WO2021132255A1 - 熱電変換材料、熱電変換素子、および、熱電変換モジュール - Google Patents

熱電変換材料、熱電変換素子、および、熱電変換モジュール Download PDF

Info

Publication number
WO2021132255A1
WO2021132255A1 PCT/JP2020/047992 JP2020047992W WO2021132255A1 WO 2021132255 A1 WO2021132255 A1 WO 2021132255A1 JP 2020047992 W JP2020047992 W JP 2020047992W WO 2021132255 A1 WO2021132255 A1 WO 2021132255A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion material
boride
powder
mass
Prior art date
Application number
PCT/JP2020/047992
Other languages
English (en)
French (fr)
Other versions
WO2021132255A8 (ja
Inventor
中田 嘉信
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020134901A external-priority patent/JP2021103763A/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US17/787,670 priority Critical patent/US20230043063A1/en
Priority to CN202080089462.9A priority patent/CN115516651A/zh
Priority to KR1020227017109A priority patent/KR20220115801A/ko
Priority to EP20904307.4A priority patent/EP4084099A4/en
Publication of WO2021132255A1 publication Critical patent/WO2021132255A1/ja
Publication of WO2021132255A8 publication Critical patent/WO2021132255A8/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/8556Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/723Oxygen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a thermoelectric conversion material containing Mg 2 Si X Sn 1-X (where 0.3 ⁇ X ⁇ 1) as a main component, a thermoelectric conversion element, and a thermoelectric conversion module.
  • This application claims priority based on Japanese Patent Application No. 2019-233147 filed in Japan on December 24, 2019, and Japanese Patent Application No. 2020-134901 filed in Japan on August 7, 2020. , The contents are used here.
  • thermoelectric conversion element made of a thermoelectric conversion material is an electronic element capable of mutually converting heat and electricity, such as the Seebeck effect and the Peltier effect.
  • the Seebeck effect is an effect of converting thermal energy into electrical energy, and is a phenomenon in which an electromotive force is generated when a temperature difference is generated at both ends of a thermoelectric conversion material.
  • electromotive force depends on the characteristics of the thermoelectric conversion material. In recent years, the development of thermoelectric power generation utilizing this effect has been active.
  • the above-mentioned thermoelectric conversion element has a structure in which electrodes are formed on one end side and the other end side of the thermoelectric conversion material, respectively.
  • thermoelectric conversion material As an index showing the characteristics of such a thermoelectric conversion element (thermoelectric conversion material), for example, the power factor (PF) represented by the following equation (1) and the dimensionless figure of merit represented by the following equation (2) (ZT) is used.
  • PF S 2 ⁇ ⁇ ⁇ ⁇ (1)
  • ZT S 2 ⁇ T / ⁇ ⁇ ⁇ ⁇ (2)
  • T absolute temperature (K)
  • thermal conductivity (W / (m ⁇ K))
  • thermoelectric conversion material for example, as shown in Patent Document 1, a material in which various dopants are added to magnesium silicide has been proposed.
  • the thermoelectric conversion material made of magnesium silicide described above tends to be easily oxidized, and there is a possibility that the thermoelectric characteristics may be deteriorated or the device may be brittle due to the oxidation. Therefore, for example, Patent Document 2 proposes a technique for preventing oxidation of a thermoelectric conversion material by coating the thermoelectric conversion material with glass.
  • thermoelectric conversion material when the thermoelectric conversion material is coated with glass, the glass is peeled off due to the difference in the coefficient of thermal expansion between the thermoelectric conversion material and the glass, and the oxidation of the thermoelectric conversion material cannot be suppressed. There was a risk. Further, it is necessary to cover the entire surface of the thermoelectric conversion material constituting each thermoelectric conversion element with glass, which causes a problem that the manufacturing cost increases. Further, when the thermoelectric conversion material constituting each thermoelectric conversion element is coated with glass, the coating cannot be partially applied and becomes mottled, or the thickness becomes uneven due to the flow of glass or the like. In such cases, the coating may be easily peeled off. Further, since magnesium silicide is a brittle material, there is a risk of cracking during handling.
  • the present invention has been made in view of the above circumstances, and is a thermoelectric conversion material having excellent thermoelectric properties, oxidation resistance, strength, and fracture toughness, a thermoelectric conversion element using this thermoelectric conversion material, and a thermoelectric conversion element. It is an object of the present invention to provide a thermoelectric conversion module.
  • thermoelectric conversion material of the present invention is selected from Mg 2 Si X Sn 1-X (however 0.3 ⁇ X ⁇ 1) and titanium, zirconium, and hafnium. It is characterized by containing a boride containing the metal of.
  • thermoelectric conversion material having this configuration since it contains a boride containing one or more metals selected from titanium, zirconium, and hafnium, Mg 2 Si X Sn using this boride as a parent phase is contained. By aggregating at the 1-X grain boundaries, electrical conductivity is improved, and it is possible to improve the power factor (PF), which is one of the indexes of thermoelectric characteristics. Further, since the boride contains one or more kinds of metals selected from titanium, zirconium and hafnium, the oxidation of magnesium can be suppressed and the oxidation resistance can be improved. Further, since the above-mentioned boride is relatively hard and has high strength, the strength of the thermoelectric conversion material can be improved, and the occurrence of cracks during handling can be suppressed.
  • PF power factor
  • the matrix is composed of magnesium silicide (Mg 2 Si)
  • the thermoelectric properties, oxidation resistance, strength, and fracture toughness are sufficiently excellent.
  • the boride is one or more selected from TiB 2 , ZrB 2 , and HfB 2.
  • the boride is one or more selected from TiB 2 , ZrB 2 , and HfB 2 , the thermoelectric properties, oxidation resistance, and strength can be reliably improved. ..
  • the mass ratio of Mg 2 Si X Sn 1-X to the thermoelectric conversion material is in the range of 84 mass% or more and 99.5 mass% or less. In this case, since the mass ratio of Mg 2 Si X Sn 1-X to the thermoelectric conversion material is in the range of 84 mass% or more and 99.5 mass% or less, sufficient thermoelectric characteristics can be ensured.
  • the total content of the boride is in the range of 0.5 mass% or more and 15 mass% or less. In this case, since the total content of the boride is in the range of 0.5 mass% or more and 15 mass% or less, it is possible to sufficiently improve the thermoelectric characteristics, oxidation resistance, and strength.
  • thermoelectric conversion material of the present invention preferably further contains aluminum.
  • the addition of aluminum can further improve the thermoelectric properties, oxidation resistance and mechanical strength.
  • thermoelectric conversion material of the present invention it is preferable that the content of the aluminum with respect to the thermoelectric conversion material is in the range of 0.01 mass% or more and 1 mass% or less. In this case, since the content of the aluminum with respect to the thermoelectric conversion material is within the above range, the thermoelectric characteristics, oxidation resistance and mechanical strength can be reliably improved.
  • thermoelectric conversion element of the present invention is characterized by comprising the above-mentioned thermoelectric conversion material and electrodes bonded to one surface and the other surface of the thermoelectric conversion material, respectively. According to the thermoelectric conversion element having this configuration, since the above-mentioned thermoelectric conversion material having excellent thermoelectric characteristics, oxidation resistance, and strength is provided, various characteristics are stabilized. Therefore, the thermoelectric conversion performance is stable and the reliability is excellent.
  • thermoelectric conversion module of the present invention is characterized by including the above-mentioned thermoelectric conversion element and terminals bonded to the electrodes of the thermoelectric conversion element, respectively. According to the thermoelectric conversion module having this configuration, since the thermoelectric conversion element described above is provided, the thermoelectric conversion material is excellent in thermoelectric characteristics, oxidation resistance, and strength, and various characteristics are stabilized. Therefore, the thermoelectric conversion performance is stable and the reliability is excellent.
  • thermoelectric conversion material having excellent thermoelectric properties, oxidation resistance, and strength, a thermoelectric conversion element using this thermoelectric conversion material, and a thermoelectric conversion module.
  • thermoelectric conversion material thermoelectric conversion material
  • thermoelectric conversion element thermoelectric conversion element
  • thermoelectric conversion module thermoelectric conversion module
  • flow chart of the manufacturing method of the thermoelectric conversion material which is an embodiment of this invention.
  • sectional drawing which shows an example of the sintering apparatus used in the manufacturing method of the thermoelectric conversion material which is an embodiment of this invention.
  • flow chart of the manufacturing method of the thermoelectric conversion material which is another embodiment of this invention.
  • It is an appearance observation photograph which shows the result of having evaluated the oxidation resistance in the test 2 of an Example.
  • thermoelectric conversion material the thermoelectric conversion element, and the thermoelectric conversion module according to the embodiment of the present invention will be described with reference to the attached drawings.
  • each of the embodiments shown below is specifically described in order to better understand the gist of the invention, and is not limited to the present invention unless otherwise specified.
  • drawings used in the following description may be shown by enlarging the main parts for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of the respective components are the same as the actual ones. Is not always the case.
  • FIG. 1 shows a thermoelectric conversion material 11 according to an embodiment of the present invention, a thermoelectric conversion element 10 using the thermoelectric conversion material 11, and a thermoelectric conversion module 1.
  • the thermoelectric conversion element 10 includes a thermoelectric conversion material 11 according to the present embodiment, and electrodes 18a and 18b formed on one surface 11a and the other surface 11b of the thermoelectric conversion material 11. Further, the thermoelectric conversion module 1 includes terminals 19a and 19b joined to the electrodes 18a and 18b of the thermoelectric conversion element 10 described above, respectively.
  • Nickel, silver, cobalt, tungsten, molybdenum and the like are used for the electrodes 18a and 18b.
  • the electrodes 18a and 18b can be formed by current-carrying sintering, plating, electrodeposition, or the like.
  • the terminals 19a and 19b are formed of a metal material having excellent conductivity, for example, a plate material such as copper or aluminum. In this embodiment, a rolled aluminum plate is used. Further, the thermoelectric conversion element 10 (electrodes 18a and 18b) and the terminals 19a and 19b can be joined by Ag wax, Ag plating or the like.
  • the thermoelectric conversion material 11 of the present embodiment is a sintered body containing Mg 2 Si X Sn 1-X (however, 0.3 ⁇ X ⁇ 1) as a main component.
  • the thermoelectric conversion material 11 may be composed of non-doped Mg 2 Si X Sn 1-X containing no dopant, and Li, Na, K, B, Ga, In, N, P may be used as the dopant.
  • Y may be composed of Mg 2 Si X Sn 1-X containing one or more selected from Y.
  • the thermoelectric conversion material 11 is mainly composed of Mg 2 Si X Sn 1-X having a mass ratio of 84 mass% or more and 99.5 mass% or less, and Mg 2 Si X Sn 1-X is used as a dopant. It is said that antimony (Sb) was added.
  • the thermoelectric conversion material 11 of the present embodiment has a composition of Mg 2 Si X Sn 1-X containing antimony in the range of 0.1 atomic% or more and 2.0 atomic% or less.
  • an n-type thermoelectric conversion material having a high carrier density is obtained by adding antimony, which is a pentavalent donor.
  • thermoelectric conversion material 11 as a donor for using the thermoelectric conversion material 11 as an n-type thermoelectric conversion element, bismuth, phosphorus, arsenic and the like can be used in addition to antimony. Further, the thermoelectric conversion material 11 may be a p-type thermoelectric conversion element, and in this case, it can be obtained by adding a dopant such as lithium or silver as an acceptor.
  • the thermoelectric conversion material 11 of the present embodiment contains a boride containing one or more metals selected from group 4 elements such as titanium, zirconium, and hafnium.
  • a boride containing one or more metals selected from group 4 elements such as titanium, zirconium, and hafnium.
  • the above-mentioned boride include TiB 2 , ZrB 2 , and HfB 2 . It is preferable that these borides are aggregated at the grain boundaries of Mg 2 Si X Sn 1-X, which is the matrix phase.
  • the total content of the above-mentioned boride is in the range of 0.5 mass% or more and 15 mass% or less. Further, the lower limit of the total content of the above-mentioned boride is more preferably 1 mass% or more, and further preferably 1.5 mass% or more. On the other hand, the upper limit of the total content of the above-mentioned boride is more preferably 12 mass% or less, and further preferably 10 mass% or less.
  • thermoelectric conversion material 11 of the present embodiment may contain aluminum.
  • the inclusion of aluminum will further improve thermoelectric properties, oxidation resistance and mechanical strength.
  • the amount of aluminum added is preferably in the range of 0.01 mass% or more and 1 mass% or less.
  • thermoelectric conversion material 11 Next, the method for manufacturing the thermoelectric conversion material 11 according to the present embodiment will be described with reference to FIGS. 2 and 3.
  • a massive magnesium silicide compound as a raw material for Mg 2 Si X Sn 1-X which is the parent phase of the sintered body, which is the thermoelectric conversion material 11, is formed.
  • the silicon powder, the magnesium powder, and the tin powder and the dopant to be added as needed are weighed and mixed, respectively.
  • a pentavalent material such as antimony or bismuth is used as a dopant
  • a p-type thermoelectric conversion material lithium or silver is used as a dopant.
  • Mix materials such as.
  • the non-doped Mg 2 Si X Sn 1-X may be used without adding a dopant.
  • antimony is used as a dopant in order to obtain an n-type thermoelectric conversion material, and the amount of antimony added is in the range of 0.1 atomic% or more and 2.0 atomic% or less.
  • the binder powder is Mg 2 Si X Sn 1-X (0.3 ⁇ X ⁇ 1), it is heated to a range of 700 ° C. or higher and 900 ° C. or lower, cooled and solidified.
  • a massive magnesium silicide compound is obtained. Since a small amount of magnesium sublimates during heating, it is preferable to add a large amount of magnesium, for example, about 3 atomic% to 5 atomic% with respect to the stoichiometric composition when measuring the raw material.
  • the obtained massive magnesium silicide compound is pulverized by a pulverizer to form magnesium silicide compound powder (Mg 2 Si X Sn 1-X powder).
  • the average particle size of the magnesium silicide compound powder is preferably in the range of 1 ⁇ m or more and 100 ⁇ m or less.
  • the dopant is uniformly present in the magnesium silicide compound powder.
  • the massive magnesium silicide compound forming step S01 and the crushing step S02 can be omitted.
  • the obtained magnesium silicide compound powder is mixed with a boride powder containing one or more metals selected from titanium, zirconium, and hafnium to obtain a sintered raw material powder. If necessary, aluminum powder may be added.
  • the content of the magnesium silicide compound powder in the sintering raw material powder is preferably in the range of 84 mass% or more and 99.5 mass% or less.
  • the content of the boride powder in the sintered raw material powder is preferably in the range of 0.5 mass% or more and 15 mass% or less. Further, as the boride powder, it is preferable to use a boride powder having a purity of 99 mass% or more.
  • the average particle size of the boride powder is preferably in the range of 1 ⁇ m or more and 100 ⁇ m or less.
  • the content of the aluminum powder in the sintering raw material powder is preferably in the range of 0.01 mass% or more and 1 mass% or less.
  • the aluminum powder it is preferable to use an aluminum powder having a purity of 99.99 mass% or more.
  • the average particle size of the aluminum powder is preferably in the range of 1 ⁇ m or more and 100 ⁇ m or less.
  • the sintered raw material powder obtained as described above is heated while pressurizing to obtain a sintered body.
  • the sintering apparatus (energized sintering apparatus 100) shown in FIG. 3 is used in the sintering step S04.
  • the sintering device (electric current sintering device 100) shown in FIG. 3 includes, for example, a pressure-resistant housing 101, a vacuum pump 102 that reduces the pressure inside the pressure-resistant housing 101, and a hollow cylinder arranged inside the pressure-resistant housing 101.
  • a voltage is applied between the carbon mold 103 of the shape, a pair of electrode portions 105a and 105b for applying an electric current while pressurizing the sintered raw material powder Q filled in the carbon mold 103, and the pair of electrode portions 105a and 105b.
  • the power supply device 106 is provided. Further, a carbon plate 107 and a carbon sheet 108 are arranged between the electrode portions 105a and 105b and the sintered raw material powder Q, respectively. In addition to this, it has a thermometer, a displacement meter, etc. that are not shown. Further, in the present embodiment, the heater 109 is arranged on the outer peripheral side of the carbon mold 103.
  • the heaters 109 are arranged on four side surfaces so as to cover the entire outer peripheral side of the carbon mold 103.
  • a carbon heater a nichrome wire heater, a molybdenum heater, a Kanthal wire heater, a high frequency heater and the like can be used.
  • the sintering raw material powder Q is filled in the carbon mold 103 of the current-carrying sintering apparatus 100 shown in FIG.
  • the inside of the carbon mold 103 is, for example, covered with a graphite sheet or a carbon sheet.
  • a direct current is passed between the pair of electrode portions 105a and 105b, and a current is passed through the sintered raw material powder Q to raise the temperature by self-heating.
  • the movable side electrode portion 105a is moved toward the sintered raw material powder Q, and the sintered raw material powder Q is moved to and from the fixed side electrode portion 105b at a predetermined pressure. Pressurize. It also heats the heater 109. As a result, the sintered raw material powder Q is sintered by the self-heating of the sintered raw material powder Q, the heat from the heater 109, and the pressurization.
  • the sintering temperature is maintained within the range of 600 ° C. or higher and 800 ° C. or lower at each sintering temperature.
  • the time is set to 10 minutes or less.
  • the pressurized load is within the range of 20 MPa or more and 50 MPa or less.
  • the atmosphere inside the pressure-resistant housing 101 may be an inert atmosphere such as an argon atmosphere or a vacuum atmosphere. In the case of a vacuum atmosphere, the pressure should be 5 Pa or less.
  • the sintering temperature of (0.3 ⁇ X ⁇ 1)) is less than 600 ° C.
  • the oxide film formed on the surface of each of the sintered raw material powders Q cannot be sufficiently removed, resulting in crystals.
  • the surface oxide film of the raw material powder itself remains at the grain boundary, and the bonding between the raw material powders is insufficient, resulting in a low density of the sintered body. For these reasons, the electrical resistance of the obtained thermoelectric conversion material may increase.
  • the temperature is set within the range of 600 ° C. or higher and 800 ° C. or lower.
  • the upper limit of the sintering temperature of the sintered raw material powder Q (Mg 2 Si X Sn 1-X (0.3 ⁇ X ⁇ 1)) in the sintering step S04 is preferably 770 ° C. or lower, preferably 740 ° C. The following is more preferable.
  • the holding time at the sintering temperature in the sintering step S04 is set to 10 minutes or less.
  • the upper limit of the holding time at the sintering temperature in the sintering step S04 is preferably 5 minutes or less, and more preferably 3 minutes or less.
  • the pressurizing load in the sintering step S04 is set within the range of 20 MPa or more and 50 MPa or less.
  • the lower limit of the pressurized load in the sintering step S04 is preferably 23 MPa or more, and more preferably 25 MPa or more.
  • the upper limit of the pressurizing load in the sintering step S04 is preferably 50 MPa or less, and more preferably 45 MPa or less.
  • thermoelectric conversion material 11 according to the present embodiment is manufactured by each of the above steps.
  • thermoelectric conversion material 11 of the present embodiment since it contains a boride containing one or more metals selected from titanium, zirconium, and hafnium, this boro By aggregating the compound at the grain boundaries of Mg 2 Si X Sn 1-X , which is the parent phase, electrical conductivity is improved, and it is possible to improve the power factor (PF), which is one of the indicators of thermoelectric properties. Become. Further, since the boride contains one or more kinds of metals selected from titanium, zirconium and hafnium, the oxidation of magnesium can be suppressed and the oxidation resistance can be improved.
  • PF power factor
  • the above-mentioned boride is relatively hard and has high strength, it is possible to improve the strength of the sintered body containing Mg 2 Si X Sn 1-X as a main component, and the occurrence of cracks during handling can be improved. It can be suppressed.
  • thermoelectric characteristics, oxidation resistance, and strength can be sufficiently improved. It will be possible. Further, in the present embodiment, when the above-mentioned boride is one or more selected from TiB 2 , ZrB 2 , and HfB 2 , the thermoelectric properties, oxidation resistance, and strength are surely improved. Is possible.
  • thermoelectric conversion material 11 when the mass ratio of Mg 2 Si X Sn 1-X to the thermoelectric conversion material 11 is within the range of 84 mass% or more and 99.5 mass% or less, sufficient thermoelectric characteristics are ensured. can do. Further, in the present embodiment, when the thermoelectric conversion material 11 contains aluminum, it is possible to further improve the thermoelectric characteristics, oxidation resistance and mechanical strength.
  • thermoelectric conversion element 10 and the thermoelectric conversion module 1 of the present embodiment include the above-mentioned thermoelectric conversion material 11 having excellent thermoelectric characteristics, oxidation resistance, and strength, various characteristics are stabilized. .. Therefore, the thermoelectric conversion performance is stable and the reliability is excellent.
  • thermoelectric conversion module having the structure shown in FIG. 1 has been described, but the present invention is not limited to this, and if the thermoelectric conversion material of the present invention is used, an electrode or an electrode or a thermoelectric conversion module is used. There are no particular restrictions on the structure and arrangement of the terminals.
  • the sintered raw material powder is formed by adding the boride powder to the magnesium silicide compound powder (Mg 2 Si X Sn 1-X powder).
  • Mg 2 Si X Sn 1-X powder magnesium silicide compound powder
  • a magnesium powder, a silicon powder (tin powder if necessary), and a boride powder are mixed, and this mixed powder is used, for example, in an alumina pot. Introduced into the above, heated to the range of 800 ° C. or higher and 1150 ° C. or lower, or 700 ° C. or higher and 900 ° C. or lower (when tin powder is added), cooled and solidified, and the obtained massive magnesium silicide compound was obtained.
  • (Mg 2 Si X Sn 1-X ) may be pulverized to form a sintered raw material powder.
  • the sintering is performed using the sintering apparatus (energized sintering apparatus 100) shown in FIG. 3, but the present invention is not limited to this, and the sintering raw material is indirectly used.
  • a method of pressurizing and sintering while heating for example, hot pressing, HIP (Hot Isostatic Pressing), or the like may be used.
  • the magnesium silicide compound powder (Mg 2 Si X Sn 1-X powder) to which antimony (Sb) is added as a dopant is described as being used as a sintering raw material, but the present invention is limited to this.
  • one or more selected from Li, Na, K, B, Ga, In, N, P, As, Sb, Bi, Ag, Cu, and Y is contained as a dopant. It may contain these elements in addition to Sb. Further, it may be a sintered body of a non-doped magnesium silicide compound (Mg 2 Si X Sn 1-X) containing no dopant.
  • thermoelectric characteristics of the thermoelectric conversion material containing magnesium silicide (Mg 2 Si) as a main component were evaluated in Examples 1 to 5 of the present invention and Comparative Example 1.
  • Mg with a purity of 99.9 mass% particle size 180 ⁇ m: manufactured by High Purity Chemical Laboratory Co., Ltd.
  • Si with a purity of 99.99 mass% particle size 300 ⁇ m: manufactured by High Purity Chemical Laboratory Co., Ltd.
  • purity 99.9 mass% Sb prepare the (particle size 300 ⁇ m Co., Ltd. Kojundo Chemical Laboratory), were weighed these, mixed well in a mortar, and placed in an alumina crucible for 2 hours at 850 °C, Ar-3vol% h 2 Heated in.
  • Mg massive magnesium silicide
  • Mg 2 Si massive magnesium silicide having the compositions shown in Examples 1 to 5 of the present invention and Comparative Example 1 in Table 1 was obtained.
  • this massive magnesium silicide (Mg 2 Si) is coarsely crushed with a jaw crusher, further finely crushed in a dairy pot, and classified to obtain magnesium silicide powder (Mg 2 Si powder) having an average particle size of 30 ⁇ m. It was.
  • the boride powder shown in Table 1 (purity 99.9 mass%, average particle size 3 ⁇ m) is prepared. This was weighed so as to have the content shown in Table 1, and magnesium silicide powder and boride powder were mixed to obtain a sintered raw material powder. The obtained sintered raw material powder was filled in a carbon mold whose inside was covered with a carbon sheet. Then, the sintering apparatus shown in FIG. 3 (energized sintering apparatus 100) was used for energization sintering under the conditions shown in Table 1.
  • thermoelectric conversion material having the composition shown in Table 1 was obtained.
  • the thermal conductivity ⁇ , power factor PF, and dimensionless figure of merit ZT at various temperatures were evaluated for the thermoelectric conversion material obtained as described above. The evaluation results are shown in Table 1.
  • the specific resistance value R and the Seebeck coefficient S were measured by ZEM-3 manufactured by Advance Riko.
  • the specific resistance value R and the Seebeck coefficient S were measured at 100 ° C., 200 ° C., 300 ° C., 400 ° C., and 500 ° C.
  • the power factor (PF) was obtained from the following equation (1).
  • PF S 2 / R ... (1)
  • S Seebeck coefficient (V / K)
  • R Specific resistance value ( ⁇ ⁇ m)
  • the thermal conductivity ⁇ was obtained from thermal diffusivity ⁇ density ⁇ specific heat capacity.
  • the thermal diffusivity was measured using a thermal constant measuring device (TC-7000 type manufactured by Vacuum Riko), the density was measured by the Archimedes method, and the specific heat was measured using a differential scanning calorimeter (DSC-7 type manufactured by PerkinElmer). The measurement was carried out at 25 ° C., 100 ° C., 200 ° C., 300 ° C., 400 ° C. and 500 ° C.
  • the dimensionless figure of merit (ZT) was calculated from the following equation (2).
  • ZT S 2 ⁇ T / ⁇ ⁇ ⁇ ⁇ (2)
  • T absolute temperature (K)
  • thermal conductivity (W / (m ⁇ K))
  • Example 1-5 of the present invention Compared with Comparative Example 1 in which boride was not added, in Example 1-5 of the present invention to which boride was added, the power factor PF was high at various temperatures, and the thermoelectric characteristics (power generation performance and thermoelectric conversion efficiency) were excellent. It is confirmed that it is.
  • thermoelectric conversion materials having the compositions shown in Examples 11 to 12 of the present invention and Comparative Examples 11 to 12 in Table 2 were obtained.
  • the thermoelectric conversion material obtained as described above was subjected to an oxidative heat treatment in which the thermoelectric conversion material was heated to 750 ° C. in a steam atmosphere of 200 Pa and then cooled without holding time. Then, the samples collected from the thermoelectric conversion materials before and after the heat treatment were analyzed by energy dispersive X-ray analysis (EDX), and the composition on the surface was confirmed. The measurement results are shown in Table 2. Further, a surface observation photograph after the heat treatment is shown in FIG.
  • the white portions in FIGS. 5 (a) and 5 (b) are magnesium oxides, and the EDX value in Table 2 is the result of measurement in areas other than the spherical white portion (ground portion).
  • (c) and (d) of the comparative example are the results of analysis from above the magnesium oxide because the entire surface of the sample is covered with the magnesium oxide.
  • the following reaction can be considered as one of the mechanisms by which the oxidation of magnesium silicide to which boride is added is suppressed. First, a part of the boride in contact with magnesium silicide reacts with magnesium silicide and decomposes into titanium, zirconium, hafnium, or boron, and these elements diffuse into magnesium silicide particles to form magnesium.
  • the compound suppresses the diffusion of magnesium on the surface of the thermoelectric conversion material and prevents the oxidation of magnesium silicide.
  • the compound suppresses the diffusion of oxygen into the thermoelectric conversion material and suppresses the oxidation of magnesium silicide.
  • thermoelectric conversion materials having the compositions shown in Examples 21 to 26 of the present invention and Comparative Example 21 in Table 3 were obtained.
  • the thermoelectric conversion material obtained as described above was subjected to a three-point bending test at the temperatures shown in Table 3 in the range of room temperature (25 ° C.) to 550 ° C., and the bending strength was measured. Further, the ratio of the bending strength at 500 ° C. to the bending strength at room temperature (25 ° C.) was calculated. The measurement results are shown in Table 3.
  • the test jig was a 3-point bending jig made of SiC, and the distance between the fulcrums was 12 mm.
  • the test atmosphere was an atmosphere at room temperature and an Ar atmosphere at 300 ° C. to 550 ° C.
  • the displacement rate of the crosshead was 0.5 mm / min, the temperature rising rate was 20 ° C./min, and the crosshead was held for 15 minutes after reaching the test temperature, and then a three-point bending test was performed.
  • the flexural strength (MPa) was determined from the maximum load at break using the following formula.
  • Example 21-26 of the present invention to which boride was added, the flexural strength at high temperature (500 ° C.) increased with respect to the bending strength at room temperature (25 ° C.) (flexural strength at 500 ° C./25 ° C.). Bending strength) was sufficiently higher than that of Comparative Example 21. In addition, the bending strength at a high temperature (500 ° C.) was also higher than that of Comparative Example 21. The reason for this is considered as follows. Generally, the bending strength of boride is 400 MPa at room temperature in Ar, and the strength is almost constant up to 1400 ° C. when the temperature is raised. The sample this time is in a state where boride aggregates at the grain boundaries to form a thin layer and is sintered.
  • the strength of the bulk body is considered to depend on the particle strength and the grain boundary strength constituting the bulk body. This time, at room temperature, the bending strength of the three-point bending is almost the same regardless of the addition of boride, so it seems that the strength is mainly determined by the particle strength of magnesium silicide.
  • the strength increased from room temperature, but the increase range was small when no addition was made, and the amount of addition had a peak around 3 mass% to 4 mass%, and the strength was high.
  • the temperature is more than doubled. This indicates that the strength of the bulk body is higher than the strength of magnesium silicide. It is considered that the reason for this is that the bonding force between the boride particles and the magnesium silicide particles that are in contact with each other at the grain boundaries is improved, which leads to an increase in the bending strength at a high temperature.
  • the peak is around 3 mass% to 4 mass% for the following reasons.
  • Boride is sintered at a high temperature of about 2000 ° C. after undergoing several steps (including a pressurizing step such as hot pressing) by adding a sintering aid or the like. This time, when the addition amount is increased to about 10 mass%, the thickness of the grain boundaries formed by the boride becomes thicker, and it is considered that the cases where the borides come into contact with each other increase.
  • the temperature is 1020 ° C. at the maximum, and no sintering aid is added, so that the strength between the borides formed at the grain boundaries becomes the true strength of the boride. It is considered to be smaller than that.
  • the amount of boride added is too large, the strength is lowered as compared with 4 mass%. If it is less than 3 mass%, the magnesium silicide particles are not sufficiently covered with boride, and the strength is lower than that of 3 mass%. From a different point of view, it is considered that the maximum strength was obtained in the vicinity of 3 mass% to 4 mass% in which magnesium silicide was covered with boride without excess or deficiency.
  • thermoelectric conversion materials having the compositions shown in Examples 31 to 32 of the present invention and Comparative Example 31 in Table 4 were obtained.
  • the fracture toughness Kc of the obtained thermoelectric conversion material was measured by the IF method specified in JIS R 1607.
  • an HSV-30 manufactured by Shimadzu Corporation was used to perform a micro Vickers test under the conditions of room temperature, a load of 3 kg during the test, and a holding time of 15 seconds.
  • 143 GPa was used as the elastic modulus of the thermoelectric conversion material.
  • thermoelectric conversion material obtained by adding Al to magnesium silicide (Mg 2 Si) were evaluated.
  • aluminum powder was added to the sintered raw material powder to obtain thermoelectric conversion materials having the compositions shown in Examples 41 to 45 of the present invention in Table 5.
  • As a raw material aluminum powder having a purity of 99.99 mass% (particle size 45 ⁇ m: manufactured by High Purity Chemical Laboratory Co., Ltd.) was used.
  • the specific resistance value R, the Seebeck coefficient S, and the power factor PF at various temperatures were evaluated by the same method as in Test 1. The evaluation results are shown in Table 5.
  • thermoelectric conversion material having the composition shown in Table 6 was obtained by the same production method as in Test 5.
  • the thermoelectric conversion material obtained as described above is heat-treated in a steam atmosphere in the same manner as in Test 2, and samples taken from the thermoelectric conversion material before and after the heat treatment are subjected to energy dispersive X-ray analysis (energy dispersive X-ray analysis). It was analyzed by EDX) and the composition on the surface was confirmed. The measurement results are shown in Table 6.
  • thermoelectric conversion material containing Mg 2 Si X Sn 1-X (however 0.3 ⁇ X ⁇ 1) as a main component were evaluated.
  • a thermoelectric conversion material having the composition shown in Table 7-9 was obtained by the same production method as in Test 1. Specifically, magnesium powder, silicon powder, and tin powder are weighed and mixed according to the method for producing magnesium silicide powder in Test 1, and Mg 2 Si X Sn 1-X (however, 0.3 ⁇ X ⁇ ). The ingot of 1) was prepared, and the ingot was crushed to produce Mg 2 Si X Sn 1-X (however 0.3 ⁇ X ⁇ 1) powder.
  • the same boride powder as in Test 1 was prepared, weighed so as to have the content shown in Table 7, and Mg 2 Si X Sn 1-X (however 0.3 ⁇ X ⁇ 1) powder and boride were prepared.
  • the powder was mixed with the powder to obtain a sintered raw material powder.
  • Aluminum powder was added to the sintered raw material powder as needed.
  • Tables 7 to 9 show Examples 61 to 62, 71 to 74, 81 to 84 of the present invention and Comparative Examples 61, 71 to 72, 81.
  • the thermoelectric conversion material shown was obtained.
  • thermoelectric conversion material As raw materials, tin powder having a purity of 99.99 mass% (particle size 150 ⁇ m: manufactured by High Purity Chemical Laboratory Co., Ltd.) and aluminum powder having a purity of 99.99 mass% (particle size 45 ⁇ m: manufactured by High Purity Chemical Laboratory Co., Ltd.) ) was used.
  • the specific resistance value R, the Seebeck coefficient S, and the power factor PF at various temperatures were evaluated by the same method as in Test 1. The evaluation results are shown in Table 7-9.
  • thermoelectric conversion material containing Mg 2 Si X Sn 1-X (however 0.3 ⁇ X ⁇ 1) as a main component were evaluated.
  • thermoelectric conversion materials having the compositions shown in Examples 91 to 92 of the present invention and Comparative Examples 91 to 95 in Table 10 were obtained.
  • tin powder having a purity of 99.99 mass% (particle size 150 ⁇ m: manufactured by High Purity Chemical Laboratory Co., Ltd.) and aluminum powder having a purity of 99.99 mass% (particle size 45 ⁇ m: manufactured by High Purity Chemical Laboratory Co., Ltd.) ) was used.
  • thermoelectric conversion material obtained as described above, the Vickers hardness, the length of cracks formed at the ends of the indentations during the Vickers hardness test, and the bending strength during 3-point bending were tested in Tests 3 and 3. It was evaluated by the same method as in 4. The evaluation results are shown in Table 10.
  • thermoelectric conversion material having excellent thermoelectric properties, oxidation resistance, and strength.
  • Thermoelectric conversion module 10 Thermoelectric conversion element 11 Thermoelectric conversion material 18a, 18b Electrodes 19a, 19b Terminals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

この熱電変換材料は、Mg2SiXSn1-X(ただし0.3≦X≦1)と、チタン、ジルコニウム、ハフニウムから選択される一種又は二種以上の金属を含むホウ化物とを含有する。更に、前記ホウ化物が、TiB2,ZrB2,HfB2から選択される一種又は二種以上であることが好ましい。

Description

熱電変換材料、熱電変換素子、および、熱電変換モジュール
 本発明は、MgSiSn1-X(ただし0.3≦X≦1)を主成分とする熱電変換材料、熱電変換素子、および、熱電変換モジュールに関するものである。
 本願は、2019年12月24日に、日本に出願された特願2019-233147号、及び2020年8月7日に、日本に出願された特願2020-134901号に基づき優先権を主張し、その内容をここに援用する。
 熱電変換材料からなる熱電変換素子は、ゼーベック効果、ペルティエ効果といった、熱と電気とを相互に変換可能な電子素子である。ゼーベック効果は、熱エネルギーを電気エネルギーに変換する効果であり、熱電変換材料の両端に温度差を生じさせると起電力が発生する現象である。こうした起電力は熱電変換材料の特性によって決まる。近年ではこの効果を利用した熱電発電の開発が盛んである。
 上述の熱電変換素子は、熱電変換材料の一端側および他端側にそれぞれ電極が形成された構造とされている。
 このような熱電変換素子(熱電変換材料)の特性を表す指標として、例えば以下の(1)式で表されるパワーファクター(PF)や、以下の(2)式で表される無次元性能指数(ZT)が用いられている。なお、熱電変換材料においては、一端側と他端側とで温度差を維持する必要があるため、熱伝導性が低いことが好ましい。
 PF=Sσ・・・(1)
  但し、S:ゼーベック係数(V/K)、σ:電気伝導率(S/m)
 ZT=SσT/κ・・・(2)
  但し、T=絶対温度(K)、κ=熱伝導率(W/(m×K))
 上述の熱電変換材料として、例えば特許文献1に示すように、マグネシウムシリサイドに各種ドーパントを添加したものが提案されている。
 ここで、上述のマグネシウムシリサイドからなる熱電変換材料は、酸化しやすい傾向にあり、酸化によって熱電特性が低下したり、素子が脆くなってしまったりするおそれがある。
 このため、例えば特許文献2においては、熱電変換材料をガラスによって被覆することにより、熱電変換材料の酸化を防止する技術が提案されている。
特開2013-179322号公報 特開2017-050325号公報
 ところで、特許文献2に示すように、熱電変換材料をガラスによって被覆した場合には、熱電変換材料とガラスの熱膨張係数の差により、ガラスが剥がれてしまい、熱電変換材料の酸化を抑制できなくなるおそれがあった。また、個々の熱電変換素子を構成する熱電変換材料の全面にガラスを被覆する必要があり、製造コストが増加してしまうといった問題があった。さらに、個々の熱電変換素子を構成する熱電変換材料にガラスを被覆する際に、一部に被覆が塗布できずにまだらになったり、ガラスが流動する等で厚さが不均一になったりすることがあり、そのような場合、被覆が剥がれやすくなることがある。
 また、マグネシウムシリサイドは、脆性材料であるため、取り扱い時に割れが生じるおそれがあった。
 この発明は、前述した事情に鑑みてなされたものであって、熱電特性、耐酸化性、強度、破壊靭性に優れた熱電変換材料、および、この熱電変換材料を用いた熱電変換素子、および、熱電変換モジュールを提供することを目的とする。
 上記課題を解決するために、本発明の熱電変換材料は、MgSiSn1-X(ただし0.3≦X≦1)と、チタン、ジルコニウム、ハフニウムから選択される一種又は二種以上の金属を含むホウ化物とを含有することを特徴としている。
 この構成の熱電変換材料によれば、チタン、ジルコニウム、ハフニウムから選択される一種又は二種以上の金属を含むホウ化物を含有しているので、このホウ化物が母相となるMgSiSn1-Xの結晶粒界に凝集することによって電気伝導性が向上し、熱電特性の指標の一つであるパワーファクター(PF)を向上させることが可能となる。
 また、ホウ化物がチタン、ジルコニウム、ハフニウムから選択される一種又は二種以上の金属を含んでいるので、マグネシウムの酸化を抑制でき、耐酸化性を向上させることが可能となる。
 さらに、上述のホウ化物は比較的硬く、強度が高いため、熱電変換材料の強度を向上させることができ、取り扱い時における割れの発生を抑制することが可能となる。
 ここで、本発明の熱電変換材料においては、前記MgSiSn1-Xは、X=1とされたマグネシウムシリサイドであってもよい。
 この場合、母相がマグネシウムシリサイド(MgSi)で構成されていても、熱電特性、耐酸化性、強度、破壊靭性に十分に優れている。
 また、本発明の熱電変換材料においては、前記ホウ化物が、TiB,ZrB,HfBから選択される一種又は二種以上であることが好ましい。
 この場合、前記ホウ化物が、TiB,ZrB,HfBから選択される一種又は二種以上とされているので、確実に、熱電特性、耐酸化性、強度を向上させることが可能となる。
 また、本発明の熱電変換材料においては、前記熱電変換材料に対する前記MgSiSn1-Xの質量割合が、84mass%以上99.5mass%以下の範囲内とされていることが好ましい。
 この場合、前記熱電変換材料に対する前記MgSiSn1-Xの質量割合が、84mass%以上99.5mass%以下の範囲内とされているので、十分な熱電特性を確保することができる。
 さらに、本発明の熱電変換材料においては、前記ホウ化物の合計含有量が0.5mass%以上15mass%以下の範囲内とされていることが好ましい。
 この場合、前記ホウ化物の合計含有量が0.5mass%以上15mass%以下の範囲内とされているので、熱電特性、耐酸化性、強度を十分に向上させることが可能となる。
 また、本発明の熱電変換材料においては、さらに、アルミニウムを含有することが好ましい。
 この場合、アルミニウムを添加することにより、熱電特性、耐酸化性および機械的強度をさらに向上させることができる。
 さらに、本発明の熱電変換材料においては、前記熱電変換材料に対する前記アルミニウムの含有量が0.01mass%以上1mass%以下の範囲内とされていることが好ましい。
 この場合、前記熱電変換材料に対する前記アルミニウムの含有量が上述の範囲内とされているので、熱電特性、耐酸化性および機械的強度を確実に向上させることができる。
 本発明の熱電変換素子は、上述の熱電変換材料と、前記熱電変換材料の一方の面および他方の面にそれぞれ接合された電極と、を備えたことを特徴としている。
 この構成の熱電変換素子によれば、熱電特性、耐酸化性、強度に優れた上述の熱電変換材料を備えているので、各種特性が安定することになる。よって、熱電変換性能が安定し、信頼性に優れている。
 本発明の熱電変換モジュールは、上述の熱電変換素子と、前記熱電変換素子の前記電極にそれぞれ接合された端子と、を備えたことを特徴としている。
 この構成の熱電変換モジュールによれば、上述の熱電変換素子を備えているので、熱電変換材料の熱電特性、耐酸化性、強度に優れており、各種特性が安定することになる。よって、熱電変換性能が安定し、信頼性に優れている。
 本発明によれば、熱電特性、耐酸化性、強度に優れた熱電変換材料、および、この熱電変換材料を用いた熱電変換素子、および、熱電変換モジュールを提供することが可能となる。
本発明の実施形態である熱電変換材料、熱電変換素子、熱電変換モジュールの断面図である。 本発明の実施形態である熱電変換材料の製造方法のフロー図である。 本発明の実施形態である熱電変換材料の製造方法で用いられる焼結装置の一例を示す断面図である。 本発明の他の実施形態である熱電変換材料の製造方法のフロー図である。 実施例の試験2において耐酸化性を評価した結果を示す外観観察写真である。
 以下に、本発明の実施形態である熱電変換材料、熱電変換素子、および、熱電変換モジュールについて、添付した図面を参照して説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
 図1に、本発明の実施形態である熱電変換材料11、および、この熱電変換材料11を用いた熱電変換素子10、および、熱電変換モジュール1を示す。
 この熱電変換素子10は、本実施形態である熱電変換材料11と、この熱電変換材料11の一方の面11aおよび他方の面11bに形成された電極18a,18bと、を備えている。
 また、熱電変換モジュール1は、上述の熱電変換素子10の電極18a,18bにそれぞれ接合された端子19a,19bを備えている。
 電極18a,18bは、ニッケル、銀、コバルト、タングステン、モリブデン等が用いられる。この電極18a,18bは、通電焼結、めっき、電着等によって形成することができる。
 端子19a,19bは、導電性に優れた金属材料、例えば、銅やアルミニウムなどの板材から形成されている。本実施形態では、アルミニウムの圧延板を用いている。また、熱電変換素子10(電極18a,18b)と端子19a,19bとは、AgろうやAgメッキ等によって接合することができる。
 そして、本実施形態である熱電変換材料11は、MgSiSn1-X(ただし0.3≦X≦1)を主成分とした焼結体とされている。
 ここで、熱電変換材料11は、ドーパントを含まないノンドープのMgSiSn1-Xで構成されていてもよいし、ドーパントとして、Li,Na,K,B,Ga,In,N,P,As,Sb,Bi,Ag,Cu、Yから選択される1種または2種以上を含むMgSiSn1-Xで構成されていてもよい。
 本実施形態では、熱電変換材料11は、MgSiSn1-Xの質量割合が84mass%以上99.5mass%以下と主成分であり、そのMgSiSn1-Xは、ドーパントとしてアンチモン(Sb)を添加したものとされている。
 例えば、本実施形態の熱電変換材料11は、MgSiSn1-Xにアンチモンを0.1原子%以上2.0原子%以下の範囲内で含む組成とされている。なお、本実施形態の熱電変換材料11においては、5価ドナーであるアンチモンを添加することによって、キャリア密度の高いn型熱電変換材料とされている。
 ここで、熱電変換材料11をn型熱電変換素子とするためのドナーとしては、アンチモン以外にも、ビスマス、リン、ヒ素などを用いることができる。
 また、熱電変換材料11をp型熱電変換素子にしてもよく、この場合、アクセプタとしてリチウムや銀などのドーパントを添加することによって得ることができる。
 そして、本実施形態である熱電変換材料11においては、第4族元素であるチタン、ジルコニウム、ハフニウムから選択される一種又は二種以上の金属を含むホウ化物を含有している。上述のホウ化物としては、TiB、ZrB、HfBが挙げられる。なお、これらのホウ化物は、母相となるMgSiSn1-Xの粒界に凝集していることが好ましい。
 ここで、本実施形態においては、上述のホウ化物の合計含有量が0.5mass%以上15mass%以下の範囲内とされていることが好ましい。
 また、上述のホウ化物の合計含有量の下限は1mass%以上であることがより好ましく、1.5mass%以上であることがさらに好ましい。一方、上述のホウ化物の合計含有量の上限は12mass%以下であることがより好ましく、10mass%以下であることがさらに好ましい。
 なお、本実施形態である熱電変換材料11においては、アルミニウムを含有していてもよい。
 アルミニウムを含有することにより、熱電特性、耐酸化性および機械的強度がさらに向上することになる。
 ここで、アルミニウムの添加量は、0.01mass%以上1mass%以下の範囲内とすることが好ましい。
 次に、本実施形態である熱電変換材料11の製造方法について、図2および図3を参照して説明する。
(塊状マグネシウムシリサイド化合物形成工程S01)
 まず、熱電変換材料11である焼結体の母相となるMgSiSn1-Xの原料となる塊状マグネシウムシリサイド化合物を形成する。
 塊状マグネシウムシリサイド化合物形成工程S01においては、シリコン粉と、マグネシウム粉と、必要に応じて添加するスズ粉およびドーパントとをそれぞれ計量して混合する。例えば、n型の熱電変換材料を形成する場合には、ドーパントとして、アンチモン、ビスマス、など5価の材料を、また、p型の熱電変換材料を形成する場合には、ドーパントとして、リチウムや銀などの材料を混合する。なお、ドーパントを添加せずにノンドープのMgSiSn1-Xとしてもよい。
 本実施形態では、n型の熱電変換材料を得るためにドーパントとしてアンチモンを用いており、その添加量は0.1原子%以上2.0原子%以下の範囲内とした。
 そして、この混合粉を、例えばアルミナるつぼに導入し、焼結原料粉がMgSiSn1-X(X=1)の場合は800℃以上1150℃以下の範囲内にまで加熱し、焼結原料粉がMgSiSn1-X(0.3≦X<1)の場合は700℃以上900℃以下の範囲内にまで加熱し、冷却して固化させる。これにより、塊状マグネシウムシリサイド化合物を得る。
 なお、加熱時に少量のマグネシウムが昇華することから、原料の計量時には、化学量論組成に対して、例えば3原子%から5原子%ほどマグネシウムを多く入れることが好ましい。
(粉砕工程S02)
 次に、得られた、塊状マグネシウムシリサイド化合物を、粉砕機によって粉砕し、マグネシウムシリサイド化合物粉(MgSiSn1-X粉)を形成する。
 この粉砕工程S02においては、マグネシウムシリサイド化合物粉の平均粒径を、1μm以上100μm以下の範囲内とすることが好ましい。
 なお、ドーパントを添加したマグネシウムシリサイド化合物粉については、ドーパントがマグネシウムシリサイド化合物粉中に均一に存在していることなる。
 なお、市販のマグネシウムシリサイド化合物粉や、ドーパントが添加されたマグネシウムシリサイド化合物粉を使用する場合には、塊状マグネシウムシリサイド化合物形成工程S01および粉砕工程S02を省略することもできる。
(焼結原料粉形成工程S03)
 次に、得られたマグネシウムシリサイド化合物粉に、チタン、ジルコニウム、ハフニウムから選択される一種又は二種以上の金属を含むホウ化物粉を混合し、焼結原料粉を得る。なお、必要に応じてアルミニウム粉を添加してもよい。
 焼結原料粉中のマグネシウムシリサイド化合物粉の含有量は、84mass%以上99.5mass%以下の範囲内とすることが好ましい。
 焼結原料粉中のホウ化物粉の含有量は、0.5mass%以上15mass%以下の範囲内とすることが好ましい。また、ホウ化物粉としては、純度が99mass%以上のものを用いることが好ましい。さらに、ホウ化物粉の平均粒径は、1μm以上100μm以下の範囲内とすることが好ましい。
 また、アルミニウム粉を添加する場合には、焼結原料粉中のアルミニウム粉の含有量は、0.01mass%以上1mass%以下の範囲内とすることが好ましい。アルミニウム粉としては、純度が99.99mass%以上のものを用いることが好ましい。さらに、アルミニウム粉の平均粒径は、1μm以上100μm以下の範囲内とすることが好ましい。
(焼結工程S04)
 次に、上述のようにして得られた焼結原料粉を、加圧しながら加熱して焼結体を得る。 ここで、本実施形態では、焼結工程S04において、図3に示す焼結装置(通電焼結装置100)を用いている。
 図3に示す焼結装置(通電焼結装置100)は、例えば、耐圧筐体101と、この耐圧筐体101の内部を減圧する真空ポンプ102と、耐圧筐体101内に配された中空筒形のカーボンモールド103と、カーボンモールド103内に充填された焼結原料粉Qを加圧しつつ電流を印加する一対の電極部105a,105bと、この一対の電極部105a,105b間に電圧を印加する電源装置106とを備えている。また電極部105a,105bと焼結原料粉Qとの間には、カーボン板107、カーボンシート108がそれぞれ配される。これ以外にも、図示せぬ温度計、変位計などを有している。また、本実施形態においては、カーボンモールド103の外周側にヒーター109が配設されている。ヒーター109は、カーボンモールド103の外周側の全面を覆うように四つの側面に配置されている。ヒーター109としては、カーボンヒーターやニクロム線ヒーター、モリブデンヒーター、カンタル線ヒーター、高周波ヒーター等が利用できる。
 焼結工程S04においては、まず、図3に示す通電焼結装置100のカーボンモールド103内に、焼結原料粉Qを充填する。カーボンモールド103は、例えば、内部がグラファイトシートやカーボンシートで覆われている。そして、電源装置106を用いて、一対の電極部105a,105b間に直流電流を流して、焼結原料粉Qに電流を流すことによって自己発熱により昇温する。また、一対の電極部105a,105bのうち、可動側の電極部105aを焼結原料粉Qに向けて移動させ、固定側の電極部105bとの間で焼結原料粉Qを所定の圧力で加圧する。また、ヒーター109を加熱させる。
 これにより、焼結原料粉Qの自己発熱およびヒーター109からの熱と、加圧により、焼結原料粉Qを焼結させる。
 本実施形態においては、焼結工程S04における焼結条件は、焼結原料粉QがMgSiSn1-X(X=1)の場合は焼結温度が800℃以上1020℃以下の範囲内、焼結原料粉QがMgSiSn1-X(0.3≦X<1)の場合は焼結温度が600℃以上800℃以下の範囲内、それぞれの焼結温度での保持時間が10分以下とされている。
 また、加圧荷重が20MPa以上50MPa以下の範囲内とされている。
 また、耐圧筐体101内の雰囲気はアルゴン雰囲気などの不活性雰囲気や真空雰囲気とするとよい。真空雰囲気とする場合は、圧力5Pa以下とするとよい。
 ここで、焼結原料粉Q(MgSiSn1-X(X=1))の焼結温度が800℃未満の場合、あるいは、焼結原料粉Q(MgSiSn1-X(0.3≦X<1))の焼結温度が600℃未満の場合には、焼結原料粉Qの各粉の表面に形成された酸化膜を十分に除去することができず、結晶粒界に原料粉自体の表面酸化膜が残存してしまうとともに、原料粉同士の結合が不十分で焼結体の密度が低くなる。これらのため、得られた熱電変換材料の電気抵抗が高くなってしまうおそれがある。また、結合が不十分であるため、素子の強度が低いというおそれがある。
 一方、焼結原料粉Q(MgSiSn1-X(X=1))の焼結温度が1020℃を超える場合、あるいは、焼結原料粉Q(MgSiSn1-X(0.3≦X<1))の焼結温度が800℃を超える場合には、MgSiSn1-X(0.3≦X≦1)の分解が短時間で進行してしまい、組成ずれが生じ、電気抵抗が上昇するとともにゼーベック係数が低下してしまうおそれがある。
 このため、本実施形態では、焼結工程S04における焼結温度を、焼結原料粉Q(MgSiSn1-X(X=1))の場合は800℃以上1020℃以下、焼結原料粉Q(MgSiSn1-X(0.3≦X<1))の場合は600℃以上800℃以下の範囲内にそれぞれ設定している。
 なお、焼結工程S04における焼結原料粉Q(MgSiSn1-X(X=1))の焼結温度の下限は、800℃以上とすることが好ましく、900℃以上であることがさらに好ましい。一方、焼結工程S04における焼結原料粉Q(MgSiSn1-X(X=1))の焼結温度の上限は、1020℃以下とすることが好ましく、1000℃以下であることがさらに好ましい。
 また、焼結工程S04における焼結原料粉Q(MgSiSn1-X(0.3≦X<1))の焼結温度の下限は、650℃以上とすることが好ましい。一方、焼結工程S04における焼結原料粉Q(MgSiSn1-X(0.3≦X<1))の焼結温度の上限は、770℃以下とすることが好ましく、740℃以下であることがさらに好ましい。
 また、焼結温度での保持時間が10分を超える場合には、MgSiSn1-Xの分解が進行してしまい、組成ずれが生じ、電気抵抗が上昇するとともにゼーベック係数が低下してしまうおそれがある。さらに、粒子の粗大化が生じ、熱伝導率が高くなるおそれがある。
 このため、本実施形態では、焼結工程S04における焼結温度での保持時間を10分以下に設定している。
 なお、焼結工程S04における焼結温度での保持時間の上限は、5分以下とすることが好ましく、3分以下であることがさらに好ましい。
 さらに、焼結工程S04における加圧荷重が20MPa未満の場合には、密度が高くならず、熱電変換材料の電気抵抗が高くなってしまうおそれがある。また、素子の強度が上がらないおそれがある。
 一方、焼結工程S04における加圧荷重が50MPaを超える場合には、カーボン治具にかかる力が大きく治具が割れてしまうおそれがある。
 このため、本実施形態では、焼結工程S04における加圧荷重を20MPa以上50MPa以下の範囲内に設定している。
 なお、焼結工程S04における加圧荷重の下限は、23MPa以上とすることが好ましく、25MPa以上であることがさらに好ましい。一方、焼結工程S04における加圧荷重の上限は、50MPa以下とすることが好ましく、45MPa以下であることがさらに好ましい。
 以上の各工程により、本実施形態である熱電変換材料11が製造される。
 以上のような構成とされた本実施形態である熱電変換材料11によれば、チタン、ジルコニウム、ハフニウムから選択される一種又は二種以上の金属を含むホウ化物を含有しているので、このホウ化物が母相であるMgSiSn1-Xの粒界に凝集することによって電気伝導性が向上し、熱電特性の指標の一つであるパワーファクター(PF)を向上させることが可能となる。
 また、ホウ化物がチタン、ジルコニウム、ハフニウムから選択される一種又は二種以上の金属を含んでいるので、マグネシウムの酸化を抑制でき、耐酸化性を向上させることが可能となる。
 さらに、上述のホウ化物は、比較的硬く、強度も高いいため、MgSiSn1-Xを主成分とする焼結体の強度を向上させることができ、取り扱い時における割れの発生を抑制することが可能となる。
 また、本実施形態において、上述のホウ化物の合計含有量が0.5mass%以上15mass%以下の範囲内とされている場合には、熱電特性、耐酸化性、強度を十分に向上させることが可能となる。
 さらに、本実施形態において、上述のホウ化物がTiB、ZrB、HfBから選択される一種又は二種以上である場合には、確実に、熱電特性、耐酸化性、強度を向上させることが可能となる。
 また、本実施形態において、熱電変換材料11に対するMgSiSn1-Xの質量割合が、84mass%以上99.5mass%以下の範囲内とされている場合には、十分な熱電特性を確保することができる。
 さらに、本実施形態において、熱電変換材料11がアルミニウムを含有する場合には、熱電特性、耐酸化性および機械的強度をさらに向上させることが可能となる。
 さらに、本実施形態である熱電変換素子10および熱電変換モジュール1においては、熱電特性、耐酸化性、強度に優れた上述の熱電変換材料11を備えているので、各種特性が安定することになる。よって、熱電変換性能が安定しており、信頼性に優れている。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、図1に示すような構造の熱電変換モジュールを構成するものとして説明したが、これに限定されることはなく、本発明の熱電変換材料を用いていれば、電極や端子の構造および配置等に特に制限はない。
 また、本実施形態では、図2に示すように、マグネシウムシリサイド化合物粉(MgSiSn1-X粉)にホウ化物粉を添加することで焼結原料粉を形成するものとして説明したが、これに限定されることはなく、図4に示すように、マグネシウム粉とケイ素粉と(必要に応じてスズ粉)、および、ホウ化物粉を混合して、この混合粉を、例えばアルミナるつぼに導入し、800℃以上1150℃以下の範囲内、または700℃以上900℃以下の範囲内(スズ粉を入れた場合)にまで加熱し、冷却して固化させ、得られた塊状マグネシウムシリサイド化合物(MgSiSn1-X)を粉砕することで、焼結原料粉を形成するものとしてもよい。
 また、本実施形態では、図3に示す焼結装置(通電焼結装置100)を用いて焼結を行うものとして説明したが、これに限定されることはなく、焼結原料を間接的に加熱しながら加圧して焼結する方法、例えばホットプレス、HIP(Hot Isotactic Pressing)などを用いてもよい。
 さらに、本実施形態においては、ドーパントとしてアンチモン(Sb)を添加したマグネシウムシリサイド化合物粉(MgSiSn1-X粉)を焼結原料として用いるものとして説明したが、これに限定されることはなく、例えばLi,Na,K,B,Ga,In,N,P,As,Sb,Bi,Ag,Cu,Yから選択される1種または2種以上をドーパントとして含んだものであってもよいし、Sbに加えてこれらの元素を含んでいてもよい。
 また、ドーパントを含まないノンドープのマグネシウムシリサイド化合物(MgSiSn1-X)の焼結体であってもよい。
 以下、本発明の効果を確認すべく実施した実験結果について説明する。
(試験1)
 この試験1では、マグネシウムシリサイド(MgSi)を主成分とする熱電変換材料の熱電特性について本発明例1~5及び比較例1にて評価した。
 純度99.9mass%のMg(粒径180μm:株式会社高純度化学研究所製)、純度99.99mass%のSi(粒径300μm:株式会社高純度化学研究所製)、純度99.9mass%のSb(粒径300μm:株式会社高純度化学研究所製)を準備し、これらを秤量して、乳鉢中で良く混ぜ、アルミナるつぼに入れて、850℃で2時間、Ar-3vol%H中で加熱した。Mgの昇華によるMg:Si=2:1の化学量論組成からのずれを考慮して、Mgを5原子%多く混合した。これにより、表1の本発明例1~5及び比較例1に示す組成の塊状マグネシウムシリサイド(MgSi)を得た。
 次に、この塊状マグネシウムシリサイド(MgSi)をジョークラッシャーで粗粉砕し、さらに乳鉢中で細かく砕いて、これを分級して平均粒径が30μmのマグネシウムシリサイド粉(MgSi粉)を得た。
 また、表1に示すホウ化物粉(純度99.9mass%、平均粒径3μm)を準備する。これを表1に示す含有量となるように秤量し、マグネシウムシリサイド粉とホウ化物粉とを混合し、焼結原料粉を得た。
 得られた焼結原料粉をカーボンシートで内側を覆ったカーボンモールドに充填した。そして、図3に示す焼結装置(通電焼結装置100)によって表1に示す条件で通電焼結した。
 そして、得られた焼結体を、ダイヤモンドバンドソーを用いて所定のサイズに切断し、切断後の焼結体の表面を各種番手のサンドペーパーで研磨した。これにより、表1に示す組成の熱電変換材料を得た。
 上述のようにして得られた熱電変換材料に対して、各種温度における熱伝導率κ、パワーファクターPF、無次元性能指数ZTについて評価した。評価結果を表1に示す。
 比抵抗値Rとゼーベック係数Sは、アドバンス理工製ZEM-3によって測定した。比抵抗値Rとゼーベック係数Sの測定は、100℃,200℃,300℃,400℃,500℃で実施した。
 パワーファクター(PF)は、以下の(1)式から求めた。
   PF=S/R・・・(1)
 但し、S:ゼーベック係数(V/K)、R:比抵抗値(Ω・m)
 熱伝導率κは、熱拡散率×密度×比熱容量から求めた。熱拡散率は熱定数測定装置(真空理工製TC-7000型)、密度はアルキメデス法、比熱は示差走査熱量計(パーキンエルマー製DSC-7型)を用いてそれぞれ測定を行った。測定は、25℃,100℃,200℃,300℃,400℃,500℃で実施した。
 無次元性能指数(ZT)は、以下の(2)式から求めた。
    ZT=SσT/κ・・・(2)
 但し、T=絶対温度(K)、κ=熱伝導率(W/(m×K))
Figure JPOXMLDOC01-appb-T000001
 ホウ化物を添加しなかった比較例1に比べて、ホウ化物を添加した本発明例1-5においては、各種温度でパワーファクターPFが高く、熱電特性(発電性能および熱電変換効率)が優れていることが確認される。
(試験2)
 この試験2では、耐酸化性について評価した。試験1と同様の製造方法により、表2の本発明例11~12及び比較例11~12に示す組成の熱電変換材料を得た。
 上述のようにして得られた熱電変換材料に対して、200Paの水蒸気雰囲気内において750℃まで加熱後、保持時間無しで冷却する酸化熱処理を実施した。
 そして、熱処理前および熱処理後の熱電変換材料から採取したサンプルをエネルギー分散型X線分析(EDX)によって分析し、その表面における組成を確認した。測定結果を表2に示す。また、熱処理後の表面観察写真を図5に示す。
Figure JPOXMLDOC01-appb-T000002
 ホウ化物を添加しなかった比較例11,12においては、熱処理後には、酸素(O)の含有量が高くなり、かつ、シリコン(Si)の含有量が低くなった。図5(c),(d)に示すように、表面にマグネシウム酸化物が緻密に形成され、マグネシウムシリサイドのシリコンが検出されにくくなったためと推測される。
 これに対して、ホウ化物を添加した本発明例11,12においては、熱処理後には、酸素(O)の含有量が僅かに高くなったが、マグネシウム(Mg)およびシリコン(Si)の含有量に大きな変動はなかった。図5(a),(b)に示すように、マグネシウム酸化物の生成が抑えられており、マグネシウムシリサイドのシリコンが十分に検出されたためと推測される。
 なお、図5(a),(b)の白い部分がマグネシウム酸化物であり、表2のEDXの値は、球状の白い部分以外(地の部分)で測定した結果である。一方、比較例の(c)と(d)は試料表面全面がマグネシウム酸化物で覆われているので、このマグネシウム酸化物の上から分析を行った結果である。
 ホウ化物を添加したマグネシウムシリサイドの酸化が抑制される機構の一つとして、以下の反応が考えられる。まず、マグネシウムシリサイドと接触しているホウ化物の一部が、マグネシウムシリサイドと反応して、チタン、ジルコニウム、ハフニウム、あるいはボロンに分解して、それらの元素がマグネシウムシリサイド粒子内に拡散して、マグネシウムとそれらの元素の化合物などを形成する。その化合物が熱電変換材料の表面へのマグネシウムの拡散を抑制してマグネシウムシリサイドの酸化を防いでいると考えられる。あるいは、その化合物が酸素の熱電変換材料の内部への拡散を抑制して、マグネシウムシリサイドの酸化を抑制していると考えられる。
(試験3)
 この試験3では、強度について評価した。試験1と同様の製造方法により、表3の本発明例21~26及び比較例21に示す組成の熱電変換材料を得た。
 上述のようにして得られた熱電変換材料に対して、室温(25℃)から550℃の範囲の表3に示す温度で、それぞれ3点曲げ試験を実施し、曲げ強さを測定した。また、500℃の曲げ強さと室温(25℃)の曲げ強さとの比を算出した。測定結果を表3に示す。
 3点曲げ試験機は、島津オートグラフ(AG-25TD)を用いた。試験治具はSiC製3点曲げ治具で、支点間距離は12mmで行った。
 試験雰囲気は、室温では大気、300℃から550℃ではAr雰囲気で行った。クロスヘッドの変位速度は0.5mm/min、昇温速度は20℃/min、試験温度に到達後15分保持したのち、3点曲げ試験を実施した。曲げ強さは、破断時の最大荷重から以下の式を用いて、曲げ強さ(MPa)を求めた。
  曲げ強さ(MPa)=3/2×Fmax×L/(t×W)
    Fmax:最大荷重(N)、L:支点間距離(mm)
    t:試験片厚さ(mm)、W:試験片幅(mm)
Figure JPOXMLDOC01-appb-T000003
 ホウ化物を添加した本発明例21-26においては、高温(500℃)での曲げ強さの室温(25℃)での曲げ強さに対する上昇幅(500℃での曲げ強さ/25℃での曲げ強さ)が比較例21に比べて十分に高くなった。また、高温(500℃)での曲げ強さも、比較例21に比べて高くなった。この理由は以下のように考えられる。
 一般に、ホウ化物の曲げ強さは、Ar中では室温で400MPaであり、昇温して1400℃までその強度は、ほぼ一定である。今回の試料は粒界にホウ化物が凝集して薄い層を形成して焼結した状態である。一方、バルク体の強度は、バルク体を構成する粒子強度と粒界強度に依存すると考えられる。今回、室温ではホウ化物の添加有無によらず、3点曲げの曲げ強さはほぼ同じであるので、主として、マグネシウムシリサイドの粒子強度に支配されてその強度が決まっていると思われる。
 500℃の温度で曲げ試験を実施した場合、室温よりそれぞれ強度は上昇しているが、添加していない場合の上昇幅は小さく、添加量が3mass%から4mass%付近にピークがあり、その強さは2倍以上となっている。このことは、マグネシウムシリサイドの強度以上にバルク体の強度が上昇していることを示している。この理由として、粒界で接するホウ化物粒子とマグネシウムシリサイド粒子との結合力が向上したため、高温での曲げ強さの上昇につながったと考えられる。
 3mass%から4mass%付近にピークがあるのは、以下の理由と考えられる。ホウ化物の焼結は焼結助剤などを添加して、幾つかの工程を経て(ホットプレスなどの加圧工程を含む)、最終的に2000℃程度の高い温度で焼結する。今回、添加量を10mass%程度まで増やすとホウ化物で形成される粒界の厚さが厚くなり、ホウ化物同士が接する場合が増えてくると考えられる。しかし、マグネシウムシリサイドの焼結では最高でも1020℃の温度であり、かつ、焼結助剤も添加していないので、粒界に形成されているホウ化物同士の強度はホウ化物の真の強度に比べて小さいと考えられる。そこで、ホウ化物の添加量が多すぎると、4mass%と比較して強度が落ちる。また、3mass%より少ない場合は、マグネシウムシリサイド粒子がホウ化物で十分覆われず、3mass%と比較して強度が低い。見方を変えると、マグネシウムシリサイドが過不足なくホウ化物で覆われた3mass%から4mass%付近で最大強度が得られたと考えられる。
(試験4)
 この試験4では、破壊靭性について評価した。試験1と同様の製造方法により、表4の本発明例31~32及び比較例31に示す組成の熱電変換材料を得た。
 得られた熱電変換材料について、JIS R 1607に規定されたIF法により、破壊靭性Kcを測定した。なお、本試験では、島津製作所製HSV-30を用いて、室温、試験時荷重3kg、保持時間15秒の条件で、マイクロビッカース試験を行って測定した。ここで、熱電変換材料の弾性係数として143GPaを用いた。(Japanese Journal of Applied Physics 54, 07JC03 (2015) M. Ishikawa et al.参照。)
Figure JPOXMLDOC01-appb-T000004
 ホウ化物を添加した本発明例31,32においては、ホウ化物を添加していない比較例31に比べて、破壊靭性Kcが高くなった。ホウ化物を添加することにより、破壊強度が向上することが確認された。また、ホウ化物の添加量が増加するにしたがい、破壊靭性Kcが上昇することが確認された。
(試験5)
 この試験5では、マグネシウムシリサイド(MgSi)にAlを添加した熱電変換材料の熱電特性について評価した。
 試験1と同様の製造方法において、焼結原料粉にアルミニウム粉を添加し、表5の本発明例41~45に示す組成の熱電変換材料を得た。なお、原料として純度99.99mass%のアルミニウム粉(粒径45μm:株式会社高純度化学研究所製)を用いた。
 上述のようにして得られた熱電変換材料に対して、各種温度における比抵抗値R、ゼーベック係数S、パワーファクターPFについて、試験1と同様の方法により評価した。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 ホウ化物とともにAlを添加した本発明例41-45においては、各種温度でパワーファクターPFが高く、熱電特性(発電性能)が優れていることが確認される。
(試験6)
 この試験6では、マグネシウムシリサイド(MgSi)にAlを添加した熱電変換材料の耐酸化性について評価した。
 試験5と同様の製造方法により、表6に示す組成の熱電変換材料を得た。
 上述のようにして得られた熱電変換材料に対して、試験2と同様に、水蒸気雰囲気での熱処理を行い、熱処理前および熱処理後の熱電変換材料から採取したサンプルをエネルギー分散型X線分析(EDX)によって分析し、その表面における組成を確認した。測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 ホウ化物およびAlを添加した本発明例51-54においては、熱処理後には、酸素(O)の含有量が僅かに高くなったが、マグネシウム(Mg)およびシリコン(Si)の含有量に大きな変動はなかった。つまり、本発明例51-54においてもマグネシウム酸化物の生成が抑制できていることが確認できた。
(試験7)
 この試験7では、MgSiSn1-X(ただし0.3≦X≦1)を主成分とした熱電変換材料の熱電特性について評価した。
 試験1と同様の製造方法により、表7-9に示す組成の熱電変換材料を得た。
 具体的には試験1のマグネシウムシリサイド粉の製造方法に準じて、マグネシウム粉、シリコン粉、及びスズ粉をそれぞれ計量して混合し、MgSiSn1-X(ただし0.3≦X≦1)の鋳塊を作製し、該鋳塊を粉砕することによりMgSiSn1-X(ただし0.3≦X≦1)粉を製造した。次に、試験1と同様のホウ化物粉を準備し、表7に示す含有量となるように秤量し、MgSiSn1-X(ただし0.3≦X≦1)粉とホウ化物粉とを混合して焼結原料粉を得た。焼結原料粉には必要に応じてアルミニウム粉を添加した。そして、得られた焼結原料粉を用い、試験1と同様の方法で、表7~9の本発明例61~62、71~74、81~84及び比較例61、71~72、81に示す熱電変換材料を得た。
 なお、原料として純度99.99mass%のスズ粉(粒径150μm:株式会社高純度化学研究所製)、および、純度99.99mass%のアルミニウム粉(粒径45μm:株式会社高純度化学研究所製)を用いた。
 上述のようにして得られた熱電変換材料に対して、各種温度における比抵抗値R、ゼーベック係数S、パワーファクターPFについて、試験1と同様の方法により評価した。評価結果を表7-9に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 MgSiSn1-X(X=0.4)を主成分とした熱電変換材料において、ホウ化物を添加しなかった比較例61に比べて、ホウ化物を添加した本発明例61,62においては、各種温度でパワーファクターPFが高く、熱電特性(発電性能)が優れていることが確認される。
 MgSiSn1-X(X=0.5)を主成分とした熱電変換材料において、ホウ化物を添加しなかった比較例71,72に比べて、ホウ化物を添加した本発明例71-74においては、各種温度でパワーファクターPFが高く、熱電特性(発電性能)が優れていることが確認される。
 MgSiSn1-X(X=0.35)を主成分とした熱電変換材料において、ホウ化物を添加しなかった比較例81に比べて、ホウ化物を添加した本発明例81-84においては、各種温度でパワーファクターPFが高く、熱電特性(発電性能)が優れていることが確認される。
(試験8)
 この試験8では、MgSiSn1-X(ただし0.3≦X≦1)を主成分とした熱電変換材料の硬さ、靭性、強度について評価した。試験7と同様の製造方法により、表10の本発明例91~92及び比較例91~95に示す組成の熱電変換材料を得た。なお、原料として純度99.99mass%のスズ粉(粒径150μm:株式会社高純度化学研究所製)、および、純度99.99mass%のアルミニウム粉(粒径45μm:株式会社高純度化学研究所製)を用いた。
 上述のようにして得られた熱電変換材料に対して、ビッカース硬さ、ビッカース硬さ試験時の圧痕の端に形成されたクラックの長さ、3点曲げ時の曲げ強さについて、試験3,4と同等の方法により評価した。評価結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 MgSiSn1-X(X=0.4)を主成分とした熱電変換材料において、ホウ化物を添加しなかった比較例91に比べて、ホウ化物を添加した本発明例91,92においては、ビッカース硬さ、曲げ強さが高くなっていることが確認される。また、クラック長さが短く、破壊靭性にも優れていることが確認される。
 MgSiSn1-X(X=0.5)を主成分とした熱電変換材料において、ホウ化物を添加しなかった比較例93に比べて、ホウ化物を添加した本発明例93,94においては、ビッカース硬さ、曲げ強さが高くなっていることが確認される。また、クラック長さが短く、破壊靭性にも優れていることが確認される。
 MgSiSn1-X(X=0.35)を主成分とした熱電変換材料において、ホウ化物を添加しなかった比較例95に比べて、ホウ化物を添加した本発明例95においては、ビッカース硬さ、曲げ強さが高くなっていることが確認される。また、クラック長さが短く、破壊靭性にも優れていることが確認される。
 以上のことから、本発明例によれば、熱電特性、耐酸化性、強度に優れた熱電変換材料を提供可能であることが確認された。
1  熱電変換モジュール
10 熱電変換素子
11 熱電変換材料
18a,18b 電極
19a,19b 端子

Claims (9)

  1.  MgSiSn1-X(ただし0.3≦X≦1)と、チタン、ジルコニウム、ハフニウムから選択される一種又は二種以上の金属を含むホウ化物とを含有することを特徴とする熱電変換材料。
  2.  前記MgSiSn1-Xは、X=1とされたマグネシウムシリサイドであることを特徴とする請求項1に記載の熱電変換材料。
  3.  前記ホウ化物が、TiB,ZrB,HfBから選択される一種又は二種以上であることを特徴とする請求項1又は請求項2に記載の熱電変換材料。
  4.  前記熱電変換材料に対する前記MgSiSn1-Xの質量割合が、84mass%以上99.5mass%以下の範囲内とされていることを特徴とする請求項1から請求項3のいずれか一項に記載の熱電変換材料。
  5.  前記熱電変換材料に対する前記ホウ化物の合計含有量が0.5mass%以上15mass%以下の範囲内とされていることを特徴とする請求項1から請求項4のいずれか一項に記載の熱電変換材料。
  6.  さらに、アルミニウムを含有することを特徴とする請求項1から請求項5のいずれか一項に記載の熱電変換材料。
  7.  前記熱電変換材料に対する前記アルミニウムの含有量が0.01mass%以上1mass%以下の範囲内とされていることを特徴とする請求項6に記載の熱電変換材料。
  8.  請求項1から請求項7のいずれか一項に記載の熱電変換材料と、前記熱電変換材料の一方の面および対向する他方の面にそれぞれ接合された電極と、を備えたことを特徴とする熱電変換素子。
  9.  請求項8に記載の熱電変換素子と、前記熱電変換素子の前記電極にそれぞれ接合された端子と、を備えたことを特徴とする熱電変換モジュール。
PCT/JP2020/047992 2019-12-24 2020-12-22 熱電変換材料、熱電変換素子、および、熱電変換モジュール WO2021132255A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/787,670 US20230043063A1 (en) 2019-12-24 2020-12-22 Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
CN202080089462.9A CN115516651A (zh) 2019-12-24 2020-12-22 热电转换材料、热电转换元件及热电转换模块
KR1020227017109A KR20220115801A (ko) 2019-12-24 2020-12-22 열전 변환 재료, 열전 변환 소자, 및, 열전 변환 모듈
EP20904307.4A EP4084099A4 (en) 2019-12-24 2020-12-22 THERMOELECTRIC CONVERSION MATERIAL, THERMOELECTRIC CONVERSION ELEMENT AND THERMOELECTRIC CONVERSION MODULE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-233147 2019-12-24
JP2019233147 2019-12-24
JP2020134901A JP2021103763A (ja) 2019-12-24 2020-08-07 熱電変換材料、熱電変換素子、および、熱電変換モジュール
JP2020-134901 2020-08-07

Publications (2)

Publication Number Publication Date
WO2021132255A1 true WO2021132255A1 (ja) 2021-07-01
WO2021132255A8 WO2021132255A8 (ja) 2022-08-04

Family

ID=76572998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047992 WO2021132255A1 (ja) 2019-12-24 2020-12-22 熱電変換材料、熱電変換素子、および、熱電変換モジュール

Country Status (5)

Country Link
US (1) US20230043063A1 (ja)
EP (1) EP4084099A4 (ja)
KR (1) KR20220115801A (ja)
CN (1) CN115516651A (ja)
WO (1) WO2021132255A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008747A (ja) * 2011-06-22 2013-01-10 Ibaraki Univ Mg2Si1−xSnx系多結晶体およびその製造方法
JP2013179322A (ja) 2006-12-20 2013-09-09 Tokyo Univ Of Science 熱電変換材料、その製造方法および熱電変換素子
JP2016164960A (ja) * 2015-02-27 2016-09-08 三菱化学株式会社 複合体及び該複合体を含む熱電変換素子
JP2017050325A (ja) 2015-08-31 2017-03-09 学校法人東京理科大学 熱電変換素子とその製造方法
JP2019145661A (ja) * 2018-02-20 2019-08-29 三菱マテリアル株式会社 熱電変換材料、熱電変換素子、及び、熱電変換モジュール
JP2020134901A (ja) 2019-02-26 2020-08-31 株式会社第一興商 カラオケシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129057A1 (ja) * 2012-02-27 2013-09-06 株式会社Kelk 熱電モジュール、熱電発電装置および熱電発電器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179322A (ja) 2006-12-20 2013-09-09 Tokyo Univ Of Science 熱電変換材料、その製造方法および熱電変換素子
JP2013008747A (ja) * 2011-06-22 2013-01-10 Ibaraki Univ Mg2Si1−xSnx系多結晶体およびその製造方法
JP2016164960A (ja) * 2015-02-27 2016-09-08 三菱化学株式会社 複合体及び該複合体を含む熱電変換素子
JP2017050325A (ja) 2015-08-31 2017-03-09 学校法人東京理科大学 熱電変換素子とその製造方法
JP2019145661A (ja) * 2018-02-20 2019-08-29 三菱マテリアル株式会社 熱電変換材料、熱電変換素子、及び、熱電変換モジュール
JP2020134901A (ja) 2019-02-26 2020-08-31 株式会社第一興商 カラオケシステム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. ISHIKAWA ET AL., JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 54, 2015, pages 07JC03
See also references of EP4084099A4

Also Published As

Publication number Publication date
US20230043063A1 (en) 2023-02-09
KR20220115801A (ko) 2022-08-18
WO2021132255A8 (ja) 2022-08-04
EP4084099A4 (en) 2024-02-14
EP4084099A1 (en) 2022-11-02
CN115516651A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
JP7176248B2 (ja) 熱電変換材料、熱電変換素子、熱電変換モジュール、及び、熱電変換材料の製造方法
JP6853436B2 (ja) マグネシウム系熱電変換素子、熱電変換装置
EP3432371B1 (en) Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, thermoelectric conversion device, and method for manufacturing magnesium-based thermoelectric conversion material
JPWO2018012369A1 (ja) 多結晶性マグネシウムシリサイドおよびその利用
JP7121227B2 (ja) 熱電変換材料、及び、熱電変換材料の製造方法
WO2021132255A1 (ja) 熱電変換材料、熱電変換素子、および、熱電変換モジュール
CN110892537B (zh) 镁系热电转换材料、镁系热电转换元件及镁系热电转换材料的制造方法
WO2019004373A1 (ja) 熱電変換材料、熱電変換素子、熱電変換モジュール、及び、熱電変換材料の製造方法
KR20200124224A (ko) 열전 변환 재료, 열전 변환 소자, 열전 변환 모듈, 및 열전 변환 재료의 제조 방법
JP2021103763A (ja) 熱電変換材料、熱電変換素子、および、熱電変換モジュール
JP7248157B2 (ja) 熱電変換材料、及び、熱電変換材料の製造方法
JP7291461B2 (ja) 熱電変換材料、熱電変換素子、及び、熱電変換モジュール
WO2022059593A1 (ja) 熱電変換材料、熱電変換素子、ペルチェ素子、および、熱電変換モジュール、ペルチェモジュール
JP7159854B2 (ja) 熱電変換材料、熱電変換素子、及び、熱電変換モジュール
WO2021187225A1 (ja) 熱電変換材料、熱電変換素子、及び、熱電変換モジュール
JP2022049670A (ja) 熱電変換材料、熱電変換素子、ペルチェ素子、および、熱電変換モジュール、ペルチェモジュール
JP2018157130A (ja) 熱電変換材料の製造方法
JP2020150040A (ja) 熱電変換材料、熱電変換素子、及び、熱電変換モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020904307

Country of ref document: EP

Effective date: 20220725