WO2021131890A1 - 組成物、膜、硬化膜、硬化膜の製造方法、電子部品 - Google Patents
組成物、膜、硬化膜、硬化膜の製造方法、電子部品 Download PDFInfo
- Publication number
- WO2021131890A1 WO2021131890A1 PCT/JP2020/046700 JP2020046700W WO2021131890A1 WO 2021131890 A1 WO2021131890 A1 WO 2021131890A1 JP 2020046700 W JP2020046700 W JP 2020046700W WO 2021131890 A1 WO2021131890 A1 WO 2021131890A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- composition
- mass
- preferable
- electromagnetic wave
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/006—Anti-reflective coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/32—Radiation-absorbing paints
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/45—Anti-settling agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
- H01F1/113—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/28—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/36—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
- H01F1/37—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0843—Cobalt
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0856—Iron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
Definitions
- the present invention relates to a composition, a film, a cured film, a method for producing a cured film, and an electronic component.
- Patent Document 1 discloses an electromagnetic wave absorbing material having a maximum point of electromagnetic wave absorbing amount in a frequency range exceeding 120 GHz.
- the present inventors prepared and examined a composition containing electromagnetic wave absorbing particles and a solvent in order to obtain a film capable of absorbing electromagnetic waves in a high frequency band of 1 GHz or more. As a result, the present inventors prepared and examined a composition containing electromagnetic wave absorbing particles and a solvent. Clarified that the viscosity is likely to change when stored for a long period of time. That is, it was clarified that there is room for further improving the dispersion stability of the composition.
- Another object of the present invention is to provide a composition containing electromagnetic wave absorbing particles and having excellent dispersion stability. Another object of the present invention is to provide a film formed by using the above composition, a cured film, and a method for producing the cured film. Another object of the present invention is to provide an electronic component including a cured film formed by using the above composition.
- [1] Contains electromagnetic wave absorbing particles, a dispersant, and a solvent.
- the particles include magnetoplumbite-type hexagonal ferrite particles represented by the following formula (1).
- A represents at least one metal element selected from the group consisting of Sr, Ba, Ca, and Pb, and x satisfies 1.5 ⁇ x ⁇ 8.0.
- dispersant has a molecular weight of 50,000 or less.
- dispersant is a resin having a graft chain.
- content of the particles is 60.0 to 95.0% by mass with respect to the total mass of the composition.
- content of the solvent is 10.0 to 30.0% by mass with respect to the total mass of the composition.
- the solvent has a boiling point of 110 to 170 ° C.
- composition according to [12], further comprising a photopolymerization initiator [14] A film formed from the composition according to any one of [1] to [13]. [15] A cured film formed by curing the composition according to any one of [11] to [13]. [16] A step of forming a composition layer on a substrate using the composition according to [13], and The step of exposing the composition layer in a pattern and A method for producing a cured film, comprising a step of developing the exposed composition layer using a developing solution. [17] An electronic component containing the cured film according to [15].
- the present invention it is possible to provide a composition containing electromagnetic wave absorbing particles and having excellent dispersion stability. Further, according to the present invention, it is possible to provide a film formed by using the above composition, a cured film, and a method for producing a cured film. Further, according to the present invention, it is possible to provide an electronic component including a cured film formed by using the above composition.
- the present invention will be described in detail.
- the description of the constituent elements described below may be based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
- the notation without substitution and non-substituent includes a group having a substituent as well as a group having no substituent.
- the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
- the "organic group” in the present specification means a group containing at least one carbon atom.
- the term “active light” or “radiation” refers to, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light: Extreme Ultraviolet), X-rays, and electron beams (EB). : Electron Beam) and the like.
- the term “light” means active light or radiation.
- the term “exposure” as used herein refers to not only exposure to the emission line spectrum of a mercury lamp, far ultraviolet rays typified by excimer lasers, extreme ultraviolet rays, X-rays, EUV light, etc., but also electron beams, and the term “exposure”. It also includes drawing with particle beams such as ion beams.
- (meth) acrylate represents acrylate and methacrylate
- (meth) acrylic represents acrylic and methacryl
- (meth) acryloyl represents acryloyl and methacryloyl.
- the weight average molecular weight (Mw) is a polystyrene-equivalent value obtained by a GPC (Gel Permeation Chromatography) method.
- the GPC method uses HLC-8020GPC (manufactured by Tosoh), TSKgel SuperHZM-H, TSKgel SuperHZ4000, TSKgel SuperHZ2000 (manufactured by Tosoh, 4.6 mm ID ⁇ 15 cm) as columns, and THF (tetrahydrofuran) as an eluent. Based on the method used.
- composition of the present invention contains electromagnetic wave absorbing particles, a dispersant, and a solvent, and absorbs electromagnetic waves in a frequency band of 1 GHz or more when a film is formed.
- the composition of the present invention is excellent in dispersion stability of electromagnetic wave absorbing particles due to the above structure. That is, the above composition is unlikely to change in viscosity even when stored for a long period of time.
- the electromagnetic wave absorbing particles are less likely to agglomerate between the electromagnetic wave absorbing particles and / or the electromagnetic wave absorbing particles and other components which may be optionally contained due to the presence of the dispersant, and the electromagnetic wave absorbing particles are the average It is presumed that the particle size exists with an average particle size close to the value of the primary particle size.
- the dispersant is a resin having a graft chain
- the above-mentioned aggregation can be further suppressed.
- the composition is less likely to change in viscosity even when stored for a long period of time.
- each component contained in the composition of the present invention will be described.
- composition of the present invention contains electromagnetic wave absorbing particles.
- the material constituting the electromagnetic wave absorbing particles preferably contains a metal element, and more preferably contains at least one metal element selected from the group consisting of Fe, Ni, and Co, and contains an Fe element. Is more preferable.
- the present form of the metal element in the electromagnetic wave absorbing particles is not particularly limited, and examples thereof include alloys, metal oxides, metal nitrides, and metal carbides. That is, for example, when the electromagnetic wave absorbing particles contain an Fe element as a metal element, the Fe element may be contained in the form of an alloy with another metal element, iron oxide, iron nitride, iron carbide, or the like. Good.
- the material constituting the electromagnetic wave absorbing particles may contain other elements other than Fe, Ni, and Co.
- the above other elements include Al, Si, S, Sc, Ti, V, Cu, Y, Mo, Rh, Pd, Ag, Sn, Sb, Te, Ba, Ta, W, Re, Au.
- Examples thereof include Bi, La, Ce, Pr, Nd, P, Zn, Sr, Zr, Mn, Cr, Nb, Pb, Ca, B, C, and N.
- electromagnetic wave absorbing particles magnetic particles are preferable.
- the materials constituting the electromagnetic wave absorbing particles include Fe—Co-based alloys (preferably permenzur), Fe—Ni-based alloys (for example, Permalloy), Fe—Zr-based alloys, and Fe—Mn-based alloys.
- Fe—Si based alloy Fe—Al based alloy, Ni—Mo based alloy (preferably Super Malloy), Fe—Ni—Co based alloy, Fe—Si—Cr based alloy, Fe—Si—B based alloy, Fe -Si-Al-based alloy (preferably sentust), Fe-Si-BC-based alloy, Fe-Si-B-Cr-based alloy, Fe-Si-B-Cr-C-based alloy, Fe-Co-Si -B-based alloys, Fe-Si-B-Nb-based alloys, Fe nanocrystal alloys, Fe-based amorphous alloys, Co-based amorphous alloys, spinel ferrites (preferably Ni-Zn-based ferrites or Mn-Zn-based ferrites) and Examples thereof include hexagonal ferrite (preferably barium ferrite, or magnetoplumbite-type hexagonal ferrite represented by the formula (F1) described later (hereinafter, also referred to as “electromagnetic wave
- the alloy may be amorphous. Among them, alloy particles containing an Fe element are preferable, Fe—Co alloys or hexagonal ferrites are more preferable, and Fe—Co alloys or electromagnetic wave absorbing particles (fe—Co alloys or electromagnetic wave absorbing particles) are preferable because the formed film has more excellent electromagnetic wave absorbing performance. F1) is more preferable. As the material constituting the electromagnetic wave absorbing particles, one type may be used alone, or two or more types may be used in combination.
- the particle size of the electromagnetic wave absorbing particles is not particularly limited, but when the electromagnetic wave absorbing particles are particles other than the electromagnetic wave absorbing particles (F1) described later, the electromagnetic wave absorbing performance of the formed film is more excellent.
- the average primary particle size is preferably 150 nm or less, more preferably 50 nm or less, and even more preferably 40 nm or less.
- the lower limit is not particularly limited, and is, for example, 1 nm or more, preferably 10 nm or more, and more preferably 20 nm or more.
- the particle size of the primary particles of the electromagnetic wave absorbing particles was obtained by photographing the electromagnetic wave absorbing particles with a transmission electron microscope at an imaging magnification of 100,000 times and printing them on a printing paper so as to have a total magnification of 500,000 times.
- a particle photograph the contour of a particle (primary particle) is traced with a digitizer, and the diameter of a circle having the same area as the traced region (circle area phase diameter) is calculated for measurement.
- the primary particles refer to independent particles without agglomeration.
- Photography using a transmission electron microscope shall be performed by a direct method using a transmission electron microscope at an acceleration voltage of 300 kV. Observation and measurement with a transmission electron microscope can be performed using, for example, a transmission electron microscope H-9000 manufactured by Hitachi and an image analysis software KS-400 manufactured by Carl Zeiss.
- plate-like means a shape having two opposing plate surfaces.
- the shape that distinguishes between the major axis and the minor axis is the "elliptical shape".
- the major axis is determined as the axis (straight line) that can take the longest particle length.
- the minor axis is determined as the axis having the longest length when the particle length is taken by a straight line orthogonal to the major axis.
- a shape in which the long axis and the short axis cannot be specified from the shape is called an indeterminate form.
- the imaging using the transmission electron microscope for specifying the particle shape described above is performed without orienting the particles to be imaged.
- the shape of the electromagnetic wave absorbing particles may be plate-shaped, elliptical, spherical, or amorphous.
- the catalog value is adopted when a commercially available product is used. If there is no catalog value, the particle photograph taken as described above is used and the arithmetic mean of the values obtained for 500 randomly selected particles is used.
- composition of the present invention a plurality of particles having different average primary particle diameters may be used as the electromagnetic wave absorbing particles in combination.
- the number average particle size D50 is preferably 2 to 100 ⁇ m in that the electromagnetic wave absorbing performance of the formed film is more excellent.
- the number average particle size D50 is intended to be a particle size corresponding to a cumulative total of 50% by number from the smallest particle size in the number-based particle size distribution.
- the number average particle size D50 can be measured using, for example, a particle size distribution meter.
- a laser diffraction / scattering type particle size distribution measuring device LA-960 (model number) manufactured by HORIBA, Ltd. can be used. However, the measuring device is not limited to this.
- the electromagnetic wave absorbing particles (F1) are as follows. AFe (12-x) Al x O 19 ... Equation (F1)
- A represents at least one metal element selected from the group consisting of Sr, Ba, Ca, and Pb, and x satisfies 1.5 ⁇ x ⁇ 8.0.
- the type and number of the metal elements are not particularly limited as long as the A is at least one metal element selected from the group consisting of Sr, Ba, Ca, and Pb.
- the A at least one metal element selected from the group consisting of Sr, Ba, and Ca is preferable because it is more excellent in operability and handleability.
- x preferably satisfies 1.5 ⁇ x ⁇ 8.0, preferably 1.5 ⁇ x ⁇ 6.0, and more preferably 2.0 ⁇ x ⁇ 6.0. preferable.
- the electromagnetic wave absorbing particles (F1) can absorb electromagnetic waves in a frequency band higher than 60 GHz.
- the electromagnetic wave absorbing particles (F1) have magnetism.
- electromagnetic wave absorbing particles (F1) include SrFe (9.58) Al (2.42) O 19 , SrFe (9.37) Al (2.63) O 19 , SrFe (9.27) Al ( 2.73) O 19 , SrFe (9.85) Al (2.15) O 19 , SrFe (10.00) Al (2.00) O 19 , SrFe (9.74) Al (2.26) O 19 , SrFe (10.44) Al (1.56) O 19 , SrFe (9.79) Al (2.21) O 19 , SrFe (9.33) Al (2.67) O 19 , SrFe (9.33) Al (2.67) O 19 , SrFe (9.33) Al (2.67) O 19 , SrFe (9.33) Al (2.67) O 19 , SrFe (7.04) Al (4.96) O 19 , SrFe (7.37) Al (4.63) O 19 , SrFe (6.25) Al ( 5.75) O 19 , SrFe (7.71)
- the composition of the electromagnetic wave absorbing particles (F1) can be confirmed by high frequency inductively coupled plasma (ICP) emission spectroscopic analysis.
- ICP high frequency inductively coupled plasma
- a pressure-resistant container containing 12 mg of sample particles and 10 mL of a hydrochloric acid aqueous solution of 4 mol / L (liter; the same applies hereinafter) is held in an oven at a set temperature of 120 ° C. for 12 hours to obtain a solution.
- 30 mL of pure water is added to the obtained solution, and the mixture is filtered using a 0.1 ⁇ m membrane filter. Elemental analysis of the filtrate thus obtained is performed using a radio frequency inductively coupled plasma (ICP) emission spectroscopic analyzer.
- ICP radio frequency inductively coupled plasma
- the content of each metal atom with respect to 100 atomic% of iron atoms is determined.
- the composition is confirmed based on the obtained content.
- the measuring device include a high frequency inductively coupled plasma (ICP) emission spectroscopic analyzer (model number: ICPS-8100) manufactured by Shimadzu Corporation.
- the electromagnetic wave absorbing particles (F1) are preferably magnetoplumbite-type hexagonal ferrite having a single-phase crystal phase.
- the crystal phase is monophasic
- XRD powder X-ray diffraction
- a diffraction pattern showing a crystal structure of a magnetoplumbite-type hexagonal ferrite having an arbitrary composition is used. This refers to the case where only one type is observed.
- a plurality of magnetoplumbite-type hexagonal ferrites having an arbitrary composition are mixed, and two or more types of diffraction patterns are not observed, and diffraction patterns of crystals other than magnetoplumbite-type hexagonal ferrites are not observed.
- a database of the International Center for Diffraction Data ICDD
- the diffraction pattern of a magnetoplumbite-type hexagonal ferrite containing Sr can be referred to at "00-033-1340" of the International Center for Diffraction Data (ICDD).
- ICDD International Center for Diffraction Data
- confirmation that the crystal phase of the magnetoplumbite-type hexagonal ferrite is a single phase can be performed, for example, by the X-ray diffraction (XRD) method.
- XRD X-ray diffraction
- a method of measuring under the following conditions using a powder X-ray diffractometer can be mentioned.
- the measuring device for example, an X'Pert Pro diffractometer manufactured by PANalytical Co., Ltd. can be preferably used.
- the measuring device is not limited to this.
- the electromagnetic wave absorbing particles (F1) can be produced by referring to the description in International Publication No. 2019/131675.
- the shape of the electromagnetic wave absorbing particles (F1) is not particularly limited, and examples thereof include a plate shape and an irregular shape.
- the electromagnetic wave absorbing particles may be used alone or in combination of two or more.
- the content of the electromagnetic wave absorbing particles in the composition is preferably 50.0 to 95.0% by mass with respect to the total solid content of the composition. 65.0 to 90.0% by mass is more preferable, and 70.0 to 90.0% by mass is further preferable.
- total solid content of a composition means all components except a solvent, and a liquid component is also regarded as a solid content.
- the content of the electromagnetic wave absorbing particles in the composition (when a plurality of types of electromagnetic wave absorbing particles are contained, the total content) is preferably 10.0 to 99.0% by mass with respect to the total mass of the composition. , 60.0 to 95.0% by mass, more preferably 60.0 to 80.0% by mass.
- the composition of the present invention contains a dispersant.
- the content of the dispersant in the composition is not particularly limited, but is preferably 1.0 to 10.0% by mass, more preferably 1.0 to 8.0% by mass, based on the total mass of the composition. More preferably, it is 1.0 to 5.0% by mass.
- the dispersant may be used alone or in combination of two or more. When two or more kinds of dispersants are used in combination, the total content is preferably within the above range.
- the mass ratio of the content of the dispersant to the content of the electromagnetic wave absorbing particles in the composition is preferably 0.010 to 1.5. 010 to 1.0 is more preferable, and 0.020 to 0.065 is even more preferable.
- the dispersant is not particularly limited as long as it can disperse the above-mentioned electromagnetic wave absorbing particles.
- a resin having a graft chain hereinafter, also referred to as “specific dispersion resin”
- a coagulation dispersant a resin having a graft chain
- a coagulation control agent a resin having a graft chain
- a resin having a graft chain is particularly preferable in that the electromagnetic wave absorption performance of the formed film is more excellent.
- the molecular weight of the dispersant (weight average molecular weight when having a molecular weight distribution) is not particularly limited, but the upper limit is, for example, preferably 300,000 or less, more preferably 200,000 or less, and further 100,000 or less. It is preferable, and 50,000 or less is particularly preferable. Further, as the lower limit value, for example, 3,000 or more is preferable, 4,000 or more is more preferable, 5,000 or more is further preferable, and 6,000 or more is particularly preferable.
- the molecular weight of the dispersant (weight average molecular weight when having a molecular weight distribution) is preferably 5,000 to 50,000.
- the specific dispersion resin is a resin containing a graft chain, and is preferably a resin containing a repeating unit containing a graft chain.
- the longer the graft chain the higher the steric repulsion effect and the better the dispersion stability of the electromagnetic wave absorbing particles.
- the graft chain preferably has an atomic number of 40 to 10000 excluding hydrogen atoms, more preferably 50 to 2000 atoms excluding hydrogen atoms, and an atomic number excluding hydrogen atoms. It is more preferably 60 to 500.
- the graft chain indicates from the root of the main chain (atom bonded to the main chain in a group branched from the main chain) to the end of the group branched from the main chain.
- the graft chain preferably contains a polymer structure, and examples of such a polymer structure include a poly (meth) acrylate structure (for example, a poly (meth) acrylic structure), a polyester structure, a polyurethane structure, and a polyurea. Examples thereof include a structure, a polyamide structure, and a polyether structure.
- the graft chain is selected from the group consisting of polyester structure, polyether structure, and poly (meth) acrylate structure. A graft chain containing at least one of these is preferable, and a graft chain containing at least one of a polyester structure and a polyether structure is more preferable.
- the macromonomer containing such a graft chain (a monomer having a polymer structure and binding to the main chain to form a graft chain) is not particularly limited, but a macromonomer containing a reactive double bond group is preferable. Can be used for.
- macromonomers that correspond to the repeating unit containing the above-mentioned graft chain and are preferably used for the synthesis of the specific dispersion resin include AA-6, AA-10, AB-6, AS-6, AN-6, and AW-. 6, AA-714, AY-707, AY-714, AK-5, AK-30, AK-32 (all trade names, manufactured by Toa Synthetic Co., Ltd.), and Brenmer PP-100, Brenmer PP-500, Brenmer.
- Examples thereof include PP-800, Blemmer PP-1000, Blemmer 55-PET-800, Blemmer PME-4000, Blemmer PSE-400, Blemmer PSE-1300, and Blemmer 43 PAPE-600B (all trade names, manufactured by Nichiyu Co., Ltd.). .. Of these, AA-6, AA-10, AB-6, AS-6, AN-6, or Blemmer PME-4000 are preferable.
- the specific dispersion resin preferably contains at least one structure selected from the group consisting of methyl polyacrylate, polymethyl methacrylate, and cyclic or chain polyester, and methyl polyacrylate and polymethyl methacrylate. , And at least one structure selected from the group consisting of chain polyester, more preferably than the group consisting of methyl polyacrylate structure, polymethyl methacrylate structure, polycaprolactone structure, and polyvalerolactone structure. It is further preferred to include at least one selected structure.
- the specific dispersion resin may contain one of the above structures alone, or may contain a plurality of these structures.
- the polycaprolactone structure refers to a structure containing a ring-opened structure of ⁇ -caprolactone as a repeating unit.
- the polyvalerolactone structure refers to a structure containing a ring-opened structure of ⁇ -valerolactone as a repeating unit.
- the above-mentioned polycaprolactone structure can be introduced into the specific dispersion resin.
- the specific dispersion resin contains a repeating unit in which j and k in the formula (1) and the formula (2) described later are 4
- the above-mentioned polyvalerolactone structure can be introduced into the specific dispersion resin.
- the specific dispersion resin contains a repeating unit in which X 5 in the formula (4) described later is a hydrogen atom and R 4 is a methyl group
- the above-mentioned methyl polyacrylate structure can be introduced into the specific dispersion resin. ..
- the specific dispersion resin contains a repeating unit in which X 5 in the formula (4) described later is a methyl group and R 4 is a methyl group
- the above-mentioned polymethyl methacrylate structure can be introduced into the specific dispersion resin. ..
- the specific dispersion resin preferably contains a repeating unit represented by any of the following formulas (1) to (4) as a repeating unit containing a graft chain, and the following formula (1A), the following formula (2A), It is more preferable to include a repeating unit represented by any of the following formula (3A), the following formula (3B), and the following formula (4).
- W 1 , W 2 , W 3 , and W 4 independently represent an oxygen atom or NH, respectively.
- W 1 , W 2 , W 3 and W 4 are preferably oxygen atoms.
- X 1 , X 2 , X 3 , X 4 , and X 5 each independently represent a hydrogen atom or a monovalent organic group.
- X 1 , X 2 , X 3 , X 4 , and X 5 are preferably hydrogen atoms or alkyl groups having 1 to 12 carbon atoms (carbon atoms), respectively, from the viewpoint of synthetic restrictions. Independently, a hydrogen atom or a methyl group is more preferred, and a methyl group is even more preferred.
- Y 1 , Y 2 , Y 3 and Y 4 each independently represent a divalent linking group, and the linking group is not particularly structurally restricted.
- Specific examples of the divalent linking group represented by Y 1 , Y 2 , Y 3 , and Y 4 include the following linking groups (Y-1) to (Y-21).
- a and B mean the binding sites with the left-terminal group and the right-terminal group in the formulas (1) to (4), respectively.
- (Y-2) or (Y-13) is more preferable because of the ease of synthesis.
- Z 1 , Z 2 , Z 3 , and Z 4 each independently represent a monovalent organic group.
- the structure of the organic group is not particularly limited, but specifically, an alkyl group, a hydroxyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, a heteroarylthioether group, an amino group and the like. Can be mentioned.
- the organic group represented by Z 1 , Z 2 , Z 3 , and Z 4 a group having a steric repulsion effect is preferable from the viewpoint of improving dispersion stability, and each of them has 5 to 5 carbon atoms independently.
- a 24 alkyl group or an alkoxy group is more preferable, and among them, a branched alkyl group having 5 to 24 carbon atoms, a cyclic alkyl group having 5 to 24 carbon atoms, or an alkoxy group having 5 to 24 carbon atoms are further preferable.
- the alkyl group contained in the alkoxy group may be linear, branched or cyclic.
- n, m, p, and q are each independently an integer of 1 to 500.
- j and k independently represent integers of 2 to 8, respectively.
- J and k in the formulas (1) and (2) are preferably integers of 4 to 6 and more preferably 5 in that the dispersion stability of the electromagnetic wave absorbing particles in the composition is more excellent.
- n and m are preferably an integer of 10 or more, and more preferably an integer of 20 or more.
- the sum of the number of repetitions of the polycaprolactone structure and the number of repetitions of the polyvalerolactone is preferably an integer of 10 or more, and an integer of 20 or more. Is more preferable.
- R 3 represents a branched chain or linear alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, and more preferably an alkylene group having 2 or 3 carbon atoms. when p is 2 ⁇ 500, R 3 existing in plural numbers may be different from one another the same.
- R 4 represents a hydrogen atom or a monovalent organic group, and the structure of the monovalent organic group is not particularly limited. The R 4, a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom or an alkyl group.
- the alkyl group is preferably a linear alkyl group having 1 to 20 carbon atoms, a branched chain alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl group having 5 to 20 carbon atoms.
- a linear alkyl group having 1 to 20 carbon atoms is more preferable, and a linear alkyl group having 1 to 6 carbon atoms is further preferable.
- q is 2 to 500
- a plurality of X 5 and R 4 existing in the graft chain may be the same or different from each other.
- the specific dispersion resin may contain a repeating unit containing a graft chain having two or more different structures. That is, the molecule of the specific dispersion resin may contain repeating units represented by the formulas (1) to (4) having different structures from each other, and n, m, p in the formulas (1) to (4).
- the equations (1) and (2) may contain structures different from each other in the side chain, and the equations (3) and (4) may be included.
- R 3 , R 4 , and X 5 existing in a plurality of molecules may be the same or different from each other.
- the repeating unit represented by the formula (1) is more preferably the repeating unit represented by the following formula (1A) in that the dispersion stability of the electromagnetic wave absorbing particles in the composition is more excellent.
- the repeating unit represented by the formula (2) the repeating unit represented by the following formula (2A) is more preferable in that the dispersion stability of the electromagnetic wave absorbing particles in the composition is more excellent.
- X 1, Y 1, Z 1, and n is, X 1, Y 1, Z 1 in Formula (1), and have the same meanings as n, preferred ranges are also the same.
- the repeating unit represented by the formula (3) is a repeating unit represented by the following formula (3A) or formula (3B) in that the dispersion stability of the electromagnetic wave absorbing particles in the composition is more excellent. Is more preferable.
- X 3, Y 3, Z 3, and p is, X 3, Y 3, Z 3 in Formula (3), and has the same meaning as p, preferred ranges are also the same ..
- the specific dispersion resin more preferably contains a repeating unit represented by the formula (1A) as a repeating unit containing a graft chain in that the dispersion stability of the electromagnetic wave absorbing particles in the composition is more excellent.
- the specific dispersion resin contains a repeating unit containing a polyalkyleneimine structure and a polyester structure.
- the repeating unit including the polyalkyleneimine structure and the polyester structure preferably contains the polyalkyleneimine structure in the main chain and the polyester structure as the graft chain.
- the polyalkyleneimine structure is a polymerization structure containing two or more identical or different alkyleneimine chains.
- Specific examples of the alkyleneimine chain include an alkyleneimine chain represented by the following formula (4A) and the following formula (4B).
- RX1 and RX2 each independently represent a hydrogen atom or an alkyl group.
- a 1 represents an integer of 2 or more.
- * 1 represents a bond position with a polyester chain, an adjacent alkyleneimine chain, or a hydrogen atom or a substituent.
- RX3 and RX4 each independently represent a hydrogen atom or an alkyl group.
- a 2 represents an integer of 2 or more.
- the polyester chain having an anionic group and the N + specified in the formula (4B) and the anionic group contained in the polyester chain form a salt-crosslinked group. To combine.
- R X1 and R X2, and R X3 and R X4 in the formula (4B) in the formula (4A) each independently represent a hydrogen atom or an alkyl group.
- the alkyl group preferably has 1 to 6 carbon atoms, and preferably 1 to 3 carbon atoms.
- both RX1 and RX2 are hydrogen atoms.
- both RX3 and RX4 are hydrogen atoms.
- the a 1 in the formula (4A) and the a 2 in the formula (4B) are not particularly limited as long as they are integers of 2 or more.
- the upper limit is preferably 10 or less, more preferably 6 or less, further preferably 4 or less, further preferably 2 or 3, and particularly preferably 2.
- * represents a bond position with an adjacent alkyleneimine chain or a hydrogen atom or a substituent.
- substituent include a substituent such as an alkyl group (for example, an alkyl group having 1 to 6 carbon atoms).
- a polyester chain may be bonded as a substituent.
- the alkyleneimine chain represented by the formula (4A) is preferably connected to the polyester chain at the position * 1 described above. Specifically, it is preferable that the carbonyl carbon in the polyester chain is bonded at the above-mentioned * 1 position.
- Examples of the polyester chain include a polyester chain represented by the following formula (5A).
- alkyleneimine chain is an alkylene imine chain represented by the formula (4B)
- the polyester chains are anionic groups (preferably oxygen anion O -) includes, in the anionic group and the formula (4B) N + and Preferably forms a salt-crosslinked group.
- examples of such a polyester chain include a polyester chain represented by the following formula (5B).
- L X1, and L X2 in the formula (5B) in the formula (5A) each independently represents a divalent linking group.
- the divalent linking group preferably includes an alkylene group having 3 to 30 carbon atoms.
- B 11 in the formula (5A) and b 21 in the formula (5B) each independently represent an integer of 2 or more, and the upper limit thereof is, for example, 200 or less.
- B 12 in formula (5A) and b 22 in formula (5B) independently represent 0 or 1, respectively.
- X A in the formula (5A) and X B in the formula (5B) independently represent a hydrogen atom or a substituent.
- substituents include an alkyl group, an alkoxy group, a polyalkyleneoxyalkyl group, an aryl group and the like.
- the alkyl group (which may be linear, branched, or cyclic) and the alkyl group contained in the alkoxy group (which may be linear, branched, or cyclic).
- Examples of the number of carbon atoms include 1 to 30, and 1 to 10 are preferable.
- the alkyl group may further have a substituent, and examples of the substituent include a hydroxyl group and a halogen atom (the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like).
- the polyalkyleneoxyalkyl group is a substituent represented by RX6 (OR X7 ) p (O) q ⁇ .
- RX6 represents an alkyl group
- RX7 represents an alkylene group
- p represents an integer of 2 or more
- q represents 0 or 1.
- Alkyl group represented by R X6 has the same meaning as the alkyl group represented by X A.
- the alkylene group represented by R X7 it includes one group obtained by removing a hydrogen atom from the alkyl group represented by X A.
- p is an integer of 2 or more, and the upper limit value thereof is, for example, 10 or less, preferably 5 or less.
- aryl group examples include an aryl group having 6 to 24 carbon atoms (which may be monocyclic or polycyclic).
- the aryl group may further have a substituent, and examples of the substituent include an alkyl group, a halogen atom, and a cyano group.
- polyester chain examples include ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, enant lactone, ⁇ -butyrolactone, ⁇ -hexanolactone, and ⁇ -octa.
- Lactones such as nolactone, ⁇ -hexalanolactone, ⁇ -octanolactone, ⁇ -dodecanolactone, ⁇ -methyl- ⁇ -butyrolactone, and lactide (which may be L-form or D-form).
- a structure in which the ring is opened is preferable, and a structure in which ⁇ -caprolactone or ⁇ -valerolactone is opened is more preferable.
- the repeating unit containing the polyalkyleneimine structure and the polyester structure can be synthesized according to the synthesis method described in Japanese Patent No. 5923557.
- the content of the repeating unit including the graft chain is preferably 2 to 95% by mass, more preferably 2 to 90% by mass, and 5 to 30% by mass, based on the total mass of the specific dispersion resin. Mass% is particularly preferred.
- a repeating unit containing a graft chain is included in this range, the dispersion stability of the electromagnetic wave absorbing particles is high, and the developability when forming a cured film is good.
- the specific dispersion resin preferably contains a hydrophobic repeating unit that is different from the repeating unit containing the graft chain (that is, does not correspond to the repeating unit containing the graft chain).
- the hydrophobic repeating unit is a repeating unit having no acid group (for example, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a phenolic hydroxyl group, etc.).
- the hydrophobic repeating unit is preferably a (corresponding) repeating unit derived from a compound (monomer) having a ClogP value of 1.2 or more, and is a repeating unit derived from a compound having a ClogP value of 1.2 to 8. Is more preferable. Thereby, the effect of the present invention can be more reliably exhibited.
- the ClogP value is determined by Daylight Chemical Information System, Inc. It is a value calculated by the program "CLOGP” that can be obtained from.
- This program provides the value of "calculated logP” calculated by Hansch, Leo's fragment approach (see literature below). The fragment approach is based on the chemical structure of a compound, which divides the chemical structure into substructures (fragments) and sums the logP contributions assigned to the fragments to estimate the logP value of the compound. The details are described in the following documents. In this specification, the ClogP value calculated by the program CLOGP v4.82 is used.
- logP means the common logarithm of the partition coefficient P (Partition Cofficient), and quantitatively describes how an organic compound is distributed in the equilibrium of a two-phase system of oil (generally 1-octanol) and water. It is a physical property value expressed as a numerical value, and is expressed by the following formula.
- logP log (Coil / Water)
- Coil represents the molar concentration of the compound in the oil phase
- Water represents the molar concentration of the compound in the aqueous phase.
- the specific dispersion resin preferably contains, as the hydrophobic repeating unit, one or more kinds of repeating units selected from the repeating units derived from the monomers represented by the following formulas (i) to (iii).
- R 1 , R 2 , and R 3 independently have a hydrogen atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, etc.), or a carbon number of carbon atoms.
- a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, etc.
- R 1 , R 2 , and R 3 are preferably hydrogen atoms or alkyl groups having 1 to 3 carbon atoms, and more preferably hydrogen atoms or methyl groups. It is more preferable that R 2 and R 3 are hydrogen atoms.
- X represents an oxygen atom (-O-) or an imino group (-NH-), and an oxygen atom is preferable.
- the divalent linking group includes a divalent aliphatic group (for example, an alkylene group, a substituted alkylene group, an alkenylene group, a substituted alkenylene group, an alkynylene group, a substituted alkynylene group) and a divalent aromatic group (for example, an arylene group).
- a divalent aliphatic group for example, an alkylene group, a substituted alkylene group, an alkenylene group, a substituted alkenylene group, an alkynylene group, a substituted alkynylene group
- a divalent aromatic group for example, an arylene group
- substituted arylene group a divalent heterocyclic group an oxygen atom (-O-), sulfur atom (-S-), an imino group (-NH-), a substituted imino group (-NR 31 -, wherein R 31 Examples include an aliphatic group, an aromatic group or a heterocyclic group), a carbonyl group (-CO-), and a combination thereof.
- the divalent aliphatic group may have a cyclic structure or a branched structure.
- the number of carbon atoms of the aliphatic group is preferably 1 to 20, more preferably 1 to 15, and even more preferably 1 to 10.
- the aliphatic group may be an unsaturated aliphatic group or a saturated aliphatic group, but a saturated aliphatic group is preferable.
- the aliphatic group may have a substituent. Examples of substituents include halogen atoms, aromatic groups, heterocyclic groups and the like.
- the number of carbon atoms of the divalent aromatic group is preferably 6 to 20, more preferably 6 to 15, and even more preferably 6 to 10.
- the aromatic group may have a substituent. Examples of substituents include halogen atoms, aliphatic groups, aromatic groups, heterocyclic groups and the like.
- the divalent heterocyclic group preferably contains a 5-membered ring or a 6-membered ring as the heterocycle. Another heterocycle, an aliphatic ring, or an aromatic ring may be condensed with the heterocycle.
- L is preferably a divalent linking group containing a single bond, an alkylene group or an oxyalkylene structure.
- the oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure.
- L may contain a polyoxyalkylene structure containing two or more repeated oxyalkylene structures.
- a polyoxyethylene structure or a polyoxypropylene structure is preferable.
- the polyoxyethylene structure is represented by ⁇ (OCH 2 CH 2 ) n ⁇ , and n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
- an aliphatic group for example, an alkyl group, a substituted alkyl group, an unsaturated alkyl group, a substituted unsaturated alkyl group
- an aromatic group for example, an aryl group, a substituted aryl group, an arylene group, a substituted arylene group
- Heterocyclic groups and combinations thereof.
- These groups an oxygen atom (-O-), sulfur atom (-S-), an imino group (-NH-), a substituted imino group (-NR 31 -, wherein R 31 is an aliphatic group, an aromatic A group or heterocyclic group) or a carbonyl group (-CO-) may be contained.
- the aliphatic group may have a cyclic structure or a branched structure.
- the number of carbon atoms of the aliphatic group is preferably 1 to 20, more preferably 1 to 15, and even more preferably 1 to 10.
- the aliphatic group further includes a ring-assembled hydrocarbon group and a crosslinked ring-type hydrocarbon group. Examples of the ring-assembled hydrocarbon group include a bicyclohexyl group, a perhydronaphthalenyl group, a biphenyl group, and 4-. Includes a cyclohexylphenyl group and the like.
- Bicyclic hydrocarbon rings include, for example, two rings such as pinan, bornan, norpinane, norbornane, and bicyclooctane ring (bicyclo [2.2.2] octane ring, bicyclo [3.2.1] octane ring, etc.).
- Tricyclic hydrocarbon rings such as formal hydrocarbon rings, homobredane, adamantane, tricyclo [5.2.1.0 2,6 ] decane, and tricyclo [4.3.1.1 2,5 ] undecane rings, and , Tetracyclo [4.4.0.1 2,5 .
- the crosslinked cyclic hydrocarbon ring includes fused cyclic hydrocarbon rings such as perhydronaphthalene (decalin), perhydroanthracene, perhydrophenanthrene, perhydroacenaphthene, perhydrofluorene, perhydroindene, and per.
- fused cyclic hydrocarbon rings such as perhydronaphthalene (decalin), perhydroanthracene, perhydrophenanthrene, perhydroacenaphthene, perhydrofluorene, perhydroindene, and per.
- a fused ring in which a plurality of 5- to 8-membered cycloalkane rings such as a hydrophenanthrene ring are condensed is also included.
- aliphatic group a saturated aliphatic group is preferable to an unsaturated aliphatic group.
- the aliphatic group may have a substituent. Examples of substituents include halogen atoms, aromatic groups and heterocyclic groups. However, the aliphatic group does not have an acid group as a substituent.
- the carbon number of the aromatic group is preferably 6 to 20, more preferably 6 to 15, and even more preferably 6 to 10.
- the aromatic group may have a substituent. Examples of substituents include halogen atoms, aliphatic groups, aromatic groups and heterocyclic groups. However, the aromatic group does not have an acid group as a substituent.
- R 4 , R 5 , and R 6 are independently hydrogen atoms, halogen atoms (for example, fluorine atoms, chlorine atoms, bromine atoms, etc.), and alkyl having 1 to 6 carbon atoms.
- L and Z are synonymous with the groups in the above.
- R 4 , R 5 , and R 6 a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, and a hydrogen atom is more preferable.
- R 1 , R 2 and R 3 are hydrogen atoms or methyl groups
- L is a divalent compound containing a single bond or an alkylene group or an oxyalkylene structure.
- a compound in which X is an oxygen atom or an imino group and Z is an aliphatic group, a heterocyclic group, or an aromatic group is preferable as a linking group.
- R 1 is a hydrogen atom or a methyl group
- L is an alkylene group
- Z is an aliphatic group, a heterocyclic group, or an aromatic group. Is preferred.
- R 4 , R 5 , and R 6 are hydrogen atoms or methyl groups, and Z is an aliphatic group, a heterocyclic group, or an aromatic group. Certain compounds are preferred.
- Examples of typical compounds represented by the formulas (i) to (iii) include radically polymerizable compounds selected from acrylic acid esters, methacrylic acid esters, styrenes and the like.
- the compounds described in paragraphs 089 to 093 of JP2013-249417A can be referred to, and the contents thereof are described in the present specification. Incorporated in.
- the content of the hydrophobic repeating unit is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the specific dispersion resin. Sufficient pattern formation can be obtained when the content is in the above range.
- the specific dispersion resin can introduce a functional group capable of forming an interaction with the electromagnetic wave absorbing particles.
- the specific dispersion resin preferably further contains a repeating unit containing a functional group capable of forming an interaction with the electromagnetic wave absorbing particles.
- the functional group capable of forming an interaction with the electromagnetic wave absorbing particles include an acid group, a basic group, a coordinating group, and a reactive functional group.
- the specific dispersion resin contains an acid group, a basic group, a coordinating group, or a functional group having reactivity, a repeating unit containing an acid group, a repeating unit containing a basic group, and a coordinating group are used, respectively.
- the specific dispersion resin further contains an alkali-soluble group such as a carboxylic acid group as an acid group
- the specific dispersion resin can be imparted with developability for pattern formation by alkaline development. That is, if an alkali-soluble group is introduced into the specific dispersion resin, the specific dispersion resin as a dispersant that contributes to the dispersion of the electromagnetic wave absorbing particles contains alkali-soluble in the above composition. In the composition containing such a specific dispersion resin, the alkali developability of the unexposed portion is improved.
- the specific dispersion resin when the specific dispersion resin contains a repeating unit containing an acid group, the specific dispersion resin tends to be easily compatible with the solvent, and the coatability tends to be improved. This is because the acid groups in the repeating unit containing the acid groups easily interact with the electromagnetic wave absorbing particles, the specific dispersed resin stably disperses the electromagnetic wave absorbing particles, and the specific dispersed resin that disperses the electromagnetic wave absorbing particles has a low viscosity. It is presumed that this is because the specific dispersion resin itself is likely to be stably dispersed.
- the repeating unit containing the alkali-soluble group as the acid group may be the same repeating unit as the repeating unit containing the graft chain described above or a different repeating unit, but the alkali-soluble group as the acid group
- the repeating unit containing the above is a repeating unit different from the above-mentioned hydrophobic repeating unit (that is, does not correspond to the above-mentioned hydrophobic repeating unit).
- Examples of the acid group which is a functional group capable of forming an interaction with the electromagnetic wave absorbing particles include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a phenolic hydroxyl group and the like, and the carboxylic acid group, the sulfonic acid group, and the sulfonic acid group. At least one of the phosphoric acid groups is preferable, and a carboxylic acid group is more preferable.
- the carboxylic acid group has good adsorption power to electromagnetic wave absorbing particles and high dispersion stability. That is, the specific dispersion resin preferably further contains a repeating unit containing at least one of a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group.
- the specific dispersion resin may have one or more repeating units containing an acid group.
- the content thereof is preferably 5 to 80% by mass, more preferably 10 to 60% by mass, based on the total mass of the specific dispersion resin in terms of mass.
- Examples of the basic group which is a functional group capable of forming an interaction with the electromagnetic wave absorbing particle include a primary amino group, a secondary amino group, a tertiary amino group, a heterocycle containing an N atom, and an amide group.
- the preferred basic group is a tertiary amino group in that it has good adsorption power to electromagnetic wave absorbing particles and high dispersion stability.
- the specific dispersion resin may contain one or more of these basic groups. When the specific dispersion resin contains a repeating unit containing a basic group, the content thereof is preferably 0.01 to 50% by mass, preferably 0.01 to 30% by mass, based on the total mass of the specific dispersion resin in terms of mass. % Is more preferable.
- Coordinating groups which are functional groups capable of forming interactions with electromagnetic wave absorbing particles, and reactive functional groups include, for example, acetylacetoxy groups, trialkoxysilyl groups, isocyanate groups, acid anhydrides, and acidified groups. Things etc. can be mentioned.
- a preferable functional group is an acetylacetoxy group in that it has a good adsorption force to the electromagnetic wave absorbing particles and has high dispersion stability of the electromagnetic wave absorbing particles.
- the specific dispersion resin may have one or more of these groups. When the specific dispersion resin contains a repeating unit containing a coordinating group or a repeating unit containing a reactive functional group, the content thereof is 10 in terms of mass with respect to the total mass of the specific dispersion resin. It is preferably -80% by mass, more preferably 20-60% by mass.
- the specific dispersion resin contains a functional group capable of forming an interaction with the electromagnetic wave absorbing particles other than the graft chain, it may contain a functional group capable of forming an interaction with the various electromagnetic wave absorbing particles described above. How these functional groups are introduced is not particularly limited, but the specific dispersion resin is one selected from the repeating units derived from the monomers represented by the following formulas (iv) to (vi). It is preferable to include the above repeating units.
- R 11 , R 12 , and R 13 each independently have a hydrogen atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, etc.), or a carbon number of 1. Represents up to 6 alkyl groups (eg, methyl group, ethyl group, propyl group, etc.).
- a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, and a hydrogen atom or a methyl group is more preferable.
- hydrogen atoms are more preferable as R 12 and R 13.
- X 1 in the formula (iv) represents an oxygen atom (-O-) or an imino group (-NH-), and an oxygen atom is preferable.
- Y in the formula (v) represents a methine group or a nitrogen atom.
- L 1 in the formulas (iv) to (v) represents a single bond or a divalent linking group.
- the definition of the divalent linking group is the same as the definition of the divalent linking group represented by L in the above formula (i).
- L 1 is preferably a divalent linking group containing a single bond, an alkylene group or an oxyalkylene structure.
- the oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure.
- L 1 may include a polyoxyalkylene structure containing two or more oxyalkylene structures repeatedly.
- As the polyoxyalkylene structure a polyoxyethylene structure or a polyoxypropylene structure is preferable.
- the polyoxyethylene structure is represented by ⁇ (OCH 2 CH 2 ) n ⁇ , and n is preferably an integer of 2 or more, and more preferably an integer of 2 to 10.
- Z 1 represents a functional group capable of forming an interaction with electromagnetic wave absorbing particles other than the graft chain, and a carboxylic acid group or a tertiary amino group is preferable, and a carboxylic acid group is used. More preferred.
- R 14 , R 15 , and R 16 are independently hydrogen atoms, halogen atoms (for example, fluorine atoms, chlorine atoms, bromine atoms, etc.), and alkyl groups having 1 to 6 carbon atoms. (e.g., a methyl group, an ethyl group, and propyl group), - Z 1, or an L 1 -Z 1. Wherein L 1 and Z 1 are the same meaning as L 1 and Z 1 in the above, it is the preferable examples. As R 14 , R 15 and R 16 , a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, and a hydrogen atom is more preferable.
- halogen atoms for example, fluorine atoms, chlorine atoms, bromine atoms, etc.
- alkyl groups having 1 to 6 carbon atoms. e.g., a methyl group, an ethyl group, and propyl group
- L 1 and Z 1 are
- R 11 , R 12 , and R 13 are independently hydrogen atoms or methyl groups, and L 1 is a divalent linkage containing an alkylene group or an oxyalkylene structure.
- a compound in which X 1 is an oxygen atom or an imino group and Z 1 is a carboxylic acid group is preferable.
- R 11 is a hydrogen atom or a methyl group
- L 1 is an alkylene group
- Z 1 is a carboxylic acid group
- Y is a methine group. Is preferred.
- a compound in which R 14 , R 15 and R 16 are independently hydrogen atoms or methyl groups and Z 1 is a carboxylic acid group is preferable.
- monomers represented by the formulas (iv) to (vi) are shown below.
- monomers include methacrylic acid, crotonic acid, isocrotonic acid, a reaction product of a compound containing an addition-polymerizable double bond and a hydroxyl group in the molecule (for example, 2-hydroxyethyl methacrylate) and succinic anhydride.
- a reaction product of a compound containing an addition-polymerizable double bond and a hydroxyl group in the molecule and phthalic acid anhydride a reaction product of a compound containing an addition-polymerizable double bond and a hydroxyl group in the molecule and a tetrahydroxyphthalic acid anhydride.
- a reaction product of a compound containing an addition-polymerizable double bond and a hydroxyl group in the molecule and trimellitic anhydride a reaction product of a compound containing an addition-polymerizable double bond and a hydroxyl group in the molecule and a pyromellitic acid anhydride
- examples thereof include acrylic acid, acrylic acid dimer, acrylic acid oligomer, maleic acid, itaconic acid, fumaric acid, 4-vinylbenzoic acid, vinylphenol, 4-hydroxyphenylmethacrylic acid and the like.
- the content of the repeating unit containing a functional group capable of forming an interaction with the electromagnetic wave absorbing particles is a specific dispersion in terms of mass in terms of interaction with the electromagnetic wave absorbing particles, stability over time, and permeability to the developing solution. It is preferably 0.05 to 90% by mass, more preferably 1.0 to 80% by mass, still more preferably 10 to 70% by mass, based on the total mass of the resin.
- the specific dispersion resin preferably further contains an ethylenically unsaturated group.
- the composition containing the specific dispersion resin is more excellent in pattern forming property.
- the ethylenically unsaturated group is not particularly limited, and examples thereof include a (meth) acryloyl group, a vinyl group, and a styryl group, and a (meth) acryloyl group is preferable.
- the specific dispersion resin preferably contains a repeating unit containing an ethylenically unsaturated group in the side chain, and contains a repeating unit containing an ethylenically unsaturated group in the side chain and derived from (meth) acrylate (hereinafter referred to as a repeating unit).
- a repeating unit containing an ethylenically unsaturated group in the side chain and derived from (meth) acrylate
- a (meth) acrylic repeating unit containing an ethylenically unsaturated group in the side chain is more preferable.
- the (meth) acrylic repeating unit containing an ethylenically unsaturated group in the side chain is, for example, a glycidyl group or an alicyclic type in addition to the carboxylic acid group in the resin containing the (meth) acrylic repeating unit containing a carboxylic acid group. It is obtained by an addition reaction of an ethylenically unsaturated group-containing compound containing an epoxy group.
- the content thereof is preferably 30 to 70% by mass, preferably 40 to 60% by mass, based on the total mass of the specific dispersion resin in terms of mass. More preferred.
- the content of the repeating unit containing an ethylenically unsaturated group is in the above range, better pattern forming property is exhibited.
- the specific dispersion resin forms an interaction with a repeating unit containing a graft chain, a hydrophobic repeating unit, and electromagnetic wave absorbing particles for the purpose of improving various performances such as film forming ability, as long as the effect of the present invention is not impaired.
- a repeating unit containing a possible functional group and another repeating unit having various functions different from the repeating unit containing an ethylenically unsaturated group for example, a repeating unit containing a functional group having an affinity with a solvent described later. It may have more units).
- Examples of such other repeating units include repeating units derived from radically polymerizable compounds selected from acrylonitriles, methacrylonitriles, and the like.
- the specific dispersion resin can use one or more of these other repeating units, and the content thereof is preferably 0 to 80% by mass, preferably 10 to 80% by mass, based on the total mass of the specific dispersion resin in terms of mass. 60% by mass is more preferable.
- the acid value of the specific dispersion resin is not particularly limited, but for example, 0 to 250 mgKOH / g is preferable, 10 to 200 mgKOH / g is more preferable, 30 to 180 mgKOH / g is further preferable, and the range of 50 to 120 mgKOH / g is particularly preferable. preferable.
- the acid value of the specific dispersion resin is 160 mgKOH / g or less, pattern peeling during development when forming a cured film can be suppressed more effectively. Further, when the acid value of the specific dispersed resin is 10 mgKOH / g or more, the alkali developability becomes better.
- the acid value of the specific dispersed resin is 20 mgKOH / g or more, the precipitation of the electromagnetic wave absorbing particles can be further suppressed, the number of coarse particles can be reduced, and the dispersion stability of the composition with time can be further improved.
- the acid value can be calculated from, for example, the average content of acid groups in the compound. Further, by changing the content of the repeating unit containing an acid group in the resin, a resin having a desired acid value can be obtained.
- the weight average molecular weight of the specific dispersion resin is not particularly limited, but for example, 3,000 or more is preferable, 4,000 or more is more preferable, 5,000 or more is further preferable, and 6,000 or more is particularly preferable. Further, as the upper limit value, for example, 300,000 or less is preferable, 200,000 or less is more preferable, 100,000 or less is further preferable, and 50,000 or less is particularly preferable.
- the specific dispersion resin can be synthesized based on a known method.
- the graft copolymers of paragraphs 0037 to 0115 can also be used, and these contents can be incorporated. Incorporated into the specification.
- the aggregation control agent binds to aggregates having a relatively low density such as electromagnetic wave absorbing particles, and further, optionally contains other components (for example, alkali-soluble resin) are dispersed in the composition. It is capable of forming bulky aggregates.
- the dispersant is an aggregation control agent, hard cake formation of electromagnetic wave absorbing particles in the composition is suppressed, and bulky aggregates are formed, so that redispersibility can be improved.
- Examples of the aggregation control agent include cellulose derivatives.
- Examples of the cellulose derivative include carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl ethyl cellulose, and salts thereof.
- the content of the coagulation control agent in the composition is preferably 0.05 to 1.0% by mass, preferably 0.1 to 1.0% by mass, based on the total mass of the composition. More preferably, it is 0.5% by mass.
- the aggregation control agent may be used alone or in combination of two or more. When two or more kinds of agglutination control agents are used in combination, it is preferable that the total solid content of the composition is adjusted to be within the above range.
- the coagulation / dispersant is adsorbed on the surface of the electromagnetic wave absorbing particles, and while separating the electromagnetic wave absorbing particles from each other, the distance between the electromagnetic wave absorbing particles can be maintained at a certain level or more, and the electromagnetic wave absorbing particles can be prevented from directly aggregating. It is a thing. As a result, the agglomeration of the electromagnetic wave absorbing particles is suppressed, and even when the agglomerates are formed, the agglomerates having a relatively low density are formed. Further, other components (for example, alkali-soluble resin) optionally contained in the composition can be dispersed in the composition to form bulky aggregates, so that the redispersibility can be improved.
- other components for example, alkali-soluble resin
- an alkylol ammonium salt of a polybasic acid is preferable.
- the polybasic acid may have two or more acid groups, for example, an acidic polymer containing a repeating unit having an acid group (for example, polyacrylic acid, polymethacrylic acid, polyvinylsulfonic acid, polyphosphoric acid, etc.).
- an acidic polymer containing a repeating unit having an acid group for example, polyacrylic acid, polymethacrylic acid, polyvinylsulfonic acid, polyphosphoric acid, etc.
- Examples of polybasic acids other than the above include polymers obtained by polymerizing unsaturated fatty acids such as crotonic acid.
- Alkyrol ammonium salts of polybasic acids are obtained by reacting these polybasic acids with alkyrol ammonium. The salt obtained by such a reaction usually contains the following partial structure.
- the alkylolammonium salt of the polybasic acid is preferably a polymer containing a plurality of the above partial structures.
- the weight average molecular weight is preferably 1,000 to 100,000, more preferably 5,000 to 20,000.
- the polymer of the alkylolammonium salt of polybasic acid binds to the surface of the electromagnetic wave absorbing particles and also hydrogen bonds with other coagulation dispersant molecules, so that the main chain structure of the polymer enters between the electromagnetic wave absorbing particles and absorbs electromagnetic waves.
- the particles can be separated from each other.
- the coagulation dispersant examples include Anti-Terra 203, 204, 206, and 250 (trade names, manufactured by Big Chemie): Anti-TerraU (trade name, manufactured by Big Chemie): DISPER BYK-102, 180, and so on. 191 (trade name, manufactured by Big Chemie): TEGO Disper 630, 700 (both trade names, manufactured by Evonik Degussa Japan) and the like.
- the content of the coagulation dispersant in the composition is preferably 2 to 70% by mass, preferably 3 to 50% by mass, based on the total mass of the composition. Is more preferable.
- the coagulation dispersant may be used alone or in combination of two or more. When two or more kinds of coagulation dispersants are used in combination, it is preferable that the total solid content of the composition is adjusted to be within the above range.
- the composition of the present invention contains a solvent.
- the solvent is not particularly limited, and a known solvent can be used.
- the content of the solvent in the composition is not particularly limited, but the solid content of the composition is preferably 10.0% by mass or more, preferably 15.0% by mass or more, and 90.0% by mass.
- the amount is preferably 85.0% by mass or less, and more preferably 85.0% by mass or less.
- the content of the solvent in the composition is preferably 10.0 to 30.0% by mass with respect to the total mass of the composition.
- One type of solvent may be used alone, or two or more types may be used in combination. When two or more kinds of solvents are used in combination, it is preferable that the total solid content of the composition is adjusted to be within the above range.
- Examples of the solvent include organic solvents.
- the organic solvent is not particularly limited, and for example, acetone (56 ° C.), methyl ethyl ketone (79.6 ° C.), cyclohexane (81 ° C.), ethyl acetate (77.1 ° C.), ethylene dichloride (83.58-84.0).
- the boiling point of the solvent is preferably 110 to 170 ° C., and propylene glycol monomethyl ether acetate (146 ° C.), particularly because the composition is excellent in dispersion stability and / or developability.
- Propylene glycol monomethyl ether (121 ° C.) or butyl acetate (126 ° C.) is more preferred.
- the composition of the present invention may contain an alkali-soluble resin.
- the alkali-soluble resin means a resin containing a group that promotes alkali solubility (alkali-soluble group, for example, an acid group such as a carboxylic acid group), and means a resin different from the specific dispersion resin already described. To do.
- the resin referred to here means a component dissolved in the composition and having a weight average molecular weight of more than 2000.
- the content of the alkali-soluble resin in the composition is preferably 0.1 to 40.0% by mass, more preferably 0.5 to 30.0% by mass, and 1.0 to the total mass of the composition. It is more preferably ⁇ 25.0% by mass.
- the content of the alkali-soluble resin in the composition is preferably 0.1 to 15.0% by mass, more preferably 0.5 to 15.0% by mass, based on the total solid content of the composition. More preferably, it is 1.0 to 10.0% by mass.
- One type of alkali-soluble resin may be used alone, or two or more types may be used in combination. When two or more kinds of alkali-soluble resins are used in combination, the total content is preferably within the above range.
- alkali-soluble resin examples include resins containing at least one alkali-soluble group in the molecule, and examples thereof include polyhydroxystyrene resin, polysiloxane resin, (meth) acrylic resin, (meth) acrylamide resin, and (meth) acrylic. / (Meta) acrylamide copolymer resin, epoxy resin, polyimide resin and the like can be mentioned.
- the alkali-soluble resin include a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound.
- the unsaturated carboxylic acid is not particularly limited, but is a monocarboxylic acid such as (meth) acrylic acid, crotonic acid, and vinylacetic acid; a dicarboxylic acid such as itaconic acid, maleic acid, and fumaric acid, or an acid anhydride thereof; , Polyvalent carboxylic acid monoesters such as mono (2- (meth) acryloyloxyethyl) phthalate; and the like.
- copolymerizable ethylenically unsaturated compounds examples include methyl (meth) acrylate. Further, the compounds described in paragraphs 0027 of JP-A-2010-097210 and paragraphs 0036 to 0037 of JP-A-2015-068893 can also be used, and the above contents are incorporated in the present specification.
- a copolymerizable ethylenically unsaturated compound may be used in combination with a compound having an ethylenically unsaturated group in the side chain. That is, the alkali-soluble resin may contain a repeating unit containing an ethylenically unsaturated group in the side chain. As the ethylenically unsaturated group contained in the side chain, a (meth) acrylic acid group is preferable.
- the repeating unit containing an ethylenically unsaturated group in the side chain is, for example, an ethylenically unsaturated compound containing a glycidyl group or an alicyclic epoxy group in the carboxylic acid group of the (meth) acrylic repeating unit containing a carboxylic acid group. Obtained by an addition reaction.
- an alkali-soluble resin containing a polymerizable group is also preferable.
- the polymerizable group include an ethylenically unsaturated group (for example, a (meth) acryloyl group, a vinyl group, a styryl group, etc.), a cyclic ether group (for example, an epoxy group, an oxetanyl group, etc.) and the like. These are, but are not limited to. Among them, an ethylenically unsaturated group is preferable, and a (meth) acryloyl group is more preferable as the polymerizable group in that the polymerization can be controlled by a radical reaction.
- an alkali-soluble resin having a polymerizable group in the side chain or the like is preferable.
- the alkali-soluble resin containing a polymerizable group examples include Dianal NR series (manufactured by Mitsubishi Rayon Co., Ltd.), Photomer 6173 (COOH-containing polyurethane acrylic oligomer. Diamond Shamlock Co., manufactured by Ltd.), Viscort R-264, and KS resist 106.
- Cyclomer P series for example, ACA230AA
- Praxel CF200 series all manufactured by Daicel Co., Ltd.
- Ebeclyl3800 manufactured by Daicel Ornex
- Acrycure RD-F8 manufactured by Nippon Catalyst Co., Ltd.
- alkali-soluble resin examples include JP-A-59-044615, JP-A-54-34327, JP-A-58-125777, JP-A-54-025957, JP-A-54-092723, and the like.
- acetal-modified polyvinyl alcohol-based binder resin containing an alkali-soluble group described in JP-A-2001-318436; polyvinylpyrrolidone; polyethylene oxide; alcohol-soluble nylon, and 2,2-bis- (4-hydroxyphenyl)-.
- Polyether or the like which is a reaction product of propane and epichlorohydrin; and the polyimide resin described in the pamphlet of International Publication No. 2008/123097; and the like can be used.
- alkali-soluble resin for example, the compounds described in paragraphs 0225 to 0245 of JP2016-07545A can be used, and the above contents are incorporated in the present specification.
- a polyimide precursor can also be used as the alkali-soluble resin.
- the polyimide precursor means a resin obtained by an addition polymerization reaction of a compound containing an acid anhydride group and a diamine compound at 40 to 100 ° C.
- Specific examples of the polyimide precursor include the compounds described in paragraphs 0011 to 0031 of JP-A-2008-106250, the compounds described in paragraphs 0022 to 0039 of JP-A-2016-122101, and JP-A-2016-.
- alkali-soluble resin examples include [benzyl (meth) acrylate / (meth) acrylic acid / other addition-polymerizable vinyl monomer if necessary] copolymer and [allyl (meth) acrylate / (meth) acrylic acid / necessary.
- Other addition-polymerizable vinyl monomers] Copolymers are suitable because they have an excellent balance of film strength, sensitivity, and developability.
- the other addition-polymerizable vinyl monomers may be used alone or in combination of two or more.
- the copolymer preferably has a polymerizable group, and more preferably contains an ethylenically unsaturated group such as a (meth) acryloyl group, from the viewpoint of more excellent moisture resistance of the cured film.
- a polymerizable group may be introduced into the copolymer using a monomer having a polymerizable group as the other addition-polymerizable vinyl monomer.
- a polymerizable group preferably (preferably (preferably (preferably (preferably (preferably (preferably)) is added to one or more of the units derived from (meth) acrylic acid and / or the units derived from the other addition-polymerizable vinyl monomer in the copolymer.
- Ethylene unsaturated groups such as acryloyl groups
- the other addition-polymerizable vinyl monomer include methyl (meth) acrylate, a styrene-based monomer (hydroxystyrene, etc.), and an ether dimer.
- the ether dimer include a compound represented by the following general formula (ED1) and a compound represented by the following general formula (ED2).
- R 1 and R 2 independently represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms.
- R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
- the description of JP-A-2010-168539 can be referred to.
- ether dimer for example, paragraph 0317 of Japanese Patent Application Laid-Open No. 2013-209760 can be referred to, and this content is incorporated in the present specification.
- the ether dimer may be only one kind or two or more kinds.
- the acid value of the alkali-soluble resin is not particularly limited, but is generally preferably 30 to 500 mgKOH / g, more preferably 50 to 200 mgKOH / g or more.
- the composition may contain a polymerization initiator.
- the polymerization initiator is not particularly limited, and a known polymerization initiator can be used. Examples of the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator, and a photopolymerization initiator is preferable.
- a so-called radical polymerization initiator is preferable.
- the content of the polymerization initiator in the composition is not particularly limited, but is preferably 0.5 to 15.0% by mass, more preferably 1.0 to 10.0% by mass, based on the total solid content of the composition. It is preferable, and 1.5 to 8.0% by mass is more preferable.
- the polymerization initiator one type may be used alone, or two or more types may be used in combination. When two or more kinds of polymerization initiators are used in combination, the total amount is preferably within the above range.
- thermal polymerization initiator examples include 2,2'-azobisisobutyronitrile (AIBN), 3-carboxypropionitrile, azobismalenonitrile, and dimethyl- (2,2') -azobis (2-2').
- examples include azo compounds such as methylpropionate) [V-601] and organic peroxides such as benzoyl peroxide, lauroyl peroxide, and potassium persulfate.
- thermal polymerization initiator include the polymerization initiators described on pages 65 to 148 of "Ultraviolet Curing System" by Kiyomi Kato (published by General Technology Center Co., Ltd .: 1989). Be done.
- the composition preferably contains a photopolymerization initiator.
- the photopolymerization initiator is not particularly limited as long as the polymerization of the polymerizable compound can be initiated, and a known photopolymerization initiator can be used.
- a photopolymerization initiator for example, a photopolymerization initiator having photosensitivity from an ultraviolet region to a visible light region is preferable. Further, it may be an activator that causes some action with a photoexcited sensitizer to generate an active radical, or may be an initiator that initiates cationic polymerization depending on the type of the polymerizable compound.
- the photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least 50 in the range of 300 to 800 nm (more preferably 330 to 500 nm).
- the content of the photopolymerization initiator in the composition is not particularly limited, but is preferably 0.5 to 15.0% by mass, preferably 1.0 to 10.0% by mass, based on the total solid content of the composition. More preferably, 1.5 to 8.0% by mass is further preferable.
- the photopolymerization initiator one type may be used alone, or two or more types may be used in combination. When two or more kinds of photopolymerization initiators are used in combination, the total content is preferably within the above range.
- the photopolymerization initiator examples include halogenated hydrocarbon derivatives (for example, compounds containing a triazine skeleton, compounds containing an oxadiazole skeleton, etc.), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, and oxime derivatives. Oxime compounds such as, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, aminoacetophenone compounds, hydroxyacetophenone and the like can be mentioned.
- paragraphs 0265 to 0268 of JP2013-209760A can be referred to, and the contents thereof are incorporated in the present specification.
- the photopolymerization initiator for example, the aminoacetophenone-based initiator described in JP-A-10-291969 and the acylphosphine-based initiator described in Japanese Patent No. 4225898 can also be used.
- the hydroxyacetophenone compound for example, IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, and IRGACURE-127 (trade names, all manufactured by BASF) can be used.
- the aminoacetophenone compound for example, commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379EG (trade names, all manufactured by BASF) can be used.
- aminoacetophenone compound the compound described in JP-A-2009-191179, in which the absorption wavelength is matched with a long-wave light source having a wavelength of 365 nm or a wavelength of 405 nm, can also be used.
- acylphosphine compound commercially available IRGACURE-819 and IRGACURE-TPO (trade names, both manufactured by BASF) can be used.
- an oxime ester-based polymerization initiator (oxime compound) is more preferable.
- an oxime compound is preferable because it has high sensitivity, high polymerization efficiency, a high content of a coloring material in the composition, and is easy to design.
- the oxime compound the compound described in JP-A-2001-233842, the compound described in JP-A-2000-80068, or the compound described in JP-A-2006-342166 can be used.
- Examples of the oxime compound include 3-benzoyloxyiminobutane-2-one, 3-acetoxyiminobutane-2-one, 3-propionyloxyiminobutane-2-one, 2-acetoxyiminopentane-3-one, and the like.
- J. C. S. Perkin II (1979) pp. 1653-1660
- IRGACURE-OXE01 manufactured by BASF
- IRGACURE-OXE02 manufactured by BASF
- IRGACURE-OXE03 manufactured by BASF
- IRGACURE-OXE04 manufactured by BASF
- TR-PBG-304 manufactured by Changshu Powerful Electronics New Materials Co., Ltd.
- ADEKA ARCLUDS NCI-831 ADEKA ARCULDS NCI-930
- N-1919 carboxyl-containing light start
- Agents manufactured by ADEKA
- oxime compound other than the above description a compound described in JP-A-2009-5199004 in which an oxime is linked to the N-position of carbazole; a compound described in US Pat. No. 7,626,957 in which a heterosubstituted group is introduced at a benzophenone moiety; Compounds described in JP-A-2010-015025 and US Patent Publication No. 2009-292039 in which a nitro group is introduced into a dye moiety; ketooxime compounds described in WO 2009-131189; and triazine skeleton and oxime.
- R and B each independently represent a monovalent substituent
- A represents a divalent organic group
- Ar represents an aryl group.
- a monovalent non-metal atomic group is preferable as the monovalent substituent represented by R.
- the monovalent non-metal atomic group include an alkyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic group, an alkylthiocarbonyl group, an arylthiocarbonyl group and the like.
- these groups may have one or more substituents.
- the above-mentioned substituent may be further substituted with another substituent.
- substituents examples include a halogen atom, an aryloxy group, an alkoxycarbonyl group or an aryloxycarbonyl group, an acyloxy group, an acyl group, an alkyl group, an aryl group and the like.
- an aryl group, a heterocyclic group, an arylcarbonyl group, or a heterocyclic carbonyl group is preferable, and an aryl group or a heterocyclic group is preferable.
- These groups may have one or more substituents. Examples of the substituent include the above-mentioned substituents.
- the divalent organic group represented by A is preferably an alkylene group having 1 to 12 carbon atoms, a cycloalkylene group, or an alkynylene group. These groups may have one or more substituents. Examples of the substituent include the above-mentioned substituents.
- An oxime compound containing a fluorine atom can also be used as a photopolymerization initiator.
- Specific examples of the oxime compound containing a fluorine atom include the compounds described in JP-A-2010-262028; compounds 24, 36-40 described in JP-A-2014-500852; and JP-A-2013-164471.
- the compound (C-3) described; and the like can be mentioned. This content is incorporated herein by reference.
- photopolymerization initiator compounds represented by the following general formulas (1) to (4) can also be used.
- R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or a carbon. Representing an arylalkyl group of the number 7 to 30, when R 1 and R 2 are phenyl groups, the phenyl groups may be bonded to each other to form a fluorene group, and R 3 and R 4 are independently hydrogen.
- X is a direct bond or a carbonyl group. Is shown.
- R 1, R 2, R 3, and R 4, R 1, R 2, R 3 in the formula (1), and has the same meaning as R 4, R 5 are, -R 6, -OR 6 , -SR 6 , -COR 6 , -CONR 6 R 6 , -NR 6 COR 6 , -OCOR 6 , -COOR 6 , -SCOR 6 , -OCSR 6 , -COSR 6 , -CSOR 6 , -CN , Halogen atom, or hydroxyl group, where R 6 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocycle having 4 to 20 carbon atoms. Represents a group, X represents a direct bond or a carbonyl group, and a represents an integer of 0-4.
- R 1 is an alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an arylalkyl group having 7 to 30 carbon atoms.
- R 3 and R 4 independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or 4 carbon atoms, respectively.
- R 1, R 3, and R 4, R 1, R 3 in the formula (3), and has the same meaning as R 4, R 5 are, -R 6, -OR 6, -SR 6 , -COR 6 , -CONR 6 R 6 , -NR 6 COR 6 , -OCOR 6 , -COOR 6 , -SCOR 6 , -OCSR 6 , -COSR 6 , -COR 6 , -CN, halogen atom, or hydroxyl group
- R 6 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aryl alkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 4 to 20 carbon atoms
- X represents a heterocyclic group having 4 to 20 carbon atoms.
- R 1 and R 2 are preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclohexyl group, or a phenyl group.
- R 3 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group, or a xsilyl group.
- R 4 is preferably an alkyl group or a phenyl group having 1 to 6 carbon atoms.
- R 5 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group, or a naphthyl group.
- R 1 is preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclohexyl group, or a phenyl group.
- R 3 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group, or a xsilyl group.
- R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group.
- R 5 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group, or a naphthyl group. Direct binding is preferable for X.
- Specific examples of the compounds represented by the formulas (1) and (2) include the compounds described in paragraphs 0076 to 0079 of JP-A-2014-137466. This content is incorporated herein by reference.
- the oxime compound preferably used in the above composition is shown below.
- the oxime compound represented by the general formula (C-13) is more preferable.
- the oxime compound the compound described in Table 1 of International Publication No. 2015-036910 pamphlet can also be used, and the above contents are incorporated in the present specification.
- the oxime compound preferably has a maximum absorption wavelength in the wavelength region of 350 to 500 nm, more preferably has a maximum absorption wavelength in the wavelength region of 360 to 480 nm, and further preferably has high absorbance at wavelengths of 365 nm and 405 nm. ..
- the molar extinction coefficient of the oxime compound at 365 nm or 405 nm is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, and even more preferably 5,000 to 200,000 from the viewpoint of sensitivity.
- the molar extinction coefficient of the compound can be measured by a known method, for example, with an ultraviolet-visible spectrophotometer (Varian Cary-5 spctrophotometer) using ethyl acetate at a concentration of 0.01 g / L. Is preferable. Two or more kinds of photopolymerization initiators may be used in combination, if necessary.
- the composition of the present invention may contain a polymerizable compound.
- the polymerizable compound means a compound that polymerizes under the action of the above-mentioned polymerization initiator, and means a component different from the resin in the above-mentioned composition of the present invention. That is, the polymerizable compound does not have a graft chain.
- the molecular weight of the polymerizable compound (when the polymerizable compound has a molecular weight distribution, the weight average molecular weight) is not particularly limited, but is preferably 2000 or less.
- the content of the polymerizable compound in the composition is not particularly limited, but is preferably 1.0 to 25.0% by mass, more preferably 1.0 to 20.0% by mass, based on the total solid content of the composition. It is preferable, and 3.0 to 15.0% by mass is more preferable.
- the polymerizable compound one type may be used alone, or two or more types may be used in combination. When two or more kinds of polymerizable compounds are used in combination, the total content is preferably within the above range.
- the polymerizable compound may be either a thermopolymerizable compound or a photopolymerizable compound, but a photopolymerizable compound is preferable in that a pattern can be formed by exposure development.
- a photopolymerizable compound it is preferably used in combination with the above-mentioned photopolymerization initiator, and when the polymerizable compound is a thermopolymerizable compound, it is used with the above-mentioned thermal polymerization initiator. It is preferable to use it in combination.
- a compound containing a group containing an ethylenically unsaturated bond (hereinafter, also simply referred to as “ethylene unsaturated group”) (hereinafter, also referred to as “ethylene unsaturated group-containing compound”) is preferable.
- the number of ethylenically unsaturated bonds in the ethylenically unsaturated group-containing compound is not particularly limited, but one or more is preferable, two or more are more preferable, three or more are further preferable, and five or more are particularly preferable.
- the upper limit is, for example, 15 or less.
- Examples of the ethylenically unsaturated group include a vinyl group, a (meth) allyl group, a (meth) acryloyl group and the like.
- the ethylenically unsaturated group-containing compound for example, the compounds described in paragraph 0050 of JP-A-2008-260927 and paragraph 0040 of JP-A-2015-068893 can be used, and the above contents are described in the present specification. Incorporated into the book.
- the ethylenically unsaturated group-containing compound may be in any chemical form such as, for example, a monomer, a prepolymer, an oligomer, and a mixture thereof, and a multimer thereof.
- the ethylenically unsaturated group-containing compound is preferably a (meth) acrylate compound having 3 to 15 functionalities, and more preferably a (meth) acrylate compound having 3 to 6 functionalities.
- ethylenically unsaturated group-containing compound a compound containing one or more ethylenically unsaturated groups and having a boiling point of 100 ° C. or higher under normal pressure is also preferable.
- the compounds described in paragraphs 0227 of JP2013-209760A and paragraphs 0254-0257 of JP2008-292970 can be referred to, and the contents thereof are incorporated in the present specification.
- Ethylene unsaturated group-containing compounds include dipentaerythritol triacrylate (commercially available KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.) and dipentaerythritol tetraacrylate (commercially available KAYARAD D-320; Nippon Kayaku Co., Ltd.).
- Dipentaerythritol penta (meth) acrylate (commercially available KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd.) A-DPH-12E; manufactured by Shin-Nakamura Chemical Co., Ltd., and structures in which these (meth) acryloyl groups are mediated by ethylene glycol residues or propylene glycol residues (for example, SR454, SR499 commercially available from Sartmer). ) Is preferable. These oligomer types can also be used.
- NK ester A-TMMT penentaerythritol tetraacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.
- KAYARAD RP-1040 penentaerythritol tetraacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.
- KAYARAD DPEA-12LT KAYARAD DPHA LT
- KAYARAD RP-3060 KAYARAD DPEA-12
- KAYARAD DPEA-12 all trade names, trade names, Nippon Kayaku Co., Ltd.
- the preferred embodiments of the ethylenically unsaturated group-containing compound are shown below.
- the ethylenically unsaturated group-containing compound may have an acid group such as a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group.
- an acid group such as a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group.
- an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid is preferable, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound.
- An ethylenically unsaturated group-containing compound having an acid group is more preferable, and in this ester, a compound in which the aliphatic polyhydroxy compound is pentaerythritol and / or dipentaerythritol is further preferable.
- Examples of commercially available products include Aronix TO-2349, M-305, M-510, and M-520 manufactured by Toagosei Co., Ltd.
- the acid value of the ethylenically unsaturated group-containing compound containing an acid group is preferably 0.1 to 40 mgKOH / g, more preferably 5 to 30 mgKOH / g.
- the acid value of the ethylenically unsaturated group-containing compound is 0.1 mgKOH / g or more, the developing and dissolving characteristics are good, and when it is 40 mgKOH / g or less, it is advantageous in production and / or handling. Furthermore, the photopolymerization performance is good and the curability is excellent.
- a compound containing a caprolactone structure is also a preferable embodiment.
- the compound containing a caprolactone structure is not particularly limited as long as the caprolactone structure is contained in the molecule, and for example, trimethylolethane, ditrimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, Examples thereof include ⁇ -caprolactone-modified polyfunctional (meth) acrylate obtained by esterifying a polyhydric alcohol such as glycerin, diglycerol, or trimethylolmelamine with (meth) acrylic acid and ⁇ -caprolactone.
- a compound containing a caprolactone structure represented by the following formula (Z-1) is preferable.
- R 1 represents a hydrogen atom or a methyl group
- m represents a number of 1 or 2
- "*" represents a bond.
- R 1 represents a hydrogen atom or a methyl group
- "*" represents a bond
- M-350 trade name (trimethylolpropane triacrylate) manufactured by Toagosei Co., Ltd. can also be mentioned.
- a compound represented by the following formula (Z-4) or (Z-5) can also be used.
- E represents ⁇ ((CH 2 ) y CH 2 O) ⁇ or ((CH 2 ) y CH (CH 3 ) O) ⁇ , where y is. , 0-10, where X represents a (meth) acryloyl group, a hydrogen atom, or a carboxylic acid group.
- the total number of (meth) acryloyl groups is 3 or 4
- m represents an integer of 0 to 10
- the total of each m is an integer of 0 to 40.
- the total number of (meth) acryloyl groups is 5 or 6
- n represents an integer of 0 to 10
- the total of each n is an integer of 0 to 60.
- m is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4. Further, the total of each m is preferably an integer of 2 to 40, more preferably an integer of 2 to 16, and even more preferably an integer of 4 to 8.
- n is preferably an integer of 0 to 6, and more preferably an integer of 0 to 4. Further, the total of each n is preferably an integer of 3 to 60, more preferably an integer of 3 to 24, and even more preferably an integer of 6 to 12.
- -((CH 2 ) y CH 2 O)-or ((CH 2 ) y CH (CH 3 ) O)-in the formula (Z-4) or the formula (Z-5) is on the oxygen atom side. A form in which the end binds to X is preferable.
- the compound represented by the formula (Z-4) or the formula (Z-5) may be used alone or in combination of two or more.
- the compounds in which all 6 Xs are acryloyl groups in the formula (Z-5), and the 6 Xs are acryloyl groups in the formula (Z-5), and the 6 Xs.
- An embodiment in which at least one is a mixture with a compound having a hydrogen atom is preferable. With such a configuration, the developability can be further improved.
- the total content of the compound represented by the formula (Z-4) or the formula (Z-5) in the ethylenically unsaturated group-containing compound is preferably 20% by mass or more, more preferably 50% by mass or more. ..
- a pentaerythritol derivative and / or a dipentaerythritol derivative is more preferable.
- the ethylenically unsaturated group-containing compound may contain a cardo skeleton.
- the ethylenically unsaturated group-containing compound containing a cardo skeleton an ethylenically unsaturated group-containing compound containing a 9,9-bisarylfluorene skeleton is preferable.
- the ethylenically unsaturated group-containing compound containing a cardo skeleton include, but are not limited to, Oncoat EX series (manufactured by Nagase & Co., Ltd.) and Ogsol (manufactured by Osaka Gas Chemical Co., Ltd.).
- a compound containing an isocyanuric acid skeleton as a central core is also preferable.
- examples of such an ethylenically unsaturated group-containing compound include NK ester A-9300 (manufactured by Shin-Nakamura Chemical Co., Ltd.).
- the content of ethylenically unsaturated groups in the ethylenically unsaturated group-containing compound (the number of ethylenically unsaturated groups in the ethylenically unsaturated group-containing compound is the molecular weight (g / mol) of the ethylenically unsaturated group-containing compound).
- the value obtained by dividing) is preferably 5.0 mmol / g or more.
- the upper limit is not particularly limited, but is generally 20.0 mmol / g or less.
- an oxacyclo compound is also preferable.
- a compound having an epoxy group or an oxetanyl group is preferable, and a compound having an epoxy group (epoxy compound) is more preferable.
- Specific examples of the oxacyclo compound include a monofunctional or polyfunctional glycidyl ether compound. Examples of commercially available products include polyfunctional aliphatic glycidyl ether compounds such as Denacol EX-212L, EX-214L, EX-216L, EX-321L, and EX-850L (all manufactured by Nagase ChemteX Corporation). ..
- low-chlorine products such as EX-212, EX-214, EX-216, EX-321, and EX-850
- the oxacyclo compound examples include phenol novolac type glycidyl ether (phenol novolac type epoxy compound), cresol novolac type glycidyl ether (cresol novolac type epoxy compound), bisphenol A novolac type glycidyl ether and the like.
- the composition may contain a polymerization inhibitor.
- the polymerization inhibitor is not particularly limited, and a known polymerization inhibitor can be used.
- examples of the polymerization inhibitor include phenolic polymerization inhibitors (eg, p-methoxyphenol, 2,5-di-tert-butyl-4-methylphenol, 2,6-ditert-butyl-4-methylphenol, etc.
- 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol), 4-methoxynaphthol, etc.); Hydroquinone-based polymerization inhibitors (eg, , Hydroquinone, 2,6-di-tert-butylhyrodroquinone, etc.); Kinone-based polymerization inhibitor (eg, benzoquinone, etc.); Free radical-based polymerization inhibitor (eg, 2,2,6,6-tetramethylpiperidin) 1-oxyl-free radical, 4-hydroxy-2,2,6,6-tetramethylpiperidin 1-oxyl-free radical, etc.); Nitrobenzene-based polymerization inhibitors (eg, nitrobenzene, 4-nitrotoluene, etc.); and phenothiazine-based polymerization inhibitors Agents (eg, phenothiazine, 2-methoxyphenothiazine, etc.); and the like
- the effect of the polymerization inhibitor is remarkable when used together with a resin containing a polymerizable group.
- the content of the polymerization inhibitor in the composition is not particularly limited, but is preferably 0.0001 to 0.5% by mass, more preferably 0.0001 to 0.2% by mass, based on the total solid content of the composition. It is preferably 0.0001 to 0.05% by mass, more preferably 0.0001 to 0.05% by mass.
- the polymerization inhibitor may be used alone or in combination of two or more. When two or more kinds of polymerization inhibitors are used in combination, the total content is preferably within the above range.
- the ratio of the content of the polymerization inhibitor to the content of the polymerizable compound in the composition is preferably more than 0.0005.
- 0.0006 to 0.02 is more preferable, and 0.0006 to 0.005 is even more preferable.
- the composition may include a surfactant.
- the surfactant contributes to the improvement of the coatability of the composition.
- the content of the surfactant is preferably 0.001 to 2.0% by mass, preferably 0.005 to 0.5, based on the total solid content of the composition.
- the mass% is more preferable, and 0.01 to 0.1% by mass is further preferable.
- the surfactant one type may be used alone, or two or more types may be used in combination. When two or more kinds of surfactants are used in combination, the total amount is preferably within the above range.
- surfactant examples include a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant.
- the liquid properties (particularly, fluidity) of the composition will be further improved. That is, when a film is formed using a composition containing a fluorine-based surfactant, the interfacial tension between the surface to be coated and the coating liquid is reduced to improve the wettability to the surface to be coated, and the surface to be coated is improved. The applicability to is improved. Therefore, even when a thin film of about several ⁇ m is formed with a small amount of liquid, it is effective in that it is possible to more preferably form a film having a uniform thickness with small thickness unevenness.
- the fluorine content in the fluorine-based surfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and even more preferably 7 to 25% by mass.
- a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and / or liquid saving, and has good solubility in the composition.
- fluorine-based surfactant examples include Megafuck F171, F172, F173, F176, F177, F141, F142, F143, F144, R30, F437, F475, and F479.
- F482, F554, and F780 above, manufactured by DIC
- Florard FC430, FC431, and FC171 above, manufactured by Sumitomo 3M
- Surfron S-382, SC-101, SC-103, SC-104, SC-105, SC1068, SC-381, SC-383, S393, and KH-40 all manufactured by AGC
- PF636, PF656, PF6320, PF6520, and PF7002 manufactured by OMNOVA
- a block polymer can also be used as the fluorine-based surfactant, and specific examples thereof include compounds described in Japanese Patent Application Laid-Open No. 2011-0899090.
- the composition may further contain any other component other than the above-mentioned components.
- any other component include sensitizers, co-sensitizers, cross-linking agents (curing agents), curing accelerators, thermosetting accelerators, plasticizers, diluents, oil sensitizers, rubber components, etc.
- Known additives such as adhesion promoters and other auxiliaries (eg, defoamers, flame retardants, leveling agents, peeling accelerators, antioxidants, fragrances, surface tension modifiers, chain transfer agents, etc.) May be added as needed.
- the composition of the present invention absorbs electromagnetic waves in a frequency band of 1 GHz or higher when a film is formed.
- the frequency band of the electromagnetic wave that can be absorbed by the film formed by the composition of the present invention is preferably 20 GHz or higher, more preferably 50 GHz or higher.
- the upper limit value is not particularly limited and is, for example, less than 100 GHz.
- the electromagnetic wave absorption performance is a value measured by using a network analyzer with respect to a film having a film thickness of 250 ⁇ m obtained by drying the coating film of the composition of the present invention. Specifically, it corresponds to the peak frequency of the magnetic permeability imaginary part obtained by using the Nicholson-Loss model method from the S parameter at an incident angle of 0 ° by the free space method.
- the measuring device examples include a network analyzer manufactured by Agilent Technologies.
- the peak value of the magnetic permeability imaginary portion of the film formed by the composition of the present invention, which is obtained by the above measurement method, is preferably 0.2 or more, and more preferably 0.8 or more. ..
- composition of the present invention can be prepared by mixing each of the above components by a known mixing method (for example, a mixing method using a stirrer, a homogenizer, a high-pressure emulsifier, a wet pulverizer, a wet disperser, or the like).
- a mixing method using a stirrer, a homogenizer, a high-pressure emulsifier, a wet pulverizer, a wet disperser, or the like for example, a mixing method using a stirrer, a homogenizer, a high-pressure emulsifier, a wet pulverizer, a wet disperser, or the like.
- each component may be blended all at once, or each component may be dissolved or dispersed in a solvent and then sequentially blended.
- the order of feeding and working conditions at the time of blending are not particularly limited.
- the composition of the present invention contains components such as an alkali-soluble resin, a polymerizable compound, and a polymerization initiator, first, a dispersion composition containing electromagnetic wave absorbing particles is produced, and the obtained dispersion composition is further added. It is preferable to mix with other components to form a composition.
- the dispersion composition is preferably prepared by mixing electromagnetic wave absorbing particles, a dispersant (preferably the above-mentioned specific dispersion resin), and a solvent.
- the dispersion composition may contain a polymerization inhibitor.
- the film of the present invention is a film formed by using the composition of the present invention, and is preferably a cured film.
- a cured film is a film formed by using the composition of the present invention, and is preferably a cured film.
- composition layer formed using the composition of the present invention is cured to obtain a cured film (including a patterned cured film).
- the method for producing the cured film is not particularly limited, but it is preferable to include the following steps. -Composition layer forming step-Exposure step-Development step Each step will be described below.
- composition layer forming step the composition is applied onto a base material or the like to form a composition layer (composition layer) prior to exposure.
- a base material for example, a wiring board having an antenna portion or an inductor portion can be used.
- composition layer applied on the substrate can be dried (prebaked) in, for example, a hot plate, an oven, or the like at a temperature of 50 to 140 ° C. for 10 seconds to 6 hours.
- the composition layer formed in the composition layer forming step is exposed by irradiating it with active light or radiation, and the light-irradiated composition layer is cured.
- the method of light irradiation is not particularly limited, but it is preferable to irradiate light through a photomask having a patterned opening.
- the exposure is preferably performed by irradiation with radiation.
- the radiation that can be used for exposure ultraviolet rays such as g-ray, h-ray, and i-ray are particularly preferable, and a high-pressure mercury lamp is preferred as the light source.
- the irradiation intensity is preferably 5 ⁇ 1500mJ / cm 2, more preferably 10 ⁇ 1000mJ / cm 2.
- the composition layer may be heated in the above exposure step.
- the heating temperature is not particularly limited, but is preferably 80 to 250 ° C.
- the heating time is not particularly limited, but is preferably 30 to 300 seconds.
- the composition layer is heated in the exposure step, it may also serve as a post-heating step described later. In other words, when the composition layer is heated in the exposure step, the method for producing the cured film does not have to include the post-heating step.
- the developing step is a step of developing the composition layer after exposure to form a cured film.
- the type of developer used in the developing process is not particularly limited, but an alkaline developer that does not damage the circuit or the like is desirable.
- the developing temperature is, for example, 20 to 30 ° C.
- the development time is, for example, 20 to 90 seconds. In recent years, it may be carried out for 120 to 180 seconds in order to remove the residue better. Further, in order to further improve the residue removability, the step of shaking off the developer every 60 seconds and further supplying a new developer may be repeated several times.
- Alkaline developer an alkaline aqueous solution prepared by dissolving an alkaline compound in water so as to have a concentration of 0.001 to 10% by mass (preferably 0.01 to 5% by mass) is preferable.
- Alkaline compounds include, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropyl.
- Examples thereof include ammonium hydroxide, tetrabutylammonium hydroxy, benzyltrimethylammonium hydroxide, choline, pyrrole, piperidine, and 1,8-diazabicyclo [5.4.0] -7-undecene (of which organic alkali is used. preferable.).
- an alkaline developer it is generally washed with water after development.
- Post-baking is a post-development heat treatment to complete the cure.
- the heating temperature is preferably 240 ° C. or lower, more preferably 220 ° C. or lower. There is no particular lower limit, but considering efficient and effective treatment, 50 ° C. or higher is preferable, and 100 ° C. or higher is more preferable.
- Post-baking can be performed continuously or in batch using a heating means such as a hot plate, a convection oven (hot air circulation dryer), or a high-frequency heater.
- the above post-baking is preferably performed in an atmosphere with a low oxygen concentration.
- the oxygen concentration is preferably 19% by volume or less, more preferably 15% by volume or less, further preferably 10% by volume or less, particularly preferably 7% by volume or less, and most preferably 3% by volume or less. There is no particular lower limit, but 10 volume ppm or more is practical.
- the curing may be completed by UV (ultraviolet) irradiation instead of the post-baking by heating described above.
- the composition described above preferably further contains a UV curing agent.
- the UV curing agent is preferably a UV curing agent capable of curing at a wavelength shorter than 365 nm, which is the exposure wavelength of the polymerization initiator added for the lithography process by ordinary i-ray exposure.
- Examples of the UV curing agent include Cibayl Gacure 2959 (trade name).
- the composition layer is a material that cures at a wavelength of 340 nm or less. There is no particular lower limit for the wavelength, but 220 nm or more is common.
- the exposure amount of UV irradiation is preferably 100 to 5000 mJ, more preferably 300 to 4000 mJ, and even more preferably 800 to 3500 mJ. It is preferable that this UV curing step is performed after the exposure step in order to perform low temperature curing more effectively. It is preferable to use an ozoneless mercury lamp as the exposure light source.
- the film thickness of the cured film is, for example, preferably 1 to 10000 ⁇ m, more preferably 10 to 1000 ⁇ m, and even more preferably 15 to 800 ⁇ m.
- the frequency band of the electromagnetic wave that can be absorbed by the cured film is preferably 1 GHz or higher, more preferably 20 GHz or higher, and even more preferably 50 GHz or higher.
- the upper limit value is not particularly limited and is, for example, less than 100 GHz.
- the frequency band of the electromagnetic wave that can be absorbed by the cured film is a value measured using a network analyzer. Specifically, the Nicholson-Loss model method is used from the S parameter at an incident angle of 0 ° by the free space method.
- the measuring device includes a network analyzer manufactured by Agilent Technologies.
- the cured film is suitably used as an electronic component such as an antenna and an inductor installed in an electronic communication device or the like.
- Electromagnetic wave absorption particles The electromagnetic wave absorbing particles (hereinafter, also referred to as “particles”) P1 to P4) shown in the “dispersion composition” column of Table 1 are shown below.
- aqueous solution that is, a precursor-containing aqueous solution
- a reaction product serving as a precursor of hexagonal ferrite particles.
- the precursor-containing aqueous solution was subjected to a centrifugation treatment (rotation speed: 3000 rpm, rotation time: 10 minutes) three times, and the obtained precipitate was recovered. Then, the collected precipitate was washed with water. Then, the precipitate after washing with water was dried in an oven having an internal atmospheric temperature of 80 ° C. for 12 hours to obtain particles composed of precursors (that is, precursor particles).
- the precursor particles were placed in a muffle furnace, the temperature inside the furnace was set to a temperature condition of 1060 ° C. in an air atmosphere, and the particles were calcined for 4 hours to obtain particles P1 (hexagonal ferrite particles). ..
- Crystal structure The crystal structure of the obtained particles P1 was confirmed by an X-ray diffraction (XRD) method. Specifically, it was confirmed whether it had a magnetoplumbite-type crystal structure and whether it had a single-phase or two-phase crystal structure.
- XRD X-ray diffraction
- An X'Pert Pro diffractometer manufactured by PANalytical Co., Ltd. was used as an apparatus, and measurement was performed under the following measurement conditions.
- the particle P1 has a magnetoplumbite-type crystal structure (single phase).
- composition The composition of the obtained particles P1 was confirmed by high frequency inductively coupled plasma (ICP) emission spectroscopy. Specifically, the measuring method is as follows. A pressure-resistant container (beaker) containing 12 mg of particles P1 and 10 mL of a 4 mol / L hydrochloric acid aqueous solution was held on a hot plate at a set temperature of 120 ° C. for 12 hours to obtain a solution. After adding 30 mL of pure water to the obtained solution, the mixture was filtered using a 0.1 ⁇ m membrane filter. Elemental analysis of the filtrate thus obtained was performed using a radio frequency inductively coupled plasma (ICP) emission spectroscopic analyzer (model number: ICPS-8100, Shimadzu Corporation).
- ICP radio frequency inductively coupled plasma
- the composition of the particles P1 is as follows. Particle P1: SrFe (9.58) Al (2.42) O 19
- the first liquid was stirred for 15 minutes to terminate the reaction to obtain an aqueous solution (that is, a precursor-containing aqueous solution) containing a reaction product serving as a precursor of hexagonal ferrite particles.
- a aqueous solution that is, a precursor-containing aqueous solution
- the precursor-containing aqueous solution was subjected to a centrifugation treatment (rotation speed: 3000 rpm, rotation time: 10 minutes) three times, and the obtained precipitate was recovered.
- the collected precipitate was washed with water.
- the precipitate after washing with water was dried in an oven having an internal atmospheric temperature of 80 ° C. for 12 hours.
- 10% by mass of strontium chloride was added to the particles and mixed well to obtain particles composed of precursors (that is, precursor particles).
- the precursor particles were placed in a muffle furnace, the temperature inside the furnace was set to a temperature condition of 1060 ° C. in an air atmosphere, and the particles were calcined for 4 hours to obtain particles P2 (hexagonal ferrite particles). ..
- Crystal structure Magnetoplanbite type crystal structure (single phase) Composition: SrFe (10.44) Al (1.56) O 19
- Particle P3 (Hexagonal ferrite particles) >> ⁇ Preparation of particle P3> Particle P3 (hexagonal ferrite particles) was obtained by performing the same operation as for particles P1 except that a precursor-containing aqueous solution was obtained as follows.
- aqueous solution that is, a precursor-containing aqueous solution
- a reaction product serving as a precursor of hexagonal ferrite particles.
- Crystal structure Magnetoplanbite type crystal structure (single phase) Composition: SrFe (9.27) Al (2.73) O 19
- Particle P4 Iron-cobalt alloy particles (manufactured by DOWA Electronics, average primary particle size: 0.1 ⁇ m)
- Dispersant (resin X1) solution The dispersant (resin X1) solution shown in the "dispersion composition" column of Table 1 is shown below. As the resin X1 contained in the dispersant (resin X1) solution, a synthesized resin was used.
- the polymerization initiators I-1 and I-2 shown in the "Polymerization initiator" column of Table 1 are shown below.
- Polymerization inhibitor The polymerization inhibitor shown in "Polymerization inhibitor” in Table 1 is p-methoxyphenol.
- surfactants The surfactants shown in “Surfactants” in Table 1 are the following surfactants (S) (weight average molecular weight (Mw): 15311).
- the repeating units represented by (A) and (B) in the formula are 62 mol% and 38 mol%, respectively.
- Example 1 Preparation of dispersion composition
- Each component was prepared so as to have the composition ratio (mass ratio) shown below, mixed and stirred with a stirrer, and the obtained mixture was prepared using NPM-Pilot manufactured by Symmar Enterprises Co., Ltd.
- the mixture was dispersed under the following dispersion conditions to obtain a dispersion composition.
- -Particle P1 83 parts by mass-Dispersant (resin X1) solution (PGMEA 30% by mass solution of resin X1): 17 parts by mass
- the dispersion conditions are as follows. -Bead diameter: ⁇ 0.05 mm, (Nikkato zirconia beads, YTZ) -Bead filling rate: 65% by volume ⁇ Mill peripheral speed: 10 m / sec -Treatment liquid temperature: 19-21 ° C
- composition 1 The above-mentioned dispersion composition was mixed with the other components shown below to obtain Composition 1. -The above-mentioned dispersion composition: 85 parts by mass-Resin solution (B1: "RD-F8", manufactured by Nippon Catalyst Co., Ltd., solid content 40% by mass, solvent: propylene glycol monomethyl ether (PGME: boiling point 121 ° C.)): 5.
- Example 2 The composition 2 was prepared by the same method as in Example 1 except that the particles P2 were used instead of the particles P1.
- Example 3 The composition 3 was prepared by the same method as in Example 1 except that the particles P3 were used instead of the particles P1.
- Example 4 The composition 4 was prepared by the same method as in Example 1 except that the particles P4 were used instead of the particles P1.
- Example 5 The composition 5 was prepared by the same method as in Example 1 except that the amount of the particles P1 added was changed to 88 parts by mass and the amount of the dispersant X solution added was changed to 12 parts by mass.
- Example 6 The composition 6 was prepared by the same method as in Example 1 except that the amount of the particles P1 added was changed to 79 parts by mass and the amount of the dispersant X solution added was changed to 21 parts by mass.
- Example 7 The composition 7 was prepared by the same method as in Example 1 except that the amount of the solvent S1 added was 2.65 parts by mass and the amount of the solvent S2 was 2.65 parts by mass.
- Example 8 The composition 8 was prepared by the same method as in Example 1 except that 1.45 parts by mass of the polymerizable compound M1 was added and 1.45 parts by mass of the polymerizable compound M2 was added.
- Example 9 The composition 9 was prepared by the same method as in Example 1 except that 0.9 parts by mass of the polymerization initiator I-1 was added and 0.9 parts by mass of the polymerization initiator I-2 was added.
- composition 10 The above-mentioned dispersion composition was mixed with the other components shown below to obtain composition 10.
- -Dispersion composition 85 parts by mass-Resin (B2: Epoxy resin, EPICLON N-695, manufactured by DIC): 6.5 parts by mass-Solvent (S1: PGMEA): 8.5 parts by mass-Surfactant (described above) Surfactant (S)): 0.02 parts by mass
- a release film [Product name: Panapeel (registered trademark P75A, Panac Co., Ltd.) was coated with the obtained composition using an applicator to form a coating film. Next, the formed coating film was dried in an oven having an internal atmospheric temperature of 80 ° C. for 2 hours to obtain a laminate in which an electromagnetic wave absorbing layer was formed on the release film. Next, the release film was removed from the obtained laminate to obtain an electromagnetic wave absorbing sheet (sheet thickness: 250 ⁇ m) of the example. For the prepared electromagnetic wave absorbing sheet, the S parameter at an incident angle of 0 ° was measured by the free space method.
- the magnetic permeability [ ⁇ "peak frequency (unit: GHz) and ⁇ " peak value] of the imaginary part was calculated using the Nicholson-Loss model method.
- a network analyzer from Agilent Technologies, Inc. was used as the device. The evaluation criteria are as follows.
- T (%) ⁇ (Viscosity after storage of composition-Viscosity before storage) / Viscosity before storage of composition ⁇ ⁇ 100 ⁇ Evaluation criteria> "A”: T value is within 3% in absolute value "B”: T value is in absolute value over 3% and within 10% "C”: T value is in absolute value over 10%
- compositions 1 to 10 are both excellent in dispersion stability and absorb electromagnetic waves in a frequency band of 1 GHz or more when a film is formed. It was.
- the film formed from the compositions 1 to 10 (the composition of the example) has excellent electromagnetic wave absorption performance (the peak value ( ⁇ ") of the magnetic permeability of the imaginary part is observed at a high frequency and / or. , The peak value ( ⁇ ”) is large).
- the electromagnetic wave absorbing particles are the magnetoplumbite type hexagonal ferrite particles represented by the above formula (F1)
- the peak value ( ⁇ ”of the magnetic permeability of the imaginary part It was confirmed that the frequency at which is observed is high. Furthermore, when 2.0 ⁇ x ⁇ 6.0 in the equation (F1), the peak value ( ⁇ ”) of the magnetic permeability of the imaginary part is larger. confirmed.
- the mass ratio of the content of the dispersant to the content of the electromagnetic wave absorbing particles in the composition was 0. When it was 065 or less, it was confirmed that the peak value ( ⁇ ”) of the magnetic permeability of the imaginary part was larger.
- Example 11 evaluation of patterning property
- the compositions of Examples 1 to 9 were each applied to an 8-inch silicon wafer (substrate) using an applicator to form a coating film.
- heat treatment pre-baking
- the scale of the applicator was adjusted so that the film thickness of the composition layer after drying was 250 ⁇ m.
- the dried composition layer was exposed using an i-line stepper through a line-and-space pattern mask with a pattern width of 200 ⁇ m.
- the cured film after exposure was subjected to paddle development at 23 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Polymerisation Methods In General (AREA)
- Materials For Photolithography (AREA)
Abstract
本発明の第1の課題は、電磁波吸収粒子を含み、分散安定性に優れた組成物を提供することである。また、本発明の第2の課題は、上記組成物を用いて形成される膜及び硬化膜、並びに硬化膜の製造方法を提供することである。また、本発明の第3の課題は、上記組成物を用いて形成される硬化膜を含む電子部品を提供することである。 本発明の組成物は、電磁波吸収粒子と、分散剤と、溶剤とを含み、 膜を形成したときに1GHz以上の周波数帯域の電磁波を吸収する。
Description
本発明は、組成物、膜、硬化膜、硬化膜の製造方法、及び電子部品に関する。
近年、電子通信機器等においては使用周波数の高周波化が急速に進んでいる。例えば、携帯電話等の通信機器においては1GHz以上の高周波帯域が使用されつつある。これに伴い、これらの機器に装備される電子部品(例えば、インダクタ及びアンテナ等)においても高周波化が希求されている。
このため、昨今、高周波帯域に吸収性能を有する電磁波吸収材料が多く検討されている。例えば、特許文献1では、120GHzを超える周波数域に電磁波吸収量の最大点を有する電磁波吸収材料を開示している。
このため、昨今、高周波帯域に吸収性能を有する電磁波吸収材料が多く検討されている。例えば、特許文献1では、120GHzを超える周波数域に電磁波吸収量の最大点を有する電磁波吸収材料を開示している。
本発明者らは、1GHz以上の高周波帯域の電磁波を吸収可能な膜を得るべく、電磁波吸収粒子と溶剤とを含む組成物を調製して検討したところ、電磁波吸収粒子と溶剤とを含む組成物は、長期間保管されると粘度変化が生じやすいことを明らかとした。つまり、組成物の分散安定性を更に改善する余地があることを明らかとした。
そこで、本発明は、電磁波吸収粒子を含み、分散安定性に優れた組成物を提供することを課題とする。
また、本発明は、上記組成物を用いて形成される膜及び硬化膜、並びに硬化膜の製造方法を提供することを課題とする。
また、本発明は、上記組成物を用いて形成される硬化膜を含む電子部品を提供することを課題とする。
また、本発明は、上記組成物を用いて形成される膜及び硬化膜、並びに硬化膜の製造方法を提供することを課題とする。
また、本発明は、上記組成物を用いて形成される硬化膜を含む電子部品を提供することを課題とする。
本発明者は、上記課題について鋭意検討した結果、下記構成により上記課題を解決できることを見出し、本発明を完成するに至った。
〔1〕 電磁波吸収粒子と、分散剤と、溶剤とを含み、
膜を形成したときに1GHz以上の周波数帯域の電磁波を吸収する、組成物。
〔2〕 上記粒子が、下記式(1)で表されるマグネトプランバイト型六方晶フェライト粒子を含む、〔1〕に記載の組成物。
AFe(12-x)AlxO19 ・・・式(1)
式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
〔3〕 上記粒子が、Fe-Co系合金粒子を含む、〔1〕に記載の組成物。
〔4〕 膜を形成したときに1GHz以上100GHz未満の周波数帯域の電磁波を吸収する、〔1〕~〔3〕のいずれかに記載の組成物。
〔5〕 上記分散剤の分子量が、50,000以下である、〔1〕~〔4〕のいずれかに記載の組成物。
〔6〕 上記分散剤が、グラフト鎖を有する樹脂である、〔1〕~〔5〕のいずれかに記載の組成物。
〔7〕 上記粒子の含有量が、組成物の全質量に対して、60.0~95.0質量%である、〔1〕~〔6〕のいずれかに記載の組成物。
〔8〕 上記分散剤の含有量が、組成物の全質量に対して、1.0~10.0質量%である、〔1〕~〔7〕のいずれかに記載の組成物。
〔9〕 上記溶剤の含有量が、組成物の全質量に対して、10.0~30.0質量%である、〔1〕~〔8〕のいずれかに記載の組成物。
〔10〕 上記溶剤の沸点が、110~170℃である、〔1〕~〔9〕のいずれかに記載の組成物。
〔11〕 更に、熱重合性化合物を含む、〔1〕~〔10〕のいずれかに記載の組成物。
〔12〕 更に、光重合性化合物を含む、〔1〕~〔10〕のいずれかに記載の組成物。
〔13〕 更に、光重合開始剤を含む、〔12〕に記載の組成物。
〔14〕 〔1〕~〔13〕のいずれか1項に記載の組成物から形成される、膜。
〔15〕 〔11〕~〔13〕のいずれか1項に記載の組成物を硬化して形成される、硬化膜。
〔16〕 〔13〕に記載の組成物を用いて基材上に組成物層を形成する工程と、
上記組成物層をパターン状に露光する工程と、
現像液を用いて、露光された上記組成物層を現像する工程と、を有する、硬化膜の製造方法。
〔17〕 〔15〕に記載の硬化膜を含む電子部品。
膜を形成したときに1GHz以上の周波数帯域の電磁波を吸収する、組成物。
〔2〕 上記粒子が、下記式(1)で表されるマグネトプランバイト型六方晶フェライト粒子を含む、〔1〕に記載の組成物。
AFe(12-x)AlxO19 ・・・式(1)
式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
〔3〕 上記粒子が、Fe-Co系合金粒子を含む、〔1〕に記載の組成物。
〔4〕 膜を形成したときに1GHz以上100GHz未満の周波数帯域の電磁波を吸収する、〔1〕~〔3〕のいずれかに記載の組成物。
〔5〕 上記分散剤の分子量が、50,000以下である、〔1〕~〔4〕のいずれかに記載の組成物。
〔6〕 上記分散剤が、グラフト鎖を有する樹脂である、〔1〕~〔5〕のいずれかに記載の組成物。
〔7〕 上記粒子の含有量が、組成物の全質量に対して、60.0~95.0質量%である、〔1〕~〔6〕のいずれかに記載の組成物。
〔8〕 上記分散剤の含有量が、組成物の全質量に対して、1.0~10.0質量%である、〔1〕~〔7〕のいずれかに記載の組成物。
〔9〕 上記溶剤の含有量が、組成物の全質量に対して、10.0~30.0質量%である、〔1〕~〔8〕のいずれかに記載の組成物。
〔10〕 上記溶剤の沸点が、110~170℃である、〔1〕~〔9〕のいずれかに記載の組成物。
〔11〕 更に、熱重合性化合物を含む、〔1〕~〔10〕のいずれかに記載の組成物。
〔12〕 更に、光重合性化合物を含む、〔1〕~〔10〕のいずれかに記載の組成物。
〔13〕 更に、光重合開始剤を含む、〔12〕に記載の組成物。
〔14〕 〔1〕~〔13〕のいずれか1項に記載の組成物から形成される、膜。
〔15〕 〔11〕~〔13〕のいずれか1項に記載の組成物を硬化して形成される、硬化膜。
〔16〕 〔13〕に記載の組成物を用いて基材上に組成物層を形成する工程と、
上記組成物層をパターン状に露光する工程と、
現像液を用いて、露光された上記組成物層を現像する工程と、を有する、硬化膜の製造方法。
〔17〕 〔15〕に記載の硬化膜を含む電子部品。
本発明によれば、電磁波吸収粒子を含み、分散安定性に優れた組成物を提供できる。
また、本発明によれば、上記組成物を用いて形成される膜及び硬化膜、並びに硬化膜の製造方法を提供できる。
また、本発明によれば、上記組成物を用いて形成される硬化膜を含む電子部品を提供できる。
また、本発明によれば、上記組成物を用いて形成される膜及び硬化膜、並びに硬化膜の製造方法を提供できる。
また、本発明によれば、上記組成物を用いて形成される硬化膜を含む電子部品を提供できる。
以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に限定されない。
本明細書中における基(原子団)の表記について、本発明の趣旨に反しない限り、置換及び無置換を記していない表記は、置換基を有さない基と共に置換基を有する基をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。また、本明細書中における「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に限定されない。
本明細書中における基(原子団)の表記について、本発明の趣旨に反しない限り、置換及び無置換を記していない表記は、置換基を有さない基と共に置換基を有する基をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。また、本明細書中における「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光: Extreme Ultraviolet)、X線、及び電子線(EB:Electron Beam)等を意味する。本明細書中における「光」とは、活性光線又は放射線を意味する。
本明細書中における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線、X線、及びEUV光等による露光のみならず、電子線、及びイオンビーム等の粒子線による描画も含む。
本明細書中における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線、X線、及びEUV光等による露光のみならず、電子線、及びイオンビーム等の粒子線による描画も含む。
本明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
本明細書において、(メタ)アクリレートはアクリレート及びメタクリレートを表し、(メタ)アクリルはアクリル及びメタクリルを表し、(メタ)アクリロイルはアクリロイル及びメタクリロイルを表す。
また、本明細書において重量平均分子量(Mw)は、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)法によるポリスチレン換算値である。
本明細書においてGPC法は、HLC-8020GPC(東ソー製)を用い、カラムとしてTSKgel SuperHZM-H、TSKgel SuperHZ4000、TSKgel SuperHZ2000(東ソー製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いる方法に基づく。
本明細書においてGPC法は、HLC-8020GPC(東ソー製)を用い、カラムとしてTSKgel SuperHZM-H、TSKgel SuperHZ4000、TSKgel SuperHZ2000(東ソー製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いる方法に基づく。
[組成物]
本発明の組成物は、電磁波吸収粒子と、分散剤と、溶剤とを含み、膜を形成したときに1GHz以上の周波数帯域の電磁波を吸収する。
本発明の組成物は、上記構成により、電磁波吸収粒子の分散安定性に優れる。つまり、上記組成物は、長期間保管されても粘度変化が生じにくい。
本発明の組成物は、電磁波吸収粒子と、分散剤と、溶剤とを含み、膜を形成したときに1GHz以上の周波数帯域の電磁波を吸収する。
本発明の組成物は、上記構成により、電磁波吸収粒子の分散安定性に優れる。つまり、上記組成物は、長期間保管されても粘度変化が生じにくい。
上記構成と効果との作用機序は必ずしも定かではないが、以下のように推測される。
上記組成物中、電磁波吸収粒子は、分散剤の存在により、電磁波吸収粒子同士の凝集及び/又は電磁波吸収粒子と任意で含まれ得る他の成分との凝集が生じにくく、電磁波吸収粒子がその平均一次粒子径の値に近い平均粒子径で存在すると推測される。特に、後述するように、分散剤がグラフト鎖を有する樹脂である場合、上述の凝集がより一層抑制され得る。この結果として、上記組成物は、長期間保管されても粘度変化が生じにくい。
以下において、まず、本発明の組成物が含む各成分について説明する。
上記組成物中、電磁波吸収粒子は、分散剤の存在により、電磁波吸収粒子同士の凝集及び/又は電磁波吸収粒子と任意で含まれ得る他の成分との凝集が生じにくく、電磁波吸収粒子がその平均一次粒子径の値に近い平均粒子径で存在すると推測される。特に、後述するように、分散剤がグラフト鎖を有する樹脂である場合、上述の凝集がより一層抑制され得る。この結果として、上記組成物は、長期間保管されても粘度変化が生じにくい。
以下において、まず、本発明の組成物が含む各成分について説明する。
〔特定電磁波吸収粒子〕
本発明の組成物は、電磁波吸収粒子を含む。
本発明の組成物は、電磁波吸収粒子を含む。
電磁波吸収粒子を構成する材料としては、金属元素を含むのが好ましく、なかでも、Fe、Ni、及びCoからなる群から選択される少なくとも1種の金属元素を含むのが好ましく、Fe元素を含むのがより好ましい。
電磁波吸収粒子中における上記金属元素の存在形態としては特に制限されず、例えば、合金、金属酸化物、金属窒化物、及び金属炭化物が挙げられる。すなわち、例えば、電磁波吸収粒子が、金属元素としてFe元素を含む場合、上記Fe元素は他の金属元素との合金、鉄酸化物、鉄窒化物、及び鉄炭化物等の形態で含まれていてもよい。
電磁波吸収粒子を構成する材料は、Fe、Ni、及びCo以外のその他の元素を含んでいてもよい。上記その他の元素の具体例としては、Al、Si、S、Sc、Ti、V、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Bi、La、Ce、Pr、Nd、P、Zn、Sr、Zr、Mn、Cr、Nb、Pb、Ca、B、C、及びN等が挙げられる。
電磁波吸収粒子中における上記金属元素の存在形態としては特に制限されず、例えば、合金、金属酸化物、金属窒化物、及び金属炭化物が挙げられる。すなわち、例えば、電磁波吸収粒子が、金属元素としてFe元素を含む場合、上記Fe元素は他の金属元素との合金、鉄酸化物、鉄窒化物、及び鉄炭化物等の形態で含まれていてもよい。
電磁波吸収粒子を構成する材料は、Fe、Ni、及びCo以外のその他の元素を含んでいてもよい。上記その他の元素の具体例としては、Al、Si、S、Sc、Ti、V、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Bi、La、Ce、Pr、Nd、P、Zn、Sr、Zr、Mn、Cr、Nb、Pb、Ca、B、C、及びN等が挙げられる。
電磁波吸収粒子としては、なかでも、磁性粒子であるのが好ましい。
電磁波吸収粒子を構成する材料の具体例としては、Fe-Co系合金(好ましくは、パーメンジュール)、Fe-Ni系合金(例えば、パーマロイ)、Fe-Zr系合金、Fe-Mn系合金、Fe-Si系合金、Fe-Al系合金、Ni-Mo系合金(好ましくは、スーパーマロイ)、Fe-Ni-Co系合金、Fe-Si-Cr系合金、Fe-Si-B系合金、Fe-Si-Al系合金(好ましくは、センダスト)、Fe-Si-B-C系合金、Fe-Si-B-Cr系合金、Fe-Si-B-Cr-C系合金、Fe-Co-Si-B系合金、Fe-Si-B-Nb系合金、Feナノ結晶合金、Fe基アモルファス合金、Co基アモルファス合金、スピネルフェライト(好ましくは、Ni-Zn系フェライト、又はMn-Zn系フェライト)及び六方晶フェライト(好ましくは、バリウムフェライト、又は後述の式(F1)で表されるマグネトプランバイト型六方晶フェライト(以下「電磁波吸収粒子(F1)」ともいう。))が挙げられる。なお、上記合金は、アモルファスであってもよい。
なかでも、形成される膜の電磁波吸収性能がより優れる点で、Fe元素を含む合金粒子が好ましく、Fe-Co系合金又は六方晶フェライトがより好ましく、Fe-Co系合金、又は電磁波吸収粒子(F1)がより好ましい。
電磁波吸収粒子を構成する材料は、1種を単独で用いても、2種以上を併用してもよい。
なかでも、形成される膜の電磁波吸収性能がより優れる点で、Fe元素を含む合金粒子が好ましく、Fe-Co系合金又は六方晶フェライトがより好ましく、Fe-Co系合金、又は電磁波吸収粒子(F1)がより好ましい。
電磁波吸収粒子を構成する材料は、1種を単独で用いても、2種以上を併用してもよい。
電磁波吸収粒子の粒径としては特に制限されないが、電磁波吸収粒子が後述する電磁波吸収粒子(F1)以外の粒子である場合、形成される膜の電磁波吸収性能がより優れる点で、電磁波吸収粒子の平均一次粒径は、150nm以下が好ましく、50nm以下がより好ましく、40nm以下が更に好ましい。なお、下限値としては特に制限されず、例えば、1nm以上であり、10nm以上が好ましく、20nm以上がより好ましい。
電磁波吸収粒子の一次粒子の粒子径は、電磁波吸収粒子を透過型電子顕微鏡を用いて撮影倍率100,000倍で撮影し、総倍率500,000倍になるように印画紙にプリントして得た粒子写真において、デジタイザーで粒子(一次粒子)の輪郭をトレースし、トレースした領域と同じ面積の円の直径(円面積相径)を算出することで測定する。ここで、一次粒子とは、凝集のない独立した粒子をいう。透過型電子顕微鏡を用いる撮影は、加速電圧300kVで透過型電子顕微鏡を用いて直接法により行うものとする。透過型電子顕微鏡観察及び測定は、例えば日立製透過型電子顕微鏡H-9000型及びカールツァイス製画像解析ソフトKS-400を用いて行うことができる。
電磁波吸収粒子の形状に関して、「板状」とは、対向する2つの板面を有する形状をいう。一方、そのような板面を持たない粒子形状の中で、長軸と短軸の区別のある形状が「楕円状」である。長軸とは、粒子の長さを最も長く取ることができる軸(直線)として決定する。一方、短軸とは、長軸と直交する直線で粒子長さを取ったときに長さが最も長くなる軸として決定する。長軸と短軸の区別がない形状、即ち長軸長=短軸長となる形状が「球状」である。形状から長軸及び短軸が特定できない形状を不定形と呼ぶ。上記の粒子形状特定のための透過型電子顕微鏡を用いる撮影は、撮影対象粒子に配向処理を施さずに行う。電磁波吸収粒子の形状は、板状、楕円状、球状、及び不定形のいずれでもよい。
ここで、本明細書に記載の各種粒子に関する平均一次粒子径は、市販品を用いる場合、カタログ値を採用する。
カタログ値が無い場合、上記のように撮影された粒子写真を用いて、無作為に抽出した500個の粒子について求められた値の算術平均とする。
カタログ値が無い場合、上記のように撮影された粒子写真を用いて、無作為に抽出した500個の粒子について求められた値の算術平均とする。
なお、本発明の組成物において、電磁波吸収粒子は、平均一次粒子径の異なる粒子を複数組み合わせて用いてもよい。
一方で、電磁波吸収粒子が後述する電磁波吸収粒子(F1)である場合、形成される膜の電磁波吸収性能がより優れる点で、その個数平均粒径D50は、2~100μmであるのが好ましい。なお、個数平均粒径D50とは、個数基準の粒度分布において、粒径の小さい方から累積50個数%に相当する粒径を意図する。
個数平均粒径D50は、例えば、粒度分布計を用いて測定できる。測定装置としては、例えば、(株)堀場製作所のレーザ回折/散乱式粒子径分布測定装置 LA-960(型番)を使用できる。但し、測定装置は、これに制限されない。
個数平均粒径D50は、例えば、粒度分布計を用いて測定できる。測定装置としては、例えば、(株)堀場製作所のレーザ回折/散乱式粒子径分布測定装置 LA-960(型番)を使用できる。但し、測定装置は、これに制限されない。
電磁波吸収粒子(F1)は、次の通りである。
AFe(12-x)AlxO19 ・・・式(F1)
式(F1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
AFe(12-x)AlxO19 ・・・式(F1)
式(F1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。
式(F1)において、上記Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素であれば、金属元素の種類及び数は、特に制限されない。
上記Aとしては、操作性及び取り扱い性がより優れる点で、Sr、Ba、及びCaからなる群より選ばれる少なくとも1種の金属元素が好ましい。
式(F1)において、xは、1.5≦x≦8.0を満たし、1.5≦x≦6.0を満たすことが好ましく、2.0≦x≦6.0を満たすことがより好ましい。
式(F1)において上記xが1.5以上である場合、電磁波吸収粒子(F1)は、60GHzよりも高い周波数帯域の電磁波を吸収し得る。
式(F1)において上記xが8.0以下である場合、電磁波吸収粒子(F1)は、磁性を有する。
上記Aとしては、操作性及び取り扱い性がより優れる点で、Sr、Ba、及びCaからなる群より選ばれる少なくとも1種の金属元素が好ましい。
式(F1)において、xは、1.5≦x≦8.0を満たし、1.5≦x≦6.0を満たすことが好ましく、2.0≦x≦6.0を満たすことがより好ましい。
式(F1)において上記xが1.5以上である場合、電磁波吸収粒子(F1)は、60GHzよりも高い周波数帯域の電磁波を吸収し得る。
式(F1)において上記xが8.0以下である場合、電磁波吸収粒子(F1)は、磁性を有する。
電磁波吸収粒子(F1)の具体例としては、SrFe(9.58)Al(2.42)O19、SrFe(9.37)Al(2.63)O19、SrFe(9.27)Al(2.73)O19、SrFe(9.85)Al(2.15)O19、SrFe(10.00)Al(2.00)O19、SrFe(9.74)Al(2.26)O19、SrFe(10.44)Al(1.56)O19、SrFe(9.79)Al(2.21)O19、SrFe(9.33)Al(2.67)O19、SrFe(7.88)Al(4.12)O19、SrFe(7.04)Al(4.96)O19、SrFe(7.37)Al(4.63)O19、SrFe(6.25)Al(5.75)O19、SrFe(7.71)Al(4.29)O19、Sr(0.80)Ba(0.10)Ca(0.10)Fe(9.83)Al(2.17)O19、BaFe(9.50)Al(2.50)O19、CaFe(10.00)Al(2.00)O19、及びPbFe(9.00)Al(3.00)O19等が挙げられる。
電磁波吸収粒子(F1)の組成は、高周波誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法により確認できる。
具体的には、試料粒子12mg及び4mol/L(リットル;以下、同じ。)の塩酸水溶液10mLを入れた耐圧容器を、設定温度120℃のオーブンで12時間保持し、溶解液を得る。次いで、得られた溶解液に純水30mLを加えた後、0.1μmのメンブレンフィルタを用いてろ過する。このようにして得られたろ液の元素分析を、高周波誘導結合プラズマ(ICP)発光分光分析装置を用いて行う。得られた元素分析の結果に基づき、鉄原子100原子%に対する各金属原子の含有率を求める。得られた含有率に基づき、組成を確認する。
測定装置としては、例えば、(株)島津製作所の高周波誘導結合プラズマ(ICP)発光分光分析装置(型番:ICPS-8100)が挙げられる。
具体的には、試料粒子12mg及び4mol/L(リットル;以下、同じ。)の塩酸水溶液10mLを入れた耐圧容器を、設定温度120℃のオーブンで12時間保持し、溶解液を得る。次いで、得られた溶解液に純水30mLを加えた後、0.1μmのメンブレンフィルタを用いてろ過する。このようにして得られたろ液の元素分析を、高周波誘導結合プラズマ(ICP)発光分光分析装置を用いて行う。得られた元素分析の結果に基づき、鉄原子100原子%に対する各金属原子の含有率を求める。得られた含有率に基づき、組成を確認する。
測定装置としては、例えば、(株)島津製作所の高周波誘導結合プラズマ(ICP)発光分光分析装置(型番:ICPS-8100)が挙げられる。
電磁波吸収粒子(F1)は、結晶相が単相のマグネトプランバイト型六方晶フェライトであるのが好ましい。
ここで「結晶相が単相である」場合とは、粉末X線回折(XRD:X-Ray-Diffraction)測定において、任意の組成のマグネトプランバイト型六方晶フェライトの結晶構造を示す回折パターンが1種類のみ観察される場合をいう。換言すると、任意の組成のマグネトプランバイト型六方晶フェライトが複数混在し、回折パターンが2種類以上観察されたり、マグネトプランバイト型六方晶フェライト以外の結晶の回折パターンが観察されたりすることがない場合をいう。回折パターンの帰属には、例えば、国際回折データセンター(ICDD:International Centre for Diffraction Data、登録商標)のデータベースを参照できる。例えば、Srを含むマグネトプランバイト型六方晶フェライトの回折パターンは、国際回折データセンター(ICDD)の「00-033-1340」を参照できる。但し、鉄の一部がアルミニウムに置換されることで、ピーク位置については、シフトする。
ここで「結晶相が単相である」場合とは、粉末X線回折(XRD:X-Ray-Diffraction)測定において、任意の組成のマグネトプランバイト型六方晶フェライトの結晶構造を示す回折パターンが1種類のみ観察される場合をいう。換言すると、任意の組成のマグネトプランバイト型六方晶フェライトが複数混在し、回折パターンが2種類以上観察されたり、マグネトプランバイト型六方晶フェライト以外の結晶の回折パターンが観察されたりすることがない場合をいう。回折パターンの帰属には、例えば、国際回折データセンター(ICDD:International Centre for Diffraction Data、登録商標)のデータベースを参照できる。例えば、Srを含むマグネトプランバイト型六方晶フェライトの回折パターンは、国際回折データセンター(ICDD)の「00-033-1340」を参照できる。但し、鉄の一部がアルミニウムに置換されることで、ピーク位置については、シフトする。
マグネトプランバイト型六方晶フェライトの結晶相が単相であることの確認は、上述のとおり、例えば、X線回折(XRD)法により行うことができる。
具体的には、粉末X線回折装置を用い、以下の条件にて測定する方法が挙げられる。
測定装置としては、例えば、PANalytical社のX’Pert Pro回折計を好適に用いることができる。但し、測定装置は、これに限定されない。
具体的には、粉末X線回折装置を用い、以下の条件にて測定する方法が挙げられる。
測定装置としては、例えば、PANalytical社のX’Pert Pro回折計を好適に用いることができる。但し、測定装置は、これに限定されない。
-条件-
X線源:CuKα線
(波長:1.54Å(0.154nm)、出力:40mA,45kV)
スキャン範囲:20°<2θ<70°
スキャン間隔:0.05°
スキャンスピード:0.75°/min
X線源:CuKα線
(波長:1.54Å(0.154nm)、出力:40mA,45kV)
スキャン範囲:20°<2θ<70°
スキャン間隔:0.05°
スキャンスピード:0.75°/min
なお、電磁波吸収粒子(F1)としては、国際公開第2019/131675号公報の記載を参照して作製できる。
電磁波吸収粒子(F1)の形状としては特に制限されず、例えば、板状及び不定形等が挙げられる。
電磁波吸収粒子(F1)の形状としては特に制限されず、例えば、板状及び不定形等が挙げられる。
電磁波吸収粒子は、1種を単独で用いても、2種以上を併用してもよい。
組成物中における電磁波吸収粒子の含有量(電磁波吸収粒子が複数種含まれる場合は、合計含有量)は、組成物の全固形分に対して、50.0~95.0質量%が好ましく、65.0~90.0質量%がより好ましく、70.0~90.0質量%が更に好ましい。なお、本明細書において、組成物の「全固形分」とは、溶剤を除いたすべての成分を意味し、液体状の成分も固形分とみなす。
また、組成物中における電磁波吸収粒子の含有量(電磁波吸収粒子が複数種含まれる場合は、合計含有量)は、組成物の全質量に対して、10.0~99.0質量%が好ましく、60.0~95.0質量%がより好ましく、60.0~80.0質量%が更に好ましい。
〔分散剤〕
本発明の組成物は、分散剤を含む。
組成物中における分散剤の含有量としては特に制限されないが、組成物の全質量に対して、1.0~10.0質量%が好ましく、1.0~8.0質量%がより好ましく、1.0~5.0質量%が更に好ましい。
分散剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の分散剤を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
本発明の組成物は、分散剤を含む。
組成物中における分散剤の含有量としては特に制限されないが、組成物の全質量に対して、1.0~10.0質量%が好ましく、1.0~8.0質量%がより好ましく、1.0~5.0質量%が更に好ましい。
分散剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の分散剤を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
また、組成物における、電磁波吸収粒子の含有量に対する、分散剤の含有量の質量比(分散剤の含有量/電磁波吸収粒子の含有量)は、0.010~1.5が好ましく、0.010~1.0がより好ましく、0.020~0.065が更に好ましい。
分散剤としては、上述の電磁波吸収粒子を分散し得るものであれば特に制限されず、例えば、グラフト鎖を有する樹脂(以下「特定分散樹脂」ともいう。)、凝集分散剤、及び凝集コントロール剤等が挙げられる。分散剤としては、形成される膜の電磁波吸収性能がより優れる点で、なかでも、グラフト鎖を有する樹脂(特定分散樹脂)が好ましい。
分散剤の分子量(分子量分布を有する場合には重量平均分子量)としては特に制限されないが上限値としては、例えば、300,000以下が好ましく、200,000以下がより好ましく、100,000以下が更に好ましく、50,000以下が特に好ましい。また、下限値としては、例えば、3,000以上が好ましく、4,000以上がより好ましく、5,000以上が更に好ましく、6,000以上が特に好ましい。分散剤の分子量(分子量分布を有する場合には重量平均分子量)としては、なかでも、5,000~50,000が好ましい。
<特定分散樹脂>
以下、特定分散樹脂について説明する。
以下、特定分散樹脂について説明する。
(グラフト鎖を含む繰り返し単位)
特定分散樹脂は、グラフト鎖を含む樹脂であり、グラフト鎖を含む繰り返し単位を含む樹脂であるのが好ましい。
グラフト鎖が長くなると立体反発効果が高くなり電磁波吸収粒子の分散安定性はより向上する。一方、グラフト鎖が長すぎると電磁波吸収粒子への吸着力が低下して、電磁波吸収粒子の分散安定性は低下する場合がある。このため、グラフト鎖は、水素原子を除いた原子数が40~10000であるのが好ましく、水素原子を除いた原子数が50~2000であるのがより好ましく、水素原子を除いた原子数が60~500であるのが更に好ましい。
ここで、グラフト鎖とは、主鎖の根元(主鎖から枝分かれしている基において主鎖に結合する原子)から、主鎖から枝分かれしている基の末端までを示す。
特定分散樹脂は、グラフト鎖を含む樹脂であり、グラフト鎖を含む繰り返し単位を含む樹脂であるのが好ましい。
グラフト鎖が長くなると立体反発効果が高くなり電磁波吸収粒子の分散安定性はより向上する。一方、グラフト鎖が長すぎると電磁波吸収粒子への吸着力が低下して、電磁波吸収粒子の分散安定性は低下する場合がある。このため、グラフト鎖は、水素原子を除いた原子数が40~10000であるのが好ましく、水素原子を除いた原子数が50~2000であるのがより好ましく、水素原子を除いた原子数が60~500であるのが更に好ましい。
ここで、グラフト鎖とは、主鎖の根元(主鎖から枝分かれしている基において主鎖に結合する原子)から、主鎖から枝分かれしている基の末端までを示す。
また、グラフト鎖は、ポリマー構造を含んでいることが好ましく、このようなポリマー構造としては、例えば、ポリ(メタ)アクリレート構造(例えば、ポリ(メタ)アクリル構造)、ポリエステル構造、ポリウレタン構造、ポリウレア構造、ポリアミド構造、及びポリエーテル構造等が挙げられる。
グラフト鎖と溶剤との相互作用性を向上させ、それにより電磁波吸収粒子の分散安定性を高めるために、グラフト鎖は、ポリエステル構造、ポリエーテル構造、及びポリ(メタ)アクリレート構造からなる群から選ばれる少なくとも1種を含むグラフト鎖であるのが好ましく、ポリエステル構造及びポリエーテル構造の少なくともいずれかを含むグラフト鎖であるのがより好ましい。
グラフト鎖と溶剤との相互作用性を向上させ、それにより電磁波吸収粒子の分散安定性を高めるために、グラフト鎖は、ポリエステル構造、ポリエーテル構造、及びポリ(メタ)アクリレート構造からなる群から選ばれる少なくとも1種を含むグラフト鎖であるのが好ましく、ポリエステル構造及びポリエーテル構造の少なくともいずれかを含むグラフト鎖であるのがより好ましい。
このようなグラフト鎖を含むマクロモノマー(ポリマー構造を有し、主鎖に結合してグラフト鎖を構成するモノマー)としては、特に制限されないが、反応性二重結合性基を含むマクロモノマーを好適に使用できる。
上記グラフト鎖を含む繰り返し単位に対応し、特定分散樹脂の合成に好適に用いられる市販のマクロモノマーとしては、AA-6、AA-10、AB-6、AS-6、AN-6、AW-6、AA-714、AY-707、AY-714、AK-5、AK-30、及びAK-32(いずれも商品名、東亞合成社製)、並びにブレンマーPP-100、ブレンマーPP-500、ブレンマーPP-800、ブレンマーPP-1000、ブレンマー55-PET-800、ブレンマーPME-4000、ブレンマーPSE-400、ブレンマーPSE-1300、及びブレンマー43PAPE-600B(いずれも商品名、日油社製)が挙げられる。この中でも、AA-6、AA-10、AB-6、AS-6、AN-6、又はブレンマーPME-4000が好ましい。
特定分散樹脂は、ポリアクリル酸メチル、ポリメタクリル酸メチル、及び、環状又は鎖状のポリエステルからなる群より選択される少なくとも1種の構造を含むことが好ましく、ポリアクリル酸メチル、ポリメタクリル酸メチル、及び鎖状のポリエステルからなる群より選択される少なくとも1種の構造を含むことがより好ましく、ポリアクリル酸メチル構造、ポリメタクリル酸メチル構造、ポリカプロラクトン構造、及びポリバレロラクトン構造からなる群より選択される少なくとも1種の構造を含むことが更に好ましい。特定分散樹脂は、上記構造を1種単独で含んでいてもよいし、これらの構造を複数含んでいてもよい。
ここで、ポリカプロラクトン構造とは、ε-カプロラクトンを開環した構造を繰り返し単位として含む構造をいう。ポリバレロラクトン構造とは、δ-バレロラクトンを開環した構造を繰り返し単位として含む構造をいう。
ここで、ポリカプロラクトン構造とは、ε-カプロラクトンを開環した構造を繰り返し単位として含む構造をいう。ポリバレロラクトン構造とは、δ-バレロラクトンを開環した構造を繰り返し単位として含む構造をいう。
なお、特定分散樹脂が後述する式(1)及び後述する式(2)におけるj及びkが5である繰り返し単位を含む場合、特定分散樹脂中に、上述したポリカプロラクトン構造を導入できる。
また、特定分散樹脂が後述する式(1)及び後述する式(2)におけるj及びkが4である繰り返し単位を含む場合、特定分散樹脂中に、上述したポリバレロラクトン構造を導入できる。
また、特定分散樹脂が後述する式(4)におけるX5が水素原子であり、R4がメチル基である繰り返し単位を含む場合、特定分散樹脂中に、上述したポリアクリル酸メチル構造を導入できる。
また、特定分散樹脂が後述する式(4)におけるX5がメチル基であり、R4がメチル基である繰り返し単位を含む場合、特定分散樹脂中に、上述したポリメタクリル酸メチル構造を導入できる。
また、特定分散樹脂が後述する式(1)及び後述する式(2)におけるj及びkが4である繰り返し単位を含む場合、特定分散樹脂中に、上述したポリバレロラクトン構造を導入できる。
また、特定分散樹脂が後述する式(4)におけるX5が水素原子であり、R4がメチル基である繰り返し単位を含む場合、特定分散樹脂中に、上述したポリアクリル酸メチル構造を導入できる。
また、特定分散樹脂が後述する式(4)におけるX5がメチル基であり、R4がメチル基である繰り返し単位を含む場合、特定分散樹脂中に、上述したポリメタクリル酸メチル構造を導入できる。
特定分散樹脂は、グラフト鎖を含む繰り返し単位として、下記式(1)~式(4)のいずれかで表される繰り返し単位を含むことが好ましく、下記式(1A)、下記式(2A)、下記式(3A)、下記式(3B)、及び下記(4)のいずれかで表される繰り返し単位を含むことがより好ましい。
式(1)~(4)において、W1、W2、W3、及びW4は、それぞれ独立に、酸素原子又はNHを表す。W1、W2、W3、及びW4は、酸素原子であるのが好ましい。
式(1)~(4)において、X1、X2、X3、X4、及びX5は、それぞれ独立に、水素原子又は1価の有機基を表す。X1、X2、X3、X4、及びX5は、合成上の制約の点からは、それぞれ独立に、水素原子又は炭素数(炭素原子数)1~12のアルキル基が好ましく、それぞれ独立に、水素原子又はメチル基がより好ましく、メチル基が更に好ましい。
式(1)~(4)において、X1、X2、X3、X4、及びX5は、それぞれ独立に、水素原子又は1価の有機基を表す。X1、X2、X3、X4、及びX5は、合成上の制約の点からは、それぞれ独立に、水素原子又は炭素数(炭素原子数)1~12のアルキル基が好ましく、それぞれ独立に、水素原子又はメチル基がより好ましく、メチル基が更に好ましい。
式(1)~(4)において、Y1、Y2、Y3、及びY4は、それぞれ独立に、2価の連結基を表し、連結基は特に構造上制約されない。Y1、Y2、Y3、及びY4で表される2価の連結基として、具体的には、下記の(Y-1)~(Y-21)の連結基等が挙げられる。下記に示した構造において、A及びBはそれぞれ、式(1)~(4)における左末端基、右末端基との結合部位を意味する。下記に示した構造のうち、合成の簡便性から、(Y-2)又は(Y-13)がより好ましい。
式(1)~(4)において、Z1、Z2、Z3、及びZ4は、それぞれ独立に1価の有機基を表す。有機基の構造は、特に制限されないが、具体的には、アルキル基、水酸基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基、及びアミノ基等が挙げられる。これらの中でも、Z1、Z2、Z3、及びZ4で表される有機基としては、特に分散安定性向上の点から、立体反発効果を含む基が好ましく、それぞれ独立に炭素数5~24のアルキル基又はアルコキシ基がより好ましく、その中でも、それぞれ独立に炭素数5~24の分岐アルキル基、炭素数5~24の環状アルキル基、又は炭素数5~24のアルコキシ基が更に好ましい。なお、アルコキシ基中に含まれるアルキル基は、直鎖状、分岐鎖状、及び環状のいずれでもよい。
式(1)~(4)において、n、m、p、及びqは、それぞれ独立に、1~500の整数である。
また、式(1)及び(2)において、j及びkは、それぞれ独立に、2~8の整数を表す。式(1)及び(2)におけるj及びkは、組成物中の電磁波吸収粒子の分散安定性がより優れる点で、4~6の整数が好ましく、5がより好ましい。
また、式(1)及び(2)において、n及びmは、10以上の整数が好ましく、20以上の整数がより好ましい。また、特定分散樹脂が、ポリカプロラクトン構造、及びポリバレロラクトン構造を含む場合、ポリカプロラクトン構造の繰り返し数と、ポリバレロラクトンの繰返し数の和としては、10以上の整数が好ましく、20以上の整数がより好ましい。
また、式(1)及び(2)において、j及びkは、それぞれ独立に、2~8の整数を表す。式(1)及び(2)におけるj及びkは、組成物中の電磁波吸収粒子の分散安定性がより優れる点で、4~6の整数が好ましく、5がより好ましい。
また、式(1)及び(2)において、n及びmは、10以上の整数が好ましく、20以上の整数がより好ましい。また、特定分散樹脂が、ポリカプロラクトン構造、及びポリバレロラクトン構造を含む場合、ポリカプロラクトン構造の繰り返し数と、ポリバレロラクトンの繰返し数の和としては、10以上の整数が好ましく、20以上の整数がより好ましい。
式(3)中、R3は分岐鎖状又は直鎖状のアルキレン基を表し、炭素数1~10のアルキレン基が好ましく、炭素数2又は3のアルキレン基がより好ましい。pが2~500のとき、複数存在するR3は互いに同じであっても異なっていてもよい。
式(4)中、R4は水素原子又は1価の有機基を表し、この1価の有機基の構造は特に制限されない。R4としては、水素原子、アルキル基、アリール基、又はヘテロアリール基が好ましく、水素原子又はアルキル基がより好ましい。R4がアルキル基である場合、アルキル基としては、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐鎖状アルキル基、又は炭素数5~20の環状アルキル基が好ましく、炭素数1~20の直鎖状アルキル基がより好ましく、炭素数1~6の直鎖状アルキル基が更に好ましい。式(4)において、qが2~500のとき、グラフト鎖中に複数存在するX5及びR4は互いに同じであっても異なっていてもよい。
式(4)中、R4は水素原子又は1価の有機基を表し、この1価の有機基の構造は特に制限されない。R4としては、水素原子、アルキル基、アリール基、又はヘテロアリール基が好ましく、水素原子又はアルキル基がより好ましい。R4がアルキル基である場合、アルキル基としては、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐鎖状アルキル基、又は炭素数5~20の環状アルキル基が好ましく、炭素数1~20の直鎖状アルキル基がより好ましく、炭素数1~6の直鎖状アルキル基が更に好ましい。式(4)において、qが2~500のとき、グラフト鎖中に複数存在するX5及びR4は互いに同じであっても異なっていてもよい。
また、特定分散樹脂は、2種以上の構造が異なる、グラフト鎖を含む繰り返し単位を含んでいてもよい。すなわち、特定分散樹脂の分子中に、互いに構造の異なる式(1)~(4)で示される繰り返し単位を含んでいてもよく、また、式(1)~(4)においてn、m、p、及びqがそれぞれ2以上の整数を表す場合、式(1)及び(2)においては、側鎖中にj及びkが互いに異なる構造を含んでいてもよく、式(3)及び(4)においては、分子内に複数存在するR3、R4、及びX5は互いに同じであっても異なっていてもよい。
式(1)で表される繰り返し単位としては、組成物中の電磁波吸収粒子の分散安定性がより優れる点で、下記式(1A)で表される繰り返し単位であるのがより好ましい。
また、式(2)で表される繰り返し単位としては、組成物中の電磁波吸収粒子の分散安定性がより優れる点で、下記式(2A)で表される繰り返し単位であるのがより好ましい。
また、式(2)で表される繰り返し単位としては、組成物中の電磁波吸収粒子の分散安定性がより優れる点で、下記式(2A)で表される繰り返し単位であるのがより好ましい。
式(1A)中、X1、Y1、Z1、及びnは、式(1)におけるX1、Y1、Z1、及びnと同義であり、好ましい範囲も同様である。式(2A)中、X2、Y2、Z2、及びmは、式(2)におけるX2、Y2、Z2、及びmと同義であり、好ましい範囲も同様である。
また、式(3)で表される繰り返し単位としては、組成物中の電磁波吸収粒子の分散安定性がより優れる点で、下記式(3A)又は式(3B)で表される繰り返し単位であるのがより好ましい。
式(3A)又は(3B)中、X3、Y3、Z3、及びpは、式(3)におけるX3、Y3、Z3、及びpと同義であり、好ましい範囲も同様である。
特定分散樹脂は、組成物中の電磁波吸収粒子の分散安定性がより優れる点で、グラフト鎖を含む繰り返し単位として、式(1A)で表される繰り返し単位を含むことがより好ましい。
また、特定分散樹脂としては、ポリアルキレンイミン構造とポリエステル構造を含む繰り返し単位を含むことも好ましい。ポリアルキレンイミン構造とポリエステル構造を含む繰り返し単位は、主鎖にポリアルキレンイミン構造を含み、グラフト鎖としてポリエステル構造を含むことが好ましい。
上記ポリアルキレンイミン構造とは、同一又は異なるアルキレンイミン鎖を2つ以上含む重合構造である。アルキレンイミン鎖としては、具体的には下記式(4A)及び下記式(4B)で表されるアルキレンイミン鎖が挙げられる。
式(4A)中、RX1及びRX2は、それぞれ独立に、水素原子又はアルキル基を表す。a1は、2以上の整数を表す。*1はポリエステル鎖、隣接するアルキレンイミン鎖、又は、水素原子若しくは置換基との結合位置を表す。
式(4B)中、RX3及びRX4は、それぞれ独立に水素原子又はアルキル基を表す。a2は、2以上の整数を表す。式(4B)で表されるアルキレンイミン鎖は、アニオン性基を有するポリエステル鎖と、式(4B)中に明示されるN+とポリエステル鎖に含まれるアニオン性基が塩架橋基を形成することにより、結合する。
式(4A)及び式(4B)中の*、及び、式(4B)中の*2は、それぞれ独立に、隣接するアルキレンイミン鎖、又は、水素原子若しくは置換基と結合する位置を表す。
式(4A)及び式(4B)中の*としては、なかでも、隣接するアルキレンイミン鎖と結合する位置を表すことが好ましい。
式(4A)及び式(4B)中の*としては、なかでも、隣接するアルキレンイミン鎖と結合する位置を表すことが好ましい。
式(4A)中のRX1及びRX2、並びに式(4B)中のRX3及びRX4は、それぞれ独立に、水素原子又はアルキル基を表す。
アルキル基の炭素数としては、炭素数1~6が好ましく、炭素数1~3が好ましい。
式(4A)中、RX1及びRX2としては、いずれも水素原子であるのが好ましい。
式(4B)中、RX3及びRX4としては、いずれも水素原子であるのが好ましい。
アルキル基の炭素数としては、炭素数1~6が好ましく、炭素数1~3が好ましい。
式(4A)中、RX1及びRX2としては、いずれも水素原子であるのが好ましい。
式(4B)中、RX3及びRX4としては、いずれも水素原子であるのが好ましい。
式(4A)中のa1及び式(4B)中のa2としては、2以上の整数であれば特に制限されない。その上限値としては10以下が好ましく、6以下がより好ましく、4以下が更に好ましく、2又は3が更に好ましく、2が特に好ましい。
式(4A)及び式(4B)中、*は、隣接するアルキレンイミン鎖、又は、水素原子若しくは置換基との結合位置を表す。
上記置換基としては、例えばアルキル基(例えば炭素数1~6のアルキル基)等の置換基が挙げられる。また、置換基として、ポリエステル鎖が結合してもよい。
上記置換基としては、例えばアルキル基(例えば炭素数1~6のアルキル基)等の置換基が挙げられる。また、置換基として、ポリエステル鎖が結合してもよい。
式(4A)で表されるアルキレンイミン鎖は、上述した*1の位置で、ポリエステル鎖と連結していることが好ましい。具体的には、ポリエステル鎖中のカルボニル炭素が、上述した*1の位置で結合することが好ましい。
上記ポリエステル鎖としては、下記式(5A)で表されるポリエステル鎖が挙げられる。
上記ポリエステル鎖としては、下記式(5A)で表されるポリエステル鎖が挙げられる。
アルキレンイミン鎖が式(4B)で表されるアルキレンイミン鎖である場合、ポリエステル鎖はアニオン性基(好ましくは酸素アニオンO-)を含み、このアニオン性基と式(4B)中のN+とが塩架橋基を形成することが好ましい。
このようなポリエステル鎖としては、下記式(5B)で表されるポリエステル鎖が挙げられる。
このようなポリエステル鎖としては、下記式(5B)で表されるポリエステル鎖が挙げられる。
式(5A)中のLX1、及び式(5B)中のLX2は、それぞれ独立に、2価の連結基を表す。2価の連結基としては、好ましくは炭素数3~30のアルキレン基が挙げられる。
式(5A)中のb11、及び式(5B)中のb21は、それぞれ独立に2以上の整数を表し、その上限は、例えば、200以下である。
式(5A)中のb12、及び式(5B)中のb22は、それぞれ独立に0又は1を表す。
式(5A)中のXA、及び式(5B)中のXBは、それぞれ独立に、水素原子又は置換基を表す。置換基としては、アルキル基、アルコキシ基、ポリアルキレンオキシアルキル基、及びアリール基等が挙げられる。
上記アルキル基(直鎖状、分岐鎖状、及び環状のいずれでもよい。)、及び、上記アルコキシ基中に含まれるアルキル基(直鎖状、分岐鎖状、及び環状のいずれでもよい。)の炭素数としては、1~30が挙げられ、1~10が好ましい。また、上記アルキル基は更に置換基を有していてもよく、置換基としては、水酸基及びハロゲン原子(ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等)が挙げられる。
ポリアルキレンオキシアルキル基とは、RX6(ORX7)p(O)q-で表される置換基である。RX6はアルキル基を表し、RX7はアルキレン基を表し、pは2以上の整数を表し、qは、0又は1を表す。
RX6で表されるアルキル基は、XAで表されるアルキル基と同義である。また、RX7で表されるアルキレン基としては、XAで表されるアルキル基から水素原子を1つ除いた基が挙げられる。
pは、2以上の整数であり、その上限値としては、例えば10以下であり、5以下が好ましい。
RX6で表されるアルキル基は、XAで表されるアルキル基と同義である。また、RX7で表されるアルキレン基としては、XAで表されるアルキル基から水素原子を1つ除いた基が挙げられる。
pは、2以上の整数であり、その上限値としては、例えば10以下であり、5以下が好ましい。
アリール基としては、例えば、炭素数6~24のアリール基(単環及び多環のいずれであってもよい。)が挙げられる。
上記アリール基は更に置換基を有していてもよく、置換基としては、アルキル基、ハロゲン原子、及びシアノ基等が挙げられる。
上記アリール基は更に置換基を有していてもよく、置換基としては、アルキル基、ハロゲン原子、及びシアノ基等が挙げられる。
上記ポリエステル鎖としては、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトン、β-ブチロラクトン、γ-ヘキサノラクトン、γ-オクタノラクトン、δ-ヘキサラノラクトン、δ-オクタノラクトン、δ-ドデカノラクトン、α-メチル-γ-ブチロラクトン、及びラクチド(L体であってもD体であってもよい。)等のラクトンを開環した構造が好ましく、ε-カプロラクトン又はδ-バレロラクトンを開環した構造がより好ましい。
上記ポリアルキレンイミン構造とポリエステル構造を含む繰り返し単位としては、特許第5923557号に記載の合成方法に準じて合成できる。
特定分散樹脂において、グラフト鎖を含む繰り返し単位の含有量は、質量換算で、特定分散樹脂の総質量に対して、2~95質量%が好ましく、2~90質量%がより好ましく、5~30質量%が特に好ましい。グラフト鎖を含む繰り返し単位がこの範囲内で含まれると、電磁波吸収粒子の分散安定性が高く、更に、硬化膜を形成する際の現像性が良好である。
(疎水性繰り返し単位)
また、特定分散樹脂は、グラフト鎖を含む繰り返し単位とは異なる(すなわち、グラフト鎖を含む繰り返し単位には相当しない)疎水性繰り返し単位を含むことが好ましい。ただし、本明細書において、疎水性繰り返し単位は、酸基(例えば、カルボン酸基、スルホン酸基、リン酸基、フェノール性水酸基等)を有さない繰り返し単位である。
また、特定分散樹脂は、グラフト鎖を含む繰り返し単位とは異なる(すなわち、グラフト鎖を含む繰り返し単位には相当しない)疎水性繰り返し単位を含むことが好ましい。ただし、本明細書において、疎水性繰り返し単位は、酸基(例えば、カルボン酸基、スルホン酸基、リン酸基、フェノール性水酸基等)を有さない繰り返し単位である。
疎水性繰り返し単位は、ClogP値が1.2以上の化合物(モノマー)に由来する(対応する)繰り返し単位であるのが好ましく、ClogP値が1.2~8の化合物に由来する繰り返し単位であるのがより好ましい。これにより、本発明の効果をより確実に発現できる。
ClogP値は、Daylight Chemical Information System, Inc.から入手できるプログラム「CLOGP」で計算された値である。このプログラムは、Hansch, Leoのフラグメントアプローチ(下記文献参照)により算出される「計算logP」の値を提供する。フラグメントアプローチは化合物の化学構造に基づいており、化学構造を部分構造(フラグメント)に分割し、そのフラグメントに対して割り当てられたlogP寄与分を合計して化合物のlogP値を推算している。その詳細は以下の文献に記載されている。本明細書では、プログラムCLOGP v4.82により計算したClogP値を用いる。
A. J. Leo, Comprehensive Medicinal Chemistry, Vol.4, C. Hansch, P. G. Sammnens, J. B. Taylor and C. A. Ramsden, Eds., p.295, Pergamon Press, 1990 C. Hansch & A. J. Leo. SUbstituent Constants For Correlation Analysis in Chemistry and Biology. John Wiley & Sons. A.J. Leo. Calculating logPoct from structure. Chem. Rev., 93, 1281-1306, 1993.
A. J. Leo, Comprehensive Medicinal Chemistry, Vol.4, C. Hansch, P. G. Sammnens, J. B. Taylor and C. A. Ramsden, Eds., p.295, Pergamon Press, 1990 C. Hansch & A. J. Leo. SUbstituent Constants For Correlation Analysis in Chemistry and Biology. John Wiley & Sons. A.J. Leo. Calculating logPoct from structure. Chem. Rev., 93, 1281-1306, 1993.
logPは、分配係数P(Partition Coefficient)の常用対数を意味し、ある有機化合物が油(一般的には1-オクタノール)と水の2相系の平衡でどのように分配されるかを定量的な数値として表す物性値であり、以下の式で示される。
logP=log(Coil/Cwater)
式中、Coilは油相中の化合物のモル濃度を、Cwaterは水相中の化合物のモル濃度を表す。
logPの値が0をはさんでプラスに大きくなると油溶性が増し、マイナスで絶対値が大きくなると水溶性が増し、有機化合物の水溶性と負の相関があり、有機化合物の親疎水性を見積るパラメータとして広く利用されている。
logP=log(Coil/Cwater)
式中、Coilは油相中の化合物のモル濃度を、Cwaterは水相中の化合物のモル濃度を表す。
logPの値が0をはさんでプラスに大きくなると油溶性が増し、マイナスで絶対値が大きくなると水溶性が増し、有機化合物の水溶性と負の相関があり、有機化合物の親疎水性を見積るパラメータとして広く利用されている。
特定分散樹脂は、疎水性繰り返し単位として、下記式(i)~(iii)で表される単量体に由来の繰り返し単位から選択された1種以上の繰り返し単位を含むことが好ましい。
上記式(i)~(iii)中、R1、R2、及びR3は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、及び臭素原子等)、又は炭素数が1~6のアルキル基(例えば、メチル基、エチル基、及びプロピル基等)を表す。
R1、R2、及びR3は、水素原子又は炭素数が1~3のアルキル基であるのが好ましく、水素原子又はメチル基であるのがより好ましい。R2及びR3は、水素原子であるのが更に好ましい。
Xは、酸素原子(-O-)又はイミノ基(-NH-)を表し、酸素原子が好ましい。
R1、R2、及びR3は、水素原子又は炭素数が1~3のアルキル基であるのが好ましく、水素原子又はメチル基であるのがより好ましい。R2及びR3は、水素原子であるのが更に好ましい。
Xは、酸素原子(-O-)又はイミノ基(-NH-)を表し、酸素原子が好ましい。
Lは、単結合又は2価の連結基である。2価の連結基としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、置換アリーレン基)、2価の複素環基、酸素原子(-O-)、硫黄原子(-S-)、イミノ基(-NH-)、置換イミノ基(-NR31-、ここでR31は脂肪族基、芳香族基又は複素環基)、カルボニル基(-CO-)、及びこれらの組合せ等が挙げられる。
2価の脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1~20が好ましく、1~15がより好ましく、1~10が更に好ましい。脂肪族基は不飽和脂肪族基であっても飽和脂肪族基であってもよいが、飽和脂肪族基が好ましい。また、脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基、及び複素環基等が挙げられる。
2価の芳香族基の炭素数は、6~20が好ましく、6~15がより好ましく、6~10が更に好ましい。また、芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、脂肪族基、芳香族基、及び複素環基等が挙げられる。
2価の複素環基は、複素環として5員環又は6員環を含むことが好ましい。複素環に他の複素環、脂肪族環、又は芳香族環が縮合していてもよい。また、複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、水酸基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N-R32、ここでR32は脂肪族基、芳香族基、又は複素環基)、脂肪族基、芳香族基、及び複素環基が挙げられる。
Lは、単結合、アルキレン基又はオキシアルキレン構造を含む2価の連結基が好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造がより好ましい。また、Lは、オキシアルキレン構造を2以上繰り返して含むポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、-(OCH2CH2)n-で表され、nは、2以上の整数が好ましく、2~10の整数がより好ましい。
Zとしては、脂肪族基(例えば、アルキル基、置換アルキル基、不飽和アルキル基、置換不飽和アルキル基、)、芳香族基(例えば、アリール基、置換アリール基、アリーレン基、置換アリーレン基)、複素環基、及びこれらの組み合わせが挙げられる。これらの基には、酸素原子(-O-)、硫黄原子(-S-)、イミノ基(-NH-)、置換イミノ基(-NR31-、ここでR31は脂肪族基、芳香族基又は複素環基)、又はカルボニル基(-CO-)が含まれていてもよい。
脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1~20が好ましく、1~15がより好ましく、1~10が更に好ましい。脂肪族基には、更に環集合炭化水素基、架橋環式炭化水素基が含まれ、環集合炭化水素基の例としては、ビシクロヘキシル基、パーヒドロナフタレニル基、ビフェニル基、及び4-シクロヘキシルフェニル基等が含まれる。架橋環式炭化水素環として、例えば、ピナン、ボルナン、ノルピナン、ノルボルナン、ビシクロオクタン環(ビシクロ[2.2.2]オクタン環、及びビシクロ[3.2.1]オクタン環等)等の2環式炭化水素環、ホモブレダン、アダマンタン、トリシクロ[5.2.1.02,6]デカン、及びトリシクロ[4.3.1.12,5]ウンデカン環等の3環式炭化水素環、並びに、テトラシクロ[4.4.0.12,5.17,10]ドデカン、及びパーヒドロ-1,4-メタノ-5,8-メタノナフタレン環等の4環式炭化水素環等が挙げられる。また、架橋環式炭化水素環には、縮合環式炭化水素環、例えば、パーヒドロナフタレン(デカリン)、パーヒドロアントラセン、パーヒドロフェナントレン、パーヒドロアセナフテン、パーヒドロフルオレン、パーヒドロインデン、及びパーヒドロフェナレン環等の5~8員シクロアルカン環が複数個縮合した縮合環も含まれる。
脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。また、脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基及び複素環基が挙げられる。ただし、脂肪族基は、置換基として酸基を有さない。
脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。また、脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基及び複素環基が挙げられる。ただし、脂肪族基は、置換基として酸基を有さない。
芳香族基の炭素数は、6~20が好ましく、6~15がより好ましく、6~10が更に好ましい。また、芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、脂肪族基、芳香族基及び複素環基が挙げられる。ただし、芳香族基は、置換基として酸基を有さない。
複素環基は、複素環として5員環又は6員環を含むことが好ましい。複素環に他の複素環、脂肪族環又は芳香族環が縮合していてもよい。また、複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、水酸基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N-R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基、及び複素環基が挙げられる。ただし、複素環基は、置換基として酸基を有さない。
上記式(iii)中、R4、R5、及びR6は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、及び臭素原子等)、炭素数が1~6のアルキル基(例えば、メチル基、エチル基、及びプロピル基等)、Z、又はL-Zを表す。ここでL及びZは、上記における基と同義である。R4、R5、及びR6としては、水素原子、又は炭素数が1~3のアルキル基が好ましく、水素原子がより好ましい。
上記式(i)で表される単量体として、R1、R2、及びR3が水素原子、又はメチル基であって、Lが単結合又はアルキレン基もしくはオキシアルキレン構造を含む2価の連結基であって、Xが酸素原子又はイミノ基であって、Zが脂肪族基、複素環基、又は芳香族基である化合物が好ましい。
また、上記式(ii)で表される単量体として、R1が水素原子又はメチル基であって、Lがアルキレン基であって、Zが脂肪族基、複素環基、又は芳香族基である化合物が好ましい。また、上記式(iii)で表される単量体として、R4、R5、及びR6が水素原子又はメチル基であって、Zが脂肪族基、複素環基、又は芳香族基である化合物が好ましい。
また、上記式(ii)で表される単量体として、R1が水素原子又はメチル基であって、Lがアルキレン基であって、Zが脂肪族基、複素環基、又は芳香族基である化合物が好ましい。また、上記式(iii)で表される単量体として、R4、R5、及びR6が水素原子又はメチル基であって、Zが脂肪族基、複素環基、又は芳香族基である化合物が好ましい。
式(i)~(iii)で表される代表的な化合物の例としては、アクリル酸エステル類、メタクリル酸エステル類、及びスチレン類等から選ばれるラジカル重合性化合物が挙げられる。
なお、式(i)~(iii)で表される代表的な化合物の例としては、特開2013-249417号公報の段落0089~0093に記載の化合物を参照でき、これらの内容は本明細書に組み込まれる。
なお、式(i)~(iii)で表される代表的な化合物の例としては、特開2013-249417号公報の段落0089~0093に記載の化合物を参照でき、これらの内容は本明細書に組み込まれる。
特定分散樹脂において、疎水性繰り返し単位の含有量は、質量換算で、特定分散樹脂の総質量に対して、10~90質量%が好ましく、20~80質量%がより好ましい。含有量が上記範囲において十分なパターン形成が得られる。
(電磁波吸収粒子と相互作用を形成し得る官能基)
特定分散樹脂は、電磁波吸収粒子と相互作用を形成し得る官能基を導入できる。ここで、特定分散樹脂は、電磁波吸収粒子と相互作用を形成し得る官能基を含む繰り返し単位を更に含むことが好ましい。
この電磁波吸収粒子と相互作用を形成し得る官能基としては、例えば、酸基、塩基性基、配位性基、及び反応性を有する官能基等が挙げられる。
特定分散樹脂が、酸基、塩基性基、配位性基、又は反応性を有する官能基を含む場合、それぞれ、酸基を含む繰り返し単位、塩基性基を含む繰り返し単位、配位性基を含む繰り返し単位、又は反応性を有する繰り返し単位を含むことが好ましい。
特に、特定分散樹脂が、更に、酸基として、カルボン酸基等のアルカリ可溶性基を含む場合、特定分散樹脂に、アルカリ現像によるパターン形成のための現像性を付与できる。
すなわち、特定分散樹脂にアルカリ可溶性基を導入すれば、上記組成物は、電磁波吸収粒子の分散に寄与する分散剤としての特定分散樹脂がアルカリ可溶性を含むことになる。このような特定分散樹脂を含む組成物は、未露光部のアルカリ現像性が向上される。
また、特定分散樹脂が酸基を含む繰り返し単位を含む場合、特定分散樹脂が溶剤となじみやすくなり、塗布性も向上する傾向となる。これは、酸基を含む繰り返し単位における酸基が電磁波吸収粒子と相互作用しやすく、特定分散樹脂が電磁波吸収粒子を安定的に分散すると共に、電磁波吸収粒子を分散する特定分散樹脂の粘度が低くなっており、特定分散樹脂自体も安定的に分散されやすいためであると推測される。
特定分散樹脂は、電磁波吸収粒子と相互作用を形成し得る官能基を導入できる。ここで、特定分散樹脂は、電磁波吸収粒子と相互作用を形成し得る官能基を含む繰り返し単位を更に含むことが好ましい。
この電磁波吸収粒子と相互作用を形成し得る官能基としては、例えば、酸基、塩基性基、配位性基、及び反応性を有する官能基等が挙げられる。
特定分散樹脂が、酸基、塩基性基、配位性基、又は反応性を有する官能基を含む場合、それぞれ、酸基を含む繰り返し単位、塩基性基を含む繰り返し単位、配位性基を含む繰り返し単位、又は反応性を有する繰り返し単位を含むことが好ましい。
特に、特定分散樹脂が、更に、酸基として、カルボン酸基等のアルカリ可溶性基を含む場合、特定分散樹脂に、アルカリ現像によるパターン形成のための現像性を付与できる。
すなわち、特定分散樹脂にアルカリ可溶性基を導入すれば、上記組成物は、電磁波吸収粒子の分散に寄与する分散剤としての特定分散樹脂がアルカリ可溶性を含むことになる。このような特定分散樹脂を含む組成物は、未露光部のアルカリ現像性が向上される。
また、特定分散樹脂が酸基を含む繰り返し単位を含む場合、特定分散樹脂が溶剤となじみやすくなり、塗布性も向上する傾向となる。これは、酸基を含む繰り返し単位における酸基が電磁波吸収粒子と相互作用しやすく、特定分散樹脂が電磁波吸収粒子を安定的に分散すると共に、電磁波吸収粒子を分散する特定分散樹脂の粘度が低くなっており、特定分散樹脂自体も安定的に分散されやすいためであると推測される。
ただし、酸基としてのアルカリ可溶性基を含む繰り返し単位は、上記のグラフト鎖を含む繰り返し単位と同一の繰り返し単位であっても、異なる繰り返し単位であってもよいが、酸基としてのアルカリ可溶性基を含む繰り返し単位は、上記の疎水性繰り返し単位とは異なる繰り返し単位である(すなわち、上記の疎水性繰り返し単位には相当しない)。
電磁波吸収粒子と相互作用を形成し得る官能基である酸基としては、例えば、カルボン酸基、スルホン酸基、リン酸基、及びフェノール性水酸基等があり、カルボン酸基、スルホン酸基、及びリン酸基のうち少なくとも1種が好ましく、カルボン酸基がより好ましい。カルボン酸基は、電磁波吸収粒子への吸着力が良好で、かつ、分散安定性が高い。
すなわち、特定分散樹脂は、カルボン酸基、スルホン酸基、及びリン酸基のうち少なくとも1種を含む繰り返し単位を更に含むことが好ましい。
すなわち、特定分散樹脂は、カルボン酸基、スルホン酸基、及びリン酸基のうち少なくとも1種を含む繰り返し単位を更に含むことが好ましい。
特定分散樹脂は、酸基を含む繰り返し単位を1種又は2種以上有してもよい。
特定分散樹脂が酸基を含む繰り返し単位を含む場合、その含有量は、質量換算で、特定分散樹脂の総質量に対して、5~80質量%が好ましく、10~60質量%がより好ましい。
特定分散樹脂が酸基を含む繰り返し単位を含む場合、その含有量は、質量換算で、特定分散樹脂の総質量に対して、5~80質量%が好ましく、10~60質量%がより好ましい。
電磁波吸収粒子と相互作用を形成し得る官能基である塩基性基としては、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基、N原子を含むヘテロ環、及びアミド基等があり、好ましい塩基性基は、電磁波吸収粒子への吸着力が良好で、かつ、分散安定性が高い点で、第3級アミノ基である。特定分散樹脂は、これらの塩基性基を1種又は2種以上含んでいてもよい。
特定分散樹脂が塩基性基を含む繰り返し単位を含む場合、その含有量は、質量換算で、特定分散樹脂の総質量に対して、0.01~50質量%が好ましく、0.01~30質量%がより好ましい。
特定分散樹脂が塩基性基を含む繰り返し単位を含む場合、その含有量は、質量換算で、特定分散樹脂の総質量に対して、0.01~50質量%が好ましく、0.01~30質量%がより好ましい。
電磁波吸収粒子と相互作用を形成し得る官能基である配位性基、及び反応性を有する官能基としては、例えば、アセチルアセトキシ基、トリアルコキシシリル基、イソシアネート基、酸無水物、及び酸塩化物等が挙げられる。好ましい官能基は、電磁波吸収粒子への吸着力が良好で、電磁波吸収粒子の分散安定性が高い点で、アセチルアセトキシ基である。特定分散樹脂は、これらの基を1種又は2種以上有してもよい。
特定分散樹脂が、配位性基を含む繰り返し単位、又は反応性を有する官能基を含む繰り返し単位を含む場合、これらの含有量は、質量換算で、特定分散樹脂の総質量に対して、10~80質量%が好ましく、20~60質量%がより好ましい。
特定分散樹脂が、配位性基を含む繰り返し単位、又は反応性を有する官能基を含む繰り返し単位を含む場合、これらの含有量は、質量換算で、特定分散樹脂の総質量に対して、10~80質量%が好ましく、20~60質量%がより好ましい。
上記特定分散樹脂が、グラフト鎖以外に、電磁波吸収粒子と相互作用を形成し得る官能基を含む場合、上記の各種の電磁波吸収粒子と相互作用を形成し得る官能基を含んでいればよく、これらの官能基がどのように導入されているかは特に制限されないが、特定分散樹脂は、下記式(iv)~(vi)で表される単量体に由来の繰り返し単位から選択された1種以上の繰り返し単位を含むことが好ましい。
式(iv)~(vi)中、R11、R12、及びR13は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、及び臭素原子等)、又は炭素数が1~6のアルキル基(例えば、メチル基、エチル基、プロピル基等)を表す。
式(iv)~(vi)中、R11、R12、及びR13としては、水素原子、又は炭素数が1~3のアルキル基が好ましく、水素原子又はメチル基がより好ましい。一般式(iv)中、R12及びR13としては、水素原子が更に好ましい。
式(iv)~(vi)中、R11、R12、及びR13としては、水素原子、又は炭素数が1~3のアルキル基が好ましく、水素原子又はメチル基がより好ましい。一般式(iv)中、R12及びR13としては、水素原子が更に好ましい。
式(iv)中のX1は、酸素原子(-O-)又はイミノ基(-NH-)を表し、酸素原子が好ましい。
また、式(v)中のYは、メチン基又は窒素原子を表す。
また、式(v)中のYは、メチン基又は窒素原子を表す。
また、式(iv)~(v)中のL1は、単結合又は2価の連結基を表す。2価の連結基の定義は、上述した式(i)中のLで表される2価の連結基の定義と同じである。
L1は、単結合、アルキレン基又はオキシアルキレン構造を含む2価の連結基が好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造がより好ましい。また、L1は、オキシアルキレン構造を2以上繰り返して含むポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、-(OCH2CH2)n-で表され、nは、2以上の整数が好ましく、2~10の整数がより好ましい。
式(iv)~(vi)中、Z1は、グラフト鎖以外に電磁波吸収粒子と相互作用を形成し得る官能基を表し、カルボン酸基、又は第3級アミノ基が好ましく、カルボン酸基がより好ましい。
式(vi)中、R14、R15、及びR16は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、及び臭素原子等)、炭素数が1~6のアルキル基(例えば、メチル基、エチル基、及びプロピル基等)、-Z1、又はL1-Z1を表す。ここでL1及びZ1は、上記におけるL1及びZ1と同義であり、好ましい例も同様である。R14、R15、及びR16としては、水素原子、又は炭素数が1~3のアルキル基が好ましく、水素原子がより好ましい。
式(iv)で表される単量体として、R11、R12、及びR13がそれぞれ独立に水素原子又はメチル基であって、L1がアルキレン基又はオキシアルキレン構造を含む2価の連結基であって、X1が酸素原子又はイミノ基であって、Z1がカルボン酸基である化合物が好ましい。
また、式(v)で表される単量体として、R11が水素原子又はメチル基であって、L1がアルキレン基であって、Z1がカルボン酸基であって、Yがメチン基である化合物が好ましい。
更に、式(vi)で表される単量体として、R14、R15、及びR16がそれぞれ独立に水素原子又はメチル基であって、Z1がカルボン酸基である化合物が好ましい。
また、式(v)で表される単量体として、R11が水素原子又はメチル基であって、L1がアルキレン基であって、Z1がカルボン酸基であって、Yがメチン基である化合物が好ましい。
更に、式(vi)で表される単量体として、R14、R15、及びR16がそれぞれ独立に水素原子又はメチル基であって、Z1がカルボン酸基である化合物が好ましい。
以下に、式(iv)~(vi)で表される単量体(化合物)の代表的な例を示す。
単量体の例としては、メタクリル酸、クロトン酸、イソクロトン酸、分子内に付加重合性二重結合及び水酸基を含む化合物(例えば、メタクリル酸2-ヒドロキシエチル)とコハク酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物とフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物とテトラヒドロキシフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物と無水トリメリット酸との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物とピロメリット酸無水物との反応物、アクリル酸、アクリル酸ダイマー、アクリル酸オリゴマー、マレイン酸、イタコン酸、フマル酸、4-ビニル安息香酸、ビニルフェノール、及び4-ヒドロキシフェニルメタクリルアミド等が挙げられる。
単量体の例としては、メタクリル酸、クロトン酸、イソクロトン酸、分子内に付加重合性二重結合及び水酸基を含む化合物(例えば、メタクリル酸2-ヒドロキシエチル)とコハク酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物とフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物とテトラヒドロキシフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物と無水トリメリット酸との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物とピロメリット酸無水物との反応物、アクリル酸、アクリル酸ダイマー、アクリル酸オリゴマー、マレイン酸、イタコン酸、フマル酸、4-ビニル安息香酸、ビニルフェノール、及び4-ヒドロキシフェニルメタクリルアミド等が挙げられる。
電磁波吸収粒子と相互作用を形成し得る官能基を含む繰り返し単位の含有量は、電磁波吸収粒子との相互作用、経時安定性、及び現像液への浸透性の点から、質量換算で、特定分散樹脂の総質量に対して、0.05~90質量%が好ましく、1.0~80質量%がより好ましく、10~70質量%が更に好ましい。
(エチレン性不飽和基又はエチレン性不飽和基を含む繰り返し単位)
特定分散樹脂は、更に、エチレン性不飽和基を含むのが好ましい。特定分散樹脂がエチレン性不飽和基を含む場合で、特定分散樹脂を含む組成物はパターン形成性がより一層優れる。
上記エチレン性不飽和基としては特に制限されないが、例えば、(メタ)アクリロイル基、ビニル基、及びスチリル基等が挙げられ、(メタ)アクリロイル基が好ましい。
特定分散樹脂としては、なかでも、側鎖にエチレン性不飽和基を含む繰り返し単位を含むことが好ましく、側鎖にエチレン性不飽和基を含み、且つ(メタ)アクリレートに由来する繰り返し単位(以下、「側鎖にエチレン性不飽和基を含む(メタ)アクリル系繰り返し単位」ともいう。)を含むことがより好ましい。側鎖にエチレン性不飽和基を含む(メタ)アクリル系繰り返し単位は、例えば、カルボン酸基を含む(メタ)アクリル系繰り返し単位を含む樹脂中の上記カルボン酸基に、グリシジル基又は脂環式エポキシ基を含むエチレン性不飽和基含有化合物を付加反応させて得られる。
特定分散樹脂は、更に、エチレン性不飽和基を含むのが好ましい。特定分散樹脂がエチレン性不飽和基を含む場合で、特定分散樹脂を含む組成物はパターン形成性がより一層優れる。
上記エチレン性不飽和基としては特に制限されないが、例えば、(メタ)アクリロイル基、ビニル基、及びスチリル基等が挙げられ、(メタ)アクリロイル基が好ましい。
特定分散樹脂としては、なかでも、側鎖にエチレン性不飽和基を含む繰り返し単位を含むことが好ましく、側鎖にエチレン性不飽和基を含み、且つ(メタ)アクリレートに由来する繰り返し単位(以下、「側鎖にエチレン性不飽和基を含む(メタ)アクリル系繰り返し単位」ともいう。)を含むことがより好ましい。側鎖にエチレン性不飽和基を含む(メタ)アクリル系繰り返し単位は、例えば、カルボン酸基を含む(メタ)アクリル系繰り返し単位を含む樹脂中の上記カルボン酸基に、グリシジル基又は脂環式エポキシ基を含むエチレン性不飽和基含有化合物を付加反応させて得られる。
特定分散樹脂がエチレン性不飽和基を含む繰り返し単位を含む場合、その含有量は、質量換算で、特定分散樹脂の総質量に対して、30~70質量%が好ましく、40~60質量%がより好ましい。エチレン性不飽和基を含む繰り返し単位の含有量が上記範囲である場合、より優れたパターン形成性を示す。
(その他の繰り返し単位)
更に、特定分散樹脂は、膜形成能等の諸性能を向上する目的で、本発明の効果を損なわない限りにおいて、グラフト鎖を含む繰り返し単位、疎水性繰り返し単位、電磁波吸収粒子と相互作用を形成し得る官能基を含む繰り返し単位、及びエチレン性不飽和基を含む繰り返し単位とは異なる、種々の機能を有する他の繰り返し単位(例えば、後述する溶剤との親和性を有する官能基等を含む繰り返し単位)を更に有していてもよい。
このような、他の繰り返し単位としては、例えば、アクリロニトリル類、及びメタクリロニトリル類等から選ばれるラジカル重合性化合物に由来の繰り返し単位が挙げられる。
特定分散樹脂は、これらの他の繰り返し単位を1種又は2種以上使用でき、その含有量は、質量換算で、特定分散樹脂の総質量に対して、0~80質量%が好ましく、10~60質量%がより好ましい。
更に、特定分散樹脂は、膜形成能等の諸性能を向上する目的で、本発明の効果を損なわない限りにおいて、グラフト鎖を含む繰り返し単位、疎水性繰り返し単位、電磁波吸収粒子と相互作用を形成し得る官能基を含む繰り返し単位、及びエチレン性不飽和基を含む繰り返し単位とは異なる、種々の機能を有する他の繰り返し単位(例えば、後述する溶剤との親和性を有する官能基等を含む繰り返し単位)を更に有していてもよい。
このような、他の繰り返し単位としては、例えば、アクリロニトリル類、及びメタクリロニトリル類等から選ばれるラジカル重合性化合物に由来の繰り返し単位が挙げられる。
特定分散樹脂は、これらの他の繰り返し単位を1種又は2種以上使用でき、その含有量は、質量換算で、特定分散樹脂の総質量に対して、0~80質量%が好ましく、10~60質量%がより好ましい。
(特定分散樹脂の物性)
特定分散樹脂の酸価としては特に制限されないが、例えば、0~250mgKOH/gが好ましく、10~200mgKOH/gがより好ましく、30~180mgKOH/gが更に好ましく、50~120mgKOH/gの範囲が特に好ましい。
特定分散樹脂の酸価が160mgKOH/g以下であれば、硬化膜を形成する際の現像時におけるパターン剥離がより効果的に抑えられる。また、特定分散樹脂の酸価が10mgKOH/g以上であればアルカリ現像性がより良好となる。また、特定分散樹脂の酸価が20mgKOH/g以上であれば、電磁波吸収粒子の沈降をより抑制でき、粗大粒子数をより少なくでき、組成物の経時分散安定性をより向上できる。
特定分散樹脂の酸価としては特に制限されないが、例えば、0~250mgKOH/gが好ましく、10~200mgKOH/gがより好ましく、30~180mgKOH/gが更に好ましく、50~120mgKOH/gの範囲が特に好ましい。
特定分散樹脂の酸価が160mgKOH/g以下であれば、硬化膜を形成する際の現像時におけるパターン剥離がより効果的に抑えられる。また、特定分散樹脂の酸価が10mgKOH/g以上であればアルカリ現像性がより良好となる。また、特定分散樹脂の酸価が20mgKOH/g以上であれば、電磁波吸収粒子の沈降をより抑制でき、粗大粒子数をより少なくでき、組成物の経時分散安定性をより向上できる。
本明細書において酸価は、例えば、化合物中における酸基の平均含有量から算出できる。また、樹脂中における酸基を含む繰り返し単位の含有量を変えることで、所望の酸価を有する樹脂を得られる。
特定分散樹脂の重量平均分子量は特に制限されないが、例えば、3,000以上が好ましく、4,000以上がより好ましく、5,000以上が更に好ましく、6,000以上が特に好ましい。また、上限値としては、例えば、300,000以下が好ましく、200,000以下がより好ましく、100,000以下が更に好ましく、50,000以下が特に好ましい。
特定分散樹脂は、公知の方法に基づいて合成できる。
特定分散樹脂は、公知の方法に基づいて合成できる。
なお、特定分散樹脂の具体例の例としては、特開2013-249417号公報の段落0127~0129に記載の高分子化合物を参照でき、これらの内容は本明細書に組み込まれる。
また、特定分散樹脂としては、特開2010-106268号公報の段落0037~0115(対応するUS2011/0124824の段落0075~0133欄)のグラフト共重合体も使用でき、これらの内容は援用でき、本明細書に組み込まれる。
<凝集コントロール剤>
凝集コントロール剤とは、電磁波吸収粒子の如く相対的に密度の低い凝集体に対して結合し、さらに、任意で含まれるその他の成分(例えば、アルカリ可溶性樹脂等)を組成物中に分散し、嵩高い凝集体を作ることができるものである。
分散剤が凝集コントロール剤である場合、組成物中の電磁波吸収粒子のハードケーキ化が抑制され、更に嵩高い凝集体が形成されるため、再分散性が向上し得る。
凝集コントロール剤とは、電磁波吸収粒子の如く相対的に密度の低い凝集体に対して結合し、さらに、任意で含まれるその他の成分(例えば、アルカリ可溶性樹脂等)を組成物中に分散し、嵩高い凝集体を作ることができるものである。
分散剤が凝集コントロール剤である場合、組成物中の電磁波吸収粒子のハードケーキ化が抑制され、更に嵩高い凝集体が形成されるため、再分散性が向上し得る。
凝集コントロール剤としては、例えば、セルロース誘導体が挙げられる。
セルロース誘導体としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース、及びそれらの塩等が挙げられる。
セルロース誘導体としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース、及びそれらの塩等が挙げられる。
分散剤が凝集コントロール剤である場合、組成物中における凝集コントロール剤の含有量は、組成物の全質量に対して、0.05~1.0質量%であるのが好ましく、0.1~0.5質量%であるのがより好ましい。
凝集コントロール剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の凝集コントロール剤を併用する場合には、組成物の全固形分が上記範囲内となるように調整されることが好ましい。
凝集コントロール剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の凝集コントロール剤を併用する場合には、組成物の全固形分が上記範囲内となるように調整されることが好ましい。
<凝集分散剤>
凝集分散剤とは電磁波吸収粒子の表面に吸着し、電磁波吸収粒子を相互に離間させながら、電磁波吸収粒子同士の距離を一定以上に保ち、電磁波吸収粒子同士が直接凝集することを防ぐことができるものである。この結果として、電磁波吸収粒子の凝集が抑制され、凝集体が形成される場合であっても、相対的に密度の低い凝集体が形成される。さらに、組成物中に任意で含まれるその他の成分(例えば、アルカリ可溶性樹脂等)を組成物中に分散し、嵩高い凝集体を作ることができため、再分散性が向上し得る。
凝集分散剤とは電磁波吸収粒子の表面に吸着し、電磁波吸収粒子を相互に離間させながら、電磁波吸収粒子同士の距離を一定以上に保ち、電磁波吸収粒子同士が直接凝集することを防ぐことができるものである。この結果として、電磁波吸収粒子の凝集が抑制され、凝集体が形成される場合であっても、相対的に密度の低い凝集体が形成される。さらに、組成物中に任意で含まれるその他の成分(例えば、アルカリ可溶性樹脂等)を組成物中に分散し、嵩高い凝集体を作ることができため、再分散性が向上し得る。
凝集分散剤としては、多塩基酸のアルキロールアンモニウム塩が好ましい。
多塩基酸は、酸基を2個以上有していればよく、例えば、酸基を有する繰り返し単位を含む酸性ポリマー(例えば、ポリアクリル酸、ポリメタクリル酸、ポリビニルスルホン酸、及びポリリン酸等)が挙げられる。また、上記以外の多塩基酸としては、クロトン酸等の不飽和脂肪酸を重合させたポリマーが挙げられる。多塩基酸のアルキロールアンモニウム塩は、これらの多塩基酸にアルキロールアンモニウムを反応させることにより得られる。このような反応によって得られた塩は、通常、以下の部分構造を含む。
-C(=O)-N(-R1)(-R2-OH)
ここで、R1はアルキル基、R2はアルキレン基である。
多塩基酸のアルキロールアンモニウム塩としては、上記部分構造を複数含むポリマーであるのが好ましい。多塩基酸のアルキロールアンモニウム塩がポリマーである場合、重量平均分子量としては、1,000~100,000が好ましく、5,000~20,000がより好ましい。多塩基酸のアルキロールアンモニウム塩のポリマーは、電磁波吸収粒子の表面に結合し、また他の凝集分散剤分子と水素結合することにより、ポリマーの主鎖構造が電磁波吸収粒子間に入り込み、電磁波吸収粒子同士を離間させ得る。
多塩基酸は、酸基を2個以上有していればよく、例えば、酸基を有する繰り返し単位を含む酸性ポリマー(例えば、ポリアクリル酸、ポリメタクリル酸、ポリビニルスルホン酸、及びポリリン酸等)が挙げられる。また、上記以外の多塩基酸としては、クロトン酸等の不飽和脂肪酸を重合させたポリマーが挙げられる。多塩基酸のアルキロールアンモニウム塩は、これらの多塩基酸にアルキロールアンモニウムを反応させることにより得られる。このような反応によって得られた塩は、通常、以下の部分構造を含む。
-C(=O)-N(-R1)(-R2-OH)
ここで、R1はアルキル基、R2はアルキレン基である。
多塩基酸のアルキロールアンモニウム塩としては、上記部分構造を複数含むポリマーであるのが好ましい。多塩基酸のアルキロールアンモニウム塩がポリマーである場合、重量平均分子量としては、1,000~100,000が好ましく、5,000~20,000がより好ましい。多塩基酸のアルキロールアンモニウム塩のポリマーは、電磁波吸収粒子の表面に結合し、また他の凝集分散剤分子と水素結合することにより、ポリマーの主鎖構造が電磁波吸収粒子間に入り込み、電磁波吸収粒子同士を離間させ得る。
凝集分散剤としては、例えばAnti-Terra203、同204、同206、同250(いずれも商品名、ビックケミー社製):Anti-TerraU(商品名、ビックケミー社製):DISPER BYK-102、同180、同191(いずれも商品名、ビックケミー社製):TEGO Disper630、同700(いずれも商品名、エボニックデグサジャパン社製)等が挙げられる。
分散剤が凝集分散剤である場合、組成物中における凝集分散剤の含有量は、組成物の全質量に対して、2~70質量%であるのが好ましく、3~50質量%であるのがより好ましい。
凝集分散剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の凝集分散剤を併用する場合には、組成物の全固形分が上記範囲内となるように調整されることが好ましい。
分散剤が凝集分散剤である場合、組成物中における凝集分散剤の含有量は、組成物の全質量に対して、2~70質量%であるのが好ましく、3~50質量%であるのがより好ましい。
凝集分散剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の凝集分散剤を併用する場合には、組成物の全固形分が上記範囲内となるように調整されることが好ましい。
〔溶剤〕
本発明の組成物は、溶剤を含む。
溶剤としては特に制限されず公知の溶剤を使用できる。
組成物中における溶剤の含有量としては特に制限されないが、組成物の固形分が10.0質量%以上となる量が好ましく、15.0質量%以上となる量が好ましく、90.0質量%以下となる量が好ましく、85.0質量%以下となる量がより好ましい。
組成物中における溶剤の含有量としては、組成物の全質量に対して、10.0~30.0質量%が好ましい。
溶剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の溶剤を併用する場合には、組成物の全固形分が上記範囲内となるように調整されることが好ましい。
本発明の組成物は、溶剤を含む。
溶剤としては特に制限されず公知の溶剤を使用できる。
組成物中における溶剤の含有量としては特に制限されないが、組成物の固形分が10.0質量%以上となる量が好ましく、15.0質量%以上となる量が好ましく、90.0質量%以下となる量が好ましく、85.0質量%以下となる量がより好ましい。
組成物中における溶剤の含有量としては、組成物の全質量に対して、10.0~30.0質量%が好ましい。
溶剤は1種を単独で用いても、2種以上を併用してもよい。2種以上の溶剤を併用する場合には、組成物の全固形分が上記範囲内となるように調整されることが好ましい。
溶剤としては、例えば、有機溶剤が挙げられる。
有機溶剤としては特に制限されず、例えば、アセトン(56℃)、メチルエチルケトン(79.6℃)、シクロヘキサン(81℃)、酢酸エチル(77.1℃)、エチレンジクロライド(83.5-84.0℃)、テトラヒドロフラン(66℃)、トルエン(110.6℃)、エチレングリコールモノメチルエーテル(124℃)、エチレングリコールモノエチルエーテル(135℃)、エチレングリコールジメチルエーテル(84℃)、プロピレングリコールモノメチルエーテル(121℃)、プロピレングリコールモノエチルエーテル(132.8℃)、アセチルアセトン(140℃)、シクロヘキサノン(155.6℃)、シクロペンタノン(131℃)、ジアセトンアルコール(166℃)、エチレングリコールモノメチルエーテルアセテート(144.5℃)、エチレングリコールエチルエーテルアセテート(145℃)、エチレングリコールモノイソプロピルエーテル(141℃)、エチレングリコールモノブチルエーテルアセテート(192℃)、3-メトキシプロパノール(150℃)、メトキシメトキシエタノール、ジエチレングリコールモノメチルエーテル(194℃)、ジエチレングリコールモノエチルエーテル(196℃)、ジエチレングリコールジメチルエーテル(162℃)、ジエチレングリコールジエチルエーテル(188℃)、プロピレングリコールモノメチルエーテルアセテート(146℃)、プロピレングリコールモノエチルエーテルアセテート(160℃)、3-メトキシプロピルアセテート(146℃)、N,N-ジメチルホルムアミド(153℃)、ジメチルスルホキシド(189℃)、γ-ブチロラクトン(204℃)、酢酸エチル(77.1℃)、酢酸ブチル(126℃)、乳酸メチル(144℃)、N-メチル-2-ピロリドン(202℃)、及び乳酸エチル(154℃)等が挙げられる。なお、溶剤名に併記した数値は、いずれも沸点を表す。
溶剤の沸点としては、なかでも、組成物の分散安定性が優れる点、及び/又は、現像性により優れる点で、110~170℃であるのが好ましく、プロピレングリコールモノメチルエーテルアセテート(146℃)、プロピレングリコールモノメチルエーテル(121℃)、又は酢酸ブチル(126℃)がより好ましい。
〔アルカリ可溶性樹脂〕
本発明の組成物は、アルカリ可溶性樹脂を含んでいてもよい。
本明細書において、アルカリ可溶性樹脂とは、アルカリ可溶性を促進する基(アルカリ可溶性基、例えばカルボン酸基等の酸基)を含む樹脂を意味し、既に説明した特定分散樹脂とは異なる樹脂を意味する。なお、ここでいう樹脂とは、組成物中に溶解している成分であって、重量平均分子量が2000超である成分を意味する。
組成物中のアルカリ可溶性樹脂の含有量としては、組成物の全質量に対して、0.1~40.0質量%が好ましく、0.5~30.0質量%がより好ましく、1.0~25.0質量%が更に好ましい。
また、組成物中におけるアルカリ可溶性樹脂の含有量としては、組成物の全固形分に対して、0.1~15.0質量%が好ましく、0.5~15.0質量%がより好ましく、1.0~10.0質量%が更に好ましい。
アルカリ可溶性樹脂は1種を単独で用いても、2種以上を併用してもよい。2種以上のアルカリ可溶性樹脂を併用する場合には、合計含有量が上記範囲内であることが好ましい。
本発明の組成物は、アルカリ可溶性樹脂を含んでいてもよい。
本明細書において、アルカリ可溶性樹脂とは、アルカリ可溶性を促進する基(アルカリ可溶性基、例えばカルボン酸基等の酸基)を含む樹脂を意味し、既に説明した特定分散樹脂とは異なる樹脂を意味する。なお、ここでいう樹脂とは、組成物中に溶解している成分であって、重量平均分子量が2000超である成分を意味する。
組成物中のアルカリ可溶性樹脂の含有量としては、組成物の全質量に対して、0.1~40.0質量%が好ましく、0.5~30.0質量%がより好ましく、1.0~25.0質量%が更に好ましい。
また、組成物中におけるアルカリ可溶性樹脂の含有量としては、組成物の全固形分に対して、0.1~15.0質量%が好ましく、0.5~15.0質量%がより好ましく、1.0~10.0質量%が更に好ましい。
アルカリ可溶性樹脂は1種を単独で用いても、2種以上を併用してもよい。2種以上のアルカリ可溶性樹脂を併用する場合には、合計含有量が上記範囲内であることが好ましい。
アルカリ可溶性樹脂としては、分子中に少なくとも1個のアルカリ可溶性基を含む樹脂が挙げられ、例えば、ポリヒドロキシスチレン樹脂、ポリシロキサン樹脂、(メタ)アクリル樹脂、(メタ)アクリルアミド樹脂、(メタ)アクリル/(メタ)アクリルアミド共重合体樹脂、エポキシ系樹脂、及びポリイミド樹脂等が挙げられる。
アルカリ可溶性樹脂の具体例としては、不飽和カルボン酸とエチレン性不飽和化合物の共重合体が挙げられる。
不飽和カルボン酸としては特に制限されないが、(メタ)アクリル酸、クロトン酸、及びビニル酢酸等のモノカルボン酸類;イタコン酸、マレイン酸、及びフマル酸等のジカルボン酸、又はその酸無水物;並びに、フタル酸モノ(2-(メタ)アクリロイルオキシエチル)等の多価カルボン酸モノエステル類;等が挙げられる。
不飽和カルボン酸としては特に制限されないが、(メタ)アクリル酸、クロトン酸、及びビニル酢酸等のモノカルボン酸類;イタコン酸、マレイン酸、及びフマル酸等のジカルボン酸、又はその酸無水物;並びに、フタル酸モノ(2-(メタ)アクリロイルオキシエチル)等の多価カルボン酸モノエステル類;等が挙げられる。
共重合可能なエチレン性不飽和化合物としては、(メタ)アクリル酸メチル等が挙げられる。また、特開2010-097210号公報の段落0027、及び特開2015-068893号公報の段落0036~0037に記載の化合物も使用でき、上記の内容は本明細書に組み込まれる。
また、共重合可能なエチレン性不飽和化合物であって、側鎖にエチレン性不飽和基を含む化合物を組み合わせて用いてもよい。つまり、アルカリ可溶性樹脂は、側鎖にエチレン性不飽和基を含む繰り返し単位を含んでいてもよい。
側鎖に含まれるエチレン性不飽和基としては、(メタ)アクリル酸基が好ましい。
側鎖にエチレン性不飽和基を含む繰り返し単位は、例えば、カルボン酸基を含む(メタ)アクリル系繰り返し単位のカルボン酸基に、グリシジル基又は脂環式エポキシ基を含むエチレン性不飽和化合物を付加反応させて得られる。
側鎖に含まれるエチレン性不飽和基としては、(メタ)アクリル酸基が好ましい。
側鎖にエチレン性不飽和基を含む繰り返し単位は、例えば、カルボン酸基を含む(メタ)アクリル系繰り返し単位のカルボン酸基に、グリシジル基又は脂環式エポキシ基を含むエチレン性不飽和化合物を付加反応させて得られる。
アルカリ可溶性樹脂としては、重合性基を含むアルカリ可溶性樹脂も好ましい。
上記重合性基としては、例えば、エチレン性不飽和基(例えば、(メタ)アクリロイル基、ビニル基、及び、スチリル基等)、及び、環状エーテル基(例えば、エポキシ基、オキセタニル基等)等が挙げられるが、これらに制限されない。
中でも、ラジカル反応で重合制御が可能な点で、重合性基としては、エチレン性不飽和基が好ましく、(メタ)アクリロイル基がより好ましい。
重合性基を含むアルカリ可溶性樹脂としては、重合性基を側鎖に有するアルカリ可溶性樹脂等が好ましい。重合性基を含むアルカリ可溶性樹脂としては、ダイヤナールNRシリーズ(三菱レイヨン社製)、Photomer6173(COOH含有 polyurethane acrylic oligomer.Diamond Shamrock Co.,Ltd.製)、ビスコートR-264、KSレジスト106(いずれも大阪有機化学工業社製)、サイクロマーPシリーズ(例えば、ACA230AA)、プラクセル CF200シリーズ(いずれもダイセル社製)、Ebecryl3800(ダイセル・オルネクス社製)、及びアクリキュアRD-F8(日本触媒社製)等が挙げられる。
上記重合性基としては、例えば、エチレン性不飽和基(例えば、(メタ)アクリロイル基、ビニル基、及び、スチリル基等)、及び、環状エーテル基(例えば、エポキシ基、オキセタニル基等)等が挙げられるが、これらに制限されない。
中でも、ラジカル反応で重合制御が可能な点で、重合性基としては、エチレン性不飽和基が好ましく、(メタ)アクリロイル基がより好ましい。
重合性基を含むアルカリ可溶性樹脂としては、重合性基を側鎖に有するアルカリ可溶性樹脂等が好ましい。重合性基を含むアルカリ可溶性樹脂としては、ダイヤナールNRシリーズ(三菱レイヨン社製)、Photomer6173(COOH含有 polyurethane acrylic oligomer.Diamond Shamrock Co.,Ltd.製)、ビスコートR-264、KSレジスト106(いずれも大阪有機化学工業社製)、サイクロマーPシリーズ(例えば、ACA230AA)、プラクセル CF200シリーズ(いずれもダイセル社製)、Ebecryl3800(ダイセル・オルネクス社製)、及びアクリキュアRD-F8(日本触媒社製)等が挙げられる。
アルカリ可溶性樹脂としては、例えば、特開昭59-044615号公報、特公昭54-34327号公報、特公昭58-12577号公報、特公昭54-025957号公報、特開昭54-092723号公報、特開昭59-053836号公報、及び特開昭59-071048号公報に記載されている側鎖にカルボン酸基を含むラジカル重合体;欧州特許第993966号公報、欧州特許第1204000号明細書、及び特開2001-318463号公報に記載されているアルカリ可溶性基を含むアセタール変性ポリビニルアルコール系バインダー樹脂;ポリビニルピロリドン;ポリエチレンオキサイド;アルコール可溶性ナイロン、及び2,2-ビス-(4-ヒドロキシフェニル)-プロパンとエピクロロヒドリンとの反応物であるポリエーテル等;並びに、国際公開第2008/123097号パンフレットに記載のポリイミド樹脂;等を使用できる。
アルカリ可溶性樹脂としては、例えば、特開2016-075845号公報の段落0225~0245に記載の化合物も使用でき、上記内容は本明細書に組み込まれる。
アルカリ可溶性樹脂としては、ポリイミド前駆体も使用できる。ポリイミド前駆体は、酸無水物基を含む化合物とジアミン化合物とを40~100℃下において付加重合反応して得られる樹脂を意味する。
上記ポリイミド前駆体の具体例としては、例えば、特開2008-106250号公報の段落0011~0031に記載の化合物、特開2016-122101号公報の段落0022~0039に記載の化合物、特開2016-068401号公報の段落0061~0092に記載の化合物、特開2014-137523号公報の段落0050に記載された樹脂、特開2015-187676号公報の段落0058に記載された樹脂、及び特開2014-106326号公報の段落0012~0013に記載された樹脂等が挙げられ、上記の内容は本明細書に組み込まれる。
上記ポリイミド前駆体の具体例としては、例えば、特開2008-106250号公報の段落0011~0031に記載の化合物、特開2016-122101号公報の段落0022~0039に記載の化合物、特開2016-068401号公報の段落0061~0092に記載の化合物、特開2014-137523号公報の段落0050に記載された樹脂、特開2015-187676号公報の段落0058に記載された樹脂、及び特開2014-106326号公報の段落0012~0013に記載された樹脂等が挙げられ、上記の内容は本明細書に組み込まれる。
アルカリ可溶性樹脂としては、〔ベンジル(メタ)アクリレート/(メタ)アクリル酸/必要に応じてその他の付加重合性ビニルモノマー〕共重合体、及び〔アリル(メタ)アクリレート/(メタ)アクリル酸/必要に応じてその他の付加重合性ビニルモノマー〕共重合体が、膜強度、感度、及び現像性のバランスに優れており、好適である。
上記その他の付加重合性ビニルモノマーには、1種単独でも2種以上でもよい。
上記共重合体は、硬化膜の耐湿性がより優れる点から、重合性基を有することが好ましく、(メタ)アクリロイル基等のエチレン性不飽和基を含むことがより好ましい。
例えば、上記その他の付加重合性ビニルモノマーとして重合性基を有するモノマーを使用して共重合体に重合性基が導入されていてもよい。また、共重合体中の(メタ)アクリル酸に由来する単位及び/又は上記その他の付加重合性ビニルモノマーに由来する単位の1種以上の、一部又は全部に、重合性基(好ましくは(メタ)アクリロイル基等のエチレン性不飽和基)が導入されていてもよい。
上記その他の付加重合性ビニルモノマーとしては、例えば、(メタ)アクリル酸メチル、スチレン系単量体(ヒドロキシスチレン等)、及びエーテルダイマーが挙げられる。
上記エーテルダイマーは、例えば、下記一般式(ED1)で表される化合物、及び下記一般式(ED2)で表される化合物が挙げられる。
上記その他の付加重合性ビニルモノマーには、1種単独でも2種以上でもよい。
上記共重合体は、硬化膜の耐湿性がより優れる点から、重合性基を有することが好ましく、(メタ)アクリロイル基等のエチレン性不飽和基を含むことがより好ましい。
例えば、上記その他の付加重合性ビニルモノマーとして重合性基を有するモノマーを使用して共重合体に重合性基が導入されていてもよい。また、共重合体中の(メタ)アクリル酸に由来する単位及び/又は上記その他の付加重合性ビニルモノマーに由来する単位の1種以上の、一部又は全部に、重合性基(好ましくは(メタ)アクリロイル基等のエチレン性不飽和基)が導入されていてもよい。
上記その他の付加重合性ビニルモノマーとしては、例えば、(メタ)アクリル酸メチル、スチレン系単量体(ヒドロキシスチレン等)、及びエーテルダイマーが挙げられる。
上記エーテルダイマーは、例えば、下記一般式(ED1)で表される化合物、及び下記一般式(ED2)で表される化合物が挙げられる。
一般式(ED1)中、R1及びR2は、それぞれ独立に、水素原子又は炭素数1~25の炭化水素基を表す。
一般式(ED2)中、Rは、水素原子又は炭素数1~30の有機基を表す。一般式(ED2)の具体例としては、特開2010-168539号公報の記載を参酌できる。
エーテルダイマーの具体例としては、例えば、特開2013-029760号公報の段落0317を参酌することができ、この内容は本明細書に組み込まれる。エーテルダイマーは、1種のみであってもよいし、2種以上であってもよい。
アルカリ可溶性樹脂の酸価としては、特に制限されないが、一般に、30~500mgKOH/gが好ましく、50~200mgKOH/g以上がより好ましい。
〔重合開始剤〕
組成物は、重合開始剤を含んでいてもよい。
重合開始剤としては特に制限されず、公知の重合開始剤を使用できる。重合開始剤としては、例えば、光重合開始剤、及び熱重合開始剤等が挙げられ、光重合開始剤が好ましい。なお、重合開始剤としては、いわゆるラジカル重合開始剤が好ましい。
組成物中における重合開始剤の含有量としては特に制限されないが、組成物の全固形分に対して、0.5~15.0質量%が好ましく、1.0~10.0質量%がより好ましく、1.5~8.0質量%が更に好ましい。
重合開始剤は、1種を単独で用いても、2種以上を併用してもよい。重合開始剤を2種以上併用する場合は、合計量が上記範囲内であるのが好ましい。
組成物は、重合開始剤を含んでいてもよい。
重合開始剤としては特に制限されず、公知の重合開始剤を使用できる。重合開始剤としては、例えば、光重合開始剤、及び熱重合開始剤等が挙げられ、光重合開始剤が好ましい。なお、重合開始剤としては、いわゆるラジカル重合開始剤が好ましい。
組成物中における重合開始剤の含有量としては特に制限されないが、組成物の全固形分に対して、0.5~15.0質量%が好ましく、1.0~10.0質量%がより好ましく、1.5~8.0質量%が更に好ましい。
重合開始剤は、1種を単独で用いても、2種以上を併用してもよい。重合開始剤を2種以上併用する場合は、合計量が上記範囲内であるのが好ましい。
<熱重合開始剤>
熱重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル(AIBN)、3-カルボキシプロピオニトリル、アゾビスマレノニトリル、及びジメチル-(2,2’)-アゾビス(2-メチルプロピオネート)[V-601]等のアゾ化合物、並びに、過酸化ベンゾイル、過酸化ラウロイル、及び過硫酸カリウム等の有機過酸化物が挙げられる。
熱重合開始剤の具体例としては、例えば、加藤清視著「紫外線硬化システム」(株式会社総合技術センター発行:平成元年)の第65~148頁に記載されている重合開始剤等が挙げられる。
熱重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル(AIBN)、3-カルボキシプロピオニトリル、アゾビスマレノニトリル、及びジメチル-(2,2’)-アゾビス(2-メチルプロピオネート)[V-601]等のアゾ化合物、並びに、過酸化ベンゾイル、過酸化ラウロイル、及び過硫酸カリウム等の有機過酸化物が挙げられる。
熱重合開始剤の具体例としては、例えば、加藤清視著「紫外線硬化システム」(株式会社総合技術センター発行:平成元年)の第65~148頁に記載されている重合開始剤等が挙げられる。
<光重合開始剤>
上記組成物は光重合開始剤を含むことが好ましい。
光重合開始剤としては、重合性化合物の重合を開始できれば特に制限されず、公知の光重合開始剤を使用できる。光重合開始剤としては、例えば、紫外線領域から可視光領域に対して感光性を有する光重合開始剤が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、重合性化合物の種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、光重合開始剤は、300~800nm(330~500nmがより好ましい。)の範囲内に少なくとも50のモル吸光係数を有する化合物を、少なくとも1種含んでいることが好ましい。
上記組成物は光重合開始剤を含むことが好ましい。
光重合開始剤としては、重合性化合物の重合を開始できれば特に制限されず、公知の光重合開始剤を使用できる。光重合開始剤としては、例えば、紫外線領域から可視光領域に対して感光性を有する光重合開始剤が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、重合性化合物の種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、光重合開始剤は、300~800nm(330~500nmがより好ましい。)の範囲内に少なくとも50のモル吸光係数を有する化合物を、少なくとも1種含んでいることが好ましい。
組成物中における光重合開始剤の含有量としては特に制限されないが、組成物の全固形分に対して、0.5~15.0質量%が好ましく、1.0~10.0質量%がより好ましく、1.5~8.0質量%が更に好ましい。光重合開始剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の光重合開始剤を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を含む化合物、オキサジアゾール骨格を含む化合物、等)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、アミノアセトフェノン化合物、及びヒドロキシアセトフェノン等が挙げられる。
光重合開始剤の具体例としては、例えば、特開2013-029760号公報の段落0265~0268を参酌でき、この内容は本明細書に組み込まれる。
光重合開始剤の具体例としては、例えば、特開2013-029760号公報の段落0265~0268を参酌でき、この内容は本明細書に組み込まれる。
光重合開始剤としては、より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、及び特許第4225898号公報に記載のアシルホスフィン系開始剤も使用できる。
ヒドロキシアセトフェノン化合物としては、例えば、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959、及びIRGACURE-127(商品名、いずれもBASF社製)を使用できる。
アミノアセトフェノン化合物としては、例えば、市販品であるIRGACURE-907、IRGACURE-369、及びIRGACURE-379EG(商品名、いずれもBASF社製)を使用できる。アミノアセトフェノン化合物としては、波長365nm又は波長405nm等の長波光源に吸収波長がマッチングされた特開2009-191179公報に記載の化合物も使用できる。
アシルホスフィン化合物としては、市販品であるIRGACURE-819、及びIRGACURE-TPO(商品名、いずれもBASF社製)を使用できる。
ヒドロキシアセトフェノン化合物としては、例えば、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959、及びIRGACURE-127(商品名、いずれもBASF社製)を使用できる。
アミノアセトフェノン化合物としては、例えば、市販品であるIRGACURE-907、IRGACURE-369、及びIRGACURE-379EG(商品名、いずれもBASF社製)を使用できる。アミノアセトフェノン化合物としては、波長365nm又は波長405nm等の長波光源に吸収波長がマッチングされた特開2009-191179公報に記載の化合物も使用できる。
アシルホスフィン化合物としては、市販品であるIRGACURE-819、及びIRGACURE-TPO(商品名、いずれもBASF社製)を使用できる。
光重合開始剤として、オキシムエステル系重合開始剤(オキシム化合物)がより好ましい。特にオキシム化合物は高感度で重合効率が高く、組成物中における色材の含有量を高く設計しやすいため好ましい。
オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-80068号公報に記載の化合物、又は特開2006-342166号公報に記載の化合物を使用できる。
オキシム化合物としては、例えば、3-ベンゾイロキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイロキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オン等が挙げられる。
また、J.C.S.Perkin II(1979年)pp.1653-1660、J.C.S.Perkin II(1979年)pp.156-162、Journal of Photopolymer Science and Technology(1995年)pp.202-232、特開2000-066385号公報に記載の化合物、特開2000-080068号公報、特表2004-534797号公報、及び特開2006-342166号公報に記載の化合物等も挙げられる。
市販品ではIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)、IRGACURE-OXE03(BASF社製)、又はIRGACURE-OXE04(BASF社製)も好ましい。また、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831、アデカアークルズNCI-930(ADEKA社製)、又はN-1919(カルバゾール・オキシムエステル骨格含有光開始剤(ADEKA社製))も使用できる。
オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-80068号公報に記載の化合物、又は特開2006-342166号公報に記載の化合物を使用できる。
オキシム化合物としては、例えば、3-ベンゾイロキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイロキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オン等が挙げられる。
また、J.C.S.Perkin II(1979年)pp.1653-1660、J.C.S.Perkin II(1979年)pp.156-162、Journal of Photopolymer Science and Technology(1995年)pp.202-232、特開2000-066385号公報に記載の化合物、特開2000-080068号公報、特表2004-534797号公報、及び特開2006-342166号公報に記載の化合物等も挙げられる。
市販品ではIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)、IRGACURE-OXE03(BASF社製)、又はIRGACURE-OXE04(BASF社製)も好ましい。また、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831、アデカアークルズNCI-930(ADEKA社製)、又はN-1919(カルバゾール・オキシムエステル骨格含有光開始剤(ADEKA社製))も使用できる。
また上記記載以外のオキシム化合物として、カルバゾールN位にオキシムが連結した特表2009-519904号公報に記載の化合物;ベンゾフェノン部位にヘテロ置換基が導入された米国特許第7626957号公報に記載の化合物;色素部位にニトロ基が導入された特開2010-015025号公報及び米国特許公開2009-292039号明細書に記載の化合物;国際公開第2009-131189号パンフレットに記載のケトオキシム化合物;及びトリアジン骨格とオキシム骨格を同一分子内に含む米国特許第7556910号明細書に記載の化合物;405nmに吸収極大を有しg線光源に対して良好な感度を有する特開2009-221114号公報に記載の化合物;等を用いてもよい。
例えば、特開2013-029760号公報の段落0274~0275を参酌でき、この内容は本明細書に組み込まれる。
具体的には、オキシム化合物としては、下記式(OX-1)で表される化合物が好ましい。なお、オキシム化合物のN-O結合が(E)体のオキシム化合物であっても、(Z)体のオキシム化合物であっても、(E)体と(Z)体との混合物であってもよい。
例えば、特開2013-029760号公報の段落0274~0275を参酌でき、この内容は本明細書に組み込まれる。
具体的には、オキシム化合物としては、下記式(OX-1)で表される化合物が好ましい。なお、オキシム化合物のN-O結合が(E)体のオキシム化合物であっても、(Z)体のオキシム化合物であっても、(E)体と(Z)体との混合物であってもよい。
式(OX-1)中、R及びBはそれぞれ独立に1価の置換基を表し、Aは2価の有機基を表し、Arはアリール基を表す。
式(OX-1)中、Rで表される1価の置換基としては、1価の非金属原子団が好ましい。
1価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、及びアリールチオカルボニル基等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、更に他の置換基で置換されていてもよい。
置換基としてはハロゲン原子、アリールオキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、及びアリール基等が挙げられる。
式(OX-1)中、Bで表される1価の置換基としては、アリール基、複素環基、アリールカルボニル基、又は複素環カルボニル基が好ましく、アリール基、又は複素環基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
式(OX-1)中、Aで表される2価の有機基としては、炭素数1~12のアルキレン基、シクロアルキレン基、又はアルキニレン基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
式(OX-1)中、Rで表される1価の置換基としては、1価の非金属原子団が好ましい。
1価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、及びアリールチオカルボニル基等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、更に他の置換基で置換されていてもよい。
置換基としてはハロゲン原子、アリールオキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、及びアリール基等が挙げられる。
式(OX-1)中、Bで表される1価の置換基としては、アリール基、複素環基、アリールカルボニル基、又は複素環カルボニル基が好ましく、アリール基、又は複素環基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
式(OX-1)中、Aで表される2価の有機基としては、炭素数1~12のアルキレン基、シクロアルキレン基、又はアルキニレン基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
光重合開始剤として、フッ素原子を含むオキシム化合物も使用できる。フッ素原子を含むオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物;特表2014-500852号公報に記載の化合物24、36~40;及び特開2013-164471号公報に記載の化合物(C-3);等が挙げられる。この内容は本明細書に組み込まれる。
光重合開始剤として、下記一般式(1)~(4)で表される化合物も使用できる。
式(1)において、R1及びR2は、それぞれ独立に、炭素数1~20のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~30のアリール基、又は炭素数7~30のアリールアルキル基を表し、R1及びR2がフェニル基の場合、フェニル基同士が結合してフルオレン基を形成してもよく、R3及びR4は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を示す。
式(2)において、R1、R2、R3、及びR4は、式(1)におけるR1、R2、R3、及びR4と同義であり、R5は、-R6、-OR6、-SR6、-COR6、-CONR6R6、-NR6COR6、-OCOR6、-COOR6、-SCOR6、-OCSR6、-COSR6、-CSOR6、-CN、ハロゲン原子、又は水酸基を表し、R6は、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、又は炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を表し、aは0~4の整数を表す。
式(3)において、R1は、炭素数1~20のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~30のアリール基、又は炭素数7~30のアリールアルキル基を表し、R3及びR4は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、又は炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を示す。
式(4)において、R1、R3、及びR4は、式(3)におけるR1、R3、及びR4と同義であり、R5は、-R6、-OR6、-SR6、-COR6、-CONR6R6、-NR6COR6、-OCOR6、-COOR6、-SCOR6、-OCSR6、-COSR6、-CSOR6、-CN、ハロゲン原子、又は水酸基を表し、R6は、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、又は炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を表し、aは0~4の整数を表す。
上記式(1)及び(2)において、R1及びR2は、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロヘキシル基、又はフェニル基が好ましい。R3はメチル基、エチル基、フェニル基、トリル基、又はキシリル基が好ましい。R4は炭素数1~6のアルキル基又はフェニル基が好ましい。R5はメチル基、エチル基、フェニル基、トリル基、又はナフチル基が好ましい。Xは直接結合が好ましい。
また、上記式(3)及び(4)において、R1は、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロヘキシル基、又はフェニル基が好ましい。R3はメチル基、エチル基、フェニル基、トリル基、又はキシリル基が好ましい。R4は炭素数1~6のアルキル基、又はフェニル基が好ましい。R5はメチル基、エチル基、フェニル基、トリル基、又はナフチル基が好ましい。Xは直接結合が好ましい。
式(1)及び式(2)で表される化合物の具体例としては、例えば、特開2014-137466号公報の段落0076~0079に記載された化合物が挙げられる。この内容は本明細書に組み込まれる。
また、上記式(3)及び(4)において、R1は、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロヘキシル基、又はフェニル基が好ましい。R3はメチル基、エチル基、フェニル基、トリル基、又はキシリル基が好ましい。R4は炭素数1~6のアルキル基、又はフェニル基が好ましい。R5はメチル基、エチル基、フェニル基、トリル基、又はナフチル基が好ましい。Xは直接結合が好ましい。
式(1)及び式(2)で表される化合物の具体例としては、例えば、特開2014-137466号公報の段落0076~0079に記載された化合物が挙げられる。この内容は本明細書に組み込まれる。
上記組成物に好ましく使用されるオキシム化合物の具体例を以下に示す。以下に示すオキシム化合物のなかでも、一般式(C-13)で表されるオキシム化合物がより好ましい。
また、オキシム化合物としては、国際公開第2015-036910号パンフレットのTable1に記載の化合物も使用でき、上記の内容は本明細書に組み込まれる。
また、オキシム化合物としては、国際公開第2015-036910号パンフレットのTable1に記載の化合物も使用でき、上記の内容は本明細書に組み込まれる。
オキシム化合物は、350~500nmの波長領域に極大吸収波長を有することが好ましく、360~480nmの波長領域に極大吸収波長を有することがより好ましく、365nm及び405nmの波長の吸光度が高いことが更に好ましい。
オキシム化合物の365nm又は405nmにおけるモル吸光係数は、感度の点から、1,000~300,000が好ましく、2,000~300,000がより好ましく、5,000~200,000が更に好ましい。
化合物のモル吸光係数は、公知の方法を使用できるが、例えば、紫外可視分光光度計(Varian社製Cary-5 spctrophotometer)にて、酢酸エチルを用い、0.01g/Lの濃度で測定することが好ましい。
光重合開始剤は、必要に応じて2種以上を組み合わせて使用してもよい。
オキシム化合物の365nm又は405nmにおけるモル吸光係数は、感度の点から、1,000~300,000が好ましく、2,000~300,000がより好ましく、5,000~200,000が更に好ましい。
化合物のモル吸光係数は、公知の方法を使用できるが、例えば、紫外可視分光光度計(Varian社製Cary-5 spctrophotometer)にて、酢酸エチルを用い、0.01g/Lの濃度で測定することが好ましい。
光重合開始剤は、必要に応じて2種以上を組み合わせて使用してもよい。
また、光重合開始剤としては、特開2008-260927号公報の段落0052、特開第2010-097210号公報の段落0033~0037、及び特開第2015-068893号公報の段落0044に記載の化合物も使用でき、上記の内容は本明細書に組み込まれる。
〔重合性化合物〕
本発明の組成物は、重合性化合物を含んでいてもよい。
本明細書において重合性化合物とは、上述した重合開始剤の作用を受けて重合する化合物を意味し、上述した本発明の組成物中の樹脂とは異なる成分を意味する。つまり、重合性化合物は、グラフト鎖は有さない。
重合性化合物の分子量(重合性化合物が分子量分布を有する場合には、重量平均分子量)は、特に制限されないが、2000以下が好ましい。
本発明の組成物は、重合性化合物を含んでいてもよい。
本明細書において重合性化合物とは、上述した重合開始剤の作用を受けて重合する化合物を意味し、上述した本発明の組成物中の樹脂とは異なる成分を意味する。つまり、重合性化合物は、グラフト鎖は有さない。
重合性化合物の分子量(重合性化合物が分子量分布を有する場合には、重量平均分子量)は、特に制限されないが、2000以下が好ましい。
組成物中における重合性化合物の含有量としては特に制限されないが、組成物の全固形分に対して、1.0~25.0質量%が好ましく、1.0~20.0質量%がより好ましく、3.0~15.0質量%が更に好ましい。重合性化合物は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合性化合物を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
重合性化合物としては、熱重合性化合物及び光重合性化合物のいずれであってもよいが、露光現像によるパターン形成が可能な点で、光重合性化合物が好ましい。
なお、重合性化合物が光重合性化合物である場合、上述した光重合開始剤と併用して使用されるのが好ましく、重合性化合物が熱重合性化合物である場合、上述した熱重合開始剤と併用して使用されるのが好ましい。
なお、重合性化合物が光重合性化合物である場合、上述した光重合開始剤と併用して使用されるのが好ましく、重合性化合物が熱重合性化合物である場合、上述した熱重合開始剤と併用して使用されるのが好ましい。
重合性化合物としては、エチレン性不飽和結合を含む基(以下単に「エチレン性不飽和基」ともいう。)を含む化合物(以下「エチレン性不飽和基含有化合物」ともいう。)が好ましい。
エチレン性不飽和基含有化合物中におけるエチレン性不飽和結合の個数は特に制限されないが、1個以上が好ましく、2個以上がより好ましく、3個以上が更に好ましく、5個以上が特に好ましい。上限は、例えば、15個以下である。エチレン性不飽和基としては、例えば、ビニル基、(メタ)アリル基、及び(メタ)アクリロイル基等が挙げられる。
エチレン性不飽和基含有化合物中におけるエチレン性不飽和結合の個数は特に制限されないが、1個以上が好ましく、2個以上がより好ましく、3個以上が更に好ましく、5個以上が特に好ましい。上限は、例えば、15個以下である。エチレン性不飽和基としては、例えば、ビニル基、(メタ)アリル基、及び(メタ)アクリロイル基等が挙げられる。
エチレン性不飽和基含有化合物としては、例えば、特開2008-260927号公報の段落0050、及び特開2015-068893号公報の段落0040に記載されている化合物を使用でき、上記の内容は本明細書に組み込まれる。
エチレン性不飽和基含有化合物は、例えば、モノマー、プレポリマー、オリゴマー、及びこれらの混合物、並びに、これらの多量体等の化学的形態のいずれであってもよい。
エチレン性不飽和基含有化合物は、3~15官能の(メタ)アクリレート化合物が好ましく、3~6官能の(メタ)アクリレート化合物がより好ましい。
エチレン性不飽和基含有化合物は、3~15官能の(メタ)アクリレート化合物が好ましく、3~6官能の(メタ)アクリレート化合物がより好ましい。
エチレン性不飽和基含有化合物は、エチレン性不飽和基を1個以上含む、常圧下で100℃以上の沸点を持つ化合物も好ましい。例えば、特開2013-029760号公報の段落0227、特開2008-292970号公報の段落0254~0257に記載の化合物を参酌でき、この内容は本明細書に組み込まれる。
エチレン性不飽和基含有化合物は、ジペンタエリスリトールトリアクリレート(市販品としてはKAYARAD D-330;日本化薬社製)、ジペンタエリスリトールテトラアクリレート(市販品としてはKAYARAD D-320;日本化薬社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬社製、A-DPH-12E;新中村化学社製)、及びこれらの(メタ)アクリロイル基がエチレングリコール残基又はプロピレングリコール残基を介している構造(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。これらのオリゴマータイプも使用できる。また、NKエステルA-TMMT(ペンタエリスリトールテトラアクリレート、新中村化学社製)、KAYARAD RP-1040、KAYARAD DPEA-12LT、KAYARAD DPHA LT、KAYARAD RP-3060、及びKAYARAD DPEA-12(いずれも商品名、日本化薬社製)等を使用してもよい。
以下に好ましいエチレン性不飽和基含有化合物の態様を示す。
以下に好ましいエチレン性不飽和基含有化合物の態様を示す。
エチレン性不飽和基含有化合物は、カルボン酸基、スルホン酸基、及びリン酸基等の酸基を有していてもよい。酸基を含むエチレン性不飽和基含有化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応の水酸基に非芳香族カルボン酸無水物を反応させて酸基を持たせたエチレン性不飽和基含有化合物がより好ましく、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトール及び/又はジペンタエリスリトールである化合物が更に好ましい。市販品としては、例えば、東亞合成社製の、アロニックスTO-2349、M-305、M-510、及びM-520等が挙げられる。
酸基を含むエチレン性不飽和基含有化合物の酸価としては、0.1~40mgKOH/gが好ましく、5~30mgKOH/gがより好ましい。エチレン性不飽和基含有化合物の酸価が0.1mgKOH/g以上であれば、現像溶解特性が良好であり、40mgKOH/g以下であれば、製造及び/又は取扱い上、有利である。更には、光重合性能が良好で、硬化性に優れる。
エチレン性不飽和基含有化合物は、カプロラクトン構造を含む化合物も好ましい態様である。
カプロラクトン構造を含む化合物としては、分子内にカプロラクトン構造を含む限り特に制限されないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、又はトリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸及びε-カプロラクトンとをエステル化して得られる、ε-カプロラクトン変性多官能(メタ)アクリレートが挙げられる。なかでも下記式(Z-1)で表されるカプロラクトン構造を含む化合物が好ましい。
カプロラクトン構造を含む化合物としては、分子内にカプロラクトン構造を含む限り特に制限されないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、又はトリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸及びε-カプロラクトンとをエステル化して得られる、ε-カプロラクトン変性多官能(メタ)アクリレートが挙げられる。なかでも下記式(Z-1)で表されるカプロラクトン構造を含む化合物が好ましい。
式(Z-1)中、6個のRは全てが下記式(Z-2)で表される基であるか、又は6個のRのうち1~5個が下記式(Z-2)で表される基であり、残余が下記式(Z-3)で表される基である。
式(Z-2)中、R1は水素原子又はメチル基を示し、mは1又は2の数を示し、「*」は結合手を示す。
式(Z-3)中、R1は水素原子又はメチル基を示し、「*」は結合手を示す。
カプロラクトン構造を含むエチレン性不飽和基含有化合物は、例えば、日本化薬からKAYARAD DPCAシリーズとして市販されており、DPCA-20(上記式(Z-1)~(Z-3)においてm=1、式(Z-2)で表される基の数=2、R1が全て水素原子である化合物)、DPCA-30(同式、m=1、式(Z-2)で表される基の数=3、R1が全て水素原子である化合物)、DPCA-60(同式、m=1、式(Z-2)で表される基の数=6、R1が全て水素原子である化合物)、及びDPCA-120(同式においてm=2、式(Z-2)で表される基の数=6、R1が全て水素原子である化合物)等が挙げられる。また、カプロラクトン構造を含むエチレン性不飽和基含有化合物の市販品としては、東亞合成社製M-350(商品名)(トリメチロールプロパントリアクリレート)も挙げられる。
エチレン性不飽和基含有化合物は、下記式(Z-4)又は(Z-5)で表される化合物も使用できる。
式(Z-4)及び(Z-5)中、Eは、-((CH2)yCH2O)-、又は((CH2)yCH(CH3)O)-を表し、yは、0~10の整数を表し、Xは、(メタ)アクリロイル基、水素原子、又はカルボン酸基を表す。
式(Z-4)中、(メタ)アクリロイル基の合計は3個又は4個であり、mは0~10の整数を表し、各mの合計は0~40の整数である。
式(Z-5)中、(メタ)アクリロイル基の合計は5個又は6個であり、nは0~10の整数を表し、各nの合計は0~60の整数である。
式(Z-4)中、(メタ)アクリロイル基の合計は3個又は4個であり、mは0~10の整数を表し、各mの合計は0~40の整数である。
式(Z-5)中、(メタ)アクリロイル基の合計は5個又は6個であり、nは0~10の整数を表し、各nの合計は0~60の整数である。
式(Z-4)中、mは、0~6の整数が好ましく、0~4の整数がより好ましい。
また、各mの合計は、2~40の整数が好ましく、2~16の整数がより好ましく、4~8の整数が更に好ましい。
式(Z-5)中、nは、0~6の整数が好ましく、0~4の整数がより好ましい。
また、各nの合計は、3~60の整数が好ましく、3~24の整数がより好ましく、6~12の整数が更に好ましい。
また、式(Z-4)又は式(Z-5)中の-((CH2)yCH2O)-又は((CH2)yCH(CH3)O)-は、酸素原子側の末端がXに結合する形態が好ましい。
また、各mの合計は、2~40の整数が好ましく、2~16の整数がより好ましく、4~8の整数が更に好ましい。
式(Z-5)中、nは、0~6の整数が好ましく、0~4の整数がより好ましい。
また、各nの合計は、3~60の整数が好ましく、3~24の整数がより好ましく、6~12の整数が更に好ましい。
また、式(Z-4)又は式(Z-5)中の-((CH2)yCH2O)-又は((CH2)yCH(CH3)O)-は、酸素原子側の末端がXに結合する形態が好ましい。
式(Z-4)又は式(Z-5)で表される化合物は1種単独で用いてもよいし、2種以上併用してもよい。特に、式(Z-5)において、6個のX全てがアクリロイル基である形態、式(Z-5)において、6個のX全てがアクリロイル基である化合物と、6個のXのうち、少なくとも1個が水素原子ある化合物との混合物である態様が好ましい。このような構成として、現像性をより向上できる。
また、式(Z-4)又は式(Z-5)で表される化合物のエチレン性不飽和基含有化合物中における全含有量としては、20質量%以上が好ましく、50質量%以上がより好ましい。
式(Z-4)又は式(Z-5)で表される化合物のなかでも、ペンタエリスリトール誘導体及び/又はジペンタエリスリトール誘導体がより好ましい。
式(Z-4)又は式(Z-5)で表される化合物のなかでも、ペンタエリスリトール誘導体及び/又はジペンタエリスリトール誘導体がより好ましい。
また、エチレン性不飽和基含有化合物は、カルド骨格を含んでいてもよい。カルド骨格を含むエチレン性不飽和基含有化合物としては、9,9-ビスアリールフルオレン骨格を含むエチレン性不飽和基含有化合物が好ましい。
カルド骨格を含むエチレン性不飽和基含有化合物としては、制限されないが、例えば、オンコートEXシリーズ(長瀬産業社製)及びオグソール(大阪ガスケミカル社製)等が挙げられる。
エチレン性不飽和基含有化合物は、イソシアヌル酸骨格を中心核として含む化合物も好ましい。このようなエチレン性不飽和基含有化合物の例としては、例えば、NKエステルA-9300(新中村化学社製)が挙げられる。
エチレン性不飽和基含有化合物のエチレン性不飽和基の含有量(エチレン性不飽和基含有化合物中のエチレン性不飽和基の数を、エチレン性不飽和基含有化合物の分子量(g/mol)で除した値を意味する)は5.0mmol/g以上が好ましい。上限は特に制限されないが、一般に、20.0mmol/g以下である。
カルド骨格を含むエチレン性不飽和基含有化合物としては、制限されないが、例えば、オンコートEXシリーズ(長瀬産業社製)及びオグソール(大阪ガスケミカル社製)等が挙げられる。
エチレン性不飽和基含有化合物は、イソシアヌル酸骨格を中心核として含む化合物も好ましい。このようなエチレン性不飽和基含有化合物の例としては、例えば、NKエステルA-9300(新中村化学社製)が挙げられる。
エチレン性不飽和基含有化合物のエチレン性不飽和基の含有量(エチレン性不飽和基含有化合物中のエチレン性不飽和基の数を、エチレン性不飽和基含有化合物の分子量(g/mol)で除した値を意味する)は5.0mmol/g以上が好ましい。上限は特に制限されないが、一般に、20.0mmol/g以下である。
また、重合性化合物としては、オキサシクロ化合物も好ましい。オキサシクロ化合物としては、エポキシ基又はオキセタニル基を有する化合物が好ましく、エポキシ基を有する化合物(エポキシ化合物)がより好ましい。
オキサシクロ化合物の具体例としては、単官能又は多官能グリシジルエーテル化合物が挙げられる。また、市販品としては、デナコール EX-212L、EX-214L、EX-216L、EX-321L、EX-850L(以上、ナガセケムテックス(株)製)等の多官能脂肪族グリシジルエーテル化合物が挙げられる。これらは、低塩素品であるが、低塩素品ではない、EX-212、EX-214、EX-216、EX-321、EX-850なども同様に使用できる。
また、オキサシクロ化合物としては、例えば、フェノールノボラック型のグリシジルエーテル(フェノールノボラック型エポキシ化合物)、クレゾールノボラック型のグリシジルエーテル(クレゾールノボラック型エポキシ化合物)、ビスフェノールAノボラック型のグリシジルエーテル等も挙げられる。
オキサシクロ化合物の具体例としては、単官能又は多官能グリシジルエーテル化合物が挙げられる。また、市販品としては、デナコール EX-212L、EX-214L、EX-216L、EX-321L、EX-850L(以上、ナガセケムテックス(株)製)等の多官能脂肪族グリシジルエーテル化合物が挙げられる。これらは、低塩素品であるが、低塩素品ではない、EX-212、EX-214、EX-216、EX-321、EX-850なども同様に使用できる。
また、オキサシクロ化合物としては、例えば、フェノールノボラック型のグリシジルエーテル(フェノールノボラック型エポキシ化合物)、クレゾールノボラック型のグリシジルエーテル(クレゾールノボラック型エポキシ化合物)、ビスフェノールAノボラック型のグリシジルエーテル等も挙げられる。
〔重合禁止剤〕
組成物は、重合禁止剤を含んでいてもよい。
重合禁止剤としては特に制限されず、公知の重合禁止剤を使用できる。重合禁止剤としては、例えば、フェノール系重合禁止剤(例えば、p-メトキシフェノール、2,5-ジ-tert-ブチル-4-メチルフェノール、2,6-ジtert-ブチル-4-メチルフェノール、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4-メトキシナフトール等);ハイドロキノン系重合禁止剤(例えば、ハイドロキノン、2,6-ジ-tert-ブチルハイロドロキノン等);キノン系重合禁止剤(例えば、ベンゾキノン等);フリーラジカル系重合禁止剤(例えば、2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル等);ニトロベンゼン系重合禁止剤(例えば、ニトロベンゼン、4-ニトロトルエン等);及びフェノチアジン系重合禁止剤(例えば、フェノチアジン、2-メトキシフェノチアジン等);等が挙げられる。
なかでも、組成物の分散安定性がより優れる点で、フェノール系重合禁止剤、又はフリーラジカル系重合禁止剤が好ましい。
組成物は、重合禁止剤を含んでいてもよい。
重合禁止剤としては特に制限されず、公知の重合禁止剤を使用できる。重合禁止剤としては、例えば、フェノール系重合禁止剤(例えば、p-メトキシフェノール、2,5-ジ-tert-ブチル-4-メチルフェノール、2,6-ジtert-ブチル-4-メチルフェノール、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4-メトキシナフトール等);ハイドロキノン系重合禁止剤(例えば、ハイドロキノン、2,6-ジ-tert-ブチルハイロドロキノン等);キノン系重合禁止剤(例えば、ベンゾキノン等);フリーラジカル系重合禁止剤(例えば、2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル等);ニトロベンゼン系重合禁止剤(例えば、ニトロベンゼン、4-ニトロトルエン等);及びフェノチアジン系重合禁止剤(例えば、フェノチアジン、2-メトキシフェノチアジン等);等が挙げられる。
なかでも、組成物の分散安定性がより優れる点で、フェノール系重合禁止剤、又はフリーラジカル系重合禁止剤が好ましい。
重合禁止剤は、重合性基を含む樹脂と共に用いる場合にその効果が顕著である。
組成物中における重合禁止剤の含有量としては特に制限されないが、組成物の全固形分に対して、0.0001~0.5質量%が好ましく、0.0001~0.2質量%がより好ましく、0.0001~0.05質量%が更に好ましい。重合禁止剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合禁止剤を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
また、組成物中の重合性化合物の含有量に対する、重合禁止剤の含有量の比(重合禁止剤の含有量/重合性化合物の含有量(質量比))は、0.0005超が好ましく、0.0006~0.02がより好ましく、0.0006~0.005が更に好ましい。
組成物中における重合禁止剤の含有量としては特に制限されないが、組成物の全固形分に対して、0.0001~0.5質量%が好ましく、0.0001~0.2質量%がより好ましく、0.0001~0.05質量%が更に好ましい。重合禁止剤は、1種を単独で用いても、2種以上を併用してもよい。2種以上の重合禁止剤を併用する場合には、合計含有量が上記範囲内であるのが好ましい。
また、組成物中の重合性化合物の含有量に対する、重合禁止剤の含有量の比(重合禁止剤の含有量/重合性化合物の含有量(質量比))は、0.0005超が好ましく、0.0006~0.02がより好ましく、0.0006~0.005が更に好ましい。
〔界面活性剤〕
組成物は、界面活性剤を含んでいてもよい。界面活性剤は、組成物の塗布性向上に寄与する。
上記組成物が、界面活性剤を含む場合、界面活性剤の含有量としては、組成物の全固形分に対して、0.001~2.0質量%が好ましく、0.005~0.5質量%がより好ましく、0.01~0.1質量%が更に好ましい。
界面活性剤は、1種を単独で用いても、2種以上を併用してもよい。界面活性剤を2種以上併用する場合は、合計量が上記範囲内であるのが好ましい。
組成物は、界面活性剤を含んでいてもよい。界面活性剤は、組成物の塗布性向上に寄与する。
上記組成物が、界面活性剤を含む場合、界面活性剤の含有量としては、組成物の全固形分に対して、0.001~2.0質量%が好ましく、0.005~0.5質量%がより好ましく、0.01~0.1質量%が更に好ましい。
界面活性剤は、1種を単独で用いても、2種以上を併用してもよい。界面活性剤を2種以上併用する場合は、合計量が上記範囲内であるのが好ましい。
界面活性剤としては、例えば、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及びシリコーン系界面活性剤等が挙げられる。
例えば、組成物がフッ素系界面活性剤を含めば、組成物の液特性(特に、流動性)がより向上する。即ち、フッ素系界面活性剤を含む組成物を用いて膜形成する場合においては、被塗布面と塗布液との界面張力を低下させて、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、少量の液量で数μm程度の薄膜を形成した場合であっても、厚さムラの小さい均一厚の膜形成をより好適に行える点で有効である。
フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好ましく、5~30質量%がより好ましく、7~25質量%が更に好ましい。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性及び/又は省液性の点で効果的であり、組成物中における溶解性も良好である。
フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F475、同F479、同F482、同F554、及び同F780(以上、DIC社製);フロラードFC430、同FC431、及び同FC171(以上、住友スリーエム社製);サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、及び同KH-40(以上、AGC社製);並びに、PF636、PF656、PF6320、PF6520、及びPF7002(OMNOVA社製)等が挙げられる。
フッ素系界面活性剤としてブロックポリマーも使用でき、具体例としては、例えば特開2011-089090号公報に記載されたが化合物が挙げられる。
フッ素系界面活性剤としてブロックポリマーも使用でき、具体例としては、例えば特開2011-089090号公報に記載されたが化合物が挙げられる。
〔その他の任意成分〕
組成物は、上述した成分以外のその他の任意成分を更に含んでいてもよい。例えば、増感剤、共増感剤、架橋剤(硬化剤)、硬化促進剤、熱硬化促進剤、可塑剤、希釈剤、感脂化剤、ゴム成分等が挙げられ、更に、基板表面への密着促進剤及びその他の助剤類(例えば、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、及び連鎖移動剤等)等の公知の添加剤を必要に応じて加えてもよい。
組成物は、上述した成分以外のその他の任意成分を更に含んでいてもよい。例えば、増感剤、共増感剤、架橋剤(硬化剤)、硬化促進剤、熱硬化促進剤、可塑剤、希釈剤、感脂化剤、ゴム成分等が挙げられ、更に、基板表面への密着促進剤及びその他の助剤類(例えば、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、及び連鎖移動剤等)等の公知の添加剤を必要に応じて加えてもよい。
〔膜〕
本発明の組成物は、膜を形成したときに、1GHz以上の周波数帯域の電磁波を吸収する。本発明の組成物により形成される膜が吸収可能な電磁波の周波数帯域としては、20GHz以上が好ましく、50GHz以上がより好ましい。なお、上限値としては、特に制限されず、例えば、100GHz未満である。
上記電磁波吸収性能は、本発明の組成物の塗膜を乾燥して得られる膜厚250μmの膜に対してネットワークアナライザーを用いて測定される値である。具体的には、自由空間法にて入射角0°におけるSパラメータからニコルソン-ロスモデル法を用いて得られる透磁率虚部のピーク周波数に相当する。
測定装置としては、例えば、アジレントテクノロジー(株)のネットワークアナライザーが挙げられる。
なお、上記測定方法により求められる、本発明の組成物により形成される膜の透磁率虚部のピーク値としては、0.2以上であるのが好ましく、0.8以上であるのがより好ましい。
本発明の組成物は、膜を形成したときに、1GHz以上の周波数帯域の電磁波を吸収する。本発明の組成物により形成される膜が吸収可能な電磁波の周波数帯域としては、20GHz以上が好ましく、50GHz以上がより好ましい。なお、上限値としては、特に制限されず、例えば、100GHz未満である。
上記電磁波吸収性能は、本発明の組成物の塗膜を乾燥して得られる膜厚250μmの膜に対してネットワークアナライザーを用いて測定される値である。具体的には、自由空間法にて入射角0°におけるSパラメータからニコルソン-ロスモデル法を用いて得られる透磁率虚部のピーク周波数に相当する。
測定装置としては、例えば、アジレントテクノロジー(株)のネットワークアナライザーが挙げられる。
なお、上記測定方法により求められる、本発明の組成物により形成される膜の透磁率虚部のピーク値としては、0.2以上であるのが好ましく、0.8以上であるのがより好ましい。
[組成物の製造方法]
本発明の組成物は、上記の各成分を公知の混合方法(例えば、撹拌機、ホモジナイザー、高圧乳化装置、湿式粉砕機、又は湿式分散機等を用いた混合方法)により混合して調製できる。
本発明の組成物は、上記の各成分を公知の混合方法(例えば、撹拌機、ホモジナイザー、高圧乳化装置、湿式粉砕機、又は湿式分散機等を用いた混合方法)により混合して調製できる。
本発明の組成物の調製に際しては、各成分を一括配合してもよいし、各成分をそれぞれ、溶剤に溶解又は分散した後に逐次配合してもよい。また、配合する際の投入順序及び作業条件は特に制限されない。
本発明の組成物が、アルカリ可溶性樹脂、重合性化合物、及び重合開始剤等の成分を含む場合においては、まず、電磁波吸収粒子を含む分散組成物を製造し、得られた分散組成物を更にその他の成分と混合して組成物とすることが好ましい。なお、上記分散組成物は、電磁波吸収粒子、分散剤(好ましくは、上述した特定分散樹脂)、及び溶剤を混合して調製することが好ましい。また、分散組成物は、重合禁止剤を含んでいてもよい。
[膜]
本発明の膜は、本発明の組成物を用いて形成される膜であり、硬化膜であるのが好ましい。以下、硬化膜の製造方法、硬化膜の物性、及び硬化膜の用途について説明する。
本発明の膜は、本発明の組成物を用いて形成される膜であり、硬化膜であるのが好ましい。以下、硬化膜の製造方法、硬化膜の物性、及び硬化膜の用途について説明する。
〔硬化膜の製造〕
本発明の組成物を用いて形成された組成物層を硬化して、硬化膜(パターン状の硬化膜を含む)を得られる。
硬化膜の製造方法としては特に制限されないが、以下の工程を含むことが好ましい。
・組成物層形成工程
・露光工程
・現像工程
以下、各工程について説明する。
本発明の組成物を用いて形成された組成物層を硬化して、硬化膜(パターン状の硬化膜を含む)を得られる。
硬化膜の製造方法としては特に制限されないが、以下の工程を含むことが好ましい。
・組成物層形成工程
・露光工程
・現像工程
以下、各工程について説明する。
<組成物層形成工程>
組成物層形成工程においては、露光に先立ち、基材等の上に、組成物を付与して組成物の層(組成物層)を形成する。基材としては、例えば、アンテナ部又はインダクタ部を有する配線基板等を使用できる。
組成物層形成工程においては、露光に先立ち、基材等の上に、組成物を付与して組成物の層(組成物層)を形成する。基材としては、例えば、アンテナ部又はインダクタ部を有する配線基板等を使用できる。
基材上への組成物の適用方法としては、スリット塗布法、インクジェット法、回転塗布法、流延塗布法、ロール塗布法、及び、スクリーン印刷法等の各種の塗布方法を適用できる。組成物層の膜厚としては、1~10000μmが好ましく、10~1000μmがより好ましく、15~800μmが更に好ましい。基材上に塗布された組成物層の乾燥(プリベーク)は、例えば、ホットプレート、オーブン等で50~140℃の温度で10秒間~6時間で行える。
<露光工程>
露光工程では、組成物層形成工程において形成された組成物層に活性光線又は放射線を照射して露光し、光照射された組成物層を硬化させる。
光照射の方法としては特に制限されないが、パターン状の開口部を有するフォトマスクを介して光照射することが好ましい。
露光は放射線の照射により行うことが好ましい。露光に際して使用できる放射線としては、特に、g線、h線、及び、i線等の紫外線が好ましく、光源としては高圧水銀灯が好まれる。照射強度は5~1500mJ/cm2が好ましく、10~1000mJ/cm2がより好ましい。
なお、組成物が熱重合開始剤を含む場合、上記露光工程において、組成物層を加熱してもよい。加熱の温度として特に制限されないが、80~250℃が好ましい。また、加熱の時間としては特に制限されないが、30~300秒間が好ましい。
なお、露光工程において、組成物層を加熱する場合、後述する後加熱工程を兼ねてもよい。言い換えれば、露光工程において、組成物層を加熱する場合、硬化膜の製造方法は後加熱工程を含有しなくてもよい。
露光工程では、組成物層形成工程において形成された組成物層に活性光線又は放射線を照射して露光し、光照射された組成物層を硬化させる。
光照射の方法としては特に制限されないが、パターン状の開口部を有するフォトマスクを介して光照射することが好ましい。
露光は放射線の照射により行うことが好ましい。露光に際して使用できる放射線としては、特に、g線、h線、及び、i線等の紫外線が好ましく、光源としては高圧水銀灯が好まれる。照射強度は5~1500mJ/cm2が好ましく、10~1000mJ/cm2がより好ましい。
なお、組成物が熱重合開始剤を含む場合、上記露光工程において、組成物層を加熱してもよい。加熱の温度として特に制限されないが、80~250℃が好ましい。また、加熱の時間としては特に制限されないが、30~300秒間が好ましい。
なお、露光工程において、組成物層を加熱する場合、後述する後加熱工程を兼ねてもよい。言い換えれば、露光工程において、組成物層を加熱する場合、硬化膜の製造方法は後加熱工程を含有しなくてもよい。
<現像工程>
現像工程は、露光後の上記組成物層を現像して硬化膜を形成する工程である。本工程により、露光工程における光未照射部分の組成物層が溶出し、光硬化した部分だけが残り、パターン状の硬化膜が得られる。
現像工程で使用される現像液の種類は特に制限されないが、回路等にダメージを起こさないアルカリ現像液が望ましい。
現像温度としては、例えば、20~30℃である。
現像時間は、例えば、20~90秒間である。残渣をよりよく除去するため、近年では120~180秒間実施する場合もある。更には、残渣除去性をより向上するため、現像液を60秒ごとに振り切り、更に新たに現像液を供給する工程を数回繰り返す場合もある。
現像工程は、露光後の上記組成物層を現像して硬化膜を形成する工程である。本工程により、露光工程における光未照射部分の組成物層が溶出し、光硬化した部分だけが残り、パターン状の硬化膜が得られる。
現像工程で使用される現像液の種類は特に制限されないが、回路等にダメージを起こさないアルカリ現像液が望ましい。
現像温度としては、例えば、20~30℃である。
現像時間は、例えば、20~90秒間である。残渣をよりよく除去するため、近年では120~180秒間実施する場合もある。更には、残渣除去性をより向上するため、現像液を60秒ごとに振り切り、更に新たに現像液を供給する工程を数回繰り返す場合もある。
アルカリ現像液としては、アルカリ性化合物を濃度が0.001~10質量%(好ましくは0.01~5質量%)となるように水に溶解して調製されたアルカリ性水溶液が好ましい。
アルカリ性化合物は、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム,硅酸ナトリウム、メタ硅酸ナトリウム、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシ、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、及び、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等が挙げられる(このうち、有機アルカリが好ましい。)。
なお、アルカリ現像液として用いた場合は、一般に現像後に水で洗浄処理が施される。
アルカリ性化合物は、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム,硅酸ナトリウム、メタ硅酸ナトリウム、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシ、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、及び、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等が挙げられる(このうち、有機アルカリが好ましい。)。
なお、アルカリ現像液として用いた場合は、一般に現像後に水で洗浄処理が施される。
<ポストベーク>
露光工程の後、加熱処理(ポストベーク)を行うことが好ましい。ポストベークは、硬化を完全にするための現像後の加熱処理である。その加熱温度は、240℃以下が好ましく、220℃以下がより好ましい。下限は特にないが、効率的かつ効果的な処理を考慮すると、50℃以上が好ましく、100℃以上がより好ましい。
ポストベークは、ホットプレート、コンベクションオーブン(熱風循環式乾燥機)、又は、高周波加熱機等の加熱手段を用いて、連続式又はバッチ式で行える。
露光工程の後、加熱処理(ポストベーク)を行うことが好ましい。ポストベークは、硬化を完全にするための現像後の加熱処理である。その加熱温度は、240℃以下が好ましく、220℃以下がより好ましい。下限は特にないが、効率的かつ効果的な処理を考慮すると、50℃以上が好ましく、100℃以上がより好ましい。
ポストベークは、ホットプレート、コンベクションオーブン(熱風循環式乾燥機)、又は、高周波加熱機等の加熱手段を用いて、連続式又はバッチ式で行える。
上記のポストベークは、低酸素濃度の雰囲気下で行うことが好ましい。その酸素濃度は、19体積%以下が好ましく、15体積%以下がより好ましく、10体積%以下が更に好ましく、7体積%以下が特に好ましく、3体積%以下が最も好ましい。下限は特にないが、10体積ppm以上が実際的である。
また、上記の加熱によるポストベークに変え、UV(紫外線)照射によって硬化を完遂させてもよい。
この場合、上述した組成物は、更にUV硬化剤を含むことが好ましい。UV硬化剤は、通常のi線露光によるリソグラフィー工程のために添加する重合開始剤の露光波長である365nmより短波の波長で硬化できるUV硬化剤が好ましい。UV硬化剤としては、例えば、チバ イルガキュア 2959(商品名)が挙げられる。UV照射を行う場合においては、組成物層が波長340nm以下で硬化する材料であることが好ましい。波長の下限値は特にないが、220nm以上が一般的である。またUV照射の露光量は100~5000mJが好ましく、300~4000mJがより好ましく、800~3500mJが更に好ましい。このUV硬化工程は、露光工程の後に行うことが、低温硬化をより効果的に行うために、好ましい。露光光源はオゾンレス水銀ランプを使用することが好ましい。
この場合、上述した組成物は、更にUV硬化剤を含むことが好ましい。UV硬化剤は、通常のi線露光によるリソグラフィー工程のために添加する重合開始剤の露光波長である365nmより短波の波長で硬化できるUV硬化剤が好ましい。UV硬化剤としては、例えば、チバ イルガキュア 2959(商品名)が挙げられる。UV照射を行う場合においては、組成物層が波長340nm以下で硬化する材料であることが好ましい。波長の下限値は特にないが、220nm以上が一般的である。またUV照射の露光量は100~5000mJが好ましく、300~4000mJがより好ましく、800~3500mJが更に好ましい。このUV硬化工程は、露光工程の後に行うことが、低温硬化をより効果的に行うために、好ましい。露光光源はオゾンレス水銀ランプを使用することが好ましい。
〔硬化膜の物性、及び硬化膜の用途〕
硬化膜の膜厚は、例えば、1~10000μmが好ましく、10~1000μmがより好ましく、15~800μmが更に好ましい。
硬化膜が吸収可能な電磁波の周波数帯域としては、1GHz以上が好ましく、20GHz以上がより好ましく、50GHz以上が更に好ましい。なお、上限値としては、特に制限されず、例えば、100GHz未満である。なお、硬化膜が吸収可能な電磁波の周波数帯域は、ネットワークアナライザーを用いて測定される値であり、具体的には、自由空間法にて入射角0°におけるSパラメータからニコルソン-ロスモデル法を用いて得られる透磁率虚部のピーク周波数に相当する。測定装置としては、例えば、アジレントテクノロジー(株)のネットワークアナライザーが挙げられる。
硬化膜は、電子通信機器等に装備されるアンテナ及びインダクタ等の電子部品として好適に用いられる。
硬化膜の膜厚は、例えば、1~10000μmが好ましく、10~1000μmがより好ましく、15~800μmが更に好ましい。
硬化膜が吸収可能な電磁波の周波数帯域としては、1GHz以上が好ましく、20GHz以上がより好ましく、50GHz以上が更に好ましい。なお、上限値としては、特に制限されず、例えば、100GHz未満である。なお、硬化膜が吸収可能な電磁波の周波数帯域は、ネットワークアナライザーを用いて測定される値であり、具体的には、自由空間法にて入射角0°におけるSパラメータからニコルソン-ロスモデル法を用いて得られる透磁率虚部のピーク周波数に相当する。測定装置としては、例えば、アジレントテクノロジー(株)のネットワークアナライザーが挙げられる。
硬化膜は、電子通信機器等に装備されるアンテナ及びインダクタ等の電子部品として好適に用いられる。
以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[表1に示す各種成分]
以下において、まず、表1に示される各種成分について説明する。
〔電磁波吸収粒子〕
表1の「分散組成物」欄に示される電磁波吸収粒子(以下「粒子」ともいう。)P1~P4)を以下に示す。
以下において、まず、表1に示される各種成分について説明する。
〔電磁波吸収粒子〕
表1の「分散組成物」欄に示される電磁波吸収粒子(以下「粒子」ともいう。)P1~P4)を以下に示す。
<<粒子P1(六方晶フェライト粒子)>>
<粒子P1の作製>
35℃に保温した水400.0gを撹拌し、撹拌中の水に、塩化鉄(III)六水和物〔FeCl3・6H2O〕57.0g、塩化ストロンチウム六水和物〔SrCl2・6H2O〕27.8g、及び塩化アルミニウム六水和物〔AlCl3・6H2O〕10.7gを水216.0gに溶解して調製した原料水溶液と、5mol/Lの水酸化ナトリウム水溶液181.3gに水113.0gを加えて調製した溶液と、をそれぞれ10mL/minの流速にて、添加のタイミングを同じくして、全量添加し、第1の液を得た。
次いで、第1の液の温度を25℃に変更した後、1mol/Lの水酸化ナトリウム水溶液39.8gを添加し、第2の液を得た。第2の液のpHは、10.5であった。なお、第2の液のpHは、(株)堀場製作所の卓上型pHメータ F-71(製品名)を用いて測定した(以下、同じ)。
次いで、第2の液を15分間撹拌し、反応を終了させて、六方晶フェライト粒子の前駆体となる反応生成物を含む水溶液(即ち、前駆体含有水溶液)を得た。
次いで、前駆体含有水溶液に対し、遠心分離処理(回転数:3000rpm、回転時間:10分間)を3回行い、得られた沈殿物を回収した。
次いで、回収した沈殿物を水洗した。
次いで、水洗後の沈殿物を内部雰囲気温度80℃のオーブン内で12時間乾燥させて、前駆体からなる粒子(即ち、前駆体粒子)を得た。
次いで、前駆体粒子をマッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1060℃の温度条件に設定し、4時間焼成することにより、粒子P1(六方晶フェライト粒子)を得た。
<粒子P1の作製>
35℃に保温した水400.0gを撹拌し、撹拌中の水に、塩化鉄(III)六水和物〔FeCl3・6H2O〕57.0g、塩化ストロンチウム六水和物〔SrCl2・6H2O〕27.8g、及び塩化アルミニウム六水和物〔AlCl3・6H2O〕10.7gを水216.0gに溶解して調製した原料水溶液と、5mol/Lの水酸化ナトリウム水溶液181.3gに水113.0gを加えて調製した溶液と、をそれぞれ10mL/minの流速にて、添加のタイミングを同じくして、全量添加し、第1の液を得た。
次いで、第1の液の温度を25℃に変更した後、1mol/Lの水酸化ナトリウム水溶液39.8gを添加し、第2の液を得た。第2の液のpHは、10.5であった。なお、第2の液のpHは、(株)堀場製作所の卓上型pHメータ F-71(製品名)を用いて測定した(以下、同じ)。
次いで、第2の液を15分間撹拌し、反応を終了させて、六方晶フェライト粒子の前駆体となる反応生成物を含む水溶液(即ち、前駆体含有水溶液)を得た。
次いで、前駆体含有水溶液に対し、遠心分離処理(回転数:3000rpm、回転時間:10分間)を3回行い、得られた沈殿物を回収した。
次いで、回収した沈殿物を水洗した。
次いで、水洗後の沈殿物を内部雰囲気温度80℃のオーブン内で12時間乾燥させて、前駆体からなる粒子(即ち、前駆体粒子)を得た。
次いで、前駆体粒子をマッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1060℃の温度条件に設定し、4時間焼成することにより、粒子P1(六方晶フェライト粒子)を得た。
<粒子P1の各種測定>
(結晶構造)
得られた粒子P1の結晶構造を、X線回折(XRD)法により確認した。具体的には、マグネトプランバイト型の結晶構造を有しているか、及び、単相又は二相のいずれの結晶構造を有しているかについて確認した。
なお、装置には、PANalytical社のX’Pert Pro回折計を使用し、以下の測定条件にて測定した。
-測定条件-
X線源:CuKα線
(波長:1.54Å(0.154nm)、出力:40mA,45kV〕
スキャン範囲:20°<2θ<70°
スキャン間隔:0.05°
スキャンスピード:0.75°/min
(結晶構造)
得られた粒子P1の結晶構造を、X線回折(XRD)法により確認した。具体的には、マグネトプランバイト型の結晶構造を有しているか、及び、単相又は二相のいずれの結晶構造を有しているかについて確認した。
なお、装置には、PANalytical社のX’Pert Pro回折計を使用し、以下の測定条件にて測定した。
-測定条件-
X線源:CuKα線
(波長:1.54Å(0.154nm)、出力:40mA,45kV〕
スキャン範囲:20°<2θ<70°
スキャン間隔:0.05°
スキャンスピード:0.75°/min
上記測定の結果、粒子P1は、マグネトプランバイト型の結晶構造(単相)を有していることを確認した。
(組成)
得られた粒子P1の組成を、高周波誘導結合プラズマ(ICP)発光分光分析法により確認した。測定方法は、具体的には以下のとおりである。
12mgの粒子P1と4mol/Lの塩酸水溶液10mLとを入れた耐圧容器(ビーカー)を、設定温度120℃のホットプレート上で12時間保持し、溶解液を得た。得られた溶解液に純水30mLを加えた後、0.1μmのメンブレンフィルタを用いてろ過した。このようにして得られたろ液の元素分析を、高周波誘導結合プラズマ(ICP)発光分光分析装置(型番:ICPS-8100、(株)島津製作所)を用いて行った。
得られた元素分析の結果に基づき、鉄原子100原子%に対する各金属原子の含有率を求めた。そして、得られた含有率に基づき、粒子P1の組成を確認した。
粒子P1の組成は以下のとおりである。
粒子P1: SrFe(9.58)Al(2.42)O19
得られた粒子P1の組成を、高周波誘導結合プラズマ(ICP)発光分光分析法により確認した。測定方法は、具体的には以下のとおりである。
12mgの粒子P1と4mol/Lの塩酸水溶液10mLとを入れた耐圧容器(ビーカー)を、設定温度120℃のホットプレート上で12時間保持し、溶解液を得た。得られた溶解液に純水30mLを加えた後、0.1μmのメンブレンフィルタを用いてろ過した。このようにして得られたろ液の元素分析を、高周波誘導結合プラズマ(ICP)発光分光分析装置(型番:ICPS-8100、(株)島津製作所)を用いて行った。
得られた元素分析の結果に基づき、鉄原子100原子%に対する各金属原子の含有率を求めた。そして、得られた含有率に基づき、粒子P1の組成を確認した。
粒子P1の組成は以下のとおりである。
粒子P1: SrFe(9.58)Al(2.42)O19
<<粒子P2(六方晶フェライト粒子)>
<粒子P2の作製>
5mol/Lの水酸化ナトリウム水溶液181.5gに水600.0gを加えて調製した溶液を92℃に保温し、撹拌した。
次いで、撹拌中の溶液に、塩化鉄(III)六水和物〔FeCl3・6H2O〕57.0g、塩化ストロンチウム六水和物〔SrCl2・6H2O〕27.8g、及び塩化アルミニウム六水和物〔AlCl3・6H2O〕10.7gを水216.0gに溶解して調製した原料水溶液を、3.3mL/minの流速にて添加し、第1の液を得た。
次いで、第1の液の温度を25℃に変更した。第1の液(液温:25℃)のpHは、8.0であった。
次いで、第1の液を15分間撹拌し、反応を終了させて、六方晶フェライト粒子の前駆体となる反応生成物を含む水溶液(即ち、前駆体含有水溶液)を得た。
次いで、前駆体含有水溶液に対し、遠心分離処理(回転数:3000rpm、回転時間:10分間)を3回行い、得られた沈殿物を回収した。
次いで、回収した沈殿物を水洗した。
次いで、水洗後の沈殿物を内部雰囲気温度80℃のオーブン内で12時間乾燥させた。乾燥により得られた粒子に、この粒子に対して10質量%の塩化ストロンチウムを添加し、よく混合することにより、前駆体からなる粒子(即ち、前駆体粒子)を得た。
次いで、前駆体粒子をマッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1060℃の温度条件に設定し、4時間焼成することにより、粒子P2(六方晶フェライト粒子)を得た。
<粒子P2の作製>
5mol/Lの水酸化ナトリウム水溶液181.5gに水600.0gを加えて調製した溶液を92℃に保温し、撹拌した。
次いで、撹拌中の溶液に、塩化鉄(III)六水和物〔FeCl3・6H2O〕57.0g、塩化ストロンチウム六水和物〔SrCl2・6H2O〕27.8g、及び塩化アルミニウム六水和物〔AlCl3・6H2O〕10.7gを水216.0gに溶解して調製した原料水溶液を、3.3mL/minの流速にて添加し、第1の液を得た。
次いで、第1の液の温度を25℃に変更した。第1の液(液温:25℃)のpHは、8.0であった。
次いで、第1の液を15分間撹拌し、反応を終了させて、六方晶フェライト粒子の前駆体となる反応生成物を含む水溶液(即ち、前駆体含有水溶液)を得た。
次いで、前駆体含有水溶液に対し、遠心分離処理(回転数:3000rpm、回転時間:10分間)を3回行い、得られた沈殿物を回収した。
次いで、回収した沈殿物を水洗した。
次いで、水洗後の沈殿物を内部雰囲気温度80℃のオーブン内で12時間乾燥させた。乾燥により得られた粒子に、この粒子に対して10質量%の塩化ストロンチウムを添加し、よく混合することにより、前駆体からなる粒子(即ち、前駆体粒子)を得た。
次いで、前駆体粒子をマッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1060℃の温度条件に設定し、4時間焼成することにより、粒子P2(六方晶フェライト粒子)を得た。
<粒子P2の各種測定>
上述した<粒子P1の各種測定>に記載した方法により、粒子P2の結晶構造及び組成を測定した。以下に、測定結果を示す。
結晶構造:マグネトプランバイト型結晶構造(単相)
組成:SrFe(10.44)Al(1.56)O19
上述した<粒子P1の各種測定>に記載した方法により、粒子P2の結晶構造及び組成を測定した。以下に、測定結果を示す。
結晶構造:マグネトプランバイト型結晶構造(単相)
組成:SrFe(10.44)Al(1.56)O19
<<粒子P3(六方晶フェライト粒子)>>
<粒子P3の作製>
以下のようにして、前駆体含有水溶液を得たこと以外は、粒子P1と同様の操作を行い、粒子P3(六方晶フェライト粒子)を得た。
35℃に保温した水400.0gを撹拌し、撹拌中の水に、塩化鉄(III)六水和物〔FeCl3・6H2O〕57.0g、塩化ストロンチウム六水和物〔SrCl2・6H2O〕27.8g、及び塩化アルミニウム六水和物〔AlCl3・6H2O〕12.2gを水215.2gに溶解して調製した原料水溶液と、5mol/Lの水酸化ナトリウム水溶液185.7gに水109.0gを加えて調製した溶液と、をそれぞれ10mL/minの流速にて、添加のタイミングを同じくして、全量添加し、第1の液を得た。
次いで、第1の液の温度を25℃に変更した後、1mol/Lの水酸化ナトリウム水溶液39.8gを添加し、第2の液を得た。第2の液のpHは、10.5であった。
次いで、第2の液を15分間撹拌し、反応を終了させて、六方晶フェライト粒子の前駆体となる反応生成物を含む水溶液(即ち、前駆体含有水溶液)を得た。
<粒子P3の作製>
以下のようにして、前駆体含有水溶液を得たこと以外は、粒子P1と同様の操作を行い、粒子P3(六方晶フェライト粒子)を得た。
35℃に保温した水400.0gを撹拌し、撹拌中の水に、塩化鉄(III)六水和物〔FeCl3・6H2O〕57.0g、塩化ストロンチウム六水和物〔SrCl2・6H2O〕27.8g、及び塩化アルミニウム六水和物〔AlCl3・6H2O〕12.2gを水215.2gに溶解して調製した原料水溶液と、5mol/Lの水酸化ナトリウム水溶液185.7gに水109.0gを加えて調製した溶液と、をそれぞれ10mL/minの流速にて、添加のタイミングを同じくして、全量添加し、第1の液を得た。
次いで、第1の液の温度を25℃に変更した後、1mol/Lの水酸化ナトリウム水溶液39.8gを添加し、第2の液を得た。第2の液のpHは、10.5であった。
次いで、第2の液を15分間撹拌し、反応を終了させて、六方晶フェライト粒子の前駆体となる反応生成物を含む水溶液(即ち、前駆体含有水溶液)を得た。
<粒子P3の各種測定>
上述した<粒子P1の各種測定>に記載した方法により、粒子P3の結晶構造及び組成を測定した。以下に、測定結果を示す。
結晶構造:マグネトプランバイト型結晶構造(単相)
組成:SrFe(9.27)Al(2.73)O19
上述した<粒子P1の各種測定>に記載した方法により、粒子P3の結晶構造及び組成を測定した。以下に、測定結果を示す。
結晶構造:マグネトプランバイト型結晶構造(単相)
組成:SrFe(9.27)Al(2.73)O19
<<粒子P4(Fe-Co系合金粒子)>>
粒子P4:鉄-コバルト合金粒子(DOWAエレクトロニクス社製、平均一次粒子径:0.1μm)
粒子P4:鉄-コバルト合金粒子(DOWAエレクトロニクス社製、平均一次粒子径:0.1μm)
〔分散剤(樹脂X1)溶液〕
表1の「分散組成物」欄に示される分散剤(樹脂X1)溶液を以下に示す。なお、分散剤(樹脂X1)溶液中に含まれる樹脂X1は、合成したものを使用した。
表1の「分散組成物」欄に示される分散剤(樹脂X1)溶液を以下に示す。なお、分散剤(樹脂X1)溶液中に含まれる樹脂X1は、合成したものを使用した。
<樹脂X1の合成>
≪マクロモノマーX1の合成≫
三口フラスコに、ε-カプロラクトン(1044.2g)、δ-バレロラクトン(184.3g)、及び2-エチル-1-ヘキサノール(71.6g)を導入し、混合物を得た。次に、窒素を吹き込みながら、上記混合物を撹拌した。次に、混合物にDisperbyk111(12.5g、ビックケミー社製、リン酸樹脂)を加え、得られた混合物を90℃に加熱した。6時間後、1H-NMR(nuclear magnetic resonance)を用いて、混合物中における2-エチル-1-ヘキサノールに由来するシグナルが消失したのを確認後、混合物を110℃に加熱した。窒素下にて110℃で12時間重合反応を続けた後、1H-NMRでε-カプロラクトン及びδ-バレロラクトンに由来するシグナルの消失を確認し、得られた化合物について、GPC法により分子量測定を行った。化合物の分子量が所望の値に到達したことを確認した後、上記化合物を含む混合物に2,6-ジt-ブチル-4-メチルフェノール(0.35g)を添加した後、更に、得られた混合物に対して、2-メタクリロイロキシエチルイソシアネート(87.0g)を30分かけて滴下した。滴下終了から6時間後、1H-NMRにて2-メタクリロイロキシエチルイソシアネート(MOI)に由来するシグナルが消失したのを確認後、プロピレングリコールモノメチルエーテルアセテート(PGMEA)(1387.0g)を混合物に添加し、濃度が50質量%のマクロモノマーX1溶液(2770g)を得た。得られたマクロモノマーX1の重量平均分子量は6,000であった。
≪マクロモノマーX1の合成≫
三口フラスコに、ε-カプロラクトン(1044.2g)、δ-バレロラクトン(184.3g)、及び2-エチル-1-ヘキサノール(71.6g)を導入し、混合物を得た。次に、窒素を吹き込みながら、上記混合物を撹拌した。次に、混合物にDisperbyk111(12.5g、ビックケミー社製、リン酸樹脂)を加え、得られた混合物を90℃に加熱した。6時間後、1H-NMR(nuclear magnetic resonance)を用いて、混合物中における2-エチル-1-ヘキサノールに由来するシグナルが消失したのを確認後、混合物を110℃に加熱した。窒素下にて110℃で12時間重合反応を続けた後、1H-NMRでε-カプロラクトン及びδ-バレロラクトンに由来するシグナルの消失を確認し、得られた化合物について、GPC法により分子量測定を行った。化合物の分子量が所望の値に到達したことを確認した後、上記化合物を含む混合物に2,6-ジt-ブチル-4-メチルフェノール(0.35g)を添加した後、更に、得られた混合物に対して、2-メタクリロイロキシエチルイソシアネート(87.0g)を30分かけて滴下した。滴下終了から6時間後、1H-NMRにて2-メタクリロイロキシエチルイソシアネート(MOI)に由来するシグナルが消失したのを確認後、プロピレングリコールモノメチルエーテルアセテート(PGMEA)(1387.0g)を混合物に添加し、濃度が50質量%のマクロモノマーX1溶液(2770g)を得た。得られたマクロモノマーX1の重量平均分子量は6,000であった。
≪樹脂X1の合成≫
三口フラスコに、上記マクロモノマーX1溶液(200.0g)、MAA(メタクリル酸、60.0g)、BzMA(ベンジルメタクリレート、40.0g)、及びPGMEA(366.7g)を導入し、混合物を得た。窒素を吹き込みながら、上記混合物を撹拌した。次に、窒素をフラスコ内に流しながら、混合物を75℃まで昇温した。次に、混合物に、ドデシルメルカプタン(5.85g)、次いで、V-601(富士フイルム和光純薬株式会社製、重合開始剤、1.48g)を添加し、重合反応を開始した。混合物を75℃で2時間加熱した後、更にV-601(1.48g)を混合物に追加した。2時間後、更にV-601(1.48g)を混合物に追加した。更に2時間反応後、混合物を90℃に昇温し、3時間撹拌した。上記操作により、重合反応は終了した。
反応終了後、空気下でTBAB(テトラブチルアンモニウムブロミド、7.5g)とMEHQ(p-メトキシフェノール,0.13g)を加えた後、GMA(メタクリル酸グリシジル、66.1g)を滴下した。滴下終了後、空気下で、7時間反応を続けた後、酸価測定により反応終了を確認した。
三口フラスコに、上記マクロモノマーX1溶液(200.0g)、MAA(メタクリル酸、60.0g)、BzMA(ベンジルメタクリレート、40.0g)、及びPGMEA(366.7g)を導入し、混合物を得た。窒素を吹き込みながら、上記混合物を撹拌した。次に、窒素をフラスコ内に流しながら、混合物を75℃まで昇温した。次に、混合物に、ドデシルメルカプタン(5.85g)、次いで、V-601(富士フイルム和光純薬株式会社製、重合開始剤、1.48g)を添加し、重合反応を開始した。混合物を75℃で2時間加熱した後、更にV-601(1.48g)を混合物に追加した。2時間後、更にV-601(1.48g)を混合物に追加した。更に2時間反応後、混合物を90℃に昇温し、3時間撹拌した。上記操作により、重合反応は終了した。
反応終了後、空気下でTBAB(テトラブチルアンモニウムブロミド、7.5g)とMEHQ(p-メトキシフェノール,0.13g)を加えた後、GMA(メタクリル酸グリシジル、66.1g)を滴下した。滴下終了後、空気下で、7時間反応を続けた後、酸価測定により反応終了を確認した。
<分散剤(樹脂X1)溶液の調製>
得られた混合物にPGMEAを追加することで、樹脂X1の30質量%溶液(以下において「樹脂X1のPGMEA30質量%溶液」ともいう。)を得た。得られた樹脂X1の重量平均分子量は35000、酸価は50mgKOH/mgであった。
得られた混合物にPGMEAを追加することで、樹脂X1の30質量%溶液(以下において「樹脂X1のPGMEA30質量%溶液」ともいう。)を得た。得られた樹脂X1の重量平均分子量は35000、酸価は50mgKOH/mgであった。
〔溶剤〕
表1の「溶剤」欄に示される溶剤S1及びS2を以下に示す。
S1:PGMEA(沸点:146℃)
S2:酢酸ブチル(沸点:126℃)
表1の「溶剤」欄に示される溶剤S1及びS2を以下に示す。
S1:PGMEA(沸点:146℃)
S2:酢酸ブチル(沸点:126℃)
〔重合性化合物〕
表1の「重合性化合物」欄に示される重合性化合物M1及びM2を以下に示す。
M1:KAYARAD DPHA (日本化薬社製)
M2:NKエステル A-DPH-12E (新中村化学社製)
表1の「重合性化合物」欄に示される重合性化合物M1及びM2を以下に示す。
M1:KAYARAD DPHA (日本化薬社製)
M2:NKエステル A-DPH-12E (新中村化学社製)
〔重合開始剤〕
表1の「重合開始剤」欄に示される重合開始剤I-1及びI-2を以下に示す。
I-1:IRGACURE OXE03(BASF社製)
I-2:IRGACURE OXE01(BASF社製)
表1の「重合開始剤」欄に示される重合開始剤I-1及びI-2を以下に示す。
I-1:IRGACURE OXE03(BASF社製)
I-2:IRGACURE OXE01(BASF社製)
〔樹脂溶液(B1)、樹脂(B2)〕
表1の「樹脂溶液(B1)又は樹脂(B2)」に示される樹脂溶液B1及び樹脂B2を以下に示す。
B1:「RD-F8」(日本触媒社製、固形分40質量%、溶剤:プロピレングリコールモノメチルエーテル(PGME:沸点121℃))
B2:「EPICLON N-695」(クレゾールノボラック型多官能エポキシ樹脂。DIC社製)
表1の「樹脂溶液(B1)又は樹脂(B2)」に示される樹脂溶液B1及び樹脂B2を以下に示す。
B1:「RD-F8」(日本触媒社製、固形分40質量%、溶剤:プロピレングリコールモノメチルエーテル(PGME:沸点121℃))
B2:「EPICLON N-695」(クレゾールノボラック型多官能エポキシ樹脂。DIC社製)
〔重合禁止剤〕
表1の「重合禁止剤」に示される重合禁止剤は、p-メトキシフェノールである。
表1の「重合禁止剤」に示される重合禁止剤は、p-メトキシフェノールである。
〔界面活性剤〕
表1の「界面活性剤」に示される界面活性剤は、下記界面活性剤(S)(重量平均分子量(Mw):15311)である。
表1の「界面活性剤」に示される界面活性剤は、下記界面活性剤(S)(重量平均分子量(Mw):15311)である。
ただし、上記式において、式中(A)及び(B)で表される繰り返し単位はそれぞれ62モル%、38モル%である。式(B)で表される繰り返し単位中、a、b、cは、それぞれ、a+c=14、b=17の関係を満たす。
[実施例1]
〔分散組成物の調製〕
以下に示す組成比(質量比)になるように各成分を調合し、撹拌機にて混合及び撹拌して、得られた混合物を(株)シンマルエンタープライゼス製のNPM-Pilotを使用して下記分散条件にて分散させ、分散組成物を得た。
・粒子P1: 83質量部
・分散剤(樹脂X1)溶液(樹脂X1のPGMEA30質量%溶液): 17質量部
〔分散組成物の調製〕
以下に示す組成比(質量比)になるように各成分を調合し、撹拌機にて混合及び撹拌して、得られた混合物を(株)シンマルエンタープライゼス製のNPM-Pilotを使用して下記分散条件にて分散させ、分散組成物を得た。
・粒子P1: 83質量部
・分散剤(樹脂X1)溶液(樹脂X1のPGMEA30質量%溶液): 17質量部
また、分散条件は以下の通りである。
・ビーズ径:φ0.05mm、(ニッカトー製ジルコニアビーズ、YTZ)
・ビーズ充填率:65体積%
・ミル周速:10m/sec
・処理液温度:19~21℃
・ビーズ径:φ0.05mm、(ニッカトー製ジルコニアビーズ、YTZ)
・ビーズ充填率:65体積%
・ミル周速:10m/sec
・処理液温度:19~21℃
〔組成物1の調製〕
上述した分散組成物と以下に示すその他の成分とを混合して、組成物1を得た。
・上述した分散組成物:85質量部
・樹脂溶液(B1:「RD-F8」、日本触媒社製、固形分40質量%、溶剤:プロピレングリコールモノメチルエーテル(PGME:沸点121℃)):5.0質量部
・溶剤(S1:PGMEA):5.3質量部
・重合性化合物(M1:KAYARAD DPHA、日本化薬社製):2.9質量部
・重合開始剤(I-1:IRGACURE OXE03、BASF社製):1.8質量部
・重合禁止剤(p-メトキシフェノール):0.01質量部
・界面活性剤(上述した界面活性剤(S)):0.02質量部
上述した分散組成物と以下に示すその他の成分とを混合して、組成物1を得た。
・上述した分散組成物:85質量部
・樹脂溶液(B1:「RD-F8」、日本触媒社製、固形分40質量%、溶剤:プロピレングリコールモノメチルエーテル(PGME:沸点121℃)):5.0質量部
・溶剤(S1:PGMEA):5.3質量部
・重合性化合物(M1:KAYARAD DPHA、日本化薬社製):2.9質量部
・重合開始剤(I-1:IRGACURE OXE03、BASF社製):1.8質量部
・重合禁止剤(p-メトキシフェノール):0.01質量部
・界面活性剤(上述した界面活性剤(S)):0.02質量部
[実施例2]
粒子P1のかわりに粒子P2を用いた以外は、実施例1と同様の方法により、組成物2を調製した。
粒子P1のかわりに粒子P2を用いた以外は、実施例1と同様の方法により、組成物2を調製した。
[実施例3]
粒子P1のかわりに粒子P3を用いた以外は、実施例1と同様の方法により、組成物3を調製した。
粒子P1のかわりに粒子P3を用いた以外は、実施例1と同様の方法により、組成物3を調製した。
[実施例4]
粒子P1のかわりに粒子P4を用いた以外は、実施例1と同様の方法により、組成物4を調製した。
粒子P1のかわりに粒子P4を用いた以外は、実施例1と同様の方法により、組成物4を調製した。
[実施例5]
粒子P1の添加量を88質量部、分散剤X溶液の添加量を12質量部に変更した以外は、実施例1と同様の方法により、組成物5を調製した。
粒子P1の添加量を88質量部、分散剤X溶液の添加量を12質量部に変更した以外は、実施例1と同様の方法により、組成物5を調製した。
[実施例6]
粒子P1の添加量を79質量部、分散剤X溶液の添加量を21質量部に変更した以外は、実施例1と同様の方法により、組成物6を調製した。
粒子P1の添加量を79質量部、分散剤X溶液の添加量を21質量部に変更した以外は、実施例1と同様の方法により、組成物6を調製した。
[実施例7]
溶剤S1の添加量を2.65質量部、更に溶剤S2を2.65質量部添加した以外は、実施例1と同様の方法により、組成物7を調製した。
溶剤S1の添加量を2.65質量部、更に溶剤S2を2.65質量部添加した以外は、実施例1と同様の方法により、組成物7を調製した。
[実施例8]
重合性化合物M1の添加量を1.45質量部、更に重合性化合M2を1.45質量部添加した以外は、実施例1と同様の方法により、組成物8を調製した。
重合性化合物M1の添加量を1.45質量部、更に重合性化合M2を1.45質量部添加した以外は、実施例1と同様の方法により、組成物8を調製した。
[実施例9]
重合開始剤I-1の添加量を0.9質量部、更に重合開始剤I-2を0.9質量部添加した以外は、実施例1と同様の方法により、組成物9を調製した。
重合開始剤I-1の添加量を0.9質量部、更に重合開始剤I-2を0.9質量部添加した以外は、実施例1と同様の方法により、組成物9を調製した。
[実施例10]
上述した分散組成物と以下に示すその他の成分とを混合して、組成物10を得た。
・分散組成物:85質量部
・樹脂(B2:エポキシ樹脂、EPICLON N-695、DIC社製):6.5質量部
・溶剤(S1:PGMEA):8.5質量部
・界面活性剤(上述した界面活性剤(S)):0.02質量部
上述した分散組成物と以下に示すその他の成分とを混合して、組成物10を得た。
・分散組成物:85質量部
・樹脂(B2:エポキシ樹脂、EPICLON N-695、DIC社製):6.5質量部
・溶剤(S1:PGMEA):8.5質量部
・界面活性剤(上述した界面活性剤(S)):0.02質量部
[評価]
得られた各組成物について、以下の評価を実施した。
得られた各組成物について、以下の評価を実施した。
〔電磁波吸収特性〕
離型フィルム[製品名:パナピール(登録商標 P75A、パナック(株))上に、得られた組成物を、アプリケータを用いて塗布し、塗布膜を形成した。次いで、形成した塗布膜を、内部雰囲気温度80℃のオーブン内で2時間乾燥させることにより、離型フィルム上に電磁波吸収層が形成された積層体を得た。次いで、得られた積層体から離型フィルムを取り除くことにより、実施例の電磁波吸収シート(シート厚み:250μm)を得た。
作製した電磁波吸収シートについて、自由空間法にて入射角0°におけるSパラメータを測定した。そして、測定したSパラメータから、ニコルソン-ロスモデル法を用いて、虚部の透磁率[μ”ピーク周波数(単位:GHz)及びμ”ピーク値]を算出した。装置には、アジレント・テクノロジー(株)のネットワークアナライザーを使用した。評価基準は以下の通りである。
離型フィルム[製品名:パナピール(登録商標 P75A、パナック(株))上に、得られた組成物を、アプリケータを用いて塗布し、塗布膜を形成した。次いで、形成した塗布膜を、内部雰囲気温度80℃のオーブン内で2時間乾燥させることにより、離型フィルム上に電磁波吸収層が形成された積層体を得た。次いで、得られた積層体から離型フィルムを取り除くことにより、実施例の電磁波吸収シート(シート厚み:250μm)を得た。
作製した電磁波吸収シートについて、自由空間法にて入射角0°におけるSパラメータを測定した。そして、測定したSパラメータから、ニコルソン-ロスモデル法を用いて、虚部の透磁率[μ”ピーク周波数(単位:GHz)及びμ”ピーク値]を算出した。装置には、アジレント・テクノロジー(株)のネットワークアナライザーを使用した。評価基準は以下の通りである。
<評価基準>
(μ”ピーク周波数)
「A」:50GHz以上、100GHzより小さい
「B」:1GHz以上、50GHzより小さい
「C」:1GHzより小さい
(μ”ピーク値)
「A」:0.8以上
「B」:0.2以上、0.8より小さい
「C」:0.2より小さい
(μ”ピーク周波数)
「A」:50GHz以上、100GHzより小さい
「B」:1GHz以上、50GHzより小さい
「C」:1GHzより小さい
(μ”ピーク値)
「A」:0.8以上
「B」:0.2以上、0.8より小さい
「C」:0.2より小さい
〔分散安定性〕
実施例の組成物を23℃において30日間保存した。その後、保存前後の各組成物の粘度を、E型粘度計(東機産業社製、商品名「R85形粘度計」)を用いて回転数10rpm、23℃の条件にて測定した。得られた測定値から、下記式(X)で表されるT値(%)を算出して、下記評価基準により分散安定性を評価した。評価基準は以下の通りである。
式(X): T(%)={(組成物の保存後の粘度-保存前の粘度)/組成物の保存前の粘度}×100
<評価基準>
「A」:T値が絶対値で3%以内
「B」:T値が絶対値で3%超10%以内
「C」:T値が絶対値で10%超
実施例の組成物を23℃において30日間保存した。その後、保存前後の各組成物の粘度を、E型粘度計(東機産業社製、商品名「R85形粘度計」)を用いて回転数10rpm、23℃の条件にて測定した。得られた測定値から、下記式(X)で表されるT値(%)を算出して、下記評価基準により分散安定性を評価した。評価基準は以下の通りである。
式(X): T(%)={(組成物の保存後の粘度-保存前の粘度)/組成物の保存前の粘度}×100
<評価基準>
「A」:T値が絶対値で3%以内
「B」:T値が絶対値で3%超10%以内
「C」:T値が絶対値で10%超
結果を表1及び表2に示す。
表1中、「備考」欄の「分散剤(樹脂X)の含有量(質量%)」は、組成物の全質量に対する、分散剤(樹脂X)の含有量(質量%)を表す。
表1中、「備考」欄の「溶剤の含有量(質量%)」は、組成物の全質量に対する、溶剤の含有量(質量%)を表す。
表1中、「備考」欄の「電磁波吸収粒子の含有量(質量%)」は、組成物の全質量に対する、電磁波吸収粒子の含有量(質量%)を表す。
表2中、「膜を形成したときに1GHz以上の周波数帯域に電磁波吸収能を示すか否か」の欄において、膜を形成したときに1GHz以上の周波数帯域に電磁波吸収能を示す場合は「A」、膜を形成したときに1GHz以上の周波数帯域に電磁波吸収能を示さない場合は「B」を表す。
表1中、「備考」欄の「分散剤(樹脂X)の含有量(質量%)」は、組成物の全質量に対する、分散剤(樹脂X)の含有量(質量%)を表す。
表1中、「備考」欄の「溶剤の含有量(質量%)」は、組成物の全質量に対する、溶剤の含有量(質量%)を表す。
表1中、「備考」欄の「電磁波吸収粒子の含有量(質量%)」は、組成物の全質量に対する、電磁波吸収粒子の含有量(質量%)を表す。
表2中、「膜を形成したときに1GHz以上の周波数帯域に電磁波吸収能を示すか否か」の欄において、膜を形成したときに1GHz以上の周波数帯域に電磁波吸収能を示す場合は「A」、膜を形成したときに1GHz以上の周波数帯域に電磁波吸収能を示さない場合は「B」を表す。
表1及び表2に示す結果から、組成物1~10は、いずれも分散安定性に優れており、また、膜を形成したときに、1GHz以上の周波数帯域の電磁波を吸収することが確認された。なお、組成物1~10(実施例の組成物)から形成される膜は、電磁波吸収性能に優れる(虚部の透磁率のピーク値(μ”)が観測される周波数が高い、及び/又は、ピーク値(μ”)の値が大きい)ことが確認された。
また、実施例1~4の対比から、電磁波吸収粒子が、上述した式(F1)で表されるマグネトプランバイト型六方晶フェライト粒子である場合、虚部の透磁率のピーク値(μ”)が観測される周波数が高いことが確認された。さらに、式(F1)において2.0≦x≦6.0である場合、虚部の透磁率のピーク値(μ”)がより大きいことが確認された。
また、実施例1と実施例6の対比から、組成物における、電磁波吸収粒子の含有量に対する、分散剤の含有量の質量比(分散剤の含有量/電磁波吸収粒子の含有量)が0.065以下の場合、虚部の透磁率のピーク値(μ”)がより大きいことが確認された。
また、実施例1と実施例6の対比から、組成物における、電磁波吸収粒子の含有量に対する、分散剤の含有量の質量比(分散剤の含有量/電磁波吸収粒子の含有量)が0.065以下の場合、虚部の透磁率のピーク値(μ”)がより大きいことが確認された。
[実施例11(パターニング性評価)]
実施例1~9の組成物をそれぞれ8インチのシリコンウェハ(基板)上にアプリケータを用いて塗布し、塗布膜を形成した。このとき、100℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行って、乾燥させた後の組成物層の膜厚が250μmとなるようにアプリケータの目盛りを調整した。乾燥させた組成物層に対して、i線ステッパーを使用して、パターンが200μm幅のラインアンドスペースのパターンマスクを通して露光した。露光後の硬化膜に対し、テトラメチルアンモニウムハイドロオキサイド0.3質量%水溶液を用い、23℃60秒間のパドル現像を行った後、スピンシャワーにてリンスを行い更に純水にて水洗し、パターンを有する硬化膜を得た。
上記結果から、実施例1~9にて得られた組成物は、優れたパターニング性を有していることが確認された。
実施例1~9の組成物をそれぞれ8インチのシリコンウェハ(基板)上にアプリケータを用いて塗布し、塗布膜を形成した。このとき、100℃のホットプレートを用いて120秒間加熱処理(プリベーク)を行って、乾燥させた後の組成物層の膜厚が250μmとなるようにアプリケータの目盛りを調整した。乾燥させた組成物層に対して、i線ステッパーを使用して、パターンが200μm幅のラインアンドスペースのパターンマスクを通して露光した。露光後の硬化膜に対し、テトラメチルアンモニウムハイドロオキサイド0.3質量%水溶液を用い、23℃60秒間のパドル現像を行った後、スピンシャワーにてリンスを行い更に純水にて水洗し、パターンを有する硬化膜を得た。
上記結果から、実施例1~9にて得られた組成物は、優れたパターニング性を有していることが確認された。
Claims (17)
- 電磁波吸収粒子と、分散剤と、溶剤とを含み、
膜を形成したときに1GHz以上の周波数帯域の電磁波を吸収する、組成物。 - 前記粒子が、下記式(1)で表されるマグネトプランバイト型六方晶フェライト粒子を含む、請求項1に記載の組成物。
AFe(12-x)AlxO19 ・・・式(1)
式(1)中、Aは、Sr、Ba、Ca、及びPbからなる群より選ばれる少なくとも1種の金属元素を表し、xは、1.5≦x≦8.0を満たす。 - 前記粒子が、Fe-Co系合金粒子を含む、請求項1に記載の組成物。
- 膜を形成したときに1GHz以上100GHz未満の周波数帯域の電磁波を吸収する、請求項1~3のいずれか1項に記載の組成物。
- 前記分散剤の分子量が、50,000以下である、請求項1~4のいずれか1項に記載の組成物。
- 前記分散剤が、グラフト鎖を有する樹脂である、請求項1~5のいずれか1項に記載の組成物。
- 前記粒子の含有量が、組成物の全質量に対して、60.0~95.0質量%である、請求項1~6のいずれか1項に記載の組成物。
- 前記分散剤の含有量が、組成物の全質量に対して、1.0~10.0質量%である、請求項1~7のいずれか1項に記載の組成物。
- 前記溶剤の含有量が、組成物の全質量に対して、10.0~30.0質量%である、請求項1~8のいずれか1項に記載の組成物。
- 前記溶剤の沸点が、110~170℃である、請求項1~9のいずれか1項に記載の組成物。
- 更に、熱重合性化合物を含む、請求項1~10のいずれか1項に記載の組成物。
- 更に、光重合性化合物を含む、請求項1~10のいずれか1項に記載の組成物。
- 更に、光重合開始剤を含む、請求項12に記載の組成物。
- 請求項1~13のいずれか1項に記載の組成物から形成される、膜。
- 請求項11~13のいずれか1項に記載の組成物を硬化して形成される、硬化膜。
- 請求項13に記載の組成物を用いて基材上に組成物層を形成する工程と、
前記組成物層をパターン状に露光する工程と、
現像液を用いて、露光された前記組成物層を現像する工程と、を有する、硬化膜の製造方法。 - 請求項15に記載の硬化膜を含む電子部品。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021567295A JPWO2021131890A1 (ja) | 2019-12-26 | 2020-12-15 | |
US17/848,982 US20220332953A1 (en) | 2019-12-26 | 2022-06-24 | Composition, film, cured film, manufacturing method of cured film, and electronic component |
JP2023147842A JP2023169259A (ja) | 2019-12-26 | 2023-09-12 | 組成物、膜、硬化膜、硬化膜の製造方法、電子部品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019236796 | 2019-12-26 | ||
JP2019-236796 | 2019-12-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/848,982 Continuation US20220332953A1 (en) | 2019-12-26 | 2022-06-24 | Composition, film, cured film, manufacturing method of cured film, and electronic component |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021131890A1 true WO2021131890A1 (ja) | 2021-07-01 |
Family
ID=76574712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/046700 WO2021131890A1 (ja) | 2019-12-26 | 2020-12-15 | 組成物、膜、硬化膜、硬化膜の製造方法、電子部品 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220332953A1 (ja) |
JP (2) | JPWO2021131890A1 (ja) |
TW (1) | TW202130601A (ja) |
WO (1) | WO2021131890A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012124355A (ja) * | 2010-12-09 | 2012-06-28 | Toray Ind Inc | ペースト組成物およびそれを用いた磁性体組成物 |
JP2013061639A (ja) * | 2011-08-19 | 2013-04-04 | Fujifilm Corp | 感光性樹脂組成物、並びにこれを用いた感光性フイルム、感光性積層体、永久パターン形成方法およびプリント基板 |
WO2019131675A1 (ja) * | 2017-12-27 | 2019-07-04 | 富士フイルム株式会社 | マグネトプランバイト型六方晶フェライトの粒子及びその製造方法、並びに電波吸収体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009088237A (ja) * | 2007-09-28 | 2009-04-23 | Nitta Ind Corp | 電磁干渉抑制体およびそれを用いた電磁障害抑制方法 |
JP5705493B2 (ja) * | 2009-09-30 | 2015-04-22 | 三洋化成工業株式会社 | 樹脂粒子の製造方法 |
JP2015082554A (ja) * | 2013-10-22 | 2015-04-27 | 日東電工株式会社 | 軟磁性樹脂組成物、および、軟磁性フィルム |
JP7081667B2 (ja) * | 2018-07-25 | 2022-06-07 | 味の素株式会社 | 磁性ペースト |
-
2020
- 2020-12-15 JP JP2021567295A patent/JPWO2021131890A1/ja active Pending
- 2020-12-15 WO PCT/JP2020/046700 patent/WO2021131890A1/ja active Application Filing
- 2020-12-24 TW TW109146068A patent/TW202130601A/zh unknown
-
2022
- 2022-06-24 US US17/848,982 patent/US20220332953A1/en active Pending
-
2023
- 2023-09-12 JP JP2023147842A patent/JP2023169259A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012124355A (ja) * | 2010-12-09 | 2012-06-28 | Toray Ind Inc | ペースト組成物およびそれを用いた磁性体組成物 |
JP2013061639A (ja) * | 2011-08-19 | 2013-04-04 | Fujifilm Corp | 感光性樹脂組成物、並びにこれを用いた感光性フイルム、感光性積層体、永久パターン形成方法およびプリント基板 |
WO2019131675A1 (ja) * | 2017-12-27 | 2019-07-04 | 富士フイルム株式会社 | マグネトプランバイト型六方晶フェライトの粒子及びその製造方法、並びに電波吸収体 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021131890A1 (ja) | 2021-07-01 |
TW202130601A (zh) | 2021-08-16 |
JP2023169259A (ja) | 2023-11-29 |
US20220332953A1 (en) | 2022-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021117395A1 (ja) | 磁性粒子含有膜、積層体及び電子部品 | |
JP6539679B2 (ja) | 硬化性組成物、遮光膜付き赤外光カットフィルタ、及び、固体撮像装置 | |
WO2015005310A1 (ja) | 遮光性組成物、遮光膜及びその製造方法 | |
US20220375668A1 (en) | Magnetic particle-containing composition, magnetic particle-containing film, and electronic component | |
WO2019176409A1 (ja) | 硬化膜の製造方法、固体撮像素子の製造方法 | |
WO2016129342A1 (ja) | 顔料分散組成物及びその製造方法、重合性組成物、遮光膜、並びに、固体撮像装置 | |
WO2018173692A1 (ja) | 硬化性組成物、硬化膜、遮光膜、固体撮像素子、固体撮像装置、及び、硬化膜の製造方法 | |
KR102603923B1 (ko) | 감광성 수지 조성물, 경화막, 인덕터, 안테나 | |
JP7083887B2 (ja) | 硬化性組成物、硬化膜、光学素子、固体撮像素子、カラーフィルタ | |
JP7530973B2 (ja) | 組成物、磁性粒子含有膜、及び、電子部品 | |
WO2022065006A1 (ja) | 積層体の製造方法、アンテナインパッケージの製造方法、積層体及び組成物 | |
WO2021131890A1 (ja) | 組成物、膜、硬化膜、硬化膜の製造方法、電子部品 | |
JP6476198B2 (ja) | 感光性黒色樹脂組成物、黒色硬化膜の製造方法、カラーフィルタ、及び、有機el表示装置 | |
KR20230146036A (ko) | 조성물, 자성 입자 함유 경화물, 자성 입자 도입 기판, 전자 재료 | |
WO2022065183A1 (ja) | 組成物、磁性粒子含有硬化物、磁性粒子導入基板、電子材料 | |
WO2022059706A1 (ja) | 組成物、磁性粒子含有膜、及び、電子部品 | |
WO2019077912A1 (ja) | 着色組成物、膜の製造方法、カラーフィルタの製造方法、固体撮像素子の製造方法および画像表示装置の製造方法 | |
WO2019077913A1 (ja) | 着色組成物、膜、カラーフィルタ、固体撮像素子および画像表示装置 | |
JP2024149513A (ja) | 組成物、磁性粒子含有膜、及び、電子部品 | |
WO2017057222A1 (ja) | 顔料分散物の製造方法、硬化性組成物の製造方法、硬化膜の製造方法、硬化膜を具備する固体撮像素子の製造方法、硬化膜を具備するカラーフィルタの製造方法、及び、硬化膜を具備する画像表示装置の製造方法 | |
WO2024203080A1 (ja) | 薬液、パターン形成方法 | |
CN116964697A (zh) | 组合物、含磁性粒子的固化物、磁性粒子导入基板、电子材料 | |
TW202012456A (zh) | 透鏡用組成物、透鏡、透鏡之製造方法及顯示裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20908423 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021567295 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20908423 Country of ref document: EP Kind code of ref document: A1 |