WO2021130598A1 - 記憶装置およびその作製方法 - Google Patents

記憶装置およびその作製方法 Download PDF

Info

Publication number
WO2021130598A1
WO2021130598A1 PCT/IB2020/061918 IB2020061918W WO2021130598A1 WO 2021130598 A1 WO2021130598 A1 WO 2021130598A1 IB 2020061918 W IB2020061918 W IB 2020061918W WO 2021130598 A1 WO2021130598 A1 WO 2021130598A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
conductor
semiconductor
transistor
film
Prior art date
Application number
PCT/IB2020/061918
Other languages
English (en)
French (fr)
Inventor
山崎舜平
掛端哲弥
神保安弘
恵木勇司
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202080085779.5A priority Critical patent/CN114830324A/zh
Priority to US17/783,088 priority patent/US20230051739A1/en
Priority to JP2021566377A priority patent/JPWO2021130598A1/ja
Priority to KR1020227021120A priority patent/KR20220122633A/ko
Publication of WO2021130598A1 publication Critical patent/WO2021130598A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7889Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7926Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/50Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND

Definitions

  • One aspect of the present invention relates to a semiconductor device and a method for manufacturing the same.
  • One aspect of the present invention is not limited to the above technical fields.
  • the technical field of the invention disclosed in the present specification and the like relates to a product, a method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition of matter.
  • the semiconductor device refers to all devices that can function by utilizing the semiconductor characteristics. Therefore, semiconductor elements such as transistors and diodes, and circuits including semiconductor elements are semiconductor devices. Further, a display device, a light emitting device, a lighting device, an electro-optical device, a storage device, an image pickup device, a communication device, an information processing device, an electronic device, and the like may include a semiconductor element and a semiconductor circuit. Further, a display device, a light emitting device, a lighting device, an electro-optical device, a storage device, an imaging device, a communication device, an electronic device, and the like may also be referred to as a semiconductor device. One aspect of the present invention particularly relates to a storage device and a method for producing the same.
  • Patent Document 1 and Patent Document 2 disclose a storage device using an oxide semiconductor.
  • Patent Document 5 discloses a semiconductor memory using an oxide semiconductor as a charge storage layer.
  • Non-Patent Document 1 discloses CAAC-IGZO as a crystalline oxide semiconductor. In addition, Non-Patent Document 1 also discloses the growth mechanism of CAAC-IGZO.
  • Patent Document 1 and Patent Document 2 a plurality of storage elements (also referred to as memory cells) are stacked, and by connecting these in series, a memory cell array (also referred to as a memory string) having a three-dimensional structure is formed. ing.
  • Patent Document 1 a semiconductor provided in a columnar shape is in contact with an insulator having a charge storage layer.
  • a semiconductor provided in a columnar shape is in contact with an insulator that functions as a tunnel dielectric.
  • information is written to the memory cell by extracting and injecting electric charge through an insulator.
  • a trap center may be formed at the interface where the semiconductor and the insulator are in contact with each other. The trap center may capture electrons and fluctuate the threshold voltage of the transistor.
  • withdrawal and injection of electric charge may deteriorate one or both of the inside of the insulator and the interface between the semiconductor and the insulator, and the electric charge held in the charge storage layer may leak and disappear. Therefore, the reliability of the storage device may be adversely affected.
  • one of the problems of one embodiment of the present invention is to provide an insulator in which the formation of a trap center is suppressed at an interface with a semiconductor, and a method for forming the insulator.
  • Another object of the present invention is to provide a storage device capable of extracting and injecting electric charges without using an insulator in writing information to a memory cell, and a method for forming the storage device. To do.
  • Another object of the present invention is to provide a highly reliable storage device. Another object of the present invention is to provide a storage device having a large storage capacity. Another object of the present invention is to provide a storage device having a small occupied area. Another object of the present invention is to provide a storage device having a low manufacturing cost. Another object of the present invention is to provide a highly reliable semiconductor device. Another object of the present invention is to provide a semiconductor device having a low manufacturing cost. Another object of the present invention is to provide a novel semiconductor device.
  • One aspect of the present invention is a step of forming a first insulator on a substrate, a step of forming a second insulator on a first insulator, and a third insulation on a second insulator.
  • the fourth insulator comprises a step of forming a conductor between the first insulator and the third insulator, and the fourth insulator is a gas containing silicon in a chamber in which a substrate is arranged.
  • the gas containing silicon is preferably SiH 4.
  • the oxidizing gas is preferably N 2 O.
  • the first step it is preferable to supply He to the chamber.
  • the oxide semiconductor preferably contains indium, element M (element M is one or more selected from aluminum, gallium, yttrium, tin, and titanium), and zinc.
  • the oxide semiconductor preferably has crystallinity.
  • the c-axis of the oxide semiconductor has a region in the opening that is oriented in the normal direction of the side surface of the conductor.
  • the fourth insulator preferably has a region having a nitrogen concentration of 3 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less.
  • the fourth insulator preferably has a region having a carbon concentration of 1 ⁇ 10 18 atoms / cm 3 or more and 5 ⁇ 10 20 atoms / cm 3 or less.
  • One aspect of the present invention includes a step of forming a first insulator on a substrate, a step of forming a first conductor on a first insulator, and a second insulation on a first conductor.
  • a step of forming a body, a step of forming a third insulator on a second insulator, a step of forming a fourth insulator on a third insulator, and a first insulator, a first The step of forming an opening penetrating the first conductor, the second insulator, the third insulator, and the fourth insulator, and in the opening, the side surface of the first insulator, the first conductor.
  • a fifth insulation including a step of forming a semiconductor, a step of removing a third insulator, and a step of forming a second conductor between the second insulator and the fourth insulator.
  • the body has a first step of supplying a gas containing silicon and an oxidizing gas to the chamber in which the substrate is arranged, a second step of stopping the supply of the gas containing silicon to the chamber, and the chamber. This is a method for manufacturing a storage device, which is formed by performing a cycle including a third step of generating a plasma containing an oxidizing gas in a plurality of times.
  • the gas containing silicon is preferably SiH 4.
  • the oxidizing gas is preferably N 2 O.
  • the first step it is preferable to supply He to the chamber.
  • the oxide semiconductor preferably contains indium, element M (element M is one or more selected from aluminum, gallium, yttrium, tin, and titanium), and zinc.
  • the oxide semiconductor preferably has crystallinity.
  • the c-axis of the oxide semiconductor has a region in the opening that is oriented in the normal direction of at least one side surface of the first conductor and the second conductor.
  • the fifth insulator preferably has a region having a nitrogen concentration of 3 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less.
  • the fifth insulator preferably has a region having a carbon concentration of 1 ⁇ 10 18 atoms / cm 3 or more and 5 ⁇ 10 20 atoms / cm 3 or less.
  • One aspect of the present invention is a first insulator having a first opening, a conductor having a second opening on the first insulator, and a third having a third opening on the conductor.
  • the second insulator and the third insulator on the side surface of the first opening, the side surface of the second opening, and the side surface of the third opening, the side surface of the first opening, the side surface of the second opening, and
  • the side surface of the third opening has an oxide semiconductor provided via a third insulator, and the third insulator has a nitrogen concentration of 3 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10.
  • a storage device having a region of 21 atoms / cm 3 or less and a third insulator having a carbon concentration of 1 ⁇ 10 18 atoms / cm 3 or more and 5 ⁇ 10 20 atoms / cm 3 or less. ..
  • the oxide semiconductor preferably contains indium, element M (element M is one or more selected from aluminum, gallium, yttrium, tin, and titanium), and zinc.
  • the third insulator preferably has a region having an indium concentration of 1.0 ⁇ 10 19 atoms / cm 3 or less.
  • the oxide semiconductor preferably has crystallinity.
  • the c-axis of the oxide semiconductor preferably has a region oriented in the normal direction of the side surface of the conductor in the second opening.
  • the diameter of the second opening is preferably larger than the diameter of the first opening and the diameter of the third opening.
  • the diameter of the second opening is preferably smaller than the diameter of the first opening and the diameter of the third opening.
  • the total number of steps can be less than the product of the number of stacked memory elements and the number of steps for manufacturing one storage element. Therefore, it is preferable. That is, the process of manufacturing the memory cell array is not proportional to the number of storage elements to be stacked. For example, when comparing the number of manufacturing steps of the memory cell array A having 4 layers of memory elements and the number of manufacturing steps of the memory cell array B having 32 layers of storage elements, the number of stacked memory elements is 8 times. The number of manufacturing steps of the memory cell array B can be significantly less than eight times the number of manufacturing steps of the memory cell array A.
  • a highly reliable storage device can be provided. Further, according to one embodiment of the present invention, it is possible to provide a storage device having a large storage capacity. According to one embodiment of the present invention, it is possible to provide a storage device having a small occupied area. Further, according to one embodiment of the present invention, it is possible to provide a storage device having a low manufacturing cost. Further, according to one embodiment of the present invention, a highly reliable semiconductor device can be provided. Further, according to one embodiment of the present invention, it is possible to provide a semiconductor device having a low manufacturing cost. Moreover, according to one embodiment of the present invention, a novel semiconductor device can be provided.
  • FIG. 1 is a perspective view of the storage device.
  • FIG. 2 is a cross-sectional view of the storage device.
  • FIG. 3 is a cross-sectional view of the memory string.
  • 4A and 4B are cross-sectional views of the memory string.
  • 5A and 5B are cross-sectional views of the storage element.
  • 6A and 6B are cross-sectional views of the storage element.
  • FIG. 7 is a process flow for explaining a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • 8A and 8B are film formation sequences for explaining the manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 9A is a diagram illustrating classification of the crystal structure of IGZO.
  • FIG. 9A is a diagram illustrating classification of the crystal structure of IGZO.
  • FIG. 9B is a diagram illustrating an XRD spectrum of the CAAC-IGZO film.
  • FIG. 9C is a diagram for explaining the microelectron diffraction pattern of the CAAC-IGZO film.
  • FIG. 10 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 12 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 13 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 12
  • FIG. 14 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 15 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 16 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 17 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 18 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 19 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 15 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 16 is a cross-sectional view illustrating a manufacturing process of the semiconductor device according to one aspect of the present invention.
  • FIG. 20A is a top view illustrating a film forming apparatus according to an aspect of the present invention.
  • FIG. 20B is a cross-sectional view illustrating a film forming apparatus according to an aspect of the present invention.
  • 21A to 21C are cross-sectional views illustrating a film forming apparatus according to an aspect of the present invention.
  • FIG. 22 is a top view illustrating a microwave processing apparatus according to an aspect of the present invention.
  • FIG. 23 is a cross-sectional view illustrating a microwave processing apparatus according to an aspect of the present invention.
  • FIG. 24 is a cross-sectional view illustrating a microwave processing apparatus according to an aspect of the present invention.
  • FIG. 25 is a cross-sectional view illustrating a microwave processing apparatus according to an aspect of the present invention.
  • FIG. 20B is a cross-sectional view illustrating a film forming apparatus according to an aspect of the present invention.
  • 21A to 21C are cross-sectional views illustrating a film forming apparatus according to
  • FIG. 26 is a diagram illustrating a circuit configuration example of the memory string.
  • FIG. 27 is a diagram illustrating a circuit configuration example of the memory string.
  • FIG. 28 is a diagram illustrating a circuit configuration example of the memory string.
  • FIG. 29 is a diagram illustrating a circuit configuration example of the memory string.
  • FIG. 30 is a diagram illustrating a circuit configuration example of the memory string.
  • FIG. 31 is a timing chart illustrating an example of a memory string writing operation.
  • 32A and 32B are circuit diagrams illustrating an example of a memory string writing operation.
  • 33A and 33B are circuit diagrams illustrating an example of a memory string writing operation.
  • 34A and 34B are circuit diagrams illustrating an example of a memory string writing operation.
  • 35A and 35B are circuit diagrams illustrating an example of a memory string writing operation.
  • 36A and 36B are circuit diagrams illustrating an example of a memory string writing operation.
  • 37A and 37B are timing charts illustrating an example of a memory string read operation.
  • 38A and 38B are circuit diagrams illustrating an example of a memory string read operation.
  • 39A and 39B are circuit diagrams illustrating an example of a memory string read operation.
  • 40A and 40B are diagrams illustrating the Id-Vg characteristics of the transistor.
  • FIG. 41 is a diagram illustrating a circuit configuration example of the memory string.
  • FIG. 42 is a diagram illustrating a circuit configuration example of the memory string.
  • FIG. 43 is a diagram illustrating a circuit configuration example of the memory string.
  • FIG. 41 is a diagram illustrating a circuit configuration example of the memory string.
  • FIG. 42 is a diagram illustrating a circuit configuration example of the memory string.
  • FIG. 43 is a diagram illustrating a circuit
  • FIG. 44 is a block diagram illustrating a configuration example of the semiconductor device.
  • 45A to 45C are perspective views illustrating a configuration example of the semiconductor device.
  • FIG. 46 is a cross-sectional view illustrating a semiconductor device according to an aspect of the present invention.
  • FIG. 47A is a perspective view for explaining a configuration example of a computer
  • FIG. 47B is a perspective view for explaining a monolithic IC.
  • FIGS. 48A and 48B is a diagram illustrating a storage hierarchy of a computer and a monolithic IC.
  • FIG. 49A is a schematic view of the semiconductor device.
  • FIG. 49B is a perspective view of the semiconductor device.
  • 50A to 50E are diagrams for explaining an example of a storage device.
  • 51A to 51G are diagrams for explaining an example of an electronic device.
  • the position, size, range, etc. of each configuration shown in the drawings and the like may not represent the actual position, size, range, etc. in order to facilitate understanding of the invention. Therefore, the disclosed invention is not necessarily limited to the position, size, range, etc. disclosed in the drawings and the like.
  • the resist mask or the like may be unintentionally reduced due to processing such as etching, but it may not be reflected in the drawing for easy understanding.
  • electrode and “wiring” do not functionally limit these components.
  • an “electrode” may be used as part of a “wiring” and vice versa.
  • the terms “electrode” and “wiring” include the case where a plurality of “electrodes” and “wiring” are integrally formed.
  • the "terminal" in the electric circuit means a part where current input or output, voltage input or output, or signal reception or transmission is performed. Therefore, a part of the wiring or the electrode may function as a terminal.
  • the terms “upper” and “lower” in the present specification and the like do not limit the positional relationship of the components to be directly above or directly below and to be in direct contact with each other.
  • the terms “electrode B on the insulating layer A” it is not necessary that the electrode B is formed in direct contact with the insulating layer A, and another configuration is formed between the insulating layer A and the electrode B. Do not exclude those that contain elements.
  • electrode B overlapping the insulating layer A is not limited to the state of "the electrode B is formed on the insulating layer A", but “the electrode B is formed under the insulating layer A”. It does not exclude the state of "being” or the state of "the electrode B is formed on the right side (or left side) of the insulating layer A”.
  • the terms “adjacent” and “proximity” do not limit that the components are in direct contact with each other.
  • electrode B adjacent to the insulating layer A it is not necessary that the insulating layer A and the electrode B are formed in direct contact with each other, and another component is formed between the insulating layer A and the electrode B. Do not exclude those that include.
  • source and drain functions are interchanged depending on operating conditions, such as when transistors with different polarities are used or when the direction of current changes during circuit operation, so which one is the source or drain is limited. Is difficult. Therefore, in the present specification, the terms source and drain can be used interchangeably.
  • electrically connected includes a case of being directly connected and a case of being connected via "something having some electrical action".
  • the "thing having some kind of electrical action” is not particularly limited as long as it enables the exchange of electric signals between the connection targets. Therefore, even when it is expressed as “electrically connected", in an actual circuit, there is a case where there is no physical connection part and only the wiring is extended.
  • parallel means, for example, a state in which two straight lines are arranged at an angle of ⁇ 10 ° or more and 10 ° or less. Therefore, the case of ⁇ 5 ° or more and 5 ° or less is also included.
  • vertical and orthogonal mean, for example, a state in which two straight lines are arranged at an angle of 80 ° or more and 100 ° or less. Therefore, the case of 85 ° or more and 95 ° or less is also included.
  • the voltage often indicates a potential difference between a certain potential and a reference potential (for example, a ground potential or a source potential). Therefore, it is often possible to paraphrase voltage and potential. In the present specification and the like, voltage and potential can be paraphrased unless otherwise specified.
  • ordinal numbers such as “first" and “second” in the present specification and the like are added to avoid confusion of the components, and do not indicate any order or order such as process order or stacking order. ..
  • terms that do not have ordinal numbers in the present specification and the like may have ordinal numbers within the scope of claims in order to avoid confusion of components.
  • different ordinal numbers may be added within the scope of claims.
  • the ordinal numbers may be omitted in the scope of claims.
  • the "on state” of the transistor means a state in which the source and drain of the transistor can be regarded as being electrically short-circuited (also referred to as “conduction state”).
  • the “off state” of the transistor means a state in which the source and drain of the transistor can be regarded as being electrically cut off (also referred to as “non-conducting state”).
  • the “on current” may mean a current flowing between the source and the drain when the transistor is in the on state.
  • the “off current” may mean a current flowing between the source and the drain when the transistor is in the off state.
  • the high power supply potential VDD (hereinafter, also simply referred to as “VDD”, “H potential”, or “H”) means the low power supply potential VSS (hereinafter, simply “VSS”, “L potential”). , Or also referred to as “L”).
  • VSS indicates a power supply potential having a potential lower than VDD.
  • the ground potential (hereinafter, also simply referred to as “GND” or “GND potential”) can be used as VDD or VSS.
  • VDD is the ground potential
  • VSS is a potential lower than the ground potential
  • VDD is a potential higher than the ground potential.
  • the transistor shown in the present specification and the like is an enhancement type (normally off type) n-channel field effect transistor unless otherwise specified. Therefore, the threshold voltage (also referred to as “Vth”) is assumed to be larger than 0V. Further, unless otherwise specified, "supplying the H potential to the gate of the transistor” may be synonymous with “turning the transistor on.” Further, unless otherwise specified, “supplying the L potential to the gate of the transistor” may be synonymous with “turning the transistor off.”
  • gate refers to a part or all of the gate electrode and the gate wiring.
  • the gate wiring refers to wiring for electrically connecting the gate electrode of at least one transistor to another electrode or another wiring.
  • the source means a part or all of a source region, a source electrode, and a source wiring.
  • the source region refers to a region of the semiconductor layer having a resistivity of a certain value or less.
  • the source electrode refers to a conductive layer in a portion connected to the source region.
  • the source wiring is a wiring for electrically connecting the source electrode of at least one transistor to another electrode or another wiring.
  • the drain means a part or all of the drain region, the drain electrode, and the drain wiring.
  • the drain region refers to a region of the semiconductor layer having a resistivity of a certain value or less.
  • the drain electrode refers to a conductive layer at a portion connected to the drain region.
  • the drain wiring refers to wiring for electrically connecting the drain electrode of at least one transistor to another electrode or another wiring.
  • H indicating the H potential
  • L indicating the L potential
  • “H” or “L” may be added with enclosing characters to the wiring and electrodes where the potential change has occurred.
  • an “x” symbol may be added over the transistor.
  • the “capacity” has a configuration in which two electrodes face each other via an insulator (dielectric).
  • the “capacitive element” includes the case of the above-mentioned “capacity”. That is, in the present specification and the like, the “capacitive element” has a structure in which two electrodes face each other via an insulator, a structure in which two wires face each other via an insulator, or a structure in which two wires face each other through an insulator. This includes the case where the two wires are arranged via an insulator.
  • the code when the same code is used for a plurality of elements, and when it is particularly necessary to distinguish them, the code may be "_1", “_2", “[n]", “[m,”. It may be described with an identification code such as "n]".
  • the second conductor WWL may be described as the conductor WWL [2].
  • FIG. 1 shows a perspective view of a storage device 100 according to an aspect of the present invention.
  • the storage device 100 is a storage device having a three-dimensional laminated structure.
  • FIG. 2 is a cross-sectional view of the portions A1-A2 shown by the alternate long and short dash line in FIG. 1 and the connection portion between the conductor SEL and the wiring.
  • arrows indicating the X direction, the Y direction, and the Z direction may be added.
  • the X, Y, and Z directions are directions that are orthogonal to each other.
  • one of the X direction, the Y direction, and the Z direction may be referred to as a "first direction” or a "first direction”. Further, the other one may be referred to as a “second direction” or a “second direction”. Further, the remaining one may be referred to as a "third direction” or a “third direction”. In the present embodiment and the like, the direction in which the conductor 130, which will be described later, extends is the Z direction.
  • FIG. 2 shows a cross section of the XZ plane. As described above, in order to make the explanation easier to understand, some of the components may be omitted in FIGS. 1 and 2.
  • the storage device 100 has a memory cell array 110.
  • the memory cell array 110 has a plurality of memory strings 120.
  • the memory strings 120 extend in the Z direction and are arranged in a matrix on the XY plane.
  • FIG. 3 shows a cross-sectional configuration example of the memory string 120 according to one aspect of the present invention.
  • the memory string 120 has a configuration in which a plurality of storage elements MC (also referred to as “memory cells”) are connected in series. In the present embodiment, five storage elements MC are connected in series, but the number of storage elements MC included in the memory string 120 is not limited to five. Assuming that the number of storage elements MC included in the memory string 120 is n, n may be an integer of 2 or more.
  • the memory string 120 has a plurality of conductors WWL, a plurality of conductors RWL, a conductor SG, and a conductor SEL.
  • the plurality of conductors WWL and the plurality of conductors RWL are alternately laminated and provided via the insulator 123.
  • the conductor SG is provided below the plurality of conductors WWL and the plurality of conductors RWL.
  • the conductor SEL is provided in a layer above the plurality of conductors WWL and the plurality of conductors RWL.
  • FIG. 3 five storage elements MC are shown as storage elements MC [1] to storage elements MC [5].
  • memory element MC memory element MC
  • the memory string 120 has a transistor Str1 connected to the storage element MC [1] and a transistor Str2 connected to the storage element MC [5].
  • the conductor WWL, conductor RWL, conductor SG, and conductor SEL extend beyond the memory cell array 110. Further, the conductor WWL, the conductor RWL, the conductor SG, and the conductor SEL are stacked in a stepped manner on the outside of the memory cell array 110 (see FIGS. 1 and 2).
  • FIG. 4A shows a cross section of the portions B1-B2 shown by the alternate long and short dash line in FIG. 3 as viewed from the Z direction.
  • FIG. 4B shows a cross section of the portions C1-C2 shown by the alternate long and short dash line in FIG. 3 as viewed from the Z direction.
  • An enlarged view of the region 105 shown by the alternate long and short dash line in FIG. 3 is shown in FIG. 5A.
  • FIG. 5A corresponds to a cross-sectional view of the storage element MC.
  • the memory string 120 has a conductor 122 on the substrate 121.
  • the substrate 121 for example, an insulator may be used.
  • the conductor 122 the conductor 123 [1], the conductor SG, the conductor 123 [2], the conductor RWL [1], the conductor 123 [3], the conductor WWL [1], and the conductor 123 [1].
  • the memory string 120 includes an insulator 123 [1], a conductor SG, an insulator 123 [2], a conductor RWL [1], an insulator 123 [3], a conductor WWL [1], and an insulator 123 [1].
  • the opening 141 extends in the Z direction and reaches the conductor 122. Further, in the opening 141, the diameter of the region 142 overlapping the conductor RWL is larger than the diameter of the region 143 overlapping the conductor WWL. Therefore, the side surface of the opening 141 has an uneven shape.
  • an insulator 124 and a semiconductor 125 are provided along the side surface of the opening 141. Further, in the opening 141, the conductor 128 is provided between the insulator 124 and the semiconductor 125 in the region overlapping the conductor RWL. The semiconductor 125 has a region that overlaps the side surface of the opening 141 via the insulator 124.
  • the memory string 120 has a conductor 130 extending in the Z direction.
  • the conductor 130 is provided at or near the center of the opening 141.
  • an insulator 129, a semiconductor 127, and an insulator 126 are provided in a region overlapping the side surface of the opening 141 of the conductor 130.
  • the semiconductor 127 has a region that overlaps with the side surface of the conductor 130 via the insulator 129.
  • the insulator 126 has a region overlapping the side surface of the conductor 130 via the insulator 129 and the semiconductor 127.
  • the semiconductor 125 and the semiconductor 127 have a region that is electrically connected to the conductor 122.
  • the conductor 130 has a region overlapping the conductor 122 via the insulator 129 and the semiconductor 127.
  • an insulator 181, an insulator 124, a semiconductor 125, an insulator 126, a semiconductor 127, and an insulator 129 are provided in this order from the conductor WWL side (see FIG. 4A).
  • an insulator 124, a conductor 128, a semiconductor 125, an insulator 126, a semiconductor 127, and an insulator 129 are provided in this order from the conductor RWL side (see FIG. 4B). ..
  • the storage element MC has a transistor WTr and a transistor RTr (see FIG. 5A).
  • the region where the conductor WWL and the conductor 130 overlap functions as the transistor WTr.
  • the conductor WWL functions as the gate electrode of the transistor WTr, and the conductor 130 functions as the back gate electrode of the transistor WTr.
  • a part of the semiconductor 125 functions as a semiconductor layer on which a channel of the transistor WTr is formed.
  • the semiconductor layer on which the channel of the transistor WTr is formed overlaps with the gate electrode (conductor WWL) via a part of the insulator 124.
  • the gate electrode and the conductor WWL may be provided independently and both may be electrically connected. Good.
  • the region where the conductor 128, the conductor RWL, and the conductor 130 overlap functions as the transistor RTr.
  • the conductor RWL functions as a gate electrode of the transistor RTr.
  • the conductor 130 functions as a back gate electrode of the transistor RTr.
  • a part of the semiconductor 127 functions as a semiconductor layer on which the channel of the transistor RTr is formed.
  • the semiconductor layer on which the channel of the transistor RTr is formed overlaps with the gate electrode (conductor RWL) via a part of each of the insulator 126, the semiconductor 125, the conductor 128, and the insulator 124.
  • the semiconductor layer on which the channel of the transistor RTr is formed overlaps with the back gate electrode (conductor 130) via a part of the insulator 129.
  • the transistor Str1 has a conductor SG, a semiconductor 125, and a semiconductor 127. Further, the transistor Str2 has a conductor SEL, a semiconductor 125, and a semiconductor 127.
  • the back gate will be described.
  • the gate and the back gate are arranged so as to overlap each other via the channel forming region of the semiconductor layer.
  • the back gate can function like a gate.
  • the threshold voltage of the transistor can be changed by changing the potential of the back gate.
  • One of the gate or back gate may be referred to as a "first gate” or “first gate”, and the other may be referred to as a "second gate” or “second gate”.
  • the gate and back gate are formed of a conductive layer or a semiconductor layer having a low resistivity, a function of preventing an electric field generated outside the transistor from acting on the semiconductor layer on which a channel is formed (especially static electricity against static electricity). Has a shielding function). That is, it is possible to prevent the electrical characteristics of the transistor from fluctuating due to the influence of an external electric field such as static electricity.
  • the threshold voltage of the transistor can be controlled.
  • the potential of the back gate may be the same potential as that of the gate, or may be a ground potential (GND potential) or an arbitrary potential.
  • a single crystal semiconductor, a polycrystalline semiconductor, a microcrystal semiconductor, an amorphous semiconductor, or the like can be used alone or in combination.
  • the semiconductor material for example, silicon, germanium, or the like can be used.
  • compound semiconductors such as silicon germanium, silicon carbide, gallium arsenide, oxide semiconductors, and nitride semiconductors may be used. The same applies to the transistor Str1 and the transistor Str2.
  • the semiconductor layers used for the transistor may be laminated.
  • semiconductors having different crystal states may be used, or different semiconductor materials may be used.
  • the semiconductor layer used in the transistor WTr, the transistor RTr, the transistor STR1, and the transistor STR2 is preferably an oxide semiconductor having a metal oxide.
  • Transistors using metal oxides in the semiconductor layer can obtain higher field-effect mobility than transistors using amorphous silicon in the semiconductor layer.
  • crystal grain boundaries may occur in the semiconductor layer. At the grain boundaries, carriers are likely to be captured, causing a decrease in the on-current of the transistor, a decrease in field effect mobility, and the like.
  • the oxide semiconductor it is possible to realize a crystal structure in which no clear crystal grain boundary is confirmed or a crystal structure in which the crystal grain boundary is extremely small. It is preferable to use such an oxide semiconductor for the semiconductor layer because a transistor having good electrical characteristics such as high on-current and field effect mobility can be realized.
  • an oxide semiconductor particularly a crystalline oxide semiconductor, CAAC-IGZO
  • nanoclusters of several nm for example, 1 to 3 nm
  • the c-axis is oriented in the direction perpendicular to the surface to be formed are connected to each other. It has a characteristic structure. Therefore, it is possible to form a crystal structure in which a clear crystal grain boundary is not confirmed even in the opening extending in the Z direction.
  • the transistor WTr is preferably a transistor (also referred to as an "OS transistor") in which an oxide semiconductor, which is a kind of metal oxide, is used in the semiconductor layer on which a channel is formed. Since the oxide semiconductor has a band gap of 2 eV or more, the off-current is remarkably small.
  • OS transistor an OS transistor
  • the electric charge written to the node ND which will be described later, can be retained for a long period of time.
  • the storage element MC can be called an “OS memory”.
  • the memory string 120 including the storage element MC can also be called an “OS memory”.
  • the storage device 100 can also be called an "OS memory”.
  • the OS memory can retain the written information for a period of one year or more, or even ten years or more, even if the power supply is stopped. Therefore, the OS memory can be regarded as a non-volatile memory.
  • the OS memory can hold not only binary information (1 bit) but also multi-value (multi-bit) information.
  • the OS memory is a method of writing an electric charge to a node via a transistor, a high voltage required for a conventional flash memory is not required, and a high-speed writing operation can be realized. Further, the erasing operation before data rewriting performed in the flash memory is unnecessary in the OS memory. Also, since no charge is injected or withdrawn into the floating gate or charge capture layer, the OS memory can write and read data virtually unlimited times. The OS memory has less deterioration than the conventional flash memory, and high reliability can be obtained.
  • the insulator 124, the insulator 126, and the insulator 129 included in the OS memory of one aspect of the present invention are insulators in which the concentrations of nitrogen and carbon are sufficiently reduced, and are combined with the adjacent semiconductor 125 or the semiconductor 127.
  • the formation of trap centers at the interface is suppressed. Therefore, the fluctuation of the threshold voltage is suppressed, and a storage device having good reliability can be provided. The same effect can be obtained even when the OS memory of one aspect of the present invention is a floating gate type or charge capture type storage element.
  • the carbon concentrations of the insulator 124, the insulator 126, and the insulator 129 are preferably 1 ⁇ 10 18 atoms / cm 3 or more and 5 ⁇ 10 20 atoms / cm 3 or less, more preferably 5 as analyzed by SIMS. ⁇ 10 18 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less.
  • the insulator has nitrogen, and the nitrogen concentration thereof is preferably 3 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less, more preferably 1 ⁇ , according to SIMS analysis. 10 19 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less.
  • the In concentration of the insulator 124, the insulator 126, and the insulator 129 is reduced as much as possible.
  • the metal In in the insulator captures negative charges and may affect the transistor characteristics and variations thereof, such as a positive shift of the threshold voltage of the transistor and an increase in the S value. For example, when the threshold voltage of a transistor is positively shifted and becomes a normally-off characteristic, the transistor requires a higher drive voltage, which makes it difficult to drive at a low voltage. In this case, the power consumption of the transistor and the electronic device having the transistor increases.
  • the In concentration contained in the insulator is 1.0 ⁇ 10 19 atoms / cm 3 or less, preferably 1.0 ⁇ 10 18 atoms / cm 3 or less, more preferably 1.0 ⁇ 10 17 atoms. It is preferably / cm 3 or less.
  • the carbon concentration, the nitrogen concentration, and the In concentration in the insulator are the semiconductor 125 or the semiconductor.
  • the concentration may be in a region separated by 1 nm or more from the interface with 127.
  • the OS memory does not undergo a structural change at the atomic level when the memory is rewritten. Therefore, the OS memory is superior in rewrite resistance to the magnetoresistive memory and the resistance change type memory.
  • the off-current of the OS transistor hardly increases even in a high temperature environment. Specifically, the off-current hardly increases even at an environmental temperature of room temperature or higher and 200 ° C. or lower. In addition, the on-current does not easily decrease even in a high temperature environment.
  • the storage device including the OS memory has stable operation even in a high temperature environment, and high reliability can be obtained. Further, the OS transistor has a high dielectric strength between the source and the drain. By using an OS transistor as a transistor constituting a semiconductor device, operation is stable even in a high temperature environment, and a semiconductor device with good reliability can be realized.
  • the semiconductor 127 is preferably an n-type semiconductor. Further, the region of the semiconductor 125 that overlaps with the conductor WWL is preferably an i-type or substantially i-type semiconductor.
  • the transistor WTr is an enhancement type (normally off type) transistor, and the transistor RTr is a depletion type (normally on type) transistor.
  • the semiconductor 125 and the semiconductor 127 may have the same material or may have different materials.
  • the semiconductor 125 and the semiconductor 127 may be oxide semiconductors, respectively.
  • the semiconductor 125 and the semiconductor 127 may be semiconductors each having silicon.
  • the semiconductor 125 may be an oxide semiconductor and the semiconductor 127 may be a semiconductor having silicon.
  • the semiconductor 125 may be a semiconductor having silicon, and the semiconductor 127 may be an oxide semiconductor.
  • FIG. 4A corresponds to the XY plane at or near the center of the transistor WTr
  • FIG. 4B corresponds to the XY plane at or near the center of the transistor RTr.
  • the insulator 129 is provided concentrically on the outside of the conductor 130
  • the semiconductor 127 is provided concentrically on the outside of the insulator 129.
  • the insulator 126 is concentrically provided on the outside of the semiconductor 127
  • the semiconductor 125 is concentrically provided on the outside of the insulator 126
  • the insulator 124 is concentrically provided on the outside of the semiconductor 125.
  • the conductor 128 is provided concentrically between the semiconductor 125 and the insulator 124.
  • cross-sectional shape of the conductor 130 is not limited to a circle.
  • the cross-sectional shape of the conductor 130 may be rectangular. Further, the cross-sectional shape of the conductor 130 may be triangular.
  • FIG. 5B shows an example in which the storage element MC has a semiconductor 127 and a conductor 128 that functions as a floating gate.
  • the region where the conductor WL and the conductor 130 overlap functions as the storage element MC.
  • the conductor WL functions as a control gate electrode of the storage element MC
  • the conductor 130 functions as a back gate electrode of the storage element MC.
  • a part of the semiconductor 127 functions as a semiconductor layer on which the channel of the storage element MC is formed.
  • the semiconductor layer on which the channel of the storage element MC is formed overlaps with the conductor WL via a part of the insulator 124.
  • a conductor 128 is provided between the semiconductor layer on which the channel of the storage element MC is formed and the conductor WL
  • an insulator 124 is provided between the conductor WL and the conductor 128 to store the conductor 128.
  • An insulator 126 that functions as a tunnel insulating film is provided between the semiconductor layers on which the channels of the element MC are formed.
  • the conductor 128 has a recess with respect to the insulator 123.
  • a conductor 128 is provided in the recess via an insulator 124.
  • an insulator 133 that functions as a charge storage layer may be provided instead of the conductor 128 that functions as a floating gate.
  • the region where the conductor WL and the conductor 130 overlap functions as the storage element MC.
  • the conductor WL functions as a control gate electrode of the storage element MC
  • the conductor 130 functions as a back gate electrode of the storage element MC.
  • a part of the semiconductor 127 functions as a semiconductor layer on which the channel of the storage element MC is formed.
  • the semiconductor layer on which the channel of the storage element MC is formed overlaps with the conductor WL via a part of the insulator 124.
  • a part of the insulator 133 is provided between the semiconductor layer on which the channel of the storage element MC is formed and the conductor WL, and functions as a charge storage layer.
  • an insulator 124 is provided between the conductor WL and the insulator 133, and an insulator 126 that functions as a tunnel insulating film is provided between the insulator 133 and the semiconductor layer on which the channel of the storage element MC is formed. Be done.
  • the insulator 133 that functions as a charge storage layer it is preferable that the insulator contains silicon nitride.
  • the conductor 128 may be provided so as to be in contact with the semiconductor 127 located between the adjacent storage elements MC in the Z-axis direction.
  • the insulator 123 has a recess with respect to the conductor 128.
  • a conductor 128 in contact with the semiconductor 127 is provided in the recess. It is preferable to provide the conductor 128 because the resistance between the channels of the adjacent storage elements MC in the Z-axis direction is reduced.
  • the conductor WWL and the conductor RWL are unnecessary.
  • the conductor WL a material that can be used for the conductor WWL or the conductor RWL can be used, and the same forming method as the conductor WWL or the conductor RWL can be used. Further, known methods can be used for the writing operation, the reading operation, and the erasing operation.
  • the insulator 124 in contact with the semiconductor 127 and the insulator 126 are sufficiently reduced in impurities such as nitrogen and carbon, and the formation of a trap center at the interface between the insulator and the semiconductor 127 is suppressed. Therefore, the fluctuation of the threshold voltage is suppressed, and a storage device having good reliability can be provided.
  • the memory string 120 can be referred to as a storage device, and the storage element MC can also be referred to as a storage device.
  • a gas 401 containing silicon (precursor) and an oxidizing gas 402 (reactant) are used. It is preferably formed by the ALD (Atomic Layer Deposition) method. Further, a rare gas such as helium, neon, argon, krypton, or xenon may be added to the oxidizing gas 402.
  • Examples of the ALD method include a thermal ALD (Thermal ALD) method in which the reaction of the precursor and the reactor is performed only by thermal energy, and a PEALD (Plasma Enhanced ALD) method using a plasma-excited reactor.
  • thermal ALD Thermal ALD
  • PEALD Pulsma Enhanced ALD
  • the ALD method utilizes the self-regulating properties of atoms to deposit atoms layer by layer, so ultra-thin film formation is possible, film formation into structures with a high aspect ratio is possible, and pins. It has the effects of being able to form a film with few defects such as holes, being able to form a film with excellent coverage, and being able to form a film at a low temperature.
  • the PEALD method it may be preferable to use plasma because it is possible to form a film at a lower temperature.
  • Some precursors used in the ALD method contain carbon and the like. Therefore, the film provided by the ALD method may contain a large amount of impurities such as carbon as compared with the film provided by other film forming methods.
  • the quantification of impurities can be performed by using secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectrometry) or X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy).
  • SIMS Secondary Ion Mass Spectrometry
  • XPS X-ray Photoelectron Spectroscopy
  • the PEALD method is used.
  • the gas containing silicon and not containing hydrocarbons SiH 4 , Si 2 H 6 , SiF 4 , SiCl 4 , SiBr 4 , SiH 2 Cl 2 , SiH 2 I 2 and the like can be used.
  • the oxidizing gas O 2 , O 3 , N 2 O, NO 2, H 2 O and the like can be used.
  • SiH 4 is used as the gas 401 containing silicon and not containing hydrocarbons
  • N 2 O is used as the oxidizing gas 402.
  • an insulator that can be used as an insulator 124, an insulator 126, an insulator 129, or the like by the PEALD method is used by using SiH 4 as the gas 401 containing silicon and N 2 O as the oxidizing gas 402.
  • SiH 4 as the gas 401 containing silicon
  • N 2 O as the oxidizing gas 402.
  • SiH 4 and N 2 O are introduced into the reaction chamber to keep the pressure in the reaction chamber constant (step S01).
  • a rare gas such as helium, neon, argon, krypton, or xenon may be introduced into the reaction chamber.
  • the flow rate ratio of SiH 4 and N 2 O is, assuming that the flow rate of SiH 4 is 1, N 2 O is 10 or more and 3000 or less, preferably 10 or more and 800 or less, and more preferably 50 or more and 400 or less.
  • the pressure in the reaction chamber is 200 Pa or more and 1200 Pa or less, preferably 400 Pa or more and 1000 Pa or less, and more preferably 600 Pa or more and 800 Pa or less.
  • the substrate temperature is 100 ° C. or higher and 500 ° C. or lower, preferably 200 ° C. or higher and 400 ° C. or lower. Further, the substrate does not have to be heated, and a film may be formed at room temperature.
  • step S02 the introduction of SiH 4 is stopped, N 2 O is continuously introduced, and SiH 4 remaining in the reaction chamber is purged.
  • step S03 By oxidizing SiH x adsorbed on the substrate in step S01 by N 2 O plasma, approximately one molecular layer of silicon oxide can be formed (step S03).
  • the silicon oxide it may include the nitrogen injected by the N 2 O plasma.
  • silicon oxide containing nitrogen may be referred to as silicon oxide nitride.
  • step S04 the supply of the high frequency power 403 is stopped.
  • step S05 it is determined whether the number of cycles has reached a preset value (step S05), and if not, the process returns to step S01.
  • step S05 a vacuuming step may be inserted in which the introduction of SiH 4 and N 2 O is stopped and the SiH 4 and N 2 O remaining in the reaction chamber are exhausted. ..
  • the introduction of the SiH 4, and N 2 O in the introduction may be stopped at the same time, after stopping the introduction of SiH 4, it may cease the introduction of N 2 O. Further, it is preferable to resume the introduction of N 2 O before the start of step S03.
  • SiH 4, and N PECVD method using 2 O is, SiH 4, and N 2 because O by applying a high frequency power in a state of being introduced to generate plasma, are decomposed SiH 4 is in the plasma, a large amount of Hydrogen radicals are generated and hydrogen is mixed into silicon oxide. Further, since the insulator 124, the insulator 126, and the insulator 129 are in contact with one or both of the semiconductor 125 and the semiconductor 127, oxygen in the semiconductor 125 or the semiconductor 127 is extracted by the reduction reaction of hydrogen radicals. When V O H is formed, the hydrogen concentration in the semiconductor 125 or the semiconductor 127 becomes high.
  • high frequency power is not applied during the introduction of SiH 4 and N 2 O in step 01 described above, and step 02.
  • high-frequency power is applied to generate plasma in a state where only N 2 O is introduced in step 03, so that the generation of hydrogen radicals can be suppressed. Therefore, it is possible to suppress the mixing of hydrogen into the silicon oxide, the semiconductor 125, or the semiconductor 127.
  • SiH 4 is used as a precursor, and a precursor containing impurities such as carbon, for example, an organic precursor having a CH group is not used.
  • the silicon oxide thus formed has a reduced impurity concentration and is a denser film, it is possible to prevent the diffusion of In from the semiconductor 125 or the semiconductor 127 to the silicon oxide.
  • the carbon concentration of the silicon oxide is preferably 1 ⁇ 10 18 atoms / cm 3 or more and 5 ⁇ 10 20 atoms / cm 3 or less, more preferably 5 ⁇ 10 18 atoms / cm 3 or more 1 as analyzed by SIMS. ⁇ 10 20 atoms / cm 3 or less.
  • the silicon oxide has nitrogen, and the nitrogen concentration thereof is preferably 3 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less, more preferably 1 ⁇ , according to SIMS analysis. 10 19 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less.
  • the insulator 124, the insulator 126, and the insulator 126 which are one aspect of the present invention, are used by the PEALD method using a gas containing silicon and not containing a hydrocarbon (precaser) and an oxidizing gas (reactant).
  • a gas containing silicon and not containing a hydrocarbon precaser
  • an oxidizing gas reactant
  • the In concentration of silicon oxide to be the insulator 124, the insulator 126, the insulator 129 and the like is reduced as much as possible.
  • the metal In in the silicon oxide captures a negative charge and may affect the transistor characteristics and variations thereof, such as a positive shift of the threshold voltage of the transistor and an increase in the S value. For example, when the threshold voltage of a transistor is positively shifted and becomes a normally-off characteristic, the transistor requires a higher drive voltage, which makes it difficult to drive at a low voltage. In this case, the power consumption of the transistor and the electronic device having the transistor increases.
  • the In concentration contained in the silicon oxide is 1.0 ⁇ 10 19 atoms / cm 3 or less, preferably 1.0 ⁇ 10 18 atoms / cm 3 or less, more preferably 1.0 ⁇ 10 17 atoms. It is preferably / cm 3 or less.
  • the storage device 100 can be provided on the substrate.
  • the substrate for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (yttria-stabilized zirconia substrate, etc.), a resin substrate, and the like.
  • the semiconductor substrate include a semiconductor substrate made of silicon and germanium, and a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, and gallium oxide.
  • the conductor substrate includes a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • a substrate having a metal nitride a substrate having a metal oxide, and the like.
  • a substrate in which a conductor or a semiconductor is provided in an insulator substrate a substrate in which a conductor or an insulator is provided in a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided in a conductor substrate, and the like.
  • those on which an element is provided may be used.
  • Elements provided on the substrate include a capacitance element, a resistance element, a switch element, a light emitting element, a storage element, and the like.
  • Insulator examples include oxides, nitrides, oxide nitrides, nitride oxides, metal oxides, metal oxide nitrides, metal nitride oxides and the like having insulating properties.
  • the “nitride oxide” refers to a material having a higher oxygen content than nitrogen as a main component.
  • silicon oxide nitride refers to a material containing silicon, nitrogen, and oxygen, which have a higher oxygen content than nitrogen.
  • the “nitride oxide” refers to a material having a higher nitrogen content than oxygen as a main component.
  • aluminum nitride oxide refers to a material containing aluminum, nitrogen, and oxygen, which has a higher nitrogen content than oxygen.
  • the material may be selected according to the function of the insulator.
  • Examples of the insulator having a high specific dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides having aluminum and hafnium, nitride oxides having aluminum and hafnium, oxides having silicon and hafnium, silicon and hafnium. There are oxide nitrides having, or nitrides having silicon and hafnium.
  • Examples of the insulator having a low relative permittivity include silicon oxide, silicon oxide, silicon nitride, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, and empty. There are silicon oxide having holes, resin, and the like.
  • the OS transistor can stabilize the electrical characteristics of the transistor by surrounding it with an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen.
  • the insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, tantalum, and zirconium. Insulations containing, lanthanum, neodymium, hafnium, or tantalum may be used in single layers or in layers.
  • an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen
  • Metal oxides such as tantalum oxide and metal nitrides such as aluminum nitride, silicon nitride and silicon nitride can be used.
  • the insulator that functions as a gate insulator is preferably an insulator having a region containing oxygen that is desorbed by heating.
  • the oxygen deficiency of the semiconductor 125 and / or the semiconductor 127 can be compensated. Can be done.
  • the insulator 181 in order to suppress the oxidation of the conductor 182 that functions as the conductor WWL and the conductor 183 that functions as the conductor SEL.
  • the insulator 181 it is preferable to use the above-mentioned material having a barrier property against oxygen and hydrogen.
  • the insulator 181 is preferably provided so as to be in contact with the conductor 182 and the lower surface, the upper surface, and the side surface of the conductor 183.
  • the insulator 124, the insulator 126, and the insulator 129 in contact with one or both of the semiconductor 125 and the semiconductor 127 it is preferable to use an insulator in which impurities such as nitrogen and carbon are reduced.
  • impurities such as nitrogen and carbon are reduced.
  • PEALD method using plasma it is preferable to use the PEALD method using plasma.
  • the carbon concentrations of the insulator 124, the insulator 126, and the insulator 129 are preferably 1 ⁇ 10 18 atoms / cm 3 or more and 5 ⁇ 10 20 atoms / cm 3 or less, more preferably 5 as analyzed by SIMS. ⁇ 10 18 atoms / cm 3 or more and 1 ⁇ 10 20 atoms / cm 3 or less.
  • the insulator 124, the insulator 126, and the insulator 129 have nitrogen, and the nitrogen concentration thereof is preferably 3 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 in the SIMS analysis. More preferably, it is 1 ⁇ 10 19 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less.
  • the In concentration contained in the insulator 124, the insulator 126, and the insulator 129 is 1.0 ⁇ 10 19 atoms / cm 3 or less, preferably 1.0 ⁇ 10 18 atoms / cm 3 or less, more preferably. Is preferably 1.0 ⁇ 10 17 atoms / cm 3 or less.
  • the ALD method utilizes the self-regulating properties of the precursor molecules or the atoms contained in the precursor, and allows atoms to be deposited layer by layer, enabling ultra-thin film formation and formation into a structure with a high aspect ratio. It has the effects of being possible, being able to form a film with few defects such as pinholes, being able to form a film with excellent coverage, and being able to form a film at a low temperature. Further, it is preferable to use the plasma ALD method because it is possible to form a film at a lower temperature. On the other hand, an ALD method (sometimes called a thermal ALD method) in which the reaction of the precursor and the reactor is performed by thermal energy may be used.
  • Conductors include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum. It is preferable to use a metal element selected from the above, an alloy containing the above-mentioned metal element as a component, an alloy in which the above-mentioned metal element is combined, or the like.
  • tantalum nitride, titanium nitride, tungsten, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, oxides containing lanthanum and nickel, etc. are used. Is preferable.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize.
  • a plurality of conductive layers formed of the above materials may be laminated and used.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element and a conductive material containing oxygen are combined.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element and a conductive material containing nitrogen are combined.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen are combined.
  • the conductor functioning as the gate electrode includes the above-mentioned material containing a metal element, a conductive material containing oxygen, and the like. It is preferable to use a laminated structure in which the above is combined. In this case, a conductive material containing oxygen may be provided on the channel forming region side. By providing the conductive material containing oxygen on the channel forming region side, oxygen separated from the conductive material can be easily supplied to the channel forming region.
  • a conductor that functions as a gate electrode it is preferable to use a conductive material containing a metal element contained in an oxide semiconductor in which a channel is formed and oxygen.
  • the above-mentioned conductive material containing a metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride and tantalum nitride may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon were added.
  • Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • Oxide semiconductor As the semiconductor 125 and the semiconductor 127, it is preferable to use a metal oxide (oxide semiconductor) that functions as a semiconductor.
  • oxide semiconductors applicable to the semiconductor 125 and the semiconductor 127 will be described.
  • the oxide semiconductor preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. Further, one or more selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like may be contained.
  • the oxide semiconductor is an In—M—Zn oxide having indium, the element M, and zinc.
  • the element M may be one or more selected from aluminum, gallium, yttrium, and tin.
  • Other elements applicable to the element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like.
  • the element M a plurality of the above-mentioned elements may be combined in some cases.
  • a metal oxide having nitrogen may also be generically referred to as a metal oxide. Further, a metal oxide having nitrogen may be referred to as a metal oxynitride.
  • FIG. 9A is a diagram illustrating classification of crystal structures of oxide semiconductors, typically IGZO (metal oxides containing In, Ga, and Zn).
  • IGZO metal oxides containing In, Ga, and Zn.
  • oxide semiconductors are roughly classified into “Amorphous”, “Crystalline”, and “Crystal”.
  • Amorphous includes complete amorphous.
  • Crystalline includes CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned composite).
  • single crystal, poly crystal, and single crystal amorphous are excluded from the classification of "Crystalline”.
  • “Crystal” includes single crystal and poly crystal.
  • the structure in the thick frame shown in FIG. 9A is an intermediate state between "Amorphous” and “Crystal", and belongs to a new boundary region (New crystal line phase). .. That is, the structure can be rephrased as a structure completely different from the energetically unstable "Amorphous” and "Crystal".
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD: X-Ray Diffraction) spectrum.
  • XRD X-ray diffraction
  • FIG. 9B the XRD spectrum obtained by GIXD (Glazing-Incidence XRD) measurement of a CAAC-IGZO film classified as "Crystalline" is shown in FIG. 9B.
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement shown in FIG. 9B will be simply referred to as an XRD spectrum.
  • the thickness of the CAAC-IGZO film shown in FIG. 9B is 500 nm.
  • a peak showing clear crystallinity is detected in the XRD spectrum of the CAAC-IGZO film.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron diffraction pattern) observed by a micro electron diffraction method (NBED: Nano Beam Electron Diffraction).
  • the diffraction pattern of the CAAC-IGZO film is shown in FIG. 9C.
  • FIG. 9C is a diffraction pattern observed by the NBED in which the electron beam is incident parallel to the substrate.
  • electron diffraction is performed with the probe diameter set to 1 nm.
  • oxide semiconductors When focusing on the crystal structure, oxide semiconductors may be classified differently from FIG. 9A.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, and the plurality of crystal regions are oriented in a specific direction on the c-axis.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS has indium (In) and oxygen. It tends to have a layered crystal structure (also referred to as a layered structure) in which a layer (hereinafter, In layer) and a layer having elements M, zinc (Zn), and oxygen (hereinafter, (M, Zn) layer) are laminated. There is. Indium and element M can be replaced with each other. Therefore, the (M, Zn) layer may contain indium. In addition, the In layer may contain the element M. The In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam passing through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion because the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the substitution of metal atoms. It is thought that this is the reason.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor having high crystallinity and no clear grain boundary is confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may decrease due to the mixing of impurities or the generation of defects, CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures (so-called thermal budgets) in the manufacturing process. Therefore, when CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • the nc-OS may be indistinguishable from the a-like OS and the amorphous oxide semiconductor depending on the analysis method. For example, when a structural analysis is performed on an nc-OS film using an XRD apparatus, a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan. Further, when electron beam diffraction (also referred to as limited field electron diffraction) using an electron beam having a probe diameter larger than that of nanocrystals (for example, 50 nm or more) is performed on the nc-OS film, a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron beam diffraction also referred to as limited field electron diffraction
  • nanocrystals for example, 50 nm or more
  • electron diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, a-like OS has lower crystallinity than nc-OS and CAAC-OS. In addition, a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the membrane (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • EDX Energy Dispersive X-ray spectroscopy
  • CAC-OS When CAC-OS is used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function). Can be added to CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS as a transistor, high on-current ( Ion ), high field-effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on-current
  • high field-effect mobility
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor having high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration in the channel formation region of the oxide semiconductor is preferably 1 ⁇ 10 18 cm -3 or less, more preferably less than 1 ⁇ 10 17 cm -3 , and 1 ⁇ 10 16 cm -3. It is more preferably less than 1 ⁇ 10 13 cm -3 , even more preferably less than 1 ⁇ 10 12 cm -3.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • high-purity intrinsic or substantially high-purity intrinsic may be referred to as i-type or substantially i-type.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon and carbon in the channel formation region of the oxide semiconductor and the concentration of silicon and carbon near the interface with the channel formation region of the oxide semiconductor (secondary ion mass spectrometry (SIMS)). 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • a defect level may be formed and carriers may be generated. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the channel formation region of the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less. ..
  • the nitrogen concentration in the channel formation region of the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms. / Cm 3 or less, more preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the channel forming region of the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 5 ⁇ 10 19 atoms / cm 3 , more preferably 1 ⁇ 10. It should be less than 19 atoms / cm 3 , more preferably less than 5 ⁇ 10 18 atoms / cm 3 , and even more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • the semiconductor material that can be used for the semiconductor 125 and the semiconductor 127 is not limited to the oxide semiconductor described above.
  • a semiconductor material having a bandgap (a semiconductor material that is not a zero-gap semiconductor) may be used.
  • a semiconductor of a single element such as silicon, a compound semiconductor such as gallium arsenide, a layered substance (also referred to as an atomic layer substance, a two-dimensional material, or the like) that functions as a semiconductor may be used as the semiconductor material.
  • the layered substance is a general term for a group of materials having a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent bonds or ionic bonds are laminated via bonds weaker than covalent bonds or ionic bonds, such as van der Waals forces.
  • the layered material has high electrical conductivity in the unit layer, that is, high two-dimensional electrical conductivity.
  • Layered materials include graphene, silicene, chalcogenides and the like.
  • Chalcogenides are compounds containing chalcogens.
  • chalcogen is a general term for elements belonging to Group 16, and includes oxygen, sulfur, selenium, tellurium, polonium, and livermorium.
  • Examples of chalcogenides include transition metal chalcogenides and group 13 chalcogenides.
  • transition metal chalcogenide that functions as a semiconductor.
  • Specific examples of transition metal chalcogenides applicable to semiconductor 125 and semiconductor 127 include molybdenum sulfide (typically MoS 2 ), molybdenum disulfide (typically MoSe 2 ), and molybdenum tellurium (typically MoTe).
  • Tungsten disulfide typically WS 2
  • Tungsten disulfide typically WSe 2
  • Tungsten tellurium typically WTe 2
  • Hafnium sulfide typically HfS 2
  • Sereneization Examples thereof include hafnium (typically HfSe 2 ), zirconium sulfide (typically ZrS 2 ), and zirconium selenium (typically ZrSe 2 ).
  • FIGS. 10 to 19 show the cross section of the XZ plane, and is the cross-sectional view seen from the Y direction.
  • FIGS. 10 to 19 shows the cross section of the XZ plane, and is the cross-sectional view seen from the Y direction.
  • the memory string 120 may have two or more stages of storage elements MC.
  • the memory string 120 may have four stages of storage elements MC.
  • a storage element MC having 32 or more stages, preferably 64 stages or more, more preferably 128 stages or more, and further preferably 256 stages or more. Further, by using one aspect of the present embodiment, two or more memory strings 120 can be produced at the same time.
  • the conductor 122 is formed on the substrate 121 having an insulating surface, and the insulator 132 is formed around the conductor 122 (see FIG. 10).
  • a conductive film is formed, and the conductive film is processed by a lithography method to form a conductor 122.
  • an insulating film is formed on the substrate 121 so as to cover the conductor 122.
  • the insulator 132 can be formed by the above method. However, the method for forming the conductor 122 and the insulator 132 is not limited to this.
  • An insulator 132 may be formed on the substrate 121, and an unnecessary portion of the insulator 132 may be removed to form a groove or an opening so that the conductor 122 is embedded in the groove or the opening. ..
  • Such a conductor forming method may be called a damascene method (single damascene method, dual damascene method). By the above method, the structure shown in FIG. 10 can be obtained.
  • the conductor 122 and the insulator 132 are formed by using a sputtering method, a CVD method, a molecular beam epitaxy (MBE) method, a pulsed laser deposition (PLD) method, an ALD method, or the like. Can be done.
  • the CVD method can be classified into a plasma CVD (PECVD: Plasma Enhanced CVD) method using plasma, a thermal CVD (TCVD: Thermal CVD) method using heat, an optical CVD (Photo CVD) method using light, and the like. .. Further, it can be divided into a metal CVD (MCVD: Metal CVD) method and an organometallic CVD (MOCVD: Metal Organic CVD) method depending on the raw material gas used.
  • PECVD Plasma Enhanced CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • MCVD Metal CVD
  • MOCVD Metal Organic CVD
  • the plasma CVD method can obtain a high quality film at a relatively low temperature. Further, since the thermal CVD method does not use plasma, it is a film forming method capable of reducing plasma damage to the object to be processed. For example, wiring, electrodes, elements (transistors, capacitive elements, etc.) and the like included in a semiconductor device may be charged up by receiving electric charges from plasma. At this time, the accumulated electric charge may destroy the wiring, electrodes, elements, and the like included in the semiconductor device. On the other hand, in the case of the thermal CVD method that does not use plasma, such plasma damage does not occur, so that the yield of the semiconductor device can be increased. Further, in the thermal CVD method, plasma damage during film formation does not occur, so that a film having few defects can be obtained.
  • the ALD method is also a film forming method capable of reducing plasma damage to the object to be processed. Further, the ALD method also does not cause plasma damage during film formation, so that a film having few defects can be obtained.
  • the CVD method and the ALD method are different from the film forming method in which particles emitted from a target or the like are deposited, and are film forming methods in which a film is formed by a vapor phase reaction on the surface of an object to be treated. Therefore, it is a film forming method that is not easily affected by the shape of the object to be treated and has good step coverage.
  • the ALD method has excellent step covering property and excellent thickness uniformity, and is therefore suitable for covering the surface of an opening having a high aspect ratio.
  • the ALD method since the ALD method has a relatively slow film forming rate, it may be preferable to use it in combination with another film forming method such as a CVD method having a high film forming rate.
  • a film having an arbitrary composition can be formed depending on the flow rate ratio of the raw material gas.
  • a film having a continuously changed composition can be formed by changing the flow rate ratio of the raw material gas while forming the film.
  • a film having an arbitrary composition can be formed by simultaneously introducing a plurality of precursors having different compositions or by controlling the number of cycles of each precursor by introducing a plurality of precursors having different compositions.
  • a resist mask may be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like.
  • an immersion technique may be used in which a liquid (for example, water) is filled between the substrate and the projection lens for exposure.
  • an electron beam or an ion beam may be used.
  • the resist mask can be removed by performing a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.
  • a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.
  • a hard mask made of an insulator or a conductor may be used instead of the resist mask.
  • a hard mask an insulating film or a conductive film to be a hard mask material is formed on the conductive film, a resist mask is formed on the insulating film or a conductive film, and the hard mask material is etched to form a hard mask having a desired shape. be able to.
  • a dry etching method or a wet etching method can be used. Processing by the dry etching method is suitable for microfabrication.
  • a capacitively coupled plasma (CCP: Capacitively Coupled Plasma) etching apparatus having parallel plate type electrodes can be used.
  • the capacitive coupling type plasma etching apparatus having the parallel plate type electrode may be configured to apply a high frequency power source to one electrode of the parallel plate type electrode.
  • a plurality of different high-frequency power supplies may be applied to one of the parallel plate type electrodes.
  • a high frequency power supply having the same frequency may be applied to each of the parallel plate type electrodes.
  • a high frequency power supply having a different frequency may be applied to each of the parallel plate type electrodes.
  • a dry etching apparatus having a high-density plasma source can be used.
  • an inductively coupled plasma (ICP: Inductively Coupled Plasma) etching apparatus or the like can be used.
  • the etching treatment may be performed after removing the resist mask used for forming the hard mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after etching the conductive film.
  • the material of the hard mask does not affect the post-process or can be used in the post-process, it is not always necessary to remove the hard mask.
  • the conductive film to be the conductor 122 it is preferable to form a conductive film containing a metal element by using a sputtering method. It can also be formed by using the CVD method.
  • the surface of the insulator 132 is preferably flattened, if necessary.
  • a chemical mechanical polishing (CMP) method or a reflow method can be used.
  • the insulating film 123A, the insulating film 135A, and the conductive film 136A are alternately laminated on the conductor 122 and the insulator 132.
  • the insulating film 123A is formed on the insulating film 132
  • the insulating film 135A is formed on the insulating film 123A
  • the insulating film 123A is formed on the insulating film 135A
  • the conductive film 136A is formed on the insulating film 123A.
  • a CVD method can be used to form the insulating film 135A, the conductive film 136A, and the insulating film 123A.
  • the conductor 122 and the conductive film 136A As the conductor 122 and the conductive film 136A, a conductive material such as silicon to which impurities have been added or a metal can be used. Since the conductive film 136A needs to be selectively etched on the conductor 122 and the insulating film 135A in a subsequent step, the conductive film 136A may be a material capable of selective etching on the conductor 122 and the insulating film 135A. preferable. When silicon is used as the conductor 122 or the conductive film 136A, amorphous silicon or polysilicon can be used. Further, in order to make silicon conductive, p-type impurities and n-type impurities may be added.
  • the conductor 122 or the conductive film 136A can be used as the conductor 122 or the conductive film 136A.
  • a metal material aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium.
  • Berylium, indium, ruthenium and the like, and materials containing one or more metal elements selected from the above can be used.
  • insulating oxides As the insulating body 132, the insulating film 135A, and the insulating film 123A, insulating oxides, nitrides, oxide nitrides, nitride oxides, metal oxides, metal oxide nitrides, metal nitride oxides, and the like can be used. it can.
  • the insulating film 135A may be a material capable of selectively etching the insulator 132 and the insulating film 123A.
  • the insulator 132 and the insulating film 123A are made of silicon oxide or silicon oxide, and the insulating film 135A is made of silicon nitride or silicon nitride.
  • the number of layers of the insulating film 135A is m (m is an integer of 2 or more)
  • the number of layers of the insulating film 123A is 2 ⁇ m
  • the number of layers of the conductive film 136A is m-1.
  • m can be 33 or more, preferably 65 or more, more preferably 129 or more, and even more preferably 257 or more.
  • the insulating film 137A is formed on the uppermost insulating film 123A, and the insulating film 138A is formed on the insulating film 137A.
  • the insulating film 137A can be formed of the same material as the insulating film 135A by using the same method.
  • the insulating film 138A can be formed of the same material as the insulating film 123A by using the same method as the insulating film 123A. Further, a mask 140A is formed on the insulating film 138A.
  • the insulating film 138A, the insulating film 137A, the insulating film 123A, the insulating film 135A, and the conductive film 136A are processed using the mask 140A to form a first opening so as to expose the conductor 122 (FIG. See 11.).
  • the mask 140A may be etched to become the mask 140B.
  • isotropic etching is performed on the conductive film 136A to increase the diameter of the opening of the conductive film 136A (see FIG. 12).
  • the diameter of the opening of the conductive film 136A becomes larger than the diameter of the openings of the insulating film 138A, the insulating film 137A, the insulating film 123A, and the insulating film 135A.
  • the conductive film 136A has a recess with respect to the side surface of the insulating film 138A, the insulating film 137A, the insulating film 123A, or the insulating film 135A located at the upper part or the lower part.
  • isotropic etching by dry etching using gas, radical, plasma or the like, or isotropic etching by wet etching using a liquid can be used.
  • the liquid used for wet etching is sometimes called an etchant.
  • a gas containing at least one of chlorine, bromine, and fluorine, radicals, plasma, and the like can be used.
  • the isotropic etching is preferably performed without removing the mask used to form the first opening.
  • the first opening obtained by the above process corresponds to the opening 141 shown in FIG.
  • the insulating film 124A and the conductive film 128A are formed on the insulating film 138A and the mask 140B and inside the first opening (see FIG. 12).
  • the insulating film 124A may have a laminated structure.
  • the insulating film 124A can be formed by using a CVD method or an ALD method. In particular, it is preferable to use the ALD method because a film having a uniform thickness can be formed even in grooves and openings having a large aspect ratio.
  • the insulating film 124A can be formed at a lower temperature than the thermal ALD method.
  • a gas containing silicon SiH 4 , SiF 4 , SiH 2 Cl 2 , SiCl 4 and the like can be used.
  • SiH 4 As the gas containing silicon, SiH 4 , SiF 4 , SiH 2 Cl 2 , SiCl 4 and the like can be used.
  • SiH 4 As the oxidizing gas, O 2 , O 3 , N 2 O, NO 2 and the like can be used. In particular, it is preferable to use N 2 O.
  • each insulating film may be formed by the same film forming apparatus or may be formed by different film forming apparatus. Further, the insulating film 124A may be formed by combining the ALD method and the CVD method.
  • the insulating film 124A formed by the above method has good coating properties, and the insulating film 124A can be formed even in the recesses of the conductive film 136A. That is, the insulating film 124A can be formed so as to be in contact with not only the side surfaces of the insulating film 123A, the insulating film 135A, and the conductive film 136A, but also a part of the upper surface and a part of the lower surface of the insulating film 123A.
  • the carbon concentration of the insulating film 124A is preferably 1 ⁇ 10 18 atoms / cm 3 or more and 5 ⁇ 10 20 atoms / cm 3 or less, more preferably 5 ⁇ 10 18 atoms / cm 3 as analyzed by SIMS. It is 1 ⁇ 10 20 atoms / cm 3 or less.
  • the insulating film 124A has nitrogen, and the nitrogen concentration thereof is preferably 3 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less, more preferably 1 ⁇ , according to SIMS analysis. 10 19 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less.
  • the In concentration contained in the insulating film 124A is 1.0 ⁇ 10 19 atoms / cm 3 or less, preferably 1.0 ⁇ 10 18 atoms / cm 3 or less, more preferably 1.0 ⁇ 10 17 atoms. It is preferably / cm 3 or less.
  • the conductive film 128A may be formed so as to fill the recesses of the conductive film 136A via at least the insulating film 124A, and it is not always necessary to fill the entire inside of the first opening.
  • the conductive film 128A can be formed by using a CVD method or an ALD method. In particular, it is preferable to use the ALD method because a film having a uniform thickness can be formed even in grooves and openings having a large aspect ratio.
  • the conductive film 128A may be formed by combining the ALD method and the CVD method.
  • the conductive film 128A is processed to form the conductor 128 (see FIG. 13). Isotropic etching or anisotropic etching can be used for processing the conductive film 128A.
  • isotropic etching is performed to process the conductive film 128A. It is preferable to use it.
  • anisotropic etching when the conductive film 128A is formed so as to fill the recess and the first opening, it is preferable to use anisotropic etching.
  • the conductor 128 can be formed inside the recess.
  • the insulating film 124A formed on the bottom of the first opening is removed to obtain an insulator 124.
  • Anisotropic etching is preferably used to remove the insulating film 124A.
  • the insulator 124 is provided only on the side wall of the first opening (see FIG. 13).
  • the semiconductor film 125A is formed inside the first opening so as to be in contact with the conductor 122 (see FIG. 13).
  • the semiconductor film 125A can be formed by using a CVD method or an ALD method.
  • ALD method because a film having a uniform thickness can be formed even in grooves and openings having a large aspect ratio.
  • PEALD method because the semiconductor film 125A can be formed at a lower temperature than the thermal ALD method.
  • the semiconductor film 125A may be formed by combining the ALD method and the CVD method.
  • the semiconductor film 125A is preferably an oxide semiconductor having a CAAC structure.
  • the c-axis of the semiconductor film 125A is oriented in the normal direction of the surface to be formed inside the first opening.
  • the c-axis of the insulating film 138A, the insulating film 137A, the insulating film 123A, the insulating film 135A, and the semiconductor film 125A located on the side surface of the conductive film 136A via the insulator 124 is shown in FIG. Orients toward the indicated axis 185.
  • the shaft 185 can be called the central shaft of the first opening.
  • the c-axis of the semiconductor 125 located above is oriented from the surface to be formed toward the axis 185.
  • an In-Ga-Zn oxide is formed by using a precursor containing indium, a precursor containing gallium, and a precursor containing zinc. Is preferable. Alternatively, a precursor containing indium and gallium, and a precursor containing zinc may be used to form the In-Ga-Zn oxide.
  • indium triethylindium, trimethylindium, tris (2,2,6,6-tetramethyl-3,5-heptaneic acid) indium, cyclopentadienyl indium, indium chloride (III) and the like are used.
  • gallium-containing precursors trimethylgallium, triethylgallium, tris (dimethylamide) gallium, gallium (III) acetylacetonate, tris (2,2,6,6-tetramethyl-3,5-heptandioic acid) Gallium, dimethylchlorogallium, diethylchlorogallium, gallium chloride (III) and the like can be used.
  • zinc-containing precursor dimethylzinc, diethylzinc, bis (2,2,6,6-tetramethyl-3,5-heptaneic acid) zinc, zinc chloride and the like can be used.
  • the insulating film 126A is formed inside the semiconductor film 125A (see FIG. 13).
  • the insulating film 126A can be formed by using a CVD method or an ALD method.
  • ALD method because a film having a uniform thickness can be formed even in grooves and openings having a large aspect ratio.
  • PEALD method because the insulating film 126A can be formed at a lower temperature than the thermal ALD method.
  • the insulating film 126A may be formed by combining the ALD method and the CVD method.
  • the insulating film 126A can be formed in the same manner as the insulating film 124A.
  • the insulating film 126A by using the PEALD method using a gas containing silicon as a precursor and an oxidizing gas as a reactor.
  • a gas containing silicon SiH 4 , SiF 4 , SiH 2 Cl 2, or the like can be used.
  • SiH 4 As the gas containing silicon, SiH 4 , SiF 4 , SiH 2 Cl 2, or the like can be used.
  • SiH 4 As the oxidizing gas, O 2 , O 3 , N 2 O, NO 2 and the like can be used.
  • N 2 O As the oxidizing gas, a rare gas such as helium, neon, argon, krypton, or xenon may be added to the reactor.
  • the carbon concentration of the insulating film 126A is preferably 1 ⁇ 10 18 atoms / cm 3 or more and 5 ⁇ 10 20 atoms / cm 3 or less, more preferably 5 ⁇ 10 18 atoms / cm 3 in the analysis by SIMS. It is 1 ⁇ 10 20 atoms / cm 3 or less.
  • the insulating film 126A has nitrogen, and the nitrogen concentration thereof is preferably 3 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less, more preferably 1 ⁇ , according to SIMS analysis. 10 19 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less.
  • the In concentration contained in the insulating film 126A is 1.0 ⁇ 10 19 atoms / cm 3 or less, preferably 1.0 ⁇ 10 18 atoms / cm 3 or less, more preferably 1.0 ⁇ 10 17 atoms. It is preferably / cm 3 or less.
  • the insulator 131A is formed on the upper surface of the insulating film 126A.
  • the insulator 131A is preferably formed selectively so as not to be formed inside the first opening.
  • the insulator 131A is formed on the upper surface of the insulating film 126A and the inside of the first opening, a mask is formed on the upper surface of the insulating film 126A via the insulator 131A, and the insulator 131A inside the first opening is formed. May be selectively removed. It is preferable to use silicon nitride as the insulator 131A.
  • the film forming gas it is preferable to use a mixed gas containing SiH 4 and N 2 as the film forming gas because the formation of the insulator 131A inside the first opening is suppressed.
  • the mixed gas contains NH 3
  • the insulator 131A is likely to be formed inside the first opening, so that it is preferable that the mixed gas does not contain NH 3.
  • the mixing ratio of NH 3 is preferably 10% or less, preferably 5% or less, more preferably 1% or less of the mixing ratio of N 2. ..
  • the ratio of N 2 to SiH 4 (flow rate ratio) is low in the mixed gas, the amount of nitrogen contained in the insulator 131A may be small, and amorphous silicon may be formed. Therefore, it is preferable that the ratio of N 2 to SiH 4 (flow rate ratio) is 100 or more.
  • the semiconductor film 125A is increased in resistance to form a high resistance region (type I region).
  • the semiconductor film 125A may be irradiated with microwaves to remove hydrogen contained in the semiconductor film 125A. Further, it is preferable to perform microwave irradiation in an atmosphere containing oxygen because oxygen is supplied to the semiconductor film 125A.
  • the semiconductor film 125A is irradiated with microwaves in an atmosphere containing oxygen and argon to increase the resistance of the semiconductor film 125A. At this time, the resistance value may remain low in the region of the semiconductor film 125A in contact with the conductor 128.
  • thermal energy may be directly transferred to the semiconductor film 125A by the electromagnetic interaction between the microwave and the molecules in the semiconductor film 125A.
  • the semiconductor film 125A may be heated by this heat energy.
  • Such heat treatment may be called microwave annealing.
  • microwave annealing By performing the microwave treatment in an atmosphere containing oxygen, the same effect as oxygen annealing may be obtained.
  • hydrogen is contained in the semiconductor film 125A, it is considered that this thermal energy is transmitted to the hydrogen in the semiconductor film 125A, and the activated hydrogen is released from the semiconductor film 125A.
  • heat treatment may be performed.
  • the heat treatment is preferably carried out in an atmosphere containing nitrogen at 200 ° C. or higher and 500 ° C. or lower, preferably 300 ° C. or higher and 400 ° C. or lower.
  • the atmosphere for performing the heat treatment is not limited to the above, and may be an atmosphere containing at least one of nitrogen, oxygen, and argon. Further, the heat treatment may be performed in a reduced pressure atmosphere or an atmospheric pressure atmosphere.
  • the semiconductor film 125A in contact with the conductor 128 has a low resistance, and a low resistance region (N-type region) can be formed.
  • a metal containing a metal element contained in the conductor 128 and a component of the semiconductor film 125A is provided at the interface between the conductor 128 and the semiconductor film 125A.
  • a compound layer may be formed. The formation of the metal compound layer is preferable because the resistance of the semiconductor film 125A is reduced in the region in contact with the conductor 128. Further, the conductor 128 may absorb oxygen contained in the semiconductor film 125A.
  • the resistance of the semiconductor film 125A is further lowered. Further, the semiconductor film 125A may become CAAC-OS or nc-OS by the heat treatment. In addition, the crystallinity of the semiconductor film 125A may be improved.
  • the heat treatment may be performed before the microwave treatment. On the other hand, the microwave treatment, that is, microwave annealing may also serve as the heat treatment. When the semiconductor film 125A or the like is sufficiently heated by the microwave annealing, the heat treatment may not be performed.
  • the carrier concentration of the semiconductor film 125A after the microwave treatment and the heat treatment is less than 1 ⁇ 10 18 / cm 3 , preferably 1 ⁇ 10 17 / cm 3 or less, more preferably 1 ⁇ 10 16 / cm 3.
  • the carrier concentration in the region of the semiconductor film 125A in contact with the conductor 128 is 1 ⁇ 10 18 / cm 3 or more, preferably 1 ⁇ 10 19 / cm 3 or more, more preferably 1 ⁇ 10 20 / cm 3 or more. Is preferable.
  • the semiconductor film 125A is subjected to the high resistance treatment after the insulating film 126A is formed is shown, but the present embodiment is not limited to this.
  • a high resistance treatment may be performed before the insulating film 126A is formed.
  • the semiconductor film 125A and the insulating film 126A formed on the bottom of the first opening are removed to obtain the semiconductor 125B and the insulator 126B.
  • the insulator 131A As a mask and use anisotropic etching.
  • the insulating film 138A, the semiconductor film 125A on the mask 140B, and the insulating film 126A are not removed because they are covered with the insulator 131A (see FIG. 14).
  • the conductor 122 is exposed again.
  • the semiconductor film 127A is formed inside the first opening so as to be in contact with the conductor 122 (see FIG. 14). At this time, it is preferable that the semiconductor film 127A is formed so as to be in contact with the semiconductor 125B at the bottom of the first opening.
  • the semiconductor film 127A can be formed by using a CVD method or an ALD method. In particular, it is preferable to use the ALD method because a film having a uniform thickness can be formed even in grooves and openings having a large aspect ratio. Further, it is preferable to use the PEALD method because the semiconductor film 127A can be formed at a lower temperature than the thermal ALD method. Alternatively, the semiconductor film 127A may be formed by combining the ALD method and the CVD method.
  • the semiconductor film 127A is preferably an oxide semiconductor having a CAAC structure.
  • the c-axis of the semiconductor film 127A is oriented in the normal direction of the surface to be formed inside the first opening.
  • the c-axis of the semiconductor film 127A located on the side surface of the first opening is oriented from the surface to be formed toward the axis 185 shown in FIG.
  • the c-axis of the semiconductor 127 located above is oriented from the surface to be formed toward the axis 185.
  • an In-Ga-Zn oxide is formed by using a precursor containing indium, a precursor containing gallium, and a precursor containing zinc. Is preferable.
  • triethyl indium tris (2,2,6,6-tetramethyl-3,5-heptaneic acid) indium, cyclopentadienyl indium, indium chloride (III) and the like
  • gallium-containing precursors trimethylgallium, triethylgallium, gallium trichloride, tris (dimethylamide) gallium, gallium (III) acetylacetonate, and tris (2,2,6,6-tetramethyl-3,5-) (Heptandionate) gallium, dimethylchlorogallium, diethylchlorogallium, gallium (III) chloride and the like can be used.
  • zinc-containing precursor dimethylzinc, diethylzinc, bis (2,2,6,6-tetramethyl-3,5-heptaneic acid) zinc, zinc chloride and the like can be used.
  • the insulating film 129A is formed inside the semiconductor film 127A, and the conductive film 130A is formed inside the insulating film 129A (see FIG. 14).
  • the semiconductor film 127A, the insulating film 129A, and the conductive film 130A can be formed by using the CVD method or the ALD method.
  • the CVD method or the ALD method it is possible to form a film having a uniform thickness even in grooves and openings having a large aspect ratio, which is preferable.
  • it may be formed by combining the ALD method and the CVD method.
  • different film forming methods and film forming devices may be used for each film to be formed. For example, it is preferable to use the ALD method for forming the semiconductor film 127A.
  • the PEALD method for forming the insulating film 129A because the insulating film 129A can be formed at a lower temperature than the thermal ALD method.
  • the CVD method for forming the conductive film 130A.
  • the first layer of the conductive film 130A may be formed by using the ALD method, and the second layer of the conductive film 130A may be formed by using the CVD method.
  • the insulating film 129A can be formed in the same manner as the insulating film 124A.
  • a gas containing silicon SiH 4 , SiF 4 , SiH 2 Cl 2, or the like can be used.
  • SiH 4 As the gas containing silicon, SiH 4 , SiF 4 , SiH 2 Cl 2, or the like can be used.
  • SiH 4 As the gas oxidizing gas, O 2 , O 3 , N 2 O, NO 2 and the like can be used. In particular, it is preferable to use N 2 O.
  • a rare gas such as helium, neon, argon, krypton, or xenon may be added to the reactor.
  • the carbon concentration of the insulating film 129A is preferably 1 ⁇ 10 18 atoms / cm 3 or more and 5 ⁇ 10 20 atoms / cm 3 or less, more preferably 5 ⁇ 10 18 atoms / cm 3 as analyzed by SIMS. It is 1 ⁇ 10 20 atoms / cm 3 or less.
  • the insulating film 129A has nitrogen, and the nitrogen concentration thereof is preferably 3 ⁇ 10 19 atoms / cm 3 or more and 1 ⁇ 10 21 atoms / cm 3 or less, more preferably 1 ⁇ , according to SIMS analysis. 10 19 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less.
  • the In concentration contained in the insulating film 129A is 1.0 ⁇ 10 19 atoms / cm 3 or less, preferably 1.0 ⁇ 10 18 atoms / cm 3 or less, more preferably 1.0 ⁇ 10 17 atoms. It is preferably / cm 3 or less.
  • the semiconductor film 127A may be subjected to a resistance increasing treatment as in the semiconductor film 125A.
  • the high resistance treatment is preferably performed before the formation of the conductive film 130A or before the formation of the insulating film 129A.
  • the resistance increasing treatment in the previous step may be omitted.
  • the heat treatment is preferably carried out in an atmosphere containing nitrogen at 200 ° C. or higher and 500 ° C. or lower, preferably 300 ° C. or higher and 400 ° C. or lower.
  • the atmosphere for performing the heat treatment is not limited to the above, and may be an atmosphere containing at least one of nitrogen, oxygen, and argon. Further, the heat treatment may be performed in a reduced pressure atmosphere or an atmospheric pressure atmosphere. Further, the semiconductor film 127A may become CAAC-OS or nc-OS by the heat treatment. In addition, the crystallinity of the semiconductor film 127A may be improved.
  • the heat treatment may be performed by microwave annealing.
  • Microwave treatment can be used for the high resistance treatment and the heat treatment.
  • the conductive film 130A, the insulating film 129A, the semiconductor film 127A, the insulator 131A, the insulator 126B, the semiconductor 125B, and the mask 140B are processed, and the conductor 130, the insulator 129, the semiconductor 127, the insulator 131, and the insulator are processed.
  • Obtain 126, semiconductor 125, and mask 140 see FIG. 15).
  • a dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for microfabrication.
  • the conductive film 130A is processed, the insulating film 129A and the semiconductor film 127A are processed after the conductive film 130A is processed, and the insulating film 129A and the semiconductor film 127A are processed, and then the insulator 131A and the insulator 126B are processed.
  • Semiconductor 125B, and mask 140B may be processed. In such a processing process, different masks may be formed in each processing process.
  • the conductive film 130A, the insulating film 129A, the semiconductor film 127A, the insulator 131A, the insulator 126B, the semiconductor 125B, and the mask 140B are processed by using the mask, and then as the second processing, The conductive film 130A, the insulating film 129A, and the semiconductor film 127A may be processed again, and the conductive film 130A may be processed again as a third process.
  • the mask used in the second processing and the third processing the mask used in the first processing may be processed and used, or a different mask may be formed.
  • an insulator 139 is formed on the insulating film 138A so as to cover the conductor 130, the insulator 129, the semiconductor 127, the insulator 131, the insulator 126, the semiconductor 125, and the mask 140.
  • the insulator 139 can be formed by a method that can be used for forming the insulator 132, and a material that can be used for the insulator 132 can be used.
  • the insulator 139, the insulating film 138A, the insulating film 137A, the insulating film 123A, the insulating film 135A, and the conductive film 136A are processed, and the stepped insulator 139, the insulator 138, and the insulator as shown in FIG. 16 are processed. It forms 137, insulator 123, insulator 135, and conductor 136.
  • the insulating film 138A In the processing of the insulator 139, the insulating film 138A, the insulating film 137A, the insulating film 123A, the insulating film 135A, and the conductive film 136A, the insulating film 139, the insulating film 138A, the insulating film 137A, the insulating film 123A, the insulating film 135A, and the conductive film.
  • a stepped insulator 139, an insulator 138, an insulator 137, an insulator 123, an insulator 135, and a conductor 136 can be formed.
  • the insulator 150 is formed (see FIG. 16).
  • the insulator 150 can be formed by using a CVD method.
  • the insulator 150 is preferably flattened by using a CMP method or a reflow method.
  • the insulator 150, the insulator 139, the insulator 138, the insulator 137, the insulator 123, the insulator 135, and the conductor 136 are processed to form a slit.
  • the slit is not shown because it is formed in the Y direction of the cross section shown in FIG. Further, the slit is formed so as to extend in the X direction. Further, it is preferable that the slits are formed between the memory strings 120 arranged in the Y direction.
  • the insulator 137 and the insulator 135 are removed (see FIG. 17).
  • Wet etching or dry etching can be used to remove the insulator 137 and the insulator 135.
  • the etchant used for wet etching or the gas used for dry etching is introduced from the slit, and the insulator 137 and the insulator 135 are removed by isotropic etching.
  • At least one of CH 3 F, CH 2 F 2 , and CH F 3 can be used as the etching gas for the insulator 137 and the insulator 135.
  • a mixed gas containing at least one of the above gases can be used.
  • the mixed gas examples include a mixed gas containing at least one of the above gases and one gas selected from He, Ne, Ar, Kr, Xe, and Rn.
  • phosphoric acid can be used as the etchant of the insulator 137 and the insulator 135.
  • wet etching is used to remove the insulator 137 and the insulator 135, the etching rate of the insulator 137 and the insulator 135 can be controlled by adjusting the temperature of the etchant. It is preferable to heat the phosphoric acid to etch the insulator 137 and the insulator 135.
  • a conductor to be the conductor 182 and the conductor 183 is formed in the region from which the insulator 137 and the insulator 135 have been removed (see FIG. 18).
  • the conductor can be formed by using a CVD method or an ALD method. In particular, it is preferable to use the ALD method because a film having a uniform thickness can be formed even in grooves and openings having a large aspect ratio.
  • a material that can be used for the conductor 122 or the conductive film 136A can be used as the conductor.
  • the conductor may contain the same material as the conductor 122 or the conductive film 136A, or may be a different material.
  • the insulator 181 preferably has a barrier property against oxygen.
  • Insulator 181 can be formed using the ALD method. By using the ALD method, the insulator 181 can be formed on the upper surface of the insulator 123, the lower surface of the insulator 123, the side surface of the insulator 124, and the side surface of the insulator 150.
  • the conductor 182 and the conductor 183 are obtained by anisotropically etching the conductor located in the slit formed in the previous step (see FIG. 18).
  • the conductor formed in the region where the insulator 135 is provided is referred to as a conductor 182
  • the conductor formed in the region where the insulator 137 is provided is referred to as a conductor 183.
  • the conductor 182 and the conductor 183 are surrounded by the insulator 181 except for the surface located on the slit side, that is, the surface orthogonal to the Y direction.
  • an insulator is formed so as to embed the portion removed by the above processing, that is, the slit portion.
  • the insulator can be formed by using a CVD method or an ALD method.
  • the ALD method and the CVD method may be combined to form an insulator.
  • the insulator is preferably flattened by using a CMP method or a reflow method.
  • the insulator 150, the insulator 139, the insulator 129, the insulator 131, the insulator 126, the insulator 138, and the insulator 181 are processed by a lithography method, and the conductor 182, the conductor 136, and the conductor are processed.
  • a second opening is formed to expose 130, the conductor 183, the semiconductor 125, and the semiconductor 127. The second opening is formed for each of the conductor 182 and the conductor 136 formed in a stepped manner (see FIG. 19).
  • a conductor 165 that is electrically connected to the semiconductor 125 and a conductor 166 that is electrically connected to the semiconductor 127 are formed (see FIG. 19).
  • the conductor 161 and the conductor 162, the conductor 164, the conductor 165, and the conductor 166 can be formed by using the CVD method or the ALD method. In particular, it is preferable to use the ALD method because a film having a uniform thickness can be formed even in grooves and openings having a large aspect ratio.
  • the ALD method and the CVD method may be combined to form the conductor.
  • the conductor 161 and the conductor 162, the conductor 164, the conductor 165, and the conductor 166 may have a laminated structure composed of a plurality of layers.
  • the conductor 161 and the conductor 162, the conductor 164, the conductor 165, and the conductor 166 form a conductive film on the insulator 150 and inside the second opening, and use CMP or the like to form an unnecessary conductive film. It can be formed by removing it.
  • the conductor 171 that is electrically connected to the conductor 161, the conductor 172 that is electrically connected to the conductor 162, the conductor 174 that is electrically connected to the conductor 164, and the conductor 165 are electrically connected.
  • the conductor 175 and the conductor 176 that are electrically connected to the conductor 166 are formed (see FIG. 19).
  • the conductor 171 and the conductor 172, the conductor 174, the conductor 175, and the conductor 176 can be formed by forming a conductive film on the insulator 150 and processing it by a lithography method. A dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for microfabrication.
  • the conductor 171 and the conductor 161 and the conductor 182 function as the conductor SG or the conductor WWL.
  • the conductor 172, the conductor 162, and the conductor 136 function as the conductor RWL.
  • the conductor 174, the conductor 164, and the conductor 183 function as the conductor SEL.
  • the conductor 175 and the conductor 165 function as the conductor WBL.
  • the conductor 176 and the conductor 166 function as the conductor RBL.
  • an insulator 150 an insulator formed so as to embed a slit, a conductor 171, a conductor 172, a conductor 174, a conductor 175, and an insulator 156 are formed so as to cover the conductor 176 (FIG. See 19.).
  • the insulator 156 can be formed by using a CVD method, an ALD method, a sputtering method, or the like.
  • the insulator 156, the insulator 150, and the insulator 139 are processed by a lithography method to form a third opening so as to expose the conductor 130 (see FIG. 19).
  • a conductor 163 that is electrically connected to the conductor 130 is formed so as to be embedded in the third opening (see FIG. 19).
  • the conductor 163 can be formed by using a CVD method or an ALD method.
  • it is preferable to use the ALD method because a film having a uniform thickness can be formed even in grooves and openings having a large aspect ratio.
  • the ALD method and the CVD method may be combined to form the conductor.
  • the conductor 163 may have a laminated structure composed of a plurality of layers.
  • the conductor 163 can be formed by forming a conductive film on the insulator 156 and inside the third opening and removing an unnecessary conductive film by using CMP or the like.
  • the conductor 173 can be formed by forming a conductive film on the insulator 156 and processing it by a lithography method.
  • a dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for microfabrication.
  • the conductor 173, the conductor 163, and the conductor 130 function as the conductor BG.
  • a transistor RTr having a conductor 130 that functions as a conductor and a conductor 128 between the semiconductor 127 and the conductor 136 can be manufactured. Further, a storage device including the transistor STR1, the transistor STR2, the transistor WTr, and the transistor RTr can be manufactured.
  • FIG. 20A is a schematic view of a multi-chamber type film forming apparatus 4000
  • FIG. 20B is a cross-sectional view of an ALD apparatus that can be used in the film forming apparatus 4000.
  • the film forming apparatus 4000 includes a loading / unloading chamber 4002, a loading / unloading chamber 4004, a transport chamber 4006, a film forming chamber 4008, a film forming chamber 4009, a film forming chamber 4010, and a transport arm 4014.
  • the carry-in / carry-out chamber 4002, the carry-in / carry-out chamber 4004, and the film forming chambers 4008 to 4010 are independently connected to the transport chamber 4006, respectively.
  • continuous film formation can be performed in the film formation chambers 4008 to 4010 without exposure to the atmosphere, and impurities can be prevented from being mixed in the film.
  • contamination of the interface between the substrate and the film and the interface of each film is reduced, and a clean interface can be obtained.
  • the carry-in / carry-out chamber 4002, the carry-in / carry-out chamber 4004, the transport chamber 4006, and the film forming chambers 4008 to 4010 are filled with an inert gas (nitrogen gas or the like) whose dew point is controlled in order to prevent the adhesion of moisture. It is preferable to keep the pressure, and it is desirable to maintain the reduced pressure.
  • an inert gas nitrogen gas or the like
  • an ALD apparatus can be used in the film forming chambers 4008 to 4010.
  • a film forming apparatus other than the ALD apparatus may be used in any of the film forming chambers 4008 to 4010.
  • Examples of the film forming apparatus that can be used in the film forming chambers 4008 to 4010 include a sputtering apparatus, a plasma CVD (PECVD: Plasma Enhanced CVD) apparatus, a thermal CVD (TCVD: Thermal CVD) apparatus, and an optical CVD (Photo CVD) apparatus.
  • PECVD Plasma Enhanced CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • Metal CVD MCVD: Metal CVD
  • MOCVD Metal Organic CVD
  • an apparatus having a function other than the film forming apparatus may be provided in any one or more of the film forming chambers 4008 to 4010.
  • the device include a heating device (typically a vacuum heating device) and a plasma generator (typically a ⁇ -wave plasma generator).
  • the film forming chamber 4008 when the film forming chamber 4008 is used as an ALD device, the film forming chamber 4009 is used as a PECVD device, and the film forming chamber 4010 is used as a metal CVD device, the film forming chamber 4008 is used as a metal oxide and the film forming chamber 4009 is used as a gate insulating film.
  • a functional insulating film and a conductive film that functions as a gate electrode can be formed in the film forming chamber 4010.
  • the metal oxide, the insulating film on the metal oxide, and the conductive film on the metal oxide can be continuously formed without being exposed to the atmosphere.
  • the film forming apparatus 4000 has a structure including a carry-in / carry-out chamber 4002, a carry-in / carry-out chamber 4004, and a film forming chamber 4008 to 4010, but the present invention is not limited thereto.
  • the film forming apparatus 4000 may have four or more film forming chambers. Further, the film forming apparatus 4000 may be a single-wafer type or a batch type in which a plurality of substrates are collectively formed.
  • the ALD apparatus includes a film forming chamber (chamber 4020), a raw material supply unit 4021 (raw material supply unit 4021a and 4021b), a raw material supply unit 4031, high-speed valves 4022a and 4022b which are introduction amount controllers, and a raw material introduction port 4023. (Raw material introduction port 4023a and 4023b), a raw material introduction port 4033, a raw material discharge port 4024, and an exhaust device 4025.
  • the raw material introduction ports 4023a, 4023b, and 4033 installed in the chamber 4020 are connected to the raw material supply units 4021a, 4021b, and 4031 via supply pipes and valves, respectively, and the raw material discharge port 4024 is a discharge pipe and valve. It is connected to the exhaust device 4025 via a pressure regulator or a pressure regulator.
  • the plasma generator 4028 is preferably an ICP type plasma generator using a coil 4029 connected to a high frequency power supply.
  • the high frequency power supply can output power having a frequency of 10 kHz or more and 100 MHz or less, preferably 1 MHz or more and 60 MHz or less, and more preferably 10 MHz or more and 60 MHz or less. For example, it is possible to output electric power having frequencies of 13.56 MHz and 60 MHz. Since the plasma ALD method can form a film without lowering the film forming rate even at a low temperature, it is preferable to use it in a single-wafer film forming apparatus having low film forming efficiency.
  • the substrate holder 4026 there is a substrate holder 4026 inside the chamber, and the substrate 4030 is arranged on the substrate holder 4026.
  • the substrate holder 4026 may be provided with a mechanism to which a constant potential or high frequency is applied. Alternatively, the substrate holder 4026 may be floating or may be grounded.
  • a heater 4027 is provided on the outer wall of the chamber, and the temperature of the inside of the chamber 4020, the substrate holder 4026, the surface of the substrate 4030, and the like can be controlled.
  • the heater 4027 preferably can control the temperature of the surface of the substrate 4030 to 100 ° C. or higher and 500 ° C. or lower, preferably 200 ° C. or higher and 400 ° C. or lower, and the temperature of the heater 4027 itself is preferably set to 100 ° C. or higher and 500 ° C. or lower.
  • a raw material gas is formed from a solid raw material or a liquid raw material by a vaporizer, a heating means, or the like.
  • the raw material supply units 4021a, 4021b, and 4031 may be configured to supply a gaseous raw material gas.
  • FIG. 20B shows an example in which two raw material supply units 4021 and one raw material supply unit 4031 are provided, but the present embodiment is not limited to this.
  • One or three or more raw material supply units 4021 may be provided.
  • two or more raw material supply units 4031 may be provided.
  • the high-speed valves 4022a and 4022b can be precisely controlled with time, and are configured to control the supply of the raw material gas supplied from the raw material supply unit 4021a and the raw material gas supplied from the raw material supply unit 4021b.
  • the substrate 4030 is carried onto the substrate holder 4026, the chamber 4020 is sealed, and then the substrate 4030 is heated to a desired temperature (for example, 100 ° C. or higher and 500 ° C. or lower, preferably 100 ° C. or higher, preferably 500 ° C. or lower) by the heater 4027. 200 ° C or higher and 400 ° C or lower), the supply of the raw material gas supplied from the raw material supply unit 4021a, the exhaust by the exhaust device 4025, the supply of the raw material gas supplied from the raw material supply unit 4031, and the exhaust by the exhaust device 4025.
  • a thin film is formed on the surface of the substrate by repeating.
  • the raw material gas supplied from the raw material supply unit 4021b may be further supplied and the exhaust gas may be exhausted by the exhaust device 4025.
  • the temperature of the heater 4027 may be appropriately determined according to the film type to be formed, the raw material gas, the desired film quality, the substrate, and the heat resistance of the film or element provided therein.
  • the temperature of the heater 4027 may be set to 200 ° C. or higher and 300 ° C. or lower for film formation, or 300 ° C. or higher and 500 ° C. or lower may be set for film formation.
  • a metal oxide can be formed by appropriately selecting the raw materials (volatile organometallic compounds and the like) used in the raw material supply unit 4021 and the raw material supply unit 4031.
  • the precursor containing indium is supplied from the first raw material supply unit 4021
  • the precursor containing gallium is supplied from the second raw material supply unit 4021
  • the precursor containing zinc is supplied from the third raw material supply unit 4021. Is preferable.
  • At least two raw material supply units 4021 may be provided.
  • the precursor containing indium, the precursor containing gallium, and the precursor containing zinc the above-mentioned precursors can be used.
  • the reactor is supplied from the raw material supply unit 4031.
  • an oxidizing agent containing at least one of ozone, oxygen and water can be used.
  • an oxide containing one or more elements selected from hafnium, aluminum, tantalum, zirconium, etc. an oxide containing one or more elements selected from hafnium, aluminum, tantalum, zirconium, etc.
  • An insulating layer composed of (including a composite oxide) can be formed. Specifically, an insulating layer containing hafnium oxide, an insulating layer containing aluminum oxide, an insulating layer containing hafnium silicate, an insulating layer containing aluminum silicate, and the like. Can be formed.
  • a metal layer such as a tungsten layer and a titanium layer, a nitride layer such as a titanium nitride layer, and the like can be obtained.
  • a thin film can also be formed.
  • a hafnium oxide layer is formed by an ALD device
  • a first raw material gas obtained by vaporizing a liquid containing a solvent and a hafnium precursor compound (hafnium alkoxide or hafnium amide such as tetrakisdimethylamide hafnium (TDMAHf)).
  • a second source gas of ozone (O 3 ) and oxygen (O 2 ) is used as an oxidizing agent.
  • the first raw material gas supplied from the raw material supply unit 4021a is TDMAHf
  • the second raw material gas supplied from the raw material supply unit 4031 is ozone and oxygen.
  • tetrakisdimethylamide hafnium Hf [N (CH 3 ) 2 ] 4 .
  • another material liquid there is tetrakis (ethylmethylamide) hafnium and the like. Further, water can be used as the second raw material gas.
  • a first source gas obtained by vaporizing a liquid containing (TMA trimethylaluminum), ozone (O 3) as an oxidizing agent and the oxygen A second source gas containing (O 2) is used.
  • the first raw material gas supplied from the raw material supply unit 4021a is TMA
  • the second raw material gas supplied from the raw material supply unit 4031 is ozone and oxygen.
  • the chemical formula of trimethylaluminum is Al (CH 3 ) 3 .
  • Other material liquids include tris (dimethylamide) aluminum, triisobutylaluminum, and aluminum tris (2,2,6,6-tetramethyl-3,5-heptane dinate). Further, water can be used as the second raw material gas.
  • FIG. 21 describes different configurations of the ALD apparatus that can be used in the film forming apparatus 4000. It should be noted that detailed description of the same configuration as the ALD apparatus shown in FIG. 20B and its function may be omitted.
  • FIG. 21A is a schematic view showing one aspect of the plasma ALD device.
  • the plasma ALD apparatus 4100 is provided with a plasma generation chamber 4111 above the reaction chamber 4120 and the reaction chamber 4120.
  • the reaction chamber 4120 can be called a chamber.
  • the reaction chamber 4120 and the plasma generation chamber 4111 can be collectively called a chamber.
  • the reaction chamber 4120 has a raw material introduction port 4123 and a raw material discharge port 4124, and the plasma generation chamber 4111 has a raw material introduction port 4133.
  • the plasma generation device 4128 can apply a high frequency such as RF or a microwave to the gas introduced into the plasma generation chamber 4111 to generate the plasma 4131 in the plasma generation chamber 4111.
  • the reaction chamber 4120 has a substrate holder 4126, on which the substrate 4130 is arranged.
  • the raw material gas introduced from the raw material introduction port 4123 is decomposed by the heat from the heater provided in the reaction chamber 4120 and deposited on the substrate 4130. Further, the raw material gas introduced from the raw material introduction port 4133 is put into a plasma state by the plasma generator 4128.
  • the raw material gas in the plasma state recombines with electrons and other molecules by the time it reaches the surface of the substrate 4130, becomes a radical state, and reaches the substrate 4130.
  • Such an ALD apparatus that uses radicals to form a film may be referred to as a radical ALD (Radical-Enhanced ALD) apparatus.
  • the plasma ALD apparatus 4100 shows a configuration in which the plasma generation chamber 4111 is provided above the reaction chamber 4120, but the present embodiment is not limited to this.
  • the plasma generation chamber 4111 may be provided adjacent to the side surface of the reaction chamber 4120.
  • FIG. 21B is a schematic view showing one aspect of the plasma ALD apparatus.
  • the plasma ALD device 4200 has a chamber 4220.
  • the chamber 4220 has an electrode 4213, a raw material discharge port 4224, and a substrate holder 4226, on which the substrate 4230 is arranged.
  • the electrode 4213 has a raw material introduction port 4223 and a shower head 4214 that supplies the introduced raw material gas into the chamber 4220.
  • a power supply 4215 capable of applying a high frequency through a capacitor 4217 is connected to the electrode 4213.
  • the substrate holder 4226 may be provided with a mechanism to which a constant potential or high frequency is applied. Alternatively, the substrate holder 4226 may be floating or may be grounded.
  • the electrode 4213 and the substrate holder 4226 function as an upper electrode and a lower electrode for generating plasma 4231, respectively.
  • the raw material gas introduced from the raw material introduction port 4223 is decomposed by the heat from the heater provided in the chamber 4220 and deposited on the substrate 4230.
  • the raw material gas introduced from the raw material introduction port 4223 is in a plasma state between the electrode 4213 and the substrate holder 4226.
  • the raw material gas in the plasma state is incident on the substrate 4230 due to the potential difference (also referred to as an ion sheath) generated between the plasma 4231 and the substrate 4230.
  • FIG. 21C is a schematic view showing one aspect of the plasma ALD device different from that of FIG. 21B.
  • the plasma ALD device 4300 has a chamber 4320.
  • the chamber 4320 has an electrode 4313, a raw material discharge port 4324, and a substrate holder 4326, on which the substrate 4330 is arranged.
  • the electrode 4313 has a raw material introduction port 4323 and a shower head 4314 that supplies the introduced raw material gas into the chamber 4320.
  • a power supply 4315 capable of applying a high frequency via a capacitor 4317 is connected to the electrode 4313.
  • the substrate holder 4326 may be provided with a mechanism to which a constant potential or high frequency is applied. Alternatively, the substrate holder 4326 may be floating or may be grounded.
  • the electrode 4313 and the substrate holder 4326 function as an upper electrode and a lower electrode for generating plasma 4331, respectively.
  • the plasma ALD device 4300 differs from the plasma ALD device 4200 in that it has a mesh 4319 in which a power supply 4321 capable of applying high frequencies via a capacitor 4322 is connected between the electrode 4313 and the substrate holder 4326. By providing the mesh 4319, the plasma 4231 can be separated from the substrate 4130.
  • the raw material gas introduced from the raw material introduction port 4323 is decomposed by the heat from the heater provided in the chamber 4320 and deposited on the substrate 4330. Alternatively, the raw material gas introduced from the raw material introduction port 4323 is in a plasma state between the electrode 4313 and the substrate holder 4326.
  • the raw material gas in the plasma state has its charge removed by the mesh 4319 and reaches the substrate 4130 in an electrically neutral state such as radicals. Therefore, it is possible to perform a film formation in which the incident of ions and the damage caused by plasma are suppressed.
  • the semiconductor 125 or the semiconductor 127 By forming the semiconductor 125 or the semiconductor 127 by using the ALD method, it may be possible to form a metal oxide having a CAAC structure in which the c-axis is oriented substantially parallel to the normal direction of the surface to be deposited.
  • microwave processing device that can be used in the method for manufacturing the semiconductor device will be described.
  • FIG. 22 schematically shows a top view of the single-wafer multi-chamber manufacturing apparatus 2700.
  • the manufacturing apparatus 2700 has an atmospheric side substrate supply chamber 2701 including a cassette port 2761 for accommodating the substrate and an alignment port 2762 for aligning the substrate, and an atmospheric side substrate transport for transporting the substrate from the atmospheric side substrate supply chamber 2701.
  • Room 2702 and load lock chamber 2703a that carries in the substrate and switches the pressure in the room from atmospheric pressure to atmospheric pressure, or from reduced pressure to atmospheric pressure, and carries out the substrate and reduces the pressure in the room from reduced pressure to atmospheric pressure, or It has an unload lock chamber 2703b for switching from atmospheric pressure to depressurization, a transport chamber 2704 for transporting a substrate in vacuum, a chamber 2706a, a chamber 2706b, a chamber 2706c, and a chamber 2706d.
  • the atmospheric side substrate transport chamber 2702 is connected to the load lock chamber 2703a and the unload lock chamber 2703b, the load lock chamber 2703a and the unload lock chamber 2703b are connected to the transport chamber 2704, and the transport chamber 2704 is connected to the chamber 2706a.
  • Chamber 2706b, chamber 2706c and chamber 2706d are connected to the atmospheric side substrate transport chamber 2702.
  • a gate valve GV is provided at the connection portion of each chamber, and each chamber can be independently held in a vacuum state except for the atmospheric side substrate supply chamber 2701 and the atmospheric side substrate transport chamber 2702. Further, a transfer robot 2763a is provided in the atmospheric side substrate transfer chamber 2702, and a transfer robot 2763b is provided in the transfer chamber 2704. The transfer robot 2763a and the transfer robot 2763b can transfer the substrate in the manufacturing apparatus 2700.
  • the back pressure (total pressure) of the transport chamber 2704 and each chamber is, for example, 1 ⁇ 10 -4 Pa or less, preferably 3 ⁇ 10 -5 Pa or less, and more preferably 1 ⁇ 10 -5 Pa or less.
  • the partial pressure of gas molecules (atoms) having a mass-to-charge ratio (m / z) of 18 in the transport chamber 2704 and each chamber is, for example, 3 ⁇ 10 -5 Pa or less, preferably 1 ⁇ 10 -5 Pa or less. , More preferably 3 ⁇ 10 -6 Pa or less.
  • the partial pressure of the gas molecules (atoms) having an m / z of 28 in the transport chamber 2704 and each chamber is, for example, 3 ⁇ 10 -5 Pa or less, preferably 1 ⁇ 10 -5 Pa or less, more preferably 3. ⁇ 10-6 Pa or less.
  • the partial pressure of the gas molecules (atoms) having an m / z of 44 in the transport chamber 2704 and each chamber is, for example, 3 ⁇ 10 -5 Pa or less, preferably 1 ⁇ 10 -5 Pa or less, more preferably 3. ⁇ 10-6 Pa or less.
  • the total pressure and partial pressure in the transport chamber 2704 and each chamber can be measured using a mass spectrometer.
  • a mass spectrometer for example, a quadrupole mass spectrometer (also referred to as Q-mass) Qulee CGM-051 manufactured by ULVAC, Inc. may be used.
  • the transport chamber 2704 and each chamber have a configuration in which there are few external leaks or internal leaks.
  • the leak rate of the transport chamber 2704 and each chamber is 3 ⁇ 10 -6 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10 -6 Pa ⁇ m 3 / s or less.
  • the leak rate of the gas molecule (atom) having m / z of 18 is set to 1 ⁇ 10 -7 Pa ⁇ m 3 / s or less, preferably 3 ⁇ 10 -8 Pa ⁇ m 3 / s or less.
  • the leak rate of the gas molecule (atom) having m / z of 28 is 1 ⁇ 10-5 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10-6 Pa ⁇ m 3 / s or less.
  • the leak rate of the gas molecule (atom) having m / z of 44 is set to 3 ⁇ 10 -6 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10 -6 Pa ⁇ m 3 / s or less.
  • the leak rate may be derived from the total pressure and partial pressure measured using the above-mentioned mass spectrometer.
  • the leak rate depends on external and internal leaks.
  • An external leak is a gas flowing in from outside the vacuum system due to a minute hole or a defective seal.
  • Internal leaks are caused by leaks from partitions such as valves in the vacuum system and gases released from internal members. In order to keep the leak rate below the above value, it is necessary to take measures from both the external leak and the internal leak.
  • the transfer chamber 2704 and the opening / closing portion of each chamber may be sealed with a metal gasket.
  • a metal gasket it is preferable to use a metal coated with iron fluoride, aluminum oxide, or chromium oxide.
  • the metal gasket has higher adhesion than the O-ring and can reduce external leakage. Further, by using the passivation of the metal coated with iron fluoride, aluminum oxide, chromium oxide or the like, the released gas containing impurities released from the metal gasket can be suppressed, and the internal leak can be reduced.
  • a member constituting the manufacturing apparatus 2700 aluminum, chromium, titanium, zirconium, nickel or vanadium containing impurities and having a small amount of emitted gas is used. Further, the above-mentioned metal containing a small amount of emission gas containing impurities may be coated on an alloy containing iron, chromium, nickel and the like. Alloys containing iron, chromium, nickel, etc. are rigid, heat resistant and suitable for processing. Here, if the surface unevenness of the member is reduced by polishing or the like in order to reduce the surface area, the released gas can be reduced.
  • the member of the manufacturing apparatus 2700 described above may be coated with iron fluoride, aluminum oxide, chromium oxide or the like.
  • the members of the manufacturing apparatus 2700 are preferably made of only metal as much as possible.
  • the surface thereof is made of iron fluoride, aluminum oxide, or oxide in order to suppress emitted gas. It is recommended to coat it thinly with chrome or the like.
  • the adsorbents present in the transport chamber 2704 and each chamber do not affect the pressure of the transport chamber 2704 and each chamber because they are adsorbed on the inner wall, etc., but cause gas release when the transport chamber 2704 and each chamber are exhausted. It becomes. Therefore, although there is no correlation between the leak rate and the exhaust speed, it is important to use a pump having a high exhaust capacity to remove the adsorbents existing in the transport chamber 2704 and each chamber as much as possible and exhaust them in advance.
  • the transport chamber 2704 and each chamber may be baked in order to promote the desorption of adsorbed substances. By baking, the desorption rate of the adsorbent can be increased by about 10 times. Baking may be performed at 100 ° C. or higher and 450 ° C. or lower.
  • the desorption rate of water or the like which is difficult to desorb only by exhausting, can be further increased.
  • the desorption rate of the adsorbent can be further increased.
  • an inert gas such as a heated rare gas or oxygen
  • the adsorbents in the transport chamber 2704 and each chamber can be desorbed, and the impurities existing in the transport chamber 2704 and each chamber can be reduced. It is effective to repeat this treatment 2 times or more and 30 times or less, preferably 5 times or more and 15 times or less.
  • an inert gas or oxygen having a temperature of 40 ° C. or higher and 400 ° C. or lower, preferably 50 ° C. or higher and 200 ° C.
  • the pressure in the transport chamber 2704 and each chamber can be increased by 0.1 Pa or more and 10 kPa.
  • it may be preferably 1 Pa or more and 1 kPa or less, more preferably 5 Pa or more and 100 Pa or less, and the period for maintaining the pressure may be 1 minute or more and 300 minutes or less, preferably 5 minutes or more and 120 minutes or less.
  • the transfer chamber 2704 and each chamber are exhausted for a period of 5 minutes or more and 300 minutes or less, preferably 10 minutes or more and 120 minutes or less.
  • the chamber 2706b and the chamber 2706c are, for example, chambers capable of performing microwave treatment on the object to be processed. It should be noted that the chamber 2706b and the chamber 2706c differ only in the atmosphere when microwave processing is performed. Since other configurations are common, they will be described together below.
  • the chamber 2706b and the chamber 2706c have a slot antenna plate 2808, a dielectric plate 2809, a substrate holder 2812, and an exhaust port 2819. Further, outside the chamber 2706b and the chamber 2706c, there are a gas supply source 2801, a valve 2802, a high frequency generator 2803, a waveguide 2804, a mode converter 2805, a gas tube 2806, and a waveguide 2807. A matching box 2815, a high frequency power supply 2816, a vacuum pump 2817, and a valve 2818 are provided.
  • the high frequency generator 2803 is connected to the mode converter 2805 via a waveguide 2804.
  • the mode converter 2805 is connected to the slot antenna plate 2808 via a waveguide 2807.
  • the slot antenna plate 2808 is arranged in contact with the dielectric plate 2809.
  • the gas supply source 2801 is connected to the mode converter 2805 via a valve 2802. Then, gas is sent to the chamber 2706b and the chamber 2706c by the mode converter 2805, the waveguide 2807, and the gas tube 2806 passing through the dielectric plate 2809.
  • the vacuum pump 2817 has a function of exhausting gas or the like from the chamber 2706b and the chamber 2706c via the valve 2818 and the exhaust port 2819.
  • the high frequency power supply 2816 is connected to the substrate holder 2812 via the matching box 2815.
  • the board holder 2812 has a function of holding the board 2811. For example, it has a function of electrostatically chucking or mechanically chucking the substrate 2811. It also functions as an electrode to which power is supplied from the high frequency power supply 2816. Further, it has a heating mechanism 2813 inside and has a function of heating the substrate 2811.
  • the vacuum pump 2817 for example, a dry pump, a mechanical booster pump, an ion pump, a titanium sublimation pump, a cryopump, a turbo molecular pump, or the like can be used. Further, in addition to the vacuum pump 2817, a cryotrap may be used. It is particularly preferable to use a cryopump and a cryotrap because water can be efficiently exhausted.
  • the heating mechanism 2813 may be, for example, a heating mechanism that heats using a resistance heating element or the like. Alternatively, it may be a heating mechanism that heats by heat conduction or heat radiation from a medium such as a heated gas.
  • RTA Rapid Thermal Analing
  • GRTA Gas Rapid Thermal Annealing
  • LRTA Riv Rapid Thermal Annealing
  • GRTA heat-treats using a high-temperature gas. As the gas, an inert gas is used.
  • the gas supply source 2801 may be connected to the refiner via a mass flow controller.
  • the gas it is preferable to use a gas having a dew point of ⁇ 80 ° C. or lower, preferably ⁇ 100 ° C. or lower.
  • oxygen gas, nitrogen gas, and noble gas argon gas, etc. may be used.
  • the dielectric plate 2809 for example, silicon oxide (quartz), aluminum oxide (alumina), yttrium oxide (itria), or the like may be used. Further, another protective layer may be formed on the surface of the dielectric plate 2809. As the protective layer, magnesium oxide, titanium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silicon oxide, aluminum oxide, yttrium oxide and the like may be used. Since the dielectric plate 2809 is exposed to a particularly high-density region of the high-density plasma 2810 described later, damage can be mitigated by providing a protective layer. As a result, it is possible to suppress an increase in particles during processing.
  • the high frequency generator 2803 has, for example, a function of generating microwaves of 0.3 GHz or more and 6.0 GHz or less. For example, microwaves of 0.7 GHz or more and 1.1 GHz or less, or 2.2 GHz or more and 2.8 GHz or less, or 5.0 GHz or more and 6.0 GHz or less can be generated.
  • the microwave generated by the high frequency generator 2803 is transmitted to the mode converter 2805 via the waveguide 2804.
  • the mode converter 2805 the microwave transmitted as the TE mode is converted into the TEM mode.
  • the microwave is transmitted to the slot antenna plate 2808 via the waveguide 2807.
  • the slot antenna plate 2808 is provided with a plurality of slot holes, and microwaves pass through the slot holes and the dielectric plate 2809.
  • an electric field can be generated below the dielectric plate 2809 to generate high-density plasma 2810.
  • ions and radicals corresponding to the gas type supplied from the gas supply source 2801 are present.
  • oxygen radicals and the like there are oxygen radicals and the like.
  • the substrate 2811 can modify the film and the like on the substrate 2811 by the ions and radicals generated by the high-density plasma 2810. It may be preferable to apply a bias to the substrate 2811 side by using the high frequency power supply 2816.
  • the high frequency power supply 2816 for example, an RF (Radio Frequency) power supply having a frequency such as 13.56 MHz or 27.12 MHz may be used.
  • the ions in the high-density plasma 2810 can be efficiently reached to the depth of an opening such as a film on the substrate 2811.
  • oxygen radical treatment using the high-density plasma 2810 can be performed by introducing oxygen from the gas supply source 2801 in the chamber 2706b or the chamber 2706c.
  • Chambers 2706a and 2706d are, for example, chambers capable of irradiating an object to be processed with electromagnetic waves. It should be noted that the chamber 2706a and the chamber 2706d differ only in the type of electromagnetic wave. Since there are many common parts about other configurations, they will be explained together below.
  • Chambers 2706a and 2706d have one or more lamps 2820, a substrate holder 2825, a gas inlet 2823, and an exhaust port 2830. Further, a gas supply source 2821, a valve 2822, a vacuum pump 2828, and a valve 2829 are provided outside the chamber 2706a and the chamber 2706d.
  • the gas supply source 2821 is connected to the gas introduction port 2823 via a valve 2822.
  • the vacuum pump 2828 is connected to the exhaust port 2830 via a valve 2829.
  • the lamp 2820 is arranged to face the substrate holder 2825.
  • the substrate holder 2825 has a function of holding the substrate 2824. Further, the substrate holder 2825 has a heating mechanism 2826 inside, and has a function of heating the substrate 2824.
  • a light source having a function of radiating electromagnetic waves such as visible light or ultraviolet light
  • a light source having a function of emitting an electromagnetic wave having a peak at a wavelength of 10 nm or more and 2500 nm or less, 500 nm or more and 2000 nm or less, or 40 nm or more and 340 nm or less may be used.
  • a light source such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high-pressure sodium lamp, or a high-pressure mercury lamp may be used.
  • the electromagnetic wave radiated from the lamp 2820 can be partially or completely absorbed by the substrate 2824 to modify the film or the like on the substrate 2824.
  • defects can be created or reduced, or impurities can be removed. If the substrate 2824 is heated, defects can be efficiently generated or reduced, or impurities can be removed.
  • the substrate holder 2825 may be heated by the electromagnetic waves radiated from the lamp 2820 to heat the substrate 2824. In that case, it is not necessary to have the heating mechanism 2826 inside the substrate holder 2825.
  • Vacuum pump 2828 refers to the description for vacuum pump 2817. Further, the heating mechanism 2826 refers to the description about the heating mechanism 2813. Further, the gas supply source 2821 refers to the description about the gas supply source 2801.
  • the microwave processing apparatus that can be used in this embodiment is not limited to the above.
  • the microwave processing apparatus 2900 shown in FIG. 25 can be used.
  • the microwave processing apparatus 2900 includes a quartz tube 2901, an exhaust port 2819, a gas supply source 2801, a valve 2802, a high frequency generator 2803, a waveguide 2804, a gas tube 2806, a vacuum pump 2817, and a valve 2818.
  • the microwave processing apparatus 2900 has a substrate holder 2902 that holds a plurality of substrates 2811 (2811_1 to 2811_n, n is an integer of 2 or more) in the quartz tube 2901.
  • the microwave processing apparatus 2900 may have the heating means 2903 on the outside of the quartz tube 2901.
  • the microwave generated by the high frequency generator 2803 is irradiated to the substrate provided in the quartz tube 2901 via the waveguide 2804.
  • the vacuum pump 2817 is connected to the exhaust port 2819 via a valve 2818, and the pressure inside the quartz tube 2901 can be adjusted.
  • the gas supply source 2801 is connected to the gas pipe 2806 via a valve 2802, and a desired gas can be introduced into the quartz pipe 2901.
  • the heating means 2903 can heat the substrate 2811 in the quartz tube 2901 to a desired temperature. Alternatively, the heating means 2903 may heat the gas supplied from the gas supply source 2801.
  • the microwave processing apparatus 2900 can simultaneously perform heat treatment and microwave treatment on the substrate 2811. Further, after heating the substrate 2811, microwave treatment can be performed. Further, the substrate 2811 can be heat-treated after being microwave-treated.
  • the substrates 2811_1 to 2811_n may all be processing substrates forming a semiconductor device or a storage device, or some of the substrates may be dummy substrates.
  • the substrate 2811_1 and the substrate 2811_n may be used as dummy substrates, and the substrates 2811_2 to 2811_n-1 may be used as processing substrates.
  • the substrate 2811_1, the substrate 2811_2, the substrate 2811_n-1, and the substrate 2811_n may be used as dummy substrates, and the substrates 2811_3 to 2811_n-2 may be used as processing substrates.
  • a dummy substrate it is preferable to use a dummy substrate because a plurality of treated substrates can be uniformly treated during microwave treatment or heat treatment, and variations between the treated substrates can be reduced. For example, by arranging the dummy substrate on the processing substrate closest to the high frequency generator 2803 and the waveguide 2804, it is possible to suppress the direct exposure of the processing substrate to microwaves, which is preferable.
  • FIG. 26 shows an example of the circuit configuration of the memory string 120.
  • FIG. 27 shows an equivalent circuit diagram of the storage element MC.
  • FIG. 26 shows a circuit configuration example of the memory string 120 including the five storage elements MC.
  • the storage element MC has a transistor WTr and a transistor RTr.
  • the transistor WTr included in the storage element MC [1] is shown as a transistor WTr [1]
  • the transistor RTr included in the storage element MC [1] is shown as a transistor RTr [1]. Therefore, the memory string 120 shown in FIG. 26 has a transistor WTr [1] to a transistor WTr [5] and a transistor RTr [1] to a transistor RTr [5].
  • the memory string 120 shown in FIG. 26 has a transistor STR1, a transistor STR2, and a transistor STR3.
  • the memory string 120 is a NAND type storage device.
  • OS may be added to the circuit symbol of the transistor in order to clearly indicate that the transistor is an OS transistor.
  • Si may be added to the circuit symbol of the transistor.
  • FIG. 26 shows that the transistor WTr and the transistor RTr are OS transistors.
  • a NAND type storage device including an OS memory is also referred to as an "OS NAND type” or an “OS NAND type storage device”. Further, an OS NAND type storage device having a configuration in which a plurality of OS memories are stacked in the Z direction is also referred to as a "3D OS NAND type” or a “3D OS NAND type storage device”.
  • the transistor WTr is a normally-off type transistor.
  • the transistor RTr is a normally-on type transistor.
  • the transistor RTr includes a conductor 128 between the gate and the semiconductor layer.
  • the conductor 128 can function as a floating gate of the transistor RTr.
  • the conductor 128 contained in the transistor RTr [1] is called the conductor 128 [1].
  • a contact point at which one of the conductor 128 and the source or drain of the transistor WTr is electrically connected is defined as a node ND.
  • a contact in which one of the conductor 128 [1] and the source or drain of the transistor WTr [1] is electrically connected is called a node ND [1].
  • One of the source or drain of the transistor RTr [1] is electrically connected to one of the source or drain of the transistor Str1 and the other is electrically connected to one of the source or drain of the transistor RTr [2].
  • the gate of the transistor RTr [1] is electrically connected to the conductor RWL [1].
  • the back gate of the transistor RTr [1] is electrically connected to the conductor BG.
  • One of the source or drain of the transistor WTr [1] is electrically connected to the conductor 128 [1], and the other is electrically connected to the conductor 128 [2].
  • the gate of the transistor WTr [1] is electrically connected to the conductor WWL [1].
  • the source or the drain of the transistor Str1 is electrically connected to the conductor 122, and the gate is electrically connected to the conductor SG.
  • the transistor RTr can be represented by replacing the capacitance Cs and the transistor Tr.
  • the gate of the transistor Tr is electrically connected to the conductor RWL via the capacitance Cs.
  • one of the source or drain of the transistor RTr [5] is electrically connected to the other of the source or drain of the transistor RTr [4], and the other is electrically connected to one of the source or drain of the transistor Str2. ..
  • the gate of the transistor RTr [5] is electrically connected to the conductor RWL [5].
  • the back gate of the transistor RTr [5] is electrically connected to the conductor BG.
  • One of the source or drain of the transistor WTr [5] is electrically connected to the conductor 128 [5], and the other is electrically connected to one of the source or drain of the transistor Str3.
  • the gate of the transistor WTr [5] is electrically connected to the conductor WWL [5].
  • the other of the source or drain of the transistor Str2 is electrically connected to the conductor RBL and the gate is electrically connected to the conductor RSEL.
  • the other of the source or drain of the transistor Str3 is electrically connected to the conductor WBL and the gate is electrically connected to the conductor WSEL.
  • the i-th storage element MC [i is an integer of 1 or more and n or less) excluding the first and nth storage elements MC [ In i]
  • one of the source or drain of the transistor RTr [i] is electrically connected to the other of the source or drain of the transistor RTr [i-1], and the other is one of the source or drain of the transistor RTr [i + 1].
  • the gate of the transistor RTr [i] is electrically connected to the conductor RWL [i].
  • the back gate of the transistor RTr [i] is electrically connected to the conductor BG.
  • One of the source or drain of the transistor WTr [i] is electrically connected to the conductor 128 [i], and the other is electrically connected to the conductor 128 [i-1].
  • the gate of the transistor WTr [i] is electrically connected to the conductor WWL [i].
  • the transistor Str1 and the transistor Str2 may be, for example, an OS transistor or a Si transistor.
  • One of the transistor Str1 and the transistor Str2 may be an OS transistor, and the other may be a Si transistor.
  • the transistor STR1 and the transistor STR2 are also formed by the OS transistor.
  • FIG. 28 shows an equivalent circuit diagram of the memory string 120 when an OS transistor is used as the transistor WTr and a Si transistor is used as the transistor RTr.
  • the transistor RTr is formed of a Si transistor, for example, polycrystalline silicon may be used for the semiconductor 125.
  • the transistor WTr is formed of an OS transistor, for example, CAAC-IGZO may be used for the semiconductor 127.
  • a Si transistor may be used as the transistor WTr and an OS transistor may be used as the transistor RTr depending on the purpose or application. Further, as shown in FIG. 30, a Si transistor may be used for both the transistor WTr and the transistor RTr depending on the purpose or application. When a Si transistor is used for both the transistor WTr and the transistor RTr, it is preferable to use the Si transistor for the transistor STR1 and the transistor STR2.
  • FIG. 31 is a timing chart for explaining the writing operation.
  • 32A to 36B are circuit diagrams for explaining the writing operation.
  • the L potential is written in the storage element MC [1] to the storage element MC [5]. Further, conductor WWL [1] to conductor WWL [5], conductor RWL [1] to conductor RWL [5], conductor WSEL, conductor RSEL, conductor BG, conductor WBL, conductor RBL, It is assumed that the L potential is supplied to the conductor SG and the conductor 122.
  • the conductor BG can control the threshold value of the transistor RTr. The potential supplied to the conductor BG may be appropriately adjusted so that the transistor RTr becomes a desired normally-on type transistor.
  • the conductor WSEL and the conductor RSEL will be described as being common conductors, they may be different conductors.
  • Period T1 the conductor WWL [1] to the conductor WWL [5], the conductor WBL, and the conductor WSEL (and the conductor RSEL) are supplied with an H potential (see FIG. 32A). Then, the potential of the node ND [1] to the node ND [5] becomes the H potential.
  • Period T2 During the period T2, the L potential is supplied to the conductor WWL [1] (see FIG. 32B). Then, the transistor WTr [1] is turned off, and the electric charge written to the node ND [1] is retained. Here, the charge corresponding to the H potential is retained.
  • Period T3 During period T3, the L potential is supplied to the conductor WBL (see FIG. 33A). Then, the potential of the node ND [2] to the node ND [5] becomes the L potential. At this time, the conductors 128 [2] to 128 [5] also have an L potential, but since the transistor RTr is a normally-on type transistor, the transistors RTr [2] to RTr [5] are in the off state. do not become.
  • Period T4 During the period T4, the L potential is supplied to the conductor WWL [2] (see FIG. 33B). Then, the transistor WTr [2] is turned off, and the electric charge written to the node ND [2] is retained. Here, the charge corresponding to the L potential is retained.
  • Period T5 During period T5, the H potential is supplied to the conductor WBL (see FIG. 34A). Then, the potential of the node [3] to the node [5] becomes the H potential.
  • Period T6 During period T6, the L potential is supplied to the conductor WWL [3] (see FIG. 34B). Then, the transistor WTr [3] is turned off, and the electric charge written to the node ND [3] is retained. Here, the charge corresponding to the H potential is retained.
  • Period T7 the L potential is supplied to the conductor WBL (see FIG. 35A). Then, the potentials of the node ND [4] and the node ND [5] become the L potential.
  • Period T8 During period T8, the L potential is supplied to the conductor WWL [4] (see FIG. 35B). Then, the transistor WTr [4] is turned off, and the electric charge written to the node ND [4] is retained. Here, the charge corresponding to the L potential is retained.
  • Period T9 During period T9, the conductor WBL remains at L potential (see FIG. 36A). Therefore, the potential of the node ND [5] also remains the L potential.
  • the L potential is supplied to the conductor WWL [5] (see FIG. 36B). Then, the transistor WTr [5] is turned off, and the electric charge written to the node ND [5] is retained. Here, the charge corresponding to the L potential is retained. Further, the L potential is supplied to the conductor WSEL (and the conductor RSEL).
  • the operation of writing information to the i-1th storage element MC can be omitted. ..
  • the writing operation from the period T1 to the period T6 shown in the present embodiment can be omitted. Therefore, the time required for the writing operation of the storage device and the power consumption can be reduced.
  • Period T11 the H potential is supplied to the conductors RWL [1] to RWL [5] and the conductor RSEL (and the conductor WSEL) (see FIG. 38A). Then, the transistor Str2 (and the transistor Str3) is turned on, and the semiconductor 127 included in the transistor RTr and the conductor RBL are conductive. In this state, the conductor RBL and the semiconductor 127 are precharged with the H potential to bring them into a floating state.
  • FIGS. 40A and 40B are diagrams illustrating the Id-Vg characteristics of the transistor.
  • the horizontal axis of FIGS. 40A and 40B represents the gate voltage (Vg), and the vertical axis represents the drain current (Id).
  • FIG. 40A shows the Id-Vg characteristic of the normally-off type transistor
  • FIG. 40B shows the Id-Vg characteristic of the normally-on type transistor.
  • the H potential is higher than the L potential. Assuming that the L potential is 0 V, the H potential is a positive voltage.
  • the channel resistance value resistance value between the source and the drain
  • Id hardly flows. Further, when Vg reaches the H potential, the channel resistance value decreases and Id increases (see FIG. 40A).
  • the channel resistance value is small even when Vg is at the L potential, and a larger amount of Id flows as compared with the normally-off type transistor. Further, when Vg reaches the H potential, the channel resistance value becomes smaller and Id further increases (see FIG. 40B).
  • the transistor RTr is a normally-on type transistor, the semiconductor 127 can be precharged even if the potential of the conductor RWL remains the L potential. However, by supplying the H potential to the conductor RWL, the on-resistance of the transistor RTr is lowered, so that the time and power consumption required for precharging can be reduced.
  • Period T12 the conductor RWL [3] is supplied with an L potential (see FIG. 38B). Since the H potential is held in the node ND [3], the channel resistance value of the transistor RTr [3] remains small even when the potential of the conductor RWL [3] becomes the L potential.
  • the channel resistance value of the transistor RTr [3] is also small because the H potential is held by the node ND [3]. Therefore, the potential of the conductor RBL in the floating state suddenly changes from the H potential to the L potential (see FIG. 37A).
  • Period T14 During period T14, the L potential is supplied to the conductor RSEL (and conductor WSEL), the conductor RWL, and the conductor SG (see FIG. 39B).
  • the H potential is supplied to the conductor SG to make the conductor RBL and the conductor 122 conductive.
  • the channel resistance value of the transistor RTr [2] is large, the potential change of the conductor RBL from the H potential to the L potential becomes gradual.
  • FIG. 41 shows a circuit configuration example of the memory string 120A, which is a modification of the memory string 120.
  • the memory string 120A has a circuit configuration in which the transistor Str3 is added to the memory string 120.
  • the other of the source or drain of the transistor WTr [5] is electrically connected to one of the source or drain of the transistor Str3, not one of the source or drain of the transistor Str2. Also, the other side of the source or drain of the transistor Str3 is electrically connected to the conductor BL. Further, the gate of the transistor STR2 is electrically connected to the conductor RSEL, and the gate of the transistor STR3 is electrically connected to the conductor WSEL.
  • the transistor Str3 is turned on and the transistor Str2 is turned off.
  • the transistor Str3 is turned off and the transistor Str2 is turned on.
  • the transistor Str2 and the transistor Str3 may be shared.
  • the source or the drain of the transistor Str2 may be electrically connected to the conductor BL.
  • the writing operation and the reading operation perform writing and reading of information via the conductor BL.
  • the memory string 120C shown in FIG. 43 has a circuit configuration in which the transistor Str4 is added to the memory string 120.
  • One of the source or drain of the transistor Str4 is electrically connected to one of the source or drain of the transistor WTr [1], and the other is electrically connected to the conductor WBL [2].
  • the gate of the transistor Str4 is electrically connected to the conductor WSEL [2].
  • the gate of the transistor Str3 is electrically connected to the conductor WSEL [1], and the source or drain of the transistor Str3 is electrically connected to the conductor WBL [1].
  • the circuit configuration may be such that the transistor Str2 and the transistor Str3 are electrically connected to the conductor BL.
  • the memory string 120B can write information from both the conductor WBL [1] and the conductor WBL [2]. Therefore, the writing speed of information can be increased. In addition, it is possible to more reliably supply the electric charge corresponding to the information to be written.
  • the information is written from the conductor WBL [1] side to obtain information on the first to i-1th storage element MCs.
  • the writing operation can be omitted.
  • i is close to 1
  • by writing the information from the conductor WBL [2] side it is possible to omit the operation of writing the information of the storage elements MC from the i + 1th to the nth.
  • the time required for the writing operation and the power consumption can be further reduced.
  • FIG. 44 shows a block diagram showing a configuration example of the semiconductor device 200, which is one aspect of the present invention.
  • the semiconductor device 200 shown in FIG. 44 includes a drive circuit 210 and a memory array 220.
  • the memory array 220 has one or more storage devices 100.
  • FIG. 44 shows an example in which the memory array 220 has a plurality of storage devices 100 arranged in a matrix.
  • the drive circuit 210 includes a PSW241 (power switch), a PSW242, and a peripheral circuit 215.
  • the peripheral circuit 215 includes a peripheral circuit 211, a control circuit 212 (Control Circuit), and a voltage generation circuit 228.
  • the semiconductor device 200 includes elements or circuits having various functions such as a memory array 220, PSW241, PSW242, peripheral circuits 211, control circuits 212, and voltage generation circuits 228. Therefore, the semiconductor device 200 may be referred to as a system or a subsystem.
  • each circuit, each signal, and each voltage can be appropriately discarded as needed. Alternatively, other circuits or other signals may be added.
  • the signal BW, signal CE, signal GW, signal CLK, signal WAKE, signal ADDR, signal WDA, signal PON1, and signal PON2 are input signals from the outside, and signal RDA is an output signal to the outside.
  • the signal CLK is a clock signal.
  • the signal BW, the signal CE, and the signal GW are control signals.
  • the signal CE is a chip enable signal
  • the signal GW is a global write enable signal
  • the signal BW is a byte write enable signal.
  • the signal ADDR is an address signal.
  • the signal WDA is write data and the signal RDA is read data.
  • the signal PON1 and the signal PON2 are power gating control signals.
  • the signal PON1 and the signal PON2 may be generated by the control circuit 212.
  • the control circuit 212 is a logic circuit having a function of controlling the overall operation of the semiconductor device 200. For example, the control circuit logically performs a signal CE, a signal GW, and a signal BW to determine an operation mode (for example, a write operation and a read operation) of the semiconductor device 200. Alternatively, the control circuit 212 generates a control signal of the peripheral circuit 211 so that this operation mode is executed.
  • the voltage generation circuit 228 has a function of generating a negative voltage.
  • the signal WAKE has a function of controlling the input of the signal CLK to the voltage generation circuit 228. For example, when an H level signal is given as the signal WAKE, the signal CLK is input to the voltage generation circuit 228, and the voltage generation circuit 228 generates a negative voltage.
  • the peripheral circuit 211 is a circuit for writing and reading data to and from the storage device 100.
  • the peripheral circuit 211 is a row decoder 221 (Low Docder), a column decoder 222 (Column Docder), and a row driver 223 (Low Driver).
  • Column driver 224 Color Driver
  • input circuit 225 Input Cir.
  • Output circuit 226 Output Cir.
  • Sense amplifier 227 Sense Amplifier
  • the row decoder 221 and the column decoder 222 have a function of decoding the signal ADDR.
  • the row decoder 221 is a circuit for designating the row to be accessed
  • the column decoder 222 is a circuit for designating the column to be accessed.
  • the row driver 223 has a function of selecting the conductor WL specified by the row decoder 221.
  • the column driver 224 has a function of writing data to the storage device 100, a function of reading data from the storage device 100, a function of holding the read data, and the like.
  • the input circuit 225 has a function of holding the signal WDA.
  • the data held by the input circuit 225 is output to the column driver 224.
  • the output data of the input circuit 225 is the data (Din) to be written in the storage device 100.
  • the data (Dout) read from the storage device 100 by the column driver 224 is output to the output circuit 226.
  • the output circuit 226 has a function of holding the Dout. Further, the output circuit 226 has a function of outputting the Dout to the outside of the semiconductor device 200.
  • the data output from the output circuit 226 is the signal RDA.
  • the PSW241 has a function of controlling the supply of VDD to the peripheral circuit 215.
  • the PSW242 has a function of controlling the supply of VHM to the row driver 223.
  • the high power supply voltage of the semiconductor device 200 is VDD
  • the low power supply voltage is GND (ground potential).
  • VHM is a high power supply voltage used to raise the word line to a high level, which is higher than VDD.
  • the signal PON1 controls the on / off of the PSW241, and the signal PON2 controls the on / off of the PSW242.
  • the number of power supply domains to which VDD is supplied in the peripheral circuit 215 is set to 1, but it can be set to a plurality. In this case, a power switch may be provided for each power supply domain.
  • the drive circuit 210 and the memory array 220 may be provided on the same plane. Further, as shown in FIG. 45A, the drive circuit 210 and the memory array 220 may be provided in an overlapping manner. By providing the drive circuit 210 and the memory array 220 in an overlapping manner, the signal propagation distance can be shortened. Further, as shown in FIG. 45B, a plurality of layers of memory arrays 220 may be provided on the drive circuit 210 in an overlapping manner.
  • the memory array 220 may be provided in the upper layer and the lower layer of the drive circuit 210.
  • FIG. 45C shows an example in which a memory array 220 having one layer is provided on each of the upper layer and the lower layer of the drive circuit 210.
  • the number of layers of the memory array 220 stacked on the upper layer of the drive circuit 210 and the memory array 220 stacked on the lower layer of the drive circuit 210 may be one or more, respectively. It is preferable that the number of memory arrays 220 stacked on the upper layer of the drive circuit 210 and the number of memory arrays 220 stacked on the lower layer of the drive circuit 210 are equal.
  • FIG. 46 shows a cross-sectional configuration example of the semiconductor device 200 shown in FIG. 45A.
  • FIG. 46 shows a part of the semiconductor device 200 shown in FIG. 45A.
  • FIG. 46 shows a transistor 301, a transistor 302, and a transistor 303 included in the drive circuit 210.
  • the transistor 301 and the transistor 302 function as a part of the sense amplifier 227.
  • the transistor 303 functions as a column selection switch.
  • the conductor BL included in the memory array 220 is electrically connected to one of the source and drain of the transistor 301
  • the gate of the transistor 301 is electrically connected to one of the source and drain of the transistor 302.
  • the gate of the transistor 302 is electrically connected to the other of the source and drain of the transistor 301.
  • one of the source and drain of the transistor 301 and the other of the source and drain of the transistor 302 are electrically connected to one of the source and drain of the transistor 303, which functions as a column selection switch.
  • the layout area of the semiconductor device 200 can be reduced.
  • FIG. 46 shows an example in which seven storage elements MC are provided for one memory string.
  • the number of storage elements MC provided in one memory string is not limited to this.
  • the number of storage elements MC provided in one memory string may be 32, 64, 128, or 200 or more.
  • the conductor BL of the memory array 220 is connected to the sense amplifier 227 and the sense amplifier 227 via the conductor 752 formed so as to be embedded in the conductor 715, the conductor 714, the conductor 705, and the insulator 726, the insulator 722, and the like. , It is electrically connected to the transistor 303 which functions as a column selection switch.
  • the circuit and transistor included in the drive circuit 210 are examples, and are not limited to the circuit configuration and the transistor structure. In addition to the above, appropriate circuits and transistors such as a control circuit, a row decoder, a row driver, a source line driver, and an input / output circuit can be provided according to the configuration of the semiconductor device 200 and the driving method thereof.
  • the transistor 301, the transistor 302, and the transistor 303 are provided on the substrate 311 and have a low resistance functioning as a conductor region 316, an insulator 315, a semiconductor region 313 composed of a part of the substrate 311 and a source region or a drain region, respectively. It has a region 314a and a low resistance region 314b. As shown in FIG. 46, one low resistance region may be shared as one source region or drain region and the other source region or drain region of the transistor 301 and the transistor 302.
  • the transistor 301, the transistor 302, and the transistor 303 have a convex shape in the semiconductor region 313 (a part of the substrate 311) in which a channel is formed. Further, the side surface and the upper surface of the semiconductor region 313 are provided so as to be covered with the conductor 316 via the insulator 315.
  • the conductor 316 may be made of a material that adjusts the work function. Since such a transistor 301, a transistor 302, and a transistor 303 utilize a convex portion of a semiconductor substrate, they are also called FIN type transistors. It should be noted that an insulator that is in contact with the upper portion of the convex portion and functions as a mask for forming the convex portion may be provided. Further, although the case where a part of the semiconductor substrate is processed to form a convex portion is shown here, the SOI substrate may be processed to form a semiconductor film having a convex shape.
  • the transistor 301, the transistor 302, and the transistor 303 may be either a p-channel type or an n-channel type, respectively, but the transistor 301 and the transistor 302 are preferably transistors having different polarities.
  • a semiconductor such as a silicon-based semiconductor in a region in which a channel of the semiconductor region 313 is formed, a region in the vicinity thereof, a low resistance region 314a serving as a source region or a drain region, a low resistance region 314b, and the like.
  • It preferably contains crystalline silicon.
  • it may be formed of a material having Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like.
  • a configuration using silicon in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be used.
  • the transistor 301, the transistor 302, and the transistor 303 may be used as a HEMT (High Electron Mobility Transistor).
  • an element that imparts n-type conductivity such as arsenic and phosphorus, or a p-type conductivity such as boron is imparted.
  • the insulator 315 functions as a gate insulating film of the transistor 301, the transistor 302, and the transistor 303.
  • the conductor 316 that functions as a gate electrode is a semiconductor material such as silicon, a metal material, or an alloy that contains an element that imparts n-type conductivity such as arsenic or phosphorus, or an element that imparts p-type conductivity such as boron.
  • a material or a conductive material such as a metal oxide material can be used.
  • the threshold voltage can be adjusted by changing the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Further, in order to achieve both conductivity and embedding property, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and it is particularly preferable to use tungsten in terms of heat resistance.
  • an insulator 317 that functions as an etch stopper is provided above the conductor 316. Further, it is preferable that an insulator 318 that functions as a spacer is provided on the side surface of the insulator 315.
  • the conductor 328 By forming the conductor 328 in the opening thus formed, good contact with reduced contact resistance can be obtained between the low resistance region 314a and the low resistance region 314b and the conductor 328.
  • the contact between the low resistance region 314a and the low resistance region 314b formed in this way and the conductor 328 may be referred to as a self-aligned contact.
  • a conductor 329 that is electrically connected to the conductor 316 may be provided so as to be embedded in the insulator 317 and the insulator 322.
  • An insulator 320, an insulator 322, an insulator 324, an insulator 326, and an insulator 327 are provided in this order so as to cover the transistor 301, the transistor 302, and the transistor 303.
  • insulator 320 As insulator 320, insulator 322, insulator 324, insulator 326, and insulator 327, for example, silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxide nitride, aluminum nitride oxide, nitride. Aluminum or the like may be used.
  • the insulator 322 may have a function as a flattening film for flattening a step generated by a transistor 301 or the like provided below the insulator 322.
  • the upper surface of the insulator 322 may be flattened by a flattening treatment using a chemical mechanical polishing (CMP) method or the like in order to improve the flatness.
  • CMP chemical mechanical polishing
  • the insulator 324 it is preferable to use a film having a barrier property so that hydrogen and impurities do not diffuse in the region where the memory array 220 is provided from the substrate 311 or the transistor 301.
  • a film having a barrier property against hydrogen for example, silicon nitride formed by the PEALD method or the CVD method can be used.
  • hydrogen may diffuse into a semiconductor element having an oxide semiconductor such as a storage element MC, so that the characteristics of the semiconductor element may deteriorate. Therefore, it is preferable to use a film that suppresses the diffusion of hydrogen between the memory element MC and the transistor 301 or the like.
  • the membrane that suppresses the diffusion of hydrogen is a membrane that desorbs a small amount of hydrogen.
  • the amount of hydrogen desorbed can be analyzed using, for example, a heated desorption gas analysis method (TDS).
  • TDS heated desorption gas analysis method
  • the amount of hydrogen desorbed from the insulator 324 is the amount desorbed in terms of hydrogen atoms when the surface temperature of the film is in the range of 50 ° C. to 500 ° C., which is converted per area of the insulator 324. It may be 10 ⁇ 10 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • the insulator 326 and the insulator 327 preferably have a lower dielectric constant than the insulator 324.
  • the relative permittivity of the insulator 326 and the insulator 327 is preferably less than 4, more preferably less than 3.
  • the relative permittivity of the insulator 326 and the insulator 327 is preferably 0.7 times or less, more preferably 0.6 times or less, the relative permittivity of the insulator 324.
  • the insulator 320, the insulator 322, the insulator 324, the insulator 326, and the insulator 327 are embedded with a conductor 328, a conductor 329, a conductor 330, and the like that are electrically connected to the memory array 220.
  • the conductor 328, the conductor 329, and the conductor 330 have a function as a plug or a wiring.
  • a conductor having a function as a plug or a wiring may collectively give a plurality of structures the same reference numerals.
  • the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • each plug and wiring As the material of each plug and wiring (conductor 328, conductor 329, conductor 330, etc.), a single layer of a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used. Alternatively, they can be laminated and used. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed of a low resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low resistance conductive material.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used. Alternatively, they can be laminated and used. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use
  • a wiring layer may be provided on the insulator 327 and the conductor 330.
  • the insulator 350, the insulator 352, and the insulator 354 are laminated in this order.
  • a conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 has a function as a plug or a wiring.
  • the conductor 356 can be provided by using the same materials as the conductor 328, the conductor 329, and the conductor 330.
  • the insulator 350 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 356 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 350 having a barrier property against hydrogen.
  • the conductor having a barrier property against hydrogen for example, tantalum nitride or the like may be used. Further, by laminating tantalum nitride and tungsten having high conductivity, it is possible to suppress the diffusion of hydrogen from the transistor 301 and the like while maintaining the conductivity as wiring. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen has a structure in contact with the insulator 350 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 354 and the conductor 356.
  • the insulator 360, the insulator 362, and the insulator 364 are laminated in this order.
  • a conductor 366 is formed in the insulator 360, the insulator 362, and the insulator 364.
  • the conductor 366 has a function as a plug or a wiring.
  • the conductor 366 can be provided by using the same materials as the conductor 328, the conductor 329, and the conductor 330.
  • the insulator 360 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 366 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 360 having a barrier property against hydrogen.
  • An insulator 722 is provided on the insulator 364 and the conductor 366, and a memory array 220 is provided above the insulator 722.
  • a barrier membrane made of the same material as the insulator 324 may be provided between the insulator 364 and the insulator 722.
  • a computer has a processor, main memory, storage, and the like as components on a motherboard, and each component is electrically connected by bus wiring as an example. Therefore, the longer the bus wiring, the larger the parasitic resistance, and the higher the power consumption required for signal transmission.
  • the computer has a configuration as shown in FIG. 47A, for example.
  • the computer has a motherboard BD, and on the motherboard BD, there are 10 arithmetic processing units (processors, CPUs, etc.), 30 main memories (DRAM (Dynamic Random Access Memory), etc.), and storage (NAND type with a three-dimensional structure).
  • a storage device (3D OS NAND type storage device, etc.) 40, an interface 60, etc. are provided.
  • FIG. 47 also shows an SRAM (Static Random Access Memory) 20 that also functions as a main memory, it does not necessarily have to be provided on the motherboard BD.
  • SRAM Static Random Access Memory
  • FIG. 47 illustrates a configuration in which the arithmetic processing unit 10 has a register 11.
  • the arithmetic processing unit 10 is electrically connected to the SRAM 20, the main memory 30, the storage 40, and the interface 60. Further, the main memory 30 is electrically connected to the SRAM 20 and the storage 40.
  • Each component of the computer of FIG. 47A is electrically connected by a bus wiring BSH. That is, as the number of computer components increases or the size of the motherboard BD increases, the bus wiring BSH routed becomes longer, so that the power consumption required for signal transmission increases.
  • each component of the computer may be integrated into one chip and integrated into a monolithic IC (Integrated Circuit). Further, at this time, the information processing apparatus described in the above embodiment can be applied as the main memory 30 and the storage 40. As described above, the computer of FIG. 47A as a monolithic IC is shown in FIG. 47B.
  • the monolithic IC of FIG. 47B has a circuit layer LGC on a semiconductor substrate having Si. Further, the storage layer STR is provided above the circuit layer LGC, and the circuit layer OSC is provided above the storage layer STR.
  • the circuit layer LGC has, for example, a plurality of circuits including Si transistors formed on a semiconductor substrate SBT having Si.
  • the arithmetic processing unit 10 and the SRAM 20 in FIG. 47A can be used.
  • a controller 1197 included in the information processing device 50 described later can be used as a part of the plurality of circuits.
  • the SRAM 20 can increase the drive frequency of the SRAM by using a Si transistor as an example.
  • the storage layer STR functions as a storage unit having a Si transistor and / or an OS transistor.
  • the storage layer STR may be, for example, a NAND-type storage circuit having a three-dimensional structure, a 3D OS NAND-type storage circuit, or the like. Therefore, the storage layer STR has a storage unit 1196 in the information processing device, a storage 40 in FIG. 47A, and the like.
  • the circuit layer OSC has, for example, a plurality of circuits including an OS transistor. As a part of the plurality of circuits, for example, a circuit different from the circuit included in the circuit layer LGC such as the arithmetic processing unit 10 and the SRAM 20 can be used.
  • the monolithic IC of FIG. 47B has an information processing device 50. Therefore, the information processing device 50 functions as a role of the storage 40 and the main memory 30 in FIG. 47A. Therefore, in the monolithic IC of FIG. 47B, the storage unit 1196 of the storage layer STR can have the function of the main memory 30.
  • the monolithic IC of FIG. 47B can reduce the circuit area as compared with the computer of FIG. 47A because the bus wiring BSH is not provided and the storage unit 1196 is used as a substitute for the main memory 30.
  • FIGS. 48A and 48B an example of the storage hierarchy of the computer of FIG. 47A and the monolithic IC of FIG. 47B is shown in FIGS. 48A and 48B, respectively.
  • the storage layer located in the upper layer is required to have a faster operating speed, and the storage device located in the lower layer is required to have a larger storage capacity and a higher recording density.
  • FIG. 48A as an example, a register (register) included in a CPU (arithmetic processing unit 10), an SRAM, a DRAM included in a main memory 30 (main memory), and a storage 40 (in order from the top layer) A NAND-type storage circuit having a three-dimensional structure included in the storage) is shown.
  • the registers and SRAM included in the arithmetic processing unit 10 are used for temporarily storing the arithmetic results, the frequency of access from the arithmetic processing unit 10 is high. Therefore, an operation speed faster than the storage capacity is required.
  • the register also has a function of holding setting information of the arithmetic processing unit.
  • the DRAM included in the main memory 30 has, for example, a function of holding programs and data read from the storage 40.
  • the recording density of the DRAM is approximately 0.1 Gbit / mm 2 to 0.3 Gbit / mm 2 .
  • the storage 40 has a function of holding data that needs to be stored for a long period of time, various programs used in the arithmetic processing unit, and the like. Therefore, the storage 40 is required to have a storage capacity larger than the operating speed and a high recording density.
  • the recording density of the storage device used for the storage 40 is approximately 0.6 Gbit / mm 2 to 6.0 Gbit / mm 2 . Therefore, as the storage 40, a NAND-type storage circuit having a three-dimensional structure, a hard disk drive (HDD), or the like is used.
  • the storage hierarchy of the monolithic IC of FIG. 47B is as shown in FIG. 48B.
  • the memory cell included in the storage unit of the information processing apparatus 50 can be treated not only as the cache memory of the storage unit but also as the main memory 30 in the computer of FIG. 47A. Therefore, in the monolithic IC of FIG. 47B, it is not necessary to provide the main memory 30 of the DRAM or the like, so that the circuit area of the monolithic IC of FIG. 47B can be reduced and the main memory 30 of the DRAM or the like is operated. The power consumption required for the above can be reduced.
  • the configuration of the monolithic IC shown in FIG. 47B is an example, and is not limited to one aspect of the present invention.
  • the configuration of the monolithic IC shown in FIG. 47B may be changed depending on the situation.
  • the SRAM may be mixedly mounted on the arithmetic processing unit.
  • FIGS. 49A and 49B are used to show an example of a chip 1200 which is a kind of semiconductor device on which the storage device of the present invention is mounted.
  • a plurality of circuits (systems) are mounted on the chip 1200.
  • SoC system on chip
  • the chip 1200 includes a CPU 1211, a GPU 1212, one or more analog arithmetic units 1213, one or more memory controllers 1214, one or more interfaces 1215, one or more network circuits 1216, and the like.
  • the chip 1200 is provided with a bump (not shown) and is connected to the first surface of a printed circuit board (Printed Circuit Board: PCB) 1201 as shown in FIG. 49B. Further, a plurality of bumps 1202 are provided on the back surface of the first surface of the PCB 1201 and are connected to the motherboard 1203.
  • a bump not shown
  • PCB printed circuit Board
  • the motherboard 1203 may be provided with a storage device such as a DRAM 1221 and a flash memory 1222.
  • a storage device such as a DRAM 1221 and a flash memory 1222.
  • the flash memory 1222 it is preferable to use the semiconductor device shown in the above embodiment. By using the semiconductor device shown in the above embodiment for the flash memory 1222, the storage capacity of the flash memory 1222 can be increased.
  • the CPU 1211 preferably has a plurality of CPU cores.
  • the GPU 1212 preferably has a plurality of GPU cores.
  • the CPU 1211 and the GPU 1212 may each have a memory for temporarily storing data.
  • a memory common to the CPU 1211 and the GPU 1212 may be provided on the chip 1200.
  • GPU1212 is suitable for parallel calculation of a large amount of data, and can be used for image processing and product-sum calculation. By providing the GPU 1212 with an image processing circuit and a product-sum calculation circuit, it is possible to execute image processing and product-sum calculation with low power consumption.
  • the CPU 1211 and the GPU 1212 are provided on the same chip, the wiring between the CPU 1211 and the GPU 1212 can be shortened, and the data transfer from the CPU 1211 to the GPU 1212 and the data transfer between the memories of the CPU 1211 and the GPU 1212 can be achieved. And after the calculation on the GPU 1212, the calculation result can be transferred from the GPU 1212 to the CPU 1211 at high speed.
  • the analog arithmetic unit 1213 has one or both of an A / D (analog / digital) conversion circuit and a D / A (digital / analog) conversion circuit. Further, the product-sum calculation circuit may be provided in the analog calculation unit 1213.
  • the memory controller 1214 has a circuit that functions as a controller of the DRAM 1221 and a circuit that functions as an interface of the flash memory 1222.
  • the interface 1215 has an interface circuit with an externally connected device such as a display device, a speaker, a microphone, a camera, and a controller.
  • the controller includes a mouse, a keyboard, a game controller, and the like.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • High-Definition Multimedia Interface High-Definition Multimedia Interface
  • the network circuit 1216 has a network circuit for connecting to a LAN (Local Area Network) or the like. It may also have a circuit for network security.
  • LAN Local Area Network
  • the circuit (system) can be formed on the chip 1200 by the same manufacturing process. Therefore, even if the number of circuits required for the chip 1200 increases, it is not necessary to increase the manufacturing process, and the chip 1200 can be manufactured at low cost.
  • the PCB 1201, the DRAM 1221 provided with the chip 1200 having the GPU 1212, and the motherboard 1203 provided with the flash memory 1222 can be referred to as the GPU module 1204.
  • the GPU module 1204 Since the GPU module 1204 has a chip 1200 using SoC technology, its size can be reduced. Further, since it is excellent in image processing, it is suitable for use in portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (take-out) game machines.
  • a deep neural network (DNN), a convolutional neural network (CNN), a recurrent neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM), and a deep belief network (Deep belief network) are provided by a product-sum calculation circuit using GPU1212. Since a method such as DBN) can be executed, the chip 1200 can be used as an AI chip, or the GPU module 1204 can be used as an AI system module.
  • the storage device shown in the above embodiment can be applied to various removable storage devices such as a memory card (for example, an SD card), a USB memory, and an SSD (solid state drive).
  • 50A to 50E schematically show some configuration examples of the removable storage device.
  • the semiconductor device shown in the above embodiment is processed into a packaged memory chip and used for various storage devices and removable memories.
  • FIG. 50A is a schematic diagram of a USB memory.
  • the USB memory 1100 has a housing 1101, a cap 1102, a USB connector 1103, and a board 1104.
  • the substrate 1104 is housed in the housing 1101.
  • a memory chip 1105 and a controller chip 1106 are attached to the substrate 1104.
  • the storage device or semiconductor device shown in the previous embodiment can be incorporated in the memory chip 1105 or the like.
  • FIG. 50B is a schematic view of the appearance of the SD card
  • FIG. 50C is a schematic view of the internal structure of the SD card.
  • the SD card 1110 has a housing 1111 and a connector 1112 and a substrate 1113.
  • the substrate 1113 is housed in the housing 1111.
  • a memory chip 1114 and a controller chip 1115 are attached to the substrate 1113.
  • the capacity of the SD card 1110 can be increased.
  • a wireless chip having a wireless communication function may be provided on the substrate 1113.
  • data on the memory chip 1114 can be read and written by wireless communication between the host device and the SD card 1110.
  • the storage device or semiconductor device shown in the previous embodiment can be incorporated in the memory chip 1114 or the like.
  • FIG. 50D is a schematic view of the appearance of the SSD
  • FIG. 50E is a schematic view of the internal structure of the SSD.
  • the SSD 1150 has a housing 1151, a connector 1152 and a substrate 1153.
  • the substrate 1153 is housed in the housing 1151.
  • a memory chip 1154, a memory chip 1155, and a controller chip 1156 are attached to the substrate 1153.
  • the memory chip 1155 is a work memory of the controller chip 1156, and for example, a DOSRAM chip may be used.
  • the storage device or semiconductor device shown in the previous embodiment can be incorporated in the memory chip 1154 or the like.
  • the storage device or semiconductor device can be mounted on various electronic devices.
  • electronic devices include information terminals, computers, smartphones, electronic book terminals, television devices, digital signage (electronic signage), large game machines such as pachinko machines, digital cameras, digital video cameras, and digital devices.
  • electronic devices include photo frames, mobile phones, portable game machines, recording / playback devices, navigation systems, sound playback devices, and the like.
  • the computer includes a tablet computer, a notebook computer, a desktop computer, and a large computer such as a server system.
  • the electronic device of one aspect of the present invention may have an antenna.
  • the display unit can display images, information, and the like.
  • the antenna may be used for non-contact power transmission.
  • the electronic device of one aspect of the present invention includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, It may have the ability to measure voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared rays).
  • the electronic device of one aspect of the present invention can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, a function to execute various software (programs), wireless communication. It can have a function, a function of reading a program or data recorded on a recording medium, and the like.
  • a storage device for holding a program of a microcontroller can be formed by using the storage device or the semiconductor device according to one aspect of the present invention. Therefore, according to one aspect of the present invention, the microcontroller chip can be miniaturized.
  • FIG. 51A illustrates a mobile phone (smartphone) which is a kind of information terminal.
  • the information terminal 5100 has a housing 5101 and a display unit 5102, and as an input interface, a touch panel is provided in the display unit 5102 and buttons are provided in the housing 5101.
  • the miniaturized microcontroller according to one aspect of the present invention, the limited space inside the mobile phone can be effectively used.
  • the storage device according to one aspect of the present invention may be used for the storage of the mobile phone. As a result, the storage capacity per unit area of the storage can be increased.
  • FIG. 51B illustrates a notebook information terminal 5200.
  • the notebook type information terminal 5200 includes a main body 5201 of the information terminal, a display unit 5202, and a keyboard 5203.
  • the miniaturized microcontroller according to one aspect of the present invention, the limited space inside the notebook type information terminal can be effectively used.
  • the storage device according to one aspect of the present invention may be used for the storage of the notebook type information terminal. As a result, the storage capacity per unit area of the storage can be increased.
  • a smartphone and a notebook-type information terminal are taken as examples of electronic devices and shown in FIGS. 51A and 51B, respectively, but information terminals other than the smartphone and the notebook-type information terminal can be applied.
  • Examples of information terminals other than smartphones and notebook-type information terminals include PDA (Personal Digital Assistant), desktop-type information terminals, workstations, and the like.
  • FIG. 51C shows a portable game machine 5300, which is an example of a game machine.
  • the portable game machine 5300 has a housing 5301, a housing 5302, a housing 5303, a display unit 5304, a connection unit 5305, an operation key 5306, and the like.
  • the housing 5302 and the housing 5303 can be removed from the housing 5301.
  • the connection unit 5305 provided in the housing 5301 to another housing (not shown)
  • the image output to the display unit 5304 can be output to another video device (not shown). it can.
  • the housing 5302 and the housing 5303 can each function as operation units.
  • a storage device or a semiconductor device according to one aspect of the present invention can be incorporated into a chip or the like provided on a substrate of the housing 5301, the housing 5302, and the housing 5303.
  • FIG. 51D shows a stationary game machine 5400, which is an example of a game machine.
  • a controller 5402 is connected to the stationary game machine 5400 wirelessly or by wire.
  • a miniaturized microcontroller for a game machine such as a portable game machine 5300 or a stationary game machine 5400, the limited space inside the game machine can be effectively used. .. Further, a storage device or a semiconductor device according to one aspect of the present invention may be used for the storage of the portable game machine. As a result, the storage capacity per unit area of the storage can be increased.
  • 51C and 51D show a portable game machine and a stationary game machine as an example of the game machine, but the game machine to which the microcontroller of one aspect of the present invention is applied is not limited to this.
  • Examples of the game machine to which the microcontroller of one aspect of the present invention is applied include an arcade game machine installed in an entertainment facility (game center, amusement park, etc.), a pitching machine for batting practice installed in a sports facility, and the like. Can be mentioned.
  • the storage device or semiconductor device of one aspect of the present invention can be applied to a large computer.
  • FIG. 51E is a diagram showing a supercomputer 5500, which is an example of a large computer.
  • FIG. 51F is a diagram showing a rack-mounted computer 5502 included in the supercomputer 5500.
  • the supercomputer 5500 has a rack 5501 and a plurality of rack-mounted computers 5502.
  • the plurality of computers 5502 are stored in the rack 5501.
  • the computer 5502 is provided with a plurality of substrates 5504, and the microcontroller according to one aspect of the present invention can be mounted on the substrate.
  • the miniaturized microcontroller according to one aspect of the present invention the limited space of a large computer can be effectively used.
  • a storage device or a semiconductor device according to one aspect of the present invention may be used for the storage of a large computer. As a result, the storage capacity per unit area of the storage can be increased.
  • a supercomputer is illustrated as an example of a large computer, but the large computer to which the microcontroller according to one aspect of the present invention is applied is not limited to this.
  • Examples of the large-scale computer to which the microcontroller according to one aspect of the present invention is applied include a computer (server) that provides services, a large-scale general-purpose computer (mainframe), and the like.
  • FIG. 51G shows an electric refrigerator-freezer 5800, which is an example of an electric appliance.
  • the electric refrigerator-freezer 5800 has a housing 5801, a refrigerator door 5802, a freezer door 5803, and the like.
  • the storage device or semiconductor device can also be applied to the electric refrigerator-freezer 5800.
  • the miniaturized microcontroller according to one aspect of the present invention to the electric refrigerator / freezer 5800, the limited space of the electric refrigerator / freezer can be effectively used.
  • electric refrigerators and freezers have been described as an example of electric appliances
  • other electric appliances include, for example, vacuum cleaners, microwave ovens, electric ovens, rice cookers, water heaters, IH cookers, water servers, air conditioners and air conditioners. Examples include washing machines, dryers, and audiovisual equipment.
  • the electronic device described in the present embodiment the function of the electronic device, its effect, and the like can be appropriately combined with the description of the other electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Memories (AREA)
  • Debugging And Monitoring (AREA)

Abstract

信頼性の高い記憶装置を提供する。 基板上に第1の絶縁体を形成し、第1の絶縁体上に第2の絶縁体を形成し、第2の絶縁体上に第3の絶縁体を形成し、第1の絶縁体、第2の絶縁体、および第3の絶縁体を貫通する開口を形成し、開口内で、第1の絶縁体の側面、第2の絶縁体の側面、および第3の絶縁体の側面の内側に第4の絶縁体を形成し、第4の絶縁体の内側に酸化物半導体を形成し、第2の絶縁体を除去し、第1の絶縁体と第3の絶縁体の間に導電体を形成し、第4の絶縁体は、基板が配置されたチャンバーに、シリコンを含むガスと、酸化性ガスを供給する第1の工程と、チャンバーへのシリコンを含むガスの供給を停止する第2の工程と、チャンバー内に、酸化性ガスを含むプラズマを生成する第3の工程と、を含むサイクルを複数回行うことで形成される。

Description

記憶装置およびその作製方法
本発明の一態様は、半導体装置およびその作製方法に関する。
なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうるもの全般を指す。よって、トランジスタやダイオードなどの半導体素子や、半導体素子を含む回路は半導体装置である。また、表示装置、発光装置、照明装置、電気光学装置、記憶装置、撮像装置、通信装置、情報処理装置および電子機器などは、半導体素子や半導体回路を含む場合がある。また、表示装置、発光装置、照明装置、電気光学装置、記憶装置、撮像装置、通信装置および電子機器なども、半導体装置と呼ばれる場合がある。本発明の一態様は、特に記憶装置およびその作製方法に関する。
近年、扱われるデータ量の増大に伴って、より大きな記憶容量を有する半導体装置が求められている。単位面積あたりの記憶容量を増加させるためには、メモリセルを積層して形成することが有効である(特許文献1、特許文献2参照)。メモリセルを積層して設けることにより、単位面積当たりの記憶容量をメモリセルの積層数に応じて増加させることができる。特許文献3および特許文献4では、酸化物半導体を用いた記憶装置が開示されている。特許文献5では、電荷格納層として酸化物半導体を用いた半導体メモリが開示されている。
また、非特許文献1では、結晶性酸化物半導体として、CAAC−IGZOが開示されている。また、非特許文献1では、CAAC−IGZOの成長メカニズムなども開示されている。
米国特許公開2011/0065270A1公報 米国特許第9634097B2公報 特開2018−207038号公報 特開2019−8862号公報 特開2018−157205号公報
Noboru Kimizuka and Shunpei Yamazaki、「PHYSICS AND TECHNOLOGY OF CRYSTALLINE OXIDE SEMICONDUCTOR CAAC−IGZO」FUNDAMENTALS(米国)、Wiley−SID Series in Display Technology、2017、p.94−97
特許文献1、および特許文献2においては、記憶素子(メモリセルともいう)が複数積層しており、これらが直列に接続することで、三次元構造のメモリセルアレイ(メモリストリングともいう)を構成している。
特許文献1においては、柱状に設けられた半導体が、電荷蓄積層を有する絶縁体と接している。特許文献2においては、柱状に設けられた半導体が、トンネル誘電体として機能する絶縁体と接している。特許文献1および特許文献2ともに、メモリセルへの情報の書き込みは、絶縁体を介して電荷の引き抜きおよび注入によって行われる。この場合、半導体と絶縁体が接する界面に、トラップセンターが形成される場合がある。トラップセンターは、電子を捕獲し、トランジスタのしきい値電圧を変動させる場合がある。また、電荷の引き抜きおよび注入により、絶縁体内部および半導体と絶縁体が接する界面の一方、または両方が劣化し、電荷蓄積層に保持された電荷がリークして消失する場合がある。よって、記憶装置の信頼性に悪影響を及ぼす恐れがある。
そこで、本発明の一形態は、半導体との界面において、トラップセンターの形成が抑制された絶縁体、およびその形成方法を提供することを課題の一とする。また、本発明の一形態は、メモリセルへの情報の書き込みにおいて、絶縁体を介さずに電荷の引き抜きおよび注入を行うことができる記憶装置、およびその形成方法を提供することを課題の一とする。
また、本発明の一形態は、信頼性の高い記憶装置を提供することを課題の一とする。また、本発明の一形態は、記憶容量の大きい記憶装置を提供することを課題の一とする。また、本発明の一形態は、占有面積が小さい記憶装置を提供することを課題の一とする。また、本発明の一形態は、製造コストの低い記憶装置を提供することを課題の一とする。また、本発明の一形態は、信頼性の高い半導体装置を提供することを課題の一とする。また、本発明の一形態は、製造コストの低い半導体装置を提供することを課題の一とする。また、本発明の一形態は、新規な半導体装置を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はない。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、基板上に第1の絶縁体を形成する工程と、第1の絶縁体上に第2の絶縁体を形成する工程と、第2の絶縁体上に第3の絶縁体を形成する工程と、第1の絶縁体、第2の絶縁体、および第3の絶縁体を貫通する開口を形成する工程と、開口において、第1の絶縁体の側面、第2の絶縁体の側面、および第3の絶縁体の側面を覆う第4の絶縁体を形成する工程と、第4の絶縁体に隣接して酸化物半導体を形成する工程と、第2の絶縁体を除去する工程と、第1の絶縁体と第3の絶縁体の間に導電体を形成する工程と、を含み、第4の絶縁体は、基板が配置されたチャンバーに、シリコンを含むガスと、酸化性ガスと、を供給する第1の工程と、チャンバーへのシリコンを含むガスの供給を停止する第2の工程と、チャンバー内で酸化性ガスを含むプラズマを生成する第3の工程と、を含むサイクルを、複数回行うことで形成される、記憶装置の作製方法である。
上記において、シリコンを含むガスは、SiHであることが好ましい。
上記において、酸化性ガスは、NOであることが好ましい。
上記第1の工程において、チャンバーにHeを供給することが好ましい。
上記において、酸化物半導体は、インジウム、元素M(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、およびチタンから選ばれた一、または複数)、および亜鉛を含むことが好ましい。
上記において、酸化物半導体は、結晶性を有することが好ましい。
上記において、酸化物半導体のc軸は、開口内において、導電体の側面の法線方向に配向する領域を有することが好ましい。
上記において、第4の絶縁体は、窒素濃度が3×1019atoms/cm以上1×1021atoms/cm以下である領域を有することが好ましい。
上記において、第4の絶縁体は、炭素濃度が1×1018atoms/cm以上5×1020atoms/cm以下である領域を有することが好ましい。
本発明の一態様は、基板上に第1の絶縁体を形成する工程と、第1の絶縁体上に第1の導電体を形成する工程と、第1の導電体上に第2の絶縁体を形成する工程と、第2の絶縁体上に第3の絶縁体を形成する工程と、第3の絶縁体上に第4の絶縁体を形成する工程と、第1の絶縁体、第1の導電体、第2の絶縁体、第3の絶縁体、および第4の絶縁体を貫通する開口を形成する工程と、開口内において、第1の絶縁体の側面、第1の導電体の側面、第2の絶縁体の側面、第3の絶縁体の側面、および第4の絶縁体の側面を覆う第5の絶縁体を形成する工程と、第5の絶縁体に隣接する酸化物半導体を形成する工程と、第3の絶縁体を除去する工程と、第2の絶縁体と第4の絶縁体の間に第2の導電体を形成する工程と、を含み、第5の絶縁体は、基板が配置されたチャンバーに、シリコンを含むガスと、酸化性ガスと、を供給する第1の工程と、チャンバーへのシリコンを含むガスの供給を停止する第2の工程と、チャンバーで酸化性ガスを含むプラズマを生成する第3の工程と、を含むサイクルを複数回行うことで形成される、記憶装置の作製方法である。
上記において、シリコンを含むガスは、SiHであることが好ましい。
上記において、酸化性ガスは、NOであることが好ましい。
上記第1の工程において、チャンバーにHeを供給することが好ましい。
上記において、酸化物半導体は、インジウム、元素M(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、およびチタンから選ばれた一、または複数)、および亜鉛を含むことが好ましい。
上記において、酸化物半導体は、結晶性を有することが好ましい。
上記において、酸化物半導体のc軸は、開口内において、第1の導電体および第2の導電体の少なくとも一方の側面の法線方向に配向する領域を有することが好ましい。
上記において、第5の絶縁体は、窒素濃度が3×1019atoms/cm以上1×1021atoms/cm以下である領域を有することが好ましい。
上記において、第5の絶縁体は、炭素濃度が1×1018atoms/cm以上5×1020atoms/cm以下である領域を有することが好ましい。
本発明の一態様は、第1の開口を有する第1の絶縁体と、第1の絶縁体上の、第2の開口を有する導電体と、導電体上の、第3の開口を有する第2の絶縁体と、第1の開口の側面、第2の開口の側面、および第3の開口の側面の第3の絶縁体と、第1の開口の側面、第2の開口の側面、および第3の開口の側面に、第3の絶縁体を介して設けられた酸化物半導体と、を有し、第3の絶縁体は、窒素濃度が3×1019atoms/cm以上1×1021atoms/cm以下である領域を有し、第3の絶縁体は、炭素濃度が1×1018atoms/cm以上5×1020atoms/cm以下である領域を有する記憶装置である。
上記において、酸化物半導体は、インジウム、元素M(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、およびチタンから選ばれた一、または複数)、および亜鉛を含むことが好ましい。
上記において、第3の絶縁体は、インジウム濃度が1.0×1019atoms/cm以下である領域を有することが好ましい。
上記において、酸化物半導体は、結晶性を有することが好ましい。
上記において、酸化物半導体のc軸は、第2の開口内において、導電体の側面の法線方向に配向する領域を有することが好ましい。
上記において、第2の開口の径は、第1の開口の径、および第3の開口の径より大きいことが好ましい。
上記において、第2の開口の径は、第1の開口の径、および第3の開口の径より小さいことが好ましい。
記憶素子を複数積層し、これらが直列に接続する三次元構造のメモリセルアレイの作製において、総工程数は、積層する記憶素子の数と、1つの記憶素子を作製する工程数の積より少なくできるため好ましい。つまり、上記メモリセルアレイの作製工程は、積層する記憶素子の数に比例しない。例えば、記憶素子を4層有するメモリセルアレイAの作製工程数と、記憶素子を32層有するメモリセルアレイBの作製工程数を比較した場合、記憶素子の積層数は8倍であるにもかかわらず、メモリセルアレイBの作製工程数は、メモリセルアレイAの作製工程数の8倍より大幅に少なくできる。
本発明の一形態により、信頼性の高い記憶装置を提供することができる。また、本発明の一形態により、記憶容量の大きい記憶装置を提供することができる。本発明の一形態により、占有面積が小さい記憶装置を提供することができる。また、本発明の一形態により、製造コストの低い記憶装置を提供することができる。また、本発明の一形態により、信頼性の高い半導体装置を提供することができる。また、本発明の一形態により、製造コストの低い半導体装置を提供することができる。また、本発明の一形態により、新規な半導体装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1は、記憶装置の斜視図である。
図2は、記憶装置の断面図である。
図3は、メモリストリングの断面図である。
図4Aおよび図4Bは、メモリストリングの断面図である。
図5Aおよび図5Bは、記憶素子の断面図である。
図6Aおよび図6Bは、記憶素子の断面図である。
図7は、本発明の一態様に係る半導体装置の作製工程を説明するプロセスフローである。
図8Aおよび図8Bは、本発明の一態様に係る半導体装置の作製工程を説明する成膜シーケンスである。
図9AはIGZOの結晶構造の分類を説明する図である。図9BはCAAC−IGZO膜のXRDスペクトルを説明する図である。図9CはCAAC−IGZO膜の極微電子線回折パターンを説明する図である。
図10は、本発明の一態様に係る半導体装置の作製工程を説明する断面図である。
図11は、本発明の一態様に係る半導体装置の作製工程を説明する断面図である。
図12は、本発明の一態様に係る半導体装置の作製工程を説明する断面図である。
図13は、本発明の一態様に係る半導体装置の作製工程を説明する断面図である。
図14は、本発明の一態様に係る半導体装置の作製工程を説明する断面図である。
図15は、本発明の一態様に係る半導体装置の作製工程を説明する断面図である。
図16は、本発明の一態様に係る半導体装置の作製工程を説明する断面図である。
図17は、本発明の一態様に係る半導体装置の作製工程を説明する断面図である。
図18は、本発明の一態様に係る半導体装置の作製工程を説明する断面図である。
図19は、本発明の一態様に係る半導体装置の作製工程を説明する断面図である。
図20Aは、本発明の一態様に係る成膜装置を説明する上面図である。図20Bは、本発明の一態様に係る成膜装置を説明する断面図である。
図21A乃至図21Cは、本発明の一態様に係る成膜装置を説明する断面図である。
図22は、本発明の一態様に係るマイクロ波処理装置を説明する上面図である。
図23は、本発明の一態様に係るマイクロ波処理装置を説明する断面図である。
図24は、本発明の一態様に係るマイクロ波処理装置を説明する断面図である。
図25は、本発明の一態様に係るマイクロ波処理装置を説明する断面図である。
図26は、メモリストリングの回路構成例を説明する図である。
図27は、メモリストリングの回路構成例を説明する図である。
図28は、メモリストリングの回路構成例を説明する図である。
図29は、メモリストリングの回路構成例を説明する図である。
図30は、メモリストリングの回路構成例を説明する図である。
図31は、メモリストリングの書き込み動作例を説明するタイミングチャートである。
図32Aおよび図32Bは、メモリストリングの書き込み動作例を説明する回路図である。
図33Aおよび図33Bは、メモリストリングの書き込み動作例を説明する回路図である。
図34Aおよび図34Bは、メモリストリングの書き込み動作例を説明する回路図である。
図35Aおよび図35Bは、メモリストリングの書き込み動作例を説明する回路図である。
図36Aおよび図36Bは、メモリストリングの書き込み動作例を説明する回路図である。
図37Aおよび図37Bは、メモリストリングの読み出し動作例を説明するタイミングチャートである。
図38Aおよび図38Bは、メモリストリングの読み出し動作例を説明する回路図である。
図39Aおよび図39Bは、メモリストリングの読み出し動作例を説明する回路図である。
図40Aおよび図40Bは、トランジスタのId−Vg特性を説明する図である。
図41は、メモリストリングの回路構成例を説明する図である。
図42は、メモリストリングの回路構成例を説明する図である。
図43は、メモリストリングの回路構成例を説明する図である。
図44は、半導体装置の構成例を説明するブロック図である。
図45A乃至図45Cは、半導体装置の構成例を説明する斜視図である。
図46は、本発明の一態様に係る半導体装置を説明する断面図である。
図47Aはコンピュータの構成例を説明する斜視図であり、図47BはモノリシックICを説明する斜視図である。
図48A、及び図48Bのそれぞれは、コンピュータ、モノリシックICの記憶階層を説明する図である。
図49Aは、半導体装置の模式図である。図49Bは、半導体装置の斜視図である。
図50A乃至図50Eは、記憶装置の一例を説明するための図である。
図51A乃至図51Gは、電子機器の一例を説明するための図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その説明の繰り返しは省略する。
また、図面等において示す各構成の、位置、大きさ、範囲などは、発明の理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。例えば、実際の製造工程において、エッチングなどの処理によりレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするため図に反映しないことがある。
また、図面などにおいて、説明を理解しやすくするために、一部の構成要素の記載を省略する場合がある。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
また、本明細書等において、電気回路における「端子」とは、電流の入力または出力、電圧の入力または出力、もしくは、信号の受信または送信が行なわれる部位を言う。よって、配線または電極の一部が端子として機能する場合がある。
なお、本明細書等において「上」や「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
また、本明細書等において、「重なる」などの用語は、構成要素の積層順などの状態を限定するものではない。例えば、「絶縁層Aに重なる電極B」の表現であれば、「絶縁層Aの上に電極Bが形成されている」状態に限らず、「絶縁層Aの下に電極Bが形成されている」状態または「絶縁層Aの右側(もしくは左側)に電極Bが形成されている」状態などを除外しない。
また、本明細書等において、「隣接」や「近接」の用語は、構成要素が直接接していることを限定するものではない。例えば、「絶縁層Aに隣接する電極B」の表現であれば、絶縁層Aと電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bの間に他の構成要素を含むものを除外しない。
また、ソースおよびドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合など、動作条件などによって互いに入れ替わるため、いずれがソースまたはドレインであるかを限定することが困難である。このため、本明細書においては、ソースおよびドレインの用語は、入れ替えて用いることができるものとする。
また、本明細書等において、「電気的に接続」には、直接接続している場合と、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。よって、「電気的に接続する」と表現される場合であっても、現実の回路においては、物理的な接続部分がなく、配線が延在しているだけの場合もある。
また、本明細書などにおいて、「平行」とは、例えば、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「垂直」および「直交」とは、例えば、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、85°以上95°以下の場合も含まれる。
なお、本明細書などにおいて、計数値および計量値に関して、または、計数値もしくは計量値に換算可能な物、方法、および事象などに関して、「同一」、「同じ」、「等しい」または「均一」などと言う場合は、明示されている場合を除き、プラスマイナス20%の誤差を含むものとする。
また、電圧は、ある電位と、基準の電位(例えば接地電位またはソース電位)との電位差のことを示す場合が多い。よって、電圧と電位は互いに言い換えることが可能な場合が多い。本明細書などでは、特段の明示が無いかぎり、電圧と電位を言い換えることができるものとする。
なお、「半導体」と表記した場合でも、例えば、導電性が十分低い場合は「絶縁体」としての特性を有する。よって、「半導体」を「絶縁体」に置き換えて用いることも可能である。この場合、「半導体」と「絶縁体」の境界は曖昧であり、両者の厳密な区別は難しい。したがって、本明細書に記載の「半導体」と「絶縁体」は、互いに読み換えることができる場合がある。
また、「半導体」と表記した場合でも、例えば、導電性が十分高い場合は「導電体」としての特性を有する。よって、「半導体」を「導電体」に置き換えて用いることも可能である。この場合、「半導体」と「導電体」の境界は曖昧であり、両者の厳密な区別は難しい。したがって、本明細書に記載の「半導体」と「導電体」は、互いに読み換えることができる場合がある。
なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、工程順または積層順など、なんらかの順番や順位を示すものではない。また、本明細書等において序数詞が付されていない用語であっても、構成要素の混同を避けるため、特許請求の範囲において序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲において異なる序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲などにおいて序数詞を省略する場合がある。
なお、本明細書等において、トランジスタの「オン状態」とは、トランジスタのソースとドレインが電気的に短絡しているとみなせる状態(「導通状態」ともいう。)をいう。また、トランジスタの「オフ状態」とは、トランジスタのソースとドレインが電気的に遮断しているとみなせる状態(「非導通状態」ともいう。)をいう。
また、本明細書等において、「オン電流」とは、トランジスタがオン状態の時にソースとドレイン間に流れる電流をいう場合がある。また、「オフ電流」とは、トランジスタがオフ状態である時にソースとドレイン間に流れる電流をいう場合がある。
また、本明細書等において、高電源電位VDD(以下、単に「VDD」、「H電位」、または「H」ともいう)とは、低電源電位VSS(以下、単に「VSS」、「L電位」、または「L」ともいう)よりも高い電位の電源電位を示す。また、VSSとは、VDDよりも低い電位の電源電位を示す。また、接地電位(以下、単に「GND」、または「GND電位」ともいう)をVDDまたはVSSとして用いることもできる。例えばVDDが接地電位の場合には、VSSは接地電位より低い電位であり、VSSが接地電位の場合には、VDDは接地電位より高い電位である。
また、本明細書等に示すトランジスタは、明示されている場合を除き、エンハンスメント型(ノーマリーオフ型)のnチャネル型電界効果トランジスタとする。よって、そのしきい値電圧(「Vth」ともいう。)は、0Vより大きいものとする。また、明示されている場合を除き、「トランジスタのゲートにH電位を供給する。」とは、「トランジスタをオン状態にする。」と同義の場合がある。また、明示されている場合を除き、「トランジスタのゲートにL電位を供給する。」とは、「トランジスタをオフ状態にする。」と同義の場合がある。
また、本明細書等において、ゲートとは、ゲート電極およびゲート配線の一部または全部のことをいう。ゲート配線とは、少なくとも一つのトランジスタのゲート電極と、別の電極や別の配線とを電気的に接続させるための配線のことをいう。
また、本明細書等において、ソースとは、ソース領域、ソース電極、およびソース配線の一部または全部のことをいう。ソース領域とは、半導体層のうち、抵抗率が一定値以下の領域のことをいう。ソース電極とは、ソース領域に接続される部分の導電層のことをいう。ソース配線とは、少なくとも一つのトランジスタのソース電極と、別の電極や別の配線とを電気的に接続させるための配線のことをいう。
また、本明細書等において、ドレインとは、ドレイン領域、ドレイン電極、及びドレイン配線の一部または全部のことをいう。ドレイン領域とは、半導体層のうち、抵抗率が一定値以下の領域のことをいう。ドレイン電極とは、ドレイン領域に接続される部分の導電層のことをいう。ドレイン配線とは、少なくとも一つのトランジスタのドレイン電極と、別の電極や別の配線とを電気的に接続させるための配線のことをいう。
また、図面などにおいて、配線および電極などの電位をわかりやすくするため、配線および電極などに隣接してH電位を示す“H”、またはL電位を示す“L”を付記する場合がある。また、電位変化が生じた配線および電極などには、“H”または“L”を囲み文字で付記する場合がある。また、トランジスタがオフ状態である場合、当該トランジスタに重ねて“×”記号を付記する場合がある。
また、一般に、「容量」は、2つの電極が絶縁体(誘電体)を介して向かい合う構成を有する。本明細書等において、「容量素子」とは、前述の「容量」である場合が含まれる。すなわち、本明細書等において、「容量素子」とは、2つの電極が絶縁体を介して向かい合う構成を有したもの、2本の配線が絶縁体を介して向かい合う構成を有したもの、または、2本の配線が絶縁体を介して配置されたもの、である場合が含まれる。
また、本明細書等において、複数の要素に同じ符号を用いる場合、特にそれらを区別する必要があるときは、符号に、「_1」、「_2」、「[n]」、「[m,n]」等、識別用の符号を付して記載する場合がある。例えば、2番目の導電体WWLを、導電体WWL[2]と記載する場合がある。
(実施の形態1)
図1に、本発明の一態様に係る記憶装置100の斜視図を示す。記憶装置100は、三次元積層構造を有する記憶装置である。図2は、図1に一点鎖線で示した部位A1−A2、および導電体SELと配線の接続部の断面図である。なお、図1などにおいて、X方向、Y方向、およびZ方向を示す矢印を付す場合がある。X方向、Y方向、およびZ方向は、それぞれが互いに直交する方向である。本明細書などでは、X方向、Y方向、またはZ方向の1つを「第1方向」または「第1の方向」と呼ぶ場合がある。また、他の1つを「第2方向」または「第2の方向」と呼ぶ場合がある。また、残りの1つを「第3方向」または「第3の方向」と呼ぶ場合がある。なお、本実施の形態などでは、後述する導電体130が延在する方向をZ方向としている。
図2は、X−Z平面の断面を示している。なお、前述した通り、説明をわかりやすくするため図1および図2などでは、構成要素の一部を省略している場合がある。
<記憶装置の構成例>
本発明の一態様に係る記憶装置100は、メモリセルアレイ110を有する。メモリセルアレイ110は複数のメモリストリング120を有する。メモリストリング120はZ方向に延在し、XY平面上でマトリクス状に配置されている。
図3に、本発明の一態様に係るメモリストリング120の断面構成例を示す。メモリストリング120は複数の記憶素子MC(「メモリセル」ともいう。)が直列に接続された構成を有する。本実施の形態では、記憶素子MCが5つ直列に接続する場合を示しているが、メモリストリング120が備える記憶素子MCの数は5に限定されるものではない。メモリストリング120が備える記憶素子MCの数をnとすると、nは2以上の整数であればよい。
また、メモリストリング120は、複数の導電体WWLと、複数の導電体RWLと、導電体SGと、導電体SELと、を有する。複数の導電体WWLと複数の導電体RWLは、絶縁体123を介して交互に積層して設けられている。導電体SGは、複数の導電体WWLおよび複数の導電体RWLよりも下層に設けられている。導電体SELは、複数の導電体WWLおよび複数の導電体RWLよりも上層に設けられている。
図3では、5つの記憶素子MCを記憶素子MC[1]乃至記憶素子MC[5]と示している。なお、記憶素子MC[1]乃至記憶素子MC[5]に共通の事柄を説明する場合は単に「記憶素子MC」と示す。導電体WWL、導電体RWL、および絶縁体123などの他の構成要素も同様である。
メモリストリング120は、記憶素子MC[1]と接続するトランジスタSTr1と、記憶素子MC[5]と接続するトランジスタSTr2と、を有する。
導電体WWL、導電体RWL、導電体SG、および導電体SELは、メモリセルアレイ110を越えて延在する。また、導電体WWL、導電体RWL、導電体SG、および導電体SELは、メモリセルアレイ110の外側で、階段状に積層している(図1および図2参照。)。
図3に一点鎖線で示した部位B1−B2をZ方向から見た断面を図4Aに示す。図3に一点鎖線で示した部位C1−C2をZ方向から見た断面を図4Bに示す。図3に二点鎖線で示した領域105の拡大図を図5Aに示す。図5Aは、記憶素子MCの断面図に相当する。
メモリストリング120は、基体121上に導電体122を有する。基体121としては、例えば絶縁体を用いればよい。また、導電体122上に絶縁体123[1]、導電体SG、絶縁体123[2]、導電体RWL[1]、絶縁体123[3]、導電体WWL[1]、絶縁体123[4]、導電体RWL[2]、絶縁体123[5]、導電体WWL[2]、絶縁体123[6]、導電体RWL[3]、絶縁体123[7]、導電体WWL[3]、絶縁体123[8]、導電体RWL[4]、絶縁体123[9]、導電体WWL[4]、絶縁体123[10]、導電体RWL[5]、絶縁体123[11]、導電体WWL[5]、絶縁体123[12]、および導電体SELを有する(図3参照)。
また、メモリストリング120は、絶縁体123[1]、導電体SG、絶縁体123[2]、導電体RWL[1]、絶縁体123[3]、導電体WWL[1]、絶縁体123[4]、導電体RWL[2]、絶縁体123[5]、導電体WWL[2]、絶縁体123[6]、導電体RWL[3]、絶縁体123[7]、導電体WWL[3]、絶縁体123[8]、導電体RWL[4]、絶縁体123[9]、導電体WWL[4]、絶縁体123[10]、導電体RWL[5]、絶縁体123[11]、導電体WWL[5]、絶縁体123[12]、および導電体SELの、それぞれの一部を除去した開口141を有する。
開口141はZ方向に延在し、導電体122に達する。また、開口141において、導電体RWLと重なる領域142の径は、導電体WWLと重なる領域143の径よりも大きい。よって、開口141の側面は凹凸形状を有する。
また、開口141の側面に沿って、絶縁体124、および半導体125が設けられている。また、開口141において、導電体RWLと重なる領域において、絶縁体124と半導体125の間に導電体128が設けられている。半導体125は絶縁体124を介して開口141の側面と重なる領域を有する。
また、メモリストリング120は、Z方向に延在する導電体130を有する。導電体130は開口141の中心もしくは中心付近に設けられている。また、導電体130の開口141の側面と重なる領域に絶縁体129、半導体127、および絶縁体126が設けられている。半導体127は、絶縁体129を介して、導電体130の側面と重なる領域を有する。絶縁体126は、絶縁体129、および半導体127を介して、導電体130の側面と重なる領域を有する。また、開口141の底部において、半導体125、および半導体127は導電体122と電気的に接続する領域を有する。また、開口141の底部において、導電体130は、絶縁体129、および半導体127を介して導電体122と重なる領域を有する。
導電体WWLと導電体130との間には、導電体WWL側から、絶縁体181、絶縁体124、半導体125、絶縁体126、半導体127、絶縁体129が順に設けられる(図4A参照)。導電体RWLと導電体130との間には、導電体RWL側から、絶縁体124、導電体128、半導体125、絶縁体126、半導体127、および絶縁体129が順に設けられる(図4B参照)。
記憶素子MCは、トランジスタWTrとトランジスタRTrを有する(図5A参照)。導電体WWLと導電体130が重なる領域がトランジスタWTrとして機能する。導電体WWLがトランジスタWTrのゲート電極として機能し、導電体130がトランジスタWTrのバックゲート電極として機能する。また、半導体125の一部が、トランジスタWTrのチャネルが形成される半導体層として機能する。トランジスタWTrのチャネルが形成される半導体層は、絶縁体124の一部を介してゲート電極(導電体WWL)と重なる。なお、本実施の形態などでは、導電体WWLの一部がゲート電極として機能する例を示しているが、ゲート電極および導電体WWLをそれぞれ独立して設け、両者を電気的に接続してもよい。
導電体128、導電体RWL、および導電体130が重なる領域がトランジスタRTrとして機能する。導電体RWLがトランジスタRTrのゲート電極として機能する。また、導電体130がトランジスタRTrのバックゲート電極として機能する。半導体127の一部が、トランジスタRTrのチャネルが形成される半導体層として機能する。トランジスタRTrのチャネルが形成される半導体層は、絶縁体126、半導体125、導電体128、および絶縁体124それぞれの一部を介してゲート電極(導電体RWL)と重なる。トランジスタRTrのチャネルが形成される半導体層は、絶縁体129の一部を介してバックゲート電極(導電体130)と重なる。
トランジスタSTr1は、導電体SG、半導体125、および半導体127を有する。また、トランジスタSTr2は、導電体SEL、半導体125、および半導体127を有する。
ここで、バックゲートについて説明しておく。ゲートとバックゲートは、半導体層のチャネル形成領域を介して重なるように配置される。バックゲートはゲートと同様に機能させることができる。また、バックゲートの電位を変化させることで、トランジスタのしきい値電圧を変化させることができる。ゲートまたはバックゲートの一方を「第1ゲート」または「第1のゲート」と呼び、他方を「第2ゲート」または「第2のゲート」と呼ぶ場合がある。
ゲートとバックゲートは、導電層または抵抗率が小さい半導体層などで形成されるため、トランジスタの外部で生じる電場が、チャネルが形成される半導体層に作用しないようにする機能(特に静電気に対する静電遮蔽機能)を有する。すなわち、静電気などの外部の電場の影響によりトランジスタの電気的な特性が変動することを防止することができる。
また、バックゲートの電位を制御することで、トランジスタのしきい値電圧を制御することができる。バックゲートの電位は、ゲートと同じ電位にしてもよく、接地電位(GND電位)や任意の電位としてもよい。
トランジスタWTrおよびトランジスタRTrのチャネルが形成される半導体層は、単結晶半導体、多結晶半導体、微結晶半導体、または非晶質半導体などを、単体でまたは組み合わせて用いることができる。半導体材料としては、例えば、シリコンや、ゲルマニウムなどを用いることができる。また、シリコンゲルマニウム、炭化シリコン、ヒ化ガリウム、酸化物半導体、窒化物半導体などの化合物半導体を用いてもよい。トランジスタSTr1およびトランジスタSTr2も同様である。
なお、トランジスタに用いる半導体層は積層してもよい。半導体層を積層する場合は、それぞれ異なる結晶状態を有する半導体を用いてもよいし、それぞれ異なる半導体材料を用いてもよい。
トランジスタWTr、トランジスタRTr、トランジスタSTr1、およびトランジスタSTr2に用いられる半導体層は、金属酸化物を有する酸化物半導体であることが好ましい。金属酸化物を半導体層に用いたトランジスタは、アモルファスシリコンを半導体層に用いたトランジスタと比べ、高い電界効果移動度が得られる。また、多結晶シリコンを半導体層に用いたトランジスタでは、半導体層に結晶粒界が生じる恐れがある。結晶粒界では、キャリアが捕獲され、トランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。一方、詳細は後述するが、酸化物半導体では、明確な結晶粒界が確認されない結晶構造、または結晶粒界が極めて少ない結晶構造を実現することができる。このような酸化物半導体を半導体層に用いることは、高いオン電流および電界効果移動度など、良好な電気特性を有するトランジスタが実現できるため、好適である。
本実施の形態では、酸化物半導体として、In:Ga:Zn=1:3:4[原子数比]またはその近傍の組成、In:Ga:Zn=4:2:3[原子数比]またはその近傍の組成、In:Ga:Zn=1:1:1[原子数比]またはその近傍の組成、またはIn:Ga:Zn=1:1:0.5[原子数比]またはその近傍の組成の酸化物を用いる。
また、酸化物半導体、特に結晶性の酸化物半導体であるCAAC−IGZOにおいては、被形成面に垂直な方向にc軸が配向する、数nm(例えば、1~3nm)のナノクラスター同士が連結した特徴的な構造を持つ。そのため、Z方向に延在した開口内においても、明確な結晶粒界が確認されない結晶構造を形成することが可能となる。
特に、トランジスタWTrは、チャネルが形成される半導体層に金属酸化物の一種である酸化物半導体を用いたトランジスタ(「OSトランジスタ」ともいう。)であることが好ましい。酸化物半導体はバンドギャップが2eV以上であるため、オフ電流が著しく少ない。トランジスタWTrにOSトランジスタを用いると、後述するノードNDに書き込まれた電荷を長期間保持することができる。記憶素子MCを構成するトランジスタにOSトランジスタを用いた場合、記憶素子MCを「OSメモリ」と呼ぶことができる。また、当該記憶素子MCを含むメモリストリング120も「OSメモリ」と呼ぶことができる。また、記憶装置100も「OSメモリ」と呼ぶことができる。
OSメモリは、電力の供給を停止しても、1年以上、さらには10年以上の期間で書き込まれた情報を保持することができる。よって、OSメモリを不揮発性メモリと見なすこともできる。
また、OSメモリは書き込まれた電荷量が長期間変化しにくいため、OSメモリは2値(1ビット)に限らず、多値(マルチビット)の情報を保持可能である。
また、OSメモリはトランジスタを介してノードに電荷を書き込む方式であるため、従来のフラッシュメモリで必要であった高電圧が不要であり、高速な書き込み動作も実現できる。また、フラッシュメモリで行われるデータ書き換え前の消去動作が、OSメモリでは不要である。また、フローティングゲートまたは電荷捕獲層への電荷注入および引き抜きも行われないため、OSメモリは実質的に無制限回のデータの書き込みおよび読み出しが可能である。OSメモリは、従来のフラッシュメモリと比較して劣化が少なく、高い信頼性が得られる。
ここで、本発明の一態様のOSメモリが有する絶縁体124、絶縁体126、絶縁体129は、窒素や炭素の濃度が十分低減された絶縁体であり、隣接する半導体125、または半導体127との界面におけるトラップセンターの生成が抑制される。そのため、しきい値電圧の変動が抑制され、信頼性が良好な記憶装置を提供することができる。これは、本発明の一態様のOSメモリがフローティングゲート型または電荷捕獲型の記憶素子の場合でも同様の効果が得られる。詳細は後述するが、半導体127と隣接する絶縁体126、および絶縁体129として上記絶縁体を用いることで、半導体127と絶縁体126の界面、および半導体127と絶縁体129の界面におけるトラップセンターの生成が抑制される。
絶縁体124、絶縁体126、および絶縁体129の炭素濃度は、SIMSによる分析にて、好ましくは、1×1018atoms/cm以上5×1020atoms/cm以下、より好ましくは、5×1018atoms/cm以上1×1020atoms/cm以下である。また、該絶縁体は、窒素を有し、その窒素濃度は、SIMS分析にて、好ましくは、3×1019atoms/cm以上1×1021atoms/cm以下、より好ましくは、1×1019atoms/cm以上2×1020atoms/cm以下である。
また、絶縁体124、絶縁体126、および絶縁体129は、In濃度が極力低減されていることが好ましい。該絶縁体中の金属Inは、負の電荷を捕獲し、トランジスタの閾値電圧のプラスシフトや、S値の増大など、トランジスタ特性、およびそのばらつきに影響を及ぼす恐れがある。例えば、トランジスタの閾値電圧がプラスシフトし、ノーマリーオフ特性となった場合、該トランジスタは、より高い駆動電圧が必要となり、低電圧駆動が困難となる。この場合、該トランジスタ、およびそれを有する電子機器の消費電力は増大してしまう。
そこで、該絶縁体に含まれるIn濃度は、1.0×1019atoms/cm以下、好ましくは、1.0×1018atoms/cm以下、より好ましくは、1.0×1017atoms/cm以下、であることが好ましい。
なお、絶縁体124、絶縁体126、および絶縁体129が、半導体125および半導体127の一方、または両方と接する場合、上記絶縁体中の炭素濃度、窒素濃度、およびIn濃度は、半導体125または半導体127との界面から1nm以上離れた領域の濃度とする場合がある。
また、OSメモリは磁気抵抗メモリ(MRAM)あるいは抵抗変化型メモリ(ReRAM)などのように、メモリの書き換え時に原子レベルでの構造変化を伴わない。よって、OSメモリは、磁気抵抗メモリおよび抵抗変化型メモリよりも書き換え耐性に優れている。
また、OSトランジスタは高温環境下でもオフ電流がほとんど増加しない。具体的には室温以上200℃以下の環境温度下でもオフ電流がほとんど増加しない。また、高温環境下でもオン電流が低下しにくい。OSメモリを含む記憶装置は、高温環境下においても動作が安定し、高い信頼性が得られる。また、OSトランジスタは、ソースとドレイン間の絶縁耐圧が高い。半導体装置を構成するトランジスタにOSトランジスタを用いることで、高温環境下においても動作が安定し、信頼性の良好な半導体装置が実現できる。
半導体127はn型の半導体であることが好ましい。また、半導体125の導電体WWLと重なる領域はi型または実質的にi型の半導体であることが好ましい。この場合、トランジスタWTrはエンハンスメント型(ノーマリーオフ型)のトランジスタ、トランジスタRTrはデプレッション型(ノーマリーオン型)のトランジスタになる。
なお、半導体125と半導体127は、同じ材料を有していてもよいし、異なる材料を有していてもよい。例えば、半導体125および半導体127は、それぞれ酸化物半導体でもよい。また、半導体125および半導体127は、それぞれシリコンを有する半導体でもよい。また、半導体125を酸化物半導体とし、半導体127をシリコンを有する半導体としてもよい。また、半導体125をシリコンを有する半導体とし、半導体127を酸化物半導体としてもよい。
なお、図4Aは、トランジスタWTrの中心または中心付近のX−Y平面に相当し、図4Bは、トランジスタRTrの中心または中心付近のX−Y平面に相当する。図4Aおよび図4Bにおいて、導電体130の断面形状が円形である場合、絶縁体129は導電体130の外側に同心円状に設けられ、半導体127は絶縁体129の外側に同心円状に設けられ、絶縁体126は半導体127の外側に同心円状に設けられ、半導体125は絶縁体126の外側に同心円状に設けられ、絶縁体124は半導体125の外側に同心円状に設けられている。また、導電体128は、半導体125と絶縁体124の間に同心円状に設けられている。
また、導電体130の断面形状は円形に限らない。導電体130の断面形状は矩形でもよい。また、導電体130の断面形状は三角形でもよい。
上記において、記憶素子MCが、半導体125、および半導体127の2層を有する例を示しているが、本発明はこれに限らない。図5Bに、記憶素子MCが、半導体127、およびフローティングゲートとして機能する導電体128を有する例を示す。
導電体WLと導電体130が重なる領域が記憶素子MCとして機能する。導電体WLが記憶素子MCのコントロールゲート電極として機能し、導電体130が記憶素子MCのバックゲート電極として機能する。また、半導体127の一部が、記憶素子MCのチャネルが形成される半導体層として機能する。記憶素子MCのチャネルが形成される半導体層は、絶縁体124の一部を介して導電体WLと重なる。また、記憶素子MCのチャネルが形成される半導体層と導電体WLの間に導電体128が設けられ、導電体WLと導電体128の間に、絶縁体124が設けられ、導電体128と記憶素子MCのチャネルが形成される半導体層の間に、トンネル絶縁膜として機能する絶縁体126が設けられる。
導電体128は、絶縁体123に対して凹部を有する。該凹部内に、絶縁体124を介して、導電体128が設けられる。
また、図6Aに示すように、フローティングゲートとして機能する導電体128の代わりに、電荷蓄積層として機能する絶縁体133を設けてもよい。
導電体WLと導電体130が重なる領域が記憶素子MCとして機能する。導電体WLが記憶素子MCのコントロールゲート電極として機能し、導電体130が記憶素子MCのバックゲート電極として機能する。また、半導体127の一部が、記憶素子MCのチャネルが形成される半導体層として機能する。記憶素子MCのチャネルが形成される半導体層は、絶縁体124の一部を介して導電体WLと重なる。また、絶縁体133の一部は、記憶素子MCのチャネルが形成される半導体層と導電体WLの間に設けられ、電荷蓄積層として機能する。また、導電体WLと絶縁体133の間に、絶縁体124が設けられ、絶縁体133と記憶素子MCのチャネルが形成される半導体層の間に、トンネル絶縁膜として機能する絶縁体126が設けられる。
電荷蓄積層として機能する絶縁体133として、窒化シリコンを含む絶縁体であることが好ましい。
また、図6Bに示すように、Z軸方向において、隣り合う記憶素子MCの間に位置する半導体127に接するように、導電体128を設けてもよい。
絶縁体123は、導電体128に対して凹部を有する。該凹部内に、半導体127と接する、導電体128が設けられる。導電体128を設けることで、Z軸方向において隣り合う記憶素子MCのチャネル間の抵抗が低減されるため、好ましい。
図5B、図6Aおよび図6Bに示す記憶素子MCにおいては、書き込みや読み出しを、共通の導電体WLで行うため、導電体WWLおよび導電体RWLは不要である。なお、導電体WLは、導電体WWLまたは導電体RWLに用いることができる材料を用いることができ、導電体WWLまたは導電体RWLと同様の形成方法を用いることができる。また、書き込み動作、読み出し動作、消去動作については、公知の方法を用いることができる。
上記において、半導体127と接する絶縁体124、および絶縁体126は、窒素や炭素などの不純物が十分低減されており、該絶縁体と半導体127の界面におけるトラップセンターの生成が抑制される。そのため、しきい値電圧の変動が抑制され、信頼性が良好な記憶装置を提供することができる。
なお、メモリストリング120を記憶装置ということもできるし、記憶素子MCを記憶装置ということもできる。
絶縁体124、絶縁体126、および絶縁体129など、窒素や炭素などの不純物が低減された絶縁体を形成するには、シリコンを含むガス401(プリカーサ)、および酸化性ガス402(リアクタント)を用いて、ALD(Atomic Layer Deposition)法によって形成することが好ましい。また、酸化性ガス402にヘリウム、ネオン、アルゴン、クリプトン、キセノンなどの希ガスを添加してもよい。
ALD法には、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法などがある。
また、ALD法は、原子の性質である自己制御性を利用し、一層ずつ原子を堆積することができるので、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、低温での成膜が可能、などの効果がある。PEALD法では、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。なお、ALD法で用いるプリカーサには炭素などを含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)、またはX線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。
本実施の形態では、PEALD法を用いる。また、シリコンを含み、炭化水素を含まないガスとしては、SiH、Si、SiF、SiCl、SiBr、SiHCl、SiHなどを用いることができる。また、酸化性ガスとしては、O、O、NO、NO2、Oなどを用いることができる。本実施の形態では、シリコンを含み、炭化水素を含まないガス401として、SiHを、酸化性ガス402として、NOをそれぞれ用いる。
図7にシリコンを含むガス401としてSiH、および酸化性ガス402としてNOを用いて、PEALD法によって、絶縁体124、絶縁体126、および絶縁体129などに用いることができる絶縁体を形成するプロセスフローを示し、図8Aにその成膜シーケンスを示す。
まず、反応室内にSiH、およびNOを導入し、反応室内の圧力を一定に保つ(ステップS01)。ここで、反応室内にヘリウム、ネオン、アルゴン、クリプトン、キセノンなどの希ガスを導入してもよい。SiHとNOとの流量比は、SiH流量を1とすると、NOは、10以上3000以下、好ましくは10以上800以下、より好ましくは、50以上400以下とする。また、反応室内の圧力は、200Pa以上1200Pa以下、好ましくは、400Pa以上1000Pa以下、さらに好ましくは、600Pa以上800Pa以下とする。また、基板温度は、100℃以上500℃以下、好ましくは、200℃以上400℃である。また、基板は加熱しなくてもよく、室温で成膜してもよい。
次に、SiHの導入を止めて、NOを導入し続けて、反応室内に残留するSiHをパージする(ステップS02)。
次に、反応室に高周波電力403を供給し、NOプラズマを発生させる。高周波の周波数は、13.56MHz以上60MHz以下とする。NOプラズマによって、ステップS01にて、基板上に吸着したSiHを酸化することによって、およそ一分子層の酸化シリコンを形成することができる(ステップS03)。尚、当該酸化シリコン中に、NOプラズマによって注入された窒素が含まれることがある。また、窒素が含まれる酸化シリコンを酸化窒化シリコンと呼ぶ場合がある。
次に、高周波電力403の供給を停止する(ステップS04)。
上述のステップS01乃至ステップS04を1サイクルとして、サイクル数が予め設定した値に到達したか判断し(ステップS05)、到達していない場合はステップS01に戻る。到達した場合は処理を終了する。上記のサイクルを所望の膜厚が得られるように予め設定したサイクル数に達するまで繰り返すことで、絶縁体を形成する。また、図8Bに示すように、ステップS02において、SiH4、およびNOの導入を止めて反応室内に残留するSiH4、およびNOを排気する真空引きのステップを挿入してもよい。このとき、SiHの導入およびNOの導入を同時に止めてもよいし、SiHの導入を止めた後に、NOの導入を止めてもよい。また、ステップS03の開始前にNOの導入を再開することが好ましい。
上述のように形成した、絶縁体124、絶縁体126、および絶縁体129などとなる酸化シリコンは、SiH4、およびNOを用いて、PECVD(PECVD:Plasma Enhanced CVD)法によって形成する酸化シリコンよりも、水素濃度、および炭素濃度の低減された良好な絶縁体を形成することができる。
SiH4、およびNOを用いたPECVD法は、SiH4、およびNOを導入した状態で高周波電力を印加してプラズマを発生させるので、SiHがプラズマ中で分解されて、大量の水素ラジカルが発生し、水素が酸化シリコン中に混入してしまう。また、絶縁体124、絶縁体126、および絶縁体129は、半導体125および半導体127の一方、または両方と接しているので、水素ラジカルの還元反応によって半導体125または半導体127中の酸素が引き抜かれてVHが形成されると、半導体125または半導体127中の水素濃度が高くなってしまう。
一方で、本発明の一態様であるSiH4、およびNOを用いたPEALD法では、上述のステップ01のSiH4、およびNOの導入中は、高周波電力を印加せず、ステップ02にて、残留しているSiHをパージしたのち、ステップ03にてNOのみ導入した状態で、高周波電力を印加してプラズマを発生させるので、水素ラジカルの発生を抑制できる。従って、酸化シリコン、半導体125、または半導体127への水素の混入を抑制することができる。また、SiH4、およびNOを用いたPEALD法では、プリカーサとしてSiHを用いており、炭素等の不純物を含むプリカーサ、例えばCH基を有する有機プリカーサを用いていないので、酸化シリコン中に炭素等の不純物、炭化水素などが混入することを抑制できる。このように形成された酸化シリコンは、不純物濃度が低減され、より緻密な膜であるため、半導体125、または半導体127から酸化シリコンへのInの拡散を防止することができる。
該酸化シリコンの炭素濃度は、SIMSによる分析にて、好ましくは、1×1018atoms/cm以上5×1020atoms/cm以下、より好ましくは、5×1018atoms/cm以上1×1020atoms/cm以下である。また、該酸化シリコンは、窒素を有し、その窒素濃度は、SIMS分析にて、好ましくは、3×1019atoms/cm以上1×1021atoms/cm以下、より好ましくは、1×1019atoms/cm以上2×1020atoms/cm以下である。
以上のように、本発明の一態様である、シリコンを含み、炭化水素を含まないガス(プリカーサ)、および酸化性ガス(リアクタント)を用いて、PEALD法によって、絶縁体124、絶縁体126、および絶縁体129などとなる酸化シリコンを形成することで、優れた電気特性、および高い信頼性を有するトランジスタとすることができる。
また、絶縁体124、絶縁体126、および絶縁体129などとなる酸化シリコンは、In濃度が極力低減されていることが好ましい。該酸化シリコン中の金属Inは、負の電荷を捕獲し、トランジスタの閾値電圧のプラスシフトや、S値の増大など、トランジスタ特性、およびそのばらつきに影響を及ぼす恐れがある。例えば、トランジスタの閾値電圧がプラスシフトし、ノーマリーオフ特性となった場合、該トランジスタは、より高い駆動電圧が必要となり、低電圧駆動が困難となる。この場合、該トランジスタ、およびそれを有する電子機器の消費電力は増大してしまう。
そこで、該酸化シリコンに含まれるIn濃度は、1.0×1019atoms/cm以下、好ましくは、1.0×1018atoms/cm以下、より好ましくは、1.0×1017atoms/cm以下、であることが好ましい。
〔半導体装置の構成材料〕
続いて、記憶装置100に用いることができる構成材料について説明する。
[基板]
記憶装置100は基板上に設けることができる。基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムを材料とした半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
[絶縁体]
絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
なお、本明細書等において、「酸化窒化物」とは、主成分として窒素よりも酸素の含有量が多い材料を指す。例えば「酸化窒化シリコン」とは、窒素よりも酸素の含有量が多い、シリコンと、窒素と、酸素と、を含む材料を指す。また、本明細書等において、「窒化酸化物」とは、主成分として酸素よりも窒素の含有量が多い材料を指す。例えば「窒化酸化アルミニウム」とは、酸素よりも窒素の含有量が多い、アルミニウムと、窒素と、酸素と、を含む材料を示す。
例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。
また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。
また、OSトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタルなどの金属酸化物、窒化アルミニウム、窒化酸化シリコン、窒化シリコンなどの金属窒化物を用いることができる。
また、半導体125および/または半導体127に酸化物半導体を用いる場合、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを半導体125および/または半導体127と接する構造とすることで、半導体125および/または半導体127が有する酸素欠損を補償することができる。
また、導電体WWLとして機能する導電体182、および導電体SELとして機能する導電体183の酸化を抑制するために絶縁体181を設けることが好ましい。絶縁体181として、酸素や水素に対するバリア性を有する上記材料を用いることが好ましい。絶縁体181は、導電体182、および導電体183の下面、上面、および側面に接するように設けられることが好ましい。
半導体125および半導体127の一方、または両方に接する絶縁体124、絶縁体126、および絶縁体129として、窒素、および炭素などの不純物が低減された絶縁体を用いることが好ましい。このような絶縁体を形成するには、ALD法を用いることが好ましい。特に、プラズマを利用したPEALD法を用いることが好ましい。
絶縁体124、絶縁体126、および絶縁体129の炭素濃度は、SIMSによる分析にて、好ましくは、1×1018atoms/cm以上5×1020atoms/cm以下、より好ましくは、5×1018atoms/cm以上1×1020atoms/cm以下である。また、絶縁体124、絶縁体126、および絶縁体129は、窒素有し、その窒素濃度は、SIMS分析にて、好ましくは、3×1019atoms/cm以上1×1021atoms/cm以下より好ましくは、1×1019atoms/cm以上2×1020atoms/cm以下である。
また、絶縁体124、絶縁体126、および絶縁体129に含まれるIn濃度は、1.0×1019atoms/cm以下、好ましくは、1.0×1018atoms/cm以下、より好ましくは、1.0×1017atoms/cm以下、であることが好ましい。
ALD法は、プリカーサ分子、あるいはプリカーサに含まれる原子の自己制御性を利用し、一層ずつ原子を堆積することができるので、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、および低温での成膜が可能、などの効果がある。また、プラズマALD法を用いることで、より低温での成膜が可能となるため、好ましい。一方、プリカーサ及びリアクタントの反応を熱エネルギーで行うALD法(熱ALD法と呼ぶ場合がある)を用いてもよい。
[導電体]
導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
なお、トランジスタのチャネル形成領域に金属酸化物の一種である酸化物半導体を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
特に、ゲート電極として機能する導電体として、チャネルが形成される酸化物半導体に含まれる金属元素と、酸素と、を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される酸化物半導体に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
[酸化物半導体]
半導体125および半導体127として、半導体として機能する金属酸化物(酸化物半導体)を用いることが好ましい。以下では、半導体125および半導体127に適用可能な酸化物半導体について説明する。
酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、錫などが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
ここでは、酸化物半導体が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、及び錫の中から選ばれる一または複数とする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
〔結晶構造の分類〕
まず、酸化物半導体における、結晶構造の分類について、図9Aを用いて説明を行う。図9Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
図9Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、及びCAC(cloud−aligned composite)が含まれる。なお、「Crystalline」の分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、及びpoly crystalが含まれる。
なお、図9Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、エネルギー的に不安定な「Amorphous(無定形)」や、「Crystal(結晶)」とは全く異なる構造と言い換えることができる。
なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。ここで、「Crystalline」に分類されるCAAC−IGZO膜のGIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを図9Bに示す。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。以降、図9Bに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す。なお、図9Bに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、図9Bに示すCAAC−IGZO膜の厚さは、500nmである。
図9Bに示すように、CAAC−IGZO膜のXRDスペクトルでは、明確な結晶性を示すピークが検出される。具体的には、CAAC−IGZO膜のXRDスペクトルでは、2θ=31°近傍に、c軸配向を示すピークが検出される。なお、図9Bに示すように、2θ=31°近傍のピークは、ピーク強度が検出された角度を軸に左右非対称である。
また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう。)にて評価することができる。CAAC−IGZO膜の回折パターンを、図9Cに示す。図9Cは、電子線を基板に対して平行に入射するNBEDによって観察される回折パターンである。なお、図9Cに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
図9Cに示すように、CAAC−IGZO膜の回折パターンでは、c軸配向を示す複数のスポットが観察される。
[酸化物半導体の構造]
なお、酸化物半導体は、結晶構造に着目した場合、図9Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
続いて、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM像において、格子像として観察される。
CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう。)を対称中心として、点対称の位置に観測される。
上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
[酸化物半導体の構成]
次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
〔酸化物半導体を有するトランジスタ〕
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
トランジスタのチャネル形成領域には、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のチャネル形成領域のキャリア濃度は、1×1018cm−3以下であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。また、高純度真性又は実質的に高純度真性であることをi型または実質的にi型と呼ぶ場合がある。
また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
〔不純物〕
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体のチャネル形成領域におけるシリコンや炭素の濃度と、酸化物半導体のチャネル形成領域との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体のチャネル形成領域中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体のチャネル形成領域中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体のチャネル形成領域における中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体のチャネル形成領域において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは5×1019atoms/cm未満、より好ましくは1×1019atoms/cm未満、さらに好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
〔その他の半導体材料〕
半導体125および半導体127に用いることができる半導体材料は、上述の酸化物半導体に限られない。半導体125および半導体127として、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、シリコンなどの単体元素の半導体、ヒ化ガリウムなどの化合物半導体、半導体として機能する層状物質(原子層物質、2次元材料などともいう。)などを半導体材料に用いてもよい。特に、半導体として機能する層状物質を半導体材料に用いると好適である。
本明細書等において、層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合やイオン結合によって形成される層が、ファンデルワールス力のような、共有結合やイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。
層状物質として、グラフェン、シリセン、カルコゲン化物などがある。カルコゲン化物は、カルコゲンを含む化合物である。また、カルコゲンは、第16族に属する元素の総称であり、酸素、硫黄、セレン、テルル、ポロニウム、リバモリウムが含まれる。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。
半導体125および半導体127として、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。半導体125および半導体127として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。
<記憶装置の作製方法例>
次に、本発明に係る記憶装置の作製方法例を図10乃至図19を参照して説明する。なお、図10乃至図19の各図は、X−Z平面の断面を示しており、Y方向から見た断面図である。なお、本作製方法では、5つ(「5段」ともいう。)の記憶素子MCを有するメモリストリング120を3つ作製する例を示すが、本実施の形態はこれに限らない。メモリストリング120は、2段以上の記憶素子MCを有していればよい。例えば、メモリストリング120は、4段の記憶素子MCを有していてもよい。また、32段以上、好ましくは64段以上、より好ましくは128段以上、さらに好ましくは256段以上の記憶素子MCを有していることが好ましい。また、本実施の形態の一態様を用いることで、メモリストリング120を同時に2以上作製することができる。
まず、絶縁表面を有する基体121上に導電体122を形成し、導電体122の周囲に、絶縁体132を形成する(図10参照。)。
具体的には、導電膜を形成し、リソグラフィー法を用いて該導電膜を加工し、導電体122を形成する。次に、導電体122を覆うように基体121上に絶縁膜を形成する。次に該絶縁膜に対して平坦化処理を行うことが好ましい。該平坦化処理では、導電体122の表面が露出するまで、該絶縁膜を研磨することが好ましい。上記方法により、絶縁体132を形成することができる。ただし、導電体122、および絶縁体132の形成方法はこれに限らない。基体121上に絶縁体132を形成し、絶縁体132の不要な部分を除去することで、溝や開口を形成し、該溝や該開口部に導電体122を埋め込むように形成してもよい。このような導電体の形成方法をダマシン法(シングルダマシン法、デュアルダマシン法)と呼ぶ場合がある。上記方法により、図10に示す構造を得ることができる。
導電体122や、絶縁体132の形成は、スパッタリング法、CVD法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法またはALD法などを用いて行うことができる。
なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
また、ALD法も、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。また、ALD法も、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における気相反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
また、CVD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。例えば、CVD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間の分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
また、ALD法では、異なる組成の複数のプリカーサを同時に導入する、または、異なる組成の複数のプリカーサを各プリカーサのサイクル数を制御することで任意の組成の膜を成膜することができる。
なお、リソグラフィー法では、まず、フォトマスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、フォトマスクは不要となる。なお、レジストマスクの除去には、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことができる。
また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、導電膜上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。
上記加工は、ドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
導電膜のエッチングにハードマスクを用いる場合、当該エッチング処理は、ハードマスクの形成に用いたレジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。上記導電膜のエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
導電体122となる導電膜は、スパッタリング法を用いて、金属元素を含む導電膜を形成することが好ましい。また、CVD法を用いて形成することもできる。
絶縁体132の表面は、必要に応じて、平坦化処理が行われていることが好ましい。平坦化処理には、化学機械研磨(CMP:Chemical Mechanical Polishing)法やリフロー法を用いることができる。
導電体122、および絶縁体132上に絶縁膜123A、絶縁膜135A、および導電膜136Aを交互に積層する。本実施の形態では、絶縁体132上に絶縁膜123Aを形成し、絶縁膜123A上に絶縁膜135Aを形成し、絶縁膜135A上に絶縁膜123Aを形成し、絶縁膜123A上に導電膜136Aを形成する例を示す(図10参照。)。絶縁膜135A、導電膜136A、および絶縁膜123Aの形成には、CVD法を用いることができる。また、スパッタリング法を用いてもよい。
導電体122、および導電膜136Aとして、不純物が添加されたシリコンや、金属など、導電性を有する材料を用いることができる。導電膜136Aは、後工程において、導電体122、および絶縁膜135Aに対して選択的にエッチングを行う必要があるため、導電体122、および絶縁膜135Aに対する選択エッチングが可能な材料であることが好ましい。導電体122、または導電膜136Aとして、シリコンを用いる場合、アモルファスシリコンや、ポリシリコンを用いることができる。また、シリコンに導電性を持たせるため、p型不純物やn型不純物を添加してもよい。また、シリコンを含む導電性材料として、チタン、コバルト、またはニッケルを含むシリサイドを導電体122、または導電膜136Aとして用いることができる。また、金属材料を導電体122、または導電膜136Aに用いる場合、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。
絶縁体132、絶縁膜135A、および絶縁膜123Aとして、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などを用いることができる。酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂、酸化アルミニウム、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などを用いること用いることができる。
絶縁膜135Aは、後工程において、絶縁体132、および絶縁膜123Aに対して選択的にエッチングを行う必要があるため、絶縁体132、および絶縁膜123Aに対する選択エッチングが可能な材料であることが好ましい。例えば、絶縁体132、および絶縁膜123Aを酸化シリコン、または酸化窒化シリコンとし、絶縁膜135Aを窒化シリコン、または窒化酸化シリコンとすることが好ましい。
また、本実施の形態では、絶縁膜123Aを12層、絶縁膜135Aを6層、および導電膜136Aを5層形成する例を示したが、積層数は、これに限らない。求められる半導体装置の性能に応じて、それぞれ形成することができる。ここで、絶縁膜135Aの積層数をm(mは2以上の整数)とすると、絶縁膜123Aの積層数は、2×m、導電膜136Aの積層数は、m−1となる。例えば、mは、33以上、好ましくは65以上、より好ましくは129以上、さらに好ましくは、257以上とすることができる。
最上層の絶縁膜123Aの上に絶縁膜137Aを形成し、絶縁膜137A上に絶縁膜138Aを形成する。絶縁膜137Aは、絶縁膜135Aと同様な方法を用い、同様の材料で形成することができる。また絶縁膜138Aは、絶縁膜123Aと同様な方法を用い、同様の材料で形成することができる。また、絶縁膜138A上にマスク140Aを形成する。
次に、マスク140Aを用いて、絶縁膜138A、絶縁膜137A、絶縁膜123A、絶縁膜135A、および導電膜136Aを加工し、導電体122を露出するように第1の開口を形成する(図11参照。)。該加工により、マスク140Aがエッチングされ、マスク140Bとなる場合がある。
次に、導電膜136Aに対して等方性エッチングを行い、導電膜136Aの開口の径を拡げる(図12参照。)。この処理により、導電膜136Aの開口の径は、絶縁膜138A、絶縁膜137A、絶縁膜123A、および絶縁膜135Aの開口の径より大きくなる。また、導電膜136Aは、上部または下部に位置する絶縁膜138A、絶縁膜137A、絶縁膜123A、または絶縁膜135Aの側面に対して、凹部を有しているといえる。このような加工には、ガス、ラジカル、プラズマなどを用いたドライエッチングによる等方性エッチングや、液体を用いたウェットエッチングによる等方性エッチングを用いることができる。ウェットエッチングに用いる液体をエッチャントと呼ぶことがある。ドライエッチングを用いて等方性エッチングを行う場合、塩素、臭素、およびフッ素の少なくとも一を含むガス、ラジカル、プラズマなどを用いることができる。等方性エッチングは、第1の開口の形成に用いたマスクを除去せずに行うことが好ましい。上記処理により得られた第1の開口は、図3に示した開口141に相当する。
次に、絶縁膜138A、およびマスク140B上、および第1の開口内部に、絶縁膜124A、および導電膜128Aを形成する(図12参照。)。なお、図示しないが、絶縁膜124Aは、積層構造を有していてもよい。絶縁膜124Aは、CVD法やALD法を用いて形成することができる。特に、ALD法を用いることで、アスペクト比の大きい溝や開口部に対しても、厚さの均一な膜を形成することができるため、好ましい。
また、PEALD法を用いることで、熱ALD法に比べて低温で絶縁膜124Aを形成することができるため、好ましい。例えば、プリカーサとしてシリコンを含むガスと、リアクタントとして酸化性ガスを用いたPEALD法を用いて絶縁膜124Aを形成することが好ましい。シリコンを含むガスとして、SiH、SiF、SiHCl、SiClなどを用いることができる。特に、SiHを用いることが好ましい。酸化性ガスとして、O、O、NO、NOなどを用いることができる。特に、NOを用いることが好ましい。また、リアクタントとして、上記酸化性ガスにヘリウム、ネオン、アルゴン、クリプトン、キセノンなどの希ガスを添加してもよい。絶縁膜124Aが積層構造を有する場合、各絶縁膜は、同じ成膜装置で形成されてもよいし、異なる成膜装置で形成されてもよい。また、ALD法と、CVD法を組み合わせて絶縁膜124Aを形成してもよい。
上記の方法で形成された絶縁膜124Aは、被覆性が良く、導電膜136Aが有する凹部に対しても絶縁膜124Aを形成することができる。すなわち、絶縁膜123A、絶縁膜135A、および導電膜136Aの側面だけでなく、絶縁膜123Aの上面の一部、および下面の一部とも接するように絶縁膜124Aを形成することができる。
また、絶縁膜124Aの炭素濃度は、SIMSによる分析にて、好ましくは、1×1018atoms/cm以上5×1020atoms/cm以下、より好ましくは、5×1018atoms/cm以上1×1020atoms/cm以下である。また、絶縁膜124Aは、窒素を有し、その窒素濃度は、SIMS分析にて、好ましくは、3×1019atoms/cm以上1×1021atoms/cm以下、より好ましくは、1×1019atoms/cm以上2×1020atoms/cm以下である。
また、絶縁膜124Aに含まれるIn濃度は、1.0×1019atoms/cm以下、好ましくは、1.0×1018atoms/cm以下、より好ましくは、1.0×1017atoms/cm以下、であることが好ましい。
導電膜128Aは、少なくとも、絶縁膜124Aを介して、導電膜136Aの凹部を充填するように形成されていればよく、必ずしも第1の開口内部全てを充填する必要は無い。導電膜128Aは、CVD法やALD法を用いて形成することができる。特に、ALD法を用いることで、アスペクト比の大きい溝や開口部に対しても、厚さの均一な膜を形成することができるため、好ましい。または、ALD法と、CVD法を組み合わせて導電膜128Aを形成してもよい。
次に、導電膜128Aを加工して、導電体128を形成する(図13参照。)。導電膜128Aの加工には、等方性エッチング、または異方性エッチングを用いることができる。導電膜128Aの形成において、図12に示すように、導電膜128Aが凹部を充填し、第1の開口は完全に充填されていない場合は、導電膜128Aの加工には、等方性エッチングを用いることが好ましい。一方、凹部および第1の開口を充填するように導電膜128Aが形成されている場合は、異方性エッチングを用いることが好ましい。上記のような加工により、凹部の内部に、導電体128を形成することができる。
次に、第1の開口底部に形成された絶縁膜124Aを除去し、絶縁体124を得る。絶縁膜124Aの除去には、異方性エッチングを用いることが好ましい。このとき、絶縁膜138Aおよびマスク140B上の絶縁膜124Aも除去されるため、絶縁体124は、第1の開口の側壁のみに設けられる(図13参照。)。第1の開口底部の絶縁膜124Aを除去することで、再び導電体122が露出する。
次に、第1の開口内部に、導電体122と接するように半導体膜125Aを形成する(図13参照。)。半導体膜125Aは、CVD法やALD法を用いて形成することができる。特に、ALD法を用いることで、アスペクト比の大きい溝や開口部に対しても、厚さの均一な膜を形成することができるため、好ましい。また、PEALD法を用いることで、熱ALD法に比べて低温で半導体膜125Aを形成することができるため、好ましい。または、ALD法と、CVD法を組み合わせて半導体膜125Aを形成してもよい。半導体膜125Aは、CAAC構造を有する酸化物半導体であることが好ましい。半導体膜125AがCAAC構造を有する酸化物半導体である場合、半導体膜125Aのc軸は、第1の開口内部において、被形成面の法線方向に配向する。このとき、絶縁体124を介して、絶縁膜138A、絶縁膜137A、絶縁膜123A、絶縁膜135A、および導電膜136Aの側面に位置する半導体膜125Aのc軸は、被形成面から図13に示す軸185に向かって配向する。なお、軸185は、第1の開口の中心軸と呼ぶことができる。これにより、上記に位置する半導体125のc軸は、被形成面から軸185に向かって配向する。
ここで、半導体膜125Aとして、ALD法を用いて金属酸化物を形成する場合、インジウムを含むプリカーサ、ガリウムを含むプリカーサ、および亜鉛を含むプリカーサを用いてIn−Ga−Zn酸化物を形成することが好ましい。または、インジウムおよびガリウムを含むプリカーサ、および亜鉛を含むプリカーサを用いてIn−Ga−Zn酸化物を形成してもよい。
インジウムを含むプリカーサとして、トリエチルインジウム、トリメチルインジウム、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオン酸)インジウム、シクロペンタジエニルインジウム、塩化インジウム(III)などを用いることができる。また、ガリウムを含むプリカーサとして、トリメチルガリウム、トリエチルガリウム、トリス(ジメチルアミド)ガリウム、ガリウム(III)アセチルアセトナート、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオン酸)ガリウム、ジメチルクロロガリウム、ジエチルクロロガリウム、塩化ガリウム(III)などを用いることができる。また、亜鉛を含むプリカーサとして、ジメチル亜鉛、ジエチル亜鉛、ビス(2,2,6,6−テトラメチル−3,5−ヘプタンジオン酸)亜鉛、塩化亜鉛などを用いることができる。
次に、半導体膜125Aの内側に、絶縁膜126Aを形成する(図13参照。)。
絶縁膜126Aは、CVD法やALD法を用いて形成することができる。特に、ALD法を用いることで、アスペクト比の大きい溝や開口部に対しても、厚さの均一な膜を形成することができるため、好ましい。また、PEALD法を用いることで、熱ALD法に比べて低温で絶縁膜126Aを形成することができるため、好ましい。または、ALD法と、CVD法を組み合わせて絶縁膜126Aを形成してもよい。例えば、絶縁膜124Aと同様の方法で絶縁膜126Aを形成することができる。例えば、プリカーサとしてシリコンを含むガスと、リアクタントとして酸化性ガスを用いたPEALD法を用いて絶縁膜126Aを形成することが好ましい。シリコンを含むガスとして、SiH、SiF、SiHClなどを用いることができる。特に、SiHを用いることが好ましい。酸化性ガスとして、O、O、NO、NOなどを用いることができる。特に、NOを用いることが好ましい。また、リアクタントにヘリウム、ネオン、アルゴン、クリプトン、キセノンなどの希ガスを添加してもよい。
また、絶縁膜126Aの炭素濃度は、SIMSによる分析にて、好ましくは、1×1018atoms/cm以上5×1020atoms/cm以下、より好ましくは、5×1018atoms/cm以上1×1020atoms/cm以下である。また、絶縁膜126Aは、窒素を有し、その窒素濃度は、SIMS分析にて、好ましくは、3×1019atoms/cm以上1×1021atoms/cm以下、より好ましくは、1×1019atoms/cm以上2×1020atoms/cm以下である。
また、絶縁膜126Aに含まれるIn濃度は、1.0×1019atoms/cm以下、好ましくは、1.0×1018atoms/cm以下、より好ましくは、1.0×1017atoms/cm以下、であることが好ましい。
次に、絶縁膜126Aの上面に絶縁体131Aを形成する。絶縁体131Aは、第1の開口内部に形成されないよう、選択的に形成されることが好ましい。または、絶縁体131Aを絶縁膜126Aの上面、および第1の開口内部に形成し、絶縁体131Aを介して絶縁膜126Aの上面の上にマスクを形成し、第1の開口内部の絶縁体131Aを選択的に除去してもよい。絶縁体131Aとして、窒化シリコンを用いることが好ましい。絶縁体131Aを絶縁膜126Aの上面に選択的に形成するには、PECVD法を用いることが好ましい。また、成膜ガスに、SiHとNを含む混合ガスを用いることで、第1の開口内部への絶縁体131Aの形成が抑制されるため好ましい。また、該混合ガスにNHが含まれると、第1の開口内部に絶縁体131Aが形成されやすくなるため、該混合ガスにNHが含まれないことが好ましい。また、該混合ガスにNおよびNHが含まれる場合、NHの混合比は、Nの混合比の10%以下、好ましくは5%以下、より好ましくは1%以下とすることが好ましい。また、該混合ガスにおいて、SiHに対するNの比率(流量比)が低いと、絶縁体131Aに含まれる窒素の量が少なくなり、アモルファスシリコンが形成される場合がある。そのため、SiHに対するNの比率(流量比)を100以上にすることが好ましい。
次に、半導体膜125Aの一部を高抵抗化し、高抵抗領域(I型領域)を形成する。高抵抗領域の形成方法として、半導体膜125Aをマイクロ波で照射し、半導体膜125Aに含まれる水素を除去すればよい。また、マイクロ波の照射を、酸素を含む雰囲気で行うことで、半導体膜125Aに酸素が供給されるため、好ましい。本実施の形態では、酸素、およびアルゴンを含む雰囲気下において半導体膜125Aをマイクロ波で照射し、半導体膜125Aを高抵抗化する。このとき、半導体膜125Aの導電体128と接する領域においては、その抵抗値は低いままである場合がある。
マイクロ波処理では、マイクロ波と半導体膜125A中の分子の電磁気的な相互作用により、半導体膜125Aに直接的に熱エネルギーを伝達する場合がある。この熱エネルギーにより、半導体膜125Aが加熱される場合がある。このような加熱処理をマイクロ波アニールと呼ぶ場合がある。マイクロ波処理を、酸素を含む雰囲気中で行うことで、酸素アニールと同等の効果が得られる場合がある。また、半導体膜125Aに水素が含まれる場合、この熱エネルギーが半導体膜125A中の水素に伝わり、これにより活性化した水素が半導体膜125Aから放出されることが考えられる。
ここで、加熱処理を行ってもよい。加熱処理は、窒素を含む雰囲気で、200℃以上500℃以下、このましくは、300℃以上400℃以下で行うことが好ましい。加熱処理を行う雰囲気は、上記に限らず、窒素、酸素、およびアルゴンの少なくとも一を含む雰囲気で行えばよい。また、加熱処理は、減圧雰囲気で行われてもよいし、大気圧雰囲気で行われてもよい。
加熱処理により、導電体128と接する半導体膜125Aが低抵抗化し、低抵抗領域(N型領域)を形成することができる。半導体膜125Aと、導電体128が接する状態で、加熱処理を行うことで、導電体128と半導体膜125Aの界面には、導電体128が有する金属元素と、半導体膜125Aの成分とを含む金属化合物層が形成される場合がある。該金属化合物層が形成されることで、導電体128と接する領域において、半導体膜125Aの抵抗が低減するため好ましい。また、半導体膜125Aに含まれる酸素を、導電体128が吸収する場合がある。半導体膜125Aと、導電体128が接する状態で、加熱処理を行うことで、半導体膜125Aは、より低抵抗化する。また、加熱処理により、半導体膜125AがCAAC−OS、またはnc−OSとなる場合がある。また、半導体膜125Aの結晶性が向上する場合がある。該加熱処理は、マイクロ波処理前に行ってもよい。一方、上記マイクロ波処理、すなわちマイクロ波アニールが該加熱処理を兼ねてもよい。マイクロ波アニールにより、半導体膜125Aなどが十分加熱される場合、該加熱処理を行わなくてもよい。
上記マイクロ波処理、および加熱処理後の半導体膜125Aのキャリア濃度は、1×1018/cm未満、好ましくは、1×1017/cm以下、より好ましくは、1×1016/cm以下であることが好ましい。また、半導体膜125Aの導電体128と接する領域のキャリア濃度は、1×1018/cm以上、好ましくは、1×1019/cm以上、より好ましくは、1×1020/cm以上であることが好ましい。
なお、上記では、半導体膜125Aの高抵抗化処理を絶縁膜126Aの形成後に行う例を示したが、本実施の形態はこれに限らない。絶縁膜126Aの形成前に高抵抗化処理を行っても構わない。
次に、第1の開口底部に形成された半導体膜125A、および絶縁膜126Aを除去し、半導体125B、および絶縁体126Bを得る。半導体膜125A、および絶縁膜126Aの除去には、絶縁体131Aをマスクに用いて、異方性エッチングを用いることが好ましい。このとき、絶縁膜138A、およびマスク140B上の半導体膜125A、および絶縁膜126Aは、絶縁体131Aに覆われているため、除去されない(図14参照。)。第1の開口底部の半導体膜125A、および絶縁膜126Aを除去することで、再び導電体122が露出する。
次に、第1の開口内部に、導電体122と接するように半導体膜127Aを形成する(図14参照。)。このとき、半導体膜127Aは、第1の開口底部で半導体125Bと接するように形成することが好ましい。半導体膜127Aは、CVD法やALD法を用いて形成することができる。特に、ALD法を用いることで、アスペクト比の大きい溝や開口部に対しても、厚さの均一な膜を形成することができるため、好ましい。また、PEALD法を用いることで、熱ALD法に比べて低温で半導体膜127Aを形成することができるため、好ましい。または、ALD法と、CVD法を組み合わせて半導体膜127Aを形成してもよい。また、半導体膜127Aは、CAAC構造を有する酸化物半導体であることが好ましい。半導体膜127AがCAAC構造を有する酸化物半導体である場合、半導体膜127Aのc軸は、第1の開口内部において、被形成面の法線方向に配向する。このとき、第1の開口の側面に位置する半導体膜127Aのc軸は、被形成面から図14に示す軸185に向かって配向する。これにより、上記に位置する半導体127のc軸は、被形成面から軸185に向かって配向する。
ここで、半導体膜127Aとして、ALD法を用いて金属酸化物を形成する場合、インジウムを含むプリカーサ、ガリウムを含むプリカーサ、および亜鉛を含むプリカーサを用いてIn−Ga−Zn酸化物を形成することが好ましい。
インジウムを含むプリカーサとして、トリエチルインジウム、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオン酸)インジウム、シクロペンタジエニルインジウム、塩化インジウム(III)などを用いることができる。また、ガリウムを含むプリカーサとして、トリメチルガリウム、トリエチルガリウム、三塩化ガリウム、トリス(ジメチルアミド)ガリウム、ガリウム(III)アセチルアセトナート、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオン酸)ガリウム、ジメチルクロロガリウム、ジエチルクロロガリウム、塩化ガリウム(III)などを用いることができる。また、亜鉛を含むプリカーサとして、ジメチル亜鉛、ジエチル亜鉛、ビス(2,2,6,6−テトラメチル−3,5−ヘプタンジオン酸)亜鉛、塩化亜鉛などを用いることができる。
次に、半導体膜127Aの内側に、絶縁膜129Aを形成し、絶縁膜129Aの内側に、導電膜130Aを形成する(図14参照。)。半導体膜127A、絶縁膜129A、および導電膜130Aは、CVD法やALD法を用いて形成することができる。CVD法やALD法を用いることで、アスペクト比の大きい溝や開口部に対しても、厚さの均一な膜を形成することができるため、好ましい。または、ALD法と、CVD法を組み合わせて形成してもよい。また、形成する膜ごとに、異なる成膜方法や成膜装置を用いてもよい。例えば、半導体膜127Aの形成には、ALD法を用いることが好ましい。
また、絶縁膜129Aの形成には、PEALD法を用いることで、熱ALD法に比べて低温で絶縁膜129Aを形成することができるため、好ましい。また、導電膜130Aの形成には、CVD法を用いることが好ましい。あるいは、導電膜130Aが積層構造を有する場合、導電膜130Aの一層目は、ALD法を用いて形成し、導電膜130Aの二層目は、CVD法を用いて形成してもよい。
例えば、絶縁膜124Aと同様の方法で絶縁膜129Aを形成することができる。例えば、プリカーサとしてシリコンを含むガスと、リアクタントとして酸化性ガスを用いたPEALD法を用いて絶縁膜129Aを形成することが好ましい。シリコンを含むガスとして、SiH、SiF、SiHClなどを用いることができる。特に、SiHを用いることが好ましい。酸化性ガスとして、O、O、NO、NOなどを用いることができる。特に、NOを用いることが好ましい。また、リアクタントにヘリウム、ネオン、アルゴン、クリプトン、キセノンなどの希ガスを添加してもよい。
また、絶縁膜129Aの炭素濃度は、SIMSによる分析にて、好ましくは、1×1018atoms/cm以上5×1020atoms/cm以下、より好ましくは、5×1018atoms/cm以上1×1020atoms/cm以下である。また、絶縁膜129Aは、窒素を有し、その窒素濃度は、SIMS分析にて、好ましくは、3×1019atoms/cm以上1×1021atoms/cm以下、より好ましくは、1×1019atoms/cm以上2×1020atoms/cm以下である。
また、絶縁膜129Aに含まれるIn濃度は、1.0×1019atoms/cm以下、好ましくは、1.0×1018atoms/cm以下、より好ましくは、1.0×1017atoms/cm以下、であることが好ましい。
ここで、半導体膜127Aに対して、半導体膜125Aに行ったような高抵抗化処理を行ってもよい。半導体膜127Aに対して高抵抗化処理を行う場合、該高抵抗化処理は、導電膜130Aの形成前、または絶縁膜129Aの形成前に行うことが好ましい。また、半導体膜127Aに対して高抵抗化処理を行うことで、半導体膜125Aの高抵抗化も行える場合、先の工程の高抵抗化処理は省略してもよい。
次に、加熱処理を行う。加熱処理は、窒素を含む雰囲気で、200℃以上500℃以下、このましくは、300℃以上400℃以下で行うことが好ましい。加熱処理を行う雰囲気は、上記に限らず、窒素、酸素、およびアルゴンの少なくとも一を含む雰囲気で行えばよい。また、加熱処理は、減圧雰囲気で行われてもよいし、大気圧雰囲気で行われてもよい。また、加熱処理により、半導体膜127AがCAAC−OS、またはnc−OSとなる場合がある。また、半導体膜127Aの結晶性が向上する場合がある。該加熱処理をマイクロ波アニールにより行ってもよい。
上記高抵抗化処理、および加熱処理には、マイクロ波処理を用いことができる。
次に、導電膜130A、絶縁膜129A、半導体膜127A、絶縁体131A、絶縁体126B、半導体125B、およびマスク140Bを加工し、導電体130、絶縁体129、半導体127、絶縁体131、絶縁体126、半導体125、およびマスク140を得る(図15参照。)。該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。該加工において、導電膜130Aの加工を行い、導電膜130Aの加工後に絶縁膜129A、および半導体膜127Aの加工を行い、絶縁膜129A、および半導体膜127Aの加工後に、絶縁体131A、絶縁体126B、半導体125B、およびマスク140Bの加工を行ってもよい。このような加工工程においては、各加工工程で異なるマスクを形成すればよい。また、第1の加工として、導電膜130A、絶縁膜129A、半導体膜127A、絶縁体131A、絶縁体126B、半導体125B、およびマスク140Bを、マスクを用いて加工した後、第2の加工として、導電膜130A、絶縁膜129A、および半導体膜127Aの加工を再度行い、さらに第3の加工として、導電膜130Aの加工を再度行ってもよい。第2の加工、および第3の加工に用いるマスクは、第1の加工で用いたマスクを加工して用いてもよいし、異なるマスクを形成してもよい。
次に、絶縁膜138A上に、導電体130、絶縁体129、半導体127、絶縁体131、絶縁体126、半導体125、およびマスク140を覆うように絶縁体139を形成する。絶縁体139は、絶縁体132の形成に用いることができる方法にて形成することができ、絶縁体132に用いることができる材料を用いることができる。
次に、絶縁体139、絶縁膜138A、絶縁膜137A、絶縁膜123A、絶縁膜135A、および導電膜136Aを加工し、図16に示すような階段状の絶縁体139、絶縁体138、絶縁体137、絶縁体123、絶縁体135、および導電体136を形成する。絶縁体139、絶縁膜138A、絶縁膜137A、絶縁膜123A、絶縁膜135A、および導電膜136Aの加工において、絶縁体139、絶縁膜138A、絶縁膜137A、絶縁膜123A、絶縁膜135A、および導電膜136Aのエッチングと、マスクのスリミングを交互に行うことで、階段状の絶縁体139、絶縁体138、絶縁体137、絶縁体123、絶縁体135、および導電体136を形成することができる。
次に、絶縁体150を形成する(図16参照。)。絶縁体150は、CVD法を用いて形成することができる。絶縁体150は、CMP法や、リフロー法を用いて、平坦化処理されていることが好ましい。
次に、Y方向に配置されるメモリストリング120を分離するため、絶縁体150、絶縁体139、絶縁体138、絶縁体137、絶縁体123、絶縁体135、および導電体136を加工しスリットを形成する。なお、スリットは、図16に示す断面のY方向に形成されるため図示していない。また、スリットは、X方向に延伸するように形成される。また、スリットは、Y方向に配置された各メモリストリング120の間に形成されることが好ましい。
次に、絶縁体137、および絶縁体135を除去する(図17参照。)。絶縁体137、および絶縁体135の除去には、ウェットエッチング、またはドライエッチングを用いることができる。ウェットエッチングに用いられるエッチャント、またはドライエッチングに用いられるガスは、スリットから導入され、絶縁体137、および絶縁体135は等方性エッチングにより除去される。絶縁体137、および絶縁体135のエッチングガスとして、CHF、CH、およびCHFの少なくとも1を用いることができる。また、上記ガスの少なくとも1を含む混合ガスを用いることができる。混合ガスの例としては、上記ガスの少なくとも1と、He、Ne、Ar、Kr、Xe、およびRnから選ばれた1のガスを含む混合ガス等がある。また、絶縁体137、および絶縁体135のエッチャントとして、リン酸を用いることができる。なお、絶縁体137、および絶縁体135の除去にウェットエッチングを用いる場合、エッチャントの温度を調整することで、絶縁体137、および絶縁体135のエッチングレートを制御することができる。リン酸を加熱して絶縁体137、および絶縁体135をエッチングすることが好ましい。
絶縁体137、および絶縁体135の除去により、上下に位置する絶縁体123の間は空洞となる層が生じる。
絶縁体137、および絶縁体135を除去した領域に導電体182、および導電体183となる導電体を形成する(図18参照。)。該導電体は、CVD法やALD法を用いて形成することができる。特に、ALD法を用いることで、アスペクト比の大きい溝や開口部に対しても、厚さの均一な膜を形成することができるため、好ましい。また、該導電体として、導電体122、または導電膜136Aに用いることができる材料を用いることができる。該導電体は、導電体122、または導電膜136Aと同じ材料を含んでいてもよいし、異なる材料でもよい。また、該導電体の酸化を抑制するため、該導電体の形成前に、絶縁体181を形成することが好ましい。絶縁体181は酸素に対するバリア性を有することが好ましい。絶縁体181はALD法を用いて形成することができる。ALD法を用いることで、絶縁体123の上面、絶縁体123の下面、絶縁体124の側面、および絶縁体150の側面に絶縁体181を形成することができる。
次に、前工程で形成したスリット内に位置する該導電体に対して異方性エッチングすることで、導電体182、および導電体183を得る(図18参照。)。ここで、絶縁体135が設けられていた領域に形成された導電体を導電体182とし、絶縁体137が設けられていた領域に形成された導電体を導電体183とする。導電体182、および導電体183は、スリット側に位置する面、すなわちY方向に直交する面を除き、周囲が絶縁体181に覆われる。
次に、上記加工により除去された部分、すなわちスリット部を埋め込むように絶縁体を形成する。該絶縁体は、CVD法やALD法を用いて形成することができる。特に、ALD法を用いることで、アスペクト比の大きい溝や開口部に対しても、厚さの均一な膜を形成することができるため、好ましい。または、ALD法と、CVD法を組み合わせて絶縁体を形成してもよい。絶縁体は、CMP法や、リフロー法を用いて、平坦化処理されていることが好ましい。
次に、絶縁体150、絶縁体139、絶縁体129、絶縁体131、絶縁体126、絶縁体138、絶縁体181を、リソグラフィー法を用いて加工し、導電体182、導電体136、導電体130、導電体183、半導体125、および半導体127を露出するように第2の開口を形成する。第2の開口は、階段状に形成された導電体182、および導電体136それぞれに対して形成する(図19参照。)。
次に、第2の開口に埋め込むように、導電体182と電気的に接続する導電体161、導電体136と電気的に接続する導電体162、導電体183と電気的に接続する導電体164、半導体125と電気的に接続する導電体165、および半導体127と電気的に接続する導電体166を形成する(図19参照。)。導電体161、導電体162、導電体164、導電体165、および導電体166は、CVD法やALD法を用いて形成することができる。特に、ALD法を用いることで、アスペクト比の大きい溝や開口部に対しても、厚さの均一な膜を形成することができるため、好ましい。または、ALD法と、CVD法を組み合わせて上記導電体を形成してもよい。また、導電体161、導電体162、導電体164、導電体165、および導電体166は、複数の層からなる積層構造を有していてもよい。導電体161、導電体162、導電体164、導電体165、および導電体166は、絶縁体150上、および第2の開口内部に導電膜を形成し、CMPなどを用いて不要な導電膜を除去することで、形成することができる。
次に、導電体161と電気的に接続する導電体171、導電体162と電気的に接続する導電体172、導電体164と電気的に接続する導電体174、導電体165と電気的に接続する導電体175、および導電体166と電気的に接続する導電体176を形成する(図19参照。)。導電体171、導電体172、導電体174、導電体175、および導電体176は、絶縁体150上に導電膜を形成し、リソグラフィー法を用いて加工することで形成できる。該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
導電体171、導電体161、および導電体182は、導電体SG、または導電体WWLとして機能する。導電体172、導電体162、および導電体136は導電体RWLとして機能する。導電体174、導電体164、および導電体183は、導電体SELとして機能する。導電体175、導電体165は、導電体WBLとして機能する。導電体176、導電体166は、導電体RBLとして機能する。
次に、絶縁体150、スリットを埋め込むように形成された絶縁体、導電体171、導電体172、導電体174、導電体175、および導電体176を覆うように絶縁体156を形成する(図19参照。)。絶縁体156は、CVD法、ALD法、スパッタリング法等を用いて形成することができる。
次に、絶縁体156、絶縁体150、および絶縁体139を、リソグラフィー法を用いて加工し、導電体130を露出するように第3の開口を形成する(図19参照。)。
次に、第3の開口に埋め込むように、導電体130と電気的に接続する導電体163を形成する(図19参照。)。導電体163は、CVD法やALD法を用いて形成することができる。特に、ALD法を用いることで、アスペクト比の大きい溝や開口部に対しても、厚さの均一な膜を形成することができるため、好ましい。または、ALD法と、CVD法を組み合わせて上記導電体を形成してもよい。また、導電体163は、複数の層からなる積層構造を有していてもよい。導電体163は、絶縁体156上、および第3の開口内部に導電膜を形成し、CMPなどを用いて不要な導電膜を除去することで、形成することができる。
次に、導電体163と電気的に接続する導電体173を形成する(図19参照。)。導電体173は、絶縁体156上に導電膜を形成し、リソグラフィー法を用いて加工することで形成できる。該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
導電体173、導電体163、および導電体130は、導電体BGとして機能する。以上の工程により、チャネル形成領域として機能する半導体127と、ゲートとして機能する導電体182とを有するトランジスタSTr1、チャネル形成領域として機能する半導体125、および半導体127と、ゲートとして機能する導電体183とを有するトランジスタSTr2、チャネル形成領域として機能する半導体125と、ゲートとして機能する導電体182とを有するトランジスタWTr、およびチャネル形成領域として機能する半導体127と、ゲートとして機能する導電体136と、バックゲートとして機能する導電体130と、半導体127と導電体136の間の導電体128とを有するトランジスタRTrを作製することができる。また、トランジスタSTr1、トランジスタSTr2、トランジスタWTr、およびトランジスタRTrを有する記憶装置を作製することができる。
<成膜装置の構成例>
ここで、ALD法を用いて成膜することが可能な装置の一例として、成膜装置4000の構成について、図20A及び図20Bを用いて説明する。図20Aは、マルチチャンバー型の成膜装置4000の模式図であり、図20Bは、成膜装置4000に用いることができるALD装置の断面図である。
成膜装置4000は、搬入搬出室4002と、搬入搬出室4004と、搬送室4006と、成膜室4008と、成膜室4009と、成膜室4010と、搬送アーム4014と、を有する。ここで、搬入搬出室4002、搬入搬出室4004、及び成膜室4008乃至4010は、搬送室4006とそれぞれ独立に接続されている。これにより、成膜室4008乃至4010において大気に曝すことなく、連続成膜を行うことができ、膜中に不純物が混入するのを防ぐことができる。また、基板と膜の界面、および各膜の界面の汚染は低減され、清浄な界面が得られる。
なお、搬入搬出室4002、搬入搬出室4004、搬送室4006、及び成膜室4008乃至4010は、水分の付着などを防ぐため、露点が管理された不活性ガス(窒素ガス等)を充填させておくことが好ましく、減圧を維持させることが望ましい。
また、成膜室4008乃至4010には、ALD装置を用いることができる。また、成膜室4008乃至4010のいずれかにALD装置以外の成膜装置を用いる構成としてもよい。成膜室4008乃至4010に用いることができる成膜装置としては、例えば、スパッタリング装置、プラズマCVD(PECVD:Plasma Enhanced CVD)装置、熱CVD(TCVD:Thermal CVD)装置、光CVD(Photo CVD)装置、金属CVD(MCVD:Metal CVD)装置、有機金属CVD(MOCVD:Metal Organic CVD)装置などがある。また、成膜室4008乃至4010のいずれか1つまたは複数に、成膜装置以外の機能を有する装置を設けても構わない。当該装置としては、例えば、加熱装置(代表的には、真空加熱装置)、プラズマ発生装置(代表的には、μ波プラズマ発生装置)などが挙げられる。
例えば、成膜室4008をALD装置とし、成膜室4009をPECVD装置とし、成膜室4010を金属CVD装置とした場合、成膜室4008で金属酸化物、成膜室4009でゲート絶縁膜として機能する絶縁膜、成膜室4010でゲート電極として機能する導電膜を形成することができる。このとき、金属酸化物と、その上の絶縁膜と、その上の導電膜を、大気に曝すことなく、連続で形成することができる。
また、成膜装置4000は、搬入搬出室4002、搬入搬出室4004、成膜室4008乃至4010を有する構成としているが、本発明はこれに限られるものではない。成膜装置4000の成膜室を4個以上にする構成としてもよい。また、成膜装置4000は枚葉式としてもよいし、複数の基板を一括で成膜するバッチ式にしてもよい。
<ALD装置>
次に、成膜装置4000に用いることができるALD装置の構成について、図20Bを用いて説明する。ALD装置は、成膜室(チャンバー4020)と、原料供給部4021(原料供給部4021a、および4021b)、原料供給部4031と、導入量制御器である高速バルブ4022a、4022bと、原料導入口4023(原料導入口4023a、および4023b)、原料導入口4033と、原料排出口4024と、排気装置4025を有する。チャンバー4020内に設置される原料導入口4023a、4023b、および4033は供給管やバルブを介して原料供給部4021a、4021b、および4031とそれぞれ接続されており、原料排出口4024は、排出管やバルブや圧力調整器を介して排気装置4025と接続されている。
また、図20Bに示すようにチャンバー4020にプラズマ発生装置4028を接続することにより、熱ALD法に加えて、プラズマALD法で成膜を行うことができる。プラズマ発生装置4028は、高周波電源に接続されたコイル4029を用いるICP型のプラズマ発生装置とするのが好ましい。高周波電源は、10kHz以上100MHz以下、好ましくは1MHz以上60MHz以下、より好ましくは10MHz以上60MHz以下の周波数を持った電力を出力することができる。例えば、13.56MHz、60MHzの周波数を持った電力を出力することができる。プラズマALD法では、低温でも成膜レートを落とさず成膜ができるので、成膜効率の低い枚葉式の成膜装置で用いるとよい。
チャンバー内部には基板ホルダ4026があり、その基板ホルダ4026上に基板4030を配置する。基板ホルダ4026には、一定の電位、または高周波が印加される機構が設けられていてもよい。あるいは、基板ホルダ4026は、フローティングでもよいし、接地されていてもよい。また、チャンバー外壁には、ヒータ4027が設けられており、チャンバー4020内部、基板ホルダ4026、および基板4030表面などの温度を制御することができる。ヒータ4027は、基板4030表面の温度を100℃以上500℃以下、好ましくは、200℃以上400℃以下に制御できることが好ましく、ヒータ4027自体の温度は100℃以上500℃以下に設定できることが好ましい。
原料供給部4021a、4021b、および4031では、気化器や加熱手段などによって固体の原料や液体の原料から原料ガスを形成する。または、原料供給部4021a、4021b、および4031は、気体の原料ガスを供給する構成としてもよい。
また、図20Bでは、原料供給部4021を2つ、原料供給部4031を1つ設けている例を示しているが本実施の形態はこれに限定されない。原料供給部4021を1つ、または3つ以上設けてもよい。また原料供給部4031を2つ以上設けてもよい。また、高速バルブ4022a、4022bは時間で精密に制御することができ、原料供給部4021aから供給される原料ガスと原料供給部4021bから供給される原料ガスの供給を制御する構成となっている。
図20Bに示す成膜装置では、基板4030を基板ホルダ4026上に搬入し、チャンバー4020を密閉状態とした後、ヒータ4027により基板4030を所望の温度(例えば、100℃以上500℃以下、好ましくは200℃以上400℃以下)とし、原料供給部4021aから供給される原料ガスの供給と、排気装置4025による排気と、原料供給部4031から供給される原料ガスの供給と、排気装置4025による排気とを繰り返すことで薄膜を基板表面に形成する。また、該薄膜の形成において、さらに原料供給部4021bから供給される原料ガスの供給と、排気装置4025による排気を行ってもよい。ヒータ4027の温度は、形成される膜種、原料ガス、所望の膜質、基板や、そこの設けられている膜や素子の耐熱性に応じて適宜決定すればよい。例えば、ヒータ4027の温度を200℃以上300℃以下に設定して成膜してもよいし、300℃以上500℃以下に設定して成膜してもよい。
ヒータ4027を用いて基板4030を加熱しながら成膜することで、後工程で必要な基板4030の加熱処理を省略することができる。すなわち、ヒータ4027が設けられたチャンバー4020、または成膜装置4000を用いることで、基板4030上の膜の形成と、基板4030の加熱処理を兼ねることができる。
図20Bに示す成膜装置では、原料供給部4021、および原料供給部4031で用いる原料(揮発性有機金属化合物など)を適宜選択することにより、金属酸化物を形成することができる。
金属酸化物として、インジウム、ガリウム、亜鉛を含むIn−Ga−Zn酸化物を形成する場合、原料供給部4031以外に少なくとも3つの原料供給部4021が設けられた成膜装置を用いることが好ましい。すなわち、第1の原料供給部4021からインジウムを含むプリカーサが供給され、第2の原料供給部4021からガリウムを含むプリカーサが供給され、第3の原料供給部4021から亜鉛を含むプリカーサが供給されることが好ましい。
金属酸化物の形成に、ガリウムおよび亜鉛を含むプリカーサを用いる場合、原料供給部4021は、少なくとも2つ設けられればよい。インジウムを含むプリカーサ、ガリウムを含むプリカーサ、および亜鉛を含むプリカーサとして、それぞれ前述したプリカーサを用いることができる。
また、原料供給部4031からは、リアクタントが供給される。リアクタントとして、オゾン、酸素、水の少なくとも1つを含む酸化剤を用いることができる。
また、原料供給部4021a、4021b、および4031で用いる原料(揮発性有機金属化合物など)を適宜選択することにより、ハフニウム、アルミニウム、タンタル、ジルコニウム等から選択された一種以上の元素を含む酸化物(複合酸化物も含む)を含んで構成される絶縁層を成膜することができる。具体的には、酸化ハフニウムを含んで構成される絶縁層、酸化アルミニウムを含んで構成される絶縁層、ハフニウムシリケートを含んで構成される絶縁層、またはアルミニウムシリケートを含んで構成される絶縁層などを成膜することができる。また、原料供給部4021a、4021b、および4031で用いる原料(揮発性有機金属化合物など)を適宜選択することにより、タングステン層、チタン層などの金属層や、窒化チタン層などの窒化物層などの薄膜を成膜することもできる。
例えば、ALD装置により酸化ハフニウム層を形成する場合には、溶媒とハフニウム前駆体化合物を含む液体(ハフニウムアルコキシドや、テトラキスジメチルアミドハフニウム(TDMAHf)などのハフニウムアミド)を気化させた第1の原料ガスと、酸化剤としてオゾン(O)および酸素(O)の第2の原料ガスを用いる。この場合、原料供給部4021aから供給する第1の原料ガスがTDMAHfであり、原料供給部4031から供給する第2の原料ガスがオゾンおよび酸素となる。なお、テトラキスジメチルアミドハフニウムの化学式はHf[N(CHである。また、他の材料液としては、テトラキス(エチルメチルアミド)ハフニウムなどがある。また、第2の原料ガスとして、水を用いることができる。
ALD装置により酸化アルミニウム層を形成する場合には、溶媒とアルミニウム前駆体化合物(TMA:トリメチルアルミニウムなど)を含む液体を気化させた第1の原料ガスと、酸化剤としてオゾン(O)および酸素(O)を含む第2の原料ガスを用いる。この場合、原料供給部4021aから供給する第1の原料ガスがTMAであり、原料供給部4031から供給する第2の原料ガスがオゾンおよび酸素となる。なお、トリメチルアルミニウムの化学式はAl(CHである。また、他の材料液としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、アルミニウムトリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)などがある。また、第2の原料ガスとして、水を用いることができる。
図21は、成膜装置4000に用いることができるALD装置の異なる構成について説明する。なお、図20Bに示したALD装置と同様の構成や、その機能については詳細な説明を省略する場合がある。
図21AはプラズマALD装置の一態様を示す模式図である。プラズマALD装置4100は、反応室4120と反応室4120上部に、プラズマ生成室4111が設けられている。反応室4120は、チャンバーと呼ぶことができる。または、反応室4120とプラズマ生成室4111を合わせてチャンバーと呼ぶことができる。反応室4120は、原料導入口4123と、原料排出口4124を有し、プラズマ生成室4111は、原料導入口4133を有する。また、プラズマ生成装置4128によりRF等の高周波や、マイクロ波をプラズマ生成室4111に導入されたガスに印加し、プラズマ生成室4111内にプラズマ4131を生成することができる。マイクロ波を用いてプラズマ4131を生成する場合、代表的には周波数2.45GHzのマイクロ波が用いられる。マイクロ波を用いて生成されたプラズマをECR(Electron Cyclotron Resonance)プラズマと呼ぶ場合がある。また、反応室4120は、基板ホルダ4126を有し、その上に基板4130が配置される。原料導入口4123から導入された原料ガスは、反応室4120に設けられたヒータからの熱により分解され、基板4130上に堆積する。また、原料導入口4133から導入された原料ガスは、プラズマ生成装置4128によりプラズマ状態となる。プラズマ状態となった原料ガスは、基板4130表面に到達するまでに電子や他の分子と再結合し、ラジカル状態となり基板4130に到達する。このように、ラジカルを利用して成膜を行うALD装置を、ラジカルALD(Radical−Enhanced ALD)装置と呼ぶ場合もある。また、プラズマALD装置4100では、プラズマ生成室4111を反応室4120の上部に設ける構成を示しているが、本実施の形態はこれに限定されない。プラズマ生成室4111を反応室4120の側面に隣接して設けてもよい。
図21BはプラズマALD装置の一態様を示す模式図である。プラズマALD装置4200は、チャンバー4220を有している。チャンバー4220は、電極4213、原料排出口4224、基板ホルダ4226を有し、その上に基板4230が配置される。電極4213は、原料導入口4223と、導入された原料ガスをチャンバー4220内に供給するシャワーヘッド4214を有している。また、電極4213には、コンデンサ4217を介して高周波を印加できる電源4215が接続されている。基板ホルダ4226には、一定の電位、または高周波が印加される機構が設けられていてもよい。あるいは、基板ホルダ4226は、フローティングでもよいし、接地されていてもよい。電極4213、および基板ホルダ4226は、それぞれプラズマ4231を生成するための上部電極、および下部電極として機能する。原料導入口4223から導入された原料ガスは、チャンバー4220に設けられたヒータからの熱により分解され、基板4230上に堆積する。または、原料導入口4223から導入された原料ガスは、電極4213、および基板ホルダ4226の間でプラズマ状態となる。プラズマ状態となった原料ガスは、プラズマ4231と基板4230の間に生じる電位差(イオンシースともいう)により基板4230に入射する。
図21Cは、図21Bとは異なるプラズマALD装置の一態様を示す模式図である。プラズマALD装置4300は、チャンバー4320を有している。チャンバー4320は、電極4313、原料排出口4324、基板ホルダ4326を有し、その上に基板4330が配置される。電極4313は、原料導入口4323と、導入された原料ガスをチャンバー4320内に供給するシャワーヘッド4314を有している。また、電極4313には、コンデンサ4317を介して高周波を印加できる電源4315が接続されている。基板ホルダ4326には、一定の電位、または高周波が印加される機構が設けられていてもよい。あるいは、基板ホルダ4326は、フローティングでもよいし、接地されていてもよい。電極4313、および基板ホルダ4326は、それぞれプラズマ4331を生成するための上部電極、および下部電極として機能する。プラズマALD装置4300は、電極4313と基板ホルダ4326の間に、コンデンサ4322を介して高周波を印加できる電源4321が接続されたメッシュ4319を有している点で、プラズマALD装置4200と異なる。メッシュ4319を設けることで、基板4130からプラズマ4231を離すことができる。原料導入口4323から導入された原料ガスは、チャンバー4320に設けられたヒータからの熱により分解され、基板4330上に堆積する。または、原料導入口4323から導入された原料ガスは、電極4313、および基板ホルダ4326の間でプラズマ状態となる。プラズマ状態となった原料ガスは、メッシュ4319により電荷が除去され、ラジカルなどの電気的に中性な状態で基板4130に到達する。このため、イオンの入射やプラズマによる損傷が抑制された成膜を行うことができる。
ALD法を用いて半導体125、または半導体127を形成することで、被成膜面の法線方向と概略平行にc軸が配向したCAAC構造の金属酸化物を形成することができる場合がある。
<マイクロ波処理装置>
以下では、上記半導体装置の作製方法に用いることができる、マイクロ波処理装置について説明する。
まずは、半導体装置などの製造時に不純物の混入が少ない製造装置の構成について図22、図23および図24を用いて説明する。
図22は、枚葉式マルチチャンバーの製造装置2700の上面図を模式的に示している。製造装置2700は、基板を収容するカセットポート2761と、基板のアライメントを行うアライメントポート2762と、を備える大気側基板供給室2701と、大気側基板供給室2701から、基板を搬送する大気側基板搬送室2702と、基板の搬入を行い、かつ室内の圧力を大気圧から減圧、または減圧から大気圧へ切り替えるロードロック室2703aと、基板の搬出を行い、かつ室内の圧力を減圧から大気圧、または大気圧から減圧へ切り替えるアンロードロック室2703bと、真空中の基板の搬送を行う搬送室2704と、チャンバー2706aと、チャンバー2706bと、チャンバー2706cと、チャンバー2706dと、を有する。
また、大気側基板搬送室2702は、ロードロック室2703aおよびアンロードロック室2703bと接続され、ロードロック室2703aおよびアンロードロック室2703bは、搬送室2704と接続され、搬送室2704は、チャンバー2706a、チャンバー2706b、チャンバー2706cおよびチャンバー2706dと接続する。
なお、各室の接続部にはゲートバルブGVが設けられており、大気側基板供給室2701と、大気側基板搬送室2702を除き、各室を独立して真空状態に保持することができる。また、大気側基板搬送室2702には搬送ロボット2763aが設けられており、搬送室2704には搬送ロボット2763bが設けられている。搬送ロボット2763aおよび搬送ロボット2763bによって、製造装置2700内で基板を搬送することができる。
搬送室2704および各チャンバーの背圧(全圧)は、例えば、1×10−4Pa以下、好ましくは3×10−5Pa以下、さらに好ましくは1×10−5Pa以下とする。また、搬送室2704および各チャンバーの質量電荷比(m/z)が18である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。また、搬送室2704および各チャンバーのm/zが28である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。また、搬送室2704および各チャンバーのm/zが44である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。
なお、搬送室2704および各チャンバー内の全圧および分圧は、質量分析計を用いて測定することができる。例えば、株式会社アルバック製四重極形質量分析計(Q−massともいう。)Qulee CGM−051を用いればよい。
また、搬送室2704および各チャンバーは、外部リークまたは内部リークが少ない構成とすることが望ましい。例えば、搬送室2704および各チャンバーのリークレートは、3×10−6Pa・m/s以下、好ましくは1×10−6Pa・m/s以下とする。また、例えば、m/zが18である気体分子(原子)のリークレートが1×10−7Pa・m/s以下、好ましくは3×10−8Pa・m/s以下とする。また、例えば、m/zが28である気体分子(原子)のリークレートが1×10−5Pa・m/s以下、好ましくは1×10−6Pa・m/s以下とする。また、例えば、m/zが44である気体分子(原子)のリークレートが3×10−6Pa・m/s以下、好ましくは1×10−6Pa・m/s以下とする。
なお、リークレートに関しては、前述の質量分析計を用いて測定した全圧および分圧から導出すればよい。リークレートは、外部リークおよび内部リークに依存する。外部リークは、微小な穴やシール不良などによって真空系外から気体が流入することである。内部リークは、真空系内のバルブなどの仕切りからの漏れや内部の部材からの放出ガスに起因する。リークレートを上述の数値以下とするために、外部リークおよび内部リークの両面から対策をとる必要がある。
例えば、搬送室2704および各チャンバーの開閉部分はメタルガスケットでシールするとよい。メタルガスケットは、フッ化鉄、酸化アルミニウム、または酸化クロムによって被覆された金属を用いると好ましい。メタルガスケットはOリングと比べ密着性が高く、外部リークを低減できる。また、フッ化鉄、酸化アルミニウム、酸化クロムなどによって被覆された金属の不動態を用いることで、メタルガスケットから放出される不純物を含む放出ガスが抑制され、内部リークを低減することができる。
また、製造装置2700を構成する部材として、不純物を含む放出ガスの少ないアルミニウム、クロム、チタン、ジルコニウム、ニッケルまたはバナジウムを用いる。また、前述の不純物を含む放出ガスの少ない金属を鉄、クロムおよびニッケルなどを含む合金に被覆して用いてもよい。鉄、クロムおよびニッケルなどを含む合金は、剛性があり、熱に強く、また加工に適している。ここで、表面積を小さくするために部材の表面凹凸を研磨などによって低減しておくと、放出ガスを低減できる。
または、前述の製造装置2700の部材をフッ化鉄、酸化アルミニウム、酸化クロムなどで被覆してもよい。
製造装置2700の部材は、極力金属のみで構成することが好ましく、例えば石英などで構成される覗き窓などを設置する場合も、放出ガスを抑制するために表面をフッ化鉄、酸化アルミニウム、酸化クロムなどで薄く被覆するとよい。
搬送室2704および各チャンバーに存在する吸着物は、内壁などに吸着しているために搬送室2704および各チャンバーの圧力に影響しないが、搬送室2704および各チャンバーを排気した際のガス放出の原因となる。そのため、リークレートと排気速度に相関はないものの、排気能力の高いポンプを用いて、搬送室2704および各チャンバーに存在する吸着物をできる限り脱離し、あらかじめ排気しておくことは重要である。なお、吸着物の脱離を促すために、搬送室2704および各チャンバーをベーキングしてもよい。ベーキングすることで吸着物の脱離速度を10倍程度大きくすることができる。ベーキングは100℃以上450℃以下で行えばよい。このとき、不活性ガスを搬送室2704および各チャンバーに導入しながら吸着物の除去を行うと、排気するだけでは脱離しにくい水などの脱離速度をさらに大きくすることができる。なお、導入する不活性ガスをベーキングの温度と同程度に加熱することで、吸着物の脱離速度をさらに高めることができる。ここで不活性ガスとして希ガスを用いると好ましい。
または、加熱した希ガスなどの不活性ガスまたは酸素などを導入することで搬送室2704および各チャンバー内の圧力を高め、一定時間経過後に再び搬送室2704および各チャンバーを排気する処理を行うと好ましい。加熱したガスの導入により搬送室2704および各チャンバー内の吸着物を脱離させることができ、搬送室2704および各チャンバー内に存在する不純物を低減することができる。なお、この処理は2回以上30回以下、好ましくは5回以上15回以下の範囲で繰り返し行うと効果的である。具体的には、温度が40℃以上400℃以下、好ましくは50℃以上200℃以下である不活性ガスまたは酸素などを導入することで搬送室2704および各チャンバー内の圧力を0.1Pa以上10kPa以下、好ましくは1Pa以上1kPa以下、さらに好ましくは5Pa以上100Pa以下とし、圧力を保つ期間を1分以上300分以下、好ましくは5分以上120分以下とすればよい。その後、搬送室2704および各チャンバーを5分以上300分以下、好ましくは10分以上120分以下の期間排気する。
次に、チャンバー2706bおよびチャンバー2706cについて図23に示す断面模式図を用いて説明する。
チャンバー2706bおよびチャンバー2706cは、例えば、被処理物にマイクロ波処理を行うことが可能なチャンバーである。なお、チャンバー2706bと、チャンバー2706cと、はマイクロ波処理を行う際の雰囲気が異なるのみである。そのほかの構成については共通するため、以下ではまとめて説明を行う。
チャンバー2706bおよびチャンバー2706cは、スロットアンテナ板2808と、誘電体板2809と、基板ホルダ2812と、排気口2819と、を有する。また、チャンバー2706bおよびチャンバー2706cの外などには、ガス供給源2801と、バルブ2802と、高周波発生器2803と、導波管2804と、モード変換器2805と、ガス管2806と、導波管2807と、マッチングボックス2815と、高周波電源2816と、真空ポンプ2817と、バルブ2818と、が設けられる。
高周波発生器2803は、導波管2804を介してモード変換器2805と接続している。モード変換器2805は、導波管2807を介してスロットアンテナ板2808に接続している。スロットアンテナ板2808は、誘電体板2809と接して配置される。また、ガス供給源2801は、バルブ2802を介してモード変換器2805に接続している。そして、モード変換器2805、導波管2807および誘電体板2809を通るガス管2806によって、チャンバー2706bおよびチャンバー2706cにガスが送られる。また、真空ポンプ2817は、バルブ2818および排気口2819を介して、チャンバー2706bおよびチャンバー2706cからガスなどを排気する機能を有する。また、高周波電源2816は、マッチングボックス2815を介して基板ホルダ2812に接続している。
基板ホルダ2812は、基板2811を保持する機能を有する。例えば、基板2811を静電チャックまたは機械的にチャックする機能を有する。また、高周波電源2816から電力を供給される電極としての機能を有する。また、内部に加熱機構2813を有し、基板2811を加熱する機能を有する。
真空ポンプ2817としては、例えば、ドライポンプ、メカニカルブースターポンプ、イオンポンプ、チタンサブリメーションポンプ、クライオポンプまたはターボ分子ポンプなどを用いることができる。また、真空ポンプ2817に加えて、クライオトラップを用いてもよい。クライオポンプおよびクライオトラップを用いると、水を効率よく排気できて特に好ましい。
また、加熱機構2813としては、例えば、抵抗発熱体などを用いて加熱する加熱機構とすればよい。または、加熱されたガスなどの媒体からの熱伝導または熱輻射によって、加熱する加熱機構としてもよい。例えば、GRTA(Gas Rapid Thermal Annealing)またはLRTA(Lamp Rapid Thermal Annealing)などのRTA(Rapid Thermal Annealing)を用いることができる。GRTAは、高温のガスを用いて加熱処理を行う。ガスとしては、不活性ガスが用いられる。
また、ガス供給源2801は、マスフローコントローラを介して、精製機と接続されていてもよい。ガスは、露点が−80℃以下、好ましくは−100℃以下であるガスを用いることが好ましい。例えば、酸素ガス、窒素ガス、および希ガス(アルゴンガスなど)を用いればよい。
誘電体板2809としては、例えば、酸化シリコン(石英)、酸化アルミニウム(アルミナ)または酸化イットリウム(イットリア)などを用いればよい。また、誘電体板2809の表面に、さらに別の保護層が形成されていてもよい。保護層としては、酸化マグネシウム、酸化チタン、酸化クロム、酸化ジルコニウム、酸化ハフニウム、酸化タンタル、酸化シリコン、酸化アルミニウムまたは酸化イットリウムなどを用いればよい。誘電体板2809は、後述する高密度プラズマ2810の特に高密度領域に曝されることになるため、保護層を設けることで損傷を緩和することができる。その結果、処理時のパーティクルの増加などを抑制することができる。
高周波発生器2803では、例えば、0.3GHz以上6.0GHz以下のマイクロ波を発生させる機能を有する。例えば、0.7GHz以上1.1GHz以下、または2.2GHz以上2.8GHz以下、または5.0GHz以上6.0GHz以下のマイクロ波を発生させることができる。高周波発生器2803で発生させたマイクロ波は、導波管2804を介してモード変換器2805に伝わる。モード変換器2805では、TEモードとして伝わったマイクロ波がTEMモードに変換される。そして、マイクロ波は、導波管2807を介してスロットアンテナ板2808に伝わる。スロットアンテナ板2808は、複数のスロット孔が設けられており、マイクロ波は該スロット孔および誘電体板2809を通過する。そして、誘電体板2809の下方に電界を生じさせ、高密度プラズマ2810を生成することができる。高密度プラズマ2810には、ガス供給源2801から供給されたガス種に応じたイオンおよびラジカルが存在する。例えば、酸素ラジカルなどが存在する。
このとき、基板2811が高密度プラズマ2810で生成されたイオンおよびラジカルによって、基板2811上の膜などを改質することができる。なお、高周波電源2816を用いて、基板2811側にバイアスを印加すると好ましい場合がある。高周波電源2816には、例えば、13.56MHz、27.12MHzなどの周波数のRF(Radio Frequency)電源を用いればよい。基板側にバイアスを印加することで、高密度プラズマ2810中のイオンを基板2811上の膜などの開口部の奥まで効率よく到達させることができる。
例えば、チャンバー2706bまたはチャンバー2706cで、ガス供給源2801から酸素を導入することで高密度プラズマ2810を用いた酸素ラジカル処理を行うことができる。
次に、チャンバー2706aおよびチャンバー2706dについて図24に示す断面模式図を用いて説明する。
チャンバー2706aおよびチャンバー2706dは、例えば、被処理物に電磁波の照射を行うことが可能なチャンバーである。なお、チャンバー2706aと、チャンバー2706dと、は電磁波の種類が異なるのみである。そのほかの構成については共通する部分が多いため、以下ではまとめて説明を行う。
チャンバー2706aおよびチャンバー2706dは、一または複数のランプ2820と、基板ホルダ2825と、ガス導入口2823と、排気口2830と、を有する。また、チャンバー2706aおよびチャンバー2706dの外などには、ガス供給源2821と、バルブ2822と、真空ポンプ2828と、バルブ2829と、が設けられる。
ガス供給源2821は、バルブ2822を介してガス導入口2823に接続している。真空ポンプ2828は、バルブ2829を介して排気口2830に接続している。ランプ2820は、基板ホルダ2825と向かい合って配置されている。基板ホルダ2825は、基板2824を保持する機能を有する。また、基板ホルダ2825は、内部に加熱機構2826を有し、基板2824を加熱する機能を有する。
ランプ2820としては、例えば、可視光または紫外光などの電磁波を放射する機能を有する光源を用いればよい。例えば、波長10nm以上2500nm以下、500nm以上2000nm以下、または40nm以上340nm以下にピークを有する電磁波を放射する機能を有する光源を用いればよい。
例えば、ランプ2820としては、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプまたは高圧水銀ランプなどの光源を用いればよい。
例えば、ランプ2820から放射される電磁波は、その一部または全部が基板2824に吸収されることで基板2824上の膜などを改質することができる。例えば、欠陥の生成もしくは低減、または不純物の除去などができる。なお、基板2824を加熱しながら行うと、効率よく、欠陥の生成もしくは低減、または不純物の除去などができる。
または、例えば、ランプ2820から放射される電磁波によって、基板ホルダ2825を発熱させ、基板2824を加熱してもよい。その場合、基板ホルダ2825の内部に加熱機構2826を有さなくてもよい。
真空ポンプ2828は、真空ポンプ2817についての記載を参照する。また、加熱機構2826は、加熱機構2813についての記載を参照する。また、ガス供給源2821は、ガス供給源2801についての記載を参照する。
本実施の形態に用いることができるマイクロ波処理装置は、上記に限らない。図25に示すマイクロ波処理装置2900を用いることができる。マイクロ波処理装置2900は、石英管2901、排気口2819、ガス供給源2801、バルブ2802、高周波発生器2803、導波管2804、ガス管2806、真空ポンプ2817、およびバルブ2818を有する。また、マイクロ波処理装置2900は、石英管2901内に、複数の基板2811(2811_1乃至2811_n、nは2以上の整数)を保持する基板ホルダ2902を有する。また、マイクロ波処理装置2900は、石英管2901の外側に、加熱手段2903を有していてもよい。
高周波発生器2803で発生させたマイクロ波は、導波管2804を介して、石英管2901内に設けられた基板に照射される。真空ポンプ2817は、バルブ2818を介して排気口2819と接続されており、石英管2901内部の圧力を調整することができる。また、ガス供給源2801は、バルブ2802を介して、ガス管2806に接続されており、石英管2901内に所望のガスを導入することができる。また、加熱手段2903により、石英管2901内の基板2811を、所望の温度に加熱することができる。または、加熱手段2903により、ガス供給源2801から供給されるガスを加熱してもよい。マイクロ波処理装置2900により、基板2811に対して、加熱処理と、マイクロ波処理を同時に行うことができる。また、基板2811を加熱した後に、マイクロ波処理を行うことができる。また、基板2811に対してマイクロ波処理を行った後に、加熱処理を行うことができる。
基板2811_1乃至基板2811_nは、全て半導体装置、または記憶装置を形成する処理基板でもよいし、一部の基板をダミー基板としてもよい。例えば、基板2811_1、および基板2811_nをダミー基板とし、基板2811_2乃至基板2811_n−1を処理基板としてもよい。また、基板2811_1、基板2811_2、基板2811_n−1、および基板2811_nをダミー基板とし、基板2811_3乃至基板2811_n−2を処理基板としてもよい。ダミー基板を用いることで、マイクロ波処理、または加熱処理の際、複数の処理基板が均一に処理され、処理基板間のばらつきを低減できるため好ましい。例えば、高周波発生器2803、および導波管2804に最も近い処理基板上にダミー基板を配置することで、該処理基板が直接マイクロ波に曝されることを抑制できるため、好ましい。
以上の製造装置を用いることで、被処理物への不純物の混入を抑制しつつ、膜の改質などが可能となる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、記憶装置であるメモリストリング120の回路構成と動作について説明する。図26にメモリストリング120の回路構成例を示す。また、図27に記憶素子MCの等価回路図を示す。
また、図面などにおいて、配線、電極または導電体などの電位をわかりやすくするため、配線、電極または導電体などに隣接してH電位を示す“H”、またはL電位を示す“L”を付記する場合がある。また、電位変化が生じた配線、電極または導電体などには、“H”または“L”を囲み文字で付記する場合がある。また、トランジスタがオフ状態である場合、当該トランジスタに重ねて“×”記号を付記する場合がある。
<メモリストリングの回路構成例>
図26では、5つの記憶素子MCを備えるメモリストリング120の回路構成例を示している。記憶素子MCはトランジスタWTrおよびトランジスタRTrを有する。図26では、記憶素子MC[1]に含まれるトランジスタWTrをトランジスタWTr[1]と示し、記憶素子MC[1]に含まれるトランジスタRTrをトランジスタRTr[1]と示している。よって、図26に示すメモリストリング120は、トランジスタWTr[1]乃至トランジスタWTr[5]、およびトランジスタRTr[1]乃至トランジスタRTr[5]を有する。また、図26に示すメモリストリング120は、トランジスタSTr1、トランジスタSTr2、およびトランジスタSTr3を有する。メモリストリング120は、NAND型の記憶装置である。
なお、等価回路図などにおいて、トランジスタがOSトランジスタであることを明示するために、トランジスタの回路記号に「OS」を付記する場合がある。同様に、トランジスタがSiトランジスタ(チャネルが形成される半導体層にシリコンを用いたトランジスタ)であることを明示するために、トランジスタの回路記号に「Si」を付記する場合がある。図26では、トランジスタWTrおよびトランジスタRTrがOSトランジスタであることを示している。
OSメモリを含むNAND型の記憶装置を「OS NAND型」または「OS NAND型の記憶装置」ともいう。また、複数のOSメモリがZ方向に積層された構成を有するOS NAND型の記憶装置を「3D OS NAND型」または「3D OS NAND型の記憶装置」ともいう。
トランジスタWTrはノーマリーオフ型のトランジスタであり。トランジスタRTrはノーマリーオン型のトランジスタである。また、上記実施の形態で説明した通り、トランジスタRTrは、ゲートと半導体層の間に導電体128を備える。導電体128は、トランジスタRTrのフローティングゲートとして機能できる。例えば、トランジスタRTr[1]に含まれる導電体128を導電体128[1]と呼ぶ。
また、導電体128と、トランジスタWTrのソースまたはドレインの一方が電気的に接続する接点をノードNDとする。例えば、導電体128[1]と、トランジスタWTr[1]のソースまたはドレインの一方が電気的に接続する接点をノードND[1]と呼ぶ。
トランジスタRTr[1]のソースまたはドレインの一方は、トランジスタSTr1のソースまたはドレインの一方と電気的に接続され、他方はトランジスタRTr[2]のソースまたはドレインの一方と電気的に接続される。トランジスタRTr[1]のゲートは導電体RWL[1]と電気的に接続される。トランジスタRTr[1]のバックゲートは導電体BGと電気的に接続される。トランジスタWTr[1]のソースまたはドレインの一方は導電体128[1]と電気的に接続され、他方は導電体128[2]と電気的に接続される。トランジスタWTr[1]のゲートは導電体WWL[1]と電気的に接続される。また、トランジスタSTr1のソースまたはドレインの他方は導電体122と電気的に接続され、ゲートは導電体SGと電気的に接続される。
ここで、図27に示すように、トランジスタRTrは、容量CsとトランジスタTrに置き換えて表すことができる。トランジスタTrのゲートは、容量Csを介して導電体RWLと電気的に接続される。
また、トランジスタRTr[5]のソースまたはドレインの一方は、トランジスタRTr[4]のソースまたはドレインの他方と電気的に接続され、他方はトランジスタSTr2のソースまたはドレインの一方と電気的に接続される。トランジスタRTr[5]のゲートは、導電体RWL[5]と電気的に接続される。トランジスタRTr[5]のバックゲートは導電体BGと電気的に接続される。トランジスタWTr[5]のソースまたはドレインの一方は導電体128[5]と電気的に接続され、他方はトランジスタSTr3のソースまたはドレインの一方と電気的に接続される。トランジスタWTr[5]のゲートは導電体WWL[5]と電気的に接続される。また、トランジスタSTr2のソースまたはドレインの他方は導電体RBLと電気的に接続され、ゲートは導電体RSELと電気的に接続される。また、トランジスタSTr3のソースまたはドレインの他方は導電体WBLと電気的に接続され、ゲートは導電体WSELと電気的に接続される。
メモリストリング120がn個(nは1以上の整数)の記憶素子MCを備える場合、1番目とn番目の記憶素子MCを除くi番目(iは1以上n以下の整数)の記憶素子MC[i]において、トランジスタRTr[i]のソースまたはドレインの一方は、トランジスタRTr[i−1]のソースまたはドレインの他方と電気的に接続され、他方はトランジスタRTr[i+1]のソースまたはドレインの一方と電気的に接続される。トランジスタRTr[i]のゲートは、導電体RWL[i]と電気的に接続される。トランジスタRTr[i]のバックゲートは導電体BGと電気的に接続される。トランジスタWTr[i]のソースまたはドレインの一方は導電体128[i]と電気的に接続され、他方は、導電体128[i−1]と電気的に接続される。トランジスタWTr[i]のゲートは導電体WWL[i]と電気的に接続される。
トランジスタSTr1およびトランジスタSTr2は、例えば、OSトランジスタであってもよいし、Siトランジスタであってもよい。トランジスタSTr1およびトランジスタSTr2の一方がOSトランジスタで、他方がSiトランジスタであってもよい。なお、トランジスタWTrおよびトランジスタRTrの双方をOSトランジスタで形成する場合は、トランジスタSTr1およびトランジスタSTr2もOSトランジスタで形成することが好ましい。トランジスタに用いる半導体材料を揃えることで、半導体装置の生産性を高めることができる。
また、トランジスタWTrにOSトランジスタを用い、トランジスタRTrにSiトランジスタを用いてもよい。トランジスタWTrとしてOSトランジスタを用い、トランジスタRTrとしてSiトランジスタを用いる場合のメモリストリング120の等価回路図を図28に示す。
トランジスタRTrをSiトランジスタで形成する場合は、半導体125に例えば多結晶シリコンを用いればよい。トランジスタWTrをOSトランジスタで形成する場合は、半導体127に例えばCAAC−IGZOを用いればよい。
なお、図29に示すように、目的または用途などによっては、トランジスタWTrとしてSiトランジスタを用い、トランジスタRTrとしてOSトランジスタを用いてもよい。また、図30に示すように、目的または用途などによっては、トランジスタWTrおよびトランジスタRTrの双方にSiトランジスタを用いてもよい。トランジスタWTrおよびトランジスタRTrの双方にSiトランジスタを用いる場合は、トランジスタSTr1およびトランジスタSTr2にもSiトランジスタを用いることが好ましい。
<メモリストリングの動作例>
続いて、図26に示したメモリストリング120の動作例を説明する。
〔書き込み動作〕
本実施の形態では、記憶素子MC[1]および記憶素子MC[3]にH電位を書き込み、他の記憶素子MCにL電位を書き込む場合の動作例を説明する。図31は書き込み動作を説明するタイミングチャートである。図32A乃至図36Bは、書き込み動作を説明するための回路図である。
初期状態として、記憶素子MC[1]乃至記憶素子MC[5]にL電位が書き込まれているものとする。また、導電体WWL[1]乃至導電体WWL[5]、導電体RWL[1]乃至導電体RWL[5]、導電体WSEL、導電体RSEL、導電体BG、導電体WBL、導電体RBL、導電体SG、および導電体122にL電位が供給されているものとする。なお、導電体BGは、トランジスタRTrの閾値を制御することができる。トランジスタRTrが所望のノーマリーオン型のトランジスタとなるよう、導電体BGに供給する電位を適宜調整してもよい。なお導電体WSELおよび導電体RSELは共通の導電体であるとして説明するが、異なる導電体としてもよい。
[期間T1]
期間T1において、導電体WWL[1]乃至導電体WWL[5]、導電体WBL、および導電体WSEL(および導電体RSEL)にH電位を供給する(図32A参照。)。すると、ノードND[1]乃至ノードND[5]の電位がH電位になる。
[期間T2]
期間T2において、導電体WWL[1]にL電位を供給する(図32B参照。)。すると、トランジスタWTr[1]がオフ状態になり、ノードND[1]に書き込まれた電荷が保持される。ここでは、H電位に相当する電荷が保持される。
[期間T3]
期間T3において、導電体WBLにL電位を供給する(図33A参照。)。すると、ノードND[2]乃至ノードND[5]の電位がL電位になる。この時、導電体128[2]乃至導電体128[5]もL電位になるが、トランジスタRTrはノーマリーオン型のトランジスタであるため、トランジスタRTr[2]乃至トランジスタRTr[5]はオフ状態にならない。
[期間T4]
期間T4において、導電体WWL[2]にL電位を供給する(図33B参照。)。すると、トランジスタWTr[2]がオフ状態になり、ノードND[2]に書き込まれた電荷が保持される。ここでは、L電位に相当する電荷が保持される。
[期間T5]
期間T5において、導電体WBLにH電位を供給する(図34A参照。)。すると、ノード[3]乃至ノード[5]の電位がH電位になる。
[期間T6]
期間T6において、導電体WWL[3]にL電位を供給する(図34B参照。)。すると、トランジスタWTr[3]がオフ状態になり、ノードND[3]に書き込まれた電荷が保持される。ここでは、H電位に相当する電荷が保持される。
[期間T7]
期間T7において、導電体WBLにL電位を供給する(図35A参照。)。すると、ノードND[4]およびノードND[5]の電位がL電位になる。
[期間T8]
期間T8において、導電体WWL[4]にL電位を供給する(図35B参照。)。すると、トランジスタWTr[4]がオフ状態になり、ノードND[4]に書き込まれた電荷が保持される。ここでは、L電位に相当する電荷が保持される。
[期間T9]
期間T9において、導電体WBLをL電位のままとする(図36A参照。)。よって、ノードND[5]の電位もL電位のままである。
[期間T10]
期間T10において、導電体WWL[5]にL電位を供給する(図36B参照。)。すると、トランジスタWTr[5]がオフ状態になり、ノードND[5]に書き込まれた電荷が保持される。ここでは、L電位に相当する電荷が保持される。また、導電体WSEL(および導電体RSEL)にL電位を供給する。
このようにして、記憶素子MCに情報を書き込むことができる。
なお、複数の記憶素子MCのうち、i番目(i=1を除く)の記憶素子MCに情報を書き込む場合は、i−1番目までの記憶素子MCに対する情報の書き込み動作を省略することができる。例えば、記憶素子MC[4]に情報を書き込みたい場合は、記憶素子MC[1]乃至記憶素子MC[3]に対する情報の書き込み動作を行わなくてもよい。言い換えると、本実施の形態に示した期間T1乃至期間T6までの書き込み動作を省略することができる。よって、記憶装置の書き込み動作に係る時間と、消費電力を低減できる。
〔読み出し動作〕
上記回路構成のメモリストリング120の読み出し動作例を説明する。初期状態として、記憶素子MC[1]および記憶素子MC[3]にH電位が保持されているものとする。また、導電体WWL[1]乃至導電体WWL[5]、導電体RWL[1]乃至導電体RWL[5]、導電体WSEL、導電体RSEL、導電体BG、導電体WBL、導電体RBL、導電体SG、および導電体122にL電位が供給されているものとする。図37Aおよび図37Bは読み出し動作を説明するタイミングチャートである。図38A乃至図39Bは読み出し動作を説明するための回路図である。
<保持電位がH電位の場合>
まず、H電位が保持されている記憶素子MC[3]の読み出し動作について説明する。
[期間T11]
期間T11において、導電体RWL[1]乃至導電体RWL[5]、および導電体RSEL(および導電体WSEL)にH電位を供給する(図38A参照。)。すると、トランジスタSTr2(およびトランジスタSTr3)がオン状態になり、トランジスタRTrが備える半導体127と導電体RBLが導通する。この状態で、導電体RBLと半導体127にH電位をプリチャージし、両者をフローティング状態にする。
ここで、トランジスタのId−Vg特性について説明しておく。図40Aおよび図40Bは、トランジスタのId−Vg特性を説明する図である。図40Aおよび図40Bの横軸はゲート電圧(Vg)、縦軸はドレイン電流(Id)を示している。図40Aはノーマリーオフ型トランジスタのId−Vg特性を示し、図40Bはノーマリーオン型トランジスタのId−Vg特性を示している。
H電位はL電位よりも高い電位である。L電位を0Vとすると、H電位は正の電圧である。ノーマリーオフ型トランジスタでは、VgがL電位(0V)の時のチャネル抵抗値(ソースとドレイン間の抵抗値)が極めて大きくIdがほとんど流れない。また、VgがH電位になるとチャネル抵抗値が低下し、Idが増加する(図40A参照。)。
ノーマリーオン型トランジスタでは、VgがL電位の時でもチャネル抵抗値が小さく、ノーマリーオフ型トランジスタと比較して多くのIdが流れる。また、VgがH電位になるとチャネル抵抗値がさらに小さくなり、Idがさらに増加する(図40B参照。)。
トランジスタRTrはノーマリーオン型のトランジスタであるため、導電体RWLの電位がL電位のままでも半導体127へのプリチャージは可能である。しかしながら、導電体RWLにH電位を供給することで、トランジスタRTrのオン抵抗が下がるため、プリチャージに必要な時間と消費電力を低減できる。
[期間T12]
期間T12において、導電体RWL[3]にL電位を供給する(図38B参照。)。ノードND[3]にはH電位が保持されているため、導電体RWL[3]の電位がL電位になってもトランジスタRTr[3]のチャネル抵抗値が小さいままとなる。
[期間T13]
期間T13において、導電体SGにH電位を供給し、トランジスタSTr1をオン状態にする(図39A参照。)。すると、導電体RBLと導電体122が導通する。この時、導電体RWL[1]、導電体RWL[2]、導電体RWL[4]、および導電体RWL[5]にH電位が供給されているため、トランジスタRTr[1]、トランジスタRTr[2]、トランジスタRTr[4]、およびトランジスタRTr[5]のチャネル抵抗値は、ノードNDの電位にかかわらず小さくなっている。導電体RWL[3]にはL電位が供給されているが、ノードND[3]にH電位が保持されているため、トランジスタRTr[3]のチャネル抵抗値も小さくなっている。このため、フローティング状態である導電体RBLの電位が、H電位からL電位へ急激に変化する(図37A参照)。
[期間T14]
期間T14において、導電体RSEL(および導電体WSEL)、導電体RWL、および導電体SGにL電位を供給する(図39B参照。)。
<保持電位がL電位の場合>
次に、L電位が保持されている記憶素子MC[2]の読み出し動作について説明する。記憶素子MC[2]に保持されている情報(電位)を読み出す場合は、期間T12において、導電体RWL[2]の電位をL電位にする(図37B参照。)。この時、ノードND[2]にはL電位が保持されているため、トランジスタRTr[2]のチャネル抵抗値は大きいままである。
続いて、期間T13において導電体SGにH電位を供給し、導電体RBLと導電体122を導通させる。この時、トランジスタRTr[2]のチャネル抵抗値が大きいため、導電体RBLのH電位からL電位への電位変化が緩やかになる。
このように、期間T13において、読み出したい記憶素子MCに対応する導電体RWLの電位をL電位にすることで、当該記憶素子MCに保持されている情報を知ることができる。
<変形例>
図41に、メモリストリング120の変形例であるメモリストリング120Aの回路構成例を示す。メモリストリング120Aは、メモリストリング120にトランジスタSTr3を追加した回路構成を有する。
図41に示すメモリストリング120Aでは、トランジスタWTr[5]のソースまたはドレインの他方はトランジスタSTr2のソースまたはドレインの一方ではなく、トランジスタSTr3のソースまたはドレインの一方と電気的に接続する。また、トランジスタSTr3のソースまたはドレインの他方は、導電体BLと電気的に接続される。また、トランジスタSTr2のゲートは導電体RSELと電気的に接続され、トランジスタSTr3のゲートは導電体WSELと電気的に接続される。
書き込み動作時はトランジスタSTr3をオン状態にし、トランジスタSTr2をオフ状態にする。読み出し動作時はトランジスタSTr3をオフ状態にし、トランジスタSTr2をオン状態にする。導電体BLを介して情報の書き込みまたは読み出しを行う際に、それぞれ専用のトランジスタで情報伝達経路の切り替えを行うことができる。よって、記憶装置の動作が安定し、記憶装置の信頼性を高めることができる。
また、図42に示すメモリストリング120Bのように、トランジスタSTr2とトランジスタSTr3とを共通にしてよい。この場合、トランジスタSTr2のソースまたはドレインの他方を導電体BLと電気的に接続すればよい。書き込み動作および読み出し動作は導電体BLを介して情報の書き込みおよび読み出しを行う。書き込み動作と読み出し動作のそれぞれで共通の導電体BLを設けることで、配線数の削減を図ることができる。
図43に示すメモリストリング120Cは、メモリストリング120にトランジスタSTr4を追加した回路構成を有する。トランジスタSTr4のソースまたはドレインの一方は、トランジスタWTr[1]のソースまたはドレインの一方と電気的に接続され、他方は導電体WBL[2]と電気的に接続される。トランジスタSTr4のゲートは導電体WSEL[2]と電気的に接続される。
また、メモリストリング120Bでは、トランジスタSTr3のゲートが導電体WSEL[1]と電気的に接続され、トランジスタSTr3のソースまたはドレインの他方が導電体WBL[1]と電気的に接続される。なお、図41に示したように、トランジスタSTr2およびトランジスタSTr3を導電体BLと電気的に接続する回路構成としてもよい。
メモリストリング120Bは、情報の書き込みを導電体WBL[1]および導電体WBL[2]の双方から行うことができる。よって、情報の書き込み速度を高めることができる。また、書き込む情報に相当する電荷の供給をより確実に行うことができる。
また、i番目の記憶素子MCに情報を書き込む場合、iがnに近い場合は導電体WBL[1]側から情報を書き込むことで、1番目乃至i−1番目までの記憶素子MCの情報の書き込み動作を省略することができる。また、iが1に近い場合は導電体WBL[2]側から情報を書き込むことで、i+1番目乃至n番目までの記憶素子MCの情報の書き込み動作を省略することができる。メモリストリング120Bでは、書き込み動作に係る時間と、消費電力をさらに低減できる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、記憶装置100を含む半導体装置200の構成例について説明する。
図44に、本発明の一態様である半導体装置200の構成例を示すブロック図を示す。図44に示す半導体装置200は、駆動回路210と、メモリアレイ220と、を有する。メモリアレイ220は、1以上の記憶装置100を有する。図44では、メモリアレイ220がマトリクス状に配置された複数の記憶装置100を有する例を示している。
駆動回路210は、PSW241(パワースイッチ)、PSW242、および周辺回路215を有する。周辺回路215は、周辺回路211、コントロール回路212(Control Circuit)、および電圧生成回路228を有する。なお、半導体装置200は、メモリアレイ220、PSW241、PSW242、周辺回路211、コントロール回路212、電圧生成回路228などの様々な機能を有する素子または回路などを有する。そのため、半導体装置200をシステム、またはサブシステムと呼称してもよい。
半導体装置200において、各回路、各信号および各電圧は、必要に応じて、適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。信号BW、信号CE、信号GW、信号CLK、信号WAKE、信号ADDR、信号WDA、信号PON1、信号PON2は外部からの入力信号であり、信号RDAは外部への出力信号である。信号CLKはクロック信号である。
また、信号BW、信号CE、および信号GWは制御信号である。信号CEはチップイネーブル信号であり、信号GWはグローバル書き込みイネーブル信号であり、信号BWはバイト書き込みイネーブル信号である。信号ADDRはアドレス信号である。信号WDAは書き込みデータであり、信号RDAは読み出しデータである。信号PON1、信号PON2は、パワーゲーティング制御用信号である。なお、信号PON1、信号PON2は、コントロール回路212で生成してもよい。
コントロール回路212は、半導体装置200の動作全般を制御する機能を有するロジック回路である。例えば、コントロール回路は、信号CE、信号GWおよび信号BWを論理演算して、半導体装置200の動作モード(例えば、書き込み動作、読み出し動作)を決定する。または、コントロール回路212は、この動作モードが実行されるように、周辺回路211の制御信号を生成する。
電圧生成回路228は負電圧を生成する機能を有する。信号WAKEは、信号CLKの電圧生成回路228への入力を制御する機能を有する。例えば、信号WAKEとしてHレベルの信号が与えられると、信号CLKが電圧生成回路228へ入力され、電圧生成回路228は負電圧を生成する。
周辺回路211は、記憶装置100に対するデータの書き込みおよび読み出しをするための回路である、周辺回路211は、行デコーダ221(Row Decoder)、列デコーダ222(Column Decoder)、行ドライバ223(Row Driver)、列ドライバ224(Column Driver)、入力回路225(Input Cir.)、出力回路226(Output Cir.)、センスアンプ227(Sense Amplifier)を有する。
行デコーダ221および列デコーダ222は、信号ADDRをデコードする機能を有する。行デコーダ221は、アクセスする行を指定するための回路であり、列デコーダ222は、アクセスする列を指定するための回路である。行ドライバ223は、行デコーダ221が指定する導電体WLを選択する機能を有する。列ドライバ224は、データを記憶装置100に書き込む機能、記憶装置100からデータを読み出す機能、読み出したデータを保持する機能等を有する。
入力回路225は、信号WDAを保持する機能を有する。入力回路225が保持するデータは、列ドライバ224に出力される。入力回路225の出力データが、記憶装置100に書き込むデータ(Din)である。列ドライバ224が記憶装置100から読み出したデータ(Dout)は、出力回路226に出力される。出力回路226は、Doutを保持する機能を有する。また、出力回路226は、Doutを半導体装置200の外部に出力する機能を有する。出力回路226から出力されるデータが信号RDAである。
PSW241は周辺回路215へのVDDの供給を制御する機能を有する。PSW242は、行ドライバ223へのVHMの供給を制御する機能を有する。ここでは、半導体装置200の高電源電圧がVDDであり、低電源電圧はGND(接地電位)である。また、VHMは、ワード線を高レベルにするために用いられる高電源電圧であり、VDDよりも高い。信号PON1によってPSW241のオン・オフが制御され、信号PON2によってPSW242のオン・オフが制御される。図44では、周辺回路215において、VDDが供給される電源ドメインの数を1としているが、複数にすることもできる。この場合、各電源ドメインに対してパワースイッチを設ければよい。
駆動回路210とメモリアレイ220は同一平面上に設けてもよい。また、図45Aに示すように、駆動回路210とメモリアレイ220を重ねて設けてもよい。駆動回路210とメモリアレイ220を重ねて設けることで、信号伝搬距離を短くすることができる。また、図45Bに示すように、駆動回路210上にメモリアレイ220を複数層重ねて設けてもよい。
また、図45Cに示すように、駆動回路210の上層および下層に、メモリアレイ220を設けてもよい。図45Cでは、駆動回路210の上層および下層にそれぞれ1層のメモリアレイ220を設ける例を示している。複数のメモリアレイ220で駆動回路210を挟むように配置することで、信号伝搬距離をさらに短くすることができる。なお、駆動回路210の上層に積層されるメモリアレイ220と、駆動回路210の下層に積層されるメモリアレイ220の層数は、それぞれ1層以上であればよい。駆動回路210の上層に積層されるメモリアレイ220の数と、駆動回路210の下層に積層されるメモリアレイ220の数は等しいことが好ましい。
<半導体装置200の断面構成例>
図46に、図45Aに示す半導体装置200の断面構成例を示す。図46では図45Aに示す半導体装置200の一部を示している。
図46では、駆動回路210に含まれる、トランジスタ301、トランジスタ302、およびトランジスタ303を示している。なお、トランジスタ301、およびトランジスタ302は、センスアンプ227の一部として機能する。また、トランジスタ303は列選択スイッチとして機能する。具体的には、メモリアレイ220に含まれる導電体BLは、トランジスタ301のソースおよびドレインの一方と電気的に接続し、トランジスタ301のゲートは、トランジスタ302のソースおよびドレインの一方と電気的に接続し、トランジスタ302のゲートは、トランジスタ301のソースおよびドレインの他方と電気的に接続する。また、トランジスタ301のソースおよびドレインの一方と、トランジスタ302のソースおよびドレインの他方は、列選択スイッチとして機能する、トランジスタ303のソースおよびドレインの一方と電気的に接続する。これにより半導体装置200のレイアウト面積を縮小することができる。なお、図46には、1つのメモリストリングあたり、7個の記憶素子MCを設けた例を示している。ただし、1つのメモリストリングに設ける記憶素子MCの数はこれに限らない。例えば、1つのメモリストリングに設ける記憶素子MCの数は、32、64、128または、200以上でもよい。
メモリアレイ220の導電体BLは、導電体715、導電体714、導電体705、および絶縁体726、絶縁体722などに、埋め込まれるように形成された導電体752を介して、センスアンプ227や、列選択スイッチとして機能するトランジスタ303と電気的に接続している。なお、駆動回路210が有する回路やトランジスタは、一例であり、その回路構成や、トランジスタ構造に限定されない。上記以外にも、制御回路、行デコーダ、行ドライバ、ソース線ドライバ、入出力回路など、半導体装置200の構成や、その駆動方法に応じて適切な回路やトランジスタを設けることができる。
トランジスタ301、トランジスタ302、およびトランジスタ303は、基板311上に設けられ、それぞれ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。なお、図46に示すように、一つの低抵抗領域を、トランジスタ301およびトランジスタ302の、一方のソース領域またはドレイン領域、かつ他方のソース領域またはドレイン領域として共有する場合がある。
トランジスタ301、トランジスタ302、およびトランジスタ303は、チャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ301、トランジスタ302、およびトランジスタ303は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
トランジスタ301、トランジスタ302、およびトランジスタ303は、それぞれpチャネル型、あるいはnチャネル型のいずれでもよいが、トランジスタ301とトランジスタ302は、それぞれ異なる極性を有するトランジスタであることが好ましい。
半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ301、トランジスタ302、およびトランジスタ303をHEMT(High Electron Mobility Transistor)としてもよい。
低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
絶縁体315は、トランジスタ301、トランジスタ302、およびトランジスタ303のゲート絶縁膜として機能する。
ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
なお、導電体の材料により、仕事関数が定まるため、導電体の材料を変更することでしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
また、導電体316の上方には、エッチストッパーとして機能する絶縁体317が設けられていることが好ましい。また、絶縁体315の側面には、スペーサーとして機能する絶縁体318が設けられていることが好ましい。絶縁体317および絶縁体318を設けることで、低抵抗領域314a、および低抵抗領域314bと導電体328が電気的に接続する領域が自己整合的に定めることができる。よって、低抵抗領域314a、および低抵抗領域314bの一部を露出するための開口を形成する際に、アライメントずれが生じたとしても、意図した領域を露出するための開口を形成することができる。このようにして形成された開口に、導電体328を形成することで、低抵抗領域314a、および低抵抗領域314bと導電体328の間で、コンタクト抵抗が低減した良好なコンタクトが得られる。このようにして形成された低抵抗領域314a、および低抵抗領域314bと導電体328とのコンタクトを、セルフアラインコンタクトと呼ぶ場合がある。また、絶縁体317、および絶縁体322に埋め込まれるように、導電体316と電気的に接続する導電体329を設けてもよい。
トランジスタ301、トランジスタ302、およびトランジスタ303を覆って、絶縁体320、絶縁体322、絶縁体324、絶縁体326、および絶縁体327が順に積層して設けられている。
絶縁体320、絶縁体322、絶縁体324、絶縁体326、および絶縁体327として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
絶縁体322は、その下方に設けられるトランジスタ301などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
また、絶縁体324には、基板311、またはトランジスタ301などから、メモリアレイ220が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
水素に対するバリア性を有する膜の一例として、例えば、PEALD法または、CVD法で形成した窒化シリコンを用いることができる。ここで、記憶素子MC等の酸化物半導体を有する半導体素子に、水素が拡散することで、該半導体素子の特性が低下する場合がある。従って、記憶素子MCと、トランジスタ301などとの間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
なお、絶縁体326、および絶縁体327は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326、および絶縁体327の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326、および絶縁体327の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、絶縁体320、絶縁体322、絶縁体324、絶縁体326、および絶縁体327にはメモリアレイ220と電気的に接続する導電体328、導電体329、および導電体330等が埋め込まれている。なお、導電体328、導電体329、および導電体330はプラグ、または配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
各プラグ、および配線(導電体328、導電体329、および導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
絶縁体327、および導電体330上に、配線層を設けてもよい。例えば、図46において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線としての機能を有する。なお導電体356は、導電体328、導電体329、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ301などと、記憶素子MCとは、バリア層により分離することができ、トランジスタ301などから記憶素子MCへの水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ301などからの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図46において、絶縁体360、絶縁体362、及び絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、及び絶縁体364には、導電体366が形成されている。導電体366は、プラグ、または配線としての機能を有する。なお導電体366は、導電体328、導電体329、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ301などと、記憶素子MCとは、バリア層により分離することができ、トランジスタ301などから記憶素子MCへの水素の拡散を抑制することができる。
絶縁体364、および導電体366上には絶縁体722が設けられ、さらに絶縁体722の上方には、メモリアレイ220が設けられている。絶縁体364と絶縁体722の間に、絶縁体324と同様の材料を用いたバリア膜を設けてもよい。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
本実施の形態では、本発明の一態様に係る半導体装置の情報処理装置への応用例について説明する。
一般に、コンピュータは、構成要素として、マザーボード上にプロセッサ、メインメモリ、ストレージなどを有し、それぞれの構成要素は、一例として、バス配線によって、電気的に接続されている。このため、バス配線が長くなるほど寄生抵抗が大きくなるため、信号の送信に必要な消費電力も高くなる。
具体的には、コンピュータとしては、例えば、図47Aに示すような構成となる。コンピュータは、マザーボードBDを有し、またマザーボードBD上には、演算処理装置(プロセッサ、CPUなど)10、メインメモリ(DRAM(Dynamic Random Access Memory)など)30、ストレージ(三次元構造のNAND型の記憶装置、3D OS NAND型の記憶装置など)40、インターフェース60などが設けられている。なお、図47には、メインメモリとしても機能するSRAM(Static Random Access Memory)20も図示しているが、マザーボードBD上に必ずしも設けなくてもよい。
なお、図47には、演算処理装置10がレジスタ11を有する構成を図示している。
図47Aにおいて、演算処理装置10は、SRAM20と、メインメモリ30と、ストレージ40と、インターフェース60と、に電気的に接続されている。また、メインメモリ30は、SRAM20と、ストレージ40と、に電気的に接続されている。
なお、図47Aのコンピュータの各構成要素は、バス配線BSHによって電気的に接続されている。つまり、コンピュータの構成要素が増えるほど、又は、マザーボードBDが大きくなるほど、引き回されるバス配線BSHが長くなるため、信号の送信に必要な消費電力が高くなる。
ところで、図47Aのコンピュータは、当該コンピュータの各構成要素を1個のチップにまとめて、モノリシックIC(Integrated Circuit)にまとめてもよい。また、このとき、上記の実施の形態で説明した、情報処理装置をメインメモリ30及びストレージ40として適用することができる。このように、図47AのコンピュータをモノリシックICとしたものを図47Bに示す。
図47BのモノリシックICは、Siを有する半導体基板上に、回路層LGCを有する。また、回路層LGCの上部に記憶層STRを有し、記憶層STRの上部に回路層OSCを有する。
回路層LGCは、例えば、Siを有する半導体基板SBTに形成されるSiトランジスタを含む複数の回路を有する。当該複数の回路の一部としては、例えば、図47Aにおける、演算処理装置10、SRAM20などとすることができる。また、情報処理装置をメインメモリ30及びストレージ40として適用した場合、当該複数の回路の一部としては、後述する情報処理装置50に含まれているコントローラ1197とすることができる。
特に、SRAM20は、一例として、Siトランジスタを用いることによって、SRAMの駆動周波数を高くすることができる。
記憶層STRは、Siトランジスタ、及び/又はOSトランジスタを有する記憶部として機能する。記憶層STRとしては、例えば、三次元構造のNAND型の記憶回路、3D OS NAND型の記憶回路などとすることができる。そのため、記憶層STRは、情報処理装置における記憶部1196、図47Aにおけるストレージ40などを有する。
なお、3D OS NAND型の記憶回路を用いることによって、図47BのモノリシックICの消費電力を低減することができる。
回路層OSCは、例えば、OSトランジスタを含む複数の回路を有する。当該複数の回路の一部としては、例えば、演算処理装置10、SRAM20など回路層LGCに含まれている回路とは異なる、回路とすることができる。
図47BのモノリシックICでは、マザーボード上に引き回すためのバス配線BSHを設けていないため、それぞれの構成要素同士を電気的に接続する配線が短くなる。このため、信号の送信に必要な消費電力を低くすることができる。
また、図47BのモノリシックICは、情報処理装置50を有している。このため、情報処理装置50は、図47Aにおけるストレージ40と、メインメモリ30と、の役割として機能する。このため、図47BのモノリシックICにおいて、記憶層STRの記憶部1196が、メインメモリ30の機能を有することができる。
バス配線BSHを設けていない点、メインメモリ30の代替として記憶部1196を用いる点によって、図47BのモノリシックICは、図47Aのコンピュータよりも回路面積を低減することができる。
次に、図47Aのコンピュータ、及び図47BのモノリシックICの記憶階層の一例をそれぞれ図48A、及び図48Bに示す。
一般に、記憶階層は、上層に位置する記憶装置ほど速い動作速度が求められ、下層に位置する記憶装置ほど大きな記憶容量と高い記録密度が求められる。図48Aでは、一例として、最上層から順にCPU(演算処理装置10)に含まれているレジスタ(register)と、SRAMと、メインメモリ30(main memory)に含まれているDRAMと、ストレージ40(storage)に含まれている三次元構造のNAND型の記憶回路と、を示している。
演算処理装置10に含まれているレジスタと、SRAMと、は、演算結果の一時保存などに用いられるため、演算処理装置10からのアクセス頻度が高い。よって、記憶容量よりも速い動作速度が求められる。また、レジスタは演算処理装置の設定情報などを保持する機能も有する。
メインメモリ30に含まれているDRAMは、一例として、ストレージ40から読み出されたプログラムやデータを保持する機能を有する。DRAMの記録密度は、おおよそ0.1Gbit/mm乃至0.3Gbit/mmである。
ストレージ40は、長期保存が必要なデータや、演算処理装置で使用する各種のプログラムなどを保持する機能を有する。よって、ストレージ40には動作速度よりも大きな記憶容量と高い記録密度が求められる。ストレージ40に用いられる記憶装置の記録密度は、おおよそ0.6Gbit/mm乃至6.0Gbit/mmである。このため、ストレージ40としては、三次元構造のNAND型の記憶回路、ハードディスクドライブ(HDD)などが用いられる。
ところで、図47BのモノリシックICは、図47Aのストレージ40、及びメインメモリ30の役割を有するため、図47BのモノリシックICの記憶階層は図48Bに示すとおりとなる。
つまり、図47BのモノリシックICにおいて、情報処理装置50の記憶部に含まれているメモリセルは、記憶部のキャッシュメモリだけでなく、図47Aのコンピュータにおけるメインメモリ30として扱うことができる。このため、図47BのモノリシックICでは、DRAMなどのメインメモリ30を設ける必要がなくなるため、図47BのモノリシックICの回路面積を低減することができ、また、DRAMなどのメインメモリ30を動作させることに必要な消費電力を低減することができる。
なお、図47Bに示したモノリシックICの構成は、一例であり、本発明の一態様に限定されない。図47Bに示したモノリシックICは、状況に応じて、構成を変更してもよい。例えば、図47BのモノリシックICにおいて、例えば、SRAMとして1GHz以上の高速なメモリが求められる場合には、SRAMは、演算処理装置に混載されてもよい。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、図49Aおよび図49Bを用いて、本発明の記憶装置が実装された半導体装置の一種であるチップ1200の一例を示す。チップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
図49Aに示すように、チップ1200は、CPU1211、GPU1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
チップ1200には、バンプ(図示しない)が設けられ、図49Bに示すように、プリント基板(Printed Circuit Board:PCB)1201の第1の面と接続する。また、PCB1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。フラッシュメモリ1222として、先の実施の形態に示す半導体装置を用いることが好ましい。先の実施の形態に示す半導体装置をフラッシュメモリ1222に用いることで、フラッシュメモリ1222の記憶容量を大きくすることができる。
CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、およびGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、およびGPU1212に共通のメモリが、チップ1200に設けられていてもよい。また、GPU1212は、多数のデータの並列計算に適しており、画像処理や積和演算に用いることができる。GPU1212に、画像処理回路や、積和演算回路を設けることで、画像処理、および積和演算を低消費電力で実行することが可能になる。
また、CPU1211、およびGPU1212が同一チップに設けられていることで、CPU1211およびGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、およびGPU1212が有するメモリ間のデータ転送、およびGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
アナログ演算部1213はA/D(アナログ/デジタル)変換回路、およびD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、およびフラッシュメモリ1222のインターフェースとして機能する回路を有する。
インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
ネットワーク回路1216は、LAN(Local Area Network)などと接続するためのネットワーク回路を有する。また、ネットワークセキュリティー用の回路を有してもよい。
チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
GPU1212を有するチップ1200が設けられたPCB1201、DRAM1221、およびフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの手法を実行することができるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
本実施の形態に示す構成は、他の実施の形態などに示す構成と適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、先の実施の形態に示す記憶装置を用いた半導体装置の応用例について説明する。先の実施の形態に示す記憶装置は、メモリカード(例えば、SDカード)、USBメモリ、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用することができる。図50A乃至図50Eにリムーバブル記憶装置の幾つかの構成例を模式的に示す。例えば、先の実施の形態に示す半導体装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いられる。
図50AはUSBメモリの模式図である。USBメモリ1100は、筐体1101、キャップ1102、USBコネクタ1103および基板1104を有する。基板1104は、筐体1101に収納されている。例えば、基板1104には、メモリチップ1105、コントローラチップ1106が取り付けられている。メモリチップ1105などに先の実施の形態に示す記憶装置または半導体装置を組み込むことができる。
図50BはSDカードの外観の模式図であり、図50Cは、SDカードの内部構造の模式図である。SDカード1110は、筐体1111、コネクタ1112および基板1113を有する。基板1113は筐体1111に収納されている。例えば、基板1113には、メモリチップ1114、コントローラチップ1115が取り付けられている。基板1113の裏面側にもメモリチップ1114を設けることで、SDカード1110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板1113に設けてもよい。これによって、ホスト装置とSDカード1110間の無線通信によって、メモリチップ1114のデータの読み出し、書き込みが可能となる。メモリチップ1114などに先の実施の形態に示す記憶装置または半導体装置を組み込むことができる。
図50DはSSDの外観の模式図であり、図50Eは、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えばDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。メモリチップ1154などに先の実施の形態に示す記憶装置または半導体装置を組み込むことができる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態7)
図51A乃至図51Gに、本発明の一態様に係る記憶装置または半導体装置を搭載した電子機器の具体例を示す。
<電子機器・システム>
本発明の一態様に係る記憶装置または半導体装置は、様々な電子機器に搭載することができる。電子機器の例としては、例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、テレビジョン装置、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、録画再生装置、ナビゲーションシステム、音響再生装置、などが挙げられる。なお、ここで、コンピュータとは、タブレット型のコンピュータ、ノート型のコンピュータ、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。
本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
[情報端末]
本発明の一態様に係る記憶装置または半導体装置を用いて、マイクロコントローラのプログラム保持用記憶装置を形成することができる。よって、本発明の一態様によれば、マイクロコントローラチップを小型にすることができる。
図51Aには、情報端末の一種である携帯電話(スマートフォン)が図示されている。情報端末5100は、筐体5101と、表示部5102と、を有しており、入力用インターフェースとして、タッチパネルが表示部5102に備えられ、ボタンが筐体5101に備えられている。本発明の一態様に係る、小型化されたマイクロコントローラを用いることで、携帯電話内部の限られた空間を有効に利用することができる。また、携帯電話のストレージに、本発明の一態様に係る記憶装置を用いてもよい。これにより、当該ストレージの単位面積当たりの記憶容量を大きくすることができる。
図51Bには、ノート型情報端末5200が図示されている。ノート型情報端末5200は、情報端末の本体5201と、表示部5202と、キーボード5203と、を有する。本発明の一態様に係る、小型化されたマイクロコントローラを用いることで、ノート型情報端末内部の限られた空間を有効に利用することができる。また、ノート型情報端末のストレージに、本発明の一態様に係る記憶装置を用いてもよい。これにより、当該ストレージの単位面積当たりの記憶容量を大きくすることができる。
なお、上述では、電子機器としてスマートフォン、およびノート型情報端末を例として、それぞれ図51A、図51Bに図示したが、スマートフォン、およびノート型情報端末以外の情報端末を適用することができる。スマートフォン、およびノート型情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、デスクトップ型情報端末、ワークステーションなどが挙げられる。
[ゲーム機]
図51Cは、ゲーム機の一例である携帯ゲーム機5300を示している。携帯ゲーム機5300は、筐体5301、筐体5302、筐体5303、表示部5304、接続部5305、操作キー5306等を有する。筐体5302、および筐体5303は、筐体5301から取り外すことが可能である。筐体5301に設けられている接続部5305を別の筐体(図示せず)に取り付けることで、表示部5304に出力される映像を、別の映像機器(図示せず)に出力することができる。このとき、筐体5302、および筐体5303は、それぞれ操作部として機能することができる。これにより、複数のプレイヤーが同時にゲームを行うことができる。筐体5301、筐体5302、および筐体5303の基板に設けられているチップなどに本発明の一態様に係る記憶装置または半導体装置などを組み込むことができる。
また、図51Dは、ゲーム機の一例である据え置き型ゲーム機5400を示している。据え置き型ゲーム機5400には、無線または有線でコントローラ5402が接続されている。
携帯ゲーム機5300、据え置き型ゲーム機5400などのゲーム機に本発明の一態様に係る、小型化されたマイクロコントローラを用いることで、ゲーム機内部の限られた空間を有効に利用することができる。また、携帯ゲーム機のストレージに、本発明の一態様に係る記憶装置または半導体装置などを用いてもよい。これにより、当該ストレージの単位面積当たりの記憶容量を大きくすることができる。
図51C、図51Dでは、ゲーム機の一例として携帯ゲーム機、および据え置き型ゲーム機を図示しているが、本発明の一態様のマイクロコントローラを適用するゲーム機はこれに限定されない。本発明の一態様のマイクロコントローラを適用するゲーム機としては、例えば、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[大型コンピュータ]
本発明の一態様の記憶装置または半導体装置などは、大型コンピュータに適用することができる。
図51Eは、大型コンピュータの一例である、スーパーコンピュータ5500を示す図である。図51Fは、スーパーコンピュータ5500が有するラックマウント型の計算機5502を示す図である。
スーパーコンピュータ5500は、ラック5501と、複数のラックマウント型の計算機5502と、を有する。なお、複数の計算機5502は、ラック5501に格納されている。また、計算機5502には、複数の基板5504が設けられ、当該基板上に本発明の一態様に係るマイクロコントローラを搭載することができる。本発明の一態様に係る、小型化されたマイクロコントローラを用いることで、大型コンピュータの限られた空間を有効に利用することができる。また、大型コンピュータのストレージに、本発明の一態様に係る記憶装置または半導体装置などを用いてもよい。これにより、当該ストレージの単位面積当たりの記憶容量を大きくすることができる。
図51E、図51Fでは、大型コンピュータの一例としてスーパーコンピュータを図示しているが、本発明の一態様に係るマイクロコントローラを適用する大型コンピュータはこれに限定されない。本発明の一態様に係るマイクロコントローラを適用する大型コンピュータとしては、例えば、サービスを提供するコンピュータ(サーバー)、大型汎用コンピュータ(メインフレーム)などが挙げられる。
[電化製品]
図51Gは、電化製品の一例である電気冷凍冷蔵庫5800を示している。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
本発明の一態様に係る記憶装置または半導体装置などは、電気冷凍冷蔵庫5800に適用することもできる。例えば、電気冷凍冷蔵庫5800に本発明の一態様に係る小型化されたマイクロコントローラを適用することによって、電気冷凍冷蔵庫の限られた空間を有効に利用することができる。
電化製品の一例として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電気オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
本実施の形態で説明した電子機器、その電子機器の機能、その効果などは、他の電子機器の記載と適宜組み合わせることができる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
100:記憶装置、105:領域、110:メモリセルアレイ、120:メモリストリング、121:基体、122:導電体、123:絶縁体、124:絶縁体、125:半導体、126:絶縁体、127:半導体、128:導電体、129:絶縁体、130:導電体、131:絶縁体、132:絶縁体、133:絶縁体、135:絶縁体、136:導電体、137:絶縁体、138:絶縁体、139:絶縁体、140:マスク、141:開口、150:絶縁体、156:絶縁体、161:導電体、162:導電体、163:導電体、164:導電体、165:導電体、166:導電体、171:導電体、172:導電体、173:導電体、174:導電体、175:導電体、176:導電体、181:絶縁体、182:導電体、183:導電体

Claims (21)

  1.  基板上に第1の絶縁体を形成する工程と、
     前記第1の絶縁体上に第2の絶縁体を形成する工程と、
     前記第2の絶縁体上に第3の絶縁体を形成する工程と、
     前記第1の絶縁体、前記第2の絶縁体、および前記第3の絶縁体を貫通する開口を形成する工程と、
     前記開口において、前記第1の絶縁体の側面、前記第2の絶縁体の側面、および前記第3の絶縁体の側面を覆う第4の絶縁体を形成する工程と、
     前記第4の絶縁体に隣接して酸化物半導体を形成する工程と、
     前記第2の絶縁体を除去する工程と、
     前記第1の絶縁体と前記第3の絶縁体の間に導電体を形成する工程と、を含み、
     前記第4の絶縁体は、
     前記基板が配置されたチャンバーに、シリコンを含むガスと、酸化性ガスと、を供給する第1の工程と、
     前記チャンバーへの前記シリコンを含むガスの供給を停止する第2の工程と、
     前記チャンバー内で前記酸化性ガスを含むプラズマを生成する第3の工程と、
     を含むサイクルを、複数回行うことで形成される、
     記憶装置の作製方法。
  2.  基板上に第1の絶縁体を形成し、
     前記第1の絶縁体上に第1の導電体を形成する工程と、
     前記第1の導電体上に第2の絶縁体を形成する工程と、
     前記第2の絶縁体上に第3の絶縁体を形成する工程と、
     前記第3の絶縁体上に第4の絶縁体を形成する工程と、
     前記第1の絶縁体、前記第1の導電体、前記第2の絶縁体、前記第3の絶縁体、および前記第4の絶縁体を貫通する開口を形成する工程と、
     前記開口において、前記第1の絶縁体の側面、前記第1の導電体の側面、前記第2の絶縁体の側面、前記第3の絶縁体の側面、および前記第4の絶縁体の側面を覆う第5の絶縁体を形成する工程と、
     前記第5の絶縁体に隣接する酸化物半導体を形成する工程と、
     前記第3の絶縁体を除去する工程と、
     前記第2の絶縁体と前記第4の絶縁体の間に第2の導電体を形成する工程と、を含み、
     前記第5の絶縁体は、
     前記基板が配置されたチャンバーに、シリコンを含むガスと、酸化性ガスと、を供給する第1の工程と、
     前記チャンバーへの前記シリコンを含むガスの供給を停止する第2の工程と、
     前記チャンバーで前記酸化性ガスを含むプラズマを生成する第3の工程と、
     を含むサイクルを複数回行うことで形成される、
     記憶装置の作製方法。
  3.  請求項1または請求項2において、前記シリコンを含むガスは、SiHである記憶装置の作製方法。
  4.  請求項1乃至請求項3のいずれか一項において、前記酸化性ガスは、NOである記憶装置の作製方法。
  5.  請求項1乃至請求項4のいずれか一項における前記第1の工程において、前記チャンバーにHeを供給する記憶装置の作製方法。
  6.  請求項1乃至請求項5のいずれか一項において、前記酸化物半導体は、インジウム、元素M(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、およびチタンから選ばれた一、または複数)、および亜鉛を含む記憶装置の作製方法。
  7.  請求項1において、前記酸化物半導体は、結晶性を有する記憶装置の作製方法。
  8.  請求項1または請求項7において、前記酸化物半導体のc軸は、前記開口内において、前記導電体の側面の法線方向に配向する領域を有する記憶装置の作製方法。
  9.  請求項1、請求項7、および請求項8のいずれか一項において、前記第4の絶縁体は、窒素濃度が3×1019atoms/cm以上1×1021atoms/cm以下である領域を有する記憶装置の作製方法。
  10.  請求項1、および請求項7乃至請求項9のいずれか一項において、前記第4の絶縁体は、炭素濃度が1×1018atoms/cm以上5×1020atoms/cm以下である領域を有する記憶装置の作製方法。
  11.  請求項2において、前記酸化物半導体は、結晶性を有する記憶装置の作製方法。
  12.  請求項2または請求項11において、前記酸化物半導体のc軸は、前記開口内において、前記第1の導電体および前記第2の導電体の少なくとも一方の側面の法線方向に配向する領域を有する記憶装置の作製方法。
  13.  請求項2、請求項11、および請求項12のいずれか一項において、前記第5の絶縁体は、窒素濃度が3×1019atoms/cm以上1×1021atoms/cm以下である領域を有する記憶装置の作製方法。
  14.  請求項2、および請求項11乃至請求項13のいずれか一項において、前記第5の絶縁体は、炭素濃度が1×1018atoms/cm以上5×1020atoms/cm以下である領域を有する記憶装置の作製方法。
  15.  第1の開口を有する第1の絶縁体と、
     前記第1の絶縁体上の、第2の開口を有する導電体と、
     前記導電体上の、第3の開口を有する第2の絶縁体と、
     前記第1の開口の側面、前記第2の開口の側面、および前記第3の開口の側面の第3の絶縁体と、
     前記第1の開口の側面、前記第2の開口の側面、および前記第3の開口の側面に、前記第3の絶縁体を介して設けられた酸化物半導体と、
     を有し、
     前記第3の絶縁体は、窒素濃度が3×1019atoms/cm以上1×1021atoms/cm以下である領域を有し、
     前記第3の絶縁体は、炭素濃度が1×1018atoms/cm以上5×1020atoms/cm以下である領域を有する記憶装置。
  16.  請求項15において、前記酸化物半導体は、インジウム、元素M(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、およびチタンから選ばれた一、または複数)、および亜鉛を含む記憶装置。
  17.  請求項15または請求項16において、前記第3の絶縁体は、インジウム濃度が1.0×1019atoms/cm以下である領域を有する記憶装置。
  18.  請求項15乃至請求項17のいずれか一項において、前記酸化物半導体は、結晶性を有する記憶装置。
  19.  請求項15乃至請求項18のいずれか一項において、前記酸化物半導体のc軸は、前記第2の開口内において、前記導電体の側面の法線方向に配向する領域を有する記憶装置。
  20.  請求項15乃至請求項19のいずれか一項において、前記第2の開口の径は、前記第1の開口の径、および前記第3の開口の径より大きい記憶装置。
  21.  請求項15乃至請求項19のいずれか一項において、前記第2の開口の径は、前記第1の開口の径、および前記第3の開口の径より小さい記憶装置。
PCT/IB2020/061918 2019-12-27 2020-12-15 記憶装置およびその作製方法 WO2021130598A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080085779.5A CN114830324A (zh) 2019-12-27 2020-12-15 存储装置及其制造方法
US17/783,088 US20230051739A1 (en) 2019-12-27 2020-12-15 Memory device and manufacturing method thereof
JP2021566377A JPWO2021130598A1 (ja) 2019-12-27 2020-12-15
KR1020227021120A KR20220122633A (ko) 2019-12-27 2020-12-15 기억 장치 및 그 제작 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-239259 2019-12-27
JP2019239259 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021130598A1 true WO2021130598A1 (ja) 2021-07-01

Family

ID=76575742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/061918 WO2021130598A1 (ja) 2019-12-27 2020-12-15 記憶装置およびその作製方法

Country Status (5)

Country Link
US (1) US20230051739A1 (ja)
JP (1) JPWO2021130598A1 (ja)
KR (1) KR20220122633A (ja)
CN (1) CN114830324A (ja)
WO (1) WO2021130598A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336019A (ja) * 2003-04-18 2004-11-25 Advanced Lcd Technologies Development Center Co Ltd 成膜方法、半導体素子の形成方法、半導体素子、表示装置の形成方法及び表示装置
JP2011249803A (ja) * 2010-05-24 2011-12-08 Samsung Electronics Co Ltd 不揮発性メモリ素子及びその製造方法、並びにそれを含むメモリ・モジュール及びシステム
JP2019008862A (ja) * 2017-06-26 2019-01-17 株式会社半導体エネルギー研究所 半導体装置、電子機器
JP2019009472A (ja) * 2013-08-23 2019-01-17 株式会社半導体エネルギー研究所 半導体装置の作製方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101698193B1 (ko) 2009-09-15 2017-01-19 삼성전자주식회사 3차원 반도체 메모리 장치 및 그 제조 방법
US9634097B2 (en) 2014-11-25 2017-04-25 Sandisk Technologies Llc 3D NAND with oxide semiconductor channel
US10312239B2 (en) 2017-03-16 2019-06-04 Toshiba Memory Corporation Semiconductor memory including semiconductor oxie
JP6693907B2 (ja) 2017-06-08 2020-05-13 株式会社半導体エネルギー研究所 半導体装置、記憶装置、及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336019A (ja) * 2003-04-18 2004-11-25 Advanced Lcd Technologies Development Center Co Ltd 成膜方法、半導体素子の形成方法、半導体素子、表示装置の形成方法及び表示装置
JP2011249803A (ja) * 2010-05-24 2011-12-08 Samsung Electronics Co Ltd 不揮発性メモリ素子及びその製造方法、並びにそれを含むメモリ・モジュール及びシステム
JP2019009472A (ja) * 2013-08-23 2019-01-17 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2019008862A (ja) * 2017-06-26 2019-01-17 株式会社半導体エネルギー研究所 半導体装置、電子機器

Also Published As

Publication number Publication date
US20230051739A1 (en) 2023-02-16
JPWO2021130598A1 (ja) 2021-07-01
CN114830324A (zh) 2022-07-29
KR20220122633A (ko) 2022-09-02

Similar Documents

Publication Publication Date Title
US20230110947A1 (en) Metal oxide, deposition method of metal oxide, and deposition apparatus for metal oxide
WO2021198836A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021140407A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021144666A1 (ja) 半導体装置、および半導体装置の作製方法
JPWO2019234561A1 (ja) 半導体装置、および半導体装置の作製方法
WO2022043824A1 (ja) 金属酸化物の成膜方法、および記憶装置の作製方法
WO2021024071A1 (ja) 記憶装置
CN112913033A (zh) 金属氧化物的制造方法及半导体装置的制造方法
WO2021059074A1 (ja) 記憶装置
WO2021130598A1 (ja) 記憶装置およびその作製方法
US20230023720A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2021090106A1 (ja) トランジスタ、および電子機器
WO2021099878A1 (ja) 記憶装置およびその作製方法
WO2021144648A1 (ja) 記憶装置およびその作製方法
JP2021015976A (ja) 記憶装置
WO2021005432A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021028770A1 (ja) 記憶装置
WO2021130592A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021090115A1 (ja) 半導体装置
WO2022013679A1 (ja) 半導体装置
WO2022038456A1 (ja) 半導体装置の作製方法
WO2021186297A1 (ja) 半導体装置、半導体装置の作製方法
WO2021165783A1 (ja) 金属酸化物、金属酸化物の形成方法、半導体装置
KR20230052894A (ko) 금속 산화물의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908206

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566377

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908206

Country of ref document: EP

Kind code of ref document: A1