding portion on the uneven surface. can.
 前記樹脂フィルムにおいて、X値は、例えば、5000以下、2000以下、1000以下、500以下、300以下、100以下、及び70以下のいずれかであってもよい。
 例えば、X値は、19~5000、25~2000、30~1000、35~500、40~300、45~100、及び50~70のいずれかであってもよい。
 X値が大きいほうが、溝の充填適性についても良好な傾向にある。
In the resin film, the X value may be, for example, any of 5000 or less, 2000 or less, 1000 or less, 500 or less, 300 or less, 100 or less, and 70 or less.
For example, the X value may be any of 19-5000, 25-2000, 30-1000, 35-500, 40-300, 45-100, and 50-70.
The larger the X value, the better the filling suitability of the groove.
 X値が10000以上である他の樹脂フィルムは、凹凸面への貼付によって、凸部の上部が他の樹脂フィルムから突出しても、ハジキの抑制効果が見られず、他の樹脂フィルムの硬化物も、ハジキが生じている状態のままとなる。 For other resin films having an X value of 10,000 or more, even if the upper part of the convex portion protrudes from the other resin film due to sticking to the uneven surface, the effect of suppressing cissing is not seen, and the cured product of the other resin film is not observed. However, it remains in a state where repelling is occurring.
 前記樹脂フィルムにおいて、Gc1は、X値が19以上10000未満であることが好ましい。
 ただし、先に説明したように、凸部の上部において樹脂フィルムの残存が抑制される効果と、樹脂フィルムのはみ出しが抑制される効果と、樹脂フィルム及びその硬化物のハジキが抑制される効果とが、いずれも高い次元で発揮される点では、Gc1は、1×10~1×10Paであることが好ましく、1×10~7×10Paであることがより好ましい。
In the resin film, Gc1 preferably has an X value of 19 or more and less than 10,000.
However, as described above, the effect of suppressing the residual resin film at the upper part of the convex portion, the effect of suppressing the protrusion of the resin film, and the effect of suppressing the repelling of the resin film and its cured product. However, Gc1 is preferably 1 × 10 4 to 1 × 10 6 Pa, and more preferably 1 × 10 5 to 7 × 10 5 Pa, in that all of them are exhibited at a high level.
 前記樹脂フィルムにおいて、Gc300は、X値が19以上10000未満となる限り、特に限定されない。
 ただし、上記のGc1の場合と同様の理由で、Gc300は、1~30000Paであることが好ましく、例えば、1~5000Paであってもよいし、5000~30000Paであってもよい。
In the resin film, Gc300 is not particularly limited as long as the X value is 19 or more and less than 10,000.
However, for the same reason as in the case of Gc1 described above, Gc300 is preferably 1 to 30000 Pa, and may be, for example, 1 to 5000 Pa or 5000 to 30000 Pa.
 前記樹脂フィルムにおいては、上述の条件をともに満たすこと、すなわち、Gc1が1×10~1×10Pa、好ましくは1×10~7×10Paであり、かつGc300が1~30000Pa、1~5000Pa、又は5000~30000Paであることが好ましい。 In the resin film, both of the above conditions are satisfied, that is, Gc1 is 1 × 10 4 to 1 × 10 6 Pa, preferably 1 × 10 5 to 7 × 10 5 Pa, and Gc300 is 1 to 30000 Pa. It is preferably 1 to 5000 Pa, or 5000 to 30000 Pa.
 前記樹脂フィルムの貯蔵弾性率は、Gc1及びGc300の場合に限らず、樹脂フィルムの含有成分の種類又は含有量を調節することで、容易に調節できる。そのためには、樹脂フィルムを形成するための組成物中の含有成分の種類又は含有量を調節すればよい。例えば、後述する熱硬化性樹脂フィルム形成用組成物(III)を用いる場合には、この組成物中の重合体成分(A)、充填材(D)等の、主たる含有成分の種類又は含有量を調節したり、レオロジーコントロール剤、界面活性剤又はシリコーンオイル等の添加剤(I)の種類又は含有量を調節することで、樹脂フィルムの貯蔵弾性率を容易に調節できる。
 例えば、熱硬化性樹脂フィルム及び前記組成物(III)の前記充填材(D)又は添加剤(I)の含有量を増大させると、X値は大きくなり易い。
The storage elastic modulus of the resin film is not limited to the cases of Gc1 and Gc300, and can be easily adjusted by adjusting the type or content of the components contained in the resin film. For that purpose, the type or content of the contained component in the composition for forming the resin film may be adjusted. For example, when the thermosetting resin film forming composition (III) described later is used, the type or content of the main contained components such as the polymer component (A) and the filler (D) in the composition. The storage elastic modulus of the resin film can be easily adjusted by adjusting the type or content of the additive (I) such as a rheology control agent, a surfactant or a silicone oil.
For example, when the content of the filler (D) or the additive (I) of the thermosetting resin film and the composition (III) is increased, the X value tends to increase.
 本実施形態の樹脂フィルムは、例えば、後述するように、支持シートと積層することで、複合シートを構成できる。 The resin film of the present embodiment can form a composite sheet by laminating it with a support sheet, for example, as will be described later.
 図1は、本発明の一実施形態に係る樹脂フィルムの一例を模式的に示す断面図である。
 なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
FIG. 1 is a cross-sectional view schematically showing an example of a resin film according to an embodiment of the present invention.
In addition, in the figure used in the following description, in order to make it easy to understand the features of the present invention, the main part may be enlarged for convenience, and the dimensional ratio and the like of each component are the same as the actual ones. Is not always the case.
 ここに示す樹脂フィルム12は、その一方の面(本明細書においては、「第1面」と称することがある)12a上に第1剥離フィルム151を備え、前記第1面12aとは反対側の他方の面(本明細書においては、「第2面」と称することがある)12b上に第2剥離フィルム152を備えている。
 このような樹脂フィルム12は、例えば、ロール状として保存するのに好適である。
The resin film 12 shown here has a first release film 151 on one surface (sometimes referred to as a “first surface” in the present specification) 12a, and is on the opposite side to the first surface 12a. A second release film 152 is provided on the other surface (sometimes referred to as "second surface" in the present specification) 12b.
Such a resin film 12 is suitable for storage as a roll, for example.
 樹脂フィルム12の第1試験片の前記発熱量は100J/g以下である。
 樹脂フィルム12の第2試験片のX値は、19以上10000未満であることが好ましい。
The calorific value of the first test piece of the resin film 12 is 100 J / g or less.
The X value of the second test piece of the resin film 12 is preferably 19 or more and less than 10,000.
 第1剥離フィルム151及び第2剥離フィルム152は、いずれも公知のものでよい。
 第1剥離フィルム151及び第2剥離フィルム152は、互いに同じものであってもよいし、例えば、樹脂フィルム12から剥離させるときに必要な剥離力が互いに異なるなど、互いに異なるものであってもよい。
Both the first release film 151 and the second release film 152 may be known.
The first release film 151 and the second release film 152 may be the same as each other, or may be different from each other, for example, the release forces required for peeling from the resin film 12 are different from each other. ..
 図1に示す樹脂フィルム12は、第1剥離フィルム151及び第2剥離フィルム152のいずれか一方が取り除かれ、生じた露出面が、前記凹凸面への貼付面となる。そして、第1剥離フィルム151及び第2剥離フィルム152の残りの他方が取り除かれ、生じた露出面が、後述する複合シートを構成するための他の層(例えば緩衝層、粘着剤層等)の貼付面となる。 In the resin film 12 shown in FIG. 1, either the first release film 151 or the second release film 152 is removed, and the resulting exposed surface becomes a surface to be attached to the uneven surface. Then, the other remaining of the first release film 151 and the second release film 152 is removed, and the generated exposed surface is a layer (for example, a buffer layer, an adhesive layer, etc.) for forming a composite sheet described later. It will be the sticking surface.
 図1においては、剥離フィルムが樹脂フィルム12の両面(第1面12a、第2面12b)に設けられている例を示しているが、剥離フィルムは、樹脂フィルム12のいずれか一方の面のみ、すなわち、第1面12aのみ、又は第2面12bのみに、設けられていてもよい。 FIG. 1 shows an example in which the release film is provided on both sides (first surface 12a, second surface 12b) of the resin film 12, but the release film is only one surface of the resin film 12. That is, it may be provided only on the first surface 12a or only on the second surface 12b.
 本実施形態の樹脂フィルムは、樹脂成分を含有し、樹脂成分以外の成分を含有していてもよいし、含有していなくてもよい。
 好ましい樹脂フィルムとしては、例えば、樹脂成分と、熱硬化性成分と、充填材と、を含有し、必要に応じてこれら(樹脂成分、熱硬化性成分及び充填材)のいずれにも該当せず、かつ樹脂フィルムの貯蔵弾性率の調節効果を有する各種添加剤と、を含有するものが挙げられる。
The resin film of the present embodiment contains a resin component and may or may not contain a component other than the resin component.
A preferable resin film contains, for example, a resin component, a thermosetting component, and a filler, and if necessary, does not fall under any of these (resin component, thermosetting component, and filler). In addition, those containing various additives having an effect of adjusting the storage elastic modulus of the resin film can be mentioned.
 樹脂フィルムの貯蔵弾性率の調節効果を有する前記添加剤としては、例えば、レオロジーコントロール剤(チキソトロピック剤)、界面活性剤、シリコーンオイル等が挙げられる。 Examples of the additive having an effect of adjusting the storage elastic modulus of the resin film include a rheology control agent (thixotropic agent), a surfactant, and a silicone oil.
 樹脂フィルムを凹凸面へ貼付したときなど、貼付対象物へ貼付したときに、樹脂フィルムが当初の大きさからはみ出した場合には、このはみ出している状態の樹脂フィルムを、その上方から見下ろして平面視し、このときの樹脂フィルムの外周上の異なる二点間を結ぶ線分の長さの最大値を求め、さらに、この最大値を示す前記線分と重なる位置での、当初(すなわち、はみ出す前)の樹脂フィルムの幅の値を求め、前記線分の長さの最大値から、前記樹脂フィルムの幅の値を減じることにより、樹脂フィルムのはみ出し量を算出できる。 If the resin film protrudes from its original size when it is attached to an object to be attached, such as when the resin film is attached to an uneven surface, the protruding resin film is viewed from above and is flat. Visually, the maximum value of the length of the line segment connecting two different points on the outer periphery of the resin film at this time is obtained, and further, at the position overlapping with the line segment indicating this maximum value, the initial value (that is, the protrusion) is obtained. The amount of protrusion of the resin film can be calculated by obtaining the value of the width of the resin film (previous) and subtracting the value of the width of the resin film from the maximum value of the length of the line segment.
 図2は、樹脂フィルムの平面形状が円形である場合の、樹脂フィルムのはみ出し量を模式的に説明するための平面図である。
 なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。
FIG. 2 is a plan view for schematically explaining the amount of protrusion of the resin film when the plane shape of the resin film is circular.
In the drawings after FIG. 2, the same components as those shown in the already explained figures are designated by the same reference numerals as in the case of the already explained figures, and detailed description thereof will be omitted.
 ここに示す樹脂フィルム101は、貼付対象物102に貼付された状態で、当初の大きさからはみ出した状態となっている。符号101’で示しているのは、当初の大きさの樹脂フィルムであり、はみ出し量を理解し易くするために、便宜的に示している。当初の樹脂フィルム101’の平面形状は、ここでは円形であるが、はみ出した状態となっている樹脂フィルム101の平面形状は、非円形である。ただし、これは一例であり、はみ出した状態となっている樹脂フィルム101の平面形状は、ここに示すものに限定されない。 The resin film 101 shown here is in a state of being attached to the object to be attached 102 and protruding from the initial size. Reference numeral 101'is a resin film having an initial size, which is shown for convenience in order to make it easier to understand the amount of protrusion. The initial planar shape of the resin film 101'is circular here, but the planar shape of the resin film 101 that is in a protruding state is non-circular. However, this is only an example, and the planar shape of the resin film 101 in the protruding state is not limited to that shown here.
 樹脂フィルム101のはみ出し量を求めるためには、樹脂フィルム101の外周1010上のうちの一点1010aと、これとは異なる他の一点1010bと、の間を結ぶ線分の長さDの最大値を求め、さらに、この最大値を示す前記線分と重なる位置での、当初(すなわち、はみ出す前)の樹脂フィルム101’の幅の値Dを求めればよい。DとDとの差(D-D)が、前記はみ出し量となる。
 樹脂フィルム101における、最大値を示す前記線分は、平面視にて、当初の樹脂フィルム101’における円の中心を通ることがあり、その場合、この最大値を示す前記線分と重なる位置での、当初の樹脂フィルム101’の幅の値は、樹脂フィルム101’の直径となる。
In order to obtain the amount of protrusion of the resin film 101, the maximum value of the length D 1 of the line segment connecting one point 1010a on the outer circumference 1010 of the resin film 101 and another point 1010b different from this point 1010a. , And further, the value D 0 of the width of the initial resin film 101'at the position overlapping with the line segment showing the maximum value (that is, before protruding) may be obtained. The difference between D 1 and D 0 (D 1 − D 0 ) is the amount of protrusion.
The line segment showing the maximum value in the resin film 101 may pass through the center of the circle in the initial resin film 101'in a plan view, and in that case, at a position overlapping the line segment showing the maximum value. The value of the width of the initial resin film 101'is the diameter of the resin film 101'.
 ここでは、図面を参照して、樹脂フィルムの平面形状が円形である場合の、樹脂フィルムのはみ出し量について説明したが、平面形状が円形以外である場合にも、同様の方法で樹脂フィルムのはみ出し量を算出できる。 Here, the amount of protrusion of the resin film when the plane shape of the resin film is circular has been described with reference to the drawings, but when the plane shape is other than circular, the protrusion of the resin film is described in the same manner. The amount can be calculated.
 前記樹脂フィルムは、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよい。樹脂フィルムが複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The resin film may be composed of one layer (single layer) or may be composed of two or more layers. When the resin film is composed of a plurality of layers, the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited.
 本明細書においては、前記樹脂フィルムの場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよいし、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。 In the present specification, not only in the case of the resin film, but also "a plurality of layers may be the same or different from each other" means "all layers may be the same or all layers are different". It may mean that only a part of the layers may be the same, and further, "a plurality of layers are different from each other" means that "at least one of the constituent materials and the thickness of each layer is different from each other". Means.
 前記樹脂フィルムの厚さは、1~100μmであることが好ましく、5~80μmであることがより好ましく、5~60μmであることが特に好ましい。樹脂フィルムの厚さが前記下限値以上であることで、樹脂フィルムが奏する効果が、より高くなる。例えば、樹脂フィルムを用いて保護膜を形成する場合には、保護能がより高い保護膜を形成できる。一方、樹脂フィルムの厚さが前記上限値以下であることで、過剰な厚さとなることが抑制される。
 ここで、「樹脂フィルムの厚さ」とは、樹脂フィルム全体の厚さを意味し、例えば、複数層からなる樹脂フィルムの厚さとは、樹脂フィルムを構成するすべての層の合計の厚さを意味する。
 本明細書において、「厚さ」は、特に断りの無い限り、無作為に選出された5箇所で厚さを測定した平均で表される値として、JIS K7130に準じて、定圧厚さ測定器を用いて取得できる。
The thickness of the resin film is preferably 1 to 100 μm, more preferably 5 to 80 μm, and particularly preferably 5 to 60 μm. When the thickness of the resin film is at least the above lower limit value, the effect of the resin film becomes higher. For example, when a protective film is formed using a resin film, a protective film having a higher protective ability can be formed. On the other hand, when the thickness of the resin film is equal to or less than the upper limit value, it is possible to prevent the resin film from becoming excessively thick.
Here, the "thickness of the resin film" means the thickness of the entire resin film, and for example, the thickness of the resin film composed of a plurality of layers means the total thickness of all the layers constituting the resin film. means.
In the present specification, "thickness" is a constant pressure thickness measuring device according to JIS K7130 as a value represented by an average of thickness measured at five randomly selected points, unless otherwise specified. Can be obtained using.
<<樹脂フィルム形成用組成物>>
 前記樹脂フィルムは、その構成材料を含有する樹脂フィルム形成用組成物を用いて形成できる。例えば、前記樹脂フィルムは、その形成対象面に樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることで、形成できる。樹脂フィルム形成用組成物における、常温で気化しない成分同士の含有量の比率は、通常、樹脂フィルムにおける前記成分同士の含有量の比率と同じとなる。
 本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
<< Composition for forming a resin film >>
The resin film can be formed by using a resin film forming composition containing the constituent material. For example, the resin film can be formed by applying a resin film forming composition to the surface to be formed and drying it if necessary. The ratio of the contents of the components that do not vaporize at room temperature in the composition for forming a resin film is usually the same as the ratio of the contents of the components in the resin film.
In the present specification, "room temperature" means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
 熱硬化性樹脂フィルムは、熱硬化性樹脂フィルム形成用組成物を用いて形成できる。なお、本明細書においては、樹脂フィルムが、熱硬化性及びエネルギー線硬化性の両方の特性を有する場合、その硬化(例えば、保護膜の形成)に対して、樹脂フィルムの熱硬化の寄与が、エネルギー線硬化の寄与よりも大きい場合には、樹脂フィルムを熱硬化性のものとして取り扱う。反対に、その硬化に対して、樹脂フィルムのエネルギー線硬化の寄与が、熱硬化の寄与よりも大きい場合には、樹脂フィルムをエネルギー線硬化性のものとして取り扱う。 The thermosetting resin film can be formed by using a composition for forming a thermosetting resin film. In the present specification, when the resin film has both thermosetting and energy ray curable properties, the contribution of the thermosetting of the resin film to the curing (for example, formation of a protective film) is If it is greater than the contribution of energy ray curing, the resin film is treated as thermosetting. On the contrary, when the contribution of the energy ray curing of the resin film to the curing is larger than the contribution of the thermosetting, the resin film is treated as an energy ray curable one.
 樹脂フィルム形成用組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。 The composition for forming a resin film may be coated by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and the like. A method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater can be mentioned.
 前記樹脂フィルム形成用組成物の乾燥条件は、特に限定されない。ただし、樹脂フィルム形成用組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。そして、溶媒を含有する樹脂フィルム形成用組成物は、例えば、70~130℃で10秒~5分の条件で、加熱乾燥させることが好ましい。ただし、熱硬化性樹脂フィルム形成用組成物は、この組成物自体と、この組成物から形成された熱硬化性樹脂フィルムと、が熱硬化しないように、加熱乾燥させることが好ましい。 The drying conditions of the resin film forming composition are not particularly limited. However, when the composition for forming a resin film contains a solvent described later, it is preferably heat-dried. The resin film-forming composition containing the solvent is preferably heat-dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example. However, the thermosetting resin film forming composition is preferably heat-dried so that the composition itself and the thermosetting resin film formed from the composition are not heat-cured.
 以下、熱硬化性樹脂フィルム及びエネルギー線硬化性樹脂フィルムについて、さらに詳細に説明する。 Hereinafter, the thermosetting resin film and the energy ray-curable resin film will be described in more detail.
◎熱硬化性樹脂フィルム
 熱硬化性樹脂フィルムを硬化させて、硬化物とするとき、特に保護膜を形成するときの硬化条件は、前記硬化物が十分にその機能を発揮する程度の硬化度となる限り、特に限定されず、熱硬化性樹脂フィルムの種類、前記硬化物の用途等に応じて、適宜選択すればよい。
 例えば、保護膜を形成する場合であれば、熱硬化性樹脂フィルムの硬化時の加熱温度は、100~200℃であることが好ましく、110~170℃であることがより好ましく、120~150℃であることが特に好ましい。そして、前記熱硬化時の加熱時間は、0.5~5時間であることが好ましく、0.5~4時間であることがより好ましく、1~4時間であることが特に好ましい。そして、熱硬化性樹脂フィルムは、加圧しながら硬化させてもよく、その場合の加圧圧力は、0.1~1MPaであることが好ましい。
◎ Thermosetting resin film When the thermosetting resin film is cured to obtain a cured product, the curing conditions when forming a protective film are such that the cured product fully exerts its function. As long as it is not particularly limited, it may be appropriately selected depending on the type of the thermosetting resin film, the use of the cured product, and the like.
For example, in the case of forming a protective film, the heating temperature of the thermosetting resin film at the time of curing is preferably 100 to 200 ° C, more preferably 110 to 170 ° C, and 120 to 150 ° C. Is particularly preferable. The heating time during the thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 4 hours, and particularly preferably 1 to 4 hours. The thermosetting resin film may be cured while being pressurized, and the pressurizing pressure in that case is preferably 0.1 to 1 MPa.
<熱硬化性樹脂フィルム形成用組成物>
 熱硬化性樹脂フィルム形成用組成物としては、例えば、重合体成分(A)と、熱硬化性成分(B)と、充填材(D)と、を含有する熱硬化性樹脂フィルム形成用組成物(III)(本明細書においては、単に「組成物(III)」と称することがある)等が挙げられる。
<Composition for forming a thermosetting resin film>
The composition for forming a thermosetting resin film includes, for example, a polymer component (A), a thermosetting component (B), and a filler (D). (III) (in this specification, it may be simply referred to as “composition (III)”) and the like.
[重合体成分(A)]
 重合体成分(A)は、熱硬化性樹脂フィルムに造膜性や可撓性等を付与するための重合体化合物である。なお、本明細書において重合体化合物には、重縮合反応の生成物も含まれる。
 組成物(III)及び熱硬化性樹脂フィルムが含有する重合体成分(A)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Polymer component (A)]
The polymer component (A) is a polymer compound for imparting film-forming property, flexibility, etc. to the thermosetting resin film. In addition, in this specification, a polymer compound also includes a product of a polycondensation reaction.
The polymer component (A) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
 重合体成分(A)としては、例えば、ポリビニルアセタール、アクリル樹脂、ウレタン樹脂、フェノキシ樹脂、シリコーン樹脂、飽和ポリエステル樹脂等が挙げられる。
 これらの中でも、重合体成分(A)は、ポリビニルアセタールであることが好ましい。
Examples of the polymer component (A) include polyvinyl acetal, acrylic resin, urethane resin, phenoxy resin, silicone resin, saturated polyester resin and the like.
Among these, the polymer component (A) is preferably polyvinyl acetal.
 重合体成分(A)における前記ポリビニルアセタールとしては、公知のものが挙げられる。
 なかでも、好ましいポリビニルアセタールとしては、例えば、ポリビニルホルマール、ポリビニルブチラール等が挙げられ、ポリビニルブチラールがより好ましい。
 ポリビニルブチラールとしては、下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するものが挙げられる。
Examples of the polyvinyl acetal in the polymer component (A) include known ones.
Among them, preferable polyvinyl acetals include, for example, polyvinyl formal, polyvinyl butyral, and the like, and polyvinyl butyral is more preferable.
Examples of polyvinyl butyral include those having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3.
Figure JPOXMLDOC01-appb-C000001
 (式中、l、m及びnは、それぞれ独立に1以上の整数である。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, l, m, and n are each independently an integer of 1 or more.)
 ポリビニルアセタールの重量平均分子量(Mw)は、5000~200000であることが好ましく、8000~100000であることがより好ましい。ポリビニルアセタールの重量平均分子量がこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面上の微細な溝を十分に充填し、凹凸面からの保護膜の剥離を抑制する効果(例えば、熱硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ形成面上の微細な溝を十分に充填し、バンプ形成面からの保護膜の剥離を抑制する効果。以下、同様。)と、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果(例えば、熱硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプの上部での熱硬化性樹脂フィルムの残存を抑制する効果。以下、同様。)と、前記凹凸面での熱硬化性樹脂フィルムの当初の大きさからのはみ出しを抑制する効果(例えば、熱硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ形成面での熱硬化性樹脂フィルムの当初の大きさからのはみ出しを抑制する効果。以下、同様。)と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果(例えば、熱硬化性樹脂フィルムを前記バンプ形成面に貼付したときに、バンプ形成面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果。以下、同様。)と、がより高くなる。 The weight average molecular weight (Mw) of polyvinyl acetal is preferably 5000 to 200,000, more preferably 8,000 to 100,000. When the weight average molecular weight of polyvinyl acetal is in such a range, when the thermosetting resin film is attached to the uneven surface, the fine grooves on the uneven surface are sufficiently filled and the protective film from the uneven surface is sufficiently filled. Effect of suppressing peeling (for example, when a thermosetting resin film is attached to the bump forming surface, the fine grooves on the bump forming surface are sufficiently filled to suppress peeling of the protective film from the bump forming surface. (The same shall apply hereinafter) and the effect of suppressing the residual of the thermosetting resin film on the upper part of the convex portion of the uneven surface (for example, thermosetting) when the thermosetting resin film is attached to the uneven surface. When the sex resin film is attached to the bump forming surface, the effect of suppressing the residue of the thermosetting resin film on the upper part of the bump. The same shall apply hereinafter) and the initial state of the thermosetting resin film on the uneven surface. Effect of suppressing protrusion from the size of (for example, when the thermosetting resin film is attached to the bump forming surface, the protrusion of the thermosetting resin film from the initial size on the bump forming surface is suppressed. Effect. The same shall apply hereinafter) and the effect of suppressing repelling of the thermosetting resin film and its cured product on the uneven surface (for example, when the thermosetting resin film is attached to the bump forming surface). The effect of suppressing the repelling of the thermosetting resin film and the cured product thereof on the bump forming surface. The same shall apply hereinafter) becomes higher.
 本明細書において、「重量平均分子量」とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。 In the present specification, the "weight average molecular weight" is a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
 ポリビニルアセタールのガラス転移温度(Tg)は、40~80℃であることが好ましく、50~70℃であることがより好ましい。ポリビニルアセタールのTgがこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、前記凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面での熱硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなる。 The glass transition temperature (Tg) of polyvinyl acetal is preferably 40 to 80 ° C, more preferably 50 to 70 ° C. When the Tg of polyvinyl acetal is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of suppressing the residual of the thermosetting resin film on the upper portion of the convex portion of the uneven surface is suppressed. The effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced.
 ポリビニルアセタールを構成する3種以上のモノマーの比率は任意に選択できる。 The ratio of three or more types of monomers constituting the polyvinyl acetal can be arbitrarily selected.
 重合体成分(A)における前記アクリル樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル樹脂の重量平均分子量(Mw)は、5000~1000000であることが好ましく、8000~800000であることがより好ましい。アクリル樹脂の重量平均分子量がこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、前記凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面での熱硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなる。
Examples of the acrylic resin in the polymer component (A) include known acrylic polymers.
The weight average molecular weight (Mw) of the acrylic resin is preferably 5000 to 1000000, and more preferably 8000 to 800,000. When the weight average molecular weight of the acrylic resin is in such a range, when the thermosetting resin film is attached to the uneven surface, the residual thermosetting resin film is suppressed on the upper part of the convex portion of the uneven surface. The effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced. ..
 アクリル樹脂のガラス転移温度(Tg)は、-50~70℃であることが好ましく、-30~60℃であることがより好ましい。アクリル樹脂のTgがこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、前記凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面での熱硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなる。 The glass transition temperature (Tg) of the acrylic resin is preferably -50 to 70 ° C, more preferably -30 to 60 ° C. When the Tg of the acrylic resin is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of suppressing the residual of the thermosetting resin film on the upper portion of the convex portion of the uneven surface is suppressed. The effect of suppressing the protrusion of the thermosetting resin film on the uneven surface and the effect of suppressing the repelling of the thermosetting resin film and its cured product on the uneven surface are further enhanced.
 アクリル樹脂が2種以上の構成単位を有する場合には、そのアクリル樹脂のガラス転移温度(Tg)は、Foxの式を用いて算出できる。このとき用いる、前記構成単位を誘導するモノマーのTgとしては、高分子データ・ハンドブック又は粘着ハンドブックに記載されている値を使用できる。 When the acrylic resin has two or more kinds of structural units, the glass transition temperature (Tg) of the acrylic resin can be calculated by using the Fox formula. As the Tg of the monomer for inducing the structural unit used at this time, the value described in the polymer data handbook or the adhesive handbook can be used.
 アクリル樹脂を構成するモノマーは、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The monomer constituting the acrylic resin may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 アクリル樹脂としては、例えば、1種又は2種以上の(メタ)アクリル酸エステルの重合体;
 (メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される2種以上のモノマーの共重合体;
 1種又は2種以上の(メタ)アクリル酸エステルと、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーと、の共重合体等が挙げられる。
As the acrylic resin, for example, a polymer of one kind or two or more kinds of (meth) acrylic acid esters;
Copolymers of two or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like;
One or more (meth) acrylic acid esters, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, etc. Examples thereof include the copolymer of.
 本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語につても同様であり、例えば、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念であり、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念である。 In the present specification, "(meth) acrylic acid" is a concept that includes both "acrylic acid" and "methacrylic acid". The same applies to terms similar to (meth) acrylic acid, for example, "(meth) acrylate" is a concept that includes both "acrylate" and "methacrylate", and is a "(meth) acryloyl group". Is a concept that includes both an "acryloyl group" and a "methacryloyl group".
 アクリル樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリル)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチル)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチル)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリル)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。
Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and (meth). N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylate Heptyl, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, Undecyl (meth) acrylate, dodecyl (meth) acrylate (lauryl acrylate), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (myristyl (meth) acrylate), pentadecyl (meth) acrylate , (Meta) hexadecyl acrylate (palmityl (meth) acrylate), heptadecyl (meth) acrylate, octadecyl (meth) acrylate (stearyl (meth) acrylate), etc., the alkyl group constituting the alkyl ester is carbon. (Meta) acrylic acid alkyl ester having a chain structure of 1 to 18;
(Meta) Acrylic acid cycloalkyl esters such as (meth) acrylate isobornyl, (meth) acrylate dicyclopentanyl;
(Meta) Acrylic acid aralkyl esters such as benzyl (meth) acrylic acid;
(Meta) Acrylic acid cycloalkenyl ester such as (meth) acrylic acid dicyclopentenyl ester;
(Meta) Acrylic acid cycloalkenyloxyalkyl ester such as (meth) acrylic acid dicyclopentenyloxyethyl ester;
(Meta) acrylate imide;
A glycidyl group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate;
Hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth) ) Hydroxyl-containing (meth) acrylic acid esters such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylate;
Examples thereof include substituted amino group-containing (meth) acrylic acid esters such as N-methylaminoethyl (meth) acrylic acid. Here, the "substituted amino group" means a group in which one or two hydrogen atoms of the amino group are substituted with a group other than the hydrogen atom.
 アクリル樹脂は、ビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル樹脂の前記官能基は、後述する架橋剤(F)を介して他の化合物と結合してもよいし、架橋剤(F)を介さずに他の化合物と直接結合していてもよい。アクリル樹脂が前記官能基により他の化合物と結合することで、例えば、熱硬化性樹脂フィルムを用いて得られたパッケージの信頼性が向上する傾向がある。 The acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group. The functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound without a cross-linking agent (F). When the acrylic resin is bonded to another compound by the functional group, for example, the reliability of the package obtained by using the thermosetting resin film tends to be improved.
 組成物(III)において、溶媒以外の全ての成分の総含有量に対する重合体成分(A)の含有量の割合(すなわち、熱硬化性樹脂フィルムにおける、熱硬化性樹脂フィルムの総質量に対する、重合体成分(A)の含有量の割合)は、重合体成分(A)の種類によらず、5~35質量%であることが好ましく、5~27質量%であることがより好ましい。 In the composition (III), the ratio of the content of the polymer component (A) to the total content of all the components other than the solvent (that is, the weight of the thermosetting resin film with respect to the total mass of the thermosetting resin film). The content ratio of the coalesced component (A)) is preferably 5 to 35% by mass, more preferably 5 to 27% by mass, regardless of the type of the polymer component (A).
[熱硬化性成分(B)]
 熱硬化性成分(B)は、熱硬化性を有し、熱硬化性樹脂フィルムを熱硬化させて、硬質の硬化物を形成するための成分である。
 組成物(III)及び熱硬化性樹脂フィルムが含有する熱硬化性成分(B)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[Thermosetting component (B)]
The thermosetting component (B) is a component for having thermosetting property and heat-curing a thermosetting resin film to form a hard cured product.
The thermosetting component (B) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, or two or more kinds, if they are two or more kinds. The combination and ratio of are arbitrarily selectable.
 熱硬化性成分(B)としては、例えば、エポキシ系熱硬化性樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂等が挙げられる。
 これらの中でも、熱硬化性成分(B)は、エポキシ系熱硬化性樹脂であることが好ましい。
Examples of the thermosetting component (B) include epoxy-based thermosetting resins, polyimide resins, unsaturated polyester resins, and the like.
Among these, the thermosetting component (B) is preferably an epoxy-based thermosetting resin.
(エポキシ系熱硬化性樹脂)
 エポキシ系熱硬化性樹脂は、エポキシ樹脂(B1)及び熱硬化剤(B2)からなる。
 組成物(III)及び熱硬化性樹脂フィルムが含有するエポキシ系熱硬化性樹脂は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Epoxy thermosetting resin)
The epoxy-based thermosetting resin is composed of an epoxy resin (B1) and a thermosetting agent (B2).
The epoxy-based thermosetting resin contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
・エポキシ樹脂(B1)
 エポキシ樹脂(B1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。
・ Epoxy resin (B1)
Examples of the epoxy resin (B1) include known ones, such as polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolac epoxy resin, and dicyclopentadiene type epoxy resin. Biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenylene skeleton type epoxy resin, and other bifunctional or higher functional epoxy compounds can be mentioned.
 エポキシ樹脂(B1)は、不飽和炭化水素基を有するエポキシ樹脂であってもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、例えば、熱硬化性樹脂フィルムを用いて得られたパッケージの信頼性が向上する傾向がある。 The epoxy resin (B1) may be an epoxy resin having an unsaturated hydrocarbon group. Epoxy resins having unsaturated hydrocarbon groups have higher compatibility with acrylic resins than epoxy resins having no unsaturated hydrocarbon groups. Therefore, by using an epoxy resin having an unsaturated hydrocarbon group, for example, the reliability of a package obtained by using a thermosetting resin film tends to be improved.
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。
 また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。
Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy group of the polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by subjecting an epoxy group to an addition reaction of (meth) acrylic acid or a derivative thereof.
Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound in which a group having an unsaturated hydrocarbon group is directly bonded to an aromatic ring or the like constituting the epoxy resin.
The unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (vinyl group), a 2-propenyl group (allyl group), a (meth) acryloyl group, and a (meth) group. Examples thereof include an acrylamide group, and an acryloyl group is preferable.
 エポキシ樹脂(B1)の数平均分子量は、特に限定されないが、熱硬化性樹脂フィルムの硬化性、並びに、熱硬化性樹脂フィルムの硬化物(例えば、保護膜)の強度及び耐熱性の点から、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 エポキシ樹脂(B1)のエポキシ当量は、100~1000g/eqであることが好ましく、100~600g/eqであることがより好ましい。
The number average molecular weight of the epoxy resin (B1) is not particularly limited, but from the viewpoint of the curability of the thermosetting resin film and the strength and heat resistance of the cured product (for example, protective film) of the thermosetting resin film. It is preferably 300 to 30,000, more preferably 400 to 10000, and particularly preferably 500 to 3000.
The epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g / eq, more preferably 100 to 600 g / eq.
 エポキシ樹脂(B1)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 As the epoxy resin (B1), one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
・熱硬化剤(B2)
 熱硬化剤(B2)は、エポキシ樹脂(B1)に対する硬化剤として機能する。
 熱硬化剤(B2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
・ Thermosetting agent (B2)
The thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
Examples of the thermosetting agent (B2) include compounds having two or more functional groups capable of reacting with epoxy groups in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group is annealed, and the like, and the phenolic hydroxyl group, an amino group, or an acid group is annealed. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
 熱硬化剤(B2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等が挙げられる。
 熱硬化剤(B2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド(以下、「DICY」と略記することがある)等が挙げられる。
Among the heat-curing agents (B2), examples of the phenol-based curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolak-type phenol resins, dicyclopentadiene-type phenol resins, and aralkyl-type phenol resins. ..
Among the thermosetting agents (B2), examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter, may be abbreviated as "DICY") and the like.
 熱硬化剤(B2)は、不飽和炭化水素基を有していてもよい。
 不飽和炭化水素基を有する熱硬化剤(B2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
 熱硬化剤(B2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様のものである。
The thermosetting agent (B2) may have an unsaturated hydrocarbon group.
The thermosetting agent (B2) having an unsaturated hydrocarbon group is, for example, a compound in which a part of the hydroxyl group of the phenol resin is replaced with a group having an unsaturated hydrocarbon group, which is not suitable for the aromatic ring of the phenol resin. Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
The unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
 熱硬化剤(B2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等の樹脂成分の数平均分子量は、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 熱硬化剤(B2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。
Among the thermosetting agents (B2), the number average molecular weight of resin components such as polyfunctional phenol resin, novolak type phenol resin, dicyclopentadiene type phenol resin, and aralkyl type phenol resin is preferably 300 to 30,000. , 400 to 10000 is more preferable, and 500 to 3000 is particularly preferable.
The molecular weight of the non-resin component such as biphenol and dicyandiamide in the thermosetting agent (B2) is not particularly limited, but is preferably 60 to 500, for example.
 熱硬化剤(B2)は、1種を単独で用いてもよいし、2種以上を併用してもよく、2種以上を併用する場合、それらの組み合わせ及び比率は任意に選択できる。 As the thermosetting agent (B2), one type may be used alone, two or more types may be used in combination, and when two or more types are used in combination, the combination and ratio thereof can be arbitrarily selected.
 組成物(III)及び熱硬化性樹脂フィルムにおいて、熱硬化剤(B2)の含有量は、エポキシ樹脂(B1)の含有量100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましく、例えば、5~150質量部、10~100質量部、及び15~75質量部のいずれかであってもよい。熱硬化剤(B2)の前記含有量が前記下限値以上であることで、熱硬化性樹脂フィルムの硬化がより進行し易くなる。熱硬化剤(B2)の前記含有量が前記上限値以下であることで、熱硬化性樹脂フィルムの吸湿率が低減されて、例えば、熱硬化性樹脂フィルムを用いて得られたパッケージの信頼性がより向上する。 In the composition (III) and the thermosetting resin film, the content of the thermosetting agent (B2) is 0.1 to 500 parts by mass with respect to 100 parts by mass of the content of the epoxy resin (B1). It is preferably 1 to 200 parts by mass, and may be, for example, any of 5 to 150 parts by mass, 10 to 100 parts by mass, and 15 to 75 parts by mass. When the content of the thermosetting agent (B2) is at least the lower limit value, the curing of the thermosetting resin film is more likely to proceed. When the content of the thermosetting agent (B2) is not more than the upper limit value, the hygroscopicity of the thermosetting resin film is reduced, and for example, the reliability of the package obtained by using the thermosetting resin film is used. Is improved.
 組成物(III)において、溶媒以外の全ての成分の総含有量に対する熱硬化性成分(B)の含有量(例えば、エポキシ樹脂(B1)及び熱硬化剤(B2)の総含有量)の割合(すなわち、熱硬化性樹脂フィルムにおける、熱硬化性樹脂フィルムの総質量に対する、熱硬化性成分(B)の含有量の割合)は、10~75質量%であることが好ましく、15~73質量%であることがより好ましく、35~70質量%、及び55~70質量%のいずれかであってもよい。前記割合がこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面上の微細な溝を充填し、樹脂フィルムの硬化不良を抑制する効果と、前記凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面での熱硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなり、かつ硬質な硬化物(例えば、保護膜)を形成できる。
 特に、樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が低くなるほど、前記前記第1試験片の発熱量の値をより容易に小さくでき、樹脂フィルムの硬化不良を効果的に抑制できる。
 また、樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が高くなるほど、溝の充填適性をより効果的に向上できる。このことは、硬化前の熱硬化性成分(B)が低分子であり、優れた流動性を発揮するためと推察される。
 さらに、このような効果がより顕著に得られる点から、熱硬化性成分(B)の含有量は、重合体成分(A)の種類に応じて、適宜調節してもよい。
In the composition (III), the ratio of the content of the thermosetting component (B) to the total content of all the components other than the solvent (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)). (That is, the ratio of the content of the thermosetting component (B) to the total mass of the thermosetting resin film in the thermosetting resin film) is preferably 10 to 75% by mass, preferably 15 to 73 mass. It is more preferably%, and it may be any of 35 to 70% by mass and 55 to 70% by mass. When the ratio is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of filling the fine grooves on the uneven surface and suppressing the curing failure of the resin film is achieved. The effect of suppressing the residual of the thermosetting resin film on the convex portion of the uneven surface, the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface, and the thermosetting property on the uneven surface. The effect of suppressing repelling of the resin film and its cured product is higher, and a hard cured product (for example, a protective film) can be formed.
In particular, the lower the ratio of the content of the thermosetting component (B) to the total mass of the resin film, the easier it is to reduce the value of the calorific value of the first test piece, and the poor curing of the resin film. Can be effectively suppressed.
Further, the higher the ratio of the content of the thermosetting component (B) to the total mass of the resin film, the more effectively the filling suitability of the groove can be improved. It is presumed that this is because the thermosetting component (B) before curing is a small molecule and exhibits excellent fluidity.
Further, the content of the thermosetting component (B) may be appropriately adjusted according to the type of the polymer component (A) from the viewpoint that such an effect can be obtained more remarkably.
[充填材(D)]
 組成物(III)及び熱硬化性樹脂フィルム中の充填材(D)の量を調節することで、前記X値をより容易に調節できる。組成物(III)及び熱硬化性樹脂フィルム中の充填材(D)の量を増やすことで、熱硬化性成分の含有量を少なく調整でき、前記第1試験片の前記発熱量を低下させることが容易である。充填材(D)を含有する熱硬化性樹脂フィルムを用いることにより、熱硬化性樹脂フィルムの硬化物(例えば、保護膜)の吸湿率を低減したり、放熱性を向上させたりすることもできる。
[Filler (D)]
By adjusting the amount of the filler (D) in the composition (III) and the thermosetting resin film, the X value can be adjusted more easily. By increasing the amounts of the filler (D) in the composition (III) and the thermosetting resin film, the content of the thermosetting component can be adjusted to be small, and the calorific value of the first test piece can be reduced. Is easy. By using the thermosetting resin film containing the filler (D), it is possible to reduce the moisture absorption rate of the cured product (for example, the protective film) of the thermosetting resin film and improve the heat dissipation. ..
 充填材(D)は、有機充填材及び無機充填材のいずれであってもよいが、無機充填材であることが好ましい。
 好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましい。
The filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, red iron oxide, silicon carbide, boron nitride and the like; spherical beads of these inorganic fillers; surface modification of these inorganic fillers. Goods; Single crystal fibers of these inorganic fillers; Glass fibers and the like.
Among these, the inorganic filler is preferably silica or alumina.
 組成物(III)及び熱硬化性樹脂フィルムが含有する充填材(D)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The filler (D) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
 組成物(III)において、溶媒以外の全ての成分の総含有量に対する充填材(D)の含有量の割合(すなわち、熱硬化性樹脂フィルムにおける、熱硬化性樹脂フィルムの総質量に対する、充填材(D)の含有量の割合)は、10~65質量%であることが好ましく、15~55質量%であることがより好ましく、例えば、15~40質量%、及び15~30質量%のいずれかであってもよいし、30~55質量%、及び40~55質量%のいずれかであってもよい。前記割合がこのような範囲であることで、熱硬化性樹脂フィルムを前記凹凸面に貼付したときに、凹凸面上の微細な溝を充填し、樹脂フィルムの硬化不良を抑制する効果と、前記凹凸面の凸部の上部での熱硬化性樹脂フィルムの残存を抑制する効果と、前記凹凸面での熱硬化性樹脂フィルムのはみ出しを抑制する効果と、前記凹凸面上での、熱硬化性樹脂フィルム及びその硬化物のハジキを抑制する効果と、がより高くなる。 In the composition (III), the ratio of the content of the filler (D) to the total content of all the components other than the solvent (that is, the filler with respect to the total mass of the thermosetting resin film in the thermosetting resin film). The content ratio of (D)) is preferably 10 to 65% by mass, more preferably 15 to 55% by mass, and for example, 15 to 40% by mass or 15 to 30% by mass. It may be either 30 to 55% by mass and 40 to 55% by mass. When the ratio is in such a range, when the thermosetting resin film is attached to the uneven surface, the effect of filling the fine grooves on the uneven surface and suppressing the curing failure of the resin film is achieved. The effect of suppressing the residual of the thermosetting resin film on the convex portion of the uneven surface, the effect of suppressing the protrusion of the thermosetting resin film on the uneven surface, and the thermosetting property on the uneven surface. The effect of suppressing repelling of the resin film and its cured product becomes higher.
[添加剤(I)]
 組成物(III)及び熱硬化性樹脂フィルムは、添加剤(I)を含有していてもよい。添加剤(I)としては、例えば、前記X値を調整するための成分が挙げられる。
 なかでも、前記X値をより容易に調節できる点で好ましい添加剤(I)としては、例えば、レオロジーコントロール剤、界面活性剤、シリコーンオイル等が挙げられる。
[Additive (I)]
The composition (III) and the thermosetting resin film may contain the additive (I). Examples of the additive (I) include a component for adjusting the X value.
Among them, examples of the additive (I) preferable in that the X value can be adjusted more easily include a rheology control agent, a surfactant, a silicone oil and the like.
 より具体的には、前記レオロジーコントロール剤としては、例えば、ポリヒドロキシカルボン酸エステル、多価カルボン酸、ポリアミド樹脂等が挙げられる。
 前記界面活性剤としては、例えば、変性シロキサン、アクリル重合体等が挙げられる。
 前記シリコーンオイルとしては、例えば、アラルキル変性シリコーンオイル、変性ポリジメチルシロキサン等が挙げられ、変性基としては、アラルキル基;ヒドロキシ基等の極性基;ビニル基、フェニル基等の不飽和結合を有する基が挙げられる。
More specifically, examples of the rheology control agent include polyhydroxycarboxylic acid esters, polyvalent carboxylic acids, and polyamide resins.
Examples of the surfactant include modified siloxane, acrylic polymer and the like.
Examples of the silicone oil include aralkyl-modified silicone oil and modified polydimethylsiloxane, and examples of the modifying group include an aralkyl group; a polar group such as a hydroxy group; and a group having an unsaturated bond such as a vinyl group and a phenyl group. Can be mentioned.
 添加剤(I)としては、上記以外のものとして、例えば、可塑剤、帯電防止剤、酸化防止剤、ゲッタリング剤、紫外線吸収剤、粘着付与剤等の、他の各種汎用添加剤も挙げられる。 Examples of the additive (I) include other general-purpose additives such as a plasticizer, an antistatic agent, an antioxidant, a gettering agent, an ultraviolet absorber, a tackifier, and the like. ..
 組成物(III)及び熱硬化性樹脂フィルムが含有する添加剤(I)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The additive (I) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
 組成物(III)及び熱硬化性樹脂フィルムの添加剤(I)の含有量は、特に限定されず、その種類や目的に応じて、適宜調節できる。
 例えば、前記X値の調節が目的である場合には、組成物(III)において、溶媒以外の全ての成分の総含有量に対する添加剤(I)の含有量の割合(すなわち、熱硬化性樹脂フィルムにおける、熱硬化性樹脂フィルムの総質量に対する、添加剤(I)の含有量の割合)は、0.5~10質量%であることが好ましく、0.5~7質量%であることがより好ましく、0.5~5質量%であることがさらに好ましい。
The contents of the composition (III) and the additive (I) of the thermosetting resin film are not particularly limited, and can be appropriately adjusted according to the type and purpose thereof.
For example, when the purpose is to adjust the X value, the ratio of the content of the additive (I) to the total content of all the components other than the solvent in the composition (III) (that is, the thermosetting resin). The ratio of the content of the additive (I) to the total mass of the thermosetting resin film in the film) is preferably 0.5 to 10% by mass, and preferably 0.5 to 7% by mass. More preferably, it is 0.5 to 5% by mass.
[硬化促進剤(C)]
 組成物(III)及び熱硬化性樹脂フィルムは、硬化促進剤(C)を含有していてもよい。硬化促進剤(C)は、組成物(III)の硬化速度を調整するための成分である。
 好ましい硬化促進剤(C)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(1個以上の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(1個以上の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
[Curing accelerator (C)]
The composition (III) and the thermosetting resin film may contain a curing accelerator (C). The curing accelerator (C) is a component for adjusting the curing rate of the composition (III).
Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol and tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole. , 2-Phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and other imidazoles (one or more hydrogen atoms other than hydrogen atoms) (Imidazole substituted with an organic group); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (phosphine in which one or more hydrogen atoms are substituted with an organic group); tetraphenylphosphonium tetraphenylborate, triphenylphosphine Examples thereof include tetraphenylborone salts such as tetraphenylborate.
 組成物(III)及び熱硬化性樹脂フィルムが含有する硬化促進剤(C)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The curing accelerator (C) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
 硬化促進剤(C)を用いる場合、組成物(III)及び熱硬化性樹脂フィルムにおいて、硬化促進剤(C)の含有量は、熱硬化性成分(B)の含有量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。硬化促進剤(C)の前記含有量が前記下限値以上であることで、硬化促進剤(C)を用いたことによる効果がより顕著に得られる。硬化促進剤(C)の前記含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(C)が、高温・高湿度条件下で熱硬化性樹脂フィルム中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、例えば、熱硬化性樹脂フィルムを用いて得られたパッケージの信頼性がより向上する。 When the curing accelerator (C) is used, the content of the curing accelerator (C) in the composition (III) and the thermosetting resin film is based on 100 parts by mass of the content of the thermosetting component (B). , 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass. When the content of the curing accelerator (C) is at least the lower limit value, the effect of using the curing accelerator (C) is more remarkable. When the content of the curing accelerator (C) is not more than the upper limit value, for example, the highly polar curing accelerator (C) is adhered to the thermosetting resin film under high temperature and high humidity conditions. The effect of suppressing segregation by moving to the adhesion interface side with and is enhanced, and for example, the reliability of the package obtained by using the thermosetting resin film is further improved.
[カップリング剤(E)]
 組成物(III)及び熱硬化性樹脂フィルムは、カップリング剤(E)を含有していてもよい。カップリング剤(E)として、無機化合物又は有機化合物と反応可能な官能基を有するものを用いることにより、熱硬化性樹脂フィルムの被着体に対する接着性及び密着性を向上させることができる。また、カップリング剤(E)を用いることで、熱硬化性樹脂フィルムの硬化物(例えば、保護膜)は、耐熱性を損なうことなく、耐水性が向上する。
[Coupling agent (E)]
The composition (III) and the thermosetting resin film may contain a coupling agent (E). By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesiveness and adhesion of the thermosetting resin film to the adherend can be improved. Further, by using the coupling agent (E), the cured product (for example, protective film) of the thermosetting resin film has improved water resistance without impairing the heat resistance.
 カップリング剤(E)は、重合体成分(A)、熱硬化性成分(B)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。
The coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional groups of the polymer component (A), the thermosetting component (B) and the like, and is preferably a silane coupling agent. More preferred.
Preferred silane coupling agents include, for example, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2-. (3,4-Epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino) Ethylamino) propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyl Examples thereof include dimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and imidazolesilane.
 組成物(III)及び熱硬化性樹脂フィルムが含有するカップリング剤(E)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The coupling agent (E) contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, those The combination and ratio can be selected arbitrarily.
 カップリング剤(E)を用いる場合、組成物(III)及び熱硬化性樹脂フィルムにおいて、カップリング剤(E)の含有量は、重合体成分(A)及び熱硬化性成分(B)の総含有量100質量部に対して、0.03~10質量部であることが好ましく、0.05~6質量部であることがより好ましく、0.1~3質量部であることが特に好ましい。カップリング剤(E)の前記含有量が前記下限値以上であることで、充填材(D)の樹脂への分散性の向上や、熱硬化性樹脂フィルムの被着体との接着性の向上など、カップリング剤(E)を用いたことによる効果がより顕著に得られる。カップリング剤(E)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。 When the coupling agent (E) is used, the content of the coupling agent (E) in the composition (III) and the thermosetting resin film is the total of the polymer component (A) and the thermosetting component (B). The content is preferably 0.03 to 10 parts by mass, more preferably 0.05 to 6 parts by mass, and particularly preferably 0.1 to 3 parts by mass with respect to 100 parts by mass. When the content of the coupling agent (E) is equal to or higher than the lower limit, the dispersibility of the filler (D) in the resin is improved and the adhesiveness of the thermosetting resin film to the adherend is improved. The effect of using the coupling agent (E) is more remarkable. When the content of the coupling agent (E) is not more than the upper limit value, the generation of outgas is further suppressed.
[架橋剤(F)]
 重合体成分(A)として、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、組成物(III)及び熱硬化性樹脂フィルムは、架橋剤(F)を含有していてもよい。架橋剤(F)は、重合体成分(A)中の前記官能基を他の化合物と結合させて架橋するための成分であり、このように架橋することにより、熱硬化性樹脂フィルムの初期接着力及び凝集力を調節できる。
[Crosslinking agent (F)]
When a polymer component (A) having a functional group such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, or an isocyanate group that can be bonded to another compound is used, the composition (III). And the thermosetting resin film may contain a cross-linking agent (F). The cross-linking agent (F) is a component for bonding the functional group in the polymer component (A) with another compound to cross-link, and by cross-linking in this way, the initial adhesion of the thermosetting resin film is performed. The force and cohesive force can be adjusted.
 架橋剤(F)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(金属キレート構造を有する架橋剤)、アジリジン系架橋剤(アジリジニル基を有する架橋剤)等が挙げられる。 Examples of the cross-linking agent (F) include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate-based cross-linking agent (a cross-linking agent having a metal chelate structure), an aziridine-based cross-linking agent (a cross-linking agent having an aziridinyl group), and the like. Can be mentioned.
 前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、ウレタン結合を有するとともに、分子の末端部にイソシアネート基を有するプレポリマーを意味する。 Examples of the organic polyvalent isocyanate compound include an aromatic polyvalent isocyanate compound, an aliphatic polyhydric isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as "aromatic polyvalent isocyanate compound and the like". (May be abbreviated); trimerics such as the aromatic polyvalent isocyanate compound, isocyanurates and adducts; terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the like with a polyol compound. And so on. The "adduct" includes the aromatic polyhydric isocyanate compound, the aliphatic polyhydric isocyanate compound, or the alicyclic polyvalent isocyanate compound, and low ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, castor oil, and the like. It means a reaction product with a molecularly active hydrogen-containing compound. Examples of the adduct body include a xylylene diisocyanate adduct of trimethylolpropane, which will be described later. Further, the "terminal isocyanate urethane prepolymer" means a prepolymer having a urethane bond and an isocyanate group at the terminal portion of the molecule.
 前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。 More specifically, as the organic polyvalent isocyanate compound, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4. , 4'-diisocyanate; diphenylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Compounds in which one or more of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate are added to all or some hydroxyl groups of a polyol such as propane; lysine diisocyanate and the like can be mentioned.
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。 Examples of the organic polyvalent imine compound include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxyamide), trimethylolpropane-tri-β-aziridinyl propionate, and tetramethylolmethane. Examples thereof include -tri-β-aziridinyl propionate, N, N'-toluene-2,4-bis (1-aziridinecarboxyamide) triethylene melamine and the like.
 架橋剤(F)として有機多価イソシアネート化合物を用いる場合、重合体成分(A)としては、水酸基含有重合体を用いることが好ましい。架橋剤(F)がイソシアネート基を有し、重合体成分(A)が水酸基を有する場合、架橋剤(F)と重合体成分(A)との反応によって、熱硬化性樹脂フィルムに架橋構造を簡便に導入できる。 When an organic multivalent isocyanate compound is used as the cross-linking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A). When the cross-linking agent (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, the reaction between the cross-linking agent (F) and the polymer component (A) causes the thermosetting resin film to have a cross-linked structure. Can be easily introduced.
 組成物(III)及び熱硬化性樹脂フィルムが含有する架橋剤(F)は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The cross-linking agent (F) contained in the composition (III) and the thermosetting resin film may be only one kind, may be two or more kinds, and when there are two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
 架橋剤(F)を用いる場合、組成物(III)において、架橋剤(F)の含有量は、重合体成分(A)の含有量100質量部に対して、0.01~20質量部であることが好ましく、0.1~10質量部であることがより好ましく、0.5~5質量部であることが特に好ましい。架橋剤(F)の前記含有量が前記下限値以上であることで、架橋剤(F)を用いたことによる効果がより顕著に得られる。架橋剤(F)の前記含有量が前記上限値以下であることで、架橋剤(F)の過剰使用が抑制される。 When the cross-linking agent (F) is used, the content of the cross-linking agent (F) in the composition (III) is 0.01 to 20 parts by mass with respect to 100 parts by mass of the content of the polymer component (A). It is preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass. When the content of the cross-linking agent (F) is at least the lower limit value, the effect of using the cross-linking agent (F) is more remarkable. When the content of the cross-linking agent (F) is not more than the upper limit value, the excessive use of the cross-linking agent (F) is suppressed.
[他の成分]
 組成物(III)及び熱硬化性樹脂フィルムは、本発明の効果を損なわない範囲内において、上述の重合体成分(A)と、熱硬化性成分(B)と、充填材(D)と、添加剤(I)と、硬化促進剤(C)と、カップリング剤(E)と、架橋剤(F)と、のいずれにも該当しない、他の成分を含有していてもよい。
 前記他の成分としては、例えば、エネルギー線硬化性樹脂、光重合開始剤等が挙げられる。
[Other ingredients]
The composition (III) and the thermosetting resin film include the above-mentioned polymer component (A), thermosetting component (B), filler (D), and the above-mentioned polymer component (A), and the filler (D), as long as the effects of the present invention are not impaired. It may contain other components that do not correspond to any of the additive (I), the curing accelerator (C), the coupling agent (E), and the cross-linking agent (F).
Examples of the other components include energy ray-curable resins and photopolymerization initiators.
 組成物(III)及び熱硬化性樹脂フィルムが含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 組成物(III)及び熱硬化性樹脂フィルムの前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The other components contained in the composition (III) and the thermosetting resin film may be only one kind, two or more kinds, and when two or more kinds, a combination thereof and The ratio can be selected arbitrarily.
The contents of the composition (III) and the other components of the thermosetting resin film are not particularly limited and may be appropriately selected depending on the intended purpose.
[溶媒]
 組成物(III)は、さらに溶媒を含有することが好ましい。溶媒を含有する組成物(III)は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
 組成物(III)が含有する溶媒は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
[solvent]
The composition (III) preferably further contains a solvent. The solvent-containing composition (III) has good handleability.
The solvent is not particularly limited, but preferred ones are, for example, hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples thereof include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
The solvent contained in the composition (III) may be only one kind, may be two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily selected.
 組成物(III)が含有する溶媒で、より好ましいものとしては、例えば、組成物(III)中の含有成分をより均一に混合できる点から、メチルエチルケトン等が挙げられる。 Among the solvents contained in the composition (III), more preferable ones include, for example, methyl ethyl ketone and the like because the components contained in the composition (III) can be mixed more uniformly.
 組成物(III)の溶媒の含有量は、特に限定されず、例えば、溶媒以外の成分の種類に応じて適宜選択すればよい。 The content of the solvent in the composition (III) is not particularly limited, and may be appropriately selected depending on the type of the component other than the solvent, for example.
<熱硬化性樹脂フィルム形成用組成物の製造方法>
 組成物(III)等の熱硬化性樹脂フィルム形成用組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<Manufacturing method of composition for forming a thermosetting resin film>
The composition for forming a thermosetting resin film such as the composition (III) can be obtained by blending each component for forming the composition.
The order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
The method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
The temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
 本実施形態の好ましい樹脂フィルムの一例としては、熱硬化性の樹脂フィルムであって、
 熱硬化前の前記樹脂フィルムを第1試験片として用い、示差走査熱量分析(DSC)法によって第1試験片を昇温速度10℃/minの等速昇温条件にて分析して得られる、100~300℃の範囲の発熱量が100J/g以下、10~100J/g、50~90J/g、及び60~80J/gのいずれかであり、
 前記樹脂フィルムが、重合体成分(A)、及び熱硬化性成分(B)を含有し、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~35質量%、及び5~27質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が、10~75質量%、15~73質量%、及び35~70質量%のいずれかである、樹脂フィルムが挙げられる。
An example of a preferable resin film of the present embodiment is a thermosetting resin film.
The resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min. The calorific value in the range of 100 to 300 ° C. is 100 J / g or less, 10 to 100 J / g, 50 to 90 J / g, and 60 to 80 J / g.
The resin film contains a polymer component (A) and a thermosetting component (B).
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
The ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass. There is a resin film.
 本実施形態の好ましい樹脂フィルムの一例としては、熱硬化性の樹脂フィルムであって、
 熱硬化前の前記樹脂フィルムを第1試験片として用い、示差走査熱量分析(DSC)法によって第1試験片を昇温速度10℃/minの等速昇温条件にて分析して得られる、100~300℃の範囲の発熱量が100J/g以下、10~100J/g、50~90J/g、及び60~80J/gのいずれかであり、
 前記樹脂フィルムが、重合体成分(A)、熱硬化性成分(B)及び充填材(D)を含有し、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~35質量%、及び5~27質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が、10~75質量%、15~73質量%、及び35~70質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記充填材(D)の含有量の割合が、10~65質量%、及び15~55質量%のいずれかである、樹脂フィルムが挙げられる。
An example of a preferable resin film of the present embodiment is a thermosetting resin film.
The resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min. The calorific value in the range of 100 to 300 ° C. is 100 J / g or less, 10 to 100 J / g, 50 to 90 J / g, and 60 to 80 J / g.
The resin film contains a polymer component (A), a thermosetting component (B), and a filler (D).
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
The ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass. can be,
Examples thereof include a resin film in which the ratio of the content of the filler (D) to the total mass of the resin film in the resin film is either 10 to 65% by mass or 15 to 55% by mass.
 本実施形態の好ましい樹脂フィルムの他の例としては、熱硬化性の樹脂フィルムであって、
 熱硬化前の前記樹脂フィルムを第1試験片として用い、示差走査熱量分析(DSC)法によって第1試験片を昇温速度10℃/minの等速昇温条件にて分析して得られる、100~300℃の範囲の発熱量が100J/g以下、10~100J/g、50~90J/g、及び60~80J/gのいずれかであり、
 前記X値が19以上10000未満、19~5000、25~2000、30~1000、35~500、40~300、45~100、及び50~70のいずれかであり、
 前記樹脂フィルムが、重合体成分(A)、熱硬化性成分(B)、充填材(D)及び添加剤(I)を含有し、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~35質量%、及び5~27質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が、10~75質量%、15~73質量%、及び35~70質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記充填材(D)の含有量の割合が、10~65質量%、及び15~55質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記添加剤(I)の含有量の割合が、0.5~10質量%、0.5~7質量%、及び0.5~5質量%のいずれかである、樹脂フィルムが挙げられる。
Another example of the preferred resin film of the present embodiment is a thermosetting resin film.
The resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min. The calorific value in the range of 100 to 300 ° C. is 100 J / g or less, 10 to 100 J / g, 50 to 90 J / g, and 60 to 80 J / g.
The X value is 19 or more and less than 10000, 19 to 5000, 25 to 2000, 30 to 1000, 35 to 500, 40 to 300, 45 to 100, and 50 to 70.
The resin film contains a polymer component (A), a thermosetting component (B), a filler (D), and an additive (I).
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
The ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass. can be,
The ratio of the content of the filler (D) to the total mass of the resin film in the resin film is either 10 to 65% by mass or 15 to 55% by mass.
The ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass, 0.5 to 7% by mass, and 0.5 to 5% by mass. A resin film, which is one of the above, can be mentioned.
◇複合シート
 本発明の一実施形態に係る複合シートは、支持シートと、前記支持シートの一方の面上に設けられた樹脂フィルムと、を備え、前記樹脂フィルムが、上述の本発明の一実施形態に係る樹脂フィルムである。
 本実施形態の複合シートを用いることで、先に説明したように、前記樹脂フィルムを、その貼付対象物の凹凸面に良好に貼付でき、このとき、凹凸面上の微細な溝を充填でき、樹脂フィルムの硬化不良を抑制できる。
◇ Composite sheet The composite sheet according to the embodiment of the present invention includes a support sheet and a resin film provided on one surface of the support sheet, and the resin film is the above-described embodiment of the present invention. It is a resin film according to the form.
By using the composite sheet of the present embodiment, as described above, the resin film can be satisfactorily attached to the uneven surface of the object to be attached, and at this time, fine grooves on the uneven surface can be filled. It is possible to suppress poor curing of the resin film.
 本明細書においては、前記樹脂フィルムを前記第1保護膜の形成用として用いる場合には、前記複合シートを「第1保護膜形成用シート」と称し、第1保護膜形成用シート中の前記支持シートを「第1支持シート」と称する。
 一方、半導体ウエハ又は半導体チップのバンプ形成面とは反対側の面(裏面)に第2保護膜を設けるためには、第2保護膜を形成するための第2保護膜形成用フィルムを備えて構成された、第2保護膜形成用シートを用いる。第2保護膜形成用シートとしては、例えば、ダイシングシートと、前記ダイシングシート上に設けられた第2保護膜形成用フィルムと、を備えて構成されたものが挙げられる。ダイシングシートが、前記支持シートと同様のものを備えている場合には、この支持シートを「第2支持シート」と称する。
 同様に、例えば、第1支持シートが基材、粘着剤層を備えている場合には、これらを「第1基材」、「第1粘着剤層」と称し、第2支持シートが基材、粘着剤層を備えている場合には、これらを「第2基材」、「第2粘着剤層」と称する。
In the present specification, when the resin film is used for forming the first protective film, the composite sheet is referred to as a "first protective film forming sheet", and the said in the first protective film forming sheet. The support sheet is referred to as a "first support sheet".
On the other hand, in order to provide the second protective film on the surface (back surface) opposite to the bump forming surface of the semiconductor wafer or semiconductor chip, a second protective film forming film for forming the second protective film is provided. The constructed second protective film forming sheet is used. Examples of the second protective film forming sheet include a dicing sheet and a second protective film forming film provided on the dicing sheet. When the dicing sheet includes the same one as the support sheet, the support sheet is referred to as a "second support sheet".
Similarly, for example, when the first support sheet includes a base material and an adhesive layer, these are referred to as "first base material" and "first pressure-sensitive adhesive layer", and the second support sheet is a base material. When the pressure-sensitive adhesive layer is provided, these are referred to as "second base material" and "second pressure-sensitive adhesive layer".
 図3は、本実施形態の複合シートの一例を模式的に示す断面図である。
 ここに示す複合シート1は、支持シート10と、支持シート10の一方の面(本明細書においては、「第1面」と称することがある)10a上に設けられた樹脂フィルム12と、を備えて構成されている。
 支持シート10は、基材11と、基材11の一方の面(本明細書においては、「第1面」と称することがある)11a上に設けられた緩衝層13と、緩衝層13の基材11側とは反対側の面(本明細書においては、「第1面」と称することがある)13a上に設けられた粘着剤層14と、を備えて構成されている。
 すなわち、複合シート1は、基材11と、緩衝層13と、粘着剤層14と、樹脂フィルム12と、がこの順に、これらの厚さ方向において積層されて、構成されている。粘着剤層14は、支持シート10の一方(樹脂フィルム12側)の最表層であり、その緩衝層13側とは反対側の面(本明細書においては、「第1面」と称することがある)14aは、支持シート10の第1面10aと同じである。
FIG. 3 is a cross-sectional view schematically showing an example of the composite sheet of the present embodiment.
The composite sheet 1 shown here includes a support sheet 10 and a resin film 12 provided on one surface of the support sheet 10 (sometimes referred to as a "first surface" in the present specification) 10a. It is configured to prepare.
The support sheet 10 is a base material 11, a buffer layer 13 provided on one surface of the base material 11 (sometimes referred to as a “first surface” in the present specification) 11a, and a buffer layer 13. It is configured to include an adhesive layer 14 provided on a surface (sometimes referred to as a "first surface" in the present specification) 13a opposite to the base material 11 side.
That is, the composite sheet 1 is configured by laminating the base material 11, the buffer layer 13, the pressure-sensitive adhesive layer 14, and the resin film 12 in this order in the thickness direction. The pressure-sensitive adhesive layer 14 is the outermost layer of one of the support sheets 10 (resin film 12 side), and may be referred to as a surface (in the present specification, the "first surface") opposite to the buffer layer 13 side. There is) 14a is the same as the first surface 10a of the support sheet 10.
 複合シート1において、緩衝層13と粘着剤層14はいずれも、基材11と樹脂フィルム12との間に配置されている。 In the composite sheet 1, both the buffer layer 13 and the pressure-sensitive adhesive layer 14 are arranged between the base material 11 and the resin film 12.
 樹脂フィルム12は、上述の本発明の一実施形態に係る樹脂フィルムである。
 樹脂フィルム12の緩衝層13側とは反対側の面(第1面)12aは、樹脂フィルム12(換言すると複合シート1)の前記凹凸面への貼付面である。
The resin film 12 is the resin film according to the above-described embodiment of the present invention.
The surface (first surface) 12a of the resin film 12 opposite to the buffer layer 13 side is a surface on which the resin film 12 (in other words, the composite sheet 1) is attached to the uneven surface.
 本実施形態の複合シートは、図3に示すものに限定されず、本発明の効果を損なわない範囲内において、図3に示すものにおいて、一部の構成が変更、削除又は追加されたものであってもよい。 The composite sheet of the present embodiment is not limited to the one shown in FIG. 3, and a part of the composite sheet shown in FIG. 3 has been changed, deleted or added within the range not impairing the effect of the present invention. There may be.
 例えば、本実施形態の複合シートにおける、支持シートとしては、上記の基材、緩衝層及び粘着剤層を備えて構成されたもの以外に、基材のみで構成されたもの;基材と、前記基材の一方の面上に設けられた粘着剤層と、を備えて構成されたもの;基材と、前記基材の一方の面上に設けられた緩衝層と、を備えて構成されたものも挙げられる。
 支持シートが、基材と粘着剤層を備えている場合、前記複合シートにおいて、粘着剤層は基材と前記樹脂フィルムとの間に配置されている。支持シートが、基材と緩衝層を備えている場合、前記複合シートにおいて、緩衝層は基材と前記樹脂フィルムとの間に配置されている。
 支持シートとしては、これらの中でも、上記の基材、緩衝層及び粘着剤層を備えて構成されたものが、より好ましい。
For example, in the composite sheet of the present embodiment, the support sheet is composed of only the base material in addition to the above-mentioned base material, the buffer layer and the pressure-sensitive adhesive layer; the base material and the above. It is configured with an adhesive layer provided on one surface of the substrate; it is configured with a substrate and a buffer layer provided on one surface of the substrate. Some are also mentioned.
When the support sheet includes a base material and an adhesive layer, the pressure-sensitive adhesive layer is arranged between the base material and the resin film in the composite sheet. When the support sheet includes a base material and a buffer layer, the buffer layer is arranged between the base material and the resin film in the composite sheet.
Among these, as the support sheet, those provided with the above-mentioned base material, buffer layer and adhesive layer are more preferable.
 例えば、本実施形態の複合シートにおいて、支持シート(図3に示す複合シート1においては支持シート10)は、基材(図3に示す複合シート1においては基材11)と緩衝層(図3に示す複合シート1においては緩衝層13)との間に、密着層を備えていてもよい。
 前記密着層は、基材及び緩衝層の密着性を向上させ、複合シートにおいて、基材及び緩衝層の剥離を高度に抑制する。したがって、密着層を備えた複合シートは、その使用時において、基材、密着層及び緩衝層の積層構造をより安定して維持できる。
 密着層は、シート状又はフィルム状である。
 好ましい密着層としては、例えば、エチレン-酢酸ビニル共重合樹脂(EVA)等を含有するものが挙げられる。
For example, in the composite sheet of the present embodiment, the support sheet (support sheet 10 in the composite sheet 1 shown in FIG. 3) is a base material (base material 11 in the composite sheet 1 shown in FIG. 3) and a buffer layer (FIG. 3). In the composite sheet 1 shown in the above, an adhesion layer may be provided between the composite sheet 1 and the buffer layer 13).
The adhesion layer improves the adhesion between the base material and the buffer layer, and highly suppresses the peeling of the base material and the buffer layer in the composite sheet. Therefore, the composite sheet provided with the adhesion layer can maintain the laminated structure of the base material, the adhesion layer and the buffer layer more stably at the time of use.
The adhesion layer is in the form of a sheet or a film.
Preferred adhesion layers include, for example, those containing ethylene-vinyl acetate copolymer resin (EVA) and the like.
 例えば、本実施形態の複合シートは、基材とは反対側の最表層(図3に示す複合シート1においては樹脂フィルム12)上に、剥離フィルムを備えていてもよい。
 次に、本実施形態の複合シートを構成する各層について説明する。
For example, the composite sheet of the present embodiment may include a release film on the outermost layer (resin film 12 in the composite sheet 1 shown in FIG. 3) on the opposite side of the base material.
Next, each layer constituting the composite sheet of the present embodiment will be described.
◎基材
 前記基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
 前記樹脂としては、例えば、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
◎ Base material The base material is in the form of a sheet or a film, and examples of the constituent material thereof include various resins.
Examples of the resin include polyethylenes such as low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and high-density polyethylene (HDPE); other than polyethylenes such as polypropylene, polybutene, polybutadiene, polymethylpentene, and norbornene resin. Polyethylene; ethylene-based copolymers such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as monomer) (Copolymers obtained using); Vinyl chloride-based resins such as polyvinyl chloride and vinyl chloride copolymers (resins obtained using vinyl chloride as a monomer); Polystyrene; Polycycloolefins; Polyethylene terephthalate, polyethylene Polymers such as naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, all aromatic polyesters in which all constituent units have aromatic cyclic groups; co-polymers of two or more of the above polymers. Polymers; poly (meth) acrylic acid esters; polyurethanes; polyurethane acrylates; polyimides; polyamides; polycarbonates; fluororesins; polyacetals; modified polyphenylene oxides; polyphenylene sulfides; polysulfones; polyether ketones and the like.
Further, examples of the resin include polymer alloys such as a mixture of the polyester and other resins. The polymer alloy of the polyester and the resin other than the polyester preferably has a relatively small amount of the resin other than the polyester.
Further, as the resin, for example, a crosslinked resin in which one or more of the resins exemplified above are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resin is also mentioned.
 基材を構成する樹脂は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The resin constituting the base material may be only one type, may be two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected.
 基材は1層(単層)のみであってもよいし、2層以上の複数層であってもよく、複数層である場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The base material may be only one layer (single layer), may be a plurality of layers of two or more layers, and when there are a plurality of layers, the plurality of layers may be the same or different from each other. The combination of multiple layers is not particularly limited.
 基材の厚さは、5~1000μmであることが好ましく、10~500μmであることがより好ましく、15~300μmであることがさらに好ましく、20~180μmであることが特に好ましい。
 ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、複数層からなる基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。
The thickness of the base material is preferably 5 to 1000 μm, more preferably 10 to 500 μm, further preferably 15 to 300 μm, and particularly preferably 20 to 180 μm.
Here, the "thickness of the base material" means the thickness of the entire base material, and for example, the thickness of the base material composed of a plurality of layers means the total thickness of all the layers constituting the base material. means.
 基材は、厚さの精度が高いもの、すなわち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような厚さの精度が高い基材を構成するのに使用可能な材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体等が挙げられる。 It is preferable that the base material has a high thickness accuracy, that is, a base material in which the variation in thickness is suppressed regardless of the site. Among the above-mentioned constituent materials, as a material that can be used to construct a base material having such a high accuracy of thickness, for example, polyethylene, polyolefin other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer and the like are used. Can be mentioned.
 基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。 In addition to the main constituent materials such as the resin, the base material contains various known additives such as fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and softeners (plasticizers). You may.
 基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、他の層が蒸着されていてもよい。
 前記樹脂フィルムがエネルギー線硬化性である場合、基材はエネルギー線を透過させるものが好ましい。
The base material may be transparent, opaque, colored depending on the purpose, or another layer may be vapor-deposited.
When the resin film is energy ray curable, the base material is preferably one that allows energy rays to pass through.
 基材は、公知の方法で製造できる。例えば、樹脂を含有する基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。 The base material can be produced by a known method. For example, a base material containing a resin can be produced by molding a resin composition containing the resin.
◎緩衝層
 緩衝層は、シート状又はフィルム状であり、緩衝層とこれに隣接する層へ加えられる力に対して、緩衝作用を有する。ここで「緩衝層と隣接する層」としては、例えば、前記樹脂フィルムと、その硬化物に相当する層(例えば、第1保護膜等の保護膜)と、粘着剤層と、が挙げられる。
◎ Buffer layer The buffer layer is in the form of a sheet or a film, and has a buffering action against the force applied to the buffer layer and the layer adjacent thereto. Here, examples of the "layer adjacent to the buffer layer" include the resin film, a layer corresponding to a cured product thereof (for example, a protective film such as a first protective film), and an adhesive layer.
 緩衝層の構成材料は、特に限定されない。 The constituent material of the buffer layer is not particularly limited.
 好ましい緩衝層としては、例えば、ウレタン(メタ)アクリレート等を含有するものが挙げられる。 As a preferable buffer layer, for example, one containing urethane (meth) acrylate or the like can be mentioned.
 上述の前記樹脂フィルムの場合と同様に、温度90℃、周波数1Hzの条件で、直径25mm、厚さ1mmの緩衝層の試験片にひずみを発生させて、前記試験片の貯蔵弾性率を測定し、前記試験片のひずみが300%のときの、前記試験片の貯蔵弾性率をGb300としたとき、Gb300はGc300以上(Gb300≧Gc300)であることが好ましい。このような条件を満たす前記複合シートを用いて、前記樹脂フィルムを凹凸面へ貼付することにより、凹凸面の凸部(例えば、半導体ウエハのバンプ)の上部が、より容易に樹脂フィルムを貫通する。 Similar to the case of the resin film described above, the test piece of the buffer layer having a diameter of 25 mm and a thickness of 1 mm is strained under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz, and the storage elastic modulus of the test piece is measured. When the strain of the test piece is 300% and the storage elastic modulus of the test piece is Gb300, Gb300 is preferably Gc300 or more (Gb300 ≧ Gc300). By attaching the resin film to the uneven surface using the composite sheet satisfying such conditions, the upper portion of the convex portion (for example, the bump of the semiconductor wafer) of the uneven surface penetrates the resin film more easily. ..
 上述のように、緩衝層の試験片に0.01%~1000%の範囲でひずみを発生させて、前記試験片の貯蔵弾性率Gbを測定し、前記樹脂フィルムの試験片に0.01%~1000%の範囲でひずみを発生させて、前記試験片の貯蔵弾性率Gcを測定し、ひずみが同じである場合のGbとGcを比較したとき、ひずみが0.01%~1000%のすべての範囲で、GbはGc以上(Gb≧Gc)であることがより好ましく、ひずみが10%~1000%のすべての範囲で、GbはGc以上であることがさらに好ましい。このような条件を満たす前記複合シートを用いて、前記樹脂フィルムを凹凸面へ貼付することにより、凹凸面の凸部(例えば、半導体ウエハのバンプ)の上部が、さらに容易に樹脂フィルムを貫通する。 As described above, the test piece of the buffer layer is strained in the range of 0.01% to 1000%, the storage elastic modulus Gb of the test piece is measured, and the test piece of the resin film is 0.01%. When strain is generated in the range of ~ 1000%, the storage elastic modulus Gc of the test piece is measured, and Gb and Gc when the strain is the same are compared, the strain is all 0.01% to 1000%. In the range of, Gb is more preferably Gc or more (Gb ≧ Gc), and in all ranges of strain of 10% to 1000%, Gb is more preferably Gc or more. By attaching the resin film to the uneven surface using the composite sheet satisfying such conditions, the upper portion of the convex portion (for example, the bump of the semiconductor wafer) of the uneven surface penetrates the resin film more easily. ..
 緩衝層は1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The buffer layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these multiple layers are the same or different from each other. The combination of these plurality of layers may be not particularly limited.
 緩衝層の厚さは、150~1000μmであることが好ましく、150~800μmであることがより好ましく、200~600μmであることがさらに好ましく、250~500μmであることが特に好ましい。
 ここで、「緩衝層の厚さ」とは、緩衝層全体の厚さを意味し、例えば、複数層からなる緩衝層の厚さとは、緩衝層を構成するすべての層の合計の厚さを意味する。
The thickness of the buffer layer is preferably 150 to 1000 μm, more preferably 150 to 800 μm, further preferably 200 to 600 μm, and particularly preferably 250 to 500 μm.
Here, the "thickness of the buffer layer" means the thickness of the entire buffer layer, and for example, the thickness of the buffer layer composed of a plurality of layers means the total thickness of all the layers constituting the buffer layer. means.
<<緩衝層形成用組成物>>
 緩衝層は、前記樹脂等の、緩衝層の構成材料を含有する緩衝層形成用組成物を用いて形成できる。例えば、緩衝層の形成対象面に対して、緩衝層形成用組成物を押出成形することにより、目的とする部位に緩衝層を形成できる。緩衝層のより具体的な形成方法は、他の層の形成方法とともに、後ほど詳細に説明する。緩衝層形成用組成物中の、常温で気化しない成分同士の含有量の比率は、通常、緩衝層の前記成分同士の含有量の比率と同じとなる。
<< Composition for forming a buffer layer >>
The buffer layer can be formed by using a composition for forming a buffer layer containing a constituent material of the buffer layer, such as the resin. For example, the buffer layer can be formed at a target site by extrusion-molding the composition for forming the buffer layer on the surface to be formed of the buffer layer. A more specific method for forming the buffer layer will be described in detail later together with a method for forming the other layers. The ratio of the contents of the components that do not vaporize at room temperature in the composition for forming the buffer layer is usually the same as the ratio of the contents of the components in the buffer layer.
<緩衝層形成用組成物(V)>
 緩衝層形成用組成物としては、例えば、ウレタン(メタ)アクリレートを含有する緩衝層形成用組成物(V)等が挙げられる。
<Composition for forming a buffer layer (V)>
Examples of the buffer layer forming composition include a buffer layer forming composition (V) containing urethane (meth) acrylate.
 緩衝層形成用組成物(V)及び緩衝層のウレタン(メタ)アクリレートの含有量は、80~100質量%であることが好ましい。 The content of the buffer layer forming composition (V) and the urethane (meth) acrylate of the buffer layer is preferably 80 to 100% by mass.
[他の成分]
 緩衝層形成用組成物(V)及び緩衝層は、本発明の効果を損なわない範囲内において、ウレタン(メタ)アクリレート以外の、他の成分を含有していてもよい。
 前記他の成分としては、特に限定されず、目的に応じて適宜選択できる。
[Other ingredients]
The composition for forming a buffer layer (V) and the buffer layer may contain other components other than urethane (meth) acrylate as long as the effects of the present invention are not impaired.
The other component is not particularly limited and may be appropriately selected depending on the intended purpose.
 緩衝層形成用組成物(V)及び緩衝層が含有する前記他の成分は、1種のみであってもよいし、2種以上であってもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 緩衝層形成用組成物(V)及び緩衝層の前記他の成分の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The buffer layer forming composition (V) and the other components contained in the buffer layer may be only one kind, two or more kinds, and when two or more kinds, a combination thereof. And the ratio can be selected arbitrarily.
The content of the buffer layer forming composition (V) and the other components of the buffer layer is not particularly limited and may be appropriately selected depending on the intended purpose.
◎粘着剤層
 粘着剤層は、シート状又はフィルム状であり、粘着剤を含有する。
 前記粘着剤としては、例えば、アクリル樹脂、ウレタン樹脂、ゴム系樹脂、シリコーン樹脂、エポキシ系樹脂、ポリビニルエーテル、ポリカーボネート、エステル系樹脂等の粘着性樹脂が挙げられ、アクリル樹脂が好ましい。
◎ Adhesive layer The adhesive layer is in the form of a sheet or a film and contains an adhesive.
Examples of the pressure-sensitive adhesive include adhesive resins such as acrylic resin, urethane resin, rubber-based resin, silicone resin, epoxy-based resin, polyvinyl ether, polycarbonate, and ester-based resin, and acrylic resin is preferable.
 本明細書において、「粘着性樹脂」には、粘着性を有する樹脂と、接着性を有する樹脂と、の両方が包含される。例えば、前記粘着性樹脂には、樹脂自体が粘着性を有するものだけでなく、添加剤等の他の成分との併用により粘着性を示す樹脂や、熱又は水等のトリガーの存在によって接着性を示す樹脂等も含まれる。 In the present specification, the "adhesive resin" includes both a resin having adhesiveness and a resin having adhesiveness. For example, the adhesive resin includes not only the resin itself having adhesiveness, but also a resin showing adhesiveness when used in combination with other components such as additives, and adhesiveness due to the presence of a trigger such as heat or water. Also included are resins and the like.
 粘着剤層は1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The pressure-sensitive adhesive layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, the plurality of layers may be the same or different from each other. The combination of these plurality of layers is not particularly limited.
 粘着剤層の厚さは、10~180μmであることが好ましく、30~120μmであることがより好ましく、40~80μmであることが特に好ましい。粘着剤層の厚さが前記下限値以上であることで、粘着剤層を設けたことによる効果が、より顕著に得られる。粘着剤層の厚さが前記上限値以下であることで、支持シートを薄層化できる。
 ここで、「粘着剤層の厚さ」とは、粘着剤層全体の厚さを意味し、例えば、複数層からなる粘着剤層の厚さとは、粘着剤層を構成するすべての層の合計の厚さを意味する。
The thickness of the pressure-sensitive adhesive layer is preferably 10 to 180 μm, more preferably 30 to 120 μm, and particularly preferably 40 to 80 μm. When the thickness of the pressure-sensitive adhesive layer is at least the above lower limit value, the effect of providing the pressure-sensitive adhesive layer can be obtained more remarkably. When the thickness of the pressure-sensitive adhesive layer is not more than the upper limit value, the support sheet can be thinned.
Here, the "thickness of the pressure-sensitive adhesive layer" means the thickness of the entire pressure-sensitive adhesive layer, and for example, the thickness of the pressure-sensitive adhesive layer composed of a plurality of layers is the sum of all the layers constituting the pressure-sensitive adhesive layer. Means the thickness of.
 粘着剤層は、エネルギー線硬化性粘着剤を用いて形成されたものであってもよいし、非エネルギー線硬化性粘着剤を用いて形成されたものであってもよい。すなわち、粘着剤層は、エネルギー線硬化性及び非エネルギー線硬化性のいずれであってもよい。エネルギー線硬化性の粘着剤層は、その硬化前及び硬化後での物性を容易に調節できる。例えば、後述する第1保護膜付き半導体チップのピックアップ前に、エネルギー線硬化性の粘着剤層を硬化させることにより、第1保護膜付き半導体チップをより容易にピックアップできる。 The pressure-sensitive adhesive layer may be formed by using an energy ray-curable pressure-sensitive adhesive or may be formed by using a non-energy ray-curable pressure-sensitive adhesive. That is, the pressure-sensitive adhesive layer may be either energy ray-curable or non-energy ray-curable. The energy ray-curable pressure-sensitive adhesive layer can easily adjust its physical properties before and after curing. For example, the semiconductor chip with the first protective film can be more easily picked up by curing the energy ray-curable pressure-sensitive adhesive layer before picking up the semiconductor chip with the first protective film, which will be described later.
<<粘着剤組成物>>
 粘着剤層は、粘着剤を含有する粘着剤組成物を用いて形成できる。例えば、粘着剤層の形成対象面に粘着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする部位に粘着剤層を形成できる。粘着剤組成物における、常温で気化しない成分同士の含有量の比率は、通常、粘着剤層における前記成分同士の含有量の比率と同じとなる。
<< Adhesive composition >>
The pressure-sensitive adhesive layer can be formed by using a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive. For example, the pressure-sensitive adhesive layer can be formed on a target portion by applying the pressure-sensitive adhesive composition to the surface to be formed of the pressure-sensitive adhesive layer and drying it if necessary. The ratio of the contents of the components that do not vaporize at room temperature in the pressure-sensitive adhesive composition is usually the same as the ratio of the contents of the components in the pressure-sensitive adhesive layer.
 粘着剤組成物の塗工は、例えば、上述の樹脂フィルム形成用組成物の塗工の場合と同じ方法で行うことができる。 The coating of the pressure-sensitive adhesive composition can be performed by, for example, the same method as in the case of coating the composition for forming a resin film described above.
 粘着剤組成物の乾燥条件は、特に限定されない。粘着剤組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。溶媒を含有する粘着剤組成物は、例えば、70~130℃で10秒~5分の条件で乾燥させることが好ましい。 The drying conditions of the pressure-sensitive adhesive composition are not particularly limited. When the pressure-sensitive adhesive composition contains a solvent described later, it is preferably heat-dried. The solvent-containing pressure-sensitive adhesive composition is preferably dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
 基材又は緩衝層上に粘着剤層を設ける場合には、例えば、基材又は緩衝層上に粘着剤組成物を塗工し、必要に応じて乾燥させることで、基材又は緩衝層上に粘着剤層を積層すればよい。また、基材又は緩衝層上に粘着剤層を設ける場合には、例えば、剥離フィルム上に粘着剤組成物を塗工し、必要に応じて乾燥させることで、剥離フィルム上に粘着剤層を形成しておき、この粘着剤層の露出面を、基材又は緩衝層の一方の表面と貼り合わせることで、基材又は緩衝層上に粘着剤層を積層してもよい。この場合の剥離フィルムは、複合シートの製造過程又は使用過程のいずれかのタイミングで、取り除けばよい。 When the pressure-sensitive adhesive layer is provided on the base material or the buffer layer, for example, the pressure-sensitive adhesive composition is applied onto the base material or the buffer layer and dried as necessary, thereby forming the pressure-sensitive adhesive layer on the base material or the buffer layer. The pressure-sensitive adhesive layer may be laminated. When the pressure-sensitive adhesive layer is provided on the base material or the buffer layer, for example, the pressure-sensitive adhesive composition is applied onto the release film and dried as necessary to form the pressure-sensitive adhesive layer on the release film. The pressure-sensitive adhesive layer may be laminated on the base material or the buffer layer by forming the exposed surface of the pressure-sensitive adhesive layer and laminating it with one surface of the base material or the buffer layer. The release film in this case may be removed at any timing of the manufacturing process or the use process of the composite sheet.
 粘着剤層がエネルギー線硬化性である場合、エネルギー線硬化性の粘着剤組成物としては、例えば、非エネルギー線硬化性の粘着性樹脂(I-1a)(以下、「粘着性樹脂(I-1a)」と略記することがある)と、エネルギー線硬化性化合物と、を含有する粘着剤組成物(I-1);前記粘着性樹脂(I-1a)の側鎖に不飽和基が導入されたエネルギー線硬化性の粘着性樹脂(I-2a)(以下、「粘着性樹脂(I-2a)」と略記することがある)を含有する粘着剤組成物(I-2);前記粘着性樹脂(I-2a)と、エネルギー線硬化性低分子化合物と、を含有する粘着剤組成物(I-3)等が挙げられる。 When the pressure-sensitive adhesive layer is energy ray-curable, the energy ray-curable pressure-sensitive adhesive composition includes, for example, a non-energy ray-curable pressure-sensitive adhesive resin (I-1a) (hereinafter, "sticky resin (I-)". 1a) ”) and an energy ray-curable compound (adhesive composition (I-1); an unsaturated group is introduced into the side chain of the adhesive resin (I-1a). Adhesive composition (I-2) containing the energy ray-curable adhesive resin (I-2a) (hereinafter, may be abbreviated as "adhesive resin (I-2a)"); Examples thereof include a pressure-sensitive adhesive composition (I-3) containing a sex resin (I-2a) and an energy ray-curable low-molecular-weight compound.
 前記粘着剤組成物(I-1)、粘着剤組成物(I-2)及び粘着剤組成物(I-3)としては、例えば、「国際公開第2017/078047号」の段落0045~0105に記載の第1粘着剤組成物(I-1)、第1粘着剤組成物(I-2)及び第1粘着剤組成物(I-3)等が挙げられる。 Examples of the pressure-sensitive adhesive composition (I-1), the pressure-sensitive adhesive composition (I-2), and the pressure-sensitive adhesive composition (I-3) are described in paragraphs 0045 to 0105 of "International Publication No. 2017/078047". Examples thereof include the first pressure-sensitive adhesive composition (I-1), the first pressure-sensitive adhesive composition (I-2), and the first pressure-sensitive adhesive composition (I-3) described above.
 粘着剤層が非エネルギー線硬化性である場合、非エネルギー線硬化性の粘着剤組成物としては、例えば、前記粘着性樹脂(I-1a)を含有する粘着剤組成物(I-4)等が挙げられる。 When the pressure-sensitive adhesive layer is non-energy ray-curable, examples of the non-energy ray-curable pressure-sensitive adhesive composition include, for example, the pressure-sensitive adhesive composition (I-4) containing the pressure-sensitive adhesive resin (I-1a). Can be mentioned.
<<粘着剤組成物の製造方法>>
 粘着剤組成物(I-1)~(I-4)等の粘着剤組成物は、前記粘着剤と、必要に応じて前記粘着剤以外の成分等の、粘着剤組成物を構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
<< Manufacturing method of adhesive composition >>
The pressure-sensitive adhesive compositions such as the pressure-sensitive adhesive compositions (I-1) to (I-4) are for forming a pressure-sensitive adhesive composition such as the pressure-sensitive adhesive and, if necessary, components other than the pressure-sensitive adhesive. Obtained by blending each component.
The order of addition of each component at the time of blending is not particularly limited, and two or more kinds of components may be added at the same time.
The method of mixing each component at the time of blending is not particularly limited, and from known methods such as a method of rotating a stirrer or a stirring blade to mix; a method of mixing using a mixer; a method of adding ultrasonic waves to mix. It may be selected as appropriate.
The temperature and time at the time of adding and mixing each component are not particularly limited as long as each compounding component does not deteriorate, and may be appropriately adjusted, but the temperature is preferably 15 to 30 ° C.
◎樹脂フィルム
 本実施形態の複合シートにおける樹脂フィルムは、先に説明したものと同じであるため、ここでは、その詳細な説明を省略する。
(6) Resin film Since the resin film in the composite sheet of the present embodiment is the same as that described above, detailed description thereof will be omitted here.
 本実施形態の好ましい複合シートの一例としては、支持シートと、前記支持シートの一方の面上に設けられた樹脂フィルムと、を備えた複合シートであって、
 前記支持シートが、基材と、前記基材の一方の面上に設けられた緩衝層と、前記緩衝層の前記基材側とは反対側の面上に設けられた粘着剤層と、を備えており、前記緩衝層及び粘着剤層が、前記基材と、前記樹脂フィルムと、の間に配置され、
 前記樹脂フィルムが熱硬化性樹脂フィルムであり、
 熱硬化前の前記樹脂フィルムを第1試験片として用い、示差走査熱量分析(DSC)法によって第1試験片を昇温速度10℃/minの等速昇温条件にて分析して得られる、100~300℃の範囲の発熱量が100J/g以下、10~100J/g、50~90J/g、及び60~80J/gのいずれかであり、
 前記樹脂フィルムが、重合体成分(A)、及び熱硬化性成分(B)を含有し、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~35質量%、及び5~27質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が、10~75質量%、15~73質量%、及び35~70質量%のいずれかである、複合シートが挙げられる。
An example of a preferable composite sheet of the present embodiment is a composite sheet including a support sheet and a resin film provided on one surface of the support sheet.
The support sheet comprises a base material, a buffer layer provided on one surface of the base material, and an adhesive layer provided on a surface of the buffer layer opposite to the base material side. The buffer layer and the pressure-sensitive adhesive layer are arranged between the base material and the resin film.
The resin film is a thermosetting resin film.
The resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min. The calorific value in the range of 100 to 300 ° C. is 100 J / g or less, 10 to 100 J / g, 50 to 90 J / g, and 60 to 80 J / g.
The resin film contains a polymer component (A) and a thermosetting component (B).
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
The ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass. There is a composite sheet.
 本実施形態の好ましい複合シートの他の例としては、支持シートと、前記支持シートの一方の面上に設けられた樹脂フィルムと、を備えた複合シートであって、
 前記支持シートが、基材と、前記基材の一方の面上に設けられた緩衝層と、前記緩衝層の前記基材側とは反対側の面上に設けられた粘着剤層と、を備えており、前記緩衝層及び粘着剤層が、前記基材と、前記樹脂フィルムと、の間に配置され、
 前記樹脂フィルムが熱硬化性樹脂フィルムであり、
 熱硬化前の前記樹脂フィルムを第1試験片として用い、示差走査熱量分析(DSC)法によって第1試験片を昇温速度10℃/minの等速昇温条件にて分析して得られる、100~300℃の範囲の発熱量が100J/g以下、10~100J/g、50~90J/g、及び60~80J/gのいずれかであり、
 前記樹脂フィルムが、重合体成分(A)、熱硬化性成分(B)及び充填材(D)を含有し、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~35質量%、及び5~27質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が、10~75質量%、15~73質量%、及び35~70質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記充填材(D)の含有量の割合が、10~65質量%、及び15~55質量%のいずれかである、樹脂フィルムが挙げられる。
、複合シートが挙げられる。
Another preferred example of the composite sheet of the present embodiment is a composite sheet including a support sheet and a resin film provided on one surface of the support sheet.
The support sheet comprises a base material, a buffer layer provided on one surface of the base material, and an adhesive layer provided on a surface of the buffer layer opposite to the base material side. The buffer layer and the pressure-sensitive adhesive layer are arranged between the base material and the resin film.
The resin film is a thermosetting resin film.
The resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min. The calorific value in the range of 100 to 300 ° C. is 100 J / g or less, 10 to 100 J / g, 50 to 90 J / g, and 60 to 80 J / g.
The resin film contains a polymer component (A), a thermosetting component (B), and a filler (D).
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
The ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass. can be,
Examples thereof include a resin film in which the ratio of the content of the filler (D) to the total mass of the resin film in the resin film is either 10 to 65% by mass or 15 to 55% by mass.
, Composite sheet can be mentioned.
 本実施形態の好ましい複合シートのさらに他の例としては、支持シートと、前記支持シートの一方の面上に設けられた樹脂フィルムと、を備えた複合シートであって、
 前記支持シートが、基材と、前記基材の一方の面上に設けられた緩衝層と、前記緩衝層の前記基材側とは反対側の面上に設けられた粘着剤層と、を備えており、前記緩衝層及び粘着剤層が、前記基材と、前記樹脂フィルムと、の間に配置され、
 前記樹脂フィルムが熱硬化性樹脂フィルムであり、
 熱硬化前の前記樹脂フィルムを第1試験片として用い、示差走査熱量分析(DSC)法によって第1試験片を昇温速度10℃/minの等速昇温条件にて分析して得られる、100~300℃の範囲の発熱量が100J/g以下、10~100J/g、50~90J/g、60~80J/gのいずれかであり、
 前記X値が19以上10000未満、19~5000、25~2000、30~1000、35~500、40~300、45~100、及び50~70のいずれかであり、
 前記樹脂フィルムが、重合体成分(A)、熱硬化性成分(B)、充填材(D)及び添加剤(I)を含有し、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記重合体成分(A)の含有量の割合が、5~35質量%、及び5~27質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が、10~75質量%、15~73質量%、及び35~70質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記充填材(D)の含有量の割合が、10~65質量%、及び15~55質量%のいずれかであり、
 前記樹脂フィルムにおける、前記樹脂フィルムの総質量に対する、前記添加剤(I)の含有量の割合が、0.5~10質量%、0.5~7質量%、及び0.5~5質量%のいずれかである、複合シートが挙げられる。
Still another example of the preferred composite sheet of the present embodiment is a composite sheet including a support sheet and a resin film provided on one surface of the support sheet.
The support sheet comprises a base material, a buffer layer provided on one surface of the base material, and an adhesive layer provided on a surface of the buffer layer opposite to the base material side. The buffer layer and the pressure-sensitive adhesive layer are arranged between the base material and the resin film.
The resin film is a thermosetting resin film.
The resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min. The calorific value in the range of 100 to 300 ° C. is 100 J / g or less, 10 to 100 J / g, 50 to 90 J / g, or 60 to 80 J / g.
The X value is 19 or more and less than 10000, 19 to 5000, 25 to 2000, 30 to 1000, 35 to 500, 40 to 300, 45 to 100, and 50 to 70.
The resin film contains a polymer component (A), a thermosetting component (B), a filler (D), and an additive (I).
The ratio of the content of the polymer component (A) to the total mass of the resin film in the resin film is either 5 to 35% by mass or 5 to 27% by mass.
The ratio of the content of the thermosetting component (B) to the total mass of the resin film in the resin film is any of 10 to 75% by mass, 15 to 73% by mass, and 35 to 70% by mass. can be,
The ratio of the content of the filler (D) to the total mass of the resin film in the resin film is either 10 to 65% by mass or 15 to 55% by mass.
The ratio of the content of the additive (I) to the total mass of the resin film in the resin film is 0.5 to 10% by mass, 0.5 to 7% by mass, and 0.5 to 5% by mass. A composite sheet, which is one of the above, can be mentioned.
◇複合シートの製造方法
 前記複合シートは、上述の各層を対応する位置関係となるように順次積層することで製造できる。各層の形成方法は、先に説明したとおりである。
◇ Method for manufacturing composite sheet The composite sheet can be manufactured by sequentially laminating the above-mentioned layers so as to have a corresponding positional relationship. The method of forming each layer is as described above.
 例えば、基材、緩衝層、粘着剤層及び樹脂フィルムがこの順に、これらの厚さ方向において積層されて構成されている複合シートは、以下に示す方法で製造できる。
 すなわち、基材に対して、緩衝層形成用組成物を押出成形することにより、基材上に緩衝層を積層する。また、剥離フィルムの剥離処理面上に、上述の粘着剤組成物を塗工し、必要に応じて乾燥させることで、粘着剤層を積層する。そして、この剥離フィルム上の粘着剤層を、基材上の緩衝層と貼り合わせることで、基材、緩衝層、粘着剤層及び剥離フィルムがこの順に、これらの厚さ方向において積層されて構成された、剥離フィルム付き積層シートを得る。
 別途、剥離フィルムの剥離処理面上に、上述の樹脂フィルム形成用組成物を塗工し、必要に応じて乾燥させることで、樹脂フィルムを積層する。
 そして、上記で得られた積層シートから剥離フィルムを取り除き、これにより新たに生じた粘着剤層の露出面と、上述の剥離フィルム上の樹脂フィルムの露出面と、を貼り合わせることで、基材、緩衝層、粘着剤層、樹脂フィルム及び剥離フィルムがこの順に、これらの厚さ方向において積層されて構成された複合シートを得る。樹脂フィルム上の剥離フィルムは、複合シートの使用時に取り除けばよい。
For example, a composite sheet in which a base material, a buffer layer, an adhesive layer, and a resin film are laminated in this order in the thickness direction thereof can be produced by the method shown below.
That is, the buffer layer is laminated on the base material by extrusion-molding the composition for forming the buffer layer on the base material. Further, the pressure-sensitive adhesive layer is laminated by applying the above-mentioned pressure-sensitive adhesive composition on the peel-processed surface of the release film and drying it if necessary. Then, by laminating the pressure-sensitive adhesive layer on the release film with the cushioning layer on the base material, the base material, the cushioning layer, the pressure-sensitive adhesive layer and the release film are laminated in this order in these thickness directions. Obtain a laminated sheet with a release film.
Separately, the resin film is laminated by applying the above-mentioned resin film forming composition on the peeling-treated surface of the release film and drying it if necessary.
Then, the release film is removed from the laminated sheet obtained above, and the exposed surface of the newly generated pressure-sensitive adhesive layer and the exposed surface of the resin film on the above-mentioned release film are bonded to each other to form a base material. , A buffer layer, an adhesive layer, a resin film, and a release film are laminated in this order in this order to obtain a composite sheet. The release film on the resin film may be removed when the composite sheet is used.
 上述の各層以外の他の層を備えた複合シートは、上述の製造方法において、前記他の層の積層位置が適切な位置となるように、前記他の層の形成工程及び積層工程のいずれか一方又は両方を適宜追加して行うことで、製造できる。 In the above-mentioned manufacturing method, the composite sheet provided with other layers other than the above-mentioned layers is one of the above-mentioned other layer forming step and the above-mentioned laminating step so that the laminating position of the other layer is an appropriate position. It can be manufactured by appropriately adding one or both of them.
◇第1保護膜付き半導体チップの製造方法(樹脂フィルム及び複合シートの使用方法)
 先の説明のように、本実施形態の樹脂フィルムは、その貼付対象物の凹凸面に対して貼付したときに、凸部を貫通させてその上部を露出させつつ、凹凸面全体を被覆できる点で、極めて優れた特性を有する。すなわち、本実施形態の樹脂フィルムは、凹凸面を有する貼付対象物の前記凹凸面への貼付用として、好適である。さらに、凹凸面が微細な溝を有する場合、前記樹脂フィルムによりこのような溝を充填でき、その結果、溝を保護膜により充填できる。さらに、樹脂フィルムが凹凸面上の微細な溝に充填され、硬化のための熱処理が施された樹脂フィルムの硬化不良が抑制されているので、保護膜の切断時に生じ得る加工屑が、半導体チップ又はウエハに付着することを抑制できる。
 このような本実施形態の樹脂フィルムは、半導体チップの凹凸面及び側面の保護用として好適であり、例えば、半導体チップと、前記半導体チップの側面及びバンプを有する面(バンプ形成面)に設けられた第1保護膜と、を備えた第1保護膜付き半導体チップの製造に用いるのに、特に好適である。この場合、前記凹凸面は半導体チップのバンプ形成面であり、凸部はバンプである。また、凹部にはバンプ形成面上の溝が含まれる。そして、第1保護膜付き半導体チップは、その中のバンプにおいて、基板にフリップチップ接続することにより、半導体装置の製造に用いるのに好適である。
 本実施形態の樹脂フィルムは、上述の複合シートの形態で用いるのに好適である。
 以下、前記複合シートを用いた場合の、第1保護膜付き半導体チップの製造方法について説明する。
◇ Manufacturing method of semiconductor chip with first protective film (How to use resin film and composite sheet)
As described above, when the resin film of the present embodiment is applied to the uneven surface of the object to be attached, the resin film can cover the entire uneven surface while penetrating the convex portion and exposing the upper portion thereof. And has extremely excellent characteristics. That is, the resin film of the present embodiment is suitable for sticking an object to be attached having an uneven surface to the uneven surface. Further, when the uneven surface has fine grooves, such grooves can be filled with the resin film, and as a result, the grooves can be filled with the protective film. Further, since the resin film is filled in the fine grooves on the uneven surface to suppress the curing failure of the resin film that has been heat-treated for curing, the processing waste that may be generated when the protective film is cut is the semiconductor chip. Alternatively, it can be suppressed from adhering to the wafer.
Such a resin film of the present embodiment is suitable for protecting the uneven surface and the side surface of the semiconductor chip. For example, the resin film is provided on the semiconductor chip and the side surface of the semiconductor chip and the surface having bumps (bump forming surface). It is particularly suitable for use in the production of a semiconductor chip with a first protective film provided with the first protective film. In this case, the uneven surface is a bump forming surface of the semiconductor chip, and the convex portion is a bump. Further, the recess includes a groove on the bump forming surface. The semiconductor chip with the first protective film is suitable for use in the manufacture of a semiconductor device by flip-chip connecting the bumps in the chip to the substrate.
The resin film of this embodiment is suitable for use in the form of the composite sheet described above.
Hereinafter, a method for manufacturing a semiconductor chip with a first protective film when the composite sheet is used will be described.
 本発明の一実施形態に係る第1保護膜付き半導体チップの製造方法は、半導体ウエハを用いた、第1保護膜付き半導体チップの製造方法であって、前記第1保護膜付き半導体チップは、半導体チップと、前記半導体チップの側面及びバンプを有する面に設けられた第1保護膜と、を備えており、前記半導体ウエハは、その一方の面に、バンプと、前記半導体ウエハの分割箇所となる溝と、を有し、前記製造方法は、上述の本発明の一実施形態に係る複合シート中の前記熱硬化性の樹脂フィルムを、前記半導体ウエハの前記一方の面に貼付することにより、前記一方の面に前記樹脂フィルムを備え、かつ、前記溝が前記樹脂フィルムで充填された、樹脂フィルム付き半導体ウエハを作製する貼付工程を有し、前記製造方法は、さらに、前記貼付工程後に、前記樹脂フィルムを熱硬化させて、前記第1保護膜を形成することにより、前記半導体ウエハと、前記半導体ウエハの前記一方の面に設けられ、かつ前記溝に充填された前記第1保護膜と、を備えた第1保護膜付き半導体ウエハを作製する硬化工程(1)と、前記硬化工程(1)後に、前記半導体ウエハを分割することにより、複数個の前記半導体チップと、複数個の前記半導体チップの前記バンプを有する面及び前記半導体チップ間の隙間に設けられた前記第1保護膜と、を備えた第1保護膜付き半導体チップ群を作製する分割工程(1)と、前記分割工程(1)後に、前記第1保護膜付き半導体チップ群中の前記半導体チップ間の隙間に沿って、前記第1保護膜を切断することにより、前記第1保護膜付き半導体チップを作製する切断工程(1)を有する(この場合の製造方法を、本明細書においては、「製造方法(1)」と称することがある)か、前記貼付工程後で、かつ前記硬化工程(1)後に、前記第1保護膜付き半導体ウエハ中の前記溝に沿って、前記第1保護膜を切り込むことにより、切り込み済み第1保護膜付き半導体ウエハを作製する切断工程(2)と、前記切断工程(2)後に、前記半導体ウエハを分割することにより、前記第1保護膜付き半導体チップを作製する分割工程(2)を有する(この場合の製造方法を、本明細書においては、「製造方法(2)」と称することがある)か、又は、前記貼付工程後に、前記半導体ウエハを分割することにより、複数個の前記半導体チップと、複数個の前記半導体チップの前記バンプを有する面及び前記半導体チップ間の隙間に設けられた前記樹脂フィルムと、を備えた樹脂フィルム付き半導体チップ群を作製する分割工程(3)と、前記分割工程(3)後に、前記樹脂フィルムを熱硬化させて、前記第1保護膜を形成することにより、複数個の前記半導体チップと、複数個の前記半導体チップの前記バンプを有する面及び前記半導体チップ間の隙間に設けられた前記第1保護膜と、を備えた第1保護膜付き半導体チップ群を作製する硬化工程(3)と、前記硬化工程(3)後に、前記第1保護膜付き半導体チップ群中の前記半導体チップ間の隙間に沿って、前記第1保護膜を切断することにより、前記第1保護膜付き半導体チップを得る切断工程(3)を有する(この場合の製造方法を、本明細書においては、「製造方法(3)」と称することがある)。
 以下、これらの製造方法について説明する。
The method for manufacturing a semiconductor chip with a first protective film according to an embodiment of the present invention is a method for manufacturing a semiconductor chip with a first protective film using a semiconductor wafer, and the semiconductor chip with the first protective film is a method. A semiconductor chip and a first protective film provided on a side surface of the semiconductor chip and a surface having bumps are provided, and the semiconductor wafer has bumps and a division portion of the semiconductor wafer on one surface thereof. The manufacturing method comprises attaching the thermosetting resin film in the composite sheet according to the embodiment of the present invention to the one surface of the semiconductor wafer. The manufacturing method further comprises a sticking step of producing a semiconductor wafer with a resin film, wherein the resin film is provided on one of the surfaces and the grooves are filled with the resin film. By thermally curing the resin film to form the first protective film, the semiconductor wafer and the first protective film provided on the one surface of the semiconductor wafer and filled in the groove can be obtained. A plurality of the semiconductor chips and a plurality of the above-mentioned semiconductor chips are formed by dividing the semiconductor wafer after the curing step (1) for producing the semiconductor wafer with the first protective film and the curing step (1). A division step (1) for producing a group of semiconductor chips with a first protective film having the surface of the semiconductor chip having the bumps and the first protective film provided in the gap between the semiconductor chips, and the division step. (1) Later, a cutting step of producing the semiconductor chip with the first protective film by cutting the first protective film along the gap between the semiconductor chips in the semiconductor chip group with the first protective film. (1) (the manufacturing method in this case may be referred to as "manufacturing method (1)" in the present specification), or after the pasting step and after the curing step (1). A cutting step (2) for producing a cut semiconductor wafer with a first protective film by cutting the first protective film along the groove in the semiconductor wafer with the first protective film, and a cutting step (2). Later, the semiconductor wafer is divided to have a division step (2) for producing the semiconductor chip with the first protective film (the production method in this case is referred to as "manufacturing method (2)" in the present specification. Or by dividing the semiconductor wafer after the pasting step, a plurality of the semiconductor chips, a surface of the plurality of semiconductor chips having the bumps, and the semiconducting head. After the dividing step (3) for producing the semiconductor chip group with the resin film provided with the resin film provided in the gap between the body chips and the dividing step (3), the resin film is thermally cured. By forming the first protective film, the plurality of the semiconductor chips, the surface of the plurality of semiconductor chips having the bumps, and the first protective film provided in the gap between the semiconductor chips can be formed. After the curing step (3) for producing the provided semiconductor chip group with the first protective film and the curing step (3), the said, along the gap between the semiconductor chips in the semiconductor chip group with the first protective film. It has a cutting step (3) for obtaining the semiconductor chip with the first protective film by cutting the first protective film (the manufacturing method in this case is referred to as "manufacturing method (3)" in the present specification. Sometimes).
Hereinafter, these manufacturing methods will be described.
<<製造方法(1)>>
 図4A~図4Eは、図3に示す複合シート1を用いた場合の、第1保護膜付き半導体チップの製造方法の一例として、製造方法(1)を模式的に示す断面図である。
 ここでは、樹脂フィルムを第1保護膜の形成用として用いるため、「複合シート1」を「第1保護膜形成用シート1」と称し、「基材11」を「第1基材11」と称する。
<< Manufacturing method (1) >>
4A to 4E are cross-sectional views schematically showing the manufacturing method (1) as an example of the manufacturing method of the semiconductor chip with the first protective film when the composite sheet 1 shown in FIG. 3 is used.
Here, since the resin film is used for forming the first protective film, the "composite sheet 1" is referred to as the "first protective film forming sheet 1", and the "base material 11" is referred to as the "first base material 11". Refer to.
<貼付工程>
 製造方法(1)の前記貼付工程においては、図4A~図4Bに示すように、第1保護膜形成用シート1中の樹脂フィルム12を、半導体ウエハ9の一方の面(以下、「バンプ形成面」と称することがある)9aに貼付する。
 半導体ウエハ9は、そのバンプ形成面9aに、複数個のバンプ91と、半導体ウエハ9の分割箇所となる複数本の溝90と、を有する。
 本工程で半導体ウエハ9に第1保護膜形成用シート1を設けることにより、半導体ウエハ9のバンプ形成面9aに樹脂フィルム12を備え、かつ、溝90が樹脂フィルム12で充填された、樹脂フィルム付き半導体ウエハ901を作製する。
<Attachment process>
In the pasting step of the manufacturing method (1), as shown in FIGS. 4A to 4B, the resin film 12 in the first protective film forming sheet 1 is attached to one surface of the semiconductor wafer 9 (hereinafter, “bump forming”). It is affixed to 9a) (sometimes referred to as "face").
The semiconductor wafer 9 has a plurality of bumps 91 and a plurality of grooves 90 serving as division points of the semiconductor wafer 9 on the bump forming surface 9a.
By providing the first protective film forming sheet 1 on the semiconductor wafer 9 in this step, the resin film 12 is provided on the bump forming surface 9a of the semiconductor wafer 9 and the groove 90 is filled with the resin film 12. A semiconductor wafer 901 with a plastic wafer is manufactured.
 ここでは、バンプ91の頭頂部9101が、樹脂フィルム12から突出している状態を示している。バンプ91の頭頂部9101が、樹脂フィルム12からの突出する程度は、樹脂フィルム12の組成、厚さ、又は、樹脂フィルム12の貼付条件により調整できる。 Here, the top portion 9101 of the bump 91 is shown to protrude from the resin film 12. The degree to which the crown portion 9101 of the bump 91 protrudes from the resin film 12 can be adjusted by adjusting the composition and thickness of the resin film 12 or the application conditions of the resin film 12.
 製造方法(1)の前記貼付工程においては、例えば、まず図4Aに示すように、第1保護膜形成用シート1を、その樹脂フィルム12が半導体ウエハ9のバンプ形成面9aに対向するように配置する。 In the pasting step of the manufacturing method (1), for example, as shown in FIG. 4A, the first protective film forming sheet 1 is formed so that the resin film 12 faces the bump forming surface 9a of the semiconductor wafer 9. Deploy.
 樹脂フィルム12の貼付対象である半導体ウエハ9の厚さは、特に限定されないが、100~1000μmであることが好ましく、200~900μmであることがより好ましく、300~800μmであることがさらに好ましい。半導体ウエハ9の厚さが前記下限値以上であることで、樹脂フィルム12の硬化時の収縮に伴う反りを抑制し易くなる。半導体ウエハ9の厚さが前記上限値以下であることで、後述する半導体ウエハ9の分割時間をより短縮できる。
 本明細書において、「半導体ウエハの厚さ」とは、半導体ウエハが前記溝を有する場合、前記溝が存在しない領域での半導体ウエハの厚さを意味する。
The thickness of the semiconductor wafer 9 to which the resin film 12 is attached is not particularly limited, but is preferably 100 to 1000 μm, more preferably 200 to 900 μm, and even more preferably 300 to 800 μm. When the thickness of the semiconductor wafer 9 is at least the above lower limit value, it becomes easy to suppress the warp of the resin film 12 due to shrinkage during curing. When the thickness of the semiconductor wafer 9 is not more than the upper limit value, the division time of the semiconductor wafer 9, which will be described later, can be further shortened.
In the present specification, the "thickness of the semiconductor wafer" means the thickness of the semiconductor wafer in the region where the groove does not exist when the semiconductor wafer has the groove.
 バンプ91の高さは特に限定されないが、120~300μmであることが好ましく、150~270μmであることがより好ましく、180~240μmであることが特に好ましい。バンプ91の高さが前記下限値以上であることで、バンプ91の機能をより向上させることができる。バンプ91の高さが前記上限値以下であることで、バンプ91上部での樹脂フィルム12の残存を抑制する効果がより高くなる。
 本明細書において、「バンプの高さ」とは、バンプのうち、バンプ形成面から最も高い位置に存在する部位での高さを意味する。
The height of the bump 91 is not particularly limited, but is preferably 120 to 300 μm, more preferably 150 to 270 μm, and particularly preferably 180 to 240 μm. When the height of the bump 91 is equal to or higher than the lower limit value, the function of the bump 91 can be further improved. When the height of the bump 91 is equal to or less than the upper limit value, the effect of suppressing the residual of the resin film 12 on the upper portion of the bump 91 becomes higher.
In the present specification, the "bump height" means the height of the bump at the highest position from the bump forming surface.
 バンプ91の幅は特に限定されないが、170~350μmであることが好ましく、200~320μmであることがより好ましく、230~290μmであることが特に好ましい。バンプ91の幅が前記下限値以上であることで、バンプ91の機能をより向上させることができる。バンプ91の幅が前記上限値以下であることで、バンプ91上部での樹脂フィルム12の残存を抑制する効果がより高くなる。
 本明細書において、「バンプの幅」とは、バンプ形成面に対して垂直な方向からバンプを見下ろして平面視したときに、バンプ表面上の異なる2点間を直線で結んで得られる線分の長さの最大値を意味する。
The width of the bump 91 is not particularly limited, but is preferably 170 to 350 μm, more preferably 200 to 320 μm, and particularly preferably 230 to 290 μm. When the width of the bump 91 is equal to or larger than the lower limit value, the function of the bump 91 can be further improved. When the width of the bump 91 is equal to or less than the upper limit value, the effect of suppressing the residual of the resin film 12 on the upper portion of the bump 91 becomes higher.
In the present specification, the "bump width" is a line segment obtained by connecting two different points on the bump surface with a straight line when the bump is viewed in a plan view from a direction perpendicular to the bump forming surface. Means the maximum value of the length of.
 隣り合うバンプ91間の距離は、特に限定されないが、250~800μmであることが好ましく、300~600μmであることがより好ましく、350~500μmであることが特に好ましい。前記距離が前記下限値以上であることで、バンプ91の機能をより向上させることができる。前記距離が前記上限値以下であることで、バンプ91上部での樹脂フィルム12の残存を抑制する効果がより高くなる。
 本明細書において、「隣り合うバンプ間の距離」とは、隣り合うバンプ同士の表面間の距離の最小値を意味する。
The distance between the adjacent bumps 91 is not particularly limited, but is preferably 250 to 800 μm, more preferably 300 to 600 μm, and particularly preferably 350 to 500 μm. When the distance is equal to or greater than the lower limit value, the function of the bump 91 can be further improved. When the distance is not more than the upper limit value, the effect of suppressing the residual of the resin film 12 on the upper part of the bump 91 becomes higher.
As used herein, the "distance between adjacent bumps" means the minimum value of the distance between the surfaces of adjacent bumps.
 溝90の深さは、最終的に目的とするチップの厚さ以上で、且つ後述する研削を行う前の半導体ウエハ9の厚さ未満であれば、特に限定されないが、30~700μmであることが好ましく、60~600μmであることがより好ましく、100~500μmであることがさらに好ましい。溝90の深さが前記下限値以上であることで、後述する半導体ウエハ9の分割がより容易となる。溝90の深さが前記上限値以下であることで、半導体ウエハ9がより高強度となる。
 本明細書においては、溝の深さが一定値ではない場合、溝の深さの最大値を「溝の深さ」として採用する。
The depth of the groove 90 is not particularly limited as long as it is equal to or larger than the thickness of the final target chip and less than the thickness of the semiconductor wafer 9 before grinding described later, but is 30 to 700 μm. , More preferably 60 to 600 μm, and even more preferably 100 to 500 μm. When the depth of the groove 90 is equal to or greater than the lower limit value, the semiconductor wafer 9 described later can be more easily divided. When the depth of the groove 90 is not more than the upper limit value, the semiconductor wafer 9 has higher strength.
In the present specification, when the groove depth is not a constant value, the maximum value of the groove depth is adopted as the “groove depth”.
 溝90の幅は、特に限定されないが、10~2000μmであることが好ましく、30~1000μmであることがより好ましく、40~500μmであることがさらに好ましく、50~300μmであることが特に好ましい。溝90の幅が前記下限値以上であることで、後述する半導体ウエハ9の分割時に、隣り合う半導体チップ同士の接触を防止する効果が高くなる。溝90の幅が前記上限値以下であることで、半導体ウエハ9がより高強度となる。
 本明細書においては、溝の幅が一定値ではない場合、溝の幅の最大値を「溝の幅」として採用する。
The width of the groove 90 is not particularly limited, but is preferably 10 to 2000 μm, more preferably 30 to 1000 μm, further preferably 40 to 500 μm, and particularly preferably 50 to 300 μm. When the width of the groove 90 is equal to or larger than the lower limit value, the effect of preventing contact between adjacent semiconductor chips at the time of dividing the semiconductor wafer 9, which will be described later, is enhanced. When the width of the groove 90 is equal to or less than the upper limit value, the semiconductor wafer 9 has higher strength.
In the present specification, when the groove width is not a constant value, the maximum value of the groove width is adopted as the “groove width”.
 次いで、製造方法(1)の前記貼付工程においては、半導体ウエハ9上のバンプ91に樹脂フィルム12を接触させて、第1保護膜形成用シート1を半導体ウエハ9に押し付ける。これにより、樹脂フィルム12の第1面12aを、バンプ91の表面91a及び半導体ウエハ9のバンプ形成面9aに、順次圧着させる。このとき、樹脂フィルム12を加熱することで、樹脂フィルム12は軟化し、バンプ91を覆うようにしてバンプ91間に広がり、バンプ形成面9aに密着するとともに、バンプ91の表面91a、特にバンプ形成面9aの近傍部位の表面91aを覆って、バンプ91の基部を埋め込む。したがって、バンプ形成面9aとバンプ91の基部には、樹脂フィルム12が十分に密着し、さらに、半導体ウエハ9上の溝90に、樹脂フィルム12が充填される。
 以上により、図4Bに示すように、樹脂フィルム付き半導体ウエハ901が得られる。
Next, in the pasting step of the manufacturing method (1), the resin film 12 is brought into contact with the bump 91 on the semiconductor wafer 9 and the first protective film forming sheet 1 is pressed against the semiconductor wafer 9. As a result, the first surface 12a of the resin film 12 is sequentially crimped to the surface 91a of the bump 91 and the bump forming surface 9a of the semiconductor wafer 9. At this time, by heating the resin film 12, the resin film 12 is softened, spreads between the bumps 91 so as to cover the bumps 91, adheres to the bump forming surface 9a, and forms the surface 91a of the bumps 91, particularly the bumps. The base portion of the bump 91 is embedded so as to cover the surface 91a in the vicinity of the surface 9a. Therefore, the resin film 12 is sufficiently adhered to the bump forming surface 9a and the base of the bump 91, and the groove 90 on the semiconductor wafer 9 is filled with the resin film 12.
As a result, as shown in FIG. 4B, the semiconductor wafer 901 with a resin film is obtained.
 上記のように、第1保護膜形成用シート1を半導体ウエハ9に圧着させる方法としては、各種シートを対象物に圧着させて貼付する公知の方法を適用でき、例えば、ラミネートローラーを用いる方法等が挙げられる。 As described above, as a method of crimping the first protective film forming sheet 1 to the semiconductor wafer 9, a known method of crimping and attaching various sheets to an object can be applied, for example, a method using a laminate roller or the like. Can be mentioned.
 半導体ウエハ9に圧着させるときの第1保護膜形成用シート1(樹脂フィルム12)の加熱温度は、樹脂フィルム12の硬化が全く又は過度に進行しない程度の温度であればよく、例えば、80~100℃であってもよい。
 バンプ形成面9aとバンプ91の基部に樹脂フィルム12が十分に密着し、溝90に樹脂フィルム12が十分に充填される効果がより高くなる点では、前記加熱温度は、85~95℃であることが好ましい。
The heating temperature of the first protective film forming sheet 1 (resin film 12) when crimped to the semiconductor wafer 9 may be a temperature at which the curing of the resin film 12 does not proceed at all or excessively, for example, 80 to. It may be 100 ° C.
The heating temperature is 85 to 95 ° C. in that the resin film 12 is sufficiently adhered to the bump forming surface 9a and the base of the bump 91, and the effect of sufficiently filling the groove 90 with the resin film 12 is enhanced. Is preferable.
 第1保護膜形成用シート1(樹脂フィルム12)を半導体ウエハ9に圧着させるときの圧力は、特に限定されず、例えば、0.1~1.5MPaであってもよい。
 バンプ形成面9aとバンプ91の基部に樹脂フィルム12が十分に密着し、溝90に樹脂フィルム12が十分に充填される効果がより高くなる点では、前記圧力は、0.3~1MPaであることが好ましい。
The pressure at which the first protective film forming sheet 1 (resin film 12) is pressed against the semiconductor wafer 9 is not particularly limited, and may be, for example, 0.1 to 1.5 MPa.
The pressure is 0.3 to 1 MPa in that the resin film 12 is sufficiently adhered to the bump forming surface 9a and the base of the bump 91, and the effect of sufficiently filling the groove 90 with the resin film 12 is enhanced. Is preferable.
 上記のように、第1保護膜形成用シート1を半導体ウエハ9に圧着させると、第1保護膜形成用シート1中の樹脂フィルム12、粘着剤層14及び緩衝層13は、バンプ91から圧力を加えられ、初期には、樹脂フィルム12の第1面12a、粘着剤層14の第1面14a、及び緩衝層13の第1面13aが凹状に変形する。そして、このままバンプ91から圧力を加えられた樹脂フィルム12において、破れが生じることがある。前記X値が19以上10000未満である(19≦X値<10000)と、このような樹脂フィルム12の破れが生じる。この場合、最終的に、樹脂フィルム12の第1面12aが半導体ウエハ9のバンプ形成面9aに圧着された段階では、バンプ91の頭頂部9101を含む上部910が、樹脂フィルム12を貫通して突出した状態となる。なお、この最終段階において、通常、バンプ91の上部910は、緩衝層13を貫通しない。これは、緩衝層13がバンプ91から加えられる圧力に対して、緩衝作用を有するためである。 As described above, when the first protective film forming sheet 1 is pressure-bonded to the semiconductor wafer 9, the resin film 12, the adhesive layer 14, and the buffer layer 13 in the first protective film forming sheet 1 are pressed from the bump 91. Initially, the first surface 12a of the resin film 12, the first surface 14a of the pressure-sensitive adhesive layer 14, and the first surface 13a of the buffer layer 13 are deformed in a concave shape. Then, the resin film 12 to which the pressure is applied from the bump 91 as it is may be torn. When the X value is 19 or more and less than 10000 (19 ≦ X value <10000), such tearing of the resin film 12 occurs. In this case, at the stage where the first surface 12a of the resin film 12 is finally pressed against the bump forming surface 9a of the semiconductor wafer 9, the upper portion 910 including the crown 9101 of the bump 91 penetrates the resin film 12. It will be in a protruding state. In this final stage, the upper portion 910 of the bump 91 usually does not penetrate the buffer layer 13. This is because the buffer layer 13 has a buffering action against the pressure applied from the bump 91.
 図4Bでは、前記貼付工程が終了した段階で、バンプ91の頭頂部9101を含む上部910に、樹脂フィルム12が全く又はほぼ残存せず、バンプ91の上部910において、樹脂フィルム12の残存が抑制された場合を示している。
 なお、本明細書において「バンプの上部に樹脂フィルムがほぼ残存しない」とは、特に断りのない限り、バンプの上部に樹脂フィルムが僅かに残存しているものの、その残存量が、このバンプを備えた半導体チップを基板にフリップチップ接続したときに、半導体チップと基板との電気的接続を妨げない程度の量であることを意味する。
In FIG. 4B, at the stage when the pasting step is completed, the resin film 12 does not remain at all or almost on the upper portion 910 including the crown portion 9101 of the bump 91, and the residual resin film 12 is suppressed on the upper portion 910 of the bump 91. It shows the case where it was done.
In the present specification, "almost no resin film remains on the bumps" means that, unless otherwise specified, a small amount of resin film remains on the bumps, but the remaining amount of the bumps causes the bumps. This means that when the provided semiconductor chip is flip-chip connected to the substrate, the amount does not interfere with the electrical connection between the semiconductor chip and the substrate.
 前記X値が19以上10000未満である場合には、さらに、前記貼付工程が終了した段階では、樹脂フィルム12においては、当初の大きさからのはみ出しが抑制されるため、半導体ウエハ9のバンプ形成面9aからの、樹脂フィルム12のはみ出しが抑制される。 When the X value is 19 or more and less than 10000, further, at the stage when the pasting step is completed, the resin film 12 is prevented from protruding from the initial size, so that bumps are formed on the semiconductor wafer 9. The protrusion of the resin film 12 from the surface 9a is suppressed.
 前記X値が19以上10000未満である場合には、さらに、前記貼付工程が終了した段階では、バンプ形成面9a上において、樹脂フィルム12のハジキが抑制される。より具体的には、バンプ形成面9aに樹脂フィルム12が設けられた状態で、バンプ91のうち、その上部910以外の領域(例えば、バンプ形成面9a近傍の基部)、又は、バンプ形成面9aのバンプ91近傍の領域が、意図せずに樹脂フィルム12で覆われずに露出してしまう現象が抑制される。 When the X value is 19 or more and less than 10000, the repelling of the resin film 12 is further suppressed on the bump forming surface 9a at the stage when the pasting step is completed. More specifically, with the resin film 12 provided on the bump forming surface 9a, the area of the bump 91 other than the upper portion 910 (for example, the base near the bump forming surface 9a) or the bump forming surface 9a. The phenomenon that the region near the bump 91 is unintentionally exposed without being covered with the resin film 12 is suppressed.
<硬化工程(1)>
 製造方法(1)の前記貼付工程後の前記硬化工程(1)においては、第1支持シート10を樹脂フィルム付き半導体ウエハ901から取り除いた後、図4Cに示すように、樹脂フィルム12を硬化させて、第1保護膜12’を形成することにより、半導体ウエハ9と、半導体ウエハ9のバンプ形成面9aに設けられ、かつ溝90に充填された第1保護膜12’と、を備えた第1保護膜付き半導体ウエハ902を作製する。
 前記硬化工程(1)においては、樹脂フィルム12を加熱によって硬化させる。このときの加熱条件は、先に説明したとおりである。
 樹脂フィルム12は、樹脂フィルム12を用いて作製された前記第1試験片の前記発熱量が100J/g以下であり、硬化不良が抑制されている。
<Curing step (1)>
In the curing step (1) after the pasting step of the manufacturing method (1), the first support sheet 10 is removed from the semiconductor wafer 901 with the resin film, and then the resin film 12 is cured as shown in FIG. 4C. By forming the first protective film 12', the semiconductor wafer 9 and the first protective film 12' provided on the bump forming surface 9a of the semiconductor wafer 9 and filled in the groove 90 are provided. 1 A semiconductor wafer 902 with a protective film is manufactured.
In the curing step (1), the resin film 12 is cured by heating. The heating conditions at this time are as described above.
In the resin film 12, the calorific value of the first test piece produced by using the resin film 12 is 100 J / g or less, and curing failure is suppressed.
 符号9bは、半導体ウエハ9のバンプ形成面9aとは反対側の面(裏面)を示している。 Reference numeral 9b indicates a surface (back surface) of the semiconductor wafer 9 opposite to the bump forming surface 9a.
 樹脂フィルム付き半導体ウエハ901において、半導体ウエハ9上の溝90に、樹脂フィルム12が十分に充填されているため、前記硬化工程(1)により、前記溝90に第1保護膜12’が十分に充填されている第1保護膜付き半導体ウエハ902が得られる。 In the semiconductor wafer 901 with a resin film, since the groove 90 on the semiconductor wafer 9 is sufficiently filled with the resin film 12, the first protective film 12'is sufficiently formed in the groove 90 by the curing step (1). A packed semiconductor wafer 902 with a first protective film is obtained.
<分割工程(1)>
 前記硬化工程(1)後の前記分割工程(1)においては、半導体ウエハ9を分割することにより、図4Dに示すように、複数個の半導体チップ9’と、複数個の半導体チップ9’のバンプを有する面(以下、「バンプ形成面」と称することがある)9a’及び半導体チップ9’間の隙間90’に設けられた第1保護膜12’と、を備えた第1保護膜付き半導体チップ群903を作製する。
<Division process (1)>
In the division step (1) after the curing step (1), the semiconductor wafer 9 is divided into a plurality of semiconductor chips 9'and a plurality of semiconductor chips 9', as shown in FIG. 4D. With a first protective film including a surface having bumps (hereinafter, may be referred to as a "bump forming surface") 9a'and a first protective film 12'provided in a gap 90'between the semiconductor chips 9'. The semiconductor chip group 903 is manufactured.
 半導体チップ9’間の隙間90’とは、隣接する半導体チップ9’の側面9c’で挟まれた領域である。 The gap 90'between the semiconductor chips 9'is a region sandwiched between the side surfaces 9c'of the adjacent semiconductor chips 9'.
 半導体ウエハ9の分割は、公知の方法で行うことができ、本実施形態においては、例えば、半導体ウエハ9の裏面9bを、グラインダー等の研削手段を用いて、研削することで、行うことができる。このとき、半導体ウエハ9の裏面9bからバンプ形成面9aに向かう方向に、研削面(裏面9b)が前記溝90に到達するまで(換言すると、前記溝90が出現するまで、さらに換言すると、前記隙間90’が形成されるまで)、半導体ウエハ9を研削する。このようにすることで、半導体ウエハ9の厚さが薄くなるとともに、溝90が分割箇所となって半導体ウエハ9が分割され、同時に、溝90から前記隙間90’が形成される。半導体ウエハ9の裏面9bの研削は、半導体チップ9’の厚さが目的とする値となるまで行い、例えば、研削面が溝90に到達した段階で研削を停止してもよいし、研削面が溝90に到達した後も、前記隙間90’の内部に存在する第1保護膜12’とともに、前記裏面9bを研削してもよい。 The semiconductor wafer 9 can be divided by a known method, and in the present embodiment, for example, the back surface 9b of the semiconductor wafer 9 can be ground by using a grinding means such as a grinder. .. At this time, until the ground surface (back surface 9b) reaches the groove 90 in the direction from the back surface 9b of the semiconductor wafer 9 toward the bump forming surface 9a (in other words, until the groove 90 appears, in other words, the said Grind the semiconductor wafer 9 until a gap 90'is formed). By doing so, the thickness of the semiconductor wafer 9 becomes thin, and the groove 90 serves as a dividing portion to divide the semiconductor wafer 9, and at the same time, the gap 90'is formed from the groove 90. Grinding of the back surface 9b of the semiconductor wafer 9 is performed until the thickness of the semiconductor chip 9'reaches the target value. For example, grinding may be stopped when the grinding surface reaches the groove 90, or the grinding surface may be stopped. The back surface 9b may be ground together with the first protective film 12'existing inside the gap 90'even after the wafer reaches the groove 90.
 分割工程(1)においては、必要に応じて、第1保護膜付き半導体ウエハ902のバンプ形成面9a側の面に、バックグラインドテープを貼付して、半導体ウエハ9の裏面9bを研削してもよい。 In the dividing step (1), if necessary, a back grind tape may be attached to the surface of the semiconductor wafer 902 with the first protective film on the bump forming surface 9a side to grind the back surface 9b of the semiconductor wafer 9. good.
 本明細書においては、研削中の半導体ウエハ9の裏面にも、便宜上、符号9bを付与する。
 符号9b’は、半導体チップ9’のバンプ形成面9a’とは反対側の面(裏面)を示している。
In the present specification, reference numeral 9b is also attached to the back surface of the semiconductor wafer 9 being ground for convenience.
Reference numeral 9b'indicates a surface (back surface) of the semiconductor chip 9'on the side opposite to the bump forming surface 9a'.
 第1保護膜付き半導体チップ群903において、すべての半導体チップ9’は、1枚の第1保護膜12’によって一体に保持されている。上述のようにバックグラインドテープを用いた場合には、すべての半導体チップ9’は、1枚の第1保護膜12’と、第1保護膜付き半導体チップ群903のバンプ形成面9a’側の面に貼付されている前記バックグラインドテープと、によって一体に保持される。 In the semiconductor chip group 903 with the first protective film, all the semiconductor chips 9'are integrally held by one first protective film 12'. When the backgrinding tape is used as described above, all the semiconductor chips 9'are on the bump forming surface 9a'side of one first protective film 12'and the semiconductor chip group 903 with the first protective film. It is integrally held by the back grind tape attached to the surface.
<切断工程(1)>
 前記分割工程(1)後の前記切断工程(1)においては、第1保護膜付き半導体チップ群903中の半導体チップ9’間の隙間90’に沿って、第1保護膜12’を切断することにより、図4Eに示すように、第1保護膜付き半導体チップ900を作製する。
 樹脂フィルム12は、前記樹脂フィルムを用いて作製した前記第1試験片の前記発熱量が100J/g以下であることで硬化不良が抑制されているので、切断時に生じ得る加工屑が、半導体チップ9’に付着し難い。
 第1保護膜付き半導体チップ900は、半導体チップ9’と、半導体チップ9’の側面9c’及びバンプ形成面9a’に設けられた第1保護膜120’と、を備えている。半導体チップ9’は、それぞれ、その側面9c’及びバンプ形成面9a’において、切断後の第1保護膜120’で保護されており、半導体チップ9’が得られる保護効果は、顕著に高い。
<Cut step (1)>
In the cutting step (1) after the dividing step (1), the first protective film 12'is cut along the gap 90'between the semiconductor chips 9'in the semiconductor chip group 903 with the first protective film. As a result, as shown in FIG. 4E, the semiconductor chip 900 with the first protective film is manufactured.
In the resin film 12, the heat generation amount of the first test piece produced by using the resin film is 100 J / g or less, so that the curing failure is suppressed. Therefore, the processing waste that may be generated at the time of cutting is the semiconductor chip. Hard to adhere to 9'.
The semiconductor chip 900 with the first protective film includes a semiconductor chip 9'and a first protective film 120'provided on the side surface 9c'and the bump forming surface 9a' of the semiconductor chip 9'. The semiconductor chip 9'is protected by the first protective film 120' after cutting on its side surface 9c'and the bump forming surface 9a', respectively, and the protective effect obtained by the semiconductor chip 9'is remarkably high.
 半導体チップ9’をそのバンプ形成面9a’側の上方から見下ろして平面視したときの、半導体チップ9’の平面形状が四角形状である場合には、1個の半導体チップ9’は4つの側面9c’を有している。したがって、第1保護膜付き半導体チップ900において、半導体チップ9’のすべて(すなわち4つ)の側面9c’と、1つのバンプ形成面9a’と、には一体的に、切断後の第1保護膜120’が設けられている。本明細書においては、「切断後の第1保護膜」のことを単に「第1保護膜」と称することがある。 When the semiconductor chip 9'is viewed in a plan view from above on the bump forming surface 9a' side, when the planar shape of the semiconductor chip 9'is square, one semiconductor chip 9'has four side surfaces. It has 9c'. Therefore, in the semiconductor chip 900 with the first protective film, the first protection after cutting is integrally provided on all (that is, four) side surfaces 9c'and one bump forming surface 9a' of the semiconductor chip 9'. A membrane 120'is provided. In the present specification, the "first protective film after cutting" may be simply referred to as the "first protective film".
 前記切断工程(1)において、第1保護膜12’は、半導体チップ9’の外周(換言すると側面9c’)に沿って切断する。このとき、隣り合う半導体チップ9’間の隙間90’に充填されている第1保護膜12’を、半導体チップ9’の外周(換言すると側面9c’)に沿って切断し、2つに分けることが好ましい。このようにすることで、半導体チップ9’のそれぞれの側面9c’に、形状がより均一な切断後の第1保護膜120’を設けることができる。 In the cutting step (1), the first protective film 12'is cut along the outer circumference (in other words, the side surface 9c') of the semiconductor chip 9'. At this time, the first protective film 12'filled in the gap 90'between the adjacent semiconductor chips 9'is cut along the outer circumference (in other words, the side surface 9c') of the semiconductor chip 9'and divided into two. Is preferable. By doing so, the first protective film 120'after cutting, which has a more uniform shape, can be provided on each side surface 9c'of the semiconductor chip 9'.
 第1保護膜12’は、例えば、ブレードダイシング、レーザーダイシング等の公知の方法により切断できる。 The first protective film 12'can be cut by a known method such as blade dicing or laser dicing.
 第1保護膜12’の切断は、例えば、第1保護膜付き半導体チップ群903中の半導体チップ9’の裏面9b’に、公知のダイシングシートを貼付し、バックグラインドテープを取り除いた状態で、行うことができる。バックグラインドテープがエネルギー線硬化性の粘着剤層を備えている場合には、粘着剤層をエネルギー線の照射により硬化させることで、第1保護膜付き半導体チップ群903からバックグラインドテープをより容易に取り除くことができる。 The first protective film 12'is cut, for example, in a state where a known dicing sheet is attached to the back surface 9b'of the semiconductor chip 9'in the semiconductor chip group 903 with the first protective film and the back grind tape is removed. It can be carried out. When the back grind tape has an energy ray-curable adhesive layer, the back grind tape can be more easily obtained from the semiconductor chip group 903 with the first protective film by curing the adhesive layer by irradiation with energy rays. Can be removed.
 第1保護膜付き半導体チップ900において、半導体チップ9’のバンプ形成面9a’と、バンプ91の基部と、側面9c’とには、第1保護膜120’が十分に密着しており、これらからの第1保護膜120’の剥離が抑制されている。そして、半導体チップ9’の側面9c’には、十分な厚さの第1保護膜120’が設けられている。 In the semiconductor chip 900 with the first protective film, the first protective film 120'is sufficiently adhered to the bump forming surface 9a'of the semiconductor chip 9', the base of the bump 91, and the side surface 9c'. The peeling of the first protective film 120'from the surface is suppressed. A first protective film 120'with a sufficient thickness is provided on the side surface 9c'of the semiconductor chip 9'.
 また、前記X値が19以上10000未満である場合には、さらに、第1保護膜付き半導体チップ900においては、バンプ91の頭頂部9101が第1保護膜120’から突出しており、バンプ91の頭頂部9101を含む上部910に、第1保護膜120’は全く又はほぼ付着せず、バンプ91の上部910での第1保護膜120’の付着が抑制される。
 さらに、第1保護膜付き半導体チップ900においては、半導体チップ9’のバンプ形成面9a’での第1保護膜120’のはみ出しが抑制される。
 さらに、半導体チップ9’のバンプ形成面9a’での第1保護膜120’のハジキが抑制される。より具体的には、バンプ形成面9a’に第1保護膜120’が設けられた状態で、バンプ91のうち、その上部910以外の領域(例えば、バンプ形成面9a’近傍の基部)、又は、バンプ形成面9a’のバンプ91近傍の領域が、意図せずに第1保護膜120’で覆われずに露出してしまう現象が抑制される。
Further, when the X value is 19 or more and less than 10000, in the semiconductor chip 900 with the first protective film, the crown portion 9101 of the bump 91 protrudes from the first protective film 120', and the bump 91 The first protective film 120'is not attached at all or almost to the upper portion 910 including the crown portion 9101, and the attachment of the first protective film 120'at the upper portion 910 of the bump 91 is suppressed.
Further, in the semiconductor chip 900 with the first protective film, the protrusion of the first protective film 120'on the bump forming surface 9a'of the semiconductor chip 9'is suppressed.
Further, the repelling of the first protective film 120'on the bump forming surface 9a' of the semiconductor chip 9'is suppressed. More specifically, in a state where the first protective film 120'is provided on the bump forming surface 9a', the area other than the upper portion 910 of the bump 91 (for example, the base near the bump forming surface 9a') or The phenomenon that the region near the bump 91 of the bump forming surface 9a'is unintentionally exposed without being covered by the first protective film 120' is suppressed.
<<製造方法(2)>>
 図5A~図5Eは、図3に示す複合シート1を用いた場合の、第1保護膜付き半導体チップの製造方法の他の例として、製造方法(2)を模式的に示す断面図である。
<< Manufacturing method (2) >>
5A to 5E are cross-sectional views schematically showing the manufacturing method (2) as another example of the manufacturing method of the semiconductor chip with the first protective film when the composite sheet 1 shown in FIG. 3 is used. ..
<貼付工程、硬化工程(1)>
 製造方法(2)においては、図5A~図5Cに示すように、製造方法(1)の場合と同じ方法で、前記貼付工程及び硬化工程(1)を行い、前記第1保護膜付き半導体ウエハ902を作製する。
<Attachment process, curing process (1)>
In the manufacturing method (2), as shown in FIGS. 5A to 5C, the pasting step and the curing step (1) are performed in the same manner as in the manufacturing method (1), and the semiconductor wafer with the first protective film is formed. 902 is made.
<切断工程(2)>
 製造方法(2)の前記硬化工程(1)後の前記切断工程(2)においては、第1保護膜付き半導体ウエハ902中の溝90に沿って、第1保護膜12’を切り込むことにより、図5Dに示すように、切り込み済み第1保護膜付き半導体ウエハ904を作製する。
 本工程においては、溝90に充填されている第1保護膜12’を、溝90の側面90cに沿って切り込むことが好ましい。このようにすることで、最終的に半導体チップのそれぞれの側面に、形状がより均一な切断後の第1保護膜を設けることができる。
<Cut step (2)>
In the cutting step (2) after the curing step (1) of the manufacturing method (2), the first protective film 12'is cut along the groove 90 in the semiconductor wafer 902 with the first protective film. As shown in FIG. 5D, a cut-out semiconductor wafer 904 with a first protective film is produced.
In this step, it is preferable to cut the first protective film 12'filled in the groove 90 along the side surface 90c of the groove 90. By doing so, it is possible to finally provide the first protective film after cutting having a more uniform shape on each side surface of the semiconductor chip.
 前記切断工程(2)においては、第1保護膜12’の半導体ウエハ9側とは反対側の面12b’から、半導体ウエハ9側の面12a’に向けて、第1保護膜12’を切り込む。このとき、第1保護膜12’の切り込みは、溝90の深さ方向における第1保護膜12’の先端部に到達させなくてもよいが、後述する半導体ウエハ9の分割がより容易となる点では、切り込みの到達位置は前記先端部に近いほど好ましく、切り込みを前記先端部に到達させること、すなわち、第1保護膜12’を切断することがより好ましい。図5Dでは、第1保護膜12’の切り込みを前記先端部にまで到達させ、第1保護膜12’を切断した(切断後の第1保護膜120’としている)場合を示している。
 一方、後述する半導体ウエハ9の裏面9bの研削によって、半導体ウエハ9を半導体チップへと分割したときに、半導体チップの角部の割れ又は欠けと、半導体チップの角部近傍に存在する第1保護膜12’の割れ又は欠けが、抑制される点では、第1保護膜12’の切り込みの到達位置は、最終的に半導体チップの裏面が形成されると想定される箇所に一致しているか、又は、このような箇所の近傍であることが好ましい。
In the cutting step (2), the first protective film 12'is cut from the surface 12b'on the side opposite to the semiconductor wafer 9 side of the first protective film 12' toward the surface 12a' on the semiconductor wafer 9 side. .. At this time, the notch of the first protective film 12'does not have to reach the tip of the first protective film 12'in the depth direction of the groove 90, but the semiconductor wafer 9 described later becomes easier to divide. In terms of points, it is preferable that the reaching position of the cut is closer to the tip portion, and it is more preferable that the cut reaches the tip portion, that is, the first protective film 12'is cut. FIG. 5D shows a case where the notch of the first protective film 12'is reached to the tip portion and the first protective film 12' is cut (referred to as the first protective film 120' after cutting).
On the other hand, when the semiconductor wafer 9 is divided into semiconductor chips by grinding the back surface 9b of the semiconductor wafer 9, which will be described later, cracks or chips at the corners of the semiconductor chip and the first protection existing near the corners of the semiconductor chip are present. In that the cracking or chipping of the film 12'is suppressed, does the reaching position of the notch of the first protective film 12' coincide with the position where the back surface of the semiconductor chip is expected to be finally formed? Alternatively, it is preferably in the vicinity of such a location.
 第1保護膜12’は、前記切断工程(1)の場合と同様に、例えば、ブレードダイシング、レーザーダイシング等の公知の方法により切断できる。 The first protective film 12'can be cut by a known method such as blade dicing or laser dicing, as in the case of the cutting step (1).
<分割工程(2)>
 前記切断工程(2)後の前記分割工程(2)においては、半導体ウエハ9を分割することにより、図5Eに示すように、第1保護膜付き半導体チップ900を作製する。
 分割工程(2)で得られる第1保護膜付き半導体チップ900は、前記切断工程(1)で得られる第1保護膜付き半導体チップ900と同じである。
<Division process (2)>
In the division step (2) after the cutting step (2), the semiconductor wafer 9 is divided to produce a semiconductor chip 900 with a first protective film as shown in FIG. 5E.
The semiconductor chip 900 with the first protective film obtained in the dividing step (2) is the same as the semiconductor chip 900 with the first protective film obtained in the cutting step (1).
 半導体ウエハ9の分割は、前記分割工程(1)の場合と同様に、公知の方法で行うことができる。
 例えば、半導体ウエハ9の裏面9bを、グラインダー等の研削手段を用いて研削する場合、前記裏面9bからバンプ形成面9aに向かう方向に、研削面(裏面9b)が前記溝90に到達するまで、前記裏面9bを研削する。切断工程(2)において、第1保護膜12’の切り込みを、溝90の深さ方向における第1保護膜12’の先端部に到達させなかった場合には、さらに、研削面が第1保護膜12’の切り込みに到達するまで、第1保護膜12’とともに裏面9bを研削する。
The semiconductor wafer 9 can be divided by a known method as in the case of the division step (1).
For example, when the back surface 9b of the semiconductor wafer 9 is ground by using a grinding means such as a grinder, the grinding surface (back surface 9b) reaches the groove 90 in the direction from the back surface 9b toward the bump forming surface 9a. The back surface 9b is ground. In the cutting step (2), when the notch of the first protective film 12'does not reach the tip of the first protective film 12'in the depth direction of the groove 90, the ground surface is further protected by the first protection. The back surface 9b is ground together with the first protective film 12'until the cut in the film 12'is reached.
 製造方法(1)の場合と同様に、分割工程(2)で得られた第1保護膜付き半導体チップ900においては、半導体チップ9’のバンプ形成面9a’と、バンプ91の基部と、側面9c’と、からの第1保護膜120’の剥離が抑制されている。そして、半導体チップ9’の側面9c’には、十分な厚さの第1保護膜120’が設けられている。 Similar to the case of the manufacturing method (1), in the semiconductor chip 900 with the first protective film obtained in the dividing step (2), the bump forming surface 9a'of the semiconductor chip 9', the base of the bump 91, and the side surface thereof. The peeling of the first protective film 120'from 9c'and is suppressed. A first protective film 120'with a sufficient thickness is provided on the side surface 9c'of the semiconductor chip 9'.
 また、前記X値が19以上10000未満である場合には、製造方法(1)の場合と同様に、分割工程(2)で得られた第1保護膜付き半導体チップ900においては、上述のバンプ91の上部910での第1保護膜120’の付着が抑制される効果と、バンプ形成面9a’での第1保護膜120’のはみ出しが抑制される効果と、バンプ形成面9a’での第1保護膜120’のハジキが抑制される効果が得られる。 When the X value is 19 or more and less than 10000, the above-mentioned bump is found in the semiconductor chip 900 with the first protective film obtained in the dividing step (2), as in the case of the manufacturing method (1). The effect of suppressing the adhesion of the first protective film 120'on the upper portion 910 of 91, the effect of suppressing the protrusion of the first protective film 120'on the bump forming surface 9a', and the effect of suppressing the protrusion of the first protective film 120'on the bump forming surface 9a'. The effect of suppressing the repelling of the first protective film 120'can be obtained.
<<製造方法(3)>>
 図6A~図6Eは、図3に示す複合シート1を用いた場合の、第1保護膜付き半導体チップの製造方法のさらに他の例として、製造方法(3)を模式的に示す断面図である。
<< Manufacturing method (3) >>
6A to 6E are cross-sectional views schematically showing the manufacturing method (3) as still another example of the manufacturing method of the semiconductor chip with the first protective film when the composite sheet 1 shown in FIG. 3 is used. be.
<貼付工程>
 製造方法(3)においては、図6A~図6Bに示すように、製造方法(1)の場合と同じ方法で、前記貼付工程を行い、前記樹脂フィルム付き半導体ウエハ901を作製する。
<Attachment process>
In the manufacturing method (3), as shown in FIGS. 6A to 6B, the pasting step is performed in the same manner as in the manufacturing method (1) to manufacture the semiconductor wafer 901 with the resin film.
<分割工程(3)>
 製造方法(3)の前記貼付工程後の前記分割工程(3)においては、半導体ウエハ9を分割することにより、図6Cに示すように、複数個の半導体チップ9’と、複数個の半導体チップ9’のバンプ形成面9a’及び半導体チップ9’間の隙間90’に設けられた樹脂フィルム12と、を備えた樹脂フィルム付き半導体チップ群905を作製する。
<Division process (3)>
In the division step (3) after the pasting step of the manufacturing method (3), the semiconductor wafer 9 is divided into a plurality of semiconductor chips 9'and a plurality of semiconductor chips as shown in FIG. 6C. A semiconductor chip group 905 with a resin film is produced, which comprises a resin film 12 provided in a gap 90'between a bump forming surface 9a'of 9'and a semiconductor chip 9'.
 半導体ウエハ9の分割は、前記分割工程(1)の場合と同様に、公知の方法で行うことができる。 The semiconductor wafer 9 can be divided by a known method as in the case of the division step (1).
 樹脂フィルム付き半導体チップ群905において、すべての半導体チップ9’は、1枚の樹脂フィルム12と支持シート10によって、一体に保持されている。 In the semiconductor chip group 905 with a resin film, all the semiconductor chips 9'are integrally held by one resin film 12 and a support sheet 10.
<硬化工程(3)>
 前記分割工程(3)後の前記硬化工程(3)においては、第1支持シート10を半導体チップ群905から取り除いた後、樹脂フィルム12を硬化させて、第1保護膜を形成することにより、図6Dに示すように、複数個の半導体チップ9’と、複数個の半導体チップ9’のバンプ形成面9a’及び半導体チップ9’間の隙間90’に設けられた第1保護膜12’と、を備えた第1保護膜付き半導体チップ群903を作製する。
 硬化工程(3)で得られる第1保護膜付き半導体チップ群903は、前記分割工程(1)で得られる第1保護膜付き半導体チップ群903と同じである。
<Curing step (3)>
In the curing step (3) after the dividing step (3), the first support sheet 10 is removed from the semiconductor chip group 905, and then the resin film 12 is cured to form the first protective film. As shown in FIG. 6D, the plurality of semiconductor chips 9'and the first protective film 12'provided in the gap 90'between the bump forming surfaces 9a'and the semiconductor chips 9'of the plurality of semiconductor chips 9'. The semiconductor chip group 903 with the first protective film provided with the above is produced.
The semiconductor chip group 903 with the first protective film obtained in the curing step (3) is the same as the semiconductor chip group 903 with the first protective film obtained in the dividing step (1).
 樹脂フィルム12の硬化は、前記硬化工程(1)の場合と同様に、公知の方法で行うことができる。 The resin film 12 can be cured by a known method as in the case of the curing step (1).
<切断工程(3)>
 前記硬化工程(3)後の前記切断工程(3)においては、第1保護膜付き半導体チップ群903中の半導体チップ9’間の隙間90’に沿って、第1保護膜12’を切断することにより、第1保護膜付き半導体チップ900を作製する。
 切断工程(3)で得られる第1保護膜付き半導体チップ900は、前記切断工程(1)で得られる第1保護膜付き半導体チップ900と同じである。
<Cut step (3)>
In the cutting step (3) after the curing step (3), the first protective film 12'is cut along the gap 90'between the semiconductor chips 9'in the semiconductor chip group 903 with the first protective film. As a result, the semiconductor chip 900 with the first protective film is manufactured.
The semiconductor chip 900 with the first protective film obtained in the cutting step (3) is the same as the semiconductor chip 900 with the first protective film obtained in the cutting step (1).
 第1保護膜12’の切断は、前記切断工程(1)の場合と同様に、公知の方法で行うことができる。 The first protective film 12'can be cut by a known method as in the case of the cutting step (1).
 製造方法(1)の場合と同様に、切断工程(3)で得られた第1保護膜付き半導体チップ900においては、半導体チップ9’のバンプ形成面9a’と、バンプ91の基部と、側面9c’と、からの第1保護膜120’の剥離が抑制されている。そして、半導体チップ9’の側面9c’には、十分な厚さの第1保護膜120’が設けられている。 Similar to the case of the manufacturing method (1), in the semiconductor chip 900 with the first protective film obtained in the cutting step (3), the bump forming surface 9a'of the semiconductor chip 9', the base of the bump 91, and the side surface thereof. The peeling of the first protective film 120'from 9c'and is suppressed. A first protective film 120'with a sufficient thickness is provided on the side surface 9c'of the semiconductor chip 9'.
 また、前記X値が19以上10000未満である場合には、製造方法(1)の場合と同様に、切断工程(3)で得られた第1保護膜付き半導体チップ900においては、上述のバンプ91の上部910での第1保護膜120’の付着が抑制される効果と、バンプ形成面9a’での第1保護膜120’のはみ出しが抑制される効果と、バンプ形成面9a’での第1保護膜120’のハジキが抑制される効果が得られる。 When the X value is 19 or more and less than 10000, the above-mentioned bump is found in the semiconductor chip 900 with the first protective film obtained in the cutting step (3) as in the case of the manufacturing method (1). The effect of suppressing the adhesion of the first protective film 120'on the upper portion 910 of 91, the effect of suppressing the protrusion of the first protective film 120'on the bump forming surface 9a', and the effect of suppressing the protrusion of the first protective film 120'on the bump forming surface 9a'. The effect of suppressing the repelling of the first protective film 120'can be obtained.
 ここまでは、図3に示す複合シート(第1保護膜形成用シート)1を用いた場合について説明したが、先に説明した他の実施形態の複合シートを用いた場合も、この複合シートは複合シート1を用いた場合と同様の効果を奏する。 Up to this point, the case where the composite sheet (first protective film forming sheet) 1 shown in FIG. 3 has been used has been described, but even when the composite sheet of another embodiment described above is used, this composite sheet can be used. The same effect as when the composite sheet 1 is used is obtained.
 上述の製造方法(1)~製造方法(3)は、本発明の主旨を逸脱しない範囲において、これまでに説明した工程とは異なる他の工程を有していてもよい。 The above-mentioned manufacturing methods (1) to (3) may have other steps different from the steps described so far, as long as the gist of the present invention is not deviated.
 例えば、半導体チップの裏面に第2保護膜を設ける場合には、製造方法(1)~製造方法(3)は、いずれかのタイミングで、半導体チップの裏面に第2保護膜形成用シート中の第2保護膜形成用フィルムを貼付する工程、第2保護膜形成用フィルムが硬化性である場合には、第2保護膜形成用フィルムを硬化させて第2保護膜を形成する工程、第2保護膜形成用フィルム又は第2保護膜を半導体チップの外周(側面)に沿って切断する工程等を有していてもよい。 For example, when the second protective film is provided on the back surface of the semiconductor chip, the manufacturing methods (1) to (3) are performed at any timing in the second protective film forming sheet on the back surface of the semiconductor chip. The step of attaching the second protective film forming film, the step of curing the second protective film forming film to form the second protective film when the second protective film forming film is curable, the second It may have a step of cutting the protective film forming film or the second protective film along the outer periphery (side surface) of the semiconductor chip.
 例えば、前記貼付工程以降のいずれかの段階で、バンプ91の頭頂部9101を含む上部910に、樹脂フィルム12、第1保護膜12’又は切断後の第1保護膜120’が残存している場合には、製造方法(1)~製造方法(3)は、貼付工程以降のいずれかのタイミングで、樹脂フィルム12、第1保護膜12’又は切断後の第1保護膜120’の残存物をバンプ91の上部910から除去する除去工程を有していてもよい。 For example, the resin film 12, the first protective film 12'or the first protective film 120'after cutting remains on the upper portion 910 including the crown 9101 of the bump 91 at any stage after the pasting step. In this case, the manufacturing method (1) to the manufacturing method (3) are the remnants of the resin film 12, the first protective film 12'or the first protective film 120'after cutting at any timing after the sticking step. May have a removal step of removing from the top 910 of the bump 91.
 バンプ91の上部910における、樹脂フィルム12、第1保護膜12’又は切断後の第1保護膜120’の残存物は、例えば、プラズマ照射等の公知の方法で除去できる。 The residue of the resin film 12, the first protective film 12'or the first protective film 120' after cutting in the upper part 910 of the bump 91 can be removed by a known method such as plasma irradiation.
 ここまでは、半導体ウエハのバンプ形成面又は、半導体チップ群のバンプ形成面に、樹脂フィルム又は第1保護膜を介して、支持シート又はバックグラインドテープを設けて、半導体ウエハの裏面又は半導体チップ群の裏面の研削等を行うことについて説明したが、本実施形態においては、これら支持シート又はバックグラインドテープに代えて、これら以外の樹脂シートを設けて、半導体ウエハの裏面又は半導体チップ群の裏面の研削等を行ってもよい。ここで、前記樹脂シートは、流動性を有する樹脂を用いて、前記半導体ウエハのバンプ形成面上若しくは前記半導体チップ群のバンプ形成面上の樹脂フィルム又は第1保護膜を埋め込み、さらにバンプの表面を埋め込んだ後、硬化させることによって形成可能なものである。このような樹脂シートを設ける場合には、前記流動性を有する樹脂を用いる前に、前記バンプ形成面上の樹脂フィルム又は第1保護膜、及びバンプの表面に追従可能な柔軟性を有する別の樹脂を用いて、これらを被覆する樹脂膜を形成しておき、この樹脂膜を介して、前記樹脂シートを設けてもよい。このように前記樹脂膜を設けることで、前記半導体ウエハの裏面又は半導体チップ群の裏面の研削等を行った後、不要となった前記樹脂シートを容易に取り除くことができる。 Up to this point, a support sheet or back grind tape has been provided on the bump forming surface of the semiconductor wafer or the bump forming surface of the semiconductor chip group via a resin film or the first protective film, and the back surface of the semiconductor wafer or the semiconductor chip group has been provided. Although it has been described that the back surface of the semiconductor wafer is ground, in the present embodiment, a resin sheet other than these is provided instead of these support sheets or back grind tapes, and the back surface of the semiconductor wafer or the back surface of the semiconductor chip group is provided. Grinding or the like may be performed. Here, the resin sheet uses a fluid resin to embed a resin film or a first protective film on the bump forming surface of the semiconductor wafer or on the bump forming surface of the semiconductor chip group, and further embeds the surface of the bump. It can be formed by embedding and then curing. When such a resin sheet is provided, before using the fluid resin, another resin film or first protective film on the bump forming surface and another having flexibility to follow the surface of the bump are provided. A resin film may be formed to cover them with a resin, and the resin sheet may be provided through the resin film. By providing the resin film in this way, it is possible to easily remove the unnecessary resin sheet after grinding the back surface of the semiconductor wafer or the back surface of the semiconductor chip group.
◇第1保護膜付き半導体チップの使用方法
 前記第1保護膜付き半導体チップを用いることで、半導体装置を製造できる。例えば、第1保護膜付き半導体チップを、その中のバンプの頭頂部において、回路基板の回路形成面にフリップチップ接続(実装)する。
 第2保護膜形成用シートを用いた場合には、第1保護膜付き半導体チップのフリップチップ接続に先立ち、第2保護膜形成用シート中のダイシングシートから、第2保護膜を備えた第1保護膜付き半導体チップを引き離して、ピックアップする。
 第2保護膜を備えた第1保護膜付き半導体チップは、公知の方法でピックアップできる。
◇ Method of using the semiconductor chip with the first protective film By using the semiconductor chip with the first protective film, a semiconductor device can be manufactured. For example, the semiconductor chip with the first protective film is flip-chip connected (mounted) to the circuit forming surface of the circuit board at the crown of the bump in the chip.
When the second protective film forming sheet is used, the dicing sheet in the second protective film forming sheet is provided with the second protective film prior to the flip-chip connection of the semiconductor chip with the first protective film. The semiconductor chip with the protective film is pulled apart and picked up.
The semiconductor chip with the first protective film provided with the second protective film can be picked up by a known method.
 以降は、このようにして得られた、半導体チップを実装済みの回路基板を用い、公知の方法に従って、半導体パッケージを作製し、この半導体パッケージを用いることにより、目的とする半導体装置を製造できる。 After that, using the circuit board on which the semiconductor chip is mounted thus obtained, a semiconductor package is manufactured according to a known method, and the target semiconductor device can be manufactured by using this semiconductor package.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples shown below.
<樹脂フィルム形成用組成物の製造原料>
 樹脂フィルム形成用組成物の製造に用いた原料を以下に示す。
[重合体成分(A)]
 (A)-1:下記式(i)-1、(i)-2及び(i)-3で表される構成単位を有するポリビニルブチラール(積水化学工業社製「エスレックBL-10」、重量平均分子量25000、ガラス転移温度59℃)。
<Manufacturing raw material for resin film forming composition>
The raw materials used for producing the resin film forming composition are shown below.
[Polymer component (A)]
(A) -1: Polyvinyl butyral having a structural unit represented by the following formulas (i) -1, (i) -2 and (i) -3 ("Eslek BL-10" manufactured by Sekisui Chemical Co., Ltd., weight average) Molecular weight 25,000, glass transition temperature 59 ° C.).
Figure JPOXMLDOC01-appb-C000002
 (式中、lは約28であり、mは1~3であり、nは68~74の整数である。)
Figure JPOXMLDOC01-appb-C000002
(In the equation, l 1 is about 28, m 1 is 1-3, and n 1 is an integer of 68-74.)
[エポキシ樹脂(B1)]
 (B1)-1:液状変性ビスフェノールA型エポキシ樹脂(DIC社製「エピクロンEXA-4850-150」、分子量900、エポキシ当量450g/eq)
 (B1)-2:ジシクロペンタジエン型エポキシ樹脂(DIC社製「エピクロンHP-7200HH」、エポキシ当量254~264g/eq)
 (B1)-3:ビスフェノールA型エポキシ樹脂(三菱化学社製「jER828」、エポキシ当量184~194g/eq)
[熱硬化剤(B2)]
 (B2)-1:o-クレゾールノボラック樹脂(DIC社製「フェノライトKA-1160」、軟化点80℃、水酸基当量117g/eq)
 (B2)-2:ビフェニルアラルキル型フェノール樹脂(明和化成社製「MEHC-7851-H」、固体分散型潜在性硬化剤、水酸基当量218g/eq)
[硬化促進剤(C)]
 (C)-1:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ-PW」)
[充填材(D)]
 (D)-1:エポキシ基で修飾された球状シリカ(アドマテックス社製「アドマナノYA050C-MKK」、平均粒子径50nm)
 (D)-2:エポキシ基で修飾された球状シリカ(アドマテックス社製「5SE-CH1」、平均粒子径500nm)
[カップリング剤(E)]
 (E)-1:3-グリシドキシプロピルトリメトキシシラン(シランカップリング剤、信越シリコーン社製「KBM-403」)
[添加剤(I)]
 (I)-1:界面活性剤(アクリル重合体、BYK社製「BYK-361N」)
 (I)-2:シリコーンオイル(アラルキル変性シリコーンオイル、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製「XF42-334」)
 (I)-3:レオロジーコントロール剤(ポリヒドロキシカルボン酸エステル、BYK社製「BYK-R606」)
[Epoxy resin (B1)]
(B1) -1: Liquid-modified bisphenol A type epoxy resin ("Epiclon EXA-4850-150" manufactured by DIC Corporation, molecular weight 900, epoxy equivalent 450 g / eq)
(B1) -2: Dicyclopentadiene type epoxy resin ("Epiclon HP-7200HH" manufactured by DIC Corporation, epoxy equivalent 254 to 264 g / eq)
(B1) -3: Bisphenol A type epoxy resin ("jER828" manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 184-194 g / eq)
[Thermosetting agent (B2)]
(B2) -1: o-cresol novolak resin ("Phenolite KA-1160" manufactured by DIC, softening point 80 ° C., hydroxyl group equivalent 117 g / eq)
(B2) -2: Biphenyl aralkyl type phenol resin ("MEHC-7851-H" manufactured by Meiwakasei Workers, solid dispersion type latent curing agent, hydroxyl group equivalent 218 g / eq)
[Curing accelerator (C)]
(C) -1: 2-Phenyl-4,5-dihydroxymethylimidazole ("Curesol 2PHZ-PW" manufactured by Shikoku Chemicals Corporation)
[Filler (D)]
(D) -1: Spherical silica modified with an epoxy group (“Admanano YA050C-MKK” manufactured by Admatex, average particle size 50 nm)
(D) -2: Spherical silica modified with an epoxy group ("5SE-CH1" manufactured by Admatex, average particle size 500 nm)
[Coupling agent (E)]
(E) -1: 3-glycidoxypropyltrimethoxysilane (silane coupling agent, "KBM-403" manufactured by Shinetsu Silicone Co., Ltd.)
[Additive (I)]
(I) -1: Surfactant (acrylic polymer, "BYK-361N" manufactured by BYK)
(I) -2: Silicone oil (Aralkill-modified silicone oil, "XF42-334" manufactured by Momentive Performance Materials Japan)
(I) -3: Rheology control agent (polyhydroxycarboxylic acid ester, "BYK-R606" manufactured by BYK)
[実施例1]
<<第1保護膜形成用シートの製造>>
<熱硬化性樹脂フィルム形成用組成物の製造>
 重合体成分(A)-1(100質量部)、エポキシ樹脂(B1)-1(290質量部)、エポキシ樹脂(B1)-2(220質量部)、(B2)-1(160質量部)、硬化促進剤(C)-1(2質量部)、充填材(D)-1(200質量部)、添加剤(I)-1(25質量部)及び添加剤(I)-2(3質量部)を、メチルエチルケトンに溶解又は分散させて、23℃で撹拌することで、熱硬化性樹脂フィルム形成用組成物として、溶媒以外のすべての成分の合計濃度が45質量%である組成物(III)を得た。なお、ここに示す溶媒以外の成分の配合量はすべて、溶媒を含まない目的物の配合量である。
[Example 1]
<< Manufacture of first protective film forming sheet >>
<Manufacturing of composition for forming thermosetting resin film>
Polymer component (A) -1 (100 parts by mass), epoxy resin (B1) -1 (290 parts by mass), epoxy resin (B1) -2 (220 parts by mass), (B2) -1 (160 parts by mass) , Hardening Accelerator (C) -1 (2 parts by mass), Filler (D) -1 (200 parts by mass), Additive (I) -1 (25 parts by mass) and Additive (I) -2 (3) By dissolving or dispersing (part by mass) in methyl ethyl ketone and stirring at 23 ° C., the composition for forming a thermosetting resin film has a total concentration of all components other than the solvent of 45% by mass (by mass). III) was obtained. The blending amounts of the components other than the solvent shown here are all the blending amounts of the target product containing no solvent.
<熱硬化性樹脂フィルムの製造>
 ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた組成物(III)を塗工し、120℃で2分加熱乾燥させることにより、厚さ45μmの熱硬化性樹脂フィルムを形成した。
<Manufacturing of thermosetting resin film>
A release film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 μm) in which one side of a polyethylene terephthalate film was peeled by a silicone treatment was used, and the composition (III) obtained above was used on the peeled surface. Was applied and dried by heating at 120 ° C. for 2 minutes to form a thermosetting resin film having a thickness of 45 μm.
<第1保護膜形成用シートの製造>
 第1基材と、緩衝層と、第1粘着剤層と、の積層物に相当する積層シート(バックグラインドテープ、リンテック社製「E-8510HR」、前記支持シートにも相当)を用い、この積層シート中の第1粘着剤層と、上記で得られた剥離フィルム上の熱硬化性樹脂フィルムと、を貼り合わせた。これにより、第1基材と、緩衝層と、第1粘着剤層と、熱硬化性樹脂フィルムと、剥離フィルムと、がこの順に、これらの厚さ方向において積層されて構成された、図3に示す構成の第1保護膜形成用シートを得た。
<Manufacturing of first protective film forming sheet>
A laminated sheet (back grind tape, "E-8510HR" manufactured by Lintec Corporation, also corresponding to the support sheet) corresponding to the laminate of the first base material, the buffer layer, and the first adhesive layer is used. The first pressure-sensitive adhesive layer in the laminated sheet and the thermosetting resin film on the release film obtained above were bonded together. As a result, the first base material, the cushioning layer, the first pressure-sensitive adhesive layer, the thermosetting resin film, and the release film are laminated in this order in the thickness direction of FIG. 3 A sheet for forming a first protective film having the constitution shown in the above was obtained.
<<熱硬化性樹脂フィルムの評価>>
<示差走査熱量分析(DSC)>
[熱硬化性樹脂フィルム及び第1試験片の製造]
 組成物(III)の塗工量を変更した点以外は、上記と同じ方法で、厚さ45μmの熱硬化性樹脂フィルムを作製した。得られた熱硬化性樹脂フィルムを厚さ225μmに積層して、熱硬化性樹脂フィルム5mgを分取した。これを熱硬化前の前記樹脂フィルムの第1試験片とした。5mgの第1試験片をアルミパンへ封入し、DSC装置(ティー・エイ・インスツルメンツ社製「Q-2000」)を用いて、窒素雰囲気下、室温から300℃まで、昇温速度10℃/minで加熱し、50~300℃の範囲を走査した。走査チャートより100~300℃の範囲にある発熱ピークを積分し、反応に伴い生じる熱量を算出した。
<< Evaluation of thermosetting resin film >>
<Differential Scanning Calorimetry (DSC)>
[Manufacturing of thermosetting resin film and first test piece]
A thermosetting resin film having a thickness of 45 μm was produced by the same method as described above except that the coating amount of the composition (III) was changed. The obtained thermosetting resin film was laminated to a thickness of 225 μm, and 5 mg of the thermosetting resin film was separated. This was used as the first test piece of the resin film before thermosetting. A 5 mg first test piece is sealed in an aluminum pan, and a temperature rise rate of 10 ° C./min is used from room temperature to 300 ° C. under a nitrogen atmosphere using a DSC device (“Q-2000” manufactured by TA Instruments). And scanned in the range of 50-300 ° C. The exothermic peaks in the range of 100 to 300 ° C. were integrated from the scanning chart, and the amount of heat generated by the reaction was calculated.
<熱硬化性樹脂フィルムのウエハ表面の溝の充填適性の評価>
[第1保護膜付きシリコンウエハの作製]
 ハーフカットダイサー(DISCO社製「DFD6361」)を用いて、大きさが6mm×6mmのチップが得られるように、シリコンウエハ(直径12インチ、厚さ750μm)の表面に、幅が60μmで深さが230μmである溝を複数本、網目状に形成した。
 貼付装置(ローラー式ラミネータ、リンテック社製「RAD-3510 F/12」)を用いて、テーブル温度90℃、貼付速度2mm/s、貼付圧力0.5MPa、ローラー貼付高さ-200μmの条件で、上記で得られた第1保護膜形成用シートを、その中の熱硬化性樹脂フィルムにより、シリコンウエハの前記溝が形成されている表面に貼付した。
 次いで、前記第1保護膜形成用シートから、前記積層シート(支持シート)を剥離して、熱硬化性樹脂フィルム付きシリコンウエハを作製した。
 次いで、シリコンウエハの前記溝が形成されている表面に貼付後のこの熱硬化性樹脂フィルムを、加圧オーブン(リンテック社製「RAD-9100」)を用いて、温度130℃、時間4h、炉内圧力0.5MPaの加熱条件で加熱処理することにより、熱硬化させ、第1保護膜を形成した。
 以上により、第1保護膜付きシリコンウエハを作製した。
<Evaluation of filling suitability of grooves on the wafer surface of thermosetting resin film>
[Manufacturing of Silicon Wafer with First Protective Film]
Using a half-cut dicer (“DFD6361” manufactured by DISCO), a width of 60 μm and a depth of 60 μm can be obtained on the surface of a silicon wafer (diameter 12 inches, thickness 750 μm) so that a chip with a size of 6 mm × 6 mm can be obtained. A plurality of grooves having a diameter of 230 μm were formed in a mesh pattern.
Using a sticking device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation), under the conditions of table temperature 90 ° C., sticking speed 2 mm / s, sticking pressure 0.5 MPa, roller sticking height -200 μm. The first protective film forming sheet obtained above was attached to the surface of the silicon wafer on which the grooves were formed by a thermosetting resin film therein.
Next, the laminated sheet (support sheet) was peeled off from the first protective film forming sheet to prepare a silicon wafer with a thermosetting resin film.
Next, this thermosetting resin film after being attached to the surface of the silicon wafer on which the grooves are formed is subjected to a furnace at a temperature of 130 ° C. for a time of 4 hours using a pressure oven (“RAD-9100” manufactured by Lintec Co., Ltd.). The first protective film was formed by thermosetting by heat treatment under the heating condition of an internal pressure of 0.5 MPa.
From the above, a silicon wafer with a first protective film was produced.
[熱硬化性樹脂フィルムのウエハ表面の溝の充填適性の評価]
 光学顕微鏡を用いて、上記で得られた第1保護膜付きシリコンウエハを観察した。そして、下記基準に従って、第1保護膜(すなわち熱硬化性樹脂フィルムの硬化物)のウエハ表面の溝の充填適性を評価した。結果を表1中の「溝の充填適性」の欄に示す。
(評価基準)
 A:第1保護膜の形状に歪みが認められず、溝の充填適性が高い。
 B:溝の開口部近傍に相当する部位において、第1保護膜の形状にやや歪みが認められるが、溝の充填適性が良好である。
 C:上記A、Bのいずれにも該当せず、溝の充填適性が不良である。
[Evaluation of filling suitability of grooves on the wafer surface of thermosetting resin film]
Using an optical microscope, the silicon wafer with the first protective film obtained above was observed. Then, the filling suitability of the groove on the wafer surface of the first protective film (that is, the cured product of the thermosetting resin film) was evaluated according to the following criteria. The results are shown in the column of "Groove filling suitability" in Table 1.
(Evaluation criteria)
A: No distortion is observed in the shape of the first protective film, and the groove filling suitability is high.
B: The shape of the first protective film is slightly distorted at a portion corresponding to the vicinity of the opening of the groove, but the filling suitability of the groove is good.
C: It does not correspond to any of the above A and B, and the filling suitability of the groove is poor.
<加工屑評価>
[第1保護膜付きシリコンチップの製造]
 再度、第1基材と、緩衝層と、第1粘着剤層と、の積層物に相当する積層シート(バックグラインドテープ、リンテック社製「E-8510HR」)を用い、この積層シート中の第1粘着剤層と、前記充填適性の評価を行った第1保護膜付きシリコンウエハの第1保護膜の面と、を貼り合わせた。
 第1保護膜付きシリコンウエハの裏面を研削していき、研削面を前記溝に到達させることで、シリコンウエハをシリコンチップへ分割し、シリコンチップの厚さが200μmになるまで研削を進めた。
 次いで、貼付装置(ローラー式ラミネータ、リンテック社製「RAD-3510 F/12」)を用いて、上記で得られたすべてのシリコンチップの裏面(研削面)に、ダイシングテープ(リンテック社製「D-686H」)を貼付した。そして、ブレードダイサー(DISCO社製「DFD6362」)を用いて、ブレードダイシングにより、得られたシリコンチップの外周に沿って第1保護膜を切断した。このとき、ブレードの移動速度を10mm/sとし、ブレードの回転速度を50000rpmとし、ダイシングテープの基材を、そのシリコンチップ側の面から20μmの深さまで、ブレードにより切り込んだ。
 以上により、大きさが6mm×6mmのシリコンチップと、前記シリコンチップの4つの側面及び1つの表面(シリコンウエハの溝を有していた面)に一体的に設けられた第1保護膜と、を備え、ダイシングテープ上で固定された状態の複数個の第1保護膜付きシリコンチップを得た。
<Evaluation of processing waste>
[Manufacturing of silicon chip with first protective film]
Again, a laminated sheet (back grind tape, "E-8510HR" manufactured by Lintec Corporation) corresponding to the laminate of the first base material, the buffer layer, and the first adhesive layer was used, and the first layer in the laminated sheet was used. 1 The pressure-sensitive adhesive layer and the surface of the first protective film of the silicon wafer with the first protective film for which the filling suitability was evaluated were bonded together.
By grinding the back surface of the silicon wafer with the first protective film and allowing the ground surface to reach the groove, the silicon wafer was divided into silicon chips, and grinding proceeded until the thickness of the silicon chips reached 200 μm.
Next, using a sticking device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation), a dicing tape ("D" manufactured by Lintec Corporation) was applied to the back surface (ground surface) of all the silicon chips obtained above. -686H ") was attached. Then, using a blade dicer (“DFD6362” manufactured by DISCO Corporation), the first protective film was cut along the outer periphery of the obtained silicon chip by blade dicing. At this time, the moving speed of the blade was set to 10 mm / s, the rotating speed of the blade was set to 50,000 rpm, and the base material of the dicing tape was cut by the blade to a depth of 20 μm from the surface on the silicon chip side.
As described above, the silicon chip having a size of 6 mm × 6 mm, the first protective film integrally provided on the four side surfaces and one surface (the surface having the groove of the silicon wafer) of the silicon chip, and the first protective film. A plurality of silicon chips with a first protective film were obtained in a state of being fixed on a dicing tape.
[評価]
 次いで、上記のブレードによる切断後、切断ラインの交差部を、光学顕微鏡を用いて観察した。交差部は、観察箇所に偏りのないよう、シリコンウエハの中央部の箇所と、シリコンウエハの周縁部近傍で、前記中央部からほぼ等距離に位置し、且つ互いに等距離に位置していた部位に相当する4つの箇所と、計5箇所を選んで観察した。そして、5箇所のうち1つでも、チップへの加工屑の付着が認められた複数個のシリコンチップ全体を不良品とした。このときの「不良品数/評価数(=5)」の結果を、表1中の「加工屑評価」の欄に示す。
[evaluation]
Then, after cutting with the above blade, the intersection of the cutting lines was observed using an optical microscope. The intersections are the central portion of the silicon wafer and the peripheral portion of the silicon wafer, which are located approximately equidistant from the central portion and equidistant from each other so that the observation location is not biased. Four places corresponding to the above and a total of five places were selected and observed. Then, even at one of the five locations, the entire plurality of silicon chips in which processing chips were found to adhere to the chips were regarded as defective products. The result of "number of defective products / number of evaluations (= 5)" at this time is shown in the column of "evaluation of processed waste" in Table 1.
<熱硬化性樹脂フィルムのGc1及びGc300の測定、並びにX値の算出>
[熱硬化性樹脂フィルム及び第2試験片の製造]
 組成物(III)の塗工量を変更した点以外は、上記と同様の方法で、厚さ50μmの熱硬化性樹脂フィルムを20枚作製した。次いで、これら熱硬化性樹脂フィルムを積層し、得られた積層フィルムを直径25mmの円板状に裁断するこよにより、厚さ1mmの熱硬化性樹脂フィルムの第2試験片を作製した。
<Measurement of Gc1 and Gc300 of thermosetting resin film and calculation of X value>
[Manufacturing of thermosetting resin film and second test piece]
Twenty thermosetting resin films having a thickness of 50 μm were prepared by the same method as described above except that the coating amount of the composition (III) was changed. Next, these thermosetting resin films were laminated, and the obtained laminated film was cut into a disk shape having a diameter of 25 mm to prepare a second test piece of the thermosetting resin film having a thickness of 1 mm.
[熱硬化性樹脂フィルムのGc1及びGc300の測定、並びにX値の算出]
 粘弾性測定装置(アントンパール社製「MCR301」)における、試験片の設置箇所を、あらかじめ90℃で保温しておき、この設置箇所へ、上記で得られた熱硬化性樹脂フィルムの第2試験片を載置し、この第2試験片の上面に測定治具を押し当てることで、第2試験片を前記設置箇所に固定した。
 次いで、温度90℃、測定周波数1Hzの条件で、第2試験片に発生させるひずみを0.01%~1000%の範囲で段階的に上昇させ、第2試験片の貯蔵弾性率Gcを測定した。そして、Gc1及びGc300の測定値から、X値を算出した。結果を表1に示す。
[Measurement of Gc1 and Gc300 of thermosetting resin film and calculation of X value]
In the viscoelasticity measuring device (“MCR301” manufactured by Anton Pearl Co., Ltd.), the installation location of the test piece is kept warm at 90 ° C. in advance, and the second test of the thermosetting resin film obtained above is performed at this installation location. The piece was placed and the measuring jig was pressed against the upper surface of the second test piece to fix the second test piece to the installation location.
Next, under the conditions of a temperature of 90 ° C. and a measurement frequency of 1 Hz, the strain generated in the second test piece was gradually increased in the range of 0.01% to 1000%, and the storage elastic modulus Gc of the second test piece was measured. .. Then, the X value was calculated from the measured values of Gc1 and Gc300. The results are shown in Table 1.
<熱硬化性樹脂フィルムのはみ出し量の測定>
[熱硬化性樹脂フィルム及び第3試験片の製造]
 ポリエチレンテレフタレート製フィルムの片面がシリコーン処理により剥離処理された剥離フィルム(リンテック社製「SP-PET381031」、厚さ38μm)を用い、その前記剥離処理面に、上記で得られた組成物(III)を塗工し、120℃で2分加熱乾燥させることにより、厚さ30μmの熱硬化性樹脂フィルムを形成した。
 次いで、この熱硬化性樹脂フィルムを、前記剥離フィルムとともに、直径170mmの円形状に加工することにより、剥離フィルム付きの第3試験片を作製した。
<Measurement of protrusion of thermosetting resin film>
[Manufacturing of thermosetting resin film and third test piece]
A release film (“SP-PET38131” manufactured by Lintec Corporation, thickness 38 μm) in which one side of a polyethylene terephthalate film was peeled by a silicone treatment was used, and the composition (III) obtained above was used on the peeled surface. Was applied and dried by heating at 120 ° C. for 2 minutes to form a thermosetting resin film having a thickness of 30 μm.
Next, this thermosetting resin film was processed together with the release film into a circular shape having a diameter of 170 mm to prepare a third test piece with the release film.
[熱硬化性樹脂フィルムのはみ出し量の測定]
 得られた第3試験片の露出面(換言すると、剥離フィルムを備えている側とは反対側の面)全面を、透明な帯状のバックグラインドテープ(リンテック社製「E-8180」)の表面と貼り合わせることにより、図7に示す積層物を得た。図7は、得られた積層物を、その中のバックグラインドテープ側の上方から見下ろしたときの状態を、模式的に示す平面図である。
 ここに示すように、得られた積層物101は、バックグラインドテープ7と、第3試験片120(熱硬化性の樹脂フィルム12)と、剥離フィルムと、がこの順に、これらの厚さ方向において積層されて、構成されている。
[Measurement of protrusion of thermosetting resin film]
The entire exposed surface of the obtained third test piece (in other words, the surface opposite to the side provided with the release film) is the surface of a transparent strip-shaped back grind tape (“E-8180” manufactured by Lintec Corporation). The laminate shown in FIG. 7 was obtained by laminating with. FIG. 7 is a plan view schematically showing a state in which the obtained laminate is viewed from above on the back grind tape side.
As shown here, in the obtained laminate 101, the back grind tape 7, the third test piece 120 (thermosetting resin film 12), and the release film are arranged in this order in these thickness directions. It is laminated and configured.
 次いで、得られた積層物から前記剥離フィルムを取り除き、新たに生じた第3試験片の露出面(換言すると、第3試験片の、前記バックグラインドテープを備えている側とは反対側の面)を、直径12インチのシリコンウエハの一方の表面に圧着させることで、シリコンウエハの表面に第3試験片を貼付した。このとき、第3試験片の貼付は、貼付装置(ローラー式ラミネータ、リンテック社製「RAD-3510 F/12」)を用いて、テーブル温度90℃、貼付速度2mm/s、貼付圧力0.5MPa、ローラー貼付高さ-200μmの条件で、第3試験片を加熱しながら行った。
 次いで、シリコンウエハに貼付されている、バックグラインドテープ付きの第3試験片について、その外周上の異なる二点間を結ぶ線分の長さの最大値を測定し、その測定値(前記線分の長さの最大値)を用いて、図2を参照して説明した方法により、第3試験片(換言すると熱硬化性樹脂フィルム)のはみ出し量(mm)を算出した。結果を表1に示す。
Next, the release film was removed from the obtained laminate, and the newly generated exposed surface of the third test piece (in other words, the surface of the third test piece on the side opposite to the side provided with the back grind tape). ) Was crimped onto one surface of a silicon wafer having a diameter of 12 inches to attach the third test piece to the surface of the silicon wafer. At this time, the third test piece is attached using a pasting device (roller type laminator, "RAD-3510 F / 12" manufactured by Lintec Corporation), a table temperature of 90 ° C., a pasting speed of 2 mm / s, and a pasting pressure of 0.5 MPa. The third test piece was heated while the roller attachment height was −200 μm.
Next, with respect to the third test piece with the back grind tape attached to the silicon wafer, the maximum value of the length of the line segment connecting two different points on the outer circumference thereof is measured, and the measured value (the line segment) is measured. The amount of protrusion (mm) of the third test piece (in other words, the heat-curable resin film) was calculated by the method described with reference to FIG. The results are shown in Table 1.
[実施例2、参考例1]
<<熱硬化性樹脂フィルム及び第1保護膜形成用シートの製造、並びに熱硬化性樹脂フィルムの評価>>
 熱硬化性樹脂フィルム形成用組成物の含有成分の種類及び含有量が、表1に示すとおりとなるように、熱硬化性樹脂フィルム形成用組成物の製造時における、配合成分の種類及び配合量のいずれか一方又は両方を変更した点以外は、実施例1の場合と同じ方法で、熱硬化性樹脂フィルム及び第1保護膜形成用シートを製造し、熱硬化性樹脂フィルムを評価した。結果を表1に示す。
 なお、表1中の含有成分の欄の「-」との記載は、熱硬化性樹脂フィルム形成用組成物がその成分を含有していないことを意味する。
[Example 2, Reference Example 1]
<< Production of thermosetting resin film and first protective film forming sheet, and evaluation of thermosetting resin film >>
As shown in Table 1, the types and contents of the components contained in the composition for forming a thermosetting resin film are the types and amounts of the components to be blended during the production of the composition for forming a thermosetting resin film. A thermosetting resin film and a sheet for forming a first protective film were produced in the same manner as in Example 1 except that one or both of the above was changed, and the thermosetting resin film was evaluated. The results are shown in Table 1.
In addition, the description of "-" in the column of the contained component in Table 1 means that the composition for forming a thermosetting resin film does not contain the component.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記結果から明らかなように、実施例1~2においては、チップへの加工屑の付着が認められなかった。実施例1~2は、示差走査熱量分析(DSC)により取得された熱量が100J/g以下の規定を満たしていた。同様に実施例1~2は、樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が、10~75質量%の範囲内であった。 As is clear from the above results, in Examples 1 and 2, no processing waste was observed to adhere to the chip. In Examples 1 and 2, the heat quantity acquired by differential scanning calorimetry (DSC) satisfied the regulation of 100 J / g or less. Similarly, in Examples 1 and 2, the ratio of the content of the thermosetting component (B) to the total mass of the resin film was in the range of 10 to 75% by mass.
 また、熱硬化性成分(B)の含有量の割合、及び充填材(D)の含有量の割合が高く、X値も高値の実施例1においては、熱硬化性樹脂フィルムのシリコンウエハ表面の溝の充填適性が特に良好であった。 Further, in Example 1 in which the ratio of the content of the thermosetting component (B) and the ratio of the content of the filler (D) are high and the X value is also high, the surface of the silicon wafer of the thermosetting resin film The filling suitability of the groove was particularly good.
 また、実施例1においては(実施例2は未評価)、第3試験片のはみ出し量が0mmであり(熱硬化性樹脂フィルムのはみ出しが認められず)、この熱硬化性樹脂フィルムの基本的特性が良好であった。
 実施例1~2においては、X値が27~65であり、実施例1~2の熱硬化性樹脂フィルムは、凹凸面(例えば、半導体ウエハのバンプ形成面)への貼付時に、凸部(例えば、バンプ)の貫通が可能であり、凸部の上部での残存を抑制可能であり、凹凸面でのはみ出しを抑制可能であり、凹凸面上での熱硬化性樹脂フィルム自体とその硬化物のハジキを抑制可能であると判断できた。
Further, in Example 1 (Example 2 has not been evaluated), the amount of protrusion of the third test piece is 0 mm (no protrusion of the thermosetting resin film is observed), and the basics of this thermosetting resin film. The characteristics were good.
In Examples 1 and 2, the X value is 27 to 65, and the thermosetting resin film of Examples 1 and 2 has a convex portion (for example, a bump forming surface of a semiconductor wafer) when attached to the uneven surface (for example, a bump forming surface of a semiconductor wafer). For example, bumps) can be penetrated, residual on the upper part of the convex portion can be suppressed, protrusion on the uneven surface can be suppressed, and the thermosetting resin film itself and its cured product on the uneven surface can be suppressed. It was judged that it was possible to suppress the repellent.
 本発明は、フリップチップ接続方法で使用される、接続パッド部にバンプを有する半導体チップ等の製造に利用可能である。 The present invention can be used for manufacturing a semiconductor chip or the like having a bump on the connection pad portion used in the flip chip connection method.
 1・・・複合シート(第1保護膜形成用シート)、10・・・支持シート(第1支持シート)、10a・・・支持シートの一方の面、11・・・基材(第1基材)、11a・・・基材の一方の面、12・・・樹脂フィルム、12a・・・樹脂フィルムの第1面、12’・・・第1保護膜、120’・・・第1保護膜(切断後の第1保護膜)、13・・・緩衝層、9・・・半導体ウエハ、90・・・半導体ウエハの溝、9a・・・半導体ウエハのバンプ形成面、9’・・・半導体チップ、9a’・・・半導体チップのバンプ形成面、9c’・・・半導体チップの側面、91・・・バンプ、900・・・第1保護膜付き半導体チップ、901・・・樹脂フィルム付き半導体ウエハ、902・・・第1保護膜付き半導体ウエハ、903・・・第1保護膜付き半導体チップ群、904・・・切り込み済み第1保護膜付き半導体ウエハ、905・・・樹脂フィルム付き半導体チップ群 1 ... Composite sheet (first protective film forming sheet), 10 ... Support sheet (first support sheet), 10a ... One surface of support sheet, 11 ... Base material (first base) Material), 11a ... One surface of the base material, 12 ... Resin film, 12a ... First surface of the resin film, 12'... 1st protective film, 120'... 1st protection Film (first protective film after cutting), 13 ... buffer layer, 9 ... semiconductor wafer, 90 ... semiconductor wafer groove, 9a ... semiconductor wafer bump forming surface, 9'... Semiconductor chip, 9a'... bump forming surface of semiconductor chip, 9c'... side surface of semiconductor chip, 91 ... bump, 900 ... semiconductor chip with first protective film, 901 ... with resin film Semiconductor wafer, 902 ... Semiconductor wafer with first protective film, 903 ... Semiconductor chip group with first protective film, 904 ... Semiconductor wafer with first protective film cut, 905 ... Semiconductor with resin film Chip group

Claims (9)

  1.  熱硬化性の樹脂フィルムであって、
     熱硬化前の前記樹脂フィルムを第1試験片として用い、示差走査熱量分析(DSC)法によって第1試験片を昇温速度10℃/minの等速昇温条件にて分析して得られる、100~300℃の範囲の発熱量が100J/g以下である、樹脂フィルム。
    A thermosetting resin film
    The resin film before thermosetting is used as the first test piece, and the first test piece is analyzed by a differential scanning calorimetry (DSC) method under a constant temperature temperature rise condition of a temperature rise rate of 10 ° C./min. A resin film having a calorific value in the range of 100 to 300 ° C. of 100 J / g or less.
  2.  前記樹脂フィルムが、熱硬化性成分(B)を含有し、
     前記樹脂フィルムの総質量に対する、前記熱硬化性成分(B)の含有量の割合が、10~75質量%である、請求項1に記載の樹脂フィルム。
    The resin film contains a thermosetting component (B) and contains
    The resin film according to claim 1, wherein the ratio of the content of the thermosetting component (B) to the total mass of the resin film is 10 to 75% by mass.
  3.  前記樹脂フィルムで、直径25mm、厚さ1mmであるものを第2試験片として用い、温度90℃、周波数1Hzの条件で、前記第2試験片にひずみを発生させて、前記第2試験片の貯蔵弾性率を測定し、前記第2試験片のひずみが1%のときの、前記第2試験片の貯蔵弾性率をGc1とし、前記第2試験片のひずみが300%のときの、前記第2試験片の貯蔵弾性率をGc300としたとき、下記式:
     X=Gc1/Gc300
    により算出されるX値が、19以上10000未満である、請求項1又は2に記載の樹脂フィルム。
    A resin film having a diameter of 25 mm and a thickness of 1 mm was used as the second test piece, and strain was generated in the second test piece under the conditions of a temperature of 90 ° C. and a frequency of 1 Hz to generate the strain of the second test piece. The storage elastic modulus was measured, and the storage elastic modulus of the second test piece was Gc1 when the strain of the second test piece was 1%, and the strain of the second test piece was 300%. 2 When the storage elastic modulus of the test piece is Gc300, the following formula:
    X = Gc1 / Gc300
    The resin film according to claim 1 or 2, wherein the X value calculated by the above method is 19 or more and less than 10000.
  4.  前記樹脂フィルムが凹凸面への貼付用である、請求項1~3のいずれか一項に記載の樹脂フィルム。 The resin film according to any one of claims 1 to 3, wherein the resin film is for sticking to an uneven surface.
  5.  前記樹脂フィルムが、半導体チップの凹凸面及び側面の保護用である、請求項1~4のいずれか一項に記載の樹脂フィルム。 The resin film according to any one of claims 1 to 4, wherein the resin film is for protecting the uneven surface and the side surface of the semiconductor chip.
  6.  支持シートと、前記支持シートの一方の面上に設けられた樹脂フィルムと、を備え、
     前記樹脂フィルムが、請求項1~5のいずれか一項に記載の樹脂フィルムである、複合シート。
    A support sheet and a resin film provided on one surface of the support sheet are provided.
    A composite sheet in which the resin film is the resin film according to any one of claims 1 to 5.
  7.  前記支持シートが、基材と、前記基材の一方の面上に設けられた粘着剤層と、を備えており、前記粘着剤層が、前記基材と、前記樹脂フィルムと、の間に配置されている、請求項6に記載の複合シート。 The support sheet includes a base material and an adhesive layer provided on one surface of the base material, and the pressure-sensitive adhesive layer is placed between the base material and the resin film. The composite sheet according to claim 6, which is arranged.
  8.  前記支持シートが、基材と、前記基材の一方の面上に設けられた緩衝層と、を備えており、前記緩衝層が、前記基材と、前記樹脂フィルムと、の間に配置されている、請求項6又は7に記載の複合シート。 The support sheet includes a base material and a buffer layer provided on one surface of the base material, and the buffer layer is arranged between the base material and the resin film. The composite sheet according to claim 6 or 7.
  9.  半導体ウエハを用いた、第1保護膜付き半導体チップの製造方法であって、
     前記第1保護膜付き半導体チップは、半導体チップと、前記半導体チップの側面及びバンプを有する面に設けられた第1保護膜と、を備えており、
     前記半導体ウエハは、その一方の面に、バンプと、前記半導体ウエハの分割箇所となる溝と、を有し、
     前記製造方法は、請求項6~8のいずれか一項に記載の複合シート中の前記樹脂フィルムを、前記半導体ウエハの前記一方の面に貼付することにより、前記一方の面に前記樹脂フィルムを備え、かつ、前記溝が前記樹脂フィルムで充填された、樹脂フィルム付き半導体ウエハを作製する貼付工程を有し、
     前記製造方法は、さらに、
     前記貼付工程後に、前記樹脂フィルムを熱硬化させて、前記第1保護膜を形成することにより、前記半導体ウエハと、前記半導体ウエハの前記一方の面に設けられ、かつ前記溝に充填された前記第1保護膜と、を備えた第1保護膜付き半導体ウエハを作製する硬化工程(1)と、前記硬化工程(1)後に、前記半導体ウエハを分割することにより、複数個の前記半導体チップと、複数個の前記半導体チップの前記バンプを有する面及び前記半導体チップ間の隙間に設けられた前記第1保護膜と、を備えた第1保護膜付き半導体チップ群を作製する分割工程(1)と、前記分割工程(1)後に、前記第1保護膜付き半導体チップ群中の前記半導体チップ間の隙間に沿って、前記第1保護膜を切断することにより、前記第1保護膜付き半導体チップを作製する切断工程(1)を有するか、
     前記貼付工程後で、かつ前記硬化工程(1)後に、前記第1保護膜付き半導体ウエハ中の前記溝に沿って、前記第1保護膜を切り込むことにより、切り込み済み第1保護膜付き半導体ウエハを作製する切断工程(2)と、前記切断工程(2)後に、前記半導体ウエハを分割することにより、前記第1保護膜付き半導体チップを作製する分割工程(2)を有するか、又は、
     前記貼付工程後に、前記半導体ウエハを分割することにより、複数個の前記半導体チップと、複数個の前記半導体チップの前記バンプを有する面及び前記半導体チップ間の隙間に設けられた前記樹脂フィルムと、を備えた樹脂フィルム付き半導体チップ群を作製する分割工程(3)と、前記分割工程(3)後に、前記樹脂フィルムを熱硬化させて、前記第1保護膜を形成することにより、複数個の前記半導体チップと、複数個の前記半導体チップの前記バンプを有する面及び前記半導体チップ間の隙間に設けられた前記第1保護膜と、を備えた第1保護膜付き半導体チップ群を作製する硬化工程(3)と、前記硬化工程(3)後に、前記第1保護膜付き半導体チップ群中の前記半導体チップ間の隙間に沿って、前記第1保護膜を切断することにより、前記第1保護膜付き半導体チップを得る切断工程(3)を有する、第1保護膜付き半導体チップの製造方法。
    A method for manufacturing a semiconductor chip with a first protective film using a semiconductor wafer.
    The semiconductor chip with a first protective film includes a semiconductor chip and a first protective film provided on a side surface of the semiconductor chip and a surface having bumps.
    The semiconductor wafer has bumps and grooves serving as division points of the semiconductor wafer on one surface thereof.
    In the manufacturing method, the resin film in the composite sheet according to any one of claims 6 to 8 is attached to the one surface of the semiconductor wafer, whereby the resin film is attached to the one surface. It has a sticking step of producing a semiconductor wafer with a resin film, which is provided and the groove is filled with the resin film.
    The manufacturing method further
    After the pasting step, the resin film is thermally cured to form the first protective film, whereby the semiconductor wafer and the semiconductor wafer are provided on one surface of the semiconductor wafer and filled in the grooves. A plurality of the semiconductor chips are formed by dividing the semiconductor wafer after the curing step (1) for producing the semiconductor wafer with the first protective film provided with the first protective film and the curing step (1). (1) After the division step (1), the semiconductor chip with the first protective film is cut along the gap between the semiconductor chips in the semiconductor chip group with the first protective film. Have a cutting step (1) to make
    After the pasting step and after the curing step (1), the first protective film is cut along the groove in the first protective film-attached semiconductor wafer, so that the cut semiconductor wafer with the first protective film is cut. The semiconductor wafer is divided into a cutting step (2) and a dividing step (2) for producing the semiconductor chip with the first protective film by dividing the semiconductor wafer after the cutting step (2).
    By dividing the semiconductor wafer after the pasting step, the plurality of the semiconductor chips, the resin film provided in the surface of the plurality of semiconductor chips having the bumps and the gap between the semiconductor chips, and the semiconductor chips. After the dividing step (3) for producing the semiconductor chip group with the resin film and the dividing step (3), the resin film is thermally cured to form the first protective film, whereby a plurality of semiconductor chips are formed. Curing to prepare a group of semiconductor chips with a first protective film including the semiconductor chip, a surface of the plurality of semiconductor chips having the bumps, and the first protective film provided in a gap between the semiconductor chips. After the step (3) and the curing step (3), the first protective film is cut along the gap between the semiconductor chips in the semiconductor chip group with the first protective film to protect the first protective film. A method for manufacturing a semiconductor chip with a first protective film, which comprises a cutting step (3) for obtaining a semiconductor chip with a film.
PCT/JP2021/007082 2020-02-27 2021-02-25 Resin film, composite sheet, and method for producing first protective film-bearing semiconductor chip WO2021172424A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022503687A JPWO2021172424A1 (en) 2020-02-27 2021-02-25
CN202180005977.0A CN114555697A (en) 2020-02-27 2021-02-25 Resin film, composite sheet, and method for manufacturing semiconductor chip with first protective film
KR1020227010219A KR20220147062A (en) 2020-02-27 2021-02-25 A resin film, a composite sheet, and the manufacturing method of the semiconductor chip with a 1st protective film formed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-031717 2020-02-27
JP2020031717 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021172424A1 true WO2021172424A1 (en) 2021-09-02

Family

ID=77490089

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2021/003161 WO2021171898A1 (en) 2020-02-27 2021-01-29 Protective coating formation sheet, method for producing chip equipped with protective coating, and layered product
PCT/JP2021/007049 WO2021172410A1 (en) 2020-02-27 2021-02-25 Thermosetting resin film, composite sheet, and method for manufacturing first protective film-equipped semiconductor chip
PCT/JP2021/007103 WO2021172431A1 (en) 2020-02-27 2021-02-25 Resin film, composite sheet and method for producing semiconductor device
PCT/JP2021/007087 WO2021172426A1 (en) 2020-02-27 2021-02-25 Resin film, composite sheet and method for producing semiconductor chip with first protective film
PCT/JP2021/007082 WO2021172424A1 (en) 2020-02-27 2021-02-25 Resin film, composite sheet, and method for producing first protective film-bearing semiconductor chip

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/JP2021/003161 WO2021171898A1 (en) 2020-02-27 2021-01-29 Protective coating formation sheet, method for producing chip equipped with protective coating, and layered product
PCT/JP2021/007049 WO2021172410A1 (en) 2020-02-27 2021-02-25 Thermosetting resin film, composite sheet, and method for manufacturing first protective film-equipped semiconductor chip
PCT/JP2021/007103 WO2021172431A1 (en) 2020-02-27 2021-02-25 Resin film, composite sheet and method for producing semiconductor device
PCT/JP2021/007087 WO2021172426A1 (en) 2020-02-27 2021-02-25 Resin film, composite sheet and method for producing semiconductor chip with first protective film

Country Status (5)

Country Link
JP (5) JPWO2021171898A1 (en)
KR (5) KR20220147084A (en)
CN (5) CN115176333A (en)
TW (5) TW202136448A (en)
WO (5) WO2021171898A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022138946A1 (en) * 2020-12-25 2022-06-30
JP7095780B1 (en) * 2021-06-09 2022-07-05 住友ベークライト株式会社 Manufacturing method of release film and molded product
JP2024047019A (en) * 2022-09-26 2024-04-05 株式会社レゾナック Method for manufacturing semiconductor device, and adhesive film for semiconductor wafer processing
JP2024047022A (en) * 2022-09-26 2024-04-05 株式会社レゾナック Method for manufacturing semiconductor device and adhesive film for semiconductor wafer processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351790A (en) * 2005-06-15 2006-12-28 Disco Abrasive Syst Ltd Method of manufacturing semiconductor chip
JP2010024431A (en) * 2008-06-17 2010-02-04 Hitachi Chem Co Ltd Adhesive composition, film type adhesive, adhesive sheet, and semiconductor device
WO2019098329A1 (en) * 2017-11-17 2019-05-23 リンテック株式会社 Thermosetting resin film, and first protective film-forming sheet
WO2019189173A1 (en) * 2018-03-30 2019-10-03 リンテック株式会社 Method for manufacturing semiconductor chip

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205426A (en) 1983-05-06 1984-11-21 Nippon Mining Co Ltd Converter operating method
JP4778667B2 (en) * 2001-06-29 2011-09-21 富士通株式会社 Sheet material for underfill, semiconductor chip underfill method, and semiconductor chip mounting method
JP4776188B2 (en) * 2004-08-03 2011-09-21 古河電気工業株式会社 Semiconductor device manufacturing method and wafer processing tape
JP2011171712A (en) * 2010-01-21 2011-09-01 Hitachi Chem Co Ltd Adhesive tape for semiconductor wafer processing, method of manufacturing semiconductor wafer with adhesive tape for semiconductor wafer processing, method of manufacturing semiconductor device, and semiconductor device
JP5738263B2 (en) * 2012-12-25 2015-06-17 日立化成株式会社 Manufacturing method of semiconductor device
WO2014148496A1 (en) * 2013-03-19 2014-09-25 リンテック株式会社 Film for forming protection film
JP6328987B2 (en) * 2014-04-22 2018-05-23 デクセリアルズ株式会社 Manufacturing method of semiconductor device
JP2015092594A (en) 2014-12-10 2015-05-14 日東電工株式会社 Protection layer formation film
WO2017077957A1 (en) 2015-11-04 2017-05-11 リンテック株式会社 Method for manufacturing semiconductor device
US20190055396A1 (en) * 2015-11-04 2019-02-21 Lintec Corporation Curable resin film and first protective film forming sheet
SG11201902955QA (en) * 2016-10-05 2019-05-30 Lintec Corp First protective film forming sheet
KR102387943B1 (en) * 2017-05-17 2022-04-18 린텍 가부시키가이샤 Semiconductor device and method for manufacturing same
JP7098221B2 (en) * 2017-09-08 2022-07-11 株式会社ディスコ Wafer processing method
CN111357088B (en) * 2017-11-17 2024-05-14 琳得科株式会社 Semiconductor chip with first protective film, method for manufacturing the same, and method for evaluating semiconductor chip-first protective film laminate
JP7064184B2 (en) * 2017-12-11 2022-05-10 日東電工株式会社 Manufacturing method of dicing tape integrated sealing sheet and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351790A (en) * 2005-06-15 2006-12-28 Disco Abrasive Syst Ltd Method of manufacturing semiconductor chip
JP2010024431A (en) * 2008-06-17 2010-02-04 Hitachi Chem Co Ltd Adhesive composition, film type adhesive, adhesive sheet, and semiconductor device
WO2019098329A1 (en) * 2017-11-17 2019-05-23 リンテック株式会社 Thermosetting resin film, and first protective film-forming sheet
WO2019189173A1 (en) * 2018-03-30 2019-10-03 リンテック株式会社 Method for manufacturing semiconductor chip

Also Published As

Publication number Publication date
JPWO2021172424A1 (en) 2021-09-02
TW202200374A (en) 2022-01-01
KR20220147064A (en) 2022-11-02
JPWO2021172410A1 (en) 2021-09-02
WO2021172426A1 (en) 2021-09-02
CN114729142A (en) 2022-07-08
WO2021171898A1 (en) 2021-09-02
KR20220147084A (en) 2022-11-02
JPWO2021172426A1 (en) 2021-09-02
KR20220147063A (en) 2022-11-02
KR20220147062A (en) 2022-11-02
CN114555697A (en) 2022-05-27
WO2021172431A1 (en) 2021-09-02
WO2021172410A1 (en) 2021-09-02
KR20220147571A (en) 2022-11-03
TW202136448A (en) 2021-10-01
CN114728508A (en) 2022-07-08
TW202146540A (en) 2021-12-16
JPWO2021171898A1 (en) 2021-09-02
JPWO2021172431A1 (en) 2021-09-02
CN114585683A (en) 2022-06-03
TW202140664A (en) 2021-11-01
CN115176333A (en) 2022-10-11
TW202200373A (en) 2022-01-01

Similar Documents

Publication Publication Date Title
WO2021172424A1 (en) Resin film, composite sheet, and method for producing first protective film-bearing semiconductor chip
WO2014148642A1 (en) Protective film-forming film and protective film-forming composite sheet
JP7233377B2 (en) Thermosetting resin film and sheet for forming first protective film
WO2020085220A1 (en) Semiconductor device manufacturing method
JP6438181B1 (en) Semiconductor device and manufacturing method thereof
JP2022000905A (en) Kit and method for manufacturing semiconductor chip
JP7033237B2 (en) How to manufacture kits and semiconductor chips
JP7218297B2 (en) Semiconductor chip with first protective film, method for manufacturing semiconductor chip with first protective film, and method for evaluating semiconductor chip/first protective film laminate
WO2020196138A1 (en) Film adhesive and sheet for semiconductor processing
JP7267259B2 (en) Semiconductor chip manufacturing method
WO2020196156A1 (en) Film adhesive and sheet for semiconductor processing
JP7218296B2 (en) Semiconductor chip with first protective film, method for manufacturing semiconductor chip with first protective film, and method for evaluating semiconductor chip/first protective film laminate
JP7453208B2 (en) Method for manufacturing workpiece with first protective film
WO2020195761A1 (en) Thermosetting resin film, first protective film forming sheet, kit, and method for manufacturing first protective film-attached workpiece
JP7541503B2 (en) Thermosetting resin film and first protective film forming sheet
JP7541502B2 (en) Thermosetting resin film and first protective film forming sheet
WO2021235005A1 (en) Production method for semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503687

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759736

Country of ref document: EP

Kind code of ref document: A1