WO2014148496A1 - Film for forming protection film - Google Patents

Film for forming protection film Download PDF

Info

Publication number
WO2014148496A1
WO2014148496A1 PCT/JP2014/057355 JP2014057355W WO2014148496A1 WO 2014148496 A1 WO2014148496 A1 WO 2014148496A1 JP 2014057355 W JP2014057355 W JP 2014057355W WO 2014148496 A1 WO2014148496 A1 WO 2014148496A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
film
resin layer
forming
acrylic polymer
Prior art date
Application number
PCT/JP2014/057355
Other languages
French (fr)
Japanese (ja)
Inventor
山本 大輔
高野 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020157018232A priority Critical patent/KR102177881B1/en
Priority to JP2015506804A priority patent/JP6357147B2/en
Priority to CN201480010200.3A priority patent/CN105009277B/en
Publication of WO2014148496A1 publication Critical patent/WO2014148496A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/406Bright, glossy, shiny surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a protective film forming film used for protecting the back surface of a semiconductor chip, for example.
  • a semiconductor device using a mounting method called a face-down method has been manufactured.
  • the semiconductor chip is protected by a protective film because the chip surface on which electrodes such as bumps are formed is opposed to and bonded to the substrate and the back surface of the chip is exposed.
  • a semiconductor chip protected by this protective film (hereinafter referred to as “chip with protective film”) is generally printed with marks, characters, etc. on the protective film by laser printing or the like.
  • the protective film has been formed by, for example, resin coating or the like, but recently, for example, as disclosed in Patent Document 1, a protective film-forming film is attached to ensure uniformity of the film thickness. What is formed is being put into practical use.
  • Patent Document 1 has a single-layer protective film, but in recent years, a sealing sheet for sealing a semiconductor, a protective film for a protective film forming film, etc.
  • Various attempts have been made to form a two-layer structure.
  • Patent Document 2 includes a first resin layer containing a first high molecular weight component, and a second resin layer containing a thermosetting component, an inorganic filler, and a second high molecular weight component.
  • a sealing sheet in which the content of each component of the second resin layer is within a predetermined range is disclosed.
  • Patent Document 3 includes a low hardness layer bonded to a chip, and a high hardness layer provided on the low hardness layer and subjected to laser marking.
  • the high hardness layer includes a binder polymer component, energy, and the like.
  • a film for protecting a chip which is an energy ray curable resin layer containing a curable component and a photopolymerization initiator, is disclosed.
  • Patent Document 4 discloses a film for a semiconductor back surface in which a wafer adhesive layer and a laser mark layer are laminated. In this film for semiconductor back surface, by making the elastic modulus in the uncured state of the laser mark layer high, the printability when performing the laser mark in the uncured state is improved.
  • the protective film-forming film has a two-layer structure as disclosed in Patent Documents 2 to 4, the degree of design freedom is higher than that of a single-layer structure.
  • Patent Documents 2 to 4 only acrylic copolymers having the same composition are actually used as the polymer components contained in each layer.
  • the composition of the two layers of copolymer components is the same, it is difficult to achieve both high character recognition and high reliability.
  • Patent Document 2 since the glass transition temperature of acrylic rubber that is a polymer component of each layer is as low as ⁇ 7 ° C., the reliability of a chip with a protective film may be insufficient.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a chip with a protective film that can improve the reliability while improving the recognizability of laser printing.
  • the present inventors have made a protective film-forming film into a two-layer structure, and the glass composition has a predetermined acrylic polymer composition in one resin layer. It was found that the above problem can be solved by setting the transition temperature within a predetermined range and making the polymer component in the other resin layer different from the polymer component in one resin layer, and completed the following invention. It was. That is, the present invention provides the following (1) to (6).
  • a protective film-forming film for forming a protective film for protecting a semiconductor chip is a resin layer ⁇ containing (A1) an acrylic polymer and (B1) an epoxy curable component, and (A1) a polymer different from the acrylic polymer (A2).
  • a polymer, (B2) an epoxy-based curable component, (D2) a colorant, and (E2) a resin layer ⁇ containing a filler are laminated, (A1)
  • the monomer constituting the acrylic polymer does not contain an epoxy group-containing monomer, or contains an epoxy group-containing monomer in a proportion of 8% by mass or less of the total monomers.
  • A1) The glass transition temperature of the acrylic polymer is ⁇ 3 ° C.
  • the film for protective film formation whose gloss value measured by JISZ8741 after the hardening of the surface of the said resin layer (beta) is 20 or more.
  • (A2) polymer is (A2-1) acrylic polymer, (A2-1) The acrylic polymer contains an epoxy group-containing monomer in a proportion higher than 8% by mass of all monomers constituting the polymer, or has a glass transition temperature of less than ⁇ 3 ° C.
  • the protective film-forming film according to any one of claims 1 to 3, wherein the content of (E2) filler is 20% by mass or more of the resin layer ⁇ .
  • a chip with a protective film comprising a semiconductor chip and a protective film provided on the semiconductor chip, The protective film is formed by curing a protective film-forming film, The protective film-forming film is a resin layer ⁇ containing (A1) an acrylic polymer and (B1) an epoxy curable component, and (A1) a polymer different from the acrylic polymer (A2).
  • a polymer, (B2) an epoxy-based curable component, (D2) a colorant, and (E2) a resin layer ⁇ containing a filler are laminated, (A1)
  • the monomer constituting the acrylic polymer does not contain an epoxy group-containing monomer, or contains an epoxy group-containing monomer in a proportion of 8% by mass or less of the total monomers.
  • the glass transition temperature of the acrylic polymer is ⁇ 3 ° C. or higher, The chip
  • (6) a step of dividing the semiconductor wafer into a plurality of chips, and a protective film for the protective film-forming composite sheet in which the protective film-forming film described in (1) to (4) is formed on the support sheet so as to be peelable
  • a step of attaching a forming film to the semiconductor wafer or a chip group comprising a plurality of chips, a step of peeling a support sheet in the protective film-forming composite sheet from the protective film-forming film, and the protective film-forming film Including a step of thermosetting The manufacturing method of the chip
  • (meth) acryl is used as a term meaning one or both of “acryl” and “methacryl”.
  • (meth) acrylate is used as a term meaning one or both of “acrylate” and “methacrylate”.
  • (meth) acryloxy” is used as a term meaning one or both of “acryloxy” and “methacryloxy”, and the same applies to other similar terms.
  • the film for forming a protective film according to the present invention is a film for forming a protective film for protecting a semiconductor chip, and is formed by laminating a resin layer ⁇ and a resin layer ⁇ .
  • the resin layer ⁇ side is bonded to the semiconductor chip, and the resin layer ⁇ is a layer on which printing is performed by a laser.
  • the resin layer ⁇ of the present invention contains at least an (A1) acrylic polymer and (B1) an epoxy curable component, and (C1) a curing accelerator, (D1) a colorant, ( E1) A filler, (F1) a coupling agent, and other additives may be appropriately contained.
  • the resin layer ⁇ includes (A1) a polymer different from the acrylic polymer (A1), (B2) an epoxy curable component, (D2) a colorant, and (E2) a filler. Further, it may optionally contain a component selected from (C2) a curing accelerator, (F2) a coupling agent, and other additives as optional components.
  • blended with resin layer (alpha) and resin layer (beta) is demonstrated in detail.
  • the (A1) acrylic polymer contained in the resin layer ⁇ is a component whose main purpose is to impart flexibility and sheet shape maintenance to the resin layer ⁇ , and the (A1) acrylic polymer
  • the constituent monomer does not include an epoxy group-containing monomer, or (A1) includes an epoxy group-containing monomer in a proportion of 8% by mass or less of the total monomers constituting the acrylic polymer. .
  • the proportion of the epoxy group-containing monomer is more than 8% by mass, the compatibility between the cured product of the component (A1) and the component (B1) is improved, and the phase separation structure described later is difficult to be formed. The reliability of the attached chip decreases.
  • the content of the epoxy group-containing monomer is preferably 6% by mass or less of the total monomer constituting the (A1) acrylic copolymer.
  • the content of the epoxy group-containing monomer is usually 0.1% by mass or more in all monomers constituting the (A1) acrylic polymer, It is preferably 1% by mass or more of the monomer, and in the composition for forming the resin layer ⁇ for forming the resin layer ⁇ , (A1) the acrylic polymer and (B1) the epoxy curable component are separated. In view of preventing the coatability from deteriorating, it is more preferably 3% by mass or more.
  • the monomer constituting the (A1) acrylic polymer is specifically an epoxy group-containing (meta )
  • One or more epoxy group-containing monomers selected from acrylic acid esters and non-acrylic epoxy group-containing monomers, and various (meth) acrylic acid esters and / or non-acrylic epoxies having no epoxy group It consists of a non-group-containing monomer.
  • the epoxy group-containing monomer is composed only of a non-acrylic epoxy group-containing monomer
  • the monomer constituting the acrylic polymer is various (meth) acrylic acid esters having no epoxy group. including.
  • Examples of the epoxy group-containing (meth) acrylic acid ester include glycidyl (meth) acrylate, ⁇ -methylglycidyl (meth) acrylate, (3,4-epoxycyclohexyl) methyl (meth) acrylate, and 3-epoxycyclo-2- Examples thereof include hydroxypropyl (meth) acrylate, and examples of the non-acrylic epoxy group-containing monomer include glycidyl crotonate and allyl glycidyl ether.
  • an epoxy group-containing (meth) acrylic acid ester is preferable.
  • the monomer constituting the acrylic polymer does not contain an epoxy group-containing monomer
  • (A1) the monomer constituting the acrylic polymer is specifically a hydroxyl group-containing (meth) acrylic ester.
  • (Meth) acrylic acid esters not having various epoxy groups such as (meth) acrylic acid alkyl esters and non-acrylic epoxy group-free single substances such as styrene, ethylene, vinyl ether, vinyl acetate, etc. It consists of a mass.
  • the monomer constituting the acrylic polymer preferably contains a (meth) acrylic acid alkyl ester. This makes it easy to adjust the glass transition temperature of the (A1) acrylic polymer by increasing or decreasing the number of carbon atoms of the (meth) acrylic acid alkyl ester or by combining the (meth) acrylic acid alkyl esters having different carbon numbers. Become.
  • the (meth) acrylic acid alkyl ester is preferably 50% by mass or more, and more preferably 70% by mass or more, based on the total monomers constituting the (A1) acrylic polymer.
  • the upper limit of the ratio of the (meth) acrylic acid alkyl ester to the mass of all monomers constituting the (A1) acrylic polymer is not particularly limited.
  • (meth) acrylic acid alkyl ester monomers other than the (meth) acrylic acid alkyl ester can be copolymerized to appropriately control the properties of the (A1) acrylic polymer.
  • (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, and (meth) acrylic acid.
  • the monomer constituting the (A1) acrylic polymer does not contain a (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group among the above (meth) acrylic acid alkyl esters, or It is preferable to contain (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group in a proportion of 12% by mass or less of the total monomer constituting (A1) acrylic polymer.
  • the glass transition temperature described later easily becomes ⁇ 3 ° C. or higher, and the reliability is easily improved.
  • the content of the monomer constitutes (A1) acrylic polymer, for example. 1% by mass or more, preferably 5% by mass or more, based on the total monomers.
  • the alkyl group having 4 or more carbon atoms in the alkyl group is preferably an alkyl ester having 4 to 8 carbon atoms, more preferably butyl (meth) acrylate having 4 carbon atoms.
  • the monomer which comprises (A1) acrylic polymer contains the (meth) acrylic-acid alkylester whose carbon number of an alkyl group is 3 or less among the said (meth) acrylic-acid alkylester. .
  • the thermal stability and the like are improved, and the glass transition temperature of (A1) acrylic polymer is ⁇ 3 as described later. It becomes easy to be over °C.
  • the alkyl group (meth) acrylic acid alkyl ester having 3 or less carbon atoms in the alkyl group is preferably 50% by mass or more based on the total monomers constituting the (A1) acrylic polymer. % Or more is more preferable. Moreover, it is preferable that the (meth) acrylic-acid alkylester whose carbon number of an alkyl group is 3 or less is 90 mass% or less of all the monomers which comprise (A1) acrylic polymer.
  • methyl (meth) acrylate or ethyl (meth) acrylate is preferable, and methyl (meth) acrylate is more preferable.
  • (A1) When the monomer constituting the acrylic polymer contains (meth) acrylic acid alkyl ester, (meth) acrylic having 4 or more carbon atoms in the alkyl group in the entire (meth) acrylic acid alkyl ester
  • the mass ratio of the acid alkyl ester and the (meth) acrylic acid alkyl ester having 3 or less carbon atoms in the alkyl group is preferably 0/100 to 15/85. Thereby, the glass transition temperature described later easily becomes ⁇ 3 ° C. or higher, and the reliability is easily improved.
  • the monomer constituting the (A1) acrylic polymer may contain a hydroxyl group-containing (meth) acrylic acid ester as a (meth) acrylic acid ester not containing an epoxy group.
  • a hydroxyl group-containing (meth) acrylic acid ester as a (meth) acrylic acid ester not containing an epoxy group.
  • the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and the like.
  • the hydroxyl group-containing (meth) acrylic acid ester is preferably 1 to 30% by mass, more preferably 5 to 25% by mass of the total monomers constituting the (A1) acrylic polymer. More preferably, it is 20 mass%.
  • the monomer constituting the acrylic polymer may contain a non-acrylic epoxy group-free monomer such as styrene, ethylene, vinyl ether, vinyl acetate as described above.
  • the weight average molecular weight (Mw) of the acrylic polymer is preferably 10,000 or more so that the resin layer ⁇ can be provided with flexibility and film-forming properties.
  • the weight average molecular weight is more preferably 15,000 to 1,000,000, still more preferably 20,000 to 500,000.
  • a weight average molecular weight (Mw) means what was measured in standard polystyrene conversion by the gel permeation chromatography (GPC) method so that it may mention later.
  • the (A1) acrylic polymer has a glass transition temperature of ⁇ 3 ° C. or higher.
  • the glass transition temperature is less than ⁇ 3 ° C., the mobility of the (A1) acrylic polymer is not sufficiently suppressed, and the protective film is likely to be deformed due to the thermal history, thereby improving the reliability of the chip with the protective film. It cannot be improved sufficiently.
  • the glass transition temperature is a theoretical value obtained from the Fox equation.
  • the glass transition temperature of the (A1) acrylic polymer is preferably 30 ° C. or lower, and more preferably 15 ° C. or lower. When the glass transition temperature is 30 ° C. or lower, the followability to the surface shape of the wafer of the protective film forming layer before curing is maintained. As a result, high adhesion to the chip can be ensured, and reliability can be improved.
  • the resin layer ⁇ does not contain any component derived from the epoxy group-containing monomer, and the content of the resin layer ⁇ is suppressed to a small amount, so that the phase rich in the component (A1) in the protective film and the component (B1) described later
  • the phase rich in the cured product is easily phase-separated, and the reliability of the chip with the protective film is improved. This is because even when the temperature changes after chip mounting, the stress caused by the deformation due to the temperature change is relaxed by the flexible (A1) rich phase, so that the protective film is hardly peeled off due to the stress. It is estimated that.
  • the phase separation in the resin layer ⁇ after thermosetting it is preferable that the phase rich in (A1) forms a continuous phase. As a result, the above-described reliability improvement effect can be further enhanced.
  • the (A1) component here includes the crosslinked product of the (A1) component when the (A1) component is crosslinked.
  • phase rich in (A1) and the phase rich in the cured product of (B1) for example, observe what substance is the main component of the phase from the measurement chart of the phase by Raman scattering spectroscopy. Can be determined. If the size of the phase separation structure is less than the resolution of Raman spectroscopy, the hardness of the tapping mode measurement of SPM (scanning probe microscope) is used as an index, and the harder phase is rich in the cured product of component (B1). It can be estimated that the softer is the phase rich in the component (A1). Therefore, in this invention, it can be confirmed whether the phase-separation structure is formed by Raman scattering spectroscopy measurement or SPM observation of the protective film obtained by hardening
  • SPM scanning probe microscope
  • the (A1) acrylic polymer is usually 5 to 80% by mass, preferably 10 to 50% by mass as a proportion of the total mass (solid content conversion) of the resin layer ⁇ .
  • the (A2) polymer contained in the resin layer ⁇ is a component whose main purpose is to impart flexibility and sheet shape maintenance to the resin layer ⁇ .
  • the (A2) polymer is a polymer different from the (A1) acrylic polymer contained in the resin layer ⁇ .
  • the polymer different from the (A1) acrylic polymer is an acrylic polymer, but the composition is different from the (A1) acrylic polymer (A2-1) an acrylic polymer, Alternatively, the polymer itself is different, and the polymer is any polymer other than the acrylic polymer.
  • the polymer other than the acrylic polymer used as the polymer is preferably a phenoxy resin.
  • the resin layer ⁇ can have different characteristics from the resin layer ⁇ by containing the polymer (A2) which is a polymer different from the (A1) acrylic polymer. Therefore, the laser printability of the resin layer ⁇ can be improved by increasing the gloss value of the resin layer ⁇ .
  • the acrylic polymer (A2-1) used as a polymer is an acrylic polymer obtained by copolymerizing an epoxy group-containing monomer and another monomer, The epoxy group-containing monomer is contained in a proportion higher than 8% by mass of the total monomer constituting the (A2-1) acrylic polymer, or an acrylic system having a glass transition temperature of less than ⁇ 3 ° C. A polymer is preferred.
  • the acrylic polymer has a compatibility of the cured product of the component (A2) and the component (B2) as will be described later, because the proportion of the epoxy group-containing monomer is more than 8% by mass. improves.
  • the gloss value after curing of the resin layer ⁇ is increased, so that the laser printability is easily improved.
  • the glass transition temperature is less than ⁇ 3 ° C., so that the gloss value described later can be easily increased and the print recognizability is increased. be able to.
  • the particle size of the (E2) filler contained in the resin layer ⁇ is relatively large, for example, 1 ⁇ m or more, the glass transition temperature of the (A2-1) acrylic polymer is less than ⁇ 3 ° C. There exists a tendency which can maintain the gloss value mentioned later highly.
  • the epoxy group-containing monomer is contained in a proportion of 10% by mass or more based on the total monomers constituting the (A2-1) acrylic polymer.
  • the epoxy group-containing monomer is preferably contained in a proportion of 30% by mass or less of the total monomers constituting the (A2-1) acrylic polymer, and contained in a proportion of 25% by mass or less. More preferably. If the mass ratio of the epoxy group-containing monomer to the total monomers constituting the (A2-1) acrylic polymer is within the upper limit, (A2-1) the acrylic polymer. It becomes easier to set the glass transition temperature to less than ⁇ 3 ° C. Further, the glass transition temperature of the (A2-1) acrylic polymer is more preferably ⁇ 10 ° C. or less, and particularly preferably ⁇ 15 ° C. or less from the above viewpoint.
  • the glass transition temperature of the (A2-1) acrylic polymer is preferably ⁇ 50 ° C. or higher, and more preferably ⁇ 30 ° C. or higher.
  • the monomer constituting the acrylic polymer is more specifically one or more epoxy selected from an epoxy group-containing (meth) acrylic acid ester and a non-acrylic epoxy group-containing monomer. It consists of a group-containing monomer and various (meth) acrylic acid esters and / or non-acrylic epoxy group-free monomers having no epoxy group.
  • the epoxy group-containing monomer is composed only of a non-acrylic epoxy group-containing monomer
  • the monomer constituting the acrylic polymer is various (meth) acrylic acid esters having no epoxy group. including.
  • an epoxy group containing monomer what was enumerated as what can be used for said (A1) acrylic polymer can be used, and it is preferable that an epoxy group containing (meth) acrylic ester is used.
  • the monomer constituting the (A2-1) acrylic polymer preferably contains a (meth) acrylic acid alkyl ester as the (meth) acrylic ester having no epoxy group.
  • the glass transition temperature of the (A2-1) acrylic polymer can be adjusted by increasing or decreasing the carbon number of the (meth) acrylic acid alkyl ester or by combining the (meth) acrylic acid alkyl esters having different carbon numbers. It becomes easy.
  • the (meth) acrylic acid alkyl ester is preferably 45% by mass or more, more preferably 60% by mass or more, based on the total monomers constituting the (A2-1) acrylic polymer.
  • (meth) acrylic-acid alkylester is 90 mass% or less of all the monomers which comprise the (A2-1) acrylic polymer.
  • (meth) acrylic acid alkyl esters those listed above as (meth) acrylic acid alkyl esters usable for (A1) acrylic polymers are used as appropriate.
  • the monomer constituting the acrylic polymer is a (meth) acrylic acid alkyl ester having 2 or more alkyl groups in the above (meth) acrylic acid alkyl ester, (A2-1) ) It is preferably contained in an amount of more than 12% by mass of all monomers constituting the acrylic polymer. Thereby, the glass transition temperature is lowered, the gloss value is improved, and the discrimination of laser printing can be improved. From such a viewpoint, the content of the (meth) acrylic acid alkyl ester having 2 or more carbon atoms in the alkyl group is more preferably 15% by mass or more, and particularly preferably 30% by mass or more.
  • the content of the alkyl group (meth) acrylic acid alkyl ester having 2 or more carbon atoms in the alkyl group is preferably 75% by mass or less, more preferably 65% by mass or less, and particularly preferably 60% by mass or less.
  • compatibility with (B2) component will improve and it will become possible to make a gross value a higher value.
  • the (meth) acrylic acid alkyl ester is preferably ethyl (meth) acrylate having 2 to 6 carbon atoms in the alkyl group, butyl (meth) acrylate, or the like, and butyl (meth) acrylate having 4 carbon atoms. Is more preferable.
  • the monomer which comprises (A2-1) acrylic polymer may contain methyl (meth) acrylate whose carbon number of an alkyl group is 1 among the said (meth) acrylic acid alkylesters. preferable.
  • the polarity of the (A2-1) acrylic polymer can be reduced and the compatibility with the component (B2) can be improved.
  • the gloss value of the resin layer ⁇ can be improved.
  • the methyl (meth) acrylate is preferably 1% by mass or more, more preferably 8% by mass or more of the total monomer constituting the (A2-1) acrylic polymer.
  • the methyl (meth) acrylate is preferably 75% by mass or less, and more preferably 50% by mass or less, based on the total amount of monomers constituting the (A2-1) acrylic polymer.
  • the mass ratio of alkyl acrylate and methyl (meth) acrylate having an alkyl group of 1 is preferably 15/85 to 100/0. Thereby, it becomes easy to set the glass transition temperature of the monomer constituting the (A2-1) acrylic polymer to less than ⁇ 3 ° C.
  • the mass ratio is more preferably 35/70 to 90/10.
  • the monomer constituting the (A2-1) acrylic polymer preferably contains a hydroxyl group-containing (meth) acrylic acid ester as a (meth) acrylic acid ester having no epoxy group.
  • a hydroxyl group-containing (meth) acrylic acid ester as a (meth) acrylic acid ester having no epoxy group.
  • the hydroxyl group-containing (meth) acrylic acid ester the compounds listed above as the hydroxyl group-containing (meth) acrylic acid ester that can be used for the (A1) acrylic polymer can be appropriately used.
  • the hydroxyl group-containing (meth) acrylic acid ester is preferably 1 to 30% by mass, more preferably 5 to 25% by mass of the total monomers constituting the (A2) acrylic polymer. More preferably, it is 20 mass%.
  • the monomer constituting the (A2-1) acrylic polymer may include a non-acrylic epoxy group-free monomer such as styrene, ethylene, vinyl ether, vinyl acetate, as described above.
  • the weight average molecular weight (Mw) of the acrylic polymer can give flexibility and film-forming property to the resin layer ⁇ , and in order to make the gloss value described later easily 20 or more, 10,000. The above is preferable.
  • the weight average molecular weight is more preferably 15,000 to 1,000,000, still more preferably 20,000 to 500,000.
  • the resin layer ⁇ it is preferable that a phase rich in the component (A2) and a phase rich in the cured product of the component (B2) described later are compatible after thermosetting. In such a compatible state, the gloss value increases and the laser printability for the resin layer ⁇ is improved. This is presumably because the compatibility improved the smoothness of the surface of the resin layer after curing.
  • the component (A2) here includes the crosslinked product of the component (A2) when the component (A2) is crosslinked.
  • the method for discriminating between the phase rich in the component (A2) and the phase rich in the cured product of the component (B2) is the same as the method of discriminating the phase rich in the (A1) and the phase rich in the cured product of (B1).
  • the polymer is generally 5 to 80% by mass, preferably 10 to 50% by mass, based on the total mass (solid content conversion) of the resin layer ⁇ .
  • the (B1) and (B2) epoxy-based curable components used for the resin layers ⁇ and ⁇ are components for forming a hard protective film on the semiconductor chip by curing. Usually, epoxy compounds and thermosetting are used. It consists of an agent.
  • the mass ratio of the (A1) acrylic polymer to the epoxy compound in the (B1) epoxy curable component (hereinafter also simply referred to as “mass ratio X1”) is preferably 0.25 or more. .5 or more is more preferable. Moreover, 2.0 or less is preferable and 1.5 or less is more preferable.
  • mass ratio X1 By making mass ratio X1 into the said range, the peeling force with the peeling sheet mentioned later becomes suitable, and the peeling defect at the time of peeling a peeling sheet from the film for protective film formation etc. can be prevented. Further, by limiting the mass ratio X1 to the above lower limit value or more, the phase rich in the component (A1) in the resin layer ⁇ is likely to be a continuous phase, and the reliability of the semiconductor chip can be improved.
  • the mass ratio of the polymer (A2) to the epoxy compound in the (B2) epoxy curable component (hereinafter also simply referred to as “mass ratio X2”) is preferably 0.25 or more. .5 or more is more preferable. Moreover, 2.0 or less is preferable and 1.5 or less is more preferable.
  • the mass ratio X2 to a range equal to or higher than the lower limit value, the cured product of the component (A2) and the component (B2) in the resin layer ⁇ is in a compatible state, and the gloss value tends to be high. .
  • the mass ratio X1 and the mass ratio X2 may be the same as or different from each other. When these mass ratios are different from each other, it is preferable that the ratio of the smaller one of the mass ratio X1 and the mass ratio X2 to the larger one is 0.35 or more, more preferably 0.6 or more. More preferably, it is 0.85 or more.
  • the mass ratio X1 and the mass ratio X2 are approximated or the same, the dimensional change rates when the resin layers ⁇ and ⁇ are heated are approximated to each other, and the resin layer ⁇ and the resin layer ⁇ It is possible to further improve the reliability of the chip with a protective film by preventing delamination between the layers.
  • epoxy-type compound used for an epoxy-type curable component a conventionally well-known epoxy compound can be used. Specifically, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene An epoxy compound having two or more functional groups in the molecule, such as a skeleton type epoxy resin, can be given. These can be used individually by 1 type or in combination of 2 or more types.
  • thermosetting agent used for the epoxy-based curable component functions as a curing agent for the epoxy compound.
  • a preferable thermosetting agent includes a compound having two or more functional groups capable of reacting with an epoxy group in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group, and an acid anhydride. Of these, phenolic hydroxyl groups, amino groups, acid anhydrides and the like are preferable, and phenolic hydroxyl groups and amino groups are more preferable.
  • phenolic curing agent having a phenolic hydroxyl group examples include polyfunctional phenolic resins, biphenols, novolac type phenolic resins, dicyclopentadiene type phenolic resins, zyloc type phenolic resins, and aralkylphenolic resins.
  • a specific example of the amine curing agent having an amino group is dicyandiamide. These can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the thermosetting agent in each of the resin layers ⁇ and ⁇ is preferably 0.1 to 100 parts by mass, and preferably 0.5 to 50 parts by mass with respect to 100 parts by mass of the epoxy compound. More preferred is 1 to 20 parts by mass.
  • Each of the (B1) and (B2) epoxy-based curable components is usually about 5 to 60% by mass, preferably about 10 to 40% by mass as a proportion of the total mass (solid content conversion) of each of the resin layers ⁇ and ⁇ . .
  • the component used for (B1) (B2) epoxy-type curable component may mutually be the same, you may differ.
  • Each of the resin layer ⁇ and the resin layer ⁇ may be blended with (C1) a curing accelerator and (C2) a curing accelerator in order to adjust the curing rate of the epoxy compound.
  • Preferred (C1) (C2) curing accelerators include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenyl Imidazoles such as imidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole; tributylphosphine, diphenylphosphine, triphenylphosphine Organic phosphines such as tetraphenylphosphonium tetraphenylborate and tetraphenylboron salts
  • Each of (C1) and (C2) curing accelerator is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of (B1) and (B2) epoxy curable component. Included in the amount of. (C1) (C2) By blending the curing accelerator in an amount in the above range, the protective film-forming film has excellent adhesive properties even when exposed to high temperatures and high humidity, and was exposed to severe conditions. Even in this case, high reliability can be achieved.
  • the (C1) (C2) curing accelerator may be blended in the same or different mass parts with respect to 100 parts by mass of the (B1) (B2) epoxy-based curable component. Also good.
  • (C1) and (C2) curing accelerators may be the same type of curing accelerator or different types of curing accelerators.
  • the resin layer ⁇ contains (D2) a colorant.
  • the resin layer ⁇ may contain (D1) a colorant.
  • the resin layer ⁇ contains (D2) a colorant, thereby improving the character identifiability when a product number or mark is printed on the protective film obtained by curing the protective film-forming film. it can. That is, the product number and the like are usually printed by the laser marking method on the back surface on which the protective film of the semiconductor chip is formed, but the resin layer ⁇ contains the (D2) colorant, so that the printed part and the non-printed part are printed. The contrast difference is increased and the discrimination is improved.
  • the resin layer ⁇ and the resin layer ⁇ contain (D1) and (D2) colorants, so that when a chip with a protective film is incorporated in a device, the resin layer ⁇ and the resin layer ⁇ are shielded from infrared rays and the like generated from surrounding devices. The malfunction of the chip can be prevented.
  • organic or inorganic pigments or dyes are used.
  • the dye any dye such as an acid dye, a reactive dye, a direct dye, a disperse dye, and a cationic dye can be used.
  • the pigment is not particularly limited, and can be appropriately selected from known pigments.
  • the black pigment which has favorable shielding property of electromagnetic waves and infrared rays, and can improve the discriminability by a laser marking method is more preferable.
  • the black pigment include carbon black, iron oxide, manganese dioxide, aniline black, activated carbon, and the like, but are not limited thereto. Carbon black is particularly preferable from the viewpoint of increasing the reliability of the semiconductor chip.
  • a coloring agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • (D1) (D2) The content of the colorant is preferably 0.01 to 25% by mass, more preferably 0.03 to 15% as a proportion of the total mass (solid content conversion) of the resin layers ⁇ and ⁇ , respectively. % By mass.
  • the content rate of (D1) (D2) coloring agent may mutually be the same, and may differ.
  • the same type of colorant may be used as the colorant (D1) and (D2), or different types of colorant may be used.
  • the resin layer ⁇ contains (E2) a filler. Moreover, it is preferable that the resin layer (alpha) contains the (E1) filler. (E1) (E2)
  • the filler is a component that gives the protective film moisture resistance, dimensional stability, and the like, and specifically includes an inorganic filler.
  • the laser marking the method of performing the printing by scraping the surface of the protective film with the laser beam
  • Preferred inorganic fillers include silica, alumina, talc, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride and other powders, spheroidized beads, spherical beads, etc., single crystal fibers and glass Examples thereof include fibers. Of these, silica filler and alumina filler are particularly preferable. Further, the inorganic filler used for the resin layer ⁇ is preferably a spherical shape because the gloss value can be further improved.
  • the filler such as an inorganic filler has an average particle size of, for example, 0.3 to 50 ⁇ m, preferably 0.5 to 10 ⁇ m, but the filler such as an inorganic filler used for the resin layer ⁇ is particularly preferably 1 to 5 ⁇ m. If it is such a range, it will become easy to improve the gross value in the resin layer (beta). In addition, when the surface of the resin layer ⁇ is scraped off with a laser or the like, unevenness due to the inorganic filler is easily formed in that portion. For this reason, the contrast with the part which is not scraped off with a laser etc. improves, and there exists an effect which the recognition property of printing improves.
  • the average particle diameter is, for example, a value measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • Specific examples of the particle size distribution measuring apparatus include Nanotrac 150 manufactured by Nikkiso Co., Ltd.
  • the said inorganic filler can be used individually or in mixture of 2 or more types. Further, the fillers (E1) and (E2) used in the resin layer ⁇ and the resin layer ⁇ may be of the same type, but may be different from each other.
  • the (E1) filler in the resin layer ⁇ is preferably 10% by mass or more, more preferably 30% by mass or more, as a ratio (content ratio) to the total mass (solid content conversion) of the resin layer ⁇ . Preferably, 45 mass% or more is more preferable. Further, the content of the (E1) filler is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less. On the other hand, the (E2) filler in the resin layer ⁇ is preferably 10% by mass or more, and more preferably 20% by mass or more as a proportion (content) in the total mass (solid content conversion) of the resin layer ⁇ . Is more preferable.
  • the content of the filler (E2) is preferably 80% by mass or less, and more preferably 65% by mass or less.
  • (E1) (E2) By making the content rate of a filler into these ranges, it becomes easy to exhibit the effect of an above-described filler.
  • the content of the (E2) filler in the resin layer ⁇ , by setting the content of the (E2) filler to 20% by mass or more, the contrast between the laser-marked printed part and the non-printed part is further improved, and the print recognition is highly advanced. It can be.
  • the content of the (E2) filler in the resin layer ⁇ to be relatively low, the gloss value can be easily increased, and the print recognizability can be enhanced. From such a viewpoint, it is preferable that the content rate of (E2) filler shall be 40 mass% or less.
  • (F1) coupling agent and (F2) coupling agent may be respectively blended.
  • the coupling agent is a component for bonding the polymer component in the resin layers ⁇ and ⁇ to the surface of the semiconductor chip or the filler, which is an adherend, to improve the adhesion and cohesion.
  • (F1) (F2) As a coupling agent a silane coupling agent is preferable.
  • the coupling agent (F1) (F2) has an alkoxy group such as a methoxy group or an ethoxy group, and (A1) an acrylic polymer or (A2) polymer, or (B1) (B2).
  • a compound having a reactive functional group other than an alkoxy group that reacts with a functional group of an epoxy-based curable component or the like is preferably used.
  • reactive functional groups include glycidoxy groups, epoxy groups other than glycidoxy groups, amino groups, (meth) acryloxy groups, vinyl groups other than (meth) acryloxy groups, mercapto groups, and the like. In these, a glycidoxy group and an epoxy group are preferable.
  • silane coupling agent a low molecular weight silane coupling agent having a molecular weight of less than 300 may be used, an oligomer type silane coupling agent having a molecular weight of 300 or more may be used, and these are used in combination. May be.
  • the low molecular weight silane coupling agent examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (methacrylopropyl) trimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -ureidopropyltriethoxysilane, N-6- (aminoethyl) - ⁇ -Aminopropylmethyldiethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, vinyltriacetoxysilane and the like.
  • the oligomer type silane coupling agent is preferably an organopolysiloxane having a siloxane skeleton and an alkoxy group directly bonded to a silicon atom.
  • the blending ratio of each of the (F1) and (F2) coupling agents is preferably 0.01 to 10.0% by weight as the blending ratio in the total mass (in terms of solid content) of each of the resin layer ⁇ and the resin layer ⁇ . Preferably, the content is 0.1 to 3.0% by mass.
  • the compounding ratio of (F1) (F2) coupling agent may be the same as each other, or may be different.
  • the coupling agent (F1) and (F2) the same type of coupling agent may be used, or different types of coupling agents may be used.
  • Additives other than those described above may be appropriately blended in each of the resin layer ⁇ and the resin layer ⁇ .
  • the additive is not particularly limited, but is a cross-linking agent, a compatibilizing agent, a leveling agent, a plasticizer, an antistatic agent, an antioxidant, a heat conducting agent, an ion scavenger, a gettering agent, a chain transfer. Agents, energy beam polymerizable compounds, photopolymerization initiators, and the like.
  • the resin layer ⁇ and / or the resin layer ⁇ are, for example, blended with a compatibilizing agent so that the compatibility between the phase rich in the component (A1) and the phase rich in the cured product of the component (B1) (A2)
  • a compatibilizing agent so that the compatibility between the phase rich in the component (A1) and the phase rich in the cured product of the component (B1) (A2)
  • An appropriate phase separation structure can be designed by appropriately adjusting the compatibility of the phase rich in the component and the phase rich in the cured product of the component (B2).
  • the gloss value measured by JIS Z 8741 on the surface of the resin layer ⁇ obtained by curing is 20 or more. It will be.
  • the protective film of the present invention is attached so that the resin layer ⁇ side is in contact with the wafer, and then cured, so that the surface to be printed by laser marking, which is the surface of the protective film, has a gloss value of 20 or more. For this reason, in the present invention, the contrast between the printed portion and the non-printed portion is improved, and the distinguishability of the printed portion is improved.
  • the gloss value is preferably 27 or more, and more preferably 40 or more, in order to further improve contrast and increase character discrimination. Further, the gloss value is not particularly limited, but is, for example, 80 or less. The gloss value is not particularly limited in its adjustment method. For example, the amount of the epoxy group-containing monomer, the amount of various (meth) acrylic acid alkyl esters, the value of the above-mentioned mass ratio X2, ( E2) It can be appropriately adjusted by adjusting the type and content of the filler or adding other additives.
  • the thicknesses of the resin layer ⁇ and the resin layer ⁇ are not particularly limited, but are preferably 2 to 250 ⁇ m, more preferably 4 to 200 ⁇ m, and still more preferably 6 to 150 ⁇ m.
  • the thicknesses of the resin layer ⁇ and the resin layer ⁇ may be different from each other, but may be the same.
  • the protective film-forming film of the present invention is usually formed on a support sheet so as to be peelable, and is used as a protective film-forming composite sheet.
  • the protective film-forming film of the present invention is laminated, for example, on a support sheet in the order of a resin layer ⁇ and a resin layer ⁇ .
  • a light-peelable release sheet having a release force smaller than that of the support sheet is provided on the resin layer ⁇ .
  • the protective film-forming film can have the same shape as the support sheet.
  • the protective film-forming composite sheet is prepared in such a manner that the protective film-forming film has substantially the same shape as the wafer or can include the shape of the wafer, and has a larger size than the protective film-forming film. It may have a pre-molded configuration that is laminated on top.
  • the support sheet is for supporting a protective film-forming film, for example, polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate.
  • Film polyethylene naphthalate film, polybutylene terephthalate film, polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer
  • a film such as a film, a polystyrene film, a polycarbonate film, a polyimide film, or a fluororesin film is used. These crosslinked films are also used. Furthermore, two or more laminated films selected from these may be used. Moreover, the film which colored these can also be used.
  • the surface of the support sheet on which the protective film-forming film is formed may be appropriately subjected to a peeling treatment.
  • the release agent used for the release treatment examples include alkyd, silicone, fluorine, unsaturated polyester, polyolefin, and wax, but alkyd, silicone, and fluorine release agents are heat resistant. It is preferable because of its properties.
  • the release sheet is selected from, for example, the films listed above, and may be appropriately subjected to a release treatment.
  • the composite sheet for forming a protective film of the present invention is produced, for example, as follows. First, a resin layer ⁇ -forming composition obtained by mixing the above-described components for forming the resin layer ⁇ in an appropriate ratio in an appropriate solvent or without a solvent is applied onto a support sheet and dried. A support sheet laminated with ⁇ is obtained. Further, a resin layer ⁇ -forming composition obtained by mixing the above-described components for forming the resin layer ⁇ in an appropriate ratio in an appropriate solvent or without a solvent is applied onto a release sheet and dried. A release sheet on which the layer ⁇ is laminated is obtained.
  • the resin layers ⁇ and ⁇ laminated on the support sheet and the release sheet may be further protected by a protective release film by further bonding a protective release film.
  • a protective release film is protected, after the protective release film is peeled off, the support sheet on which the resin layer ⁇ is laminated and the release sheet on which the resin layer ⁇ is laminated are combined with the resin layer ⁇ .
  • the release sheet may be peeled off as necessary.
  • the resin layer ⁇ -forming composition and the resin layer ⁇ -forming composition are sequentially applied and dried on the support sheet, whereby the resin layer ⁇ and the resin layer ⁇ are laminated on the support sheet.
  • a composite sheet for forming a protective film can also be obtained.
  • the manufacturing method of the protective film-forming composite sheet is not limited to the above method, and may be manufactured by any method.
  • the surface tension of the support sheet may be adjusted by laminating films by wet lamination, dry lamination, hot melt lamination, melt extrusion lamination, coextrusion processing, or the like. That is, a film in which the surface tension of at least one surface is within a preferable range as the surface of the support sheet in contact with the protective film forming film is such that the surface is in contact with the protective film forming film.
  • a laminate laminated with another film may be manufactured and used as a support sheet.
  • an adhesive sheet having an adhesive layer formed on the film may be used as a support sheet.
  • the protective film-forming film is laminated on the pressure-sensitive adhesive layer provided on the support sheet.
  • the pressure-sensitive adhesive layer is a re-peelable pressure-sensitive adhesive layer because the protective film-forming film or the protective film can be easily separated from the support sheet.
  • the re-peelable pressure-sensitive adhesive layer may be a weak-adhesive layer having an adhesive strength sufficient to peel off the protective film-forming film, or an energy-ray curable one whose adhesive strength is reduced by energy beam irradiation. May be used.
  • the re-peelable pressure-sensitive adhesive layer includes various conventionally known pressure-sensitive adhesives (for example, general-purpose pressure-sensitive adhesives such as rubber-based, acrylic-based, silicone-based, urethane-based, vinyl ether-based, pressure-sensitive adhesives with surface irregularities, Energy ray-curable pressure-sensitive adhesive, thermal expansion component-containing pressure-sensitive adhesive, etc.).
  • an energy beam shielding layer may be provided by printing or the like in a region corresponding to the other region of the support sheet, and the energy beam irradiation may be performed from the support sheet side. .
  • a re-peelable pressure-sensitive adhesive layer having substantially the same shape as the protective film-forming film was further laminated in the region where the protective film-forming film on the pressure-sensitive adhesive layer in the pressure-sensitive adhesive sheet was laminated. It is good also as a structure.
  • the film for the releasable pressure-sensitive adhesive the same film as described above can be used.
  • a separate adhesive layer or double-sided pressure-sensitive adhesive tape may be provided. If the protective film-forming film has a pre-molded configuration, a separate adhesive is used to fix other jigs such as a ring frame to the outer periphery of the support sheet where the protective film-forming film is not laminated. Layers and double-sided adhesive tapes may be provided.
  • the protective film-forming film is affixed to an adherend such as a semiconductor wafer or a semiconductor chip, and then thermally cured to form a protective film.
  • an adherend such as a semiconductor wafer or a semiconductor chip
  • the protective film-forming composite sheet is first peeled off when it is protected by a release sheet, and then the protective film-forming film and After the support film laminate is affixed to the adherend, the support sheet is peeled off from the protective film-forming film.
  • the protective film-forming film in which the resin layer ⁇ and the resin layer ⁇ are provided from the adherend side is laminated on the adherend.
  • the method for using the protective film-forming film will be described in more detail using an example in which the protective film-forming film is used for protecting the back surface of a semiconductor chip and a chip with a protective film is manufactured. It is not limited to the example shown.
  • the protective film-forming film is laminated on the back surface of the semiconductor wafer.
  • a composite sheet for forming a protective film is used, a laminate of the protective film-forming film and the base sheet is attached to the back surface of the semiconductor wafer.
  • stacked on the semiconductor wafer is thermosetted, and a protective film is formed in the whole surface of a wafer.
  • the semiconductor wafer may be a silicon wafer or a compound semiconductor wafer such as gallium / arsenic. Further, the semiconductor wafer has a circuit formed on the front surface thereof, and the back surface thereof is appropriately ground or the like to have a thickness of about 50 to 500 ⁇ m.
  • the laminated body of the semiconductor wafer and the protective film is diced for each circuit formed on the wafer surface. Dicing is performed so that the wafer and the protective film are cut together, and the laminated body of the semiconductor wafer and the protective film is divided into a plurality of chips by dicing.
  • the wafer is diced by a conventional method using a dicing sheet.
  • the diced chip is picked up by a general-purpose means such as a collet to obtain a semiconductor chip having a protective film on the back surface (chip with protective film).
  • the manufacturing method of a semiconductor chip is not limited to the above example, For example, peeling of a support sheet may be performed after the thermosetting of a protective film, and may be performed after dicing. In addition, when peeling of a support sheet is performed after dicing, a support sheet can serve as a dicing sheet. Moreover, the thermosetting of the protective film-forming film may be performed after dicing. However, in the case where the resin layer ⁇ side of the protective film-forming film is bonded to the support sheet, if the protective film-forming film is thermally cured before the support sheet is peeled off, the surface of the resin layer ⁇ after the curing becomes smooth. Tend to improve.
  • the protective film-forming film of the present invention having a high gloss value after curing of the resin layer ⁇ is a production method in which the effect of improving the smoothness of the surface after curing of the resin film ⁇ cannot be obtained, that is, protection It is particularly suitable for a production method in which the film-forming film is thermally cured after peeling of the support sheet.
  • the protective film-forming film may be attached to a chip group composed of a plurality of chips obtained by dividing a semiconductor wafer. As a method of obtaining such a chip group, a groove deeper than the thickness of the finally obtained chip is formed from the circuit forming surface side of the semiconductor wafer, and thinning processing is performed until the groove reaches from the back surface side of the semiconductor wafer.
  • first dicing method There is a method of dividing into a plurality of chips by performing (so-called first dicing method).
  • first dicing method When a protective film forming film is attached to the chip group, the protective film forming film corresponding to the gap existing between the chips is cut with a laser or the like so that the protective film forming film has substantially the same shape as the chip. It is desirable to form it.
  • the chip with a protective film of the present invention is obtained, for example, by the above-described manufacturing method, and includes a semiconductor chip and a protective film laminated on the back surface of the semiconductor chip, and the protective film cures the protective film-forming film described above.
  • the back surface of the chip is protected.
  • the protective film is obtained by sequentially laminating a resin layer ⁇ and a resin layer ⁇ from the semiconductor chip side.
  • the surface of the protective film opposite to the surface on the semiconductor chip side (that is, the surface of the resin layer ⁇ ) has a gloss value of 20 or more measured by JIS Z 8741.
  • a semiconductor device can be manufactured by mounting a chip with a protective film on a substrate or the like by a face-down method. Further, the semiconductor device can also be manufactured by bonding the chip with protective film to another member (on the chip mounting part) such as a die pad part or another semiconductor chip.
  • the measurement method and evaluation method in the present invention are as follows.
  • Weight average molecular weight (Mw) The weight average molecular weight Mw in terms of standard polystyrene was measured by gel permeation chromatography (GPC).
  • Measuring device Tosoh's high-speed GPC device "HLC-8120GPC", high-speed column “TSK guard column H XL -H", “TSK Gel GMH XL “, “TSK Gel G2000 H XL “ ) In this order and measured.
  • liquid feeding speed 1.0 mL / min
  • detector differential refractometer
  • a protective film forming film of a composite sheet for forming a protective film having a release sheet peeled off on a polished surface of a # 2000 polished silicon wafer (200 mm diameter, thickness 280 ⁇ m) is a tape mounter (manufactured by Lintec Corporation). Adwill RAD-3600 F / 12) was applied while heating to 70 ° C. Next, after peeling off the support sheet, the protective film-forming film was cured by heating at 130 ° C. for 2 hours to form a protective film on the silicon wafer. The specular glossiness of 60 degrees on the surface of the protective film was measured with the following measuring apparatus and measurement conditions, and the gloss value was obtained. Measuring device: VG 2000 manufactured by Nippon Denshoku Industries Co., Ltd. Measuring conditions: conforming to JIS Z 8741
  • a tape mounter (Adwill RAD-3600 F, manufactured by Lintec Co., Ltd.) is used to form a protective film forming film of a composite sheet for forming a protective film with a release sheet peeled off on a polished surface of a # 2000 polished silicon wafer (200 mm diameter, 280 ⁇ m thick). / 12) was applied while heating to 70 ° C. Next, after peeling off the support sheet, the film for forming a protective film was cured by heating at 130 ° C. for 2 hours, thereby forming a protective film on the silicon wafer.
  • a tape mounter (manufactured by Lintec Corporation) is used to form a protective film forming film of a composite sheet for forming a protective film on which a release sheet is peeled off on a polished surface of a # 2000 polished silicon wafer (200 mm diameter, 280 ⁇ m thick).
  • Adwill RAD-3600 F / 12 was applied while heating to 70 ° C.
  • the protective film-forming film was cured by heating at 130 ° C. for 2 hours to form a protective film on the silicon wafer.
  • the protective film side is affixed to a dicing tape (Adwill D-676H manufactured by Lintec Corporation), and dicing into 3 mm ⁇ 3 mm size using a dicing apparatus (DFD Co., Ltd., DFD651) for reliability evaluation.
  • a dicing tape Adwill D-676H manufactured by Lintec Corporation
  • DFD651 a dicing apparatus
  • the chip with a protective film for reliability evaluation was first processed under conditions (preconditions) imitating a process in which a semiconductor chip was actually mounted. Specifically, the chip with a protective film is baked at 125 ° C. for 20 hours, and then left to stand for 168 hours under conditions of 85 ° C. and 85% RH to immediately absorb moisture, followed by preheating at 160 ° C., peak temperature at 260 ° C., and heating. It was passed 3 times through an IR reflow oven for 30 seconds. Twenty-five protective film-coated chips treated with these preconditions were placed in a thermal shock apparatus (TSE-11-A, manufactured by ESPEC Corporation), held at ⁇ 65 ° C. for 10 minutes, and then held at 150 ° C. for 10 minutes.
  • TSE-11-A thermal shock apparatus
  • the cycle was repeated 1000 times. Thereafter, 25 chips with protective films were taken out of the thermal shock apparatus and evaluated for reliability. Specifically, the presence or absence of floating / peeling at the joint between the chip and the protective film or cracks in the protective film is determined by scanning ultrasonic flaw detector (Hy-Focus manufactured by Hitachi Construction Machinery Finetech Co., Ltd.) and cross-sectional observation. It was evaluated as NG if any of floating, peeling and cracking was found. Table 3 shows the number of NGs out of 25 chips.
  • Example 1 [Resin layer ⁇ ]
  • the components forming the resin layer ⁇ were as follows.
  • (A1) Acrylic copolymer: Acrylic copolymer obtained by copolymerizing 85 parts by mass of methyl methacrylate and 15 parts by mass of 2-hydroxyethyl acrylate
  • (B1) Epoxy curable component Epoxy compound: Bisphenol Type A epoxy resin (Nippon Shokubai Co., Ltd., BPA-328) and dicyclopentadiene type epoxy resin (Dainippon Ink & Chemicals, Epiklon HP-7200HH)
  • Thermosetting agent Dicyandiamide (manufactured by ADEKA Corporation, Adeka Hardener 3636AS)
  • (C1) Curing accelerator: 2-phenyl-4,5-dihydroxymethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., Curesol 2PHZ)
  • Example 1 As the component for forming the resin layer ⁇ , the following (A2-1) acrylic copolymer was used as the (A2) polymer.
  • the other components (B2) to (F2) were the same as the components (B1) to (F1) used for the resin layer ⁇ .
  • Acrylic copolymer copolymer of 55 parts by mass of n-butyl acrylate, 10 parts by mass of methyl acrylate, 15 parts by mass of 2-hydroxyethyl acrylate, and 20 parts by mass of glycidyl methacrylate.
  • Polyethylene terephthalate film manufactured by LINTEC Corporation having a resin layer ⁇ forming composition prepared by mixing each material constituting the resin layer ⁇ in a proportion shown in Table 1 and diluted with methyl ethyl ketone. , SP-PET382150, thickness 38 ⁇ m) was applied to the release-treated surface of the release sheet with a knife-type coating machine so that the thickness after drying was 20 ⁇ m, and a coating layer to be the resin layer ⁇ was formed. . Next, the coating layer was dried at 110 ° C.
  • a protective release film made of polyethylene terephthalate having a thickness of 38 ⁇ m (SP-PET 381031 manufactured by Lintec Corporation) was applied to the exposed surface of the coating layer.
  • the laminate sheet was obtained by laminating the resin layer ⁇ and the protective release film in this order on the release sheet.
  • the resin layer ⁇ is also shown in Table 2 on the release-treated surface of a polyethylene terephthalate film (Lintec Co., Ltd., SP-PET382150, thickness: 38 ⁇ m) that is a support sheet and is subjected to a release treatment on one side.
  • a resin layer ⁇ is prepared using the resin layer ⁇ forming composition blended at a ratio, and a protective release film is further bonded to the resin layer ⁇ , and the resin layer ⁇ and the protective layer are laminated on the support sheet.
  • a laminate sheet was obtained in which release films were laminated in this order.
  • the protective release film is peeled off from each of the laminated sheets having the resin layers ⁇ and ⁇ , laminated with a laminator so that the resin layer ⁇ and the resin layer ⁇ are in contact with each other, and both sides of the 40 ⁇ m chip protective film forming film are laminated.
  • a protective film-forming composite sheet provided with a support sheet and a release sheet was obtained.
  • the weight average molecular weight (Mw) and glass transition temperature (Tg) of the (A1) and (A2-1) acrylic polymers used for the resin layers ⁇ and ⁇ were as shown in Table 3.
  • Example 2 Example 1 except that the composition of (A1) acrylic copolymer and (A2-1) acrylic copolymer used in resin layer ⁇ and resin layer ⁇ was changed as shown in Table 3. It carried out like.
  • Example 11 The same procedure as in Example 1 was performed except that the filler (E2) used for the resin layer ⁇ was changed to a spherical silica filler (UF-310, manufactured by Tokuyama Corporation) having an average particle diameter of 3 ⁇ m.
  • the filler (E2) used for the resin layer ⁇ was changed to a spherical silica filler (UF-310, manufactured by Tokuyama Corporation) having an average particle diameter of 3 ⁇ m.
  • Examples 12-14 The filler (E2) used for the resin layer ⁇ is changed to a spherical silica filler (UF-310, manufactured by Tokuyama Co., Ltd.) having an average particle diameter of 3 ⁇ m, and the blending amount of each component of the resin layer ⁇ is shown in Table 2. The same operation as in Example 1 was performed except for the points changed as shown.
  • a spherical silica filler UF-310, manufactured by Tokuyama Co., Ltd.
  • the protective film-forming film was formed only by the resin layer ⁇ shown in Tables 1 and 3, and each component constituting the resin layer ⁇ was as shown in Tables 1 and 3.
  • the composite sheet for protective film formation was formed as follows. Polyethylene terephthalate film (manufactured by Lintec Corporation, SP-PET 5011) obtained by diluting a material for forming the resin layer ⁇ at a ratio shown in Table 1 with a composition for forming a protective film diluted with methyl ethyl ketone and performing a release treatment on one side.
  • the film is applied to the peeled surface of the support sheet having a thickness of 50 ⁇ m so that the thickness after drying is 25 ⁇ m and dried at 100 ° C. for 3 minutes to form a protective film-forming film on the support sheet. did.
  • a separate release sheet SP-PET3811, thickness 38 ⁇ m, manufactured by Lintec Corporation was superimposed on the protective film-forming film to obtain a protective film-forming composite sheet of Comparative Example 1.
  • Comparative Examples 2-6 (A1) The same procedure as in Comparative Example 1 was performed except that the composition of the acrylic polymer was changed as shown in Table 3.
  • Comparative Example 7 The material for forming the resin layer ⁇ was changed as shown in Tables 2 and 3, and the same procedure as in Example 1 was performed except that the (E2) filler was not added to the resin layer ⁇ .
  • the (A1) acrylic polymer constituting the resin layer ⁇ does not contain an epoxy group-containing monomer as a constituent monomer, or 8% by mass or less. An epoxy group-containing monomer was contained, and the glass transition temperature was ⁇ 3 ° C. or higher. With such a configuration, the protective film is less likely to be peeled off from the chip, and the reliability is improved.
  • the (A2) polymer constituting the resin layer ⁇ an (A2-1) acrylic copolymer having a composition different from that of the (A1) acrylic polymer was used. Therefore, the resin layer ⁇ has improved design flexibility, can be made into a resin layer with excellent laser printing characteristics, and has excellent character recognition.
  • Comparative Examples 1 to 6 since the protective film-forming film has a single layer structure, the degree of freedom in designing the protective film is low, and both reliability and character recognition cannot be made excellent. It was.
  • the protective film-forming film was composed of two layers of the resin layers ⁇ and ⁇ . However, since the resin layer ⁇ did not contain a filler, the gloss value was high. However, the character recognition could not be improved.

Abstract

This film for forming a protection film is made by laminating a resin layer (α) including an acrylic polymer (A1) and a curable epoxy component (B1), and a resin layer (β) including a polymer (A2) which is a polymer different from the acrylic polymer (A1), a curable epoxy component (B2), a coloring agent (D2), and a filler (E2), wherein: the monomers constituting the acrylic polymer (A1) do not include any epoxy-group-containing monomers, or include 8 mass% or less of epoxy-group-containing monomers with respect to the total mass of the monomers; the glass transition temperature of the acrylic polymer (A1) is -3°C or higher; and the gloss value of the surface of the cured resin layer (β) as measured in accordance with JIS Z 8741 is 20 or greater.

Description

保護膜形成用フィルムProtective film forming film
 本発明は、例えば半導体チップの裏面を保護するために使用される保護膜形成用フィルムに関する。 The present invention relates to a protective film forming film used for protecting the back surface of a semiconductor chip, for example.
 従来、フェースダウン方式と呼ばれる実装法を用いた半導体装置の製造が行われている。フェースダウン方式において、半導体チップは、バンプなどの電極が形成されたチップ表面が基板等に対向されて接合される一方で、チップ裏面が剥き出しとなるため保護膜によって保護されている。この保護膜で保護された半導体チップ(以下、「保護膜付きチップ」という)は、一般的に保護膜上にレーザー印字等によりマークや文字等が印字される。
 上記保護膜は、例えば樹脂コーティング等によって形成されていたが、近年、例えば特許文献1に開示されるように、膜厚の均一性を確保等するために、保護膜形成用フィルムが貼付されて形成されるものが実用化されつつある。
Conventionally, a semiconductor device using a mounting method called a face-down method has been manufactured. In the face-down method, the semiconductor chip is protected by a protective film because the chip surface on which electrodes such as bumps are formed is opposed to and bonded to the substrate and the back surface of the chip is exposed. A semiconductor chip protected by this protective film (hereinafter referred to as “chip with protective film”) is generally printed with marks, characters, etc. on the protective film by laser printing or the like.
The protective film has been formed by, for example, resin coating or the like, but recently, for example, as disclosed in Patent Document 1, a protective film-forming film is attached to ensure uniformity of the film thickness. What is formed is being put into practical use.
 特許文献1に開示される保護膜形成用シートは、保護膜が単層構造となるものであるが、近年、半導体を封止するための封止シートや、保護膜形成用フィルムの保護膜等を2層構造とする試みが種々行われている。
 例えば、特許文献2には、第1の高分子量成分を含有する第1の樹脂層と、熱硬化性成分、無機フィラー、及び第2の高分子量成分を含有する第2の樹脂層とからなり、第2の樹脂層の各成分の含有量が所定の範囲とされた封止用シートが開示されている。
 また、特許文献3には、チップに接着される低硬度層と、この低硬度層上に設けられ、レーザーマーキングが行われる高硬度層とを有し、高硬度層がバインダーポリマー成分と、エネルギー硬化性成分と、光重合開始剤とを含有するエネルギー線硬化型樹脂層であるチップ保護用フィルムが開示されている。
 さらに、特許文献4には、ウエハ接着層と、レーザーマーク層が積層されてなる半導体裏面用フィルムが開示されている。この半導体裏面用フィルムでは、レーザーマーク層の未硬化状態における弾性率を高いものとすることで、未硬化状態においてレーザーマークを行う際の印字性を向上させている。
The protective film forming sheet disclosed in Patent Document 1 has a single-layer protective film, but in recent years, a sealing sheet for sealing a semiconductor, a protective film for a protective film forming film, etc. Various attempts have been made to form a two-layer structure.
For example, Patent Document 2 includes a first resin layer containing a first high molecular weight component, and a second resin layer containing a thermosetting component, an inorganic filler, and a second high molecular weight component. A sealing sheet in which the content of each component of the second resin layer is within a predetermined range is disclosed.
Patent Document 3 includes a low hardness layer bonded to a chip, and a high hardness layer provided on the low hardness layer and subjected to laser marking. The high hardness layer includes a binder polymer component, energy, and the like. A film for protecting a chip, which is an energy ray curable resin layer containing a curable component and a photopolymerization initiator, is disclosed.
Furthermore, Patent Document 4 discloses a film for a semiconductor back surface in which a wafer adhesive layer and a laser mark layer are laminated. In this film for semiconductor back surface, by making the elastic modulus in the uncured state of the laser mark layer high, the printability when performing the laser mark in the uncured state is improved.
特開2002-280329号公報JP 2002-280329 A 特開2006-321216号公報JP 2006-32216 A 特開2009-130233号公報JP 2009-130233 A 特開2011-151361号公報JP 2011-151361 A
 ところで、保護膜形成用フィルムからチップの保護膜を形成した場合、保護膜付きチップの信頼性が劣り、例えば長期使用により保護膜がチップから剥離する等の不具合が発生する場合がある。そのため、保護膜形成用フィルムを用いて得た保護膜付きチップの信頼性を更に高めることが求められている。
 しかし、信頼性を高めるために、特許文献1に開示されるような単層構造の保護膜においてその組成を改良すると、熱硬化後の保護膜の表面特性が悪化して、レーザー印字をした際に、高い文字認識性を得ることができないという別の問題が発生する。すなわち、単層構造の保護膜においては、その組成を改良しただけでは、高い文字認識性と高い信頼性を両立させることが困難である。また、仮に両立できたとしても、重合体成分の選択の余地が少なく、保護膜形成フィルムの配合設計の自由度が著しく制限されることになる。
By the way, when the protective film of the chip is formed from the protective film-forming film, the reliability of the chip with the protective film is inferior, and there may be a problem that the protective film peels off from the chip due to long-term use, for example. Therefore, it is required to further improve the reliability of the chip with a protective film obtained using the protective film-forming film.
However, when improving the composition of the protective film having a single-layer structure as disclosed in Patent Document 1 in order to increase reliability, the surface characteristics of the protective film after thermosetting deteriorates, and laser printing is performed. In addition, another problem that high character recognizability cannot be obtained occurs. That is, in a protective film having a single layer structure, it is difficult to achieve both high character recognition and high reliability only by improving the composition. Moreover, even if both are compatible, there is little room for selection of the polymer component, and the degree of freedom in designing the composition of the protective film-forming film is significantly limited.
 一方で、特許文献2~4に開示されるように保護膜形成用フィルムを2層構造からなるものとすると、設計の自由度が単層構造からなるものに比べて高くなる。しかし、特許文献2~4では、各層に含有される重合体成分は、互いに同一の組成を有するアクリル系共重合体しか実際には実施されていない。このように2層の共重合体成分の組成が同一であると、高い文字認識性と高い信頼性の両立を図ることは難しい。例えば、特許文献2では、各層の重合体成分であるアクリルゴムのガラス転移温度が-7℃と低いため、保護膜付きチップの信頼性が不十分となるおそれがある。 On the other hand, if the protective film-forming film has a two-layer structure as disclosed in Patent Documents 2 to 4, the degree of design freedom is higher than that of a single-layer structure. However, in Patent Documents 2 to 4, only acrylic copolymers having the same composition are actually used as the polymer components contained in each layer. Thus, if the composition of the two layers of copolymer components is the same, it is difficult to achieve both high character recognition and high reliability. For example, in Patent Document 2, since the glass transition temperature of acrylic rubber that is a polymer component of each layer is as low as −7 ° C., the reliability of a chip with a protective film may be insufficient.
 本発明は、以上の問題点に鑑みてなされたものであり、レーザー印字の認識性を良好にしつつも、信頼性を高めることができる保護膜付きチップを提供することを課題とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a chip with a protective film that can improve the reliability while improving the recognizability of laser printing.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、保護膜形成用フィルムを2層構造とした上で、一方の樹脂層におけるアクリル系重合体の組成を所定のものとしてガラス転移温度も所定の範囲にするとともに、他方の樹脂層における重合体成分を一方の樹脂層における重合体成分と異なるものとすることにより、上記課題が解決できることを見出し、以下の本発明を完成させた。
 すなわち、本発明は、以下の(1)~(6)を提供するものである。
(1)半導体チップを保護する保護膜を形成するための保護膜形成用フィルムであって、
 前記保護膜形成用フィルムが、(A1)アクリル系重合体と(B1)エポキシ系硬化性成分とを含有する樹脂層αと、(A1)アクリル系重合体とは異なる重合体である(A2)重合体と、(B2)エポキシ系硬化性成分と、(D2)着色剤と、(E2)充填材とを含有する樹脂層βとが積層されてなり、
 (A1)アクリル系重合体を構成する単量体が、エポキシ基含有単量体を含まず、または、全単量体の8質量%以下の割合でエポキシ基含有単量体を含むとともに、(A1)アクリル系重合体のガラス転移温度が-3℃以上であり、
 前記樹脂層βの表面の硬化後のJIS Z 8741により測定されるグロス値が20以上である保護膜形成用フィルム。
(2)(A2)重合体が、(A2-1)アクリル系重合体であって、
(A2-1)アクリル系重合体は、その重合体を構成する全単量体の8質量%より高い割合でエポキシ基含有単量体を含み、又はガラス転移温度が-3℃未満である上記(1)に記載の保護膜形成用フィルム。
(3)(E2)充填材の平均粒径が1~5μmである上記(1)または(2)に記載の保護膜形成用フィルム。
(4)(E2)充填材の含有量が、樹脂層βの20質量%以上である請求項1~3のいずれかに記載の保護膜形成用フィルム。
(5)半導体チップと、前記半導体チップ上に設けられる保護膜とを備える保護膜付きチップであって、
 前記保護膜が、保護膜形成用フィルムを硬化させて形成されたものであるとともに、
 前記保護膜形成用フィルムが、(A1)アクリル系重合体と(B1)エポキシ系硬化性成分とを含有する樹脂層αと、(A1)アクリル系重合体とは異なる重合体である(A2)重合体と、(B2)エポキシ系硬化性成分と、(D2)着色剤と、(E2)充填材とを含有する樹脂層βとが積層されてなり、
 (A1)アクリル系重合体を構成する単量体が、エポキシ基含有単量体を含まず、または、全単量体の8質量%以下の割合でエポキシ基含有単量体を含むとともに、(A1)アクリル系重合体のガラス転移温度が-3℃以上であり、
 前記樹脂層βの表面の硬化後のJIS Z 8741により測定されるグロス値が20以上である保護膜付きチップ。
(6)半導体ウエハを複数のチップに分割する工程、上記(1)~(4)に記載の保護膜形成用フィルムが支持シート上に剥離可能に形成された保護膜形成用複合シートの保護膜形成用フィルムを、前記半導体ウエハ又は複数のチップからなるチップ群に貼付する工程、前記保護膜形成用複合シートにおける支持シートを前記保護膜形成用フィルムから剥離する工程、および前記保護膜形成用フィルムを熱硬化する工程を含み、
 保護膜形成用複合シートにおける支持シートを保護膜形成用フィルムから剥離する工程の後に、保護膜形成用フィルムを熱硬化する工程を行う保護膜付きチップの製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have made a protective film-forming film into a two-layer structure, and the glass composition has a predetermined acrylic polymer composition in one resin layer. It was found that the above problem can be solved by setting the transition temperature within a predetermined range and making the polymer component in the other resin layer different from the polymer component in one resin layer, and completed the following invention. It was.
That is, the present invention provides the following (1) to (6).
(1) A protective film-forming film for forming a protective film for protecting a semiconductor chip,
The protective film-forming film is a resin layer α containing (A1) an acrylic polymer and (B1) an epoxy curable component, and (A1) a polymer different from the acrylic polymer (A2). A polymer, (B2) an epoxy-based curable component, (D2) a colorant, and (E2) a resin layer β containing a filler are laminated,
(A1) The monomer constituting the acrylic polymer does not contain an epoxy group-containing monomer, or contains an epoxy group-containing monomer in a proportion of 8% by mass or less of the total monomers. A1) The glass transition temperature of the acrylic polymer is −3 ° C. or higher,
The film for protective film formation whose gloss value measured by JISZ8741 after the hardening of the surface of the said resin layer (beta) is 20 or more.
(2) (A2) polymer is (A2-1) acrylic polymer,
(A2-1) The acrylic polymer contains an epoxy group-containing monomer in a proportion higher than 8% by mass of all monomers constituting the polymer, or has a glass transition temperature of less than −3 ° C. The film for forming a protective film according to (1).
(3) The protective film-forming film as described in (1) or (2) above, wherein the average particle diameter of the filler (E2) is 1 to 5 μm.
(4) The protective film-forming film according to any one of claims 1 to 3, wherein the content of (E2) filler is 20% by mass or more of the resin layer β.
(5) A chip with a protective film comprising a semiconductor chip and a protective film provided on the semiconductor chip,
The protective film is formed by curing a protective film-forming film,
The protective film-forming film is a resin layer α containing (A1) an acrylic polymer and (B1) an epoxy curable component, and (A1) a polymer different from the acrylic polymer (A2). A polymer, (B2) an epoxy-based curable component, (D2) a colorant, and (E2) a resin layer β containing a filler are laminated,
(A1) The monomer constituting the acrylic polymer does not contain an epoxy group-containing monomer, or contains an epoxy group-containing monomer in a proportion of 8% by mass or less of the total monomers. A1) The glass transition temperature of the acrylic polymer is −3 ° C. or higher,
The chip | tip with a protective film whose gloss value measured by JISZ8741 after hardening of the surface of the said resin layer (beta) is 20 or more.
(6) a step of dividing the semiconductor wafer into a plurality of chips, and a protective film for the protective film-forming composite sheet in which the protective film-forming film described in (1) to (4) is formed on the support sheet so as to be peelable A step of attaching a forming film to the semiconductor wafer or a chip group comprising a plurality of chips, a step of peeling a support sheet in the protective film-forming composite sheet from the protective film-forming film, and the protective film-forming film Including a step of thermosetting
The manufacturing method of the chip | tip with a protective film which performs the process of thermosetting the film for protective film formation after the process of peeling the support sheet in the composite sheet for protective film formation from the film for protective film formation.
 本発明では、レーザー印字の認識性を良好にしつつも、信頼性を高めることができる保護膜付きチップを提供することができる。 In the present invention, it is possible to provide a chip with a protective film capable of improving the reliability while improving the recognizability of laser printing.
 以下、本発明について、その実施形態を用いて具体的に説明する。
 なお、本明細書において、「(メタ)アクリル」は、「アクリル」又は「メタクリル」の一方もしくは双方を意味する用語として使用する。また、「(メタ)アクリレート」は、「アクリレート」又は「メタクリレート」の一方もしくは双方を意味する用語として使用する。さらに、「(メタ)アクリロキシ」は、「アクリロキシ」又は「メタクリロキシ」の一方もしくは双方を意味する用語として使用し、他の類似用語についても同様である。
Hereinafter, the present invention will be specifically described with reference to embodiments thereof.
In the present specification, “(meth) acryl” is used as a term meaning one or both of “acryl” and “methacryl”. In addition, “(meth) acrylate” is used as a term meaning one or both of “acrylate” and “methacrylate”. Furthermore, “(meth) acryloxy” is used as a term meaning one or both of “acryloxy” and “methacryloxy”, and the same applies to other similar terms.
[保護膜形成用フィルム]
 本発明に係る保護膜形成用フィルムは、半導体チップを保護する保護膜を形成するためのフィルムであって、樹脂層αと、樹脂層βとが積層されてなるものである。保護膜形成用フィルムは、樹脂層α側が半導体チップに接着され、樹脂層βがレーザーにより印字が行われる層となる。
[Film for forming a protective film]
The film for forming a protective film according to the present invention is a film for forming a protective film for protecting a semiconductor chip, and is formed by laminating a resin layer α and a resin layer β. In the protective film-forming film, the resin layer α side is bonded to the semiconductor chip, and the resin layer β is a layer on which printing is performed by a laser.
[樹脂層α、β]
 本発明の樹脂層αは、(A1)アクリル系重合体と(B1)エポキシ系硬化性成分とを少なくとも含有するものであり、任意成分として(C1)硬化促進剤、(D1)着色剤、(E1)充填材、(F1)カップリング剤、及びその他の添加剤から選ばれるものを適宜含有してもよい。
 樹脂層βは、(A1)アクリル系重合体と異なる重合体である(A2)重合体と、(B2)エポキシ系硬化性成分と、(D2)着色剤と、(E2)充填材とを少なくとも含有するものであり、さらに、任意成分として(C2)硬化促進剤、(F2)カップリング剤、及びその他の添加剤から選ばれるものを適宜含有していてもよい。
 以下、樹脂層α、樹脂層βに配合される各成分について詳細に説明する。
[Resin layers α, β]
The resin layer α of the present invention contains at least an (A1) acrylic polymer and (B1) an epoxy curable component, and (C1) a curing accelerator, (D1) a colorant, ( E1) A filler, (F1) a coupling agent, and other additives may be appropriately contained.
The resin layer β includes (A1) a polymer different from the acrylic polymer (A1), (B2) an epoxy curable component, (D2) a colorant, and (E2) a filler. Further, it may optionally contain a component selected from (C2) a curing accelerator, (F2) a coupling agent, and other additives as optional components.
Hereinafter, each component mix | blended with resin layer (alpha) and resin layer (beta) is demonstrated in detail.
<(A1)アクリル系重合体>
 樹脂層αに含有される(A1)アクリル系重合体は、樹脂層αに可撓性、シート形状維持性を付与することを主目的とした成分であって、(A1)アクリル系重合体を構成する単量体が、エポキシ基含有単量体を含まず、または、(A1)アクリル系重合体を構成する全単量体の8質量%以下の割合でエポキシ基含有単量体を含むものである。
 エポキシ基含有単量体の割合が8質量%より多くなると、(A1)成分と(B1)成分の硬化物との相溶性が向上し、後述の相分離構造が形成されにくくなって、保護膜付きチップの信頼性が低下する。このような観点から、エポキシ基含有単量体の含有量は、(A1)アクリル系共重合体を構成する全単量体の6質量%以下であることが好ましい。
 エポキシ基含有単量体を含有する場合、エポキシ基含有単量体の含有量は、(A1)アクリル系重合体を構成する全単量体中、通常0.1質量%以上であり、全単量体の1質量%以上であることが好ましく、樹脂層αを形成するための樹脂層α形成用組成物において、(A1)アクリル系重合体と、(B1)エポキシ系硬化性成分とが分離して塗工性が悪化するのを防止する等の観点から3質量%以上であることがより好ましい。
<(A1) Acrylic polymer>
The (A1) acrylic polymer contained in the resin layer α is a component whose main purpose is to impart flexibility and sheet shape maintenance to the resin layer α, and the (A1) acrylic polymer The constituent monomer does not include an epoxy group-containing monomer, or (A1) includes an epoxy group-containing monomer in a proportion of 8% by mass or less of the total monomers constituting the acrylic polymer. .
When the proportion of the epoxy group-containing monomer is more than 8% by mass, the compatibility between the cured product of the component (A1) and the component (B1) is improved, and the phase separation structure described later is difficult to be formed. The reliability of the attached chip decreases. From such a viewpoint, the content of the epoxy group-containing monomer is preferably 6% by mass or less of the total monomer constituting the (A1) acrylic copolymer.
When the epoxy group-containing monomer is contained, the content of the epoxy group-containing monomer is usually 0.1% by mass or more in all monomers constituting the (A1) acrylic polymer, It is preferably 1% by mass or more of the monomer, and in the composition for forming the resin layer α for forming the resin layer α, (A1) the acrylic polymer and (B1) the epoxy curable component are separated. In view of preventing the coatability from deteriorating, it is more preferably 3% by mass or more.
 (A1)アクリル系重合体を構成する単量体が、エポキシ基含有単量体を含む場合、(A1)アクリル系重合体を構成する単量体は、具体的には、エポキシ基含有(メタ)アクリル酸エステルおよび非アクリル系エポキシ基含有単量体から選択される1種以上のエポキシ基含有単量体と、エポキシ基を有しない各種の(メタ)アクリル酸エステル及び/又は非アクリル系エポキシ基非含有単量体とからなる。この場合、エポキシ基含有単量体が非アクリル系エポキシ基含有単量体のみからなる場合は、アクリル系重合体を構成する単量体は、エポキシ基を有しない各種の(メタ)アクリル酸エステルを含む。
 エポキシ基含有(メタ)アクリル酸エステルとしては、例えば、グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、(3,4-エポキシシクロヘキシル)メチル(メタ)アクリレート、3-エポキシシクロ-2-ヒドロキシプロピル(メタ)アクリレート等が挙げられ、非アクリル系エポキシ基含有単量体としては、たとえば、グリシジルクロトネート、アリルグリシジルエーテル等が挙げられる。エポキシ基含有単量体としては、エポキシ基含有(メタ)アクリル酸エステルが好ましい。
(A1) When the monomer constituting the acrylic polymer contains an epoxy group-containing monomer, the monomer constituting the (A1) acrylic polymer is specifically an epoxy group-containing (meta ) One or more epoxy group-containing monomers selected from acrylic acid esters and non-acrylic epoxy group-containing monomers, and various (meth) acrylic acid esters and / or non-acrylic epoxies having no epoxy group It consists of a non-group-containing monomer. In this case, when the epoxy group-containing monomer is composed only of a non-acrylic epoxy group-containing monomer, the monomer constituting the acrylic polymer is various (meth) acrylic acid esters having no epoxy group. including.
Examples of the epoxy group-containing (meth) acrylic acid ester include glycidyl (meth) acrylate, β-methylglycidyl (meth) acrylate, (3,4-epoxycyclohexyl) methyl (meth) acrylate, and 3-epoxycyclo-2- Examples thereof include hydroxypropyl (meth) acrylate, and examples of the non-acrylic epoxy group-containing monomer include glycidyl crotonate and allyl glycidyl ether. As the epoxy group-containing monomer, an epoxy group-containing (meth) acrylic acid ester is preferable.
 アクリル系重合体を構成する単量体がエポキシ基含有単量体を含まない場合、(A1)アクリル系重合体を構成する単量体は、具体的には、水酸基含有(メタ)アクリル酸エステル、(メタ)アクリル酸アルキルエステル等の各種のエポキシ基を有しない(メタ)アクリル酸エステルと、必要に応じて併用されるスチレン、エチレン、ビニルエーテル、酢酸ビニル等の非アクリル系エポキシ基非含有単量体とからなる。 When the monomer constituting the acrylic polymer does not contain an epoxy group-containing monomer, (A1) the monomer constituting the acrylic polymer is specifically a hydroxyl group-containing (meth) acrylic ester. (Meth) acrylic acid esters not having various epoxy groups such as (meth) acrylic acid alkyl esters and non-acrylic epoxy group-free single substances such as styrene, ethylene, vinyl ether, vinyl acetate, etc. It consists of a mass.
 (A1)アクリル系重合体を構成する単量体としては、(メタ)アクリル酸アルキルエステルを含むことが好ましい。これにより、(メタ)アクリル酸アルキルエステルの炭素数の増減や、異なる炭素数の(メタ)アクリル酸アルキルエステルの組み合わせにより、(A1)アクリル系重合体のガラス転移温度を調整することが容易となる。(メタ)アクリル酸アルキルエステルは、(A1)アクリル系重合体を構成する全単量体の50質量%以上であることが好ましく、70質量%以上であることがより好ましい。また、(メタ)アクリル酸アルキルエステルが、(A1)アクリル系重合体を構成する全単量体の質量に占める割合の上限については、特に制限はないが、95質量%以下であれば、(メタ)アクリル酸アルキルエステル以外の単量体を共重合し、適宜(A1)アクリル系重合体の特性を制御することが可能となるため好ましい。
 (メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル等、アルキル基の炭素数が1~18の(メタ)アクリル酸アルキルエステルが挙げられる。
(A1) The monomer constituting the acrylic polymer preferably contains a (meth) acrylic acid alkyl ester. This makes it easy to adjust the glass transition temperature of the (A1) acrylic polymer by increasing or decreasing the number of carbon atoms of the (meth) acrylic acid alkyl ester or by combining the (meth) acrylic acid alkyl esters having different carbon numbers. Become. The (meth) acrylic acid alkyl ester is preferably 50% by mass or more, and more preferably 70% by mass or more, based on the total monomers constituting the (A1) acrylic polymer. In addition, the upper limit of the ratio of the (meth) acrylic acid alkyl ester to the mass of all monomers constituting the (A1) acrylic polymer is not particularly limited. It is preferable because monomers other than the (meth) acrylic acid alkyl ester can be copolymerized to appropriately control the properties of the (A1) acrylic polymer.
Examples of (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, and (meth) acrylic acid. 2-ethylhexyl, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, etc. And (meth) acrylic acid alkyl esters having an alkyl group with 1 to 18 carbon atoms.
 また、(A1)アクリル系重合体を構成する単量体は、上記(メタ)アクリル酸アルキルエステルのうち、アルキル基の炭素数が4以上の(メタ)アクリル酸アルキルエステルを含有せず、又はアルキル基の炭素数が4以上の(メタ)アクリル酸アルキルエステルを、(A1)アクリル系重合体を構成する全単量体の12質量%以下の割合で含有することが好ましい。これにより、後述するガラス転移温度が容易に-3℃以上になり、信頼性を向上させやすくなる。
 (A1)アクリル系重合体を構成する単量体が、アルキル基の炭素数が4以上の(メタ)アクリル酸アルキルエステルを含む場合、その含有量は、例えば(A1)アクリル系重合体を構成する全単量体の1質量%以上、好ましくは5質量%以上である。
 当該アルキル基の炭素数が4以上の(メタ)アクリル酸アルキルエステルとしては、炭素数4~8のものが好ましく、炭素数4の(メタ)アクリル酸ブチルがより好ましい。
In addition, the monomer constituting the (A1) acrylic polymer does not contain a (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group among the above (meth) acrylic acid alkyl esters, or It is preferable to contain (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group in a proportion of 12% by mass or less of the total monomer constituting (A1) acrylic polymer. Thereby, the glass transition temperature described later easily becomes −3 ° C. or higher, and the reliability is easily improved.
(A1) When the monomer constituting the acrylic polymer contains a (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group, the content of the monomer constitutes (A1) acrylic polymer, for example. 1% by mass or more, preferably 5% by mass or more, based on the total monomers.
The alkyl group having 4 or more carbon atoms in the alkyl group is preferably an alkyl ester having 4 to 8 carbon atoms, more preferably butyl (meth) acrylate having 4 carbon atoms.
 また、(A1)アクリル系重合体を構成する単量体は、上記(メタ)アクリル酸アルキルエステルのうち、アルキル基の炭素数が3以下の(メタ)アクリル酸アルキルエステルを含有することが好ましい。アルキル基の炭素数が3以下の(メタ)アクリル酸アルキルエステルを含有することにより、熱安定性等を良好にしつつも、(A1)アクリル系重合体のガラス転移温度を後述するように-3℃以上としやすくなる。これらの観点から、アルキル基の炭素数が3以下の(メタ)アクリル酸アルキルエステルは、(A1)アクリル系重合体を構成する全単量体の50質量%以上であることが好ましく、60質量%以上であることがより好ましい。また、アルキル基の炭素数が3以下の(メタ)アクリル酸アルキルエステルは、(A1)アクリル系重合体を構成する全単量体の90質量%以下であることが好ましい。また、当該アルキル基の炭素数が3以下の(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル又は(メタ)アクリル酸エチルが好ましく、(メタ)アクリル酸メチルがより好ましい。 Moreover, it is preferable that the monomer which comprises (A1) acrylic polymer contains the (meth) acrylic-acid alkylester whose carbon number of an alkyl group is 3 or less among the said (meth) acrylic-acid alkylester. . By containing (meth) acrylic acid alkyl ester having 3 or less carbon atoms in the alkyl group, the thermal stability and the like are improved, and the glass transition temperature of (A1) acrylic polymer is −3 as described later. It becomes easy to be over ℃. From these viewpoints, the alkyl group (meth) acrylic acid alkyl ester having 3 or less carbon atoms in the alkyl group is preferably 50% by mass or more based on the total monomers constituting the (A1) acrylic polymer. % Or more is more preferable. Moreover, it is preferable that the (meth) acrylic-acid alkylester whose carbon number of an alkyl group is 3 or less is 90 mass% or less of all the monomers which comprise (A1) acrylic polymer. Moreover, as a (meth) acrylic-acid alkylester whose carbon number of the said alkyl group is 3 or less, methyl (meth) acrylate or ethyl (meth) acrylate is preferable, and methyl (meth) acrylate is more preferable.
 (A1)アクリル系重合体を構成する単量体が、(メタ)アクリル酸アルキルエステルを含有する場合、(メタ)アクリル酸アルキルエステル全体における、アルキル基の炭素数が4以上の(メタ)アクリル酸アルキルエステルとアルキル基の炭素数が3以下の(メタ)アクリル酸アルキルエステルの質量比率は、0/100~15/85であることが好ましい。これにより、後述するガラス転移温度が容易に-3℃以上になり、信頼性を向上させやすくなる。 (A1) When the monomer constituting the acrylic polymer contains (meth) acrylic acid alkyl ester, (meth) acrylic having 4 or more carbon atoms in the alkyl group in the entire (meth) acrylic acid alkyl ester The mass ratio of the acid alkyl ester and the (meth) acrylic acid alkyl ester having 3 or less carbon atoms in the alkyl group is preferably 0/100 to 15/85. Thereby, the glass transition temperature described later easily becomes −3 ° C. or higher, and the reliability is easily improved.
 さらに、(A1)アクリル系重合体を構成する単量体は、エポキシ基を含有しない(メタ)アクリル酸エステルとして、水酸基含有(メタ)アクリル酸エステルを含んでもよい。水酸基含有(メタ)アクリル酸エステルにより、アクリル系共重合体に水酸基が導入されると、半導体チップへの密着性や粘着特性のコントロールが容易になる。水酸基含有(メタ)アクリル酸エステルとしては、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル等が挙げられる。
 水酸基含有(メタ)アクリル酸エステルは、(A1)アクリル系重合体を構成する全単量体の1~30質量%であることが好ましく、5~25質量%であることがより好ましく、10~20質量%であることがさらに好ましい。
Further, the monomer constituting the (A1) acrylic polymer may contain a hydroxyl group-containing (meth) acrylic acid ester as a (meth) acrylic acid ester not containing an epoxy group. When the hydroxyl group is introduced into the acrylic copolymer by the hydroxyl group-containing (meth) acrylic acid ester, it becomes easy to control the adhesion to the semiconductor chip and the adhesive property. Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and the like.
The hydroxyl group-containing (meth) acrylic acid ester is preferably 1 to 30% by mass, more preferably 5 to 25% by mass of the total monomers constituting the (A1) acrylic polymer. More preferably, it is 20 mass%.
 また、(A1)アクリル系重合体を構成する単量体は、上記したようにスチレン、エチレン、ビニルエーテル、酢酸ビニル等の非アクリル系エポキシ基非含有単量体を含んでいてもよい。 (A1) The monomer constituting the acrylic polymer may contain a non-acrylic epoxy group-free monomer such as styrene, ethylene, vinyl ether, vinyl acetate as described above.
 (A1)アクリル系重合体の重量平均分子量(Mw)は、樹脂層αに可撓性、造膜性を付与できるようにするために、10,000以上であることが好ましい。また、上記重量平均分子量は、より好ましくは15,000~1,000,000、さらに好ましくは20,000~500,000である。なお、本発明において重量平均分子量(Mw)は、後述するように、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン換算で測定したものをいう。 (A1) The weight average molecular weight (Mw) of the acrylic polymer is preferably 10,000 or more so that the resin layer α can be provided with flexibility and film-forming properties. The weight average molecular weight is more preferably 15,000 to 1,000,000, still more preferably 20,000 to 500,000. In addition, in this invention, a weight average molecular weight (Mw) means what was measured in standard polystyrene conversion by the gel permeation chromatography (GPC) method so that it may mention later.
 本発明において(A1)アクリル系重合体は、そのガラス転移温度が、-3℃以上となるものである。ガラス転移温度が-3℃未満となると、(A1)アクリル系重合体の運動性が十分に抑制されず、保護膜が熱履歴に起因して変形しやすくなり、保護膜付きチップの信頼性を十分に向上させることができない。なお、本発明において、ガラス転移温度は、Foxの式より求められる理論値である。
 また、(A1)アクリル系重合体のガラス転移温度は、30℃以下であることが好ましく、15℃以下であることがより好ましい。ガラス転移温度が30℃以下であることにより、硬化前の保護膜形成層のウエハの表面形状への追従性が維持される。その結果、チップに対する高い接着性を確保でき、信頼性を良好なものとすることができる。
In the present invention, the (A1) acrylic polymer has a glass transition temperature of −3 ° C. or higher. When the glass transition temperature is less than −3 ° C., the mobility of the (A1) acrylic polymer is not sufficiently suppressed, and the protective film is likely to be deformed due to the thermal history, thereby improving the reliability of the chip with the protective film. It cannot be improved sufficiently. In the present invention, the glass transition temperature is a theoretical value obtained from the Fox equation.
The glass transition temperature of the (A1) acrylic polymer is preferably 30 ° C. or lower, and more preferably 15 ° C. or lower. When the glass transition temperature is 30 ° C. or lower, the followability to the surface shape of the wafer of the protective film forming layer before curing is maintained. As a result, high adhesion to the chip can be ensured, and reliability can be improved.
 樹脂層αは、エポキシ基含有単量体由来成分を全く含まず、またその含有量が少ない量に抑えられることで、保護膜において(A1)成分に富む相と、後述する(B1)成分の硬化物に富む相が相分離しやすくなり、保護膜付きチップの信頼性が向上する。これは、チップ実装後に温度変化を経た場合であっても、温度変化に起因した変形による応力を、柔軟な(A1)に富む相が緩和するために、応力による保護膜の剥離が生じにくくなるためと推定される。また、熱硬化後の樹脂層αにおける相分離は、(A1)に富む相が連続相を形成していることが好ましい。これにより、上述した信頼性向上の効果をさらに高めることができる。なお、ここでいう(A1)成分は、(A1)成分が架橋されている場合、(A1)成分の架橋物も含めたものとする。 The resin layer α does not contain any component derived from the epoxy group-containing monomer, and the content of the resin layer α is suppressed to a small amount, so that the phase rich in the component (A1) in the protective film and the component (B1) described later The phase rich in the cured product is easily phase-separated, and the reliability of the chip with the protective film is improved. This is because even when the temperature changes after chip mounting, the stress caused by the deformation due to the temperature change is relaxed by the flexible (A1) rich phase, so that the protective film is hardly peeled off due to the stress. It is estimated that. Moreover, as for the phase separation in the resin layer α after thermosetting, it is preferable that the phase rich in (A1) forms a continuous phase. As a result, the above-described reliability improvement effect can be further enhanced. In addition, the (A1) component here includes the crosslinked product of the (A1) component when the (A1) component is crosslinked.
 (A1)に富む相と(B1)の硬化物に富む相は、たとえばラマン散乱分光測定により、ある相の測定チャートから、どのような物質がその相の主成分となっているかを観察することで判別することができる。また、相分離構造の大きさがラマン分光法の分解能以下の場合、SPM(走査型プローブ顕微鏡)のタッピングモード測定の硬さを指標に、より硬い方が(B1)成分の硬化物に富む相であり、より柔らかい方が(A1)成分に富む相であることを推定することができる。そのため、本発明では、保護膜形成用フィルムを硬化して得た保護膜を、ラマン散乱分光測定やSPM観察することにより、相分離構造が形成されているか否かを確認できる。 For the phase rich in (A1) and the phase rich in the cured product of (B1), for example, observe what substance is the main component of the phase from the measurement chart of the phase by Raman scattering spectroscopy. Can be determined. If the size of the phase separation structure is less than the resolution of Raman spectroscopy, the hardness of the tapping mode measurement of SPM (scanning probe microscope) is used as an index, and the harder phase is rich in the cured product of component (B1). It can be estimated that the softer is the phase rich in the component (A1). Therefore, in this invention, it can be confirmed whether the phase-separation structure is formed by Raman scattering spectroscopy measurement or SPM observation of the protective film obtained by hardening | curing the film for protective film formation.
 なお、(A1)アクリル系重合体は、樹脂層αの全質量(固形分換算)に占める割合として、通常5~80質量%、好ましくは10~50質量%である。 The (A1) acrylic polymer is usually 5 to 80% by mass, preferably 10 to 50% by mass as a proportion of the total mass (solid content conversion) of the resin layer α.
<(A2)重合体>
 樹脂層βに含有される(A2)重合体は、樹脂層βに可撓性、シート形状維持性を付与することを主目的とした成分である。(A2)重合体は、樹脂層αに含有される(A1)アクリル系重合体と異なる重合体である。ここで、(A1)アクリル系重合体と異なる重合体とは、アクリル系重合体であるが、その組成が(A1)アクリル系重合体と異なる(A2-1)アクリル系重合体であるか、或いは、重合体の種類自体が異なり、アクリル系重合体以外の重合体であるもののいずれかである。(A2)重合体として使用されるアクリル系重合体以外の重合体としては、好ましくはフェノキシ樹脂が挙げられる。
 本発明において、樹脂層βは、(A1)アクリル系重合体と異なる重合体である(A2)重合体を含有することにより、樹脂層αと異なる特性を持つことができる。そのため、樹脂層βのグロス値を高いものとして、樹脂層βのレーザー印字性を良好にすることができる。
<(A2) Polymer>
The (A2) polymer contained in the resin layer β is a component whose main purpose is to impart flexibility and sheet shape maintenance to the resin layer β. The (A2) polymer is a polymer different from the (A1) acrylic polymer contained in the resin layer α. Here, the polymer different from the (A1) acrylic polymer is an acrylic polymer, but the composition is different from the (A1) acrylic polymer (A2-1) an acrylic polymer, Alternatively, the polymer itself is different, and the polymer is any polymer other than the acrylic polymer. (A2) The polymer other than the acrylic polymer used as the polymer is preferably a phenoxy resin.
In the present invention, the resin layer β can have different characteristics from the resin layer α by containing the polymer (A2) which is a polymer different from the (A1) acrylic polymer. Therefore, the laser printability of the resin layer β can be improved by increasing the gloss value of the resin layer β.
((A2-1)アクリル系重合体)
 (A2)重合体として使用される(A2-1)アクリル系重合体は、エポキシ基含有単量体と、他の単量体とを共重合して得られるアクリル系重合体であって、そのエポキシ基含有単量体が(A2-1)アクリル系重合体を構成する全単量体の8質量%より高い割合で含有されるもの、又は、ガラス転移温度が-3℃未満であるアクリル系重合体であることが好ましい。
 (A2-1)アクリル系重合体は、エポキシ基含有単量体の割合が8質量%より多くなることで、後述するように(A2)成分と(B2)成分の硬化物との相溶性が向上する。その結果、樹脂層βの硬化後のグロス値が高くなることで、レーザー印字性が向上しやくなる。また、エポキシ基含有単量体を8質量%より高い割合で含まなくても、ガラス転移温度が-3℃未満であることにより、後述するグロス値を高くしやすく、印字の認識性を高くすることができる。特に、樹脂層βが含有する(E2)充填材の粒径が相対的に大きい場合、例えば1μm以上である場合において、(A2-1)アクリル系重合体のガラス転移温度が-3℃未満であることにより、後述するグロス値を高く維持できる傾向がある。また、この場合における上記の傾向は、樹脂層βにおける(E2)充填材の含有量が多いほど顕著である。この理由は、次のとおりと考えられる。(E2)充填材の粒径が相対的に大きい場合には、熱硬化中の樹脂層βの体積収縮により(E2)充填材に起因した凹凸が樹脂層βの表面に現れ、グロス値の低下の原因となりうる。しかしながら、(A2-1)アクリル系重合体のガラス転移温度が-3℃未満であると、樹脂層βの体積収縮が緩和されやすい。したがって、樹脂層βのグロス値の低下を抑制できる。
 また、(A2-1)アクリル系重合体は、エポキシ基含有単量体を8質量%より多く含み,かつガラス転移温度が-3℃未満であれば、レーザー印字性が更に向上するためより好ましい。
((A2-1) Acrylic polymer)
(A2) The acrylic polymer (A2-1) used as a polymer is an acrylic polymer obtained by copolymerizing an epoxy group-containing monomer and another monomer, The epoxy group-containing monomer is contained in a proportion higher than 8% by mass of the total monomer constituting the (A2-1) acrylic polymer, or an acrylic system having a glass transition temperature of less than −3 ° C. A polymer is preferred.
(A2-1) The acrylic polymer has a compatibility of the cured product of the component (A2) and the component (B2) as will be described later, because the proportion of the epoxy group-containing monomer is more than 8% by mass. improves. As a result, the gloss value after curing of the resin layer β is increased, so that the laser printability is easily improved. Even if the epoxy group-containing monomer is not contained in a proportion higher than 8% by mass, the glass transition temperature is less than −3 ° C., so that the gloss value described later can be easily increased and the print recognizability is increased. be able to. In particular, when the particle size of the (E2) filler contained in the resin layer β is relatively large, for example, 1 μm or more, the glass transition temperature of the (A2-1) acrylic polymer is less than −3 ° C. There exists a tendency which can maintain the gloss value mentioned later highly. Moreover, said tendency in this case is so remarkable that there is much content of the (E2) filler in resin layer (beta). The reason is considered as follows. (E2) When the particle size of the filler is relatively large, the unevenness due to the filler (E2) appears on the surface of the resin layer β due to the volume shrinkage of the resin layer β during thermosetting, and the gloss value decreases. Can cause However, if the glass transition temperature of the (A2-1) acrylic polymer is less than −3 ° C., the volume shrinkage of the resin layer β tends to be relaxed. Therefore, a decrease in the gloss value of the resin layer β can be suppressed.
Further, the (A2-1) acrylic polymer contains more than 8% by mass of an epoxy group-containing monomer, and if the glass transition temperature is less than −3 ° C., the laser printability is further improved, which is more preferable. .
 上記の観点からエポキシ基含有単量体は、(A2-1)アクリル系重合体を構成する全単量体の10質量%以上の割合で含有されることが特に好ましい。また、エポキシ基含有単量体は、(A2-1)アクリル系重合体を構成する全単量体の30質量%以下の割合で含有されることが好ましく、25質量%以下の割合で含有されることがより好ましい。なお、エポキシ基含有単量体の、(A2-1)アクリル系重合体を構成する全単量体に占める質量割合が、かかる上限以下の範囲にあれば、(A2-1)アクリル系重合体のガラス転移温度を-3℃未満とすることがより容易となる。
 また、(A2-1)アクリル系重合体のガラス転移温度は、上記の観点から-10℃以下であることがより好ましく、-15℃以下であることが特に好ましい。また、(A2-1)アクリル系重合体のガラス転移温度は、-50℃以上が好ましく、-30℃以上がより好ましい。
From the above viewpoint, it is particularly preferable that the epoxy group-containing monomer is contained in a proportion of 10% by mass or more based on the total monomers constituting the (A2-1) acrylic polymer. The epoxy group-containing monomer is preferably contained in a proportion of 30% by mass or less of the total monomers constituting the (A2-1) acrylic polymer, and contained in a proportion of 25% by mass or less. More preferably. If the mass ratio of the epoxy group-containing monomer to the total monomers constituting the (A2-1) acrylic polymer is within the upper limit, (A2-1) the acrylic polymer. It becomes easier to set the glass transition temperature to less than −3 ° C.
Further, the glass transition temperature of the (A2-1) acrylic polymer is more preferably −10 ° C. or less, and particularly preferably −15 ° C. or less from the above viewpoint. The glass transition temperature of the (A2-1) acrylic polymer is preferably −50 ° C. or higher, and more preferably −30 ° C. or higher.
 (A2-1)アクリル系重合体を構成する単量体は、より具体的にはエポキシ基含有(メタ)アクリル酸エステルおよび非アクリル系エポキシ基含有単量体から選択される1種以上のエポキシ基含有単量体と、エポキシ基を有しない各種の(メタ)アクリル酸エステル及び/又は非アクリル系エポキシ基非含有単量体とからなる。この場合、エポキシ基含有単量体が非アクリル系エポキシ基含有単量体のみからなる場合は、アクリル系重合体を構成する単量体は、エポキシ基を有しない各種の(メタ)アクリル酸エステルを含む。
 エポキシ基含有単量体としては、上記(A1)アクリル系重合体に使用可能なものとして列挙したものが使用可能であり、エポキシ基含有(メタ)アクリル酸エステルが使用されることが好ましい。
(A2-1) The monomer constituting the acrylic polymer is more specifically one or more epoxy selected from an epoxy group-containing (meth) acrylic acid ester and a non-acrylic epoxy group-containing monomer. It consists of a group-containing monomer and various (meth) acrylic acid esters and / or non-acrylic epoxy group-free monomers having no epoxy group. In this case, when the epoxy group-containing monomer is composed only of a non-acrylic epoxy group-containing monomer, the monomer constituting the acrylic polymer is various (meth) acrylic acid esters having no epoxy group. including.
As an epoxy group containing monomer, what was enumerated as what can be used for said (A1) acrylic polymer can be used, and it is preferable that an epoxy group containing (meth) acrylic ester is used.
 (A2-1)アクリル系重合体を構成する単量体は、エポキシ基を有しない(メタ)アクリル酸エステルとして、(メタ)アクリル酸アルキルエステルを含むことが好ましい。これにより、(メタ)アクリル酸アルキルエステルの炭素数の増減や、異なる炭素数の(メタ)アクリル酸アルキルエステルの組み合わせにより、(A2-1)アクリル系重合体のガラス転移温度を調整することが容易となる。(メタ)アクリル酸アルキルエステルは、(A2-1)アクリル系重合体を構成する全単量体の45質量%以上であることが好ましく、60質量%以上であることがより好ましい。また、(メタ)アクリル酸アルキルエステルは、(A2-1)アクリル系重合体を構成する全単量体の90質量%以下であることが好ましい。
 (メタ)アクリル酸アルキルエステルとしては、上記で(A1)アクリル系重合体に使用可能な(メタ)アクリル酸アルキルエステルとして列挙したものが適宜使用される。
The monomer constituting the (A2-1) acrylic polymer preferably contains a (meth) acrylic acid alkyl ester as the (meth) acrylic ester having no epoxy group. Thus, the glass transition temperature of the (A2-1) acrylic polymer can be adjusted by increasing or decreasing the carbon number of the (meth) acrylic acid alkyl ester or by combining the (meth) acrylic acid alkyl esters having different carbon numbers. It becomes easy. The (meth) acrylic acid alkyl ester is preferably 45% by mass or more, more preferably 60% by mass or more, based on the total monomers constituting the (A2-1) acrylic polymer. Moreover, it is preferable that (meth) acrylic-acid alkylester is 90 mass% or less of all the monomers which comprise the (A2-1) acrylic polymer.
As (meth) acrylic acid alkyl esters, those listed above as (meth) acrylic acid alkyl esters usable for (A1) acrylic polymers are used as appropriate.
 (A2-1)アクリル系重合体を構成する単量体は、上記(メタ)アクリル酸アルキルエステルのうち、アルキル基の炭素数が2以上の(メタ)アクリル酸アルキルエステルを、(A2-1)アクリル系重合体を構成する全単量体の12質量%より多い量で含有することが好ましい。これにより、ガラス転移温度が低くなってグロス値が向上して、レーザー印字の識別性を向上させることができる。このような観点から、アルキル基の炭素数が2以上の(メタ)アクリル酸アルキルエステルの上記含有量は、より好ましくは15質量%以上、特に好ましくは30質量%以上である。
 また、アルキル基の炭素数が2以上の(メタ)アクリル酸アルキルエステルの上記含有量は、好ましくは75質量%以下、より好ましくは65質量%以下、特に好ましくは60質量%以下である。このように、含有量を所定の上限値以下とすると、(B2)成分との相溶性が向上して、グロス値をより高い値とすることが可能になる。
 当該(メタ)アクリル酸アルキルエステルは、アルキル基の炭素数が2~6である(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等が好ましく、炭素数が4である(メタ)アクリル酸ブチルがより好ましい。
(A2-1) The monomer constituting the acrylic polymer is a (meth) acrylic acid alkyl ester having 2 or more alkyl groups in the above (meth) acrylic acid alkyl ester, (A2-1) ) It is preferably contained in an amount of more than 12% by mass of all monomers constituting the acrylic polymer. Thereby, the glass transition temperature is lowered, the gloss value is improved, and the discrimination of laser printing can be improved. From such a viewpoint, the content of the (meth) acrylic acid alkyl ester having 2 or more carbon atoms in the alkyl group is more preferably 15% by mass or more, and particularly preferably 30% by mass or more.
The content of the alkyl group (meth) acrylic acid alkyl ester having 2 or more carbon atoms in the alkyl group is preferably 75% by mass or less, more preferably 65% by mass or less, and particularly preferably 60% by mass or less. Thus, when content is below a predetermined | prescribed upper limit, compatibility with (B2) component will improve and it will become possible to make a gross value a higher value.
The (meth) acrylic acid alkyl ester is preferably ethyl (meth) acrylate having 2 to 6 carbon atoms in the alkyl group, butyl (meth) acrylate, or the like, and butyl (meth) acrylate having 4 carbon atoms. Is more preferable.
 また、(A2-1)アクリル系重合体を構成する単量体は、上記(メタ)アクリル酸アルキルエステルのうち、アルキル基の炭素数が1である(メタ)アクリル酸メチルを含有することが好ましい。(メタ)アクリル酸メチルを含有することにより、(A2-1)アクリル系重合体の極性を低下させ、(B2)成分との相溶性を良好にすることができる。その結果、樹脂層βのグロス値を向上させることができる。
 これらの観点から、(メタ)アクリル酸メチルは、(A2-1)アクリル系重合体を構成する全単量体の1質量%以上であることが好ましく、8質量%以上であることがより好ましい。また、(メタ)アクリル酸メチルは、(A2-1)アクリル系重合体を構成する全単量体の75質量%以下であることが好ましく、50質量%以下であることがより好ましい。
Moreover, the monomer which comprises (A2-1) acrylic polymer may contain methyl (meth) acrylate whose carbon number of an alkyl group is 1 among the said (meth) acrylic acid alkylesters. preferable. By containing methyl (meth) acrylate, the polarity of the (A2-1) acrylic polymer can be reduced and the compatibility with the component (B2) can be improved. As a result, the gloss value of the resin layer β can be improved.
From these viewpoints, the methyl (meth) acrylate is preferably 1% by mass or more, more preferably 8% by mass or more of the total monomer constituting the (A2-1) acrylic polymer. . The methyl (meth) acrylate is preferably 75% by mass or less, and more preferably 50% by mass or less, based on the total amount of monomers constituting the (A2-1) acrylic polymer.
 (A2-1)アクリル系重合体を構成する単量体が、(メタ)アクリル酸アルキルエステルを含有する場合、(メタ)アクリル酸アルキルエステル全体における、アルキル基の炭素数が2以上の(メタ)アクリル酸アルキルエステルとアルキル基の炭素数が1である(メタ)アクリル酸メチルの質量比率は、15/85~100/0であることが好ましい。これにより、(A2-1)アクリル系重合体を構成する単量体のガラス転移温度を-3℃未満とすることが容易となる。また、この質量比率は、35/70~90/10であることがより好ましい。 (A2-1) When the monomer constituting the acrylic polymer contains a (meth) acrylic acid alkyl ester, the total number of carbon atoms in the alkyl group in the entire (meth) acrylic acid alkyl ester is (meth) ) The mass ratio of alkyl acrylate and methyl (meth) acrylate having an alkyl group of 1 is preferably 15/85 to 100/0. Thereby, it becomes easy to set the glass transition temperature of the monomer constituting the (A2-1) acrylic polymer to less than −3 ° C. The mass ratio is more preferably 35/70 to 90/10.
 さらに、(A2-1)アクリル系重合体を構成する単量体は、エポキシ基を有しない(メタ)アクリル酸エステルとして、水酸基含有(メタ)アクリル酸エステルを含むことが好ましい。水酸基含有(メタ)アクリル酸エステルにより、アクリル系共重合体に水酸基が導入されると、粘着特性等のコントロールが容易になる。水酸基含有(メタ)アクリル酸エステルとしては、上記で(A1)アクリル系重合体に使用可能な水酸基含有(メタ)アクリル酸エステルとして列挙した化合物を適宜使用することができる。
 水酸基含有(メタ)アクリル酸エステルは、(A2)アクリル系重合体を構成する全単量体の1~30質量%であることが好ましく、5~25質量%であることがより好ましく、10~20質量%であることがさらに好ましい。
Further, the monomer constituting the (A2-1) acrylic polymer preferably contains a hydroxyl group-containing (meth) acrylic acid ester as a (meth) acrylic acid ester having no epoxy group. When the hydroxyl group is introduced into the acrylic copolymer by the hydroxyl group-containing (meth) acrylic acid ester, it is easy to control the adhesive property and the like. As the hydroxyl group-containing (meth) acrylic acid ester, the compounds listed above as the hydroxyl group-containing (meth) acrylic acid ester that can be used for the (A1) acrylic polymer can be appropriately used.
The hydroxyl group-containing (meth) acrylic acid ester is preferably 1 to 30% by mass, more preferably 5 to 25% by mass of the total monomers constituting the (A2) acrylic polymer. More preferably, it is 20 mass%.
 また、(A2-1)アクリル系重合体を構成する単量体は、上記したようにスチレン、エチレン、ビニルエーテル、酢酸ビニル等の非アクリル系エポキシ基非含有単量体を含んでいてもよい。 In addition, the monomer constituting the (A2-1) acrylic polymer may include a non-acrylic epoxy group-free monomer such as styrene, ethylene, vinyl ether, vinyl acetate, as described above.
 (A2-1)アクリル系重合体の重量平均分子量(Mw)は、樹脂層βに可撓性、造膜性を付与できるとともに、後述するグロス値を20以上としやすくするために、10,000以上であることが好ましい。また、上記重量平均分子量は、より好ましくは15,000~1,000,000、さらに好ましくは20,000~500,000である。 (A2-1) The weight average molecular weight (Mw) of the acrylic polymer can give flexibility and film-forming property to the resin layer β, and in order to make the gloss value described later easily 20 or more, 10,000. The above is preferable. The weight average molecular weight is more preferably 15,000 to 1,000,000, still more preferably 20,000 to 500,000.
 樹脂層βは、熱硬化後、(A2)成分に富む相と、後述する(B2)成分の硬化物に富む相が相溶していることが好ましい。このような相溶状態となると、グロス値が上がり、樹脂層βに対するレーザー印字性が向上する。これは相溶することにより、硬化後の樹脂層表面の平滑性が向上したためだと推察する。なお、ここでいう(A2)成分は、(A2)成分が架橋されている場合、(A2)成分の架橋物も含めたものとする。
 (A2)成分に富む相と、(B2)成分の硬化物に富む相の判別方法は、上記した(A1)に富む相と(B1)の硬化物に富む相の判別方法と同様である。
In the resin layer β, it is preferable that a phase rich in the component (A2) and a phase rich in the cured product of the component (B2) described later are compatible after thermosetting. In such a compatible state, the gloss value increases and the laser printability for the resin layer β is improved. This is presumably because the compatibility improved the smoothness of the surface of the resin layer after curing. In addition, the component (A2) here includes the crosslinked product of the component (A2) when the component (A2) is crosslinked.
The method for discriminating between the phase rich in the component (A2) and the phase rich in the cured product of the component (B2) is the same as the method of discriminating the phase rich in the (A1) and the phase rich in the cured product of (B1).
 (A2)重合体は、樹脂層βの全質量(固形分換算)に占める割合として、通常5~80質量%、好ましくは10~50質量%である。 (A2) The polymer is generally 5 to 80% by mass, preferably 10 to 50% by mass, based on the total mass (solid content conversion) of the resin layer β.
<(B1)(B2)エポキシ系硬化性成分>
 樹脂層α、βそれぞれに使用される(B1)(B2)エポキシ系硬化性成分は、硬化により硬質の保護膜を半導体チップ上に形成させるための成分であり、通常、エポキシ系化合物および熱硬化剤からなる。
 樹脂層αにおいて、(B1)エポキシ系硬化性成分中のエポキシ系化合物に対する(A1)アクリル系重合体の質量比(以下単に“質量比X1”ともいう)は、0.25以上が好ましく、0.5以上がより好ましい。また、2.0以下が好ましく、1.5以下がより好ましい。質量比X1を上記範囲にすることにより、後述する剥離シートとの剥離力が適切となり、剥離シートを保護膜形成用フィルムから剥離する際の剥離不良等が防止できる。また、質量比X1を上記下限値以上に制限することで、樹脂層αにおいて(A1)成分に富む相が連続相となりやすく、半導体チップの信頼性を高めることができる。
<(B1) (B2) Epoxy curable component>
The (B1) and (B2) epoxy-based curable components used for the resin layers α and β are components for forming a hard protective film on the semiconductor chip by curing. Usually, epoxy compounds and thermosetting are used. It consists of an agent.
In the resin layer α, the mass ratio of the (A1) acrylic polymer to the epoxy compound in the (B1) epoxy curable component (hereinafter also simply referred to as “mass ratio X1”) is preferably 0.25 or more. .5 or more is more preferable. Moreover, 2.0 or less is preferable and 1.5 or less is more preferable. By making mass ratio X1 into the said range, the peeling force with the peeling sheet mentioned later becomes suitable, and the peeling defect at the time of peeling a peeling sheet from the film for protective film formation etc. can be prevented. Further, by limiting the mass ratio X1 to the above lower limit value or more, the phase rich in the component (A1) in the resin layer α is likely to be a continuous phase, and the reliability of the semiconductor chip can be improved.
 また、樹脂層βにおいて、(B2)エポキシ系硬化性成分中のエポキシ系化合物に対する(A2)重合体の質量比(以下単に“質量比X2”ともいう)は、0.25以上が好ましく、0.5以上がより好ましい。また、2.0以下が好ましく、1.5以下がより好ましい。質量比X2が上記範囲にすることにより、後述する支持シートとの剥離力が適切となり、支持シートを保護膜形成用フィルムから剥離する際の剥離不良等が防止できる。また、質量比X2を上記下限値以上の範囲に制限することで、樹脂層βにおいて(A2)成分と(B2)成分の硬化物が相溶状態となって、グロス値が高い値になりやすい。 In the resin layer β, the mass ratio of the polymer (A2) to the epoxy compound in the (B2) epoxy curable component (hereinafter also simply referred to as “mass ratio X2”) is preferably 0.25 or more. .5 or more is more preferable. Moreover, 2.0 or less is preferable and 1.5 or less is more preferable. By making mass ratio X2 into the said range, the peeling force with the support sheet mentioned later becomes appropriate, and the peeling defect at the time of peeling a support sheet from the film for protective film formation etc. can be prevented. Further, by limiting the mass ratio X2 to a range equal to or higher than the lower limit value, the cured product of the component (A2) and the component (B2) in the resin layer β is in a compatible state, and the gloss value tends to be high. .
 上記質量比X1と、質量比X2は、互いに同一であってもよいし、異なっていてもよい。
 これら質量比が互いに異なる場合には、質量比X1と質量比X2のうち、いずれか小さいものの、いずれか大きいものに対する割合が、0.35以上であることが好ましく、より好ましくは0.6以上であり、さらに好ましくは0.85以上である。このように、質量比X1と、質量比X2を互いに近似させ、或いは同一にすると、樹脂層α、βを加熱等した場合の寸法変化率が互いに近似したものとなり、樹脂層αと樹脂層βの間で層間剥離が生じたりすることが防止されることによって、さらに保護膜付きチップの信頼性を向上させることができる。
The mass ratio X1 and the mass ratio X2 may be the same as or different from each other.
When these mass ratios are different from each other, it is preferable that the ratio of the smaller one of the mass ratio X1 and the mass ratio X2 to the larger one is 0.35 or more, more preferably 0.6 or more. More preferably, it is 0.85 or more. Thus, when the mass ratio X1 and the mass ratio X2 are approximated or the same, the dimensional change rates when the resin layers α and β are heated are approximated to each other, and the resin layer α and the resin layer β It is possible to further improve the reliability of the chip with a protective film by preventing delamination between the layers.
 (B1)(B2)エポキシ系硬化性成分に使用されるエポキシ系化合物としては、従来公知のエポキシ化合物を用いることができる。具体的には、ビフェニル化合物、ビスフェノールAジグリシジルエーテルやその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂など、分子中に2官能以上有するエポキシ化合物が挙げられる。これらは1種単独で、または2種以上を組み合わせて用いることができる。 (B1) (B2) As an epoxy-type compound used for an epoxy-type curable component, a conventionally well-known epoxy compound can be used. Specifically, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene An epoxy compound having two or more functional groups in the molecule, such as a skeleton type epoxy resin, can be given. These can be used individually by 1 type or in combination of 2 or more types.
 (B1)(B2)エポキシ系硬化性成分に使用される熱硬化剤は、エポキシ化合物に対する硬化剤として機能する。好ましい熱硬化剤としては、1分子中にエポキシ基と反応しうる官能基を2個以上有する化合物が挙げられる。その官能基としてはフェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシル基および酸無水物などが挙げられる。これらのうち好ましくはフェノール性水酸基、アミノ基、酸無水物などが挙げられ、さらに好ましくはフェノール性水酸基、アミノ基が挙げられる。 (B1) (B2) The thermosetting agent used for the epoxy-based curable component functions as a curing agent for the epoxy compound. A preferable thermosetting agent includes a compound having two or more functional groups capable of reacting with an epoxy group in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group, and an acid anhydride. Of these, phenolic hydroxyl groups, amino groups, acid anhydrides and the like are preferable, and phenolic hydroxyl groups and amino groups are more preferable.
 フェノール性水酸基を有するフェノール系硬化剤の具体的な例としては、多官能系フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、ザイロック型フェノール樹脂、アラルキルフェノール樹脂が挙げられる。アミノ基を有するアミン系硬化剤の具体的な例としては、ジシアンジアミドが挙げられる。これらは、1種単独で、または2種以上混合して使用することができる。 Specific examples of the phenolic curing agent having a phenolic hydroxyl group include polyfunctional phenolic resins, biphenols, novolac type phenolic resins, dicyclopentadiene type phenolic resins, zyloc type phenolic resins, and aralkylphenolic resins. A specific example of the amine curing agent having an amino group is dicyandiamide. These can be used individually by 1 type or in mixture of 2 or more types.
 また、各樹脂層α、βにおける熱硬化剤の含有量は、エポキシ化合物100質量部に対して、0.1~100質量部であることが好ましく、0.5~50質量部であることがより好ましく、1~20質量部であることがさらに好ましい。熱硬化剤の含有量を上記下限値以上とすることで、(B1)(B2)成分が硬化して、樹脂層α、βの接着性を得やすくなる。また、上記上限値以下とすることで、保護膜形成用フィルムの吸湿率が抑えられ、半導体装置の信頼性を良好にしやすくなる。 In addition, the content of the thermosetting agent in each of the resin layers α and β is preferably 0.1 to 100 parts by mass, and preferably 0.5 to 50 parts by mass with respect to 100 parts by mass of the epoxy compound. More preferred is 1 to 20 parts by mass. By making content of a thermosetting agent more than the said lower limit, (B1) (B2) component hardens | cures and it becomes easy to obtain the adhesiveness of resin layer (alpha) and (beta). Moreover, by setting it as the said upper limit or less, the moisture absorption rate of the film for protective film formation is suppressed, and it becomes easy to make the reliability of a semiconductor device favorable.
 (B1)(B2)エポキシ系硬化性成分それぞれは、樹脂層α、βそれぞれの全質量(固形分換算)に占める割合として、通常5~60質量%、好ましくは10~40質量%程度である。また、(B1)(B2)エポキシ系硬化性成分に使用される成分は、互いに同一であってもよいが、異なっていてもよい。 Each of the (B1) and (B2) epoxy-based curable components is usually about 5 to 60% by mass, preferably about 10 to 40% by mass as a proportion of the total mass (solid content conversion) of each of the resin layers α and β. . Moreover, although the component used for (B1) (B2) epoxy-type curable component may mutually be the same, you may differ.
<(C1)(C2)硬化促進剤>
 樹脂層α及び樹脂層βそれぞれには、エポキシ化合物の硬化速度を調整するために、(C1)硬化促進剤、及び(C2)硬化促進剤がそれぞれ配合されてもよい。
 好ましい(C1)(C2)硬化促進剤としては、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの3級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィンなどの有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。これらは1種単独で、または2種以上混合して使用することができる。
 (C1)(C2)硬化促進剤はそれぞれ、(B1)(B2)エポキシ系硬化性成分100質量部に対して、好ましくは0.01~10質量部、さらに好ましくは0.1~5質量部の量で含まれる。(C1)(C2)硬化促進剤を上記範囲の量で配合することにより、保護膜形成用フィルムは高温度高湿度下に曝されても優れた接着特性を有し、厳しい条件に曝された場合であっても高い信頼性を達成することができる。
  なお、(C1)(C2)硬化促進剤は、それぞれ(B1)(B2)エポキシ系硬化性成分100質量部に対して、互いに同じ質量部配合されてもよいし、異なる質量部配合されていてもよい。また、(C1)(C2)硬化促進剤はそれぞれ、同じ種類の硬化促進剤が使用されてもよいし、異なる種類の硬化促進剤が使用されてもよい。
<(C1) (C2) Curing accelerator>
Each of the resin layer α and the resin layer β may be blended with (C1) a curing accelerator and (C2) a curing accelerator in order to adjust the curing rate of the epoxy compound.
Preferred (C1) (C2) curing accelerators include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenyl Imidazoles such as imidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole; tributylphosphine, diphenylphosphine, triphenylphosphine Organic phosphines such as tetraphenylphosphonium tetraphenylborate and tetraphenylboron salts such as triphenylphosphine tetraphenylborate. These can be used individually by 1 type or in mixture of 2 or more types.
Each of (C1) and (C2) curing accelerator is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of (B1) and (B2) epoxy curable component. Included in the amount of. (C1) (C2) By blending the curing accelerator in an amount in the above range, the protective film-forming film has excellent adhesive properties even when exposed to high temperatures and high humidity, and was exposed to severe conditions. Even in this case, high reliability can be achieved.
In addition, the (C1) (C2) curing accelerator may be blended in the same or different mass parts with respect to 100 parts by mass of the (B1) (B2) epoxy-based curable component. Also good. In addition, (C1) and (C2) curing accelerators may be the same type of curing accelerator or different types of curing accelerators.
<(D1)(D2)着色剤>
 本発明において、樹脂層βは、(D2)着色剤を含有する。また、樹脂層αは、(D1)着色剤を含有していてもよい。樹脂層βは、(D2)着色剤を含有することで、保護膜形成用フィルムを硬化して得た保護膜に、製品番号やマーク等を印字した際の文字の識別性を向上させることができる。すなわち、半導体チップの保護膜を形成した背面には、品番等が通常レーザーマーキング法により印字されるが、樹脂層βが(D2)着色剤を含有することで、印字部分と、非印字部分のコントラスト差が大きくなり識別性が向上する。
 また、樹脂層α及び樹脂層βは、(D1)(D2)着色剤を含有することで、保護膜付きチップを機器に組み込んだ際、周囲の装置から発生する赤外線等を遮蔽して、半導体チップの誤作動を防止することができる。
<(D1) (D2) Colorant>
In the present invention, the resin layer β contains (D2) a colorant. In addition, the resin layer α may contain (D1) a colorant. The resin layer β contains (D2) a colorant, thereby improving the character identifiability when a product number or mark is printed on the protective film obtained by curing the protective film-forming film. it can. That is, the product number and the like are usually printed by the laser marking method on the back surface on which the protective film of the semiconductor chip is formed, but the resin layer β contains the (D2) colorant, so that the printed part and the non-printed part are printed. The contrast difference is increased and the discrimination is improved.
In addition, the resin layer α and the resin layer β contain (D1) and (D2) colorants, so that when a chip with a protective film is incorporated in a device, the resin layer α and the resin layer β are shielded from infrared rays and the like generated from surrounding devices. The malfunction of the chip can be prevented.
 (D1)(D2)着色剤としては、有機または無機の顔料又は染料が用いられる。染料としては、酸性染料、反応染料、直接染料、分散染料、カチオン染料等のいずれの染料であっても用いることが可能である。また、顔料も、特に制限されず、公知の顔料から適宜選択して用いることができる。
 これらの中では、電磁波や赤外線の遮蔽性が良好で、かつレーザーマーキング法による識別性をより向上させることが可能な黒色顔料がより好ましい。黒色顔料としては、カーボンブラック、酸化鉄、二酸化マンガン、アニリンブラック、活性炭等が用いられるが、これらに限定されることはない。半導体チップの信頼性を高める観点からは、カーボンブラックが特に好ましい。着色剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (D1)(D2)着色剤の含有率はそれぞれ、樹脂層α、βの全質量(固形分換算)に占める割合として、好ましくは0.01~25質量%、より好ましくは0.03~15質量%である。
 なお、(D1)(D2)着色剤の含有率は、互いに同じであってもよいし、異なっていてもよい。また、(D1)(D2)着色剤は同じ種類の着色剤が使用されてもよいし、異なる種類の着色剤が使用されてもよい。
(D1) (D2) As the colorant, organic or inorganic pigments or dyes are used. As the dye, any dye such as an acid dye, a reactive dye, a direct dye, a disperse dye, and a cationic dye can be used. The pigment is not particularly limited, and can be appropriately selected from known pigments.
In these, the black pigment which has favorable shielding property of electromagnetic waves and infrared rays, and can improve the discriminability by a laser marking method is more preferable. Examples of the black pigment include carbon black, iron oxide, manganese dioxide, aniline black, activated carbon, and the like, but are not limited thereto. Carbon black is particularly preferable from the viewpoint of increasing the reliability of the semiconductor chip. A coloring agent may be used individually by 1 type, and may be used in combination of 2 or more type.
(D1) (D2) The content of the colorant is preferably 0.01 to 25% by mass, more preferably 0.03 to 15% as a proportion of the total mass (solid content conversion) of the resin layers α and β, respectively. % By mass.
In addition, the content rate of (D1) (D2) coloring agent may mutually be the same, and may differ. In addition, the same type of colorant may be used as the colorant (D1) and (D2), or different types of colorant may be used.
  <(E1)(E2)充填材>
 本発明において、樹脂層βは、(E2)充填材を含有するものである。また、樹脂層αは、(E1)充填材を含有することが好ましい。
(E1)(E2)充填材は、保護膜に耐湿性、寸法安定性などを与える成分であって、具体的には無機フィラー等が挙げられる。また、樹脂層βにおいて、レーザーマーキング(レーザー光により保護膜表面を削り取り印字を行う方法)が施されてレーザー光により削り取られた部分(印字部分)は、(E2)充填材が露出して反射光を拡散させるため、非印字部分とのコントラストが向上し認識可能になる。
 好ましい無機フィラーとしては、シリカ、アルミナ、タルク、炭酸カルシウム、酸化チタン、酸化鉄、炭化珪素、窒化ホウ素等の粉末、これらを球形化したビーズ、球形ビーズ等を破砕したもの、単結晶繊維およびガラス繊維等が挙げられる。これらのなかでは、シリカフィラーおよびアルミナフィラーが特に好ましい。また、樹脂層βに使用される無機フィラーは、その形状が球形であると、グロス値をより向上できるため好ましい。
 無機フィラー等の充填材は、平均粒径が例えば0.3~50μm、好ましくは0.5~10μmであるが、樹脂層βに使用される無機フィラー等の充填材は、特に好ましくは1~5μmである。このような範囲であれば、樹脂層βにおけるグロス値を向上させやすくなる。また、樹脂層βの表面をレーザー等で削り取った際に、その部分に無機フィラーに起因した凹凸が形成されやすい。このため、レーザー等で削り取られていない部分とのコントラストが向上し、印字の認識性が向上する効果がある。平均粒径は、例えば、レーザー回折散乱式粒度分布測定装置を用いて測定した値である。具体的な粒度分布測定装置としては、日機装社製のNanotrac150等が挙げられる。
 上記無機フィラーは、単独でまたは2種以上を混合して使用することができる。また、樹脂層αと、樹脂層βにおいて使用される(E1)(E2)充填材それぞれは、同種のものであってもよいが、互いに異なるものが使用されてもよい。
<(E1) (E2) Filler>
In the present invention, the resin layer β contains (E2) a filler. Moreover, it is preferable that the resin layer (alpha) contains the (E1) filler.
(E1) (E2) The filler is a component that gives the protective film moisture resistance, dimensional stability, and the like, and specifically includes an inorganic filler. In addition, in the resin layer β, the laser marking (the method of performing the printing by scraping the surface of the protective film with the laser beam) and the portion (printing portion) scraped off with the laser beam (E2) is exposed and reflected by the filler. Since the light is diffused, the contrast with the non-printing portion is improved and recognition is possible.
Preferred inorganic fillers include silica, alumina, talc, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride and other powders, spheroidized beads, spherical beads, etc., single crystal fibers and glass Examples thereof include fibers. Of these, silica filler and alumina filler are particularly preferable. Further, the inorganic filler used for the resin layer β is preferably a spherical shape because the gloss value can be further improved.
The filler such as an inorganic filler has an average particle size of, for example, 0.3 to 50 μm, preferably 0.5 to 10 μm, but the filler such as an inorganic filler used for the resin layer β is particularly preferably 1 to 5 μm. If it is such a range, it will become easy to improve the gross value in the resin layer (beta). In addition, when the surface of the resin layer β is scraped off with a laser or the like, unevenness due to the inorganic filler is easily formed in that portion. For this reason, the contrast with the part which is not scraped off with a laser etc. improves, and there exists an effect which the recognition property of printing improves. The average particle diameter is, for example, a value measured using a laser diffraction / scattering particle size distribution measuring apparatus. Specific examples of the particle size distribution measuring apparatus include Nanotrac 150 manufactured by Nikkiso Co., Ltd.
The said inorganic filler can be used individually or in mixture of 2 or more types. Further, the fillers (E1) and (E2) used in the resin layer α and the resin layer β may be of the same type, but may be different from each other.
 樹脂層αにおける(E1)充填材は、樹脂層αの全質量(固形分換算)に占める割合(含有率)として、10質量%以上であることが好ましく、30質量%以上であることがより好ましく、45質量%以上がさらに好ましい。また、(E1)充填材の上記含有率は、80質量%以下であることが好ましく,70質量%以下であることがより好ましく,60質量%以下であることがさらに好ましい。
 一方、樹脂層βにおける(E2)充填材は、樹脂層βの全質量(固形分換算)に占める割合(含有率)として、10質量%以上であることが好ましく、20質量%以上であることがより好ましい。また、(E2)充填材の上記含有率は、80質量%以下であることが好ましく、65質量%以下であることがより好ましい。
(E1)(E2)充填材の含有率をこれら範囲とすることで、上記した充填材の効果を発揮しやすくなる。
 また、樹脂層βでは、(E2)充填材の含有率を20質量%以上とすることで、レーザーマーキングされた印字部と非印字部のコントラストがより向上し、印字の認識性を高度のものとすることができる。また、樹脂層βにおける(E2)充填材の含有率を比較的低く抑えることで、グロス値は高くしやすくなり、印字の認識性をより高度のものとすることができる。そのような観点からは(E2)充填材の含有率は、40質量%以下とすることが好ましい。
The (E1) filler in the resin layer α is preferably 10% by mass or more, more preferably 30% by mass or more, as a ratio (content ratio) to the total mass (solid content conversion) of the resin layer α. Preferably, 45 mass% or more is more preferable. Further, the content of the (E1) filler is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less.
On the other hand, the (E2) filler in the resin layer β is preferably 10% by mass or more, and more preferably 20% by mass or more as a proportion (content) in the total mass (solid content conversion) of the resin layer β. Is more preferable. Further, the content of the filler (E2) is preferably 80% by mass or less, and more preferably 65% by mass or less.
(E1) (E2) By making the content rate of a filler into these ranges, it becomes easy to exhibit the effect of an above-described filler.
In addition, in the resin layer β, by setting the content of the (E2) filler to 20% by mass or more, the contrast between the laser-marked printed part and the non-printed part is further improved, and the print recognition is highly advanced. It can be. Further, by controlling the content of the (E2) filler in the resin layer β to be relatively low, the gloss value can be easily increased, and the print recognizability can be enhanced. From such a viewpoint, it is preferable that the content rate of (E2) filler shall be 40 mass% or less.
 <(F1)(F2)カップリング剤>
 樹脂層α、βには、それぞれ(F1)カップリング剤及び(F2)カップリング剤それぞれが配合されていてもよい。カップリング剤は、樹脂層α、β中のポリマー成分と、被着体である半導体チップ表面や充填材表面とを結合して、接着性や凝集性を高めるための成分である。
 (F1)(F2)カップリング剤としては、シランカップリング剤が好ましい。また、(F1)(F2)カップリング剤としては、メトキシ基、エトキシ基等のアルコキシ基を有し、かつ、(A1)アクリル系重合体又は(A2)重合体や、(B1)(B2)エポキシ系硬化性成分などが有する官能基と反応する、アルコキシ基以外の反応性官能基を有する化合物が好ましく使用される。反応性官能基としては、グリシドキシ基、グリシドキシ基以外のエポキシ基、アミノ基、(メタ)アクリロキシ基、(メタ)アクリロキシ基以外のビニル基、メルカプト基等が挙げられる。これらの中では、グリシドキシ基、エポキシ基が好ましい。
<(F1) (F2) coupling agent>
In the resin layers α and β, (F1) coupling agent and (F2) coupling agent may be respectively blended. The coupling agent is a component for bonding the polymer component in the resin layers α and β to the surface of the semiconductor chip or the filler, which is an adherend, to improve the adhesion and cohesion.
(F1) (F2) As a coupling agent, a silane coupling agent is preferable. The coupling agent (F1) (F2) has an alkoxy group such as a methoxy group or an ethoxy group, and (A1) an acrylic polymer or (A2) polymer, or (B1) (B2). A compound having a reactive functional group other than an alkoxy group that reacts with a functional group of an epoxy-based curable component or the like is preferably used. Examples of reactive functional groups include glycidoxy groups, epoxy groups other than glycidoxy groups, amino groups, (meth) acryloxy groups, vinyl groups other than (meth) acryloxy groups, mercapto groups, and the like. In these, a glycidoxy group and an epoxy group are preferable.
 シランカップリング剤としては、分子量が300未満の低分子量シランカップリング剤が使用されてもよいし、分子量が300以上のオリゴマータイプのシランカップリング剤が使用されてもよいし、それらが併用されてもよい。
 低分子量シランカップリング剤としては、具体的にはγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-(メタクリロプロピル)トリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ビニルトリアセトキシシランなどが挙げられる。
 オリゴマータイプのシランカップリング剤は、シロキサン骨格を有するオルガノポリシロキサンであるとともに、ケイ素原子に直接結合するアルコキシ基を有するものが好ましい。
 (F1)(F2)カップリング剤それぞれの配合率は、樹脂層α、樹脂層βそれぞれの全質量(固形分換算)に占める配合割合として、好ましくは0.01~10.0質量%、より好ましくは0.1~3.0質量%である。
 なお、(F1)(F2)カップリング剤の配合率は、互いに同じであってもよいし、異なっていてもよい。また、(F1)(F2)カップリング剤はそれぞれ、同じ種類のカップリング剤が使用されてもよいし、異なる種類のカップリング剤が使用されてもよい。
As the silane coupling agent, a low molecular weight silane coupling agent having a molecular weight of less than 300 may be used, an oligomer type silane coupling agent having a molecular weight of 300 or more may be used, and these are used in combination. May be.
Specific examples of the low molecular weight silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane, γ- (methacrylopropyl) trimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, N-6- (aminoethyl) -γ -Aminopropylmethyldiethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, vinyltriacetoxysilane and the like.
The oligomer type silane coupling agent is preferably an organopolysiloxane having a siloxane skeleton and an alkoxy group directly bonded to a silicon atom.
The blending ratio of each of the (F1) and (F2) coupling agents is preferably 0.01 to 10.0% by weight as the blending ratio in the total mass (in terms of solid content) of each of the resin layer α and the resin layer β. Preferably, the content is 0.1 to 3.0% by mass.
In addition, the compounding ratio of (F1) (F2) coupling agent may be the same as each other, or may be different. In addition, as for the coupling agent (F1) and (F2), the same type of coupling agent may be used, or different types of coupling agents may be used.
<その他の添加剤>
 樹脂層α、樹脂層βそれぞれには、上記以外の添加剤が適宜配合されていてもよい。その添加剤としては、特に限定されるわけではないが、架橋剤、相溶化剤、レベリング剤、可塑剤、帯電防止剤、酸化防止剤、熱伝導剤、イオン捕捉剤、ゲッタリング剤、連鎖移動剤、エネルギー線重合性化合物、光重合開始剤等が挙げられる。樹脂層α及び/又は樹脂層βは、例えば、相溶化剤が配合されることにより、(A1)成分に富む相と、(B1)成分の硬化物に富む相の相溶性や、(A2)成分に富む相と、(B2)成分の硬化物に富む相の相溶性を適宜調整して、適切な相分離構造が設計可能となる。
<Other additives>
Additives other than those described above may be appropriately blended in each of the resin layer α and the resin layer β. The additive is not particularly limited, but is a cross-linking agent, a compatibilizing agent, a leveling agent, a plasticizer, an antistatic agent, an antioxidant, a heat conducting agent, an ion scavenger, a gettering agent, a chain transfer. Agents, energy beam polymerizable compounds, photopolymerization initiators, and the like. The resin layer α and / or the resin layer β are, for example, blended with a compatibilizing agent so that the compatibility between the phase rich in the component (A1) and the phase rich in the cured product of the component (B1) (A2) An appropriate phase separation structure can be designed by appropriately adjusting the compatibility of the phase rich in the component and the phase rich in the cured product of the component (B2).
<グロス値>
 樹脂層βは、上記配合を有することにより、硬化されて得られる樹脂層βの表面(樹脂層α側の面とは反対側の面)のJIS Z 8741により測定されるグロス値が20以上となるものである。これにより、本発明の保護膜は、樹脂層α側がウエハに接するように貼り付けられ、その後硬化されることで、保護膜の表面であるレーザーマーキングによる被印字面がグロス値20以上になる。そのため、本発明では、印字部と非印字部のコントラストが向上し、印字部分の識別性が良好になる。
 上記グロス値は、コントラストをより向上させて、文字の識別性を上げるために、27以上であることが好ましく、40以上であることがより好ましい。また、グロス値は、特に限定されないが、例えば80以下となる。
 なお、グロス値は、特にその調整方法が限定されるわけではないが、例えばエポキシ基含有単量体の量、各種の(メタ)アクリル酸アルキルエステルの量、上述の質量比X2の値、(E2)充填材の種類や含有量を調整し、または、その他の添加剤を添加することにより適宜調整可能である。
<Gross value>
Since the resin layer β has the above-mentioned composition, the gloss value measured by JIS Z 8741 on the surface of the resin layer β obtained by curing (the surface opposite to the surface on the resin layer α side) is 20 or more. It will be. Thus, the protective film of the present invention is attached so that the resin layer α side is in contact with the wafer, and then cured, so that the surface to be printed by laser marking, which is the surface of the protective film, has a gloss value of 20 or more. For this reason, in the present invention, the contrast between the printed portion and the non-printed portion is improved, and the distinguishability of the printed portion is improved.
The gloss value is preferably 27 or more, and more preferably 40 or more, in order to further improve contrast and increase character discrimination. Further, the gloss value is not particularly limited, but is, for example, 80 or less.
The gloss value is not particularly limited in its adjustment method. For example, the amount of the epoxy group-containing monomer, the amount of various (meth) acrylic acid alkyl esters, the value of the above-mentioned mass ratio X2, ( E2) It can be appropriately adjusted by adjusting the type and content of the filler or adding other additives.
 樹脂層α及び樹脂層βの厚さはそれぞれ、特に限定されないが、好ましくは2~250μm、より好ましくは4~200μm、さらに好ましくは6~150μmである。
 樹脂層α及び樹脂層βの厚さは、互いに異なっていてもよいが、同一であってもよい。
The thicknesses of the resin layer α and the resin layer β are not particularly limited, but are preferably 2 to 250 μm, more preferably 4 to 200 μm, and still more preferably 6 to 150 μm.
The thicknesses of the resin layer α and the resin layer β may be different from each other, but may be the same.
[保護膜形成用複合シート]
 本発明の保護膜形成用フィルムは、通常、支持シート上に剥離可能に形成され、保護膜形成用複合シートとして使用される。本発明の保護膜形成用フィルムは、例えば、支持シート上に、樹脂層β、樹脂層αの順に積層される。また、樹脂層αの上には、支持シートよりも剥離力が小さい軽剥離性の剥離シートが設けられることが好ましい。
[Composite sheet for protective film formation]
The protective film-forming film of the present invention is usually formed on a support sheet so as to be peelable, and is used as a protective film-forming composite sheet. The protective film-forming film of the present invention is laminated, for example, on a support sheet in the order of a resin layer β and a resin layer α. Moreover, it is preferable that a light-peelable release sheet having a release force smaller than that of the support sheet is provided on the resin layer α.
 保護膜形成用フィルムは、支持シートと同形状とすることができる。また、保護膜形成用複合シートは、保護膜形成用フィルムが、ウエハと略同形状又はウエハの形状をそっくり含むことのできる形状に調製され、かつ保護膜形成用フィルムよりも大きなサイズの支持シート上に積層されてなる、事前成形構成をとっていてもよい。
 支持シートは、保護膜形成用フィルムを支持するものであって、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルムなどのフィルムが用いられる。またこれらの架橋フィルムも用いられる。さらに、これらから選択された2以上の積層フィルムであってもよい。また、これらを着色したフィルムも用いることができる。
 支持シートの保護膜形成用フィルムが形成される側の面は、適宜剥離処理が施されていてもよい。剥離処理に用いられる剥離剤としては、例えば、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系などが挙げられるが、アルキッド系、シリコーン系、フッ素系の剥離剤が耐熱性を有するので好ましい。
 剥離シートも、支持シートと同様に、例えば上記で列挙されたフィルムから選択されるものであり、また、適宜剥離処理が施されてもよい。
The protective film-forming film can have the same shape as the support sheet. In addition, the protective film-forming composite sheet is prepared in such a manner that the protective film-forming film has substantially the same shape as the wafer or can include the shape of the wafer, and has a larger size than the protective film-forming film. It may have a pre-molded configuration that is laminated on top.
The support sheet is for supporting a protective film-forming film, for example, polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate. Film, polyethylene naphthalate film, polybutylene terephthalate film, polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer A film such as a film, a polystyrene film, a polycarbonate film, a polyimide film, or a fluororesin film is used. These crosslinked films are also used. Furthermore, two or more laminated films selected from these may be used. Moreover, the film which colored these can also be used.
The surface of the support sheet on which the protective film-forming film is formed may be appropriately subjected to a peeling treatment. Examples of the release agent used for the release treatment include alkyd, silicone, fluorine, unsaturated polyester, polyolefin, and wax, but alkyd, silicone, and fluorine release agents are heat resistant. It is preferable because of its properties.
Similarly to the support sheet, the release sheet is selected from, for example, the films listed above, and may be appropriately subjected to a release treatment.
 本発明の保護膜形成用複合シートは、例えば、以下のようにして製造される。
 まず、樹脂層βを形成するための上記各成分を適宜の割合で、適当な溶媒中で又は無溶媒で混合してなる樹脂層β形成用組成物を支持シート上に塗布乾燥し、樹脂層βが積層された支持シートを得る。また、樹脂層αを形成するための上記各成分を適宜の割合で、適当な溶媒中で又は無溶媒で混合してなる樹脂層α形成用組成物を、剥離シート上に塗布乾燥し、樹脂層αが積層された剥離シートを得る。このとき、支持シート及び剥離シートに積層された樹脂層α、βは、さらに保護用剥離フィルムが貼り合わされ、保護用剥離フィルムにより保護されてもよい。
 次に、保護用剥離フィルムで保護される場合には保護用剥離フィルムが剥離された後、樹脂層βが積層された支持シートと、樹脂層αが積層された剥離シートとを、樹脂層βと、樹脂層αとが貼り合わされるように、重ね合わせて、支持シートの上に、樹脂層β、樹脂層α、及び剥離シートが順に積層された保護膜形成用複合シートを得る。剥離シートは、必要に応じて剥離されてもよい。
 また、例えば、支持シートの上に、樹脂層β形成用組成物、樹脂層α形成用組成物を順に塗布乾燥し、これにより、支持シートの上に、樹脂層β、樹脂層αが積層された保護膜形成用複合シートを得ることもできる。
 ただし、保護膜形成用複合シートの製造方法は、上記方法に限定されずいかなる方法で製造されてもよい。
The composite sheet for forming a protective film of the present invention is produced, for example, as follows.
First, a resin layer β-forming composition obtained by mixing the above-described components for forming the resin layer β in an appropriate ratio in an appropriate solvent or without a solvent is applied onto a support sheet and dried. A support sheet laminated with β is obtained. Further, a resin layer α-forming composition obtained by mixing the above-described components for forming the resin layer α in an appropriate ratio in an appropriate solvent or without a solvent is applied onto a release sheet and dried. A release sheet on which the layer α is laminated is obtained. At this time, the resin layers α and β laminated on the support sheet and the release sheet may be further protected by a protective release film by further bonding a protective release film.
Next, when the protective release film is protected, after the protective release film is peeled off, the support sheet on which the resin layer β is laminated and the release sheet on which the resin layer α is laminated are combined with the resin layer β. And a protective sheet-forming composite sheet in which the resin layer β, the resin layer α, and the release sheet are laminated in this order on the support sheet. The release sheet may be peeled off as necessary.
Also, for example, the resin layer β-forming composition and the resin layer α-forming composition are sequentially applied and dried on the support sheet, whereby the resin layer β and the resin layer α are laminated on the support sheet. A composite sheet for forming a protective film can also be obtained.
However, the manufacturing method of the protective film-forming composite sheet is not limited to the above method, and may be manufactured by any method.
 また、ウェットラミネーションやドライラミネーション、熱溶融ラミネーション、溶融押出ラミネーション、共押出加工などによりフィルムの積層を行うことにより支持シートの表面張力を調整してもよい。すなわち、少なくとも一方の面の表面張力が、上述した支持シートの保護膜形成用フィルムと接する面のものとして好ましい範囲内にあるフィルムを、当該面が保護膜形成用フィルムと接する面となるように、他のフィルムと積層した積層体を製造し、支持シートとしてもよい。 Further, the surface tension of the support sheet may be adjusted by laminating films by wet lamination, dry lamination, hot melt lamination, melt extrusion lamination, coextrusion processing, or the like. That is, a film in which the surface tension of at least one surface is within a preferable range as the surface of the support sheet in contact with the protective film forming film is such that the surface is in contact with the protective film forming film. A laminate laminated with another film may be manufactured and used as a support sheet.
 また、上記フィルム上に粘着剤層を形成した粘着シートを支持シートとして用いてもよい。この場合、保護膜形成用フィルムは、支持シートに設けられた粘着剤層上に積層される。このような構成とすることで、特に保護膜形成用複合シート上で保護膜形成用フィルムまたは保護膜ごとウエハをチップに個片化する場合に、ウエハやチップの固定性能に優れることとなるため好ましい。粘着剤層を再剥離性粘着剤層とすることで、保護膜形成用フィルムまたは保護膜を支持シートから分離することが容易となるため好ましい。再剥離性粘着剤層は、保護膜形成用フィルムを剥離できる程度の粘着力を有する弱粘着性のものを使用してもよいし、エネルギー線照射により粘着力が低下するエネルギー線硬化性のものを使用してもよい。具体的には、再剥離性粘着剤層は、従来公知の種々の粘着剤(例えば、ゴム系、アクリル系、シリコーン系、ウレタン系、ビニルエーテル系などの汎用粘着剤、表面凹凸のある粘着剤、エネルギー線硬化型粘着剤、熱膨張成分含有粘着剤等)により形成できる。 Further, an adhesive sheet having an adhesive layer formed on the film may be used as a support sheet. In this case, the protective film-forming film is laminated on the pressure-sensitive adhesive layer provided on the support sheet. By adopting such a configuration, particularly when the wafer is divided into chips together with the protective film-forming film or the protective film on the protective film-forming composite sheet, the wafer and chip fixing performance is excellent. preferable. It is preferable that the pressure-sensitive adhesive layer is a re-peelable pressure-sensitive adhesive layer because the protective film-forming film or the protective film can be easily separated from the support sheet. The re-peelable pressure-sensitive adhesive layer may be a weak-adhesive layer having an adhesive strength sufficient to peel off the protective film-forming film, or an energy-ray curable one whose adhesive strength is reduced by energy beam irradiation. May be used. Specifically, the re-peelable pressure-sensitive adhesive layer includes various conventionally known pressure-sensitive adhesives (for example, general-purpose pressure-sensitive adhesives such as rubber-based, acrylic-based, silicone-based, urethane-based, vinyl ether-based, pressure-sensitive adhesives with surface irregularities, Energy ray-curable pressure-sensitive adhesive, thermal expansion component-containing pressure-sensitive adhesive, etc.).
 エネルギー線硬化性の再剥離性粘着剤層を用いる場合において、保護膜形成用複合シートが事前成形構成をとるときは、保護膜形成用フィルムが積層される領域に予めエネルギー線照射を行い、粘着性を低減させておく一方、他の領域はエネルギー線照射を行わず、たとえば治具への接着を目的として、粘着力を高いまま維持しておいてもよい。他の領域のみにエネルギー線照射を行わないようにするには、たとえば支持シートの他の領域に対応する領域に印刷等によりエネルギー線遮蔽層を設け、支持シート側からエネルギー線照射を行えばよい。また、同様の効果を得るために、粘着シートにおける粘着剤層上の保護膜形成用フィルムが積層される領域に、保護膜形成用フィルムと略同一形状の再剥離性粘着剤層をさらに積層した構成としてもよい。再剥離性粘着剤用フィルムとしては、上記と同じものを使用することができる。 In the case of using an energy ray-curable releasable pressure-sensitive adhesive layer, when the protective film-forming composite sheet takes a pre-formed configuration, the region where the protective film-forming film is laminated is preliminarily irradiated with energy rays to On the other hand, the other regions may not be irradiated with energy rays, and the adhesive force may be kept high for the purpose of adhesion to a jig, for example. In order not to irradiate the energy beam only to other regions, for example, an energy beam shielding layer may be provided by printing or the like in a region corresponding to the other region of the support sheet, and the energy beam irradiation may be performed from the support sheet side. . In addition, in order to obtain the same effect, a re-peelable pressure-sensitive adhesive layer having substantially the same shape as the protective film-forming film was further laminated in the region where the protective film-forming film on the pressure-sensitive adhesive layer in the pressure-sensitive adhesive sheet was laminated. It is good also as a structure. As the film for the releasable pressure-sensitive adhesive, the same film as described above can be used.
 保護膜形成用フィルムが事前成形構成をとらない場合は、保護膜形成用フィルムの表面(被着体と接する面)の外周部には、リングフレーム等の他の治具を固定するために、別途接着剤層や両面粘着テープが設けられていてもよい。保護膜形成用フィルムが事前成形構成をとる場合は、支持シートの外周部における保護膜形成用フィルムの積層されていない領域に、リングフレーム等の他の治具を固定するために、別途接着剤層や両面粘着テープが設けられていてもよい。 When the protective film-forming film does not take a pre-molded configuration, in order to fix other jigs such as a ring frame on the outer periphery of the surface of the protective film-forming film (the surface in contact with the adherend) A separate adhesive layer or double-sided pressure-sensitive adhesive tape may be provided. If the protective film-forming film has a pre-molded configuration, a separate adhesive is used to fix other jigs such as a ring frame to the outer periphery of the support sheet where the protective film-forming film is not laminated. Layers and double-sided adhesive tapes may be provided.
[保護膜形成用フィルムの使用方法]
 保護膜形成用フィルムは、半導体ウエハ、半導体チップ等の被着体に貼付され、その後熱硬化されて保護膜となる。例えば、保護膜形成用複合シートが使用される場合には、保護膜形成用複合シートは、まず、剥離シートで保護されている場合には剥離シートが剥離され、次いで、保護膜形成用フィルムと支持フィルムの積層体が、被着体に貼付された後、支持シートが保護膜形成用フィルムから剥離される。これにより、被着体の上には、被着体側から樹脂層α及び樹脂層βが設けられてなる保護膜形成用フィルムが積層されることになる。
[How to use protective film-forming film]
The protective film-forming film is affixed to an adherend such as a semiconductor wafer or a semiconductor chip, and then thermally cured to form a protective film. For example, when a protective film-forming composite sheet is used, the protective film-forming composite sheet is first peeled off when it is protected by a release sheet, and then the protective film-forming film and After the support film laminate is affixed to the adherend, the support sheet is peeled off from the protective film-forming film. Thereby, the protective film-forming film in which the resin layer α and the resin layer β are provided from the adherend side is laminated on the adherend.
 以下、保護膜形成用フィルムの使用方法について、保護膜形成用フィルムが、半導体チップの裏面保護用に使用され、保護膜付きチップが製造される例を用いてより詳細に説明するが、以下に示す例に限定されるわけではない。
 本方法では、まず、上記保護膜形成用フィルムを半導体ウエハの裏面に積層する。例えば、保護膜形成用複合シートを使用する場合には、保護膜形成用フィルムと基材シートの積層体を半導体ウエハの裏面に貼付する。その後、支持シートを保護膜形成用フィルムから剥離した後、半導体ウエハ上に積層された保護膜形成用フィルムを熱硬化し、ウエハの全面に保護膜を形成する。
 なお、半導体ウエハは、シリコンウエハであってもよく、またガリウム・砒素などの化合物半導体ウエハであってもよい。また、半導体ウエハは、その表面に回路が形成されているとともに、裏面が適宜研削等され、厚みが50~500μm程度とされるものである。
Hereinafter, the method for using the protective film-forming film will be described in more detail using an example in which the protective film-forming film is used for protecting the back surface of a semiconductor chip and a chip with a protective film is manufactured. It is not limited to the example shown.
In this method, first, the protective film-forming film is laminated on the back surface of the semiconductor wafer. For example, when a composite sheet for forming a protective film is used, a laminate of the protective film-forming film and the base sheet is attached to the back surface of the semiconductor wafer. Then, after peeling a support sheet from the film for protective film formation, the film for protective film formation laminated | stacked on the semiconductor wafer is thermosetted, and a protective film is formed in the whole surface of a wafer.
The semiconductor wafer may be a silicon wafer or a compound semiconductor wafer such as gallium / arsenic. Further, the semiconductor wafer has a circuit formed on the front surface thereof, and the back surface thereof is appropriately ground or the like to have a thickness of about 50 to 500 μm.
 次いで、半導体ウエハと保護膜との積層体を、ウエハ表面に形成された回路毎にダイシングする。ダイシングは、ウエハと保護膜をともに切断するように行われ、ダイシングによって半導体ウエハと保護膜との積層体は、複数のチップに分割される。なお、ウエハのダイシングは、ダイシングシートを用いた常法により行われる。次いで、ダイシングされたチップをコレット等の汎用手段によりピックアップすることで、裏面に保護膜を有する半導体チップ(保護膜付きチップ)を得る。 Next, the laminated body of the semiconductor wafer and the protective film is diced for each circuit formed on the wafer surface. Dicing is performed so that the wafer and the protective film are cut together, and the laminated body of the semiconductor wafer and the protective film is divided into a plurality of chips by dicing. The wafer is diced by a conventional method using a dicing sheet. Next, the diced chip is picked up by a general-purpose means such as a collet to obtain a semiconductor chip having a protective film on the back surface (chip with protective film).
 なお、半導体チップの製造方法は、以上の例に限定されず、例えば、支持シートの剥離が、保護膜の熱硬化後に行われてもよいし、ダイシングの後に行われてもよい。なお、支持シートの剥離が、ダイシングの後に行われる場合、支持シートはダイシングシートとしての役割を果たすことができる。また、保護膜形成用フィルムの熱硬化は、ダイシングの後に行われてもよい。ただし、保護膜形成用フィルムの樹脂層β側が支持シートと貼り合わされている場合において、保護膜形成用フィルムの熱硬化を支持シートの剥離前に行うと、樹脂層βの硬化後の表面の平滑性が向上する傾向がある。樹脂層βの硬化後のグロス値が高い本発明の保護膜形成用フィルムは、上記のような樹脂膜βの硬化後の表面の平滑性が向上する効果を得られない製造方法、すなわち、保護膜形成用フィルムの熱硬化を、支持シートの剥離よりも後に行う製造方法に特に適している。
 また、保護膜形成用フィルムが貼付されるのは、半導体ウエハを分割して得られた複数のチップからなるチップ群であってもよい。このようなチップ群を得る方法としては、半導体ウエハの回路形成面側から、最終的に得られるチップの厚さよりも深い溝を形成し、半導体ウエハの裏面側から溝に到達するまで薄化処理を行うことによって複数のチップに分割する方法(いわゆる先ダイシング法)が挙げられる。チップ群に保護膜形成用フィルムを貼付した場合には、チップ間に存在する間隙に相当する部分の保護膜形成用フィルムをレーザー等により切断して、保護膜形成用フィルムをチップと略同形状に成形することが望ましい。
In addition, the manufacturing method of a semiconductor chip is not limited to the above example, For example, peeling of a support sheet may be performed after the thermosetting of a protective film, and may be performed after dicing. In addition, when peeling of a support sheet is performed after dicing, a support sheet can serve as a dicing sheet. Moreover, the thermosetting of the protective film-forming film may be performed after dicing. However, in the case where the resin layer β side of the protective film-forming film is bonded to the support sheet, if the protective film-forming film is thermally cured before the support sheet is peeled off, the surface of the resin layer β after the curing becomes smooth. Tend to improve. The protective film-forming film of the present invention having a high gloss value after curing of the resin layer β is a production method in which the effect of improving the smoothness of the surface after curing of the resin film β cannot be obtained, that is, protection It is particularly suitable for a production method in which the film-forming film is thermally cured after peeling of the support sheet.
The protective film-forming film may be attached to a chip group composed of a plurality of chips obtained by dividing a semiconductor wafer. As a method of obtaining such a chip group, a groove deeper than the thickness of the finally obtained chip is formed from the circuit forming surface side of the semiconductor wafer, and thinning processing is performed until the groove reaches from the back surface side of the semiconductor wafer. There is a method of dividing into a plurality of chips by performing (so-called first dicing method). When a protective film forming film is attached to the chip group, the protective film forming film corresponding to the gap existing between the chips is cut with a laser or the like so that the protective film forming film has substantially the same shape as the chip. It is desirable to form it.
[保護膜付きチップ]
 本発明の保護膜付きチップは、例えば上記製造方法により得られ、半導体チップと、該半導体チップの裏面に積層される保護膜とを備え、該保護膜は、上述の保護膜形成用フィルムを硬化させて形成され、チップ裏面を保護するものである。保護膜は、半導体チップ側から樹脂層αと、樹脂層βとが順に積層されたものである。また、保護膜は、半導体チップ側の面とは反対の面(すなわち、樹脂層βの表面)が、JIS Z 8741により測定されるグロス値が20以上となるものである。
 保護膜付きチップを、フェースダウン方式で基板等の上に実装することで半導体装置を製造することができる。また、保護膜付きチップは、ダイパッド部または別の半導体チップなどの他の部材上(チップ搭載部上)に接着することにより、半導体装置を製造することもできる。
[Chip with protective film]
The chip with a protective film of the present invention is obtained, for example, by the above-described manufacturing method, and includes a semiconductor chip and a protective film laminated on the back surface of the semiconductor chip, and the protective film cures the protective film-forming film described above. The back surface of the chip is protected. The protective film is obtained by sequentially laminating a resin layer α and a resin layer β from the semiconductor chip side. In addition, the surface of the protective film opposite to the surface on the semiconductor chip side (that is, the surface of the resin layer β) has a gloss value of 20 or more measured by JIS Z 8741.
A semiconductor device can be manufactured by mounting a chip with a protective film on a substrate or the like by a face-down method. Further, the semiconductor device can also be manufactured by bonding the chip with protective film to another member (on the chip mounting part) such as a die pad part or another semiconductor chip.
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれらの例によって制限されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 本発明における測定方法、評価方法は以下のとおりである。
(1)重量平均分子量(Mw)
 ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン換算の重量平均分子量Mwを測定した。
 測定装置:東ソー社製の高速GPC装置「HLC-8120GPC」に、高速カラム「TSK guard column HXL-H」、「TSK Gel GMHXL」、「TSK Gel G2000 HXL」(以上、全て東ソー社製)をこの順序で連結して測定した。
カラム温度:40℃、送液速度:1.0mL/分、検出器:示差屈折率計
The measurement method and evaluation method in the present invention are as follows.
(1) Weight average molecular weight (Mw)
The weight average molecular weight Mw in terms of standard polystyrene was measured by gel permeation chromatography (GPC).
Measuring device: Tosoh's high-speed GPC device "HLC-8120GPC", high-speed column "TSK guard column H XL -H", "TSK Gel GMH XL ", "TSK Gel G2000 H XL " ) In this order and measured.
Column temperature: 40 ° C., liquid feeding speed: 1.0 mL / min, detector: differential refractometer
(2)グロス値
 #2000研磨したシリコンウエハ(200mm径、厚さ280μm)の研磨面に、剥離シートを剥離した保護膜形成用複合シートの保護膜形成用フィルムを、テープマウンター(リンテック株式会社製、Adwill RAD-3600 F/12)を用いて70℃に加熱しながら貼付した。次いで、支持シートを剥離した後、130℃で2時間加熱を行うことにより、保護膜形成用フィルムを硬化して、シリコンウエハ上に保護膜を形成した。下記測定装置及び測定条件で、保護膜表面の60度の鏡面光沢度を測定し、グロス値とした。
    測定装置:VG 2000 日本電色工業株式会社製
    測定条件:JIS Z 8741に準じた
(2) Gloss value A protective film forming film of a composite sheet for forming a protective film having a release sheet peeled off on a polished surface of a # 2000 polished silicon wafer (200 mm diameter, thickness 280 μm) is a tape mounter (manufactured by Lintec Corporation). Adwill RAD-3600 F / 12) was applied while heating to 70 ° C. Next, after peeling off the support sheet, the protective film-forming film was cured by heating at 130 ° C. for 2 hours to form a protective film on the silicon wafer. The specular glossiness of 60 degrees on the surface of the protective film was measured with the following measuring apparatus and measurement conditions, and the gloss value was obtained.
Measuring device: VG 2000 manufactured by Nippon Denshoku Industries Co., Ltd. Measuring conditions: conforming to JIS Z 8741
(3)文字認識性(印字性)
 #2000研磨したシリコンウエハ(200mm径、厚さ280μm)の研磨面に、剥離シートを剥離した保護膜形成用複合シートの保護膜形成用フィルムをテープマウンター(リンテック株式会社製, Adwill RAD-3600 F/12)を用いて70℃に加熱しながら貼付した。次いで、支持シートを剥離した後、130℃で2時間加熱を行うことにより、保護膜形成用フィルムを硬化して、シリコンウエハに保護膜を形成した。保護膜表面に、レーザー印字装置(パナソニックデバイスSUNX株式会社製 LP-V10U、レーザー波長:1056nm)を用いて、一文字の幅が300μm以下である文字を4文字印字した。得られた印字済みの保護膜面をデジタル顕微鏡で確認し、印字が読み取り可能かを画像で確認した。判断基準は、デジタル顕微鏡の観察時に、直射光で印字部を照らしているとき、十分に読取可能を“A”、読み取り可能だが不鮮明を“B”、読み取り不可能を“F”と表現した。
(3) Character recognition (printability)
A tape mounter (Adwill RAD-3600 F, manufactured by Lintec Co., Ltd.) is used to form a protective film forming film of a composite sheet for forming a protective film with a release sheet peeled off on a polished surface of a # 2000 polished silicon wafer (200 mm diameter, 280 μm thick). / 12) was applied while heating to 70 ° C. Next, after peeling off the support sheet, the film for forming a protective film was cured by heating at 130 ° C. for 2 hours, thereby forming a protective film on the silicon wafer. Using a laser printing device (LP-V10U, manufactured by Panasonic Device Sunx Co., Ltd., laser wavelength: 1056 nm), four characters having a character width of 300 μm or less were printed on the surface of the protective film. The printed protective film surface thus obtained was confirmed with a digital microscope, and it was confirmed with an image whether the print was readable. Judgment criteria were expressed as “A” for fully readable, “B” for readable but unclear, and “F” for unreadable when the printed part was illuminated with direct light when observing with a digital microscope.
(4)信頼性評価
 #2000研磨したシリコンウエハ(200mm径、厚さ280μm)の研磨面に、剥離シートを剥離した保護膜形成用複合シートの保護膜形成用フィルムをテープマウンター(リンテック株式会社製、Adwill RAD-3600 F/12)を用いて、70℃に加熱しながら貼付した。次いで、支持シートを剥離した後、130℃で2時間加熱を行うことにより、保護膜形成用フィルムを硬化して、シリコンウエハ上に保護膜を形成した。そして、保護膜側をダイシングテープ(リンテック株式会社製Adwill D-676H)に貼付し、ダイシング装置(株式会社ディスコ製、DFD651)を使用して3mm×3mmサイズにダイシングすることで信頼性評価用の保護膜付きチップを得た。
(4) Reliability evaluation A tape mounter (manufactured by Lintec Corporation) is used to form a protective film forming film of a composite sheet for forming a protective film on which a release sheet is peeled off on a polished surface of a # 2000 polished silicon wafer (200 mm diameter, 280 μm thick). , Adwill RAD-3600 F / 12) was applied while heating to 70 ° C. Next, after peeling off the support sheet, the protective film-forming film was cured by heating at 130 ° C. for 2 hours to form a protective film on the silicon wafer. Then, the protective film side is affixed to a dicing tape (Adwill D-676H manufactured by Lintec Corporation), and dicing into 3 mm × 3 mm size using a dicing apparatus (DFD Co., Ltd., DFD651) for reliability evaluation. A chip with a protective film was obtained.
 上記信頼性評価用の保護膜付きチップは、まず、半導体チップが実際に実装されるプロセスを模倣した条件(プレコンディション)で処理した。具体的には、保護膜付きチップを125℃で20時間ベイキングし、次いで、85℃、85%RHの条件下に168時間放置して吸湿させ、その後直ちにプレヒート160℃、ピーク温度260℃、加熱時間30秒間の条件のIRリフロー炉に3回通した。これらプレコンディションで処理した保護膜付きチップ25個を、冷熱衝撃装置(ESPEC株式会社製、TSE-11-A)内に設置し、-65℃で10分間保持し、その後150℃で10分間保持するサイクルを1000回繰り返した。
 その後、25個の保護膜付きチップを冷熱衝撃装置から取り出して信頼性を評価した。具体的には、チップと保護膜との接合部での浮き・剥がれや保護膜におけるクラックの有無を、走査型超音波探傷装置(日立建機ファインテック株式会社製 Hye‐Focus)および断面観察により評価し、浮き、剥がれおよびクラックのいずれかがあればNGとした。25個のチップのうちのNGの個数を表3に示す。
The chip with a protective film for reliability evaluation was first processed under conditions (preconditions) imitating a process in which a semiconductor chip was actually mounted. Specifically, the chip with a protective film is baked at 125 ° C. for 20 hours, and then left to stand for 168 hours under conditions of 85 ° C. and 85% RH to immediately absorb moisture, followed by preheating at 160 ° C., peak temperature at 260 ° C., and heating. It was passed 3 times through an IR reflow oven for 30 seconds. Twenty-five protective film-coated chips treated with these preconditions were placed in a thermal shock apparatus (TSE-11-A, manufactured by ESPEC Corporation), held at −65 ° C. for 10 minutes, and then held at 150 ° C. for 10 minutes. The cycle was repeated 1000 times.
Thereafter, 25 chips with protective films were taken out of the thermal shock apparatus and evaluated for reliability. Specifically, the presence or absence of floating / peeling at the joint between the chip and the protective film or cracks in the protective film is determined by scanning ultrasonic flaw detector (Hy-Focus manufactured by Hitachi Construction Machinery Finetech Co., Ltd.) and cross-sectional observation. It was evaluated as NG if any of floating, peeling and cracking was found. Table 3 shows the number of NGs out of 25 chips.
実施例1
[樹脂層α]
 実施例1において、樹脂層αを形成する成分は以下の通りであった。
(A1)アクリル系共重合体:メタクリル酸メチル85質量部と、アクリル酸2-ヒドロキシエチル15質量部とを共重合してなるアクリル共重合体
(B1)エポキシ系硬化性成分
エポキシ系化合物:ビスフェノールA型エポキシ樹脂(日本触媒株式会社製、BPA-328)と、ジシクロペンタジエン型エポキシ樹脂(大日本インキ化学工業株式会社製、エピクロンHP-7200HH)
熱硬化剤:ジシアンジアミド(株式会社ADEKA製、アデカハードナー3636AS)
(C1)硬化促進剤:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業株式会社製、キュアゾール2PHZ)
(D1)着色剤:カーボンブラック(三菱化学株式会社製、MA600、平均粒径:28nm)
(E1)充填剤:平均粒径10μmの球形シリカフィラー(株式会社龍森製、SV-10)を粉砕したもの(粉砕後の平均粒径2.0μm)
(F1)シランカップリング剤:オリゴマータイプシランカップリング剤(信越化学工業株式会社製 X-41-1056 メトキシ当量17.1mmol/g、分子量500~1500)と、γ-グリシドキシプロピルトリエトキシシラン(信越化学工業株式会社製 KBE-403 メトキシ当量8.1mmol/g、分子量278.4)と、γ-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製 KBM-403 メトキシ当量12.7mmol/g、分子量236.3)
Example 1
[Resin layer α]
In Example 1, the components forming the resin layer α were as follows.
(A1) Acrylic copolymer: Acrylic copolymer obtained by copolymerizing 85 parts by mass of methyl methacrylate and 15 parts by mass of 2-hydroxyethyl acrylate (B1) Epoxy curable component Epoxy compound: Bisphenol Type A epoxy resin (Nippon Shokubai Co., Ltd., BPA-328) and dicyclopentadiene type epoxy resin (Dainippon Ink & Chemicals, Epiklon HP-7200HH)
Thermosetting agent: Dicyandiamide (manufactured by ADEKA Corporation, Adeka Hardener 3636AS)
(C1) Curing accelerator: 2-phenyl-4,5-dihydroxymethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., Curesol 2PHZ)
(D1) Colorant: Carbon black (manufactured by Mitsubishi Chemical Corporation, MA600, average particle size: 28 nm)
(E1) Filler: A pulverized spherical silica filler (manufactured by Tatsumori Co., Ltd., SV-10) having an average particle size of 10 μm (average particle size after pulverization is 2.0 μm)
(F1) Silane coupling agent: oligomer type silane coupling agent (X-41-1056 methoxy equivalent 17.1 mmol / g, molecular weight 500-1500, manufactured by Shin-Etsu Chemical Co., Ltd.) and γ-glycidoxypropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd. KBE-403 methoxy equivalent 8.1 mmol / g, molecular weight 278.4) and γ-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd. KBM-403 methoxy equivalent 12.7 mmol / g, molecular weight 236.3)
[樹脂層β]
 実施例1において、樹脂層βを形成する成分は、(A2)重合体として以下の(A2-1)アクリル系共重合体を使用した。その他の(B2)~(F2)成分については、樹脂層αに使用した(B1)~(F1)成分それぞれと同じものを使用した。
(A2-1)アクリル系共重合体:アクリル酸n-ブチル55質量部と、アクリル酸メチル10質量部と、アクリル酸2-ヒドロキシエチル15質量部と、メタクリル酸グリシジル20質量部とを共重合してなるアクリル系共重合体
[Resin layer β]
In Example 1, as the component for forming the resin layer β, the following (A2-1) acrylic copolymer was used as the (A2) polymer. The other components (B2) to (F2) were the same as the components (B1) to (F1) used for the resin layer α.
(A2-1) Acrylic copolymer: copolymer of 55 parts by mass of n-butyl acrylate, 10 parts by mass of methyl acrylate, 15 parts by mass of 2-hydroxyethyl acrylate, and 20 parts by mass of glycidyl methacrylate. Acrylic copolymer
[保護膜形成用複合シートの作製]
 上記樹脂層αを構成する各材料を表1に示す割合で配合された樹脂層α形成用組成物をメチルエチルケトンで希釈したものを、片面に剥離処理が施されたポリエチレンテレフタレートフィルム(リンテック株式会社製、SP-PET382150、厚さ38μm)である剥離シートの剥離処理面に、乾燥後の厚さが20μmになるように、ナイフ式塗工機で塗布し、樹脂層αとなる塗布層を形成した。次いで、塗布層を110℃、2分間の乾燥処理を施した後、塗布層の露出面に対して厚さ38μmのポリエチレンテレフタレート製の保護用剥離フィルム(リンテック(株)製、SP-PET381031)を貼合し、剥離シートの上に、樹脂層α、保護用剥離フィルムがこの順に積層された積層シートを得た。
 樹脂層βについても、同様に、支持シートとなる、片面に剥離処理が施されたポリエチレンテレフタレートフィルム(リンテック株式会社製、SP-PET382150、厚さ38μm)の剥離処理面上に、表2に示す割合で配合された樹脂層β形成用組成物を用いて樹脂層βを作製し、この樹脂層βにさらに保護用剥離フィルムを貼合して、支持シートの上に、樹脂層β、保護用剥離フィルムがこの順に積層された積層シートを得た。
 次いで、これら樹脂層α、βを有する積層シートそれぞれから保護用剥離フィルムを剥離し、樹脂層α及び樹脂層βが接するようにラミネーターで積層し、40μmのチップ用保護膜形成用フィルムの両面に、支持シート、剥離シートが設けられてなる保護膜形成用複合シートを得た。
 なお、樹脂層α、βに使用した(A1)、(A2‐1)アクリル系重合体の重量平均分子量(Mw)及びガラス転移温度(Tg)は表3に示す通りであった。
[Production of composite sheet for forming protective film]
Polyethylene terephthalate film (manufactured by LINTEC Corporation) having a resin layer α forming composition prepared by mixing each material constituting the resin layer α in a proportion shown in Table 1 and diluted with methyl ethyl ketone. , SP-PET382150, thickness 38 μm) was applied to the release-treated surface of the release sheet with a knife-type coating machine so that the thickness after drying was 20 μm, and a coating layer to be the resin layer α was formed. . Next, the coating layer was dried at 110 ° C. for 2 minutes, and then a protective release film made of polyethylene terephthalate having a thickness of 38 μm (SP-PET 381031 manufactured by Lintec Corporation) was applied to the exposed surface of the coating layer. The laminate sheet was obtained by laminating the resin layer α and the protective release film in this order on the release sheet.
Similarly, the resin layer β is also shown in Table 2 on the release-treated surface of a polyethylene terephthalate film (Lintec Co., Ltd., SP-PET382150, thickness: 38 μm) that is a support sheet and is subjected to a release treatment on one side. A resin layer β is prepared using the resin layer β forming composition blended at a ratio, and a protective release film is further bonded to the resin layer β, and the resin layer β and the protective layer are laminated on the support sheet. A laminate sheet was obtained in which release films were laminated in this order.
Next, the protective release film is peeled off from each of the laminated sheets having the resin layers α and β, laminated with a laminator so that the resin layer α and the resin layer β are in contact with each other, and both sides of the 40 μm chip protective film forming film are laminated. A protective film-forming composite sheet provided with a support sheet and a release sheet was obtained.
The weight average molecular weight (Mw) and glass transition temperature (Tg) of the (A1) and (A2-1) acrylic polymers used for the resin layers α and β were as shown in Table 3.
実施例2~10
 樹脂層α、樹脂層βに使用された(A1)アクリル系共重合体、(A2-1)アクリル系共重合体の組成を表3に示すように変更した点を除いては、実施例1と同様に実施した。
Examples 2 to 10
Example 1 except that the composition of (A1) acrylic copolymer and (A2-1) acrylic copolymer used in resin layer α and resin layer β was changed as shown in Table 3. It carried out like.
実施例11
 樹脂層βに使用される(E2)充填材を、平均粒径3μmの球形シリカフィラー(UF-310、株式会社トクヤマ製)に変更した点を除いて実施例1と同様に実施した。
Example 11
The same procedure as in Example 1 was performed except that the filler (E2) used for the resin layer β was changed to a spherical silica filler (UF-310, manufactured by Tokuyama Corporation) having an average particle diameter of 3 μm.
実施例12~14
 樹脂層βに使用される(E2)充填材を、平均粒径3μmの球形シリカフィラー(UF-310、株式会社トクヤマ製)に変更し、かつ樹脂層βの各成分の配合量を表2に示すように変更した点を除いて実施例1と同様に実施した。
Examples 12-14
The filler (E2) used for the resin layer β is changed to a spherical silica filler (UF-310, manufactured by Tokuyama Co., Ltd.) having an average particle diameter of 3 μm, and the blending amount of each component of the resin layer β is shown in Table 2. The same operation as in Example 1 was performed except for the points changed as shown.
比較例1
 樹脂層βを設けずに、保護膜形成用フィルムを表1、3に示す樹脂層αのみで形成し、樹脂層αを構成する各成分は、表1、3に示す通りとした。また、保護膜形成用複合シートは、以下のようにして形成した。
 樹脂層αを形成する材料を、表1に示す割合で配合された保護膜形成用組成物をメチルエチルケトンで希釈し、片面に剥離処理を施したポリエチレンテレフタレートフィルム(リンテック株式会社製、SP-PET5011、厚さ50μm)からなる支持シートの剥離処理面に、乾燥除去後の厚さが25μmとなるように塗布して、100℃で3分間乾燥して、支持シート上に保護膜形成用フィルムを形成した。次いで、その保護膜形成用フィルムに別途剥離シート(リンテック株式会社製、SP-PET3811、厚さ38μm)を重ね合わせ、比較例1の保護膜形成用複合シートを得た。
Comparative Example 1
Without providing the resin layer β, the protective film-forming film was formed only by the resin layer α shown in Tables 1 and 3, and each component constituting the resin layer α was as shown in Tables 1 and 3. Moreover, the composite sheet for protective film formation was formed as follows.
Polyethylene terephthalate film (manufactured by Lintec Corporation, SP-PET 5011) obtained by diluting a material for forming the resin layer α at a ratio shown in Table 1 with a composition for forming a protective film diluted with methyl ethyl ketone and performing a release treatment on one side. The film is applied to the peeled surface of the support sheet having a thickness of 50 μm so that the thickness after drying is 25 μm and dried at 100 ° C. for 3 minutes to form a protective film-forming film on the support sheet. did. Next, a separate release sheet (SP-PET3811, thickness 38 μm, manufactured by Lintec Corporation) was superimposed on the protective film-forming film to obtain a protective film-forming composite sheet of Comparative Example 1.
比較例2~6
 (A1)アクリル系重合体の組成を表3に示すように変更した点を除いては、比較例1と同様に実施した。
Comparative Examples 2-6
(A1) The same procedure as in Comparative Example 1 was performed except that the composition of the acrylic polymer was changed as shown in Table 3.
比較例7
 樹脂層βを構成するための材料を、表2、3に示すように変更し、樹脂層βに(E2)充填材を配合しなかった点を除いて実施例1と同様に実施した。
Comparative Example 7
The material for forming the resin layer β was changed as shown in Tables 2 and 3, and the same procedure as in Example 1 was performed except that the (E2) filler was not added to the resin layer β.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各実施例1~14、比較例1~7について、グロス値を測定するとともに、文字認識性、及び信頼性を評価した。結果を表3に示す。 For each of Examples 1 to 14 and Comparative Examples 1 to 7, the gloss value was measured, and character recognition and reliability were evaluated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、実施例1~14では、樹脂層αを構成する(A1)アクリル系重合体が、構成モノマーとしてエポキシ基含有単量体を含有せず、または8質量%以下でエポキシ基含有単量体を含有し、ガラス転移温度が-3℃以上となった。保護膜は、このような構成により、チップから剥離しにくくなり、信頼性が良好なものとなった。
 また、樹脂層βを構成する(A2)重合体は、(A1)アクリル系重合体と異なる組成の(A2-1)アクリル系共重合体が使用された。そのため、樹脂層βは、設計の自由度が向上して、レーザー印字特性に優れた樹脂層にすることができ、文字認識性が優れたものとなった。
As is apparent from Table 3, in Examples 1 to 14, the (A1) acrylic polymer constituting the resin layer α does not contain an epoxy group-containing monomer as a constituent monomer, or 8% by mass or less. An epoxy group-containing monomer was contained, and the glass transition temperature was −3 ° C. or higher. With such a configuration, the protective film is less likely to be peeled off from the chip, and the reliability is improved.
As the (A2) polymer constituting the resin layer β, an (A2-1) acrylic copolymer having a composition different from that of the (A1) acrylic polymer was used. Therefore, the resin layer β has improved design flexibility, can be made into a resin layer with excellent laser printing characteristics, and has excellent character recognition.
 一方で、比較例1~6は、保護膜形成用フィルムが単層構造であるため、保護膜設計の自由度が低く、信頼性と文字認識性の両方を優れたものとすることができなかった。また、比較例7では、保護膜形成用フィルムが樹脂層α、βの2層からなるものであったが、樹脂層βが充填材を含有していなかったため、グロス値が高い値となっても、文字認識性を良好にすることができなかった。 On the other hand, in Comparative Examples 1 to 6, since the protective film-forming film has a single layer structure, the degree of freedom in designing the protective film is low, and both reliability and character recognition cannot be made excellent. It was. In Comparative Example 7, the protective film-forming film was composed of two layers of the resin layers α and β. However, since the resin layer β did not contain a filler, the gloss value was high. However, the character recognition could not be improved.

Claims (6)

  1.  半導体チップを保護する保護膜を形成するための保護膜形成用フィルムであって、
     前記保護膜形成用フィルムが、(A1)アクリル系重合体と(B1)エポキシ系硬化性成分とを含有する樹脂層αと、(A1)アクリル系重合体とは異なる重合体である(A2)重合体と、(B2)エポキシ系硬化性成分と、(D2)着色剤と、(E2)充填材とを含有する樹脂層βとが積層されてなり、
     (A1)アクリル系重合体を構成する単量体が、エポキシ基含有単量体を含まず、または、全単量体の8質量%以下の割合でエポキシ基含有単量体を含むとともに、(A1)アクリル系重合体のガラス転移温度が-3℃以上であり、
     前記樹脂層βの表面の硬化後のJIS Z 8741により測定されるグロス値が20以上である保護膜形成用フィルム。
    A protective film forming film for forming a protective film for protecting a semiconductor chip,
    The protective film-forming film is a resin layer α containing (A1) an acrylic polymer and (B1) an epoxy curable component, and (A1) a polymer different from the acrylic polymer (A2). A polymer, (B2) an epoxy-based curable component, (D2) a colorant, and (E2) a resin layer β containing a filler are laminated,
    (A1) The monomer constituting the acrylic polymer does not contain an epoxy group-containing monomer, or contains an epoxy group-containing monomer in a proportion of 8% by mass or less of the total monomers. A1) The glass transition temperature of the acrylic polymer is −3 ° C. or higher,
    The film for protective film formation whose gloss value measured by JISZ8741 after the hardening of the surface of the said resin layer (beta) is 20 or more.
  2.  (A2)重合体が、(A2-1)アクリル系重合体であって、
     (A2-1)アクリル系重合体は、その重合体を構成する全単量体の8質量%より高い割合でエポキシ基含有単量体を含み、又はガラス転移温度が-3℃未満である請求項1に記載の保護膜形成用フィルム。
    (A2) the polymer is (A2-1) an acrylic polymer,
    (A2-1) The acrylic polymer contains an epoxy group-containing monomer in a proportion higher than 8% by mass of the total monomers constituting the polymer, or has a glass transition temperature of less than −3 ° C. Item 2. A protective film-forming film according to Item 1.
  3. (E2)充填材の平均粒径が1~5μmである請求項1または2に記載の保護膜形成用フィルム。 (E2) The protective film-forming film according to claim 1 or 2, wherein the filler has an average particle diameter of 1 to 5 µm.
  4.  (E2)充填材の樹脂層βにおける含有率が、20質量%以上である請求項1~3のいずれかに記載の保護膜形成用フィルム。 (E2) The protective film-forming film according to any one of claims 1 to 3, wherein the content of the filler in the resin layer β is 20% by mass or more.
  5.  半導体チップと、前記半導体チップ上に設けられる保護膜とを備える保護膜付きチップであって、
     前記保護膜が、保護膜形成用フィルムを硬化させて形成されたものであるとともに、
     前記保護膜形成用フィルムが、(A1)アクリル系重合体と(B1)エポキシ系硬化性成分とを含有する樹脂層αと、(A1)アクリル系重合体とは異なる重合体である(A2)重合体と、(B2)エポキシ系硬化性成分と、(D2)着色剤と、(E2)充填材とを含有する樹脂層βとが積層されてなり、
     (A1)アクリル系重合体を構成する単量体が、エポキシ基含有単量体を含まず、または、全単量体の8質量%以下の割合でエポキシ基含有単量体を含むとともに、(A1)アクリル系重合体のガラス転移温度が-3℃以上であり、
     前記樹脂層βの表面の硬化後のJIS Z 8741により測定されるグロス値が20以上である保護膜付きチップ。
    A chip with a protective film comprising a semiconductor chip and a protective film provided on the semiconductor chip,
    The protective film is formed by curing a protective film-forming film,
    The protective film-forming film is a resin layer α containing (A1) an acrylic polymer and (B1) an epoxy curable component, and (A1) a polymer different from the acrylic polymer (A2). A polymer, (B2) an epoxy-based curable component, (D2) a colorant, and (E2) a resin layer β containing a filler are laminated,
    (A1) The monomer constituting the acrylic polymer does not contain an epoxy group-containing monomer, or contains an epoxy group-containing monomer in a proportion of 8% by mass or less of the total monomers. A1) The glass transition temperature of the acrylic polymer is −3 ° C. or higher,
    The chip | tip with a protective film whose gloss value measured by JISZ8741 after hardening of the surface of the said resin layer (beta) is 20 or more.
  6.  半導体ウエハを複数のチップに分割する工程、請求項1~4に記載の保護膜形成用フィルムが支持シート上に剥離可能に形成された保護膜形成用複合シートの保護膜形成用フィルムを、前記半導体ウエハ又は複数のチップからなるチップ群に貼付する工程、前記保護膜形成用複合シートにおける支持シートを前記保護膜形成用フィルムから剥離する工程、および前記保護膜形成用フィルムを熱硬化する工程を含み、
     保護膜形成用複合シートにおける支持シートを保護膜形成用フィルムから剥離する工程の後に、保護膜形成用フィルムを熱硬化する工程を行う保護膜付きチップの製造方法。
    A step of dividing the semiconductor wafer into a plurality of chips, the protective film-forming film of the protective film-forming composite sheet in which the protective film-forming film according to any one of claims 1 to 4 is detachably formed on a support sheet; A step of attaching to a semiconductor wafer or a chip group consisting of a plurality of chips, a step of peeling a support sheet in the protective film-forming composite sheet from the protective film-forming film, and a step of thermosetting the protective film-forming film. Including
    The manufacturing method of the chip | tip with a protective film which performs the process of thermosetting the film for protective film formation after the process of peeling the support sheet in the composite sheet for protective film formation from the film for protective film formation.
PCT/JP2014/057355 2013-03-19 2014-03-18 Film for forming protection film WO2014148496A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157018232A KR102177881B1 (en) 2013-03-19 2014-03-18 Film for forming protection film, chip with protection film and method for producing chip with protection film
JP2015506804A JP6357147B2 (en) 2013-03-19 2014-03-18 Protective film forming film
CN201480010200.3A CN105009277B (en) 2013-03-19 2014-03-18 Diaphragm formation film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013056825 2013-03-19
JP2013-056825 2013-03-19

Publications (1)

Publication Number Publication Date
WO2014148496A1 true WO2014148496A1 (en) 2014-09-25

Family

ID=51580173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057355 WO2014148496A1 (en) 2013-03-19 2014-03-18 Film for forming protection film

Country Status (5)

Country Link
JP (1) JP6357147B2 (en)
KR (1) KR102177881B1 (en)
CN (1) CN105009277B (en)
TW (1) TWI607050B (en)
WO (1) WO2014148496A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219706A (en) * 2015-05-25 2016-12-22 リンテック株式会社 Semiconductor device manufacturing method
JPWO2017150145A1 (en) * 2016-03-04 2018-12-27 リンテック株式会社 Composite sheet for protective film formation
WO2019082966A1 (en) * 2017-10-27 2019-05-02 リンテック株式会社 Film for forming protective coating, composite sheet for forming protective coating, and method for manufacturing semiconductor chip
WO2019131856A1 (en) * 2017-12-28 2019-07-04 日東電工株式会社 Semiconductor back surface adhering film
JP2020102553A (en) * 2018-12-21 2020-07-02 日東電工株式会社 Semiconductor backside adhesion film
KR20220132426A (en) 2021-03-23 2022-09-30 린텍 가부시키가이샤 Film for protective film formation, sheet for protective film formation, composite sheet for protective film formation and device manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795503B (en) * 2017-12-28 2023-03-11 日商日東電工股份有限公司 Semiconductor Back Adhesive Film
JP7139153B2 (en) * 2018-05-29 2022-09-20 日東電工株式会社 Back adhesion film and dicing tape integrated back adhesion film
TW202136448A (en) * 2020-02-27 2021-10-01 日商琳得科股份有限公司 Protective coating formation sheet, method for producing chip equipped with protective coating, and layered product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214288A (en) * 2002-12-27 2004-07-29 Lintec Corp Protection film forming sheet for chip
JP2006321216A (en) * 2005-04-19 2006-11-30 Hitachi Chem Co Ltd Sealing sheet
JP2007250970A (en) * 2006-03-17 2007-09-27 Hitachi Chem Co Ltd Film for protecting rear face of semiconductor element, semiconductor device using the same and manufacturing method thereof
JP2009130233A (en) * 2007-11-27 2009-06-11 Furukawa Electric Co Ltd:The Film for chip protection
JP2011151361A (en) * 2009-12-24 2011-08-04 Nitto Denko Corp Film for flip chip type semiconductor back surface

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544362B2 (en) 2001-03-21 2004-07-21 リンテック株式会社 Method for manufacturing semiconductor chip
CN100468165C (en) * 2004-04-08 2009-03-11 鸿富锦精密工业(深圳)有限公司 Light emitting diode and backlight module therewith
CN1978529A (en) * 2005-12-06 2007-06-13 北京波米科技有限公司 Photo-sensistive polyimide resin and composition and preparing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214288A (en) * 2002-12-27 2004-07-29 Lintec Corp Protection film forming sheet for chip
JP2006321216A (en) * 2005-04-19 2006-11-30 Hitachi Chem Co Ltd Sealing sheet
JP2007250970A (en) * 2006-03-17 2007-09-27 Hitachi Chem Co Ltd Film for protecting rear face of semiconductor element, semiconductor device using the same and manufacturing method thereof
JP2009130233A (en) * 2007-11-27 2009-06-11 Furukawa Electric Co Ltd:The Film for chip protection
JP2011151361A (en) * 2009-12-24 2011-08-04 Nitto Denko Corp Film for flip chip type semiconductor back surface

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219706A (en) * 2015-05-25 2016-12-22 リンテック株式会社 Semiconductor device manufacturing method
JPWO2017150145A1 (en) * 2016-03-04 2018-12-27 リンテック株式会社 Composite sheet for protective film formation
WO2019082966A1 (en) * 2017-10-27 2019-05-02 リンテック株式会社 Film for forming protective coating, composite sheet for forming protective coating, and method for manufacturing semiconductor chip
KR20200080237A (en) * 2017-10-27 2020-07-06 린텍 가부시키가이샤 Method for manufacturing a film for forming a protective film, a composite sheet for forming a protective film, and a semiconductor chip
JPWO2019082966A1 (en) * 2017-10-27 2020-12-17 リンテック株式会社 Method for manufacturing protective film forming film, protective film forming composite sheet, and semiconductor chip
JP7086986B2 (en) 2017-10-27 2022-06-20 リンテック株式会社 A method for manufacturing a protective film forming film, a protective film forming composite sheet, and a semiconductor chip.
KR102448152B1 (en) 2017-10-27 2022-09-27 린텍 가부시키가이샤 A film for forming a protective film, a composite sheet for forming a protective film, and a method for manufacturing a semiconductor chip
WO2019131856A1 (en) * 2017-12-28 2019-07-04 日東電工株式会社 Semiconductor back surface adhering film
WO2019131857A1 (en) * 2017-12-28 2019-07-04 日東電工株式会社 Semiconductor back surface adhering film
JP2020102553A (en) * 2018-12-21 2020-07-02 日東電工株式会社 Semiconductor backside adhesion film
KR20220132426A (en) 2021-03-23 2022-09-30 린텍 가부시키가이샤 Film for protective film formation, sheet for protective film formation, composite sheet for protective film formation and device manufacturing method

Also Published As

Publication number Publication date
JP6357147B2 (en) 2018-07-11
KR102177881B1 (en) 2020-11-12
TWI607050B (en) 2017-12-01
CN105009277B (en) 2017-10-27
JPWO2014148496A1 (en) 2017-02-16
CN105009277A (en) 2015-10-28
KR20150133171A (en) 2015-11-27
TW201439177A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP6357147B2 (en) Protective film forming film
JP5774799B2 (en) Composite sheet for protective film formation
WO2015068551A1 (en) Protective film forming composition, protective film forming sheet, and chip provided with protective film
JP6097308B2 (en) Protective film forming composition, protective film forming sheet, and chip with cured protective film
JP6334412B2 (en) Protective film forming film
JP6562172B2 (en) Resin film forming sheet and resin film forming composite sheet
JP6335173B2 (en) Composite sheet for forming protective film, chip with protective film, and method for manufacturing chip with protective film
TWI659505B (en) Protection layer forming film and method of semiconductor chip having protection layer
JP6334197B2 (en) Composite sheet for forming protective film, chip with protective film, and method for manufacturing chip with protective film
JP6302843B2 (en) Protective film forming film
TWI718112B (en) Film for forming protective film
TWI664229B (en) Film for forming protective film
TWI666237B (en) Film for forming protective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14771078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506804

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157018232

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14771078

Country of ref document: EP

Kind code of ref document: A1