WO2021132238A1 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
WO2021132238A1
WO2021132238A1 PCT/JP2020/047942 JP2020047942W WO2021132238A1 WO 2021132238 A1 WO2021132238 A1 WO 2021132238A1 JP 2020047942 W JP2020047942 W JP 2020047942W WO 2021132238 A1 WO2021132238 A1 WO 2021132238A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
foreign matter
roller
film forming
contact
Prior art date
Application number
PCT/JP2020/047942
Other languages
English (en)
French (fr)
Inventor
学 宜保
貴啓 廣野
佳樹 磯
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN202080007670.XA priority Critical patent/CN113330136B/zh
Priority to US17/602,219 priority patent/US20220145441A1/en
Priority to JP2021529726A priority patent/JP7150991B2/ja
Priority to EP20894921.4A priority patent/EP4083253A4/en
Priority to KR1020217020060A priority patent/KR102533324B1/ko
Publication of WO2021132238A1 publication Critical patent/WO2021132238A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • C23C14/588Removal of material by mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/02Details
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a film forming apparatus, and more particularly to a technique suitable for improving the insulating property of a film formed film.
  • the present application claims priority based on Japanese Patent Application No. 2019-236187 filed in Japan on December 26, 2019, the contents of which are incorporated herein by reference.
  • a film formation containing lithium is required, and as described in Patent Document 1, it is carried out by thin film deposition.
  • a film forming process of an electrolyte film it is known that, for example, a film is formed by a nitrogen-containing plasma using a thin-film deposition source containing lithium and phosphorus to form a nitrogen-containing film. There is.
  • the characteristics of the film formed are not sufficient as the performance of, for example, a lithium ion battery. Therefore, in order to improve the performance of the lithium ion battery, it is desired to improve the film quality, particularly the insulating property of the electrolyte membrane.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to achieve the following objects. 1. 1. To enable film formation with sufficient insulation. 2. To enable the production of electrolyte membranes sufficient for battery production.
  • the film forming apparatus of the present invention includes a transporting portion for transporting a substrate, a film forming portion for forming an electrolyte film in a film forming region of the substrate conveyed by the transporting portion, and a film forming portion after the film forming in the film forming portion.
  • the film forming apparatus of the present invention can be provided with a re-deposition unit for re-depositing an electrolyte film in the film-forming region of the substrate conveyed by the transport unit after the foreign matter is removed by the foreign matter removing unit.
  • a contact portion that comes into contact with the electrolyte membrane in a state where the foreign matter removing portion moves relative to the substrate.
  • the contact portion can be made of a foamed resin material. Further, in the present invention, the contact portion may be a non-woven fabric.
  • the contact portion can be a roller having a cylindrical shape.
  • the film forming apparatus of the present invention can have an axis in a direction in which the roller intersects the transport direction of the substrate. Further, it is preferable that the roller is rotated in the direction opposite to the transport direction of the substrate. Further, the roller and the substrate are in contact with each other at the contact point of the contact portion, and the tangential direction of the roller along the rotation direction of the roller when viewed from the contact point is different from the transport direction of the substrate. Can be the opposite.
  • the film forming apparatus of the present invention includes a transporting portion for transporting a substrate, a film forming portion for forming an electrolyte film in a film forming region of the substrate conveyed by the transporting portion, and a film forming portion after the film forming in the film forming portion. It is provided with a foreign matter removing portion which comes into contact with the electrolyte film of the substrate which is conveyed by the conveying portion and removes foreign matter contained in the film-forming region. As a result, even if there are foreign substances such as particles adhering to the film formation region of the substrate, the foreign substances such as particles can be removed after the film formation. Therefore, the electrolyte membrane is not conducted in the film thickness direction by foreign matter such as particles. Therefore, it is possible to prevent the insulation of the electrolyte membrane from being broken in the film thickness direction by foreign matter such as particles. It is possible to produce an electrolyte membrane having a predetermined insulating property.
  • the film-forming apparatus of the present invention includes a re-deposition unit for re-depositing an electrolyte film in the film-forming region of the substrate which is conveyed by the transport unit after the foreign matter is removed by the foreign matter-removing unit.
  • a new electrolyte film is laminated on the electrolyte film from which foreign substances such as particles have been removed, and a film is formed again.
  • Foreign matter such as particles has been removed from the lower side, that is, the electrolyte film located close to the substrate, by the foreign matter removing portion, so even if the electrolyte membrane re-deposited on the upper side contains foreign matter.
  • these two laminated electrolyte films are not conducted in the film thickness direction by foreign matter such as particles. Further, in the electrolyte film from which foreign substances such as particles have been removed, the electrolyte film can be formed again in a state where the portion corresponding to the removed foreign substances is newly filled, and the surface of the laminated electrolyte film can be formed again.
  • the uniformity of the film thickness can be maintained in the direction along or along the surface of the substrate.
  • the foreign matter removing portion has a contact portion that comes into contact with the electrolyte membrane in a state of being relatively moved with respect to the substrate.
  • the relative moving speed between the foreign matter removing portion and the substrate is set within a predetermined range, and the contact state (contact state) necessary for reliably removing foreign matter such as particles is realized.
  • the contact state contact state
  • the contact portion is made of a foamed resin material.
  • foreign matter such as particles can be reliably removed by setting the contact state (contact state) between the foreign matter removing portion and the substrate to be a state suitable for removing the foreign matter by the foreign matter removing portion.
  • the mesh-like portion of the foamed resin material comes into contact with the surface of the electrolyte membrane at an appropriate pressure, and the mesh-like portion of the foamed resin material protrudes from the surface of the electrolyte membrane of the foreign matter. Foreign matter can be separated from the electrolyte membrane by hooking the portion.
  • the foreign matter can be separated from the electrolyte membrane by pressing the mesh-like or rod-shaped portion of the foamed resin material that is recessed from the surface of the electrolyte membrane of the foreign matter. Further, the mesh-like or rod-shaped portion of the foamed resin material presses the foreign matter embedded rather than the surface of the electrolyte membrane to remove the foreign matter from the electrolyte membrane adhering to the substrate together with the thin electrolyte covering the surface of the foreign matter. Can be separated. Although the mechanism of removing foreign matter is not well understood, the contact portion of the present invention makes it possible to remove foreign matter suitably.
  • the foamed resin material means, for example, a sponge-like resin.
  • the resin material in relation to the film forming conditions of the electrolyte film in the film forming portion where the foreign matter removing portion is provided, for example, the influence of gas release in vacuum, heat resistance, or strength affecting the contact state with the electrolyte film.
  • the resin material can be selected in consideration of the above.
  • the foamed resin material include polyester, polyurethane and the like.
  • the contact state (contact state) between the foreign matter removing portion and the substrate is a state required for rubbing the surface of the electrolyte membrane to scrape off the foreign matter, and is a state in which the contact pressure, contact speed, and foreign matter are caught. , Includes separating power to separate foreign matter.
  • the contact state (contact state) between the foreign matter removing portion and the substrate includes the contact pressure and the contact speed so as not to damage the surface of the electrolyte membrane.
  • the contact portion is made of a non-woven fabric.
  • foreign matter such as particles can be reliably removed by setting the contact state (contact state) between the foreign matter removing portion and the substrate to be a state suitable for removing the foreign matter by the foreign matter removing portion.
  • the fibrous portion of the non-woven fabric abuts on the surface of the electrolyte membrane with an appropriate pressure, and the fibrous portion of the non-woven fabric hooks the portion of the foreign matter protruding from the surface of the electrolyte membrane. , Foreign matter can be separated from the electrolyte membrane.
  • the fibrous or rod-shaped portion of the non-woven fabric can be pressed against a portion of the foreign matter that is recessed from the surface of the electrolyte membrane to separate the foreign matter from the electrolyte membrane. Further, the fibrous or rod-shaped portion of the non-woven fabric presses the foreign matter embedded rather than the surface of the electrolyte membrane to separate the foreign matter from the electrolyte membrane adhering to the substrate together with the thin electrolyte covering the surface of the foreign matter. be able to. Although the mechanism of removing foreign matter is not well understood, the contact portion of the present invention makes it possible to remove foreign matter suitably.
  • the contact state (contact state) between the foreign matter removing portion and the substrate is a state necessary for rubbing the surface of the electrolyte membrane to scrape off the foreign matter, and the contact pressure, contact speed, and foreign matter. It includes a state of being caught in a foreign object, a separating force for separating foreign substances, and the like.
  • the contact state (contact state) between the foreign matter removing portion and the substrate includes the contact pressure, the contact speed, and the like so as not to damage the surface of the electrolyte membrane.
  • the contact portion is a roller having a cylindrical shape.
  • the contact state (contact state) between the foreign matter removing portion and the substrate is set to the state necessary for rubbing the surface of the electrolyte membrane and scraping off the foreign matter, and the contact pressure, the contact speed, and the state of being caught by the foreign matter.
  • foreign matter can be separated from the electrolyte membrane adhering to the substrate without damaging the surface of the electrolyte membrane.
  • the film forming apparatus of the present invention has an axis in a direction in which the roller intersects the transport direction of the substrate.
  • the contact state (contact state) between the foreign matter removing portion and the substrate is set to the state necessary for rubbing the surface of the electrolyte membrane and scraping off the foreign matter, and the contact pressure, the contact speed, and the state of being caught by the foreign matter.
  • foreign matter can be separated from the electrolyte membrane adhering to the substrate without damaging the surface of the electrolyte membrane.
  • the contact portion can be easily replaced.
  • the roller is rotated in a direction opposite to the transport direction of the substrate.
  • the preferable contact state (contact state) between the foreign matter removing portion and the substrate is set to be a state necessary for rubbing the surface of the electrolyte membrane and scraping off the foreign matter, and the contact pressure, contact speed, and foreign matter are caught. It becomes easy to control the state, the separating force for separating the foreign matter, and the like to a state suitable for separating the foreign matter from the electrolyte membrane. As a result, foreign matter can be separated from the electrolyte membrane adhering to the substrate without damaging the surface of the electrolyte membrane.
  • the roller and the substrate are in contact with each other at the contact point of the contact portion, and the tangential direction of the roller as seen from the contact point along the rotation direction of the roller is opposite to the transport direction of the substrate. be able to.
  • the contact portion can be brush-shaped, fin-shaped, or pad-shaped.
  • FIG. 1 is a schematic view showing a film forming apparatus according to the present embodiment
  • reference numeral 10 is a film forming apparatus.
  • the X-axis, Y-axis, and Z-axis directions indicate three axial directions that are orthogonal to each other
  • the X-axis and Y-axis indicate the horizontal direction
  • the Z-axis direction indicates the vertical direction.
  • the film forming apparatus 10 is assumed to form an electrolyte film FL (see FIG. 4) containing nitrogen and lithium on a substrate (substrate) F.
  • a LiPON film suitable as a solid electrolyte for a battery or a secondary battery can be formed because it has ionic conductivity and at the same time has non-conductivity to electrons.
  • the film forming apparatus 10 includes a vacuum chamber (chamber) (not shown), a transport section 11, a film forming section 12, a reforming section 13, and a foreign matter removing section 14.
  • a vacuum chamber chamber
  • transport section 11 a transport section 11
  • film forming section 12 a reforming section 13
  • foreign matter removing section 14 has.
  • the case where the film forming apparatus 10 according to the present embodiment is a roll-to-roll apparatus will be described, but the present invention is not limited to this configuration, and a configuration for forming a film on a single-wafer substrate during substrate transfer. It can also be.
  • the vacuum chamber in the film forming apparatus 10 has a sealable structure and is connected to an exhaust line having a vacuum pump. Thereby, the inside of the vacuum chamber is configured to be evacuated or maintained in a predetermined depressurized atmosphere.
  • the transport unit 11 is supposed to transport the base material F in the vacuum chamber.
  • the transport unit 11 includes a take-up roller 111, a take-up roller 112, a first main roller 113, a second main roller 114, and a plurality of transport rollers 115 and 116.
  • the unwinding roller 111 and the winding roller 112 are each provided with a rotation driving unit (not shown), and are configured to be rotatable in the arrow directions at a predetermined rotation speed around the Z-direction axis perpendicular to the paper surface in FIG.
  • the first main roller 113 and the second main roller 114 are each provided with a rotation drive unit (not shown), and are configured to be rotatable in the arrow directions at a predetermined rotation speed around the Z-axis line perpendicular to the paper surface in FIG. ..
  • the unwinding roller 111 is provided on the upstream side of the film forming portion 12 in the transport direction of the base material F, and has a function of feeding the base material F to the first main roller 113.
  • An appropriate number of guide rollers (not shown) that do not have their own rotation drive unit may be arranged at appropriate positions between the unwinding roller 111 and the first main roller 113.
  • the first main roller 113 is configured to be rotatable around the Z-direction axis perpendicular to the paper surface in FIG.
  • the first main roller 113 is arranged between the unwinding roller 111 and the winding roller 112 in the transport direction of the base material F.
  • the first main roller 113 is arranged at a position where at least a part of the lower portion in the Y direction in FIG. 1 faces the vapor deposition source 121 described later through the opening 123a provided in the shield (shielding portion) 123 described later. ..
  • the first main roller 113 faces the opening 123a at a predetermined interval and faces the vapor deposition source 121 in the Y direction.
  • the first main roller 113 may be made of a metal material such as stainless steel, iron, or aluminum in a tubular shape, and a temperature control mechanism such as a temperature control medium circulation system (not shown) may be provided inside the first main roller 113.
  • the size of the first main roller 113 is not particularly limited, but typically, the width dimension in the Z direction is set to be larger than the width dimension in the Z direction of the base material F.
  • the plurality of transport rollers 115 and 116 are configured to be rotatable around an axis perpendicular to the paper surface in FIG. 1, respectively.
  • the plurality of transfer rollers 115 and 116 may or may not be driven.
  • the base material F is conveyed from the unwinding roller 111 toward the winding roller 112 at a predetermined transfer speed in the vacuum chamber.
  • the film forming section 12 is a film forming chamber partitioned by the outer wall of the vacuum chamber, and the electrolyte film FL1 (see FIG. 2) is formed in the film forming region of the base material F.
  • the film forming section 12 has a vapor deposition source 121, a gas supply section 122, a shield 123, a plasma generating power supply 124, and a magnet 125 inside. Further, the film forming portion 12 is connected to an exhaust line (not shown).
  • the first main roller 113 constitutes the film forming portion 12.
  • the re-deposition unit 13 is a film-forming chamber partitioned by the outer wall of the vacuum chamber, and after the foreign matter is removed by the foreign matter removing unit 14, the electrolyte film FL2 (FIG. 4) is re-deposited.
  • the re-deposition unit 13 has a vapor deposition source 131, a gas supply unit 132, a shield 133, a plasma generation power supply 134, and a magnet 135 inside. Further, the re-deposition unit 13 is connected to an exhaust line (not shown).
  • the second main roller 114 constitutes the re-deposition unit 13.
  • the film forming section 12 and the reforming section 13 can form the same material.
  • the film forming section 12 and the reforming section 13 may communicate with each other, or may be partitioned by a partition plate or the like.
  • the thin-film deposition source (deposition source supply section) 121 of the film-forming unit 12 is a lithium-film deposition source for evaporating lithium metal, and is, for example, a resistance heating type vapor deposition source, an induction heating type deposition source, an electron beam heating type deposition source, or the like. It is composed.
  • a gas supply unit 122 for supplying a film-forming gas is connected to the film-forming unit 12.
  • the gas supply unit 122 constitutes a plasma generation unit.
  • the gas supply unit 122 is capable of supplying a film-forming gas containing nitrogen to a region in the vicinity of the film-forming region.
  • the film forming section 12 is maintained in a predetermined reduced pressure atmosphere by an exhaust line (not shown), and the gas pressure in the film forming section 12 is adjusted to a predetermined pressure.
  • the film forming portion 12 has an opening 123a as a film forming region defining portion defining a film forming region between the vapor deposition source (deposition source) 121 and the first main roller 113.
  • a shield (shielding portion) 123 to be provided is provided.
  • the shield 123 is a plate-shaped conductor, and its potential is, for example, ground (grounded state).
  • the shield 123 is arranged so as to be substantially parallel to the base material F wound around the first main roller 113.
  • the magnet 125 is arranged at an internal position of the first main roller 113, that is, a position on the back surface (other surface) side of the base material F.
  • the magnet 125 is arranged so as to form a magnetic flux toward the outside of the first main roller 113.
  • the magnet 125 is arranged so as to form a magnetic flux toward a region near the opening 123a.
  • the plasma generation power supply 124 is connected to the first main roller 113 so that the plasma generation power can be supplied.
  • the plasma generation power supply 124 is an AC power supply or a DC power supply.
  • the plasma generation power supply 124 constitutes a plasma generation unit.
  • the foreign matter removing section 14 is arranged between the film forming section 12 and the reforming section 13.
  • the phrase "between the film forming section 12 and the reforming section 13" means that the film forming section 12 and foreign matter are removed from the upstream to the downstream at the transport position of the base material F transported by the transport section 11. It means that the parts 14 and the re-deposition part 13 are arranged in this order.
  • the foreign matter removing unit 14 has a roller 141 and a suction unit 142.
  • the roller 141 has a cylindrical shape, and constitutes a contact portion in contact with the electrolyte film FL1 with respect to the base material F on which the electrolyte film FL1 is formed in the film formation region in the film forming portion 12.
  • the roller 141 is provided at a position downstream of the film forming portion 12 in the moving direction of the base material F.
  • the roller 141 has an axis (shaft) in a direction intersecting the transport direction of the base material F.
  • the roller 141 is rotated in the direction opposite to the transport direction of the base material F.
  • the cylindrical roller 141 as a contact portion is made of a foamed resin material. Specifically, the roller 141 has an outer surface in which a sponge-like resin is formed in a cylindrical shape.
  • the roller 141 has a mesh-like surface in the foamed resin material.
  • the word “mesh-like” means that, like a sponge, a fibrous or rod-shaped portion and this fibrous or rod-shaped portion are formed so as to be separated from each other with respect to other fibrous or rod-shaped portions. It means the part on the space that has been created.
  • the mesh-like portion moves relative to the electrolyte membrane FL1.
  • the roller 141 has a mesh-like or rod-shaped portion so that a portion of the foreign matter protruding from the surface of the electrolyte membrane FL1 can be hooked to separate the foreign matter from the electrolyte membrane FL1.
  • the mesh-like or rod-like portion abuts on the surface of the electrolyte membrane FL1 at a suitable pressure.
  • the roller 141 has a mesh-like or rod-shaped portion so that the foreign matter can be separated from the electrolyte membrane FL1 by pressing the portion recessed from the surface of the electrolyte membrane FL1. Further, the roller 141 presses the foreign matter embedded in the surface of the electrolyte membrane FL1 to separate the foreign matter from the electrolyte membrane FL1 adhering to the substrate together with the thin electrolyte covering the surface of the foreign matter. It has a rod-shaped part.
  • the transport roller 116 is located on the roller 141 on the opposite side of the base material F with the base material F in between.
  • the surface of the base material F on which the electrolyte film FL1 is formed spreads with respect to the surface of the base material F in contact with the transport roller 116. Is located in. That is, the surface of the roller 141 comes into contact with the electrolyte membrane FL1 in a state where the surface side of the electrolyte membrane FL1 is elongated as compared with the portion of the electrolyte membrane FL1 that is close to the base material F.
  • the suction unit 142 has a suction nozzle 142a located in the vicinity of the base material F with which the roller 141 contacts, and a suction pump 142b connected to the suction nozzle 142a.
  • the suction nozzle 142a opens in the vicinity of the position where the roller 141 and the base material F come into contact with each other.
  • the suction nozzle 142a opens at a position near a position where the roller 141, which has been in contact with the base material F, is separated from the base material F by rotation. That is, the suction nozzle 142a opens on the upstream side of the roller 141 with respect to the roller 141 that rotates in the direction opposite to the transport direction of the base material F. It is also possible to have a configuration in which the suction unit 142 is not provided.
  • the suction pump 142b can suck foreign substances such as sucked particles by the suction nozzle 142a and discharge them to the outside, or can store them in a tank or the like.
  • the suction unit 142 may also have a ejection nozzle that ejects gas in order to attract foreign matter such as the sucked particles by the suction nozzle 142a.
  • the foreign matter removing unit 14 may also have a roller 146 and a suction unit 147.
  • the roller 146 has a cylindrical shape, and constitutes a contact portion in contact with the electrolyte film FL1 with respect to the base material F on which the electrolyte film FL1 is formed in the film forming region in the film forming portion 12 after the roller 141 is in contact with the film forming portion 12. ..
  • the roller 146 is provided at a position downstream of the roller 141 in the moving direction of the base material F.
  • the roller 146 has an axis (shaft) in a direction intersecting the transport direction of the base material F.
  • the roller 146 is rotated in the direction opposite to the transport direction of the base material F.
  • the cylindrical roller 146 as the contact portion is made of a foamed resin material. Specifically, the roller 146 has an outer surface in which a sponge-like resin is formed in a cylindrical shape.
  • the roller 146 has a mesh-like surface in the foamed resin material.
  • the word “mesh-like” means that, like a sponge, a fibrous or rod-shaped portion and this fibrous or rod-shaped portion are formed so as to be separated from each other with respect to other fibrous or rod-shaped portions. It means the part on the space that has been created.
  • the mesh-like portion moves relative to the electrolyte membrane FL1.
  • the roller 146 has a mesh-like or rod-shaped portion so that a portion of the foreign matter protruding from the surface of the electrolyte membrane FL1 can be hooked to separate the foreign matter from the electrolyte membrane FL1.
  • the mesh-like or rod-like portion abuts on the surface of the electrolyte membrane FL1 at a suitable pressure.
  • the roller 146 has a mesh-like or rod-shaped portion so that the foreign matter can be separated from the electrolyte membrane FL1 by pressing the portion recessed from the surface of the electrolyte membrane FL1. Further, the roller 146 presses the foreign matter embedded in the surface of the electrolyte membrane FL1 to separate the foreign matter from the electrolyte membrane FL1 adhering to the substrate together with the thin electrolyte covering the surface of the foreign matter. It has a rod-shaped part.
  • the transport roller 116 is located on the roller 146 on the opposite side of the base material F with the base material F in between.
  • the surface of the base material F on which the electrolyte film FL1 is formed spreads with respect to the surface of the base material F in contact with the transport roller 116. Is located in. That is, the surface of the roller 146 comes into contact with the electrolyte membrane FL1 in a state where the surface side of the electrolyte membrane FL1 is elongated as compared with the portion of the electrolyte membrane FL1 that is close to the base material F.
  • the roller 146 has the same configuration as the roller 141.
  • the rollers 146 and 141 can be configured to remove particles and the like twice. Further, the roller 146 may have a different configuration from the roller 141 in terms of hardness, foaming state, contact state such as pressing force and rotation speed, and the like. As a result, the roller 146 and the roller 141 can be configured to remove particles having different sizes.
  • the suction unit 147 has a suction nozzle 147a located in the vicinity of the base material F with which the roller 146 contacts, and a suction pump 147b connected to the suction nozzle 147a.
  • the suction nozzle 147a opens in the vicinity of the position where the roller 146 and the base material F come into contact with each other.
  • the suction nozzle 147a opens at a position near a position where the roller 146, which has been in contact with the base material F, is separated from the base material F by rotation. That is, the suction nozzle 147a opens on the upstream side of the roller 146 with respect to the roller 146 that rotates in the direction opposite to the transport direction of the base material F. It is also possible to have a configuration in which the suction unit 147 is not provided.
  • the suction pump 147b can suck foreign substances such as sucked particles by the suction nozzle 147a and discharge them to the outside, or can store them in a tank or the like.
  • the suction unit 147 may also have a ejection nozzle for ejecting gas in order to attract foreign matter such as the attracted particles by the suction nozzle 147a.
  • the base material F is, for example, a long film cut to a predetermined width.
  • the base material F is made of a metal such as copper, aluminum, nickel, and stainless steel.
  • the material of the base material is not limited to metal.
  • a resin film such as an OPP (stretched polypropylene) film, a PET (polyethylene terephthalate) film, a PPS (polyphenylene sulfide) film, or a PI (polyimide) film may be used.
  • the thickness of the base material F is not particularly limited, and is, for example, several ⁇ m to several tens of ⁇ m. Further, the width and length of the base material F are not particularly limited and can be appropriately determined according to the intended use.
  • the re-deposition unit 13 is provided at a position downstream of the foreign matter removing unit 14 in the moving direction of the base material F.
  • the vapor deposition source (deposition source supply unit) 131 of the re-deposition unit 13 is a lithium evaporation source for evaporating lithium metal, and is, for example, a resistance heating type evaporation source, an induction heating type evaporation source, an electron beam heating type evaporation source, or the like. Consists of.
  • a gas supply unit 132 for supplying a film-forming gas is connected to the re-deposition unit 13.
  • the gas supply unit 132 constitutes a plasma generation unit.
  • the gas supply unit 132 is capable of supplying a film-forming gas containing nitrogen to a region in the vicinity of the film-forming region.
  • the re-deposition unit 13 is maintained in a predetermined reduced pressure atmosphere by an exhaust line (not shown), and the gas pressure in the re-deposition unit 13 is adjusted to a predetermined pressure. As shown in FIG. 1, the re-deposition unit 13 has an opening 133a as a film-forming region defining portion that defines the film-forming region between the vapor deposition source (deposition source) 131 and the second main roller 114. A shield (shielding portion) 133 is provided.
  • the shield 133 is a plate-shaped conductor, and its potential is, for example, ground (grounded state).
  • the shield 133 is arranged so as to be substantially parallel to the base material F wound around the second main roller 114. Further, the magnet 135 is arranged at an internal position of the second main roller 114, that is, a position on the back surface (other surface) side of the base material F.
  • the magnet 135 is arranged so as to form a magnetic flux toward the outside of the second main roller 114.
  • the magnet 135 is arranged so as to form a magnetic flux toward a region near the opening 133a.
  • the plasma generation power supply 134 is connected to the second main roller 114 so that the plasma generation power can be supplied.
  • the plasma generation power supply 134 is an AC power supply or a DC power supply.
  • the plasma generation power supply 134 constitutes a plasma generation unit.
  • the film forming apparatus 10 has the above-mentioned configuration.
  • the film forming apparatus 10 includes rollers 141, 146, suction units 142, 147, vapor deposition sources 121, 131, transport unit 11, vacuum pump, gas supply units 122, 132, plasma generation power supplies 124, 134, and the like. It is provided with a control unit that controls magnets 125, 135, and the like.
  • the control unit is composed of a computer including a CPU and a memory, and controls the entire operation of the film forming apparatus 10.
  • the film forming apparatus 10 is not limited to the configuration shown in the figure.
  • the configuration of the film forming apparatus 10 includes, for example, a film forming section 12, a reforming section 13, rollers 141, 146, suction sections 142, 147, a vapor deposition source 121, 131, a transport section 11, a vacuum pump, and a gas supply section 122.
  • the arrangement and size of 132, plasma generating power supplies 124, 134, magnets 125, 135, etc., as well as the vapor deposition source, the gas type to be supplied, the supply potential, and the like can be appropriately changed. Alternatively, it is possible not to provide any of the above-mentioned components of the film forming apparatus 10.
  • the film forming method in the film forming apparatus 10 of the present embodiment will be described.
  • a method of forming an electrolyte film FL containing nitrogen and lithium on the base material F will be described.
  • a method for forming an electrolyte membrane FL made of LiPON will be described.
  • LiPON is suitable as a solid electrolyte for batteries and secondary batteries because it has ionic conductivity and at the same time non-conductivity to electrons.
  • a LiPON layer having a layer thickness of about several ⁇ m can be formed.
  • LiPON layer it is also possible to deposit the LiPON layer using the electron beam coating method.
  • lithium phosphate (LiPO) is evaporated in a nitrogen-containing reactive gas atmosphere by an electron beam that acts directly on the evaporation material.
  • the LiPON layer is deposited on the substrate by evaporating the evaporative material containing at least the elements lithium, phosphorus and oxygen with a thermal evaporator inside the vacuum chamber. At this time, the evaporation material is directly evaporated by the electron beam. At the same time, a nitrogen-containing component, preferably a nitrogen-containing reactive gas, is introduced into the vacuum chamber and the rising vapor particle cloud is penetrated by the plasma.
  • a nitrogen-containing component preferably a nitrogen-containing reactive gas
  • nitrogen-containing reactive gas a gas such as ammonia (NH 3 ), laughing gas (NO 2 ) or nitrogen (N 2 ) is suitable.
  • a nitrogen-containing reactive gas for example, a nitrogen-containing precursor can also be introduced into the vacuum chamber.
  • the evaporation of the starting material may preferably be indirectly heated using a radiation heater.
  • the evaporative material is directly heated inside the boat-type evaporator (crucible) that is energized or induction heated.
  • the generation of plasma may be carried out by hollow cathode arc discharge. This makes it possible to generate high-density plasma.
  • plasma can be generated by excitation using microwaves.
  • plasma can also be generated by inductive input coupling.
  • the magnetic field-superimposed glow discharge may generate plasma to allow extremely homogeneous plasma propagation over a large extending surface. Further, by using pulse plasma, the stability of the precipitation process can be improved.
  • FIGS. 2 to 4 are process diagrams showing a manufacturing process by the film forming apparatus in this embodiment.
  • the non-deposited base material F0 of the electrolyte film FL1 is conveyed to the film forming section 12 from the unwinding roller 111 in the direction along the first main roller 113.
  • nitrogen-containing gas is introduced into the area near the film forming region from the gas supply unit 122 toward the region near the first main roller 113.
  • plasma generation power is supplied to the first main roller 113 from the connected plasma generation power supply 124.
  • the magnet 125 generates magnetic flux by the electric power supplied from the connected magnetic field generating power source. As a result, plasma is generated in the plasma generation region.
  • the vapor deposition source 121 is heated by, for example, an electron beam or the like to evaporate the raw material containing lithium, and the vapor flow of the raw material containing lithium emitted toward the base material F on the first main roller 113 is generated. Form. At this time, the vapor flow of the lithium raw material is restricted from reaching the base material F by the opening 123a of the shield 123. In the region near the opening 123a of the shield 123, the vaporized particles containing lithium activated by the plasmaized nitrogen gas are formed on the surface of the base material F0 as the nitrogen-containing electrolyte film FL1 to form the base material F1. It becomes.
  • the roller 141 and the base material F1 come into contact with each other.
  • the roller 141 which rotates in the direction opposite to the transport direction of the base material F1
  • the foreign matter removing unit 14 sets the contact state (contact state) between the roller 141 and the base material F1 as a state suitable for removing the foreign matter by the foreign matter removing unit 14.
  • the transport speed of the base material F1 and the rotation speed of the roller 141 that rotates in the opposite direction to the transport direction of the base material F1 are set to be within a predetermined range.
  • the mesh-like portion of the roller 141 moves relative to the electrolyte membrane FL1.
  • the roller 141 hooks a portion of the particle FP or the like protruding from the surface of the electrolyte membrane FL1 on a mesh-like or rod-shaped portion to separate the foreign matter such as the particle FP from the electrolyte membrane FL1.
  • the mesh-like or rod-like portion of the roller 141 is in contact with the surface of the electrolyte membrane FL1 at a suitable pressure.
  • the roller 141 separates the foreign matter from the electrolyte membrane FL1 by pressing the portion of the foreign matter such as particle FP that is recessed from the surface of the electrolyte membrane FL1 by the mesh-like or rod-shaped portion. Further, in the roller 141, the mesh-like or rod-shaped portion presses the foreign matter such as particle FP embedded in the surface of the electrolyte membrane FL1 together with the thin electrolyte covering the surface of the foreign matter such as particle FP. Foreign matter such as particle FP is separated from the electrolyte membrane FL1 adhering to F1.
  • the base material F2 from which the foreign matter such as particle FP is separated from the electrolyte membrane FL1 by the roller 141 is conveyed to the roller 146 by the conveying unit 11.
  • the roller 146 and the base material F2 come into contact with each other.
  • the roller 146 which rotates in the direction opposite to the transport direction of the base material F2 comes into contact with the surface of the electrolyte film FL1 formed on the base material F2.
  • the foreign matter removing unit 14 sets the contact state (contact state) between the roller 146 and the base material F2 as a state suitable for removing the foreign matter by the foreign matter removing unit 14.
  • the transport speed of the base material F2 and the rotation speed of the roller 146 that rotates in the opposite direction to the transport direction of the base material F2 are set to be within a predetermined range.
  • the mesh-like portion of the roller 146 moves relative to the electrolyte membrane FL1.
  • the roller 146 hooks a portion of the particle FP or the like protruding from the surface of the electrolyte membrane FL1 onto a mesh-like or rod-shaped portion to separate the foreign matter such as the particle FP from the electrolyte membrane FL1.
  • the mesh-like or rod-like portion of the roller 146 is in contact with the surface of the electrolyte membrane FL1 at a suitable pressure.
  • the roller 146 separates the foreign matter from the electrolyte membrane FL1 by the mesh-like or rod-shaped portion pressing the portion recessed from the surface of the electrolyte membrane FL1 in the foreign matter such as particle FP.
  • the mesh-like or rod-shaped portion presses the foreign matter such as particle FP embedded in the surface of the electrolyte membrane FL1 together with the thin electrolyte covering the surface of the foreign matter such as particle FP.
  • Foreign matter such as particle FP is separated from the electrolyte membrane FL1 adhering to F1.
  • FIG. 3 in the base material F3, foreign substances such as particle FP are separated from the electrolyte membrane FL1 by the roller 141.
  • the base material F3 from which the foreign matter such as particle FP is separated from the electrolyte film FL1 by the roller 146 of the foreign matter removing unit 14 is conveyed to the re-deposition unit 13 by the conveying unit 11.
  • nitrogen-containing gas is introduced into the region near the film-forming region from the gas supply unit 132 toward the region near the second main roller 114. Further, in the re-deposition unit 13, plasma generation power is supplied to the second main roller 114 from the connected plasma generation power supply 134. At the same time, in the re-deposition unit 13, the magnet 135 generates magnetic flux by the electric power supplied from the connected magnetic field generating power source. As a result, plasma is generated in the plasma generation region.
  • the vapor deposition source 131 is heated by, for example, an electron beam or the like to evaporate the raw material containing lithium, and the vapor flow of the raw material containing lithium emitted toward the base material F on the second main roller 114. To form. At this time, the vapor flow of the raw material containing lithium is restricted from reaching the base material F3 by the opening 133a of the shield 133. In the region near the opening 133a of the shield 133, the vaporized particles containing lithium activated by the plasmaized nitrogen gas are formed on the surface of the base material F3 as a nitrogen-containing electrolyte film. As a result, it becomes the base material F4 on which the electrolyte film FL2 is formed by being laminated on the electrolyte film FL1.
  • the base material F4 on which the electrolyte film is formed by the re-deposition unit 13 is conveyed to the take-up roller 112 by the transfer unit 11. As a result, the film formation in the film forming apparatus 10 is completed.
  • the film forming apparatus 10 in the present embodiment can remove foreign substances such as particles FP that were present at the time of film formation of the electrolyte film FL1 by the foreign matter removing unit 14. This makes it possible to prevent the electrolyte membrane FL1 from being conducted in the film thickness direction by foreign matter such as particle FP. Thereby, the insulating property in the electrolyte membrane FL1 can be ensured.
  • the foreign matter such as particle FP is formed in the electrolyte film FL1 and the electrolyte film FL2. Therefore, it is possible to prevent conduction in the film thickness direction.
  • the electrolyte membrane FL1 and the foreign matter such as particle FP of the laminated electrolyte membrane FL2 may come into contact with each other. Absent. This makes it possible to prevent the electrolyte membrane FL, which is a single layer, from being conducted in the film thickness direction by foreign matter such as particle FP.
  • the electrolyte membrane FL is not conducted in the film thickness direction by foreign matter such as particle FP. Therefore, it is possible to prevent the insulation of the electrolyte membrane FL from being broken in the film thickness direction by foreign matter such as particle FP. It is possible to manufacture an electrolyte membrane FL having a predetermined insulating property.
  • the foreign matter removing unit 14 has two rollers 141 and 146, but the present invention is not limited to this.
  • the foreign matter removing unit 14 may have only one roller 141 or three or more rollers.
  • the foreign matter is re-deposited by the re-depositing unit 13 after the foreign matter removing treatment in the foreign matter removing unit 14, but the present invention is not limited to this.
  • the foreign matter removal treatment can be performed at a position downstream of the re-deposition unit 13.
  • the electrolyte film FL is formed in two steps by the film forming section 12 and the reforming section 13 with the foreign matter removing process in the foreign matter removing section 14 sandwiched between them.
  • the foreign matter removing treatment can be performed every time after all the film formations, and the same number of foreign matter removing portions as the plurality of film forming portions can be arranged on the plurality of film forming portions.
  • FIG. 5 is a schematic enlarged view showing a foreign matter removing portion in the film forming apparatus of the present embodiment.
  • the difference from the above-mentioned first embodiment is that the foreign matter removing portion is obtained, and the same reference numerals are given to the configurations corresponding to the other above-mentioned first embodiments, and the description thereof is omitted. To do.
  • the foreign matter removing portion 14 in the present embodiment has a roller 143 made of a non-woven fabric as a contact portion.
  • a non-woven fabric a member formed of cotton linter, polyester fiber, or the like, which is of a quality suitable for a clean room, can be mentioned.
  • FIG. 6 is a schematic enlarged view showing a foreign matter removing portion in the film forming apparatus of the present embodiment.
  • the difference from the first and second embodiments described above is that the foreign matter removing portion is used, and the same reference numerals are given to the configurations corresponding to the other first and second embodiments described above. And the explanation is omitted.
  • the foreign matter removing portion 14 in the present embodiment has rollers 144 and 145 as contact portions.
  • the rollers 144 and 145 in the present embodiment are not provided with the transfer roller 116 at a position opposite to the base material F. Further, the rollers 144 and 145 are arranged so as to be extremely adjacent to each other with respect to the transport direction of the base material F.
  • FIG. 7 is a schematic enlarged view showing a foreign matter removing portion in the film forming apparatus of the present embodiment.
  • the difference from the first to third embodiments described above is that the foreign matter removing portion is used, and the same reference numerals are given to the configurations corresponding to the other first to third embodiments described above. And the explanation is omitted.
  • the foreign matter removing portion 14 in the present embodiment has a roller 148 as a contact portion.
  • the outer periphery of the roller 148 is formed in a brush shape or a fin shape.
  • the fin-shaped roller 148 can be formed so that the fins are formed substantially parallel to the axis of the roller 148 or intersected with the axis of the roller 148 at an angle.
  • the brush-shaped or fin-shaped roller 148 has flexibility.
  • a scrub roller in which a sponge member or a brush member is mounted on the entire surface of a roller-shaped cylindrical body (for example, a metal roller, a plastic roller, etc.) is used as a contact portion.
  • a roller-shaped cylindrical body for example, a metal roller, a plastic roller, etc.
  • the foreign matter removing portion 14 uses a scrub pad composed of a disk-shaped member and having a brush or sponge attached to the contact surface with the electrolyte membrane, and abuts the surface of the electrolyte membrane while rotating the scrub pad.
  • the configuration can also be adopted.
  • the brush material that can be attached to the scrub roller as the contact part is not particularly limited.
  • the chemical fiber brush is made of nylon 6, 66, 610, or 612 types (for example, Tynex manufactured by Toray Dupont Co., Ltd., Azlon Co., Ltd.).
  • Grit nylon fiber nylon with abrasive grains, for example, Toray Tregrit, DuPont Tynex A, Asahi Kasei Sungrit, ORK Grit Thunder, etc.
  • polypropylene fiber ⁇ 0.1 ⁇ 1.5
  • vinyl chloride fiber ⁇ 0.1 ⁇ 0.7
  • polyester fiber ⁇ 0.3 ⁇ 0.5
  • acrylic resin fiber aramid fiber
  • fiber used as the contact portion examples include horsehair, pig hair, wool, bay hair, and human hair.
  • tampico fiber taken from tampico hemp leaf
  • palm fiber of palm fruit
  • fern palm
  • kalkaya fiber taken from the root of megalucaya, bristles
  • sisal fiber taken from hemp
  • Bron fiber taken from palmilla palm leaves
  • fibrous metal can also be used, for example, hard steel wire ( ⁇ 0.1 to 0.8), hardened wire ( ⁇ 0.2 to 0.8), and gold-plated wire ( ⁇ 0.2 to 0). .5), wrapping, wire wire, iron wire, stainless wire ( ⁇ 0.05 to 0.8), brass wire ( ⁇ 0.06 to 0.8), phosphor bronze ( ⁇ 0.06 to 0.6), etc. ..
  • the sponge material that can be attached to the scrub roller as the contact part is not particularly limited, but is a rubber sponge / foam (for example, chloroprene rubber sponge, natural rubber sponge, polyethylene sponge, ethylene / propylene rubber sponge, nitrile rubber sponge, etc. Fluorine sponge, silicone sponge, Opsealer (registered trademark), Lucilla (registered trademark), etc.), urethane sponge (for example, soft urethane foam (ether type), soft urethane foam (ester type), hard urethane foam, low-resilience urethane foam, Enetan (providing antibacterial properties to low-resilience urethane foam), polyethylene foam, etc. can be mentioned.
  • a rubber sponge / foam for example, chloroprene rubber sponge, natural rubber sponge, polyethylene sponge, ethylene / propylene rubber sponge, nitrile rubber sponge, etc. Fluorine sponge, silicone sponge, Opsealer (registered trademark), Lucilla (registered trademark),
  • polyethylene foam examples include Sanperca, Opcel, Super Opcel (above, manufactured by Sanwa Kako Co., Ltd., product name), Softlon Board, Softlon S (above, manufactured by Sekisui Chemical Co., Ltd., product name), and Torre Pef (Toray).
  • Product name Lightron S, Lightron board (above, Sekisui Chemicals Co., Ltd., product name), Suntech Foam (Asahi Kasei Co., Ltd., product name), Malt Filter (registered trademark of Inoac Corporation), etc. Can be mentioned.
  • EVA foam EVA foam
  • biodegradable kenaf foam manufactured by Daiichi Kagaku Co., Ltd.
  • non-woven fabric / felt non-woven fabric / felt
  • styrofoam etc.
  • Bencot registered trademark of Asahi Kasei Co., Ltd.
  • Anticon CONTEC Co., Ltd.
  • a LiPON film (electrolyte film) was formed by the film forming apparatus 10 shown in FIG. 1 described above, and the insulating property was measured as the film quality.
  • the film forming conditions are shown below.
  • Base material F transport speed 0.5 to 5 m / min
  • Base material F Film thickness in PET resin film forming section 12: 1 ⁇ m
  • Foamed resin material Malt filter MP-55 (manufactured by Inoac Corporation)
  • Foamed resin material Polyester Foamed resin material Density: 57 ⁇ 5 kg / m 2
  • Foamed resin material Tensile strength: 147 kPa or more Foamed resin material
  • Example 4 The film was formed in the same manner as in Experimental Examples 1 to 3, but the foamed resin material of the roller 141 in the foreign matter removing portion 14 was changed.
  • Foamed resin material Malt filter MP-65 (manufactured by Inoac Corporation)
  • Foamed resin material Polyester Foamed resin material Density: 57 ⁇ 5 kg / m 2
  • Foamed resin material tensile elongation 200% or more
  • Example 5 The film was formed in the same manner as in Experimental Examples 1 to 3, but the foamed resin material of the roller 141 in the foreign matter removing portion 14 was changed.
  • Foamed resin material Malt filter MP-80 (manufactured by Inoac Corporation)
  • Foamed resin material Polyester Foamed resin material Density: 80 ⁇ 10 kg / m 2
  • Electrodes were formed by selecting 2 mm square, 10 mm square, and 30 mm square film thickness regions in the LiPON film (electrolyte film) in the same manner as in Experimental Examples 1 to 3. The insulation property in the film thickness direction was measured.
  • Examples of utilization of the present invention include an apparatus for forming a LiPON film as an electrolyte film and an apparatus for forming a SiO and SiN film as an insulating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Physical Vapour Deposition (AREA)
  • Cell Separators (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本発明の成膜装置は、基板を搬送する搬送部と、前記搬送部によって搬送される前記基板の成膜領域に電解質膜を成膜する成膜部と、前記成膜部での成膜後に前記搬送部によって搬送される前記基板の前記電解質膜に接触して前記成膜領域に含まれる異物を除去する異物除去部と、を備える。

Description

成膜装置
 本発明は成膜装置に関し、特に、成膜された膜における絶縁性を向上する際に好適な技術に関する。
 本願は、2019年12月26日に日本に出願された特願2019-236187号に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン電池の研究がおこなわれている。なかでも、負極、電解質、正極すべてが固体からなる全固体電池は、安全性と高エネルギー密度、長寿命を兼ね備えた電池としてその開発が期待されている。
 全固体電池の電解質膜の製造方法として、リチウムを含む成膜が必要であり、特許文献1に記載されるように、蒸着によっておこなわれている。
 このような電解質膜の成膜工程においては、例えば、リチウムとリンとを含む蒸着源を用いて、窒素を含むプラズマによって成膜して、窒素を含有した膜を成膜することが知られている。
日本国特開2015-514864号公報
 しかし、特許文献1に記載された技術では、成膜した膜の特性が例えばリチウムイオン電池の性能として充分でない。このため、リチウムイオン電池の性能向上を可能とするため、膜質改善、特に、電解質膜における絶縁性の向上が望まれている。
 本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成しようとするものである。
 1.絶縁性を充分に有する成膜を可能とすること。
 2.電池製造に充分な電解質膜の製造を可能とすること。
 本発明の成膜装置は、基板を搬送する搬送部と、前記搬送部によって搬送される前記基板の成膜領域に電解質膜を成膜する成膜部と、前記成膜部での成膜後に前記搬送部によって搬送される前記基板の前記電解質膜に接触して前記成膜領域に含まれる異物を除去する異物除去部と、を備えることにより上記課題を解決した。
 本発明の成膜装置は、前記異物除去部による異物除去後に前記搬送部によって搬送される前記基板の前記成膜領域に、電解質膜を再成膜する再成膜部、を備えることができる。
 本発明において、前記異物除去部が前記基板に対して相対的に移動した状態で前記電解質膜に接触する接触部を有することが好ましい。
 本発明の成膜装置には、前記接触部が発泡樹脂材料からなることが可能である。
 また、本発明において、前記接触部が不織布であってもよい。
 本発明の成膜装置は、前記接触部が円筒状のローラとされることができる。
 また、本発明の成膜装置は、前記ローラが前記基板の搬送方向と交差する方向の軸線を有することができる。
 また、前記ローラが前記基板の前記搬送方向と逆方向に回転されることが好ましい。
 さらに、前記ローラと前記基板とは、前記接触部の接触点において互いに接触し、前記接触点から見て、前記ローラの回転方向に沿う前記ローラの接線方向は、前記基板の前記搬送方向とは反対であることができる。
 本発明の成膜装置は、基板を搬送する搬送部と、前記搬送部によって搬送される前記基板の成膜領域に電解質膜を成膜する成膜部と、前記成膜部での成膜後に前記搬送部によって搬送される前記基板の前記電解質膜に接触して前記成膜領域に含まれる異物を除去する異物除去部と、を備える。
 これにより、基板の成膜領域に付着しているパーティクル等の異物がある場合でも、成膜後にパーティクル等の異物を除去することができる。したがって、パーティクル等の異物によって膜厚方向に電解質膜が導通されることがない。このため、パーティクル等の異物によって膜厚方向に電解質膜の絶縁が破れることを防止することができる。絶縁性が所定の状態である電解質膜を製造可能とすることができる。
 本発明の成膜装置は、前記異物除去部による異物除去後に前記搬送部によって搬送される前記基板の前記成膜領域に、電解質膜を再成膜する再成膜部、を備える。
 これにより、パーティクル等の異物が除去された前記電解質膜の上に、新たに電解質膜を積層して再び成膜する。下側、つまり、基板に近接する位置にある電解質膜は、異物除去部によってパーティクル等の異物が除去されているので、たとえ、上側に再成膜された電解質膜に異物が含まれていた場合でも、このパーティクル等の異物が、膜厚方向で電解質膜を貫通してしまうことを防止できる。したがって、積層されたこれら二層の電解質膜は、パーティクル等の異物によって膜厚方向に導通されることがない。
 さらに、パーティクル等の異物が除去された前記電解質膜において、除去された異物に対応する部分を新たに充填した状態で、電解質膜を再び成膜することができ、積層された電解質膜の表面に沿った方向、または、基板の表面に沿った方向において、膜厚の均一性を維持することができる。
 本発明において、前記異物除去部が前記基板に対して相対的に移動した状態で前記電解質膜に接触する接触部を有する。
 これにより、異物除去部と基板との間で相対移動速度を所定の範囲に設定して、パーティクル等の異物を確実に除去するために必要な当接状態(接触状態)を実現する。同時に、成膜した電解質膜の表面に必要以上に影響を与えて、電解質膜そのものにダメージを与えてしまうことを防止することができる。
 本発明の成膜装置には、前記接触部が発泡樹脂材料からなる。
 これにより、異物除去部と基板との当接状態(接触状態)を、異物除去部による異物除去に好適な状態として、パーティクル等の異物を確実に除去することができる。
 具体的には、発泡樹脂材料における網目状となった部分で、電解質膜表面に、好適な圧力で当接するとともに、発泡樹脂材料における網目状となった部分で、異物における電解質膜表面から突出した部分を引っ掛けて、電解質膜から異物を分離することができる。あるいは、発泡樹脂材料における網目状あるいは棒状となった部分で、異物における電解質膜表面よりも凹んだ部分を押圧して、電解質膜から異物を分離することができる。さらに、発泡樹脂材料における網目状あるいは棒状となった部分で、電解質膜表面よりも埋め込まれた異物を押圧して、異物の表面を覆う薄い電解質とともに、基板に付着している電解質膜から異物を分離することができる。なお、このような異物除去の機序には、よく判明していない部分もあるが、本発明の接触部により、異物除去は好適におこなうことが可能である。
 ここで、発泡樹脂材料とは、例えば、スポンジ状の樹脂を意味している。また、異物除去部が設けられる成膜部における電解質膜の成膜条件に関連して、例えば、真空中におけるガス放出等の影響、耐熱性、あるいは、電解質膜への当接状態に影響する強度等を考慮して、樹脂材質を選択することができる。
 発泡樹脂材料としては、例えば、ポリエステル、ポリウレタン等を例示することができる。
 なお、異物除去部と基板との当接状態(接触状態)とは、電解質膜の表面を擦って異物を掻き取るために必要な状態とされ、当接圧、当接速度、異物へ引っ掛かる状態、異物を分離する分離力等を含んでいる。同時に、異物除去部と基板との当接状態(接触状態)とは、電解質膜の表面ダメージを与えないために、当接圧、当接速度、を含んでいる。
 また、本発明において、前記接触部が不織布からなる。
 これにより、異物除去部と基板との当接状態(接触状態)を、異物除去部による異物除去に好適な状態として、パーティクル等の異物を確実に除去することができる。
 具体的には、不織布における繊維状となった部分で、電解質膜表面に、好適な圧力で当接するとともに、不織布における繊維状となった部分で、異物における電解質膜表面から突出した部分を引っ掛けて、電解質膜から異物を分離することができる。あるいは、不織布における繊維状あるいは棒状となった部分で、異物における電解質膜表面よりも凹んだ部分を押圧して、電解質膜から異物を分離することができる。さらに、不織布における繊維状あるいは棒状となった部分で、電解質膜表面よりも埋め込まれた異物を押圧して、異物の表面を覆う薄い電解質とともに、基板に付着している電解質膜から異物を分離することができる。なお、このような異物除去の機序には、よく判明していない部分もあるが、本発明の接触部により、異物除去は好適におこなうことが可能である。
 なお、ここで、異物除去部と基板との当接状態(接触状態)とは、電解質膜の表面を擦って異物を掻き取るために必要な状態とされ、当接圧、当接速度、異物へ引っ掛かる状態、異物を分離する分離力等を含んでいる。同時に、異物除去部と基板との当接状態(接触状態)とは、電解質膜の表面ダメージを与えないために、当接圧、当接速度、等を含んでいる。
 本発明の成膜装置は、前記接触部が円筒状のローラとされる。
 これにより、異物除去部と基板との当接状態(接触状態)が、電解質膜の表面を擦って異物を掻き取るために必要な状態とされ、当接圧、当接速度、異物へ引っ掛かる状態、異物を分離する分離力等を、異物を電解質膜から分離するために好適な状態に制御することが容易となる。これにより、電解質膜の表面ダメージを与えないで、基板に付着している電解質膜から異物を分離することができる。
 また、本発明の成膜装置は、前記ローラが前記基板の搬送方向と交差する方向の軸線を有する。
 これにより、異物除去部と基板との当接状態(接触状態)が、電解質膜の表面を擦って異物を掻き取るために必要な状態とされ、当接圧、当接速度、異物へ引っ掛かる状態、異物を分離する分離力等を、異物を電解質膜から分離するために好適な状態に制御することが容易となる。これにより、電解質膜の表面ダメージを与えないで、基板に付着している電解質膜から異物を分離することができる。
 また、接触部の交換を容易におこなうことが可能となる。
 また、前記ローラが前記基板の前記搬送方向と逆方向に回転される。
 これにより、好ましい異物除去部と基板との当接状態(接触状態)が、電解質膜の表面を擦って異物を掻き取るために必要な状態とされ、当接圧、当接速度、異物へ引っ掛かる状態、異物を分離する分離力等を、異物を電解質膜から分離するために好適な状態に制御することが容易となる。これにより、電解質膜の表面ダメージを与えないで、基板に付着している電解質膜から異物を分離することができる。
 前記ローラと前記基板とは、前記接触部の接触点において互いに接触し、前記ローラの回転方向に沿って前記接触点から見た前記ローラの接線方向は、前記基板の搬送方向とは反対であることができる。
 さらに、接触部がブラシ状、フィン状、パッド状とされることもできる。上記のいずれの場合でも、回転軸に接触部を設けて、回転軸を回転させながら、電解質膜に接触部を当接することが好ましい。
 本発明によれば、成膜した電解質膜において、充分な絶縁性を有することが可能な成膜装置を提供することができるという効果を奏することが可能となる。
本発明に係る成膜装置の第1実施形態を示す模式図である。 本発明に係る成膜装置の第1実施形態による製造工程を示す工程図である。 本発明に係る成膜装置の第1実施形態による製造工程を示す工程図である。 本発明に係る成膜装置の第1実施形態による製造工程を示す工程図である。 本発明に係る成膜装置の第2実施形態における異物除去部を示す模式拡大図である。 本発明に係る成膜装置の第3実施形態における異物除去部を示す模式拡大図である。 本発明に係る成膜装置の第4実施形態における異物除去部を示す模式拡大図である。 本発明に係る実験例および比較例の結果を示すグラフである。
 以下、本発明に係る成膜装置の第1実施形態を、図面に基づいて説明する。
 図1は、本実施形態における成膜装置を示す模式図であり、図1において、符号10は、成膜装置である。図1において、X軸、Y軸及びZ軸方向は相互に直交する3軸方向を示し、X軸及びY軸は、水平方向、Z軸方向は鉛直方向を示す。
 本実施形態に係る成膜装置10は、基材(基板)F上に、窒素およびリチウムを含有する電解質膜FL(図4参照)を形成するものとされる。具体的には、イオン伝導性を有すると同時に電子に対する非伝導性を有するために、バッテリや二次電池用の固体電解質として適しているLiPON膜を成膜することができる。
 本実施形態に係る成膜装置10は、図1に示すように、図示しない真空チャンバ(チャンバ)と、搬送部11と、成膜部12と、再成膜部13と、異物除去部14と、を有する。
 本実施形態に係る成膜装置10は、ロールトゥロール装置である場合を説明するが、本発明は、この構成に限定されるものではなく、基板搬送中に枚葉の基板に成膜する構成とすることもできる。
 成膜装置10における真空チャンバは、密閉可能な構造を有し、真空ポンプを有する排気ラインに接続される。これにより、真空チャンバは、その内部が所定の減圧雰囲気に排気または維持可能に構成される。
 搬送部11は、真空チャンバ内で、基材Fを搬送するものとされる。本実施形態において、搬送部11は、巻出しローラ111と、巻取りローラ112と、第1メインローラ113と、第2メインローラ114と、複数の搬送ローラ115,116と、を有する。
 巻出しローラ111、巻取りローラ112は、それぞれ図示しない回転駆動部を備え、図1における紙面に鉛直なZ方向軸線周りに所定の回転速度で、矢印方向にそれぞれ回転可能に構成されている。
 第1メインローラ113、第2メインローラ114は、それぞれ図示しない回転駆動部を備え、図1における紙面に鉛直なZ軸線周りに所定の回転速度で、矢印方向にそれぞれ回転可能に構成されている。
 巻出しローラ111は、成膜部12より基材Fの搬送方向上流側に設けられ、基材Fを第1メインローラ113に送り出す機能を有する。なお、巻出しローラ111と第1メインローラ113との間の適宜の位置に独自の回転駆動部を備えていない適宜の数のガイドローラ(図示略)が配置されてもよい。
 第1メインローラ113は、図1における紙面に鉛直なZ方向軸線周りに回転可能に構成されている。第1メインローラ113は、基材Fの搬送方向において巻出しローラ111と巻取りローラ112との間に配置される。第1メインローラ113は、図1におけるY方向における下部の少なくとも一部が、後述するシールド(遮蔽部)123に設けられた開口部123aを通って後述する蒸着源121に臨む位置に配置される。
 第1メインローラ113は、所定の間隔を空けて開口部123aに対向し、蒸着源121とY方向に対向する。第1メインローラ113は、ステンレス鋼、鉄、アルミニウム等の金属材料で筒状に構成され、その内部に例えば図示しない温調媒体循環系等の温調機構が設けられてもよい。第1メインローラ113の大きさは特に限定されないが、典型的には、Z方向の幅寸法が基材FのZ方向の幅寸法よりも大きく設定される。
 複数の搬送ローラ115,116は、図1における紙面に鉛直な軸線周りにそれぞれ回転可能に構成されている。複数の搬送ローラ115,116は、駆動されてもよいし、駆動されなくてもよい。
 これにより、真空チャンバ内において、巻出しローラ111から巻取りローラ112へ向かって基材Fが所定の搬送速度で搬送される。
 成膜部12は、図1に示すように、真空チャンバの外壁により区画された成膜室であり、基材Fの成膜領域に電解質膜FL1(図2参照)を成膜する。成膜部12は、その内部に蒸着源121と、ガス供給部122と、シールド123と、プラズマ発生電源124と、マグネット125と、を有する。また、成膜部12は、図示しない排気ラインに接続されている。第1メインローラ113は、成膜部12を構成する。
 再成膜部13は、図1に示すように、真空チャンバの外壁により区画された成膜室であり、異物除去部14による異物除去後に、基材Fの成膜領域に電解質膜FL2(図4参照)を再成膜する。再成膜部13は、その内部に蒸着源131と、ガス供給部132と、シールド133と、プラズマ発生電源134と、マグネット135と、を有する。
 また、再成膜部13は、図示しない排気ラインに接続されている。第2メインローラ114は、再成膜部13を構成する。
 成膜部12と再成膜部13とは、同一材料の成膜を可能とされる。成膜部12と再成膜部13とは、連通していてもよいし、仕切板等によって区画されることもできる。
 成膜部12の蒸着源(成膜源供給部)121は、リチウム金属を蒸発させるリチウム蒸着源であり、例えば、抵抗加熱式蒸着源、誘導加熱式蒸着源、電子ビーム加熱式蒸着源等で構成される。
 成膜部12には、成膜ガスを供給するガス供給部122が接続される。ガス供給部122は、プラズマ発生部を構成する。ガス供給部122は、窒素を含む成膜ガスを成膜領域の近傍の領域に供給可能とされる。
 成膜部12は、図示しない排気ラインによって、所定の減圧雰囲気に維持されると共に、成膜部12内のガス圧が所定の圧力に調整される。
 成膜部12には、図1に示すように、蒸着源(成膜源)121と第1メインローラ113との間に、成膜領域を規定する成膜領域規定部として、開口部123aを有するシールド(遮蔽部)123が設けられる。
 シールド123は、板状の導体とされ、その電位は例えばグランド(接地状態)とされる。シールド123は、第1メインローラ113に巻回された基材Fに対して、略平行となるように配置される。
 また、第1メインローラ113の内部位置、つまり、基材Fの裏面(他面)側となる位置には、マグネット125が配置される。
 マグネット125は、第1メインローラ113の外方に向けて磁束を形成するように配置される。マグネット125は、開口部123aの付近の領域に向けて磁束を形成するように配置される。
 また、第1メインローラ113には、プラズマ発生電源124が接続されてプラズマ発生電力が供給可能とされる。プラズマ発生電源124は、交流電源または直流電源とされる。プラズマ発生電源124は、プラズマ発生部を構成する。
 異物除去部14は、図1に示すように、成膜部12と再成膜部13との間に配置される。ここで、文言「成膜部12と再成膜部13との間」とは、搬送部11によって搬送される基材Fの搬送位置における上流から下流に向けて、成膜部12、異物除去部14、再成膜部13という順番に並ぶという意味である。
 異物除去部14は、ローラ141と、吸引部142と、を有する。
 ローラ141は、円筒状とされ、成膜部12で成膜領域に電解質膜FL1が成膜された基材Fに対して電解質膜FL1に接触する接触部を構成する。
 ローラ141は、成膜部12よりも基材Fの移動方向に対して下流となる位置に設けられる。
 ローラ141は、基材Fの搬送方向と交差する方向の軸線(シャフト)を有する。ローラ141は、基材Fの搬送方向と逆方向に回転される。
 接触部としての円筒状のローラ141は、発泡樹脂材料からなる。具体的には、ローラ141は、スポンジ状の樹脂が円筒状に形成された外表面を有する。
 ローラ141は、発泡樹脂材料における網目状となった表面を有する。ここで、文言「網目状」とは、スポンジのように、繊維状あるいは棒状の部分と、この繊維状あるいは棒状の部分が、他の繊維状あるいは棒状の部分に対して互いに離間するように形成された空間上の部分のことを意味する。
 ローラ141は、この網目状の部分が電解質膜FL1に対して相対的に移動する。
 ローラ141は、異物における電解質膜FL1表面から突出した部分を引っ掛けて、電解質膜FL1から異物を分離することが可能なように網目状あるいは棒状の部分を有する。
 また、ローラ141は、この網目状または棒状の部分が電解質膜FL1表面に好適な圧力で当接する。
 ローラ141は、異物における電解質膜FL1表面よりも凹んだ部分を押圧して、電解質膜FL1から異物を分離することが可能なように網目状あるいは棒状となった部分を有する。
 さらに、ローラ141は、電解質膜FL1表面よりも埋め込まれた異物を押圧して、異物の表面を覆う薄い電解質とともに、基板に付着している電解質膜FL1から異物を分離することができる網目状あるいは棒状となった部分を有する。
 ローラ141には、基材Fを挟んでその反対側に、搬送ローラ116が位置する。搬送ローラ116は、その表面に基材Fが巻回されることで、搬送ローラ116に接触する基材Fの面に対して、電解質膜FL1の成膜された基材Fの面が拡がるように位置している。つまり、基材Fに近接する電解質膜FL1の部分に比べて、電解質膜FL1の表面側が伸長した状態で、電解質膜FL1にローラ141の表面が接触する。
 吸引部142は、ローラ141が接触する基材Fの近傍に位置する吸引ノズル142aと、この吸引ノズル142aに接続された吸引ポンプ142bと、を有する。
 吸引ノズル142aは、ローラ141と基材Fとの接触する位置の近傍に開口する。吸引ノズル142aは、基材Fと接触していたローラ141が、回転によって基材Fから離間する箇所の付近に位置に開口する。つまり、吸引ノズル142aは、基材Fの搬送方向に対して逆方向に回転するローラ141に対して、ローラ141よりも上流側に開口する。なお吸引部142を設けない構成も可能である。
 吸引ポンプ142bは、吸引ノズル142aによって、吸引したパーティクル等の異物を吸引して外部に排出する、または、タンク等に貯留しておくことができる。
 なお、吸引部142は、吸引ノズル142aによって、吸引したパーティクル等の異物を吸引するために、ガスを噴出する噴出ノズルを有することもできる。
 異物除去部14は、ローラ146と、吸引部147と、を有することもできる。
 ローラ146は、円筒状とされ、ローラ141が接触した後の成膜部12で成膜領域に電解質膜FL1が成膜された基材Fに対して電解質膜FL1に接触する接触部を構成する。
 ローラ146は、ローラ141よりも基材Fの移動方向に対して下流となる位置に設けられる。
 ローラ146は、基材Fの搬送方向と交差する方向の軸線(シャフト)を有する。ローラ146は、基材Fの搬送方向と逆方向に回転される。
 接触部としての円筒状のローラ146は、発泡樹脂材料からなる。具体的には、ローラ146は、スポンジ状の樹脂が円筒状に形成された外表面を有する。
 ローラ146は、ローラ141と同様に、発泡樹脂材料における網目状となった表面を有する。ここで、文言「網目状」とは、スポンジのように、繊維状あるいは棒状の部分と、この繊維状あるいは棒状の部分が、他の繊維状あるいは棒状の部分に対して互いに離間するように形成された空間上の部分のことを意味する。
 ローラ146は、この網目状の部分が電解質膜FL1に対して相対的に移動する。
 ローラ146は、異物における電解質膜FL1表面から突出した部分を引っ掛けて、電解質膜FL1から異物を分離することが可能なように網目状あるいは棒状の部分を有する。
 また、ローラ146は、この網目状または棒状の部分が電解質膜FL1表面に好適な圧力で当接する。
 ローラ146は、異物における電解質膜FL1表面よりも凹んだ部分を押圧して、電解質膜FL1から異物を分離することが可能なように網目状あるいは棒状となった部分を有する。
 さらに、ローラ146は、電解質膜FL1表面よりも埋め込まれた異物を押圧して、異物の表面を覆う薄い電解質とともに、基板に付着している電解質膜FL1から異物を分離することができる網目状あるいは棒状となった部分を有する。
 ローラ146には、基材Fを挟んでその反対側に、搬送ローラ116が位置する。搬送ローラ116は、その表面に基材Fが巻回されることで、搬送ローラ116に接触する基材Fの面に対して、電解質膜FL1の成膜された基材Fの面が拡がるように位置している。つまり、基材Fに近接する電解質膜FL1の部分に比べて、電解質膜FL1の表面側が伸長した状態で、電解質膜FL1にローラ146の表面が接触する。
 ローラ146は、ローラ141と同等の構成とされる。ローラ146とローラ141とによって、パーティクル等の除去を2回おこなうように構成されることができる。
 また、ローラ146は、ローラ141に対して、硬度、発泡状態、あるいは、押圧力や回転速度等の当接状態などが、異なる構成とされてもよい。これにより、ローラ146とローラ141とが、異なる大きさのパーティクルを除去するように構成されることができる。
 吸引部147は、ローラ146が接触する基材Fの近傍に位置する吸引ノズル147aと、この吸引ノズル147aに接続された吸引ポンプ147bと、を有する。
 吸引ノズル147aは、ローラ146と基材Fとの接触する位置の近傍に開口する。吸引ノズル147aは、基材Fと接触していたローラ146が、回転によって基材Fから離間する箇所の付近に位置に開口する。つまり、吸引ノズル147aは、基材Fの搬送方向に対して逆方向に回転するローラ146に対して、ローラ146よりも上流側に開口する。なお吸引部147を設けない構成も可能である。
 吸引ポンプ147bは、吸引ノズル147aによって、吸引したパーティクル等の異物を吸引して外部に排出する、または、タンク等に貯留しておくことができる。
 なお、吸引部147は、吸引ノズル147aによって、吸引したパーティクル等の異物を吸引するために、ガスを噴出する噴出ノズルを有することもできる。
 基材Fは、例えば、所定幅に裁断された長尺のフィルムである。基材Fは、銅、アルミニウム、ニッケル、ステンレス等の金属で構成される。基材の材料は金属に限られない。基材Fの材料として、OPP(延伸ポリプロピレン)フィルム、PET(ポリエチレンテレフタレート)フィルム、PPS(ポリフェニレンサルファイド)フィルム、PI(ポリイミド)フィルム等の樹脂フィルムが用いられてもよい。基材Fの厚さは、特に限定されず、例えば数μm~数十μmである。また、基材Fの幅や長さについても特に制限はなく、用途に応じて適宜決定可能である。
 再成膜部13は、異物除去部14よりも基材Fの移動方向に対して下流となる位置に設けられる。
 再成膜部13の蒸着源(成膜源供給部)131は、リチウム金属を蒸発させるリチウム蒸発源であり、例えば、抵抗加熱式蒸発源、誘導加熱式蒸発源、電子ビーム加熱式蒸発源等で構成される。
 再成膜部13には、成膜ガスを供給するガス供給部132が接続される。ガス供給部132は、プラズマ発生部を構成する。ガス供給部132は、窒素を含む成膜ガスを成膜領域の近傍の領域に供給可能とされる。
 再成膜部13は、図示しない排気ラインによって、所定の減圧雰囲気に維持されると共に、再成膜部13内のガス圧が所定の圧力に調整される。
 再成膜部13には、図1に示すように、蒸着源(成膜源)131と第2メインローラ114との間に、成膜領域を規定する成膜領域規定部として、開口133aを有するシールド(遮蔽部)133が設けられる。
 シールド133は、板状の導体とされ、その電位は例えばグランド(接地状態)とされる。シールド133は、第2メインローラ114に巻回された基材Fに対して、略平行となるように配置される。
 また、第2メインローラ114の内部位置、つまり、基材Fの裏面(他面)側となる位置には、マグネット135が配置される。
 マグネット135は、第2メインローラ114の外方に向けて磁束を形成するように配置される。マグネット135は、開口133aの付近の領域に向けて磁束を形成するように配置される。
 また、第2メインローラ114には、プラズマ発生電源134が接続されてプラズマ発生電力が供給可能とされる。プラズマ発生電源134は、交流電源または直流電源とされる。プラズマ発生電源134は、プラズマ発生部を構成する。
 成膜装置10は、以上のような構成を有する。
 なお図示せずとも、成膜装置10は、ローラ141,146、吸引部142,147、蒸着源121,131や搬送部11、真空ポンプ、ガス供給部122,132、プラズマ発生電源124,134、マグネット125,135等を制御する制御部を備える。上記制御部は、CPUやメモリを含むコンピュータで構成され、成膜装置10の全体の動作を制御する。
 また、成膜装置10は、図に示す構成に限定されるものではない。成膜装置10の構成は、例えば、成膜部12、再成膜部13、ローラ141,146、吸引部142,147、蒸着源121,131や搬送部11、真空ポンプ、ガス供給部122,132、プラズマ発生電源124,134、マグネット125,135等の配置や大きさ等、および、蒸着源、供給するガス種、供給電位、などは適宜変更することが可能である。あるいは、成膜装置10の上記構成要素のうちいずれかの構成を設けないことも可能である。
 本実施形態の成膜装置10における成膜方法について説明する。
 なお、以下の成膜方法としては、基材F上に、窒素およびリチウムを含有する電解質膜FLを形成する方法について説明する。特に、LiPONからなる電解質膜FLを形成する方法について説明する。
 LiPONは、イオン伝導性を有すると同時に電子に対する非伝導性を有することに基づき、バッテリや二次電池用の固体電解質として適している。このために使用される典型的な層系では、数μm程度の層厚さを有するLiPON層を成膜可能とする。
 電子ビーム被覆法を用いたLiPON層の析出も可能である。この場合、リン酸リチウム(LiPO)が、直接に蒸発材料に作用する電子ビームによって、窒素含有の反応性ガス雰囲気内で蒸発させられる。
 少なくとも元素リチウム、リンおよび酸素を包含する蒸発材料を、真空チャンバ内部で熱的な蒸発装置によって蒸発させることにより、基板上にLiPON層を析出する。
 このとき、蒸発材料を直接に電子ビームによって蒸発させる。同時に、窒素含有の成分、好ましくは窒素含有の反応性ガスが真空チャンバ内へ導入され、そして立ち上がる蒸気粒子雲がプラズマによって貫通される。
 窒素含有の反応性ガスとしては、たとえばアンモニア(NH)、笑気(NO)または窒素(N)のようなガスが適している。窒素含有の反応性ガスの導入に対して、たとえば窒素含有のプレカーサ(前駆体)を真空チャンバ内へ導入することもできる。
 出発材料(原料)の蒸発は、有利には放射線ヒータを用いて間接的に加熱してもよい。
 この場合、通電または誘導加熱されたボート型蒸発器(ルツボ)内部で蒸発材料が直接的に加熱される。
 プラズマの発生は、ホロー陰極アーク放電によって実施されてもよい。これにより、高い密度のプラズマを発生させることができる。また、マイクロ波を用いた励起によってもプラズマの発生を実施することができる。さらに、誘導式の入力結合によってもプラズマを発生させることができる。
 さらに、磁界重畳されたグロー放電によってプラズマを発生させて、大きな延在面にわたって極めて均質なプラズマ伝播を可能にしてもよい。また、パルスプラズマを使用することで、析出プロセス安定性を向上できる。
 図2~図4は、本実施形態における成膜装置による製造工程を示す工程図である。
 まず、真空チャンバ内を排気し、成膜部12、再成膜部13、異物除去部14を所定の真空度に維持する。
 また、基材Fを支持する搬送部11を駆動させ、基材Fを巻出しローラ111から巻取りローラ112に向けて搬送させる。基材Fは、成膜部12および再成膜部13において、X方向に沿って搬送(移動)される。
 なお、基材Fには、あらかじめ、正極あるいは集電体などが所定の領域に形成されている。
 成膜部12には、搬送部11によって、電解質膜FL1の成膜されていない基材F0が、巻出しローラ111から第1メインローラ113に沿う方向に搬送される。
 成膜部12では、ガス供給部122から第1メインローラ113付近の領域に向けて、窒素を含有するガスが成膜領域の近傍の領域に導入される。
 また、成膜部12では、接続されたプラズマ発生電源124から、第1メインローラ113にプラズマ発生電力が供給される。同時に、成膜部12では、接続された磁界発生電源から供給された電力によって、マグネット125が磁束を発生する。
 これにより、プラズマ発生領域にプラズマが発生する。
 成膜部12では、蒸着源121が、例えば電子ビーム等によって加熱されてリチウムを含む原料を蒸発させ、第1メインローラ113上の基材Fに向けて出射するリチウムを含む原料の蒸気流を形成する。
 このとき、リチウム原料の蒸気流は、シールド123の開口部123aによって、基材Fへの到達領域を規制される。
 シールド123の開口部123a付近の領域において、プラズマ化された窒素ガスによって活性化されたリチウムを含む蒸着粒子は、窒素を含有した電解質膜FL1として基材F0の表面に成膜されて基材F1となる。
 このとき、成膜部12で成膜された電解質膜FL1には、図2に示すように、パーティクルFP等の異物が存在している。
 成膜部12で電解質膜FL1が成膜された基材F1は、搬送部11によって、異物除去部14へと搬送される。
 異物除去部14では、まず、ローラ141と基材F1とが当接する。これにより、基材F1の搬送方向と逆回転するローラ141が、基材F1に成膜された電解質膜FL1の表面に当接する。
 このとき、異物除去部14では、ローラ141と基材F1との当接状態(接触状態)を、異物除去部14による異物除去に好適な状態として設定する。具体的には、基材F1の搬送速度と、基材F1の搬送方向と逆回転するローラ141の回転速度とを、所定の範囲となるように設定する。
 すると、ローラ141の網目状の部分が電解質膜FL1に対して相対的に移動する。
 ローラ141は、パーティクルFP等の異物が電解質膜FL1表面から突出した部分を網目状あるいは棒状の部分に引っ掛けて、電解質膜FL1からパーティクルFP等の異物を分離する。
 また、ローラ141の網目状または棒状の部分が、電解質膜FL1表面に好適な圧力で当接している。
 ローラ141は、網目状あるいは棒状となった部分が、パーティクルFP等の異物における電解質膜FL1表面よりも凹んだ部分を押圧して、電解質膜FL1から異物を分離する。
 さらに、ローラ141は、網目状あるいは棒状となった部分が、電解質膜FL1表面よりも埋め込まれたパーティクルFP等の異物を押圧して、パーティクルFP等の異物の表面を覆う薄い電解質とともに、基材F1に付着している電解質膜FL1からパーティクルFP等の異物を分離する。
 次いで、異物除去部14においては、ローラ141によって電解質膜FL1からパーティクルFP等の異物を分離された基材F2が、搬送部11によって、ローラ146へと搬送される。
 異物除去部14では、ローラ146と基材F2とが当接する。これにより、基材F2の搬送方向と逆回転するローラ146が、基材F2に成膜された電解質膜FL1の表面に当接する。
 このとき、異物除去部14では、ローラ146と基材F2との当接状態(接触状態)を、異物除去部14による異物除去に好適な状態として設定する。具体的には、基材F2の搬送速度と、基材F2の搬送方向と逆回転するローラ146の回転速度とを、所定の範囲となるように設定する。
 すると、ローラ146の網目状の部分が電解質膜FL1に対して相対的に移動する。
 ローラ146は、パーティクルFP等の異物が電解質膜FL1表面から突出した部分を網目状あるいは棒状の部分に引っ掛けて、電解質膜FL1からパーティクルFP等の異物を分離する。
 また、ローラ146の網目状または棒状の部分が、電解質膜FL1表面に好適な圧力で当接している。
 ローラ146は、網目状あるいは棒状となった部分が、パーティクルFP等の異物における電解質膜FL1表面よりも凹んだ部分を押圧して、電解質膜FL1から異物を分離する。
 さらに、ローラ146は、網目状あるいは棒状となった部分が、電解質膜FL1表面よりも埋め込まれたパーティクルFP等の異物を押圧して、パーティクルFP等の異物の表面を覆う薄い電解質とともに、基材F1に付着している電解質膜FL1からパーティクルFP等の異物を分離する。
 これにより、基材F3は、図3に示すように、ローラ141によって電解質膜FL1からパーティクルFP等の異物が分離される。
 次いで、異物除去部14のローラ146によって電解質膜FL1からパーティクルFP等の異物を分離された基材F3が、搬送部11によって、再成膜部13へと搬送される。
 再成膜部13では、ガス供給部132から第2メインローラ114付近の領域に向けて、窒素を含有するガスが成膜領域の近傍の領域に導入される。
 また、再成膜部13では、接続されたプラズマ発生電源134から、第2メインローラ114にプラズマ発生電力が供給される。同時に、再成膜部13では、接続された磁界発生電源から供給された電力によって、マグネット135が磁束を発生する。
 これにより、プラズマ発生領域にプラズマが発生する。
 再成膜部13では、蒸着源131が、例えば電子ビーム等によって加熱されてリチウムを含む原料を蒸発させ、第2メインローラ114上の基材Fに向けて出射するリチウムを含む原料の蒸気流を形成する。
 このとき、リチウムを含む原料の蒸気流は、シールド133の開口133aによって、基材F3への到達領域を規制される。
 シールド133の開口133a付近の領域において、プラズマ化された窒素ガスによって活性化されたリチウムを含む蒸着粒子は、窒素を含有した電解質膜として基材F3の表面に成膜される。
 これにより、電解質膜FL1に積層して、電解質膜FL2が成膜された基材F4となる。
 このとき、再成膜部13で基材F4に成膜された電解質膜FL2には、図4に示すように、パーティクルFP等の異物が存在している。しかし、電解質膜FL1には、図4に示すように、パーティクルFP等の異物が存在していない。
 なお、図4では、電解質膜FL1に、パーティクルFP等の異物が除去された状態を明示しているが、実際にはこの除去部分にも、再成膜部13によって成膜された電解質膜FL2が入り込み、除去部分に電解質膜が充填された状態となっている。ここで、電解質膜FL2は、電解質膜FL1と同等の組成を有することで、電解質膜FL1と電解質膜FL2とは、ほぼ、単層膜としてみなすことができる。
 再成膜部13で電解質膜が成膜された基材F4は、搬送部11によって、巻取りローラ112へと搬送される。
 これにより、成膜装置10における成膜を終了する。
 本実施形態における成膜装置10は、異物除去部14によって、電解質膜FL1の成膜時に存在したパーティクルFP等の異物を除去することができる。これにより、電解質膜FL1において、パーティクルFP等の異物によって膜厚方向に導通することを防止できる。これにより、電解質膜FL1における絶縁性を担保することができる。
 さらに、異物除去部14によってパーティクルFP等の異物が除去された電解質膜FL1に、さらに電解質膜FL2を積層して再成膜することで、電解質膜FL1および電解質膜FL2において、パーティクルFP等の異物によって膜厚方向に導通することを防止できる。
 さらに、電解質膜FL1にパーティクルFP等の異物が残存していた場合でも、電解質膜FL1のパーティクルFP等の異物と、積層された電解質膜FL2のパーティクルFP等の異物とが、互いに接触することがない。これにより、単一層となる電解質膜FLにおいて、パーティクルFP等の異物によって膜厚方向に導通することを防止できる。
 これにより、基材Fの成膜領域に付着しているパーティクルFP等の異物がある場合でも、成膜後にパーティクルFP等の異物を除去することができる。したがって、パーティクルFP等の異物によって膜厚方向に電解質膜FLが導通されることがない。このため、パーティクルFP等の異物によって膜厚方向に電解質膜FLの絶縁が破れることを防止することができる。絶縁性が所定の状態である電解質膜FLを製造可能とすることができる。
 本実施形態においては、異物除去部14が、ローラ141およびローラ146の二本を有する構成としたが、本発明は、これに限定されない。例えば、異物除去部14が、ローラ141一本のみ、あるいは、三本以上のローラを有することもできる。
 本実施形態においては、異物除去部14における異物除去処理後に、再成膜部13によって、再成膜しているが、本発明は、これに限定されない。例えば、異物除去部14における異物除去処理後に、再成膜しないこともできる。
 さらに、再成膜部13における再成膜後に、再成膜部13よりも下流位置において異物除去処理をおこなうこともできる。
 本実施形態においては、異物除去部14における異物除去処理を挟んで、成膜部12および再成膜部13によって、電解質膜FLを二回に分けて成膜したが、本発明は、これに限定されない。例えば、三回以上となる複数回の成膜をおこなうことも可能である。
 この場合、全ての成膜後に毎回異物除去処理をおこなうことができ、複数の成膜部に対して、複数の成膜部と同数の異物除去部を配置することもできる。さらに、この場合、全ての成膜後に毎回異物除去処理をおこなう必要はなく、複数の成膜部に対して、複数の成膜部の数よりも少ない異物除去部を配置することもできる。
 以下、本発明に係る成膜装置の第2実施形態を、図面に基づいて説明する。
 図5は、本実施形態の成膜装置における異物除去部を示す模式拡大図である。本実施形態において、上述した第1実施形態と異なるのは、異物除去部に関する点であり、これ以外の上述した第1実施形態と対応する構成には同一の符号を付してその説明を省略する。
 本実施形態における異物除去部14は、接触部として不織布からなるローラ143を有する。
 具体的には、不織布として、クリーンルーム対応の品質とされたコットンリンターやポリエステル繊維などから形成された部材を挙げることができる。
 ここで、不織布からなるローラ143を用いる場合においても、第1実施形態のローラ141と同様に、電解質膜FL1の成膜時に存在したパーティクルFP等の異物を除去することができる。
 本実施形態においても、上記の実施形態と同等の効果を奏することができる。
 以下、本発明に係る成膜装置の第3実施形態を、図面に基づいて説明する。
 図6は、本実施形態の成膜装置における異物除去部を示す模式拡大図である。本実施形態において、上述した第1および第2実施形態と異なるのは、異物除去部に関する点であり、これ以外の上述した第1および第2実施形態と対応する構成には同一の符号を付してその説明を省略する。
 本実施形態における異物除去部14は、接触部としてのローラ144,145を有する。本実施形態においてのローラ144,145には、基材Fの逆側となる位置に、搬送ローラ116が設けられていない。また、ローラ144およびローラ145が、基材Fの搬送方向に対して、互いに極めて隣接して配置される。
 本実施形態においても、上記の実施形態と同等の効果を奏することができる。
 以下、本発明に係る成膜装置の第4実施形態を、図面に基づいて説明する。
 図7は、本実施形態の成膜装置における異物除去部を示す模式拡大図である。本実施形態において、上述した第1~第3実施形態と異なるのは、異物除去部に関する点であり、これ以外の上述した第1~第3実施形態と対応する構成には同一の符号を付してその説明を省略する。
 本実施形態における異物除去部14は、接触部としてのローラ148を有する。
 ローラ148は、その外周がブラシ状、あるいは、フィン状に形成される。
 フィン状とされたローラ148は、フィンがローラ148の軸線と略平行に形成されるか、あるいは、ローラ148の軸線と角度を有するように交差して形成されることができる。ブラシ状、あるいは、フィン状のローラ148は、可撓性を有する。
 本実施形態においても、上記の実施形態と同等の効果を奏することができる。
 さらに、本発明の異物除去部14においては、接触部として、ローラ状の円筒体(例えば、金属製ローラ、プラスチック製ローラ等)の表面にスポンジ部材やブラシ部材を全面に装着したスクラブローラを用いる構成を採用することもできる。あるいは、異物除去部14においては、円盤状の部材から構成され、電解質膜との接触面にブラシやスポンジが装着されたスクラブパッドを用い、このスクラブパッドを回転させながら、電解質膜表面に当接する構成を採用することもできる。
 接触部として、スクラブローラに装着可能なブラシ材料としては、特に制限はないが、例えば、化学繊維ブラシとしては、ナイロン6、66、610、612タイプ(例えば、東レデュポン社製タイネックス、アズロン社製、φ0.1~1.6)、グリットナイロン繊維(砥粒入りナイロン、例えば、東レ社製トレグリット、デュポン社製タイネックスA、旭化成社製サングリット、ORK社製グリットサンダー等、φ0.25~1.6)、ポリプロピレン繊維(φ0.1~1.5)、塩化ビニル繊維(φ0.1~0.7)、ポリエステル繊維(φ0.3~0.5)、アクリル樹脂繊維、アラミド繊維(商品名:コーネックス、φ0.15~0.55)、フッ素繊維、導電性繊維等を挙げることができる。
 接触部として採用する繊維としては、例えば、馬毛、豚毛、羊毛、鹿毛、人毛等が挙げられる。また、植物繊維としては、タンピコ(タンピコ麻の葉からとった繊維)、パーム(椰子の実の繊維)、シダ、シュロ、カルカヤ(メガルカヤの根からとった繊維、剛毛)、サイザル(麻からとった繊維)、ブロン(パルミラ椰子の葉からとった繊維)等が挙げられる。また必要に応じて繊維状の金属も用いることができ、例えば、硬鋼線(φ0.1~0.8)、焼入線(φ0.2~0.8)、金メッキ線(φ0.2~0.5)、ラッピング、針金線、鉄線、ステンレス線(φ0.05~0.8)、真鍮線(φ0.06~0.8)、燐青銅(φ0.06~0.6)等が挙げられる。
 接触部として、スクラブローラに装着可能なスポンジ材料としては、特に制限はないが、ゴムスポンジ・発泡体(例えば、クロロプレンゴムスポンジ、天然ゴムスポンジ、ポリエチレンスポンジ、エチレン・プロピレンゴムスポンジ、ニトリルゴムスポンジ、フッ素スポンジ、シリコーンスポンジ、オプシーラー(登録商標)、ルシーラ(登録商標)等)、ウレタンスポンジ(例えば、軟質ウレタンフォーム(エーテル系)、軟質ウレタンフォーム(エステル系)、硬質ウレタンフォーム、低反発ウレタンフォーム、エネタン(低反発ウレタンフォームに抗菌性付与)等)、ポリエチレンフォーム等を挙げることができる。ポリエチレンフォームとしては、例えば、サンペルカ、オプセル、スーパーオプセル(以上、三和化工社製、商品名)、ソフトロンボード、ソフトロンS(以上、積水化学工業社製、商品名)、トーレペフ(東レ社製、商品名)、ライトロンS、ライトロンボード(以上、積水化成品工業社製、商品名)、サンテックフォーム(旭化成株式会社製、商品名)、モルトフィルター(株式会社イノアックコーポレーション登録商標)等を挙げることができる。
 あるいは、接触部として用いられるその他の材料としては、EVAフォーム、生分解性ケナフフォーム(第一化学社製)、不織布・フェルト、発泡スチロール等、ベンコット(旭化成株式会社登録商標)、アンティコン(CONTEC社製、商品名)等を挙げることができる。
 本発明においては、上記の各実施形態における個々の構成を、それぞれ、組み合わせて採用することもできる。
 以下、本発明にかかる実施例を説明する。
 ここで、本発明における成膜装置の具体例として、成膜した電解質膜における絶縁状態の確認試験について説明する。
 上述した図1に示す成膜装置10により、LiPON膜(電解質膜)を形成し、その膜質として、絶縁性を測定した。
 成膜条件を、以下に示す。
基材F搬送スピード:0.5~5m/min
基材F:PET樹脂
成膜部12における成膜厚さ:1μm
再成膜部13における成膜厚さ:1μm
 また、異物除去部14におけるローラ141の諸元を示す。
 発泡樹脂材料:モルトフィルターMP-55(株式会社イノアックコーポレーション製)
 発泡樹脂材料:ポリエステル
 発泡樹脂材料密度:57±5kg/m
 発泡樹脂材料引張強さ:147kPa以上
 発泡樹脂材料引張伸び率:200%以上
 回転スピード:0.5~5m/min
<実験例1~3>
 上記のLiPON膜(電解質膜)において、2mm角、10mm角、30mm角の成膜領域を選択し、これを実験例1~3として、電極を形成して膜厚方向における絶縁性を測定した。
 ここで、複数の成膜領域において、5MΩ以上とされる規定の絶縁率を満たしたものを「適」とし、規定の絶縁率を満たさなかったものを「不適」として、測定対象の全数に対する「適」の個数をパーセンテージで表した。
 その結果を図8に示す。図8において、それぞれの結果は、2mm、10mm、30mmとして示している。
<比較例1~3>
 実験例1~3と同様に成膜するが、異物除去部14による異物除去処理をおこなわないでLiPON膜(電解質膜)において、2mm角、10mm角、30mm角の成膜領域を選択し、これを比較例1~3として、実験例1~3と同様に電極を形成して膜厚方向における絶縁性を測定した。
 その結果を図8に示す。
 図8に示す結果から、異物除去部14による異物除去処理をおこなうことで、規定の絶縁率を満たした「適」の個数が増加していることがわかる。なお、絶縁率を測定する面積が増大することで、「適」の条件を満たすパーセンテージは低下するが、異物除去部14による異物除去処理をおこなうことで、規定の絶縁率を満たした「適」の個数が増加していることがわかる。
<実験例4>
 実験例1~3と同様に成膜するが、異物除去部14におけるローラ141の発泡樹脂材料を変更した。
 発泡樹脂材料:モルトフィルターMP-65(株式会社イノアックコーポレーション社製)
 発泡樹脂材料:ポリエステル
 発泡樹脂材料密度:57±5kg/m
 発泡樹脂材料引張強さ:147kPa以上
 発泡樹脂材料引張伸び率:200%以上
<実験例5>
 実験例1~3と同様に成膜するが、異物除去部14におけるローラ141の発泡樹脂材料を変更した。
 発泡樹脂材料:モルトフィルターMP-80(株式会社イノアックコーポレーション社製)
 発泡樹脂材料:ポリエステル
 発泡樹脂材料密度:80±10kg/m
 発泡樹脂材料引張強さ:196kPa以上
 発泡樹脂材料引張伸び率:300%以上
<比較例4>
 実験例1~3と同様に成膜するが、異物除去部14におけるローラ141の発泡樹脂材料を変更した。
 発泡樹脂材料:モルトフィルターMP-50(株式会社イノアックコーポレーション社製)
 発泡樹脂材料:ポリエステル
 発泡樹脂材料密度:30±5kg/m
 発泡樹脂材料引張強さ:147kPa以上
 発泡樹脂材料引張伸び率:200%以上
<比較例5>
 実験例1~3と同様に成膜するが、異物除去部14におけるローラ141の発泡樹脂材料を変更した。
 発泡樹脂材料:モルトフィルターMP-40(株式会社イノアックコーポレーション社製)
 発泡樹脂材料:ポリエステル
 発泡樹脂材料密度:30±5kg/m
 発泡樹脂材料引張強さ:147kPa以上
 発泡樹脂材料引張伸び率:200%以上
<比較例6>
 実験例1~3と同様に成膜するが、異物除去部14におけるローラ141の発泡樹脂材料を変更した。
 発泡樹脂材料:モルトフィルターMP-30(株式会社イノアックコーポレーション社製)
 発泡樹脂材料:ポリエステル
 発泡樹脂材料密度:30±5kg/m
 発泡樹脂材料引張強さ:98kPa以上
 発泡樹脂材料引張伸び率:200%以上
 実験例4,5および比較例4~6においても、実験例1~3と同様にLiPON膜(電解質膜)において、2mm角、10mm角、30mm角の成膜領域を選択し、電極を形成して膜厚方向における絶縁性を測定した。
 この結果、実験例4,5においても、異物除去部14による異物除去処理をおこなうことで、規定の絶縁率を満たした「適」の個数が増加していることがわかった。
 これに対して、比較例4~6においては、異物除去部14による異物除去処理をおこなっても、規定の絶縁率を満たした「適」の個数が増加していないことがわかった。
 本発明の活用例として、電解質膜として、LiPONの成膜をおこなう装置や、さらに、絶縁膜として、SiO、SiNの成膜をおこなう装置を挙げることができる。
10…成膜装置
11…搬送部
12…成膜部
13…再成膜部
14…異物除去部
111…巻出しローラ
112…巻取りローラ
113…第1メインローラ
114…第2メインローラ
115,116…搬送ローラ
121,131…蒸着源(成膜源)
122,132…ガス供給部
123,133…シールド(遮蔽部)
123a,133a…開口部
124,134…プラズマ発生電源
125,135…マグネット
141,143,144,145,146,148…ローラ
142,147…吸引部
142a,147a…吸引ノズル
142b,147b…吸引ポンプ
F…基材(基板)
FL,FL1,FL2…電解質膜
FP…パーティクル

Claims (9)

  1.  基板を搬送する搬送部と、
     前記搬送部によって搬送される前記基板の成膜領域に電解質膜を成膜する成膜部と、
     前記成膜部での成膜後に前記搬送部によって搬送される前記基板の前記電解質膜に接触して前記成膜領域に含まれる異物を除去する異物除去部と、を備える、
     成膜装置。
  2.  前記異物除去部による異物除去後に前記搬送部によって搬送される前記基板の前記成膜領域に、電解質膜を再成膜する再成膜部を備える、
     請求項1に記載の成膜装置。
  3.  前記異物除去部が前記基板に対して相対的に移動した状態で前記電解質膜に接触する接触部を有する、
     請求項1又は請求項2に記載の成膜装置。
  4.  前記接触部が発泡樹脂材料からなる、
     請求項3に記載の成膜装置。
  5.  前記接触部が不織布からなる、
     請求項3に記載の成膜装置。
  6.  前記接触部が円筒状のローラとされる、
     請求項3から請求項5のいずれか一項に記載の成膜装置。
  7.  前記ローラが前記基板の搬送方向と交差する方向の軸線を有する、
     請求項6に記載の成膜装置。
  8.  前記ローラが前記基板の前記搬送方向と逆方向に回転される、
     請求項7に記載の成膜装置。
  9.  前記ローラと前記基板とは、前記接触部の接触点において互いに接触し、
     前記ローラの回転方向に沿って前記接触点から見た前記ローラの接線方向は、前記基板の前記搬送方向とは反対である、
     請求項7に記載の成膜装置。
PCT/JP2020/047942 2019-12-26 2020-12-22 成膜装置 WO2021132238A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080007670.XA CN113330136B (zh) 2019-12-26 2020-12-22 成膜装置
US17/602,219 US20220145441A1 (en) 2019-12-26 2020-12-22 Film formation apparatus
JP2021529726A JP7150991B2 (ja) 2019-12-26 2020-12-22 成膜装置
EP20894921.4A EP4083253A4 (en) 2019-12-26 2020-12-22 FILM-FORMING APPARATUS
KR1020217020060A KR102533324B1 (ko) 2019-12-26 2020-12-22 성막 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-236187 2019-12-26
JP2019236187 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021132238A1 true WO2021132238A1 (ja) 2021-07-01

Family

ID=76576055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047942 WO2021132238A1 (ja) 2019-12-26 2020-12-22 成膜装置

Country Status (7)

Country Link
US (1) US20220145441A1 (ja)
EP (1) EP4083253A4 (ja)
JP (1) JP7150991B2 (ja)
KR (1) KR102533324B1 (ja)
CN (1) CN113330136B (ja)
TW (1) TWI812911B (ja)
WO (1) WO2021132238A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242200A (ja) * 2009-04-09 2010-10-28 Toyota Motor Corp 薄膜部材の製造装置およびその製造方法
WO2014092041A1 (ja) * 2012-12-13 2014-06-19 コニカミノルタ株式会社 有機エレクトロルミネッセンスデバイスの製造方法
JP2015514864A (ja) 2012-02-27 2015-05-21 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. 基板にLiPON層を析出させる方法
JP2015102975A (ja) * 2013-11-22 2015-06-04 大日本印刷株式会社 フィルムセンサ、フィルムセンサの製造方法、タッチ位置検出機能付き表示装置、およびフィルムセンサを作製するための積層体
JP2016156061A (ja) * 2015-02-25 2016-09-01 東レフィルム加工株式会社 金属または金属酸化物積層プラスチックフィルムの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632406A (en) * 1970-01-20 1972-01-04 Norton Co Low-temperature vapor deposits of thick film coatings
JPS5856535A (ja) * 1981-09-30 1983-04-04 Fujitsu Ltd 発振回路
AU7951400A (en) * 1999-10-22 2001-04-30 Sanyo Electric Co., Ltd. Method for producing electrode for lithium secondary cell
JP2003066807A (ja) * 2001-08-27 2003-03-05 Fuji Xerox Co Ltd クリーニング部材、帯電装置、転写装置、画像形成装置
JP4561881B2 (ja) * 2008-06-13 2010-10-13 コニカミノルタビジネステクノロジーズ株式会社 転写ベルト用クリーニングローラ及び画像形成装置
AU2012343391B2 (en) * 2011-12-02 2016-11-17 Kao Corporation Cleaning tool
JP2014114467A (ja) * 2012-12-07 2014-06-26 Toray Ind Inc ガスバリア性フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242200A (ja) * 2009-04-09 2010-10-28 Toyota Motor Corp 薄膜部材の製造装置およびその製造方法
JP2015514864A (ja) 2012-02-27 2015-05-21 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. 基板にLiPON層を析出させる方法
WO2014092041A1 (ja) * 2012-12-13 2014-06-19 コニカミノルタ株式会社 有機エレクトロルミネッセンスデバイスの製造方法
JP2015102975A (ja) * 2013-11-22 2015-06-04 大日本印刷株式会社 フィルムセンサ、フィルムセンサの製造方法、タッチ位置検出機能付き表示装置、およびフィルムセンサを作製するための積層体
JP2016156061A (ja) * 2015-02-25 2016-09-01 東レフィルム加工株式会社 金属または金属酸化物積層プラスチックフィルムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083253A4

Also Published As

Publication number Publication date
US20220145441A1 (en) 2022-05-12
JP7150991B2 (ja) 2022-10-11
CN113330136B (zh) 2023-09-15
TW202130843A (zh) 2021-08-16
CN113330136A (zh) 2021-08-31
EP4083253A1 (en) 2022-11-02
KR102533324B1 (ko) 2023-05-17
JPWO2021132238A1 (ja) 2021-07-01
TWI812911B (zh) 2023-08-21
KR20210096199A (ko) 2021-08-04
EP4083253A4 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
JP6724967B2 (ja) プラズマを使った前処理装置を有した蒸着装置
US20170247789A1 (en) Virtual cathode deposition (vcd) for thin film manufacturing
JP6513221B2 (ja) 方法及びコーティング設備
WO2012124246A1 (ja) 薄膜の製造方法及び製造装置
WO2021132238A1 (ja) 成膜装置
JP2011512027A (ja) 真空中の保護用ライナー
CN114094111A (zh) 一种补锂集流体、补锂集流体的制备方法、负极及锂离子电池
JP2009024205A (ja) プラズマcvd装置
JP4601381B2 (ja) 圧力勾配型イオンプレーティング式成膜装置
JP7426003B2 (ja) 成膜装置及び成膜方法
JP5929835B2 (ja) 長尺樹脂フィルムの表面処理装置及び表面処理方法、並びに該表面処理装置を備えたロールツーロール成膜装置
JP7186234B2 (ja) 堆積装置、フレキシブル基板をコーティングする方法、及びコーティングを有するフレキシブル基板
JP2004197207A (ja) 薄膜形成装置
JP2006131929A (ja) 圧力勾配型イオンプレーティング式成膜装置および成膜方法
KR101486627B1 (ko) 나노 박막을 코팅한 대전방지 기능을 갖는 시이트 및 그 제조방법
US8652587B2 (en) Method and apparatus for forming film
JP2010140643A (ja) リチウムイオン二次電池用電極の製造方法
JP2006283135A (ja) 成膜装置及び成膜方法
JP3902250B2 (ja) 巻取式薄膜形成装置
JP5649510B2 (ja) プラズマ処理装置,成膜方法,dlc皮膜を有する金属板の製造方法,セパレータの製造方法
CN220627855U (zh) 一种锂电池复合铜箔结构
JPH10265946A (ja) 蒸着装置およびこれを用いた薄膜の製造方法
JP2012172260A (ja) 成膜装置
JP2023502640A (ja) スパッタ堆積
JPS6151336B2 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021529726

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217020060

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020894921

Country of ref document: EP

Effective date: 20220726