WO2021130585A1 - 表示装置、および電子機器 - Google Patents

表示装置、および電子機器 Download PDF

Info

Publication number
WO2021130585A1
WO2021130585A1 PCT/IB2020/061798 IB2020061798W WO2021130585A1 WO 2021130585 A1 WO2021130585 A1 WO 2021130585A1 IB 2020061798 W IB2020061798 W IB 2020061798W WO 2021130585 A1 WO2021130585 A1 WO 2021130585A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
insulator
conductor
electrically connected
wiring
Prior art date
Application number
PCT/IB2020/061798
Other languages
English (en)
French (fr)
Inventor
廣瀬丈也
宍戸英明
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2021566370A priority Critical patent/JPWO2021130585A1/ja
Priority to US17/787,654 priority patent/US20220416008A1/en
Publication of WO2021130585A1 publication Critical patent/WO2021130585A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0417Special arrangements specific to the use of low carrier mobility technology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0469Details of the physics of pixel operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Definitions

  • One aspect of the present invention relates to a display device and an electronic device.
  • one aspect of the present invention is not limited to the above technical fields.
  • a semiconductor device a display device, a light emitting device, a power storage device, a storage device, an electronic device, a lighting device, an input device, an input / output device, a driving method thereof, and the like.
  • a method for producing them can be given as an example.
  • a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • Oxide semiconductors using metal oxides are attracting attention as semiconductor materials applicable to transistors.
  • a plurality of oxide semiconductor layers are laminated, and among the plurality of oxide semiconductor layers, the oxide semiconductor layer serving as a channel contains indium and gallium, and the ratio of indium is the ratio of gallium.
  • the electric field effect mobility (sometimes referred to simply as mobility, ⁇ FE, or ⁇ ) is increased by making it larger than the above.
  • the metal oxide that can be used for the semiconductor layer can be formed by using a sputtering method or the like, it can be used for a transistor that constitutes a large display device.
  • the metal oxide that can be used for the semiconductor layer can be formed by using a sputtering method or the like, it can be used for a transistor that constitutes a large display device.
  • the transistor using the metal oxide has a higher field effect mobility than the case using amorphous silicon, it is possible to realize a high-performance display device provided with a drive circuit.
  • wearable display devices By the way, as display devices for augmented reality (AR) or virtual reality (VR), wearable display devices and stationary display devices are becoming widespread.
  • a wearable type display device for example, there are a head-mounted display (HMD: Head Mounted Display), a glasses-type display device, and the like.
  • a stationary display device for example, there is a head-up display (HUD: Head-Up Display) or the like.
  • a viewfinder is used to check the image to be captured before imaging.
  • An electronic viewfinder is used as the viewfinder.
  • the electronic viewfinder is provided with a display unit, and an image obtained by the imaging device can be displayed as an image on the display unit.
  • Patent Document 2 discloses an electronic viewfinder that can obtain a good diopter state from the central portion of an image to the peripheral portion of an image.
  • a display device such as an HMD in which the distance between the display unit and the user is short
  • the user can easily see the pixels and feel a strong graininess, so that the immersive feeling and the sense of presence of AR and VR may be diminished. .. Therefore, a display device provided with fine pixels so that the pixels are not visually recognized by the user, that is, a display device having high fineness is desired.
  • the definition becomes higher, the area of each pixel becomes smaller, and the number of elements such as transistors and capacitive elements provided in the pixel may decrease. Therefore, in a display device having high definition, it is desired to configure pixels with a small number of elements.
  • an afterimage phenomenon When looking at the light emitted from the display device, a phenomenon (also called an afterimage phenomenon) in which the light that had been seen until then appears to remain even after the light is extinguished may occur.
  • an afterimage phenomenon occurs, the user recognizes the previously displayed image as an afterimage, which causes a decrease in display quality.
  • the afterimage phenomenon has a large effect, which may significantly reduce the display quality.
  • one aspect of the present invention is to provide a display device having high definition.
  • one aspect of the present invention is to provide a display device having a small afterimage.
  • one aspect of the present invention is to provide a display device having high display quality.
  • one aspect of the present invention is to provide a display device having low power consumption.
  • one aspect of the present invention is to provide a display device having a narrow frame.
  • one aspect of the present invention is to provide a small display device.
  • one aspect of the present invention is to provide a new display device.
  • One aspect of the present invention is a display having a pixel portion having a plurality of pixels, a first wiring, a first scanning line, a second scanning line, a third scanning line, and a signal line. It is a device.
  • the pixel includes a light emitting device, a first transistor, a second transistor, a third transistor, a fourth transistor, and a first capacitive element.
  • One electrode of the light emitting device is electrically connected to one of the source or drain of the first transistor, one of the source or drain of the second transistor, and one electrode of the first capacitive element. ..
  • the gate of the second transistor is electrically connected to the other electrode of the first capacitive element, one of the source or drain of the third transistor, and one of the source or drain of the fourth transistor. ..
  • the other of the source or drain of the first transistor and the other of the source or drain of the fourth transistor are each electrically connected to a first wire having a function of supplying a first potential.
  • the gate of the first transistor is electrically connected to the first scanning line.
  • the gate of the third transistor is electrically connected to the second scanning line.
  • the gate of the fourth transistor is electrically connected to the third scanning line.
  • the other of the source or drain of the third transistor is electrically connected to the signal line.
  • each pixel has a period in which the first transistor and the fourth transistor are in a conductive state in one frame period.
  • a second capacitive element In the above-mentioned display device, it is preferable to have a second capacitive element.
  • One electrode of the second capacitive element is electrically connected to the gate of the second transistor.
  • the other electrode of the second capacitive element is electrically connected to the other of the source or drain of the second transistor.
  • One aspect of the present invention is a display having a pixel portion having a plurality of pixels, a first wiring, a first scanning line, a second scanning line, a third scanning line, and a signal line. It is a device.
  • the pixel includes a light emitting device, a first transistor, a second transistor, a third transistor, a fourth transistor, and a first capacitive element.
  • One electrode of the light emitting device is one of the source or drain of the first transistor, one of the source or drain of the second transistor, one of the source or drain of the fourth transistor, and one of the first capacitive elements. It is electrically connected to one of the electrodes.
  • the gate of the second transistor is electrically connected to the other electrode of the first capacitive element, one of the source or drain of the third transistor, and the other of the source or drain of the fourth transistor. ..
  • the other of the source or drain of the first transistor is electrically connected to the first wire.
  • the gate of the first transistor is electrically connected to the first scanning line.
  • the gate of the third transistor is electrically connected to the second scanning line.
  • the gate of the fourth transistor is electrically connected to the third scanning line.
  • the other of the source or drain of the third transistor is electrically connected to the signal line.
  • each pixel has a period in which the first transistor and the third transistor are in a non-conducting state and the fourth transistor is in a conducting state during one frame period.
  • One aspect of the present invention is a pixel portion having a plurality of pixels, a first wiring, a second wiring, a first scanning line, a second scanning line, a third scanning line, and a signal. It is a display device having a line and.
  • the pixel includes a light emitting device, a first transistor, a second transistor, a third transistor, a fourth transistor, and a first capacitive element.
  • One electrode of the light emitting device is one of the source or drain of the first transistor, one of the source or drain of the second transistor, one of the source or drain of the fourth transistor, and one of the first capacitive elements. It is electrically connected to one of the electrodes.
  • the gate of the second transistor is electrically connected to the other electrode of the first capacitive element and to one of the source or drain of the third transistor.
  • the other of the source or drain of the first transistor is electrically connected to the first wire.
  • the other of the source or drain of the fourth transistor is electrically connected to the second wire.
  • the gate of the first transistor is electrically connected to the first scanning line.
  • the gate of the third transistor is electrically connected to the second scanning line.
  • the gate of the fourth transistor is electrically connected to the third scanning line.
  • the other of the source or drain of the third transistor is electrically connected to the signal line.
  • each pixel has a period in which the first transistor and the third transistor are in a non-conducting state and the fourth transistor is in a conducting state during one frame period.
  • One aspect of the present invention is a display having a pixel portion having a plurality of pixels, a first wiring, a first scanning line, a second scanning line, a third scanning line, and a signal line. It is a device.
  • the pixel includes a light emitting device, a first transistor, a second transistor, a third transistor, a fourth transistor, and a first capacitive element.
  • One electrode of the light emitting device is electrically connected to one of the source or drain of the fourth transistor.
  • the other of the source or drain of the fourth transistor is electrically connected to one of the source or drain of the first transistor, one of the source or drain of the second transistor, and one electrode of the first capacitive element. Connected to.
  • the gate of the second transistor is electrically connected to the other electrode of the first capacitive element and to one of the source or drain of the third transistor.
  • the other of the source or drain of the first transistor is electrically connected to the first wire.
  • the gate of the first transistor is electrically connected to the first scanning line.
  • the gate of the third transistor is electrically connected to the second scanning line.
  • the gate of the fourth transistor is electrically connected to the third scanning line.
  • the other of the source or drain of the third transistor is electrically connected to the signal line.
  • each pixel has a period in which the first transistor, the third transistor, and the fourth transistor are in a non-conducting state in one frame period.
  • One aspect of the present invention is a display having a pixel portion having a plurality of pixels, a first wiring, a first scanning line, a second scanning line, a third scanning line, and a signal line. It is a device.
  • the pixel includes a light emitting device, a first transistor, a second transistor, a third transistor, a fourth transistor, and a first capacitive element.
  • One electrode of the light emitting device is electrically connected to one of the source or drain of the first transistor, one of the source or drain of the second transistor, and one electrode of the first capacitive element. ..
  • the gate of the second transistor is electrically connected to the other electrode of the first capacitive element and to one of the source or drain of the third transistor.
  • the other of the source or drain of the second transistor is electrically connected to one of the source or drain of the fourth transistor.
  • the other of the source or drain of the first transistor is electrically connected to the first wire.
  • the gate of the first transistor is electrically connected to the first scanning line.
  • the gate of the third transistor is electrically connected to the second scanning line.
  • the gate of the fourth transistor is electrically connected to the third scanning line.
  • the other of the source or drain of the third transistor is electrically connected to the signal line.
  • Each pixel has a period in which the first transistor, the third transistor, and the fourth transistor are in a non-conducting state in one frame period.
  • the second transistor preferably has a back gate.
  • the backgate is electrically connected to either the source or drain of the second transistor.
  • the second transistor preferably has a back gate.
  • the back gate is electrically connected to the gate of the second transistor.
  • the other electrode of the light emitting device is electrically connected to the third wiring.
  • a first potential is supplied to the first wiring.
  • a third potential is supplied to the third wiring, and the third potential is preferably lower than the first potential.
  • the light emitting device is preferably an organic light emitting diode.
  • the display device has a first drive circuit unit, the first drive circuit unit has a region overlapping the pixel unit, and is electrically connected to the signal line.
  • first layer has a first drive circuit unit and a second drive circuit unit
  • second layer has a pixel unit.
  • the second drive circuit unit is electrically connected to the first scanning line.
  • the first transistor, the second transistor, the third transistor, and the fourth transistor each have a metal oxide in the channel forming region.
  • the metal oxide has indium, zinc, and the element M (one or more selected from aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium or hafnium).
  • One aspect of the present invention is an electronic device having the above-mentioned display device and a camera.
  • a display device having high definition can be provided.
  • one aspect of the present invention can provide a display device having high display quality.
  • one aspect of the present invention can provide a display device with low power consumption.
  • one aspect of the present invention can provide a display device having a narrow frame.
  • one aspect of the present invention can provide a small display device.
  • one aspect of the present invention can provide a novel display device.
  • FIG. 1A and 1B are circuit diagrams showing a configuration example of pixels.
  • FIG. 2 is a timing chart illustrating the operation of the pixel circuit.
  • FIG. 3A is a circuit diagram showing a configuration example of pixels.
  • FIG. 3B is a timing chart illustrating the operation of the pixel circuit.
  • FIG. 4A is a circuit diagram showing a configuration example of pixels.
  • FIG. 4B is a timing chart illustrating the operation of the pixel circuit.
  • 5A and 5B are circuit diagrams showing a configuration example of pixels.
  • FIG. 6 is a timing chart illustrating the operation of the pixel circuit.
  • FIG. 7A is a circuit diagram showing a configuration example of pixels.
  • FIG. 7B is a timing chart illustrating the operation of the pixel circuit.
  • FIG. 8A to 8C are diagrams showing the operation of the display device.
  • FIG. 9A is a circuit diagram showing a configuration example of pixels.
  • FIG. 9B is a diagram showing the operation of the display device.
  • FIG. 10 is a diagram showing the operation of the display device.
  • 11A and 11B are diagrams showing an example of pixel layout.
  • 12A and 12B are schematic views showing a configuration example of pixels.
  • 13A and 13B are schematic views showing a configuration example of pixels.
  • FIG. 14 is a block diagram showing a configuration example of the display device.
  • FIG. 15A is a schematic view showing a configuration example of the display device.
  • FIG. 15B is a block diagram showing a configuration example of the display device.
  • FIG. 16A is a schematic view showing a configuration example of the display device.
  • FIG. 16A is a schematic view showing a configuration example of the display device.
  • FIG. 16B is a block diagram showing a configuration example of the display device.
  • FIG. 17 is a cross-sectional view showing a configuration example of the display device.
  • FIG. 18 is a cross-sectional view showing a configuration example of the display device.
  • FIG. 19 is a cross-sectional view showing a configuration example of the display device.
  • FIG. 20 is a cross-sectional view showing a configuration example of the display device.
  • FIG. 21 is a cross-sectional view showing a configuration example of the display device.
  • 22A to 22E are diagrams showing a configuration example of a light emitting device.
  • FIG. 23A is a top view showing a configuration example of the transistor.
  • 23B and 23C are cross-sectional views showing a configuration example of a transistor.
  • FIG. 23A is a top view showing a configuration example of the transistor.
  • FIG. 24A is a top view showing a configuration example of the transistor.
  • 24B and 24C are cross-sectional views showing a configuration example of the transistor.
  • FIG. 25A is a top view showing a configuration example of the transistor.
  • 25B and 25C are cross-sectional views showing a configuration example of a transistor.
  • FIG. 26A is a top view showing a configuration example of the transistor.
  • 26B and 26C are cross-sectional views showing a configuration example of a transistor.
  • FIG. 27A is a diagram illustrating classification of the crystal structure of IGZO.
  • FIG. 27B is a diagram illustrating an XRD spectrum of the CAAC-IGZO film.
  • FIG. 27C is a diagram illustrating a microelectron diffraction pattern of the CAAC-IGZO film.
  • FIG. 28A to 28E are perspective views showing an example of an electronic device.
  • 29A to 29G are perspective views showing an example of an electronic device.
  • FIG. 30 is a diagram illustrating a simulation result.
  • 31A and 31B are photographs of the display device.
  • FIG. 32A is a diagram showing the correlation between the duty and the brightness of the display device.
  • FIG. 32B is a diagram showing the time change of the brightness of the display device.
  • the source and drain functions of the transistor may be interchanged when the polarity of the transistor or the direction of the current changes in the circuit operation. Therefore, the terms source and drain can be used interchangeably.
  • Electrode may be used as part of a “wiring” and vice versa.
  • the terms “electrode” and “wiring” include the case where a plurality of “electrodes” and “wiring” are integrally formed.
  • a “terminal” may be used as part of a “wiring” or “electrode” and vice versa.
  • the term “terminal” includes a case where a plurality of "electrodes", “wiring”, “terminals” and the like are integrally formed.
  • the "electrode” can be a part of the “wiring” or the “terminal”, and for example, the “terminal” can be a part of the “wiring” or the “electrode”.
  • terms such as “electrode”, “wiring”, and “terminal” may be replaced with terms such as "area” in some cases.
  • the "resistance” may determine the resistance value depending on the length of the wiring.
  • the resistor includes a case where the resistor is formed by connecting to a conductor having a low efficiency different from that of the conductor used in wiring via a contact.
  • the resistance value may be determined by doping the semiconductor with impurities.
  • electrically connected includes a case of being directly connected and a case of being connected via "something having some electrical action".
  • the "thing having some kind of electrical action” is not particularly limited as long as it enables the exchange of electric signals between the connection targets. Therefore, even when it is expressed as “electrically connected”, in an actual circuit, there is a case where there is no physical connection part and only the wiring is extended. Further, even when it is expressed as "direct connection”, it includes a case where wiring is formed on different conductors via contacts. In the wiring, there are cases where different conductors contain one or more same elements and cases where different conductors contain different elements.
  • membrane and the term “layer” can be interchanged with each other.
  • conductive layer and “insulating layer” may be interchangeable with the terms “conductive film” and “insulating film”.
  • the off-current means a drain current when the transistor is in an off state (also referred to as a non-conducting state or a cut-off state).
  • the off state is a state in which the voltage V gs between the gate and the source is lower than the threshold voltage V th in the n-channel transistor (higher than V th in the p-channel transistor) unless otherwise specified. To say.
  • the size, layer thickness, or area may be exaggerated for clarity. Therefore, it is not necessarily limited to that scale.
  • the drawings are schematically shown, and are not limited to the shapes or values shown in the drawings. For example, in an actual manufacturing process, layers, resist masks, and the like may be unintentionally reduced due to processing such as etching, but they may not be reflected in the figure for ease of understanding. Further, in the drawings, the same reference numerals may be used in common between different drawings for the same parts or parts having the same functions / materials, and the repeated description thereof may be omitted. In addition, when referring to the same function / material, the hatch pattern may be the same and no particular sign may be added.
  • a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as Oxide Semiconductor or simply OS) and the like. For example, when a metal oxide is used in the active layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when it is described as an OS transistor, it can be rephrased as a transistor having an oxide or an oxide semiconductor.
  • the pixel means, for example, one element whose brightness can be controlled. Therefore, as an example, one pixel indicates one color element, and the brightness is expressed by one of the color elements. Therefore, in the case of a color display device composed of R (red), G (green), and B (blue) color elements, the minimum unit of the image is composed of three pixels of R pixel, G pixel, and B pixel. Shall be.
  • each RGB pixel may be referred to as a sub-pixel (sub-pixel), and the RGB sub-pixel may be collectively referred to as a pixel.
  • the display device has a pixel portion.
  • the pixel unit has a plurality of pixels, and each pixel has a light emitting device and a drive transistor that controls the amount of current flowing through the light emitting device.
  • the display device can be provided with a period during which the light emitting device is turned off during one frame period. By providing the period and displaying black, afterimages can be reduced and display quality can be improved.
  • the potential "Vdata" corresponding to the image data is supplied to each pixel from the source driver. Further, a current flows through the light emitting device via the drive transistor, and the brightness of the light emitting device is controlled by the amount of the current. That is, the display device can express the gradation of the image by the height of the potential "Vdata" supplied to the pixels.
  • the higher the definition of the display device the smaller the area of each pixel, so the light emitting device also becomes smaller, and the current required to make the light emitting device emit light also becomes smaller. That is, the higher the definition of the display device, the smaller the current flowing from the drive transistor to the light emitting device, and the lower the voltage required for the operation of the drive transistor.
  • the range of the potential "Vdata" supplied by the pixels is reduced, the potential per gradation becomes small, that is, the potential difference between gradations becomes small, which may make it difficult to control the gradation. is there.
  • the display device has a function of applying a potential lower than the potential "Vdata" supplied to the pixels to the drive transistor. Therefore, it is possible to display a multi-gradation image without reducing the range of the potential "Vdata", and it is possible to improve the display quality.
  • FIG. 1A A configuration example of the pixel 10 that can be used in the display device of one aspect of the present invention is shown in FIG. 1A.
  • the pixel 10 includes a light emitting device 114, a transistor 101, a transistor 102, a transistor 103, a transistor 104, and a capacitive element 111.
  • One electrode of the light emitting device 114 is electrically connected to one of the source or drain of the transistor 101, one of the source or drain of the transistor 102, and one electrode of the capacitive element 111.
  • the gate of the transistor 102 is electrically connected to the other electrode of the capacitive element 111, one of the source or drain of the transistor 103, and one of the source or drain of the transistor 104.
  • the other of the source or drain of the transistor 101 and the other of the source or drain of the transistor 104 are each electrically connected to the wiring 161.
  • the gate of the transistor 101 is electrically connected to the wiring 121.
  • the gate of the transistor 103 is electrically connected to the wiring 122.
  • the gate of the transistor 104 is electrically connected to the wiring 123.
  • the other of the source or drain of the transistor 103 is electrically connected to the wiring 131.
  • the wiring 161 has a function of supplying a specific potential (hereinafter, also referred to as a first potential or a reference potential) "Vref".
  • the wiring 121, the wiring 122, and the wiring 123 have functions as scanning lines for controlling the operation of the transistor 101, the transistor 103, and the transistor 104, respectively.
  • the scanning signal given to the scanning line is a signal for controlling the conduction state (on or off) of the transistor 101, the transistor 103, and the transistor 104 that function as switches in the pixel 10.
  • the wiring 131 has a function as a data line for supplying the potential "Vdata" corresponding to the image data.
  • the other side of the source or drain of the transistor 102 is electrically connected to the wiring 128.
  • the wiring 128 preferably has a function of supplying a specific electric potential.
  • the other electrode of the light emitting device 114 is electrically connected to the wiring 129.
  • the wiring 128 and the wiring 129 can each function as wiring (power supply line) to which a power supply potential is given.
  • the wiring 128 can function as a high-potential power supply line that supplies a higher potential than the wiring 129.
  • the wiring 129 can function as a low-potential power supply line that supplies a potential lower than that of the wiring 128.
  • the transistor 102 functions as a drive transistor that controls the amount of current flowing through the light emitting device 114.
  • the transistor 103 functions as a selection transistor for selecting pixels.
  • Each of the transistor 101 and the transistor 104 functions as a switch for writing a specific potential (reference potential) "Vref" to the pixel 10.
  • a light emitting diode (LED: Light Emitting Diode), an organic light emitting diode (OLED: Organic Light Emitting Diode), a light emitting diode using quantum dots in the light emitting layer (QLED: Quantum-dot Light Emitting Laser), and a semiconductor.
  • LED Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • QLED Quantum-dot Light Emitting Laser
  • Examples include self-luminous light emitting devices.
  • the display device can be provided with a period during which the light emitting device is turned off during one frame period. By providing the period and displaying black, afterimages can be reduced and display quality can be improved.
  • the pixel 10 further has a capacitance element 112.
  • One electrode of the capacitive element 112 is electrically connected to the gate of the transistor 102.
  • the other electrode of the capacitive element 112 is electrically connected to the other of the source or drain of the transistor 102. Since the pixel 10 has the capacitive element 112, a potential lower than the potential "Vdata" supplied to the pixel 10 can be applied to the transistor 102 that functions as a drive transistor. Therefore, it is possible to display a multi-gradation image without reducing the range of the potential "Vdata", and it is possible to improve the display quality.
  • the wiring to which the gate of the transistor 102, one of the source or drain of the transistor 103, the other electrode of the capacitance element 111, and the other electrode of the capacitance element 112 are connected is referred to as a node ND 11.
  • the node ND 11 has a function of holding the potential of the gate of the transistor 103 that functions as a drive transistor.
  • the electric potential of the node ND 11 can control the current flowing through the light emitting device 114 and control the light emitting brightness of the light emitting device 114.
  • the wiring to which one of the source or drain of the transistor 101, one of the source or drain of the transistor 102, and one of the capacitance elements 111 is connected is referred to as a node ND 12.
  • the node ND 12 has a function of holding the potential of either the source or the drain of the transistor 102 that functions as a drive transistor.
  • the gate and source of the transistor 102 that functions as a drive transistor are electrically connected via the capacitive element 111.
  • the gate and drain of the transistor 102 are electrically connected via the capacitive element 112. Further, the potential of the node ND 11 is held by the capacitance between the gate and source of the transistor 102 (capacitive element 111) and the capacitance between the gate and drain of the transistor 102 (capacitive element 112).
  • the transistor 103 By making the transistor 103 conductive, the potential supplied to the wiring 131 can be written to the node ND 11. Further, by making the transistor 104 in the conductive state, the potential supplied to the wiring 161 can be written to the node ND 11. By setting the transistor 103 and the transistor 104 in a non-conducting state, the potential written in the node ND 11 can be maintained.
  • the transistor 101 By making the transistor 101 conductive, the data supplied to the wiring 161 can be written to the node ND 12. By setting the transistor 101 in a non-conducting state, the data written in the node ND 12 can be held.
  • a transistor having an extremely small off-current for any one or more of the transistor 101, the transistor 102, the transistor 103, and the transistor 104.
  • a transistor having an extremely small off current for the transistor 101, the transistor 103, and the transistor 104 it is possible to maintain the potentials of the node ND 11 and the node ND 12 for a long time.
  • a transistor using a metal oxide in the channel forming region hereinafter, OS transistor
  • the OS transistor may be applied to a transistor other than the transistor 101, the transistor 102, the transistor 103 and the transistor 104.
  • a transistor having silicon in the channel forming region hereinafter, Si transistor
  • an OS transistor and a Si transistor may be used together. Examples of the Si transistor include a transistor having amorphous silicon, a transistor having crystalline silicon (microcrystalline silicon, low temperature polysilicon, single crystal silicon), and the like.
  • the transistors shown in FIG. 1A are all n-channel type transistors, but p-channel type transistors can also be used.
  • a metal oxide having an energy gap of 2 eV or more, preferably 2.2 eV or more, and more preferably 2.5 eV or more can be used.
  • a typical example is an oxide semiconductor containing indium.
  • CAAC-OS C-Axis Aligned Crystalline Oxide Semiconductor
  • CAC-OS Cloud-Aligned Compound Semiconductor
  • CAAC-OS has a stable crystal structure and is suitable for transistors and the like where reliability is important. Further, since CAC-OS exhibits high mobility characteristics, it is suitable for a transistor or the like that performs high-speed driving.
  • the OS transistor Since the OS transistor has a large energy gap in the semiconductor layer, it can exhibit an extremely small off-current characteristic with a channel width of several yA / ⁇ m (y is 10-24) per 1 ⁇ m. Further, the OS transistor has features different from those of the Si transistor such as impact ionization, avalanche breakdown, and short channel effect, and can form a highly reliable circuit. In addition, variations in electrical characteristics due to crystallinity non-uniformity, which is a problem with Si transistors, are unlikely to occur with OS transistors.
  • the semiconductor layer of the OS transistor is In-M-Zn containing, for example, indium, zinc and element M (M is one or more of aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium or hafnium). It can be a film represented by a system oxide.
  • the oxide semiconductor constituting the semiconductor layer is an In-M-Zn-based oxide
  • the atomic number ratio of the metal element of the sputtering target used for forming the In-M-Zn oxide is In ⁇ M, Zn. It is preferable that ⁇ M is satisfied.
  • the atomic number ratio of the semiconductor layer to be formed includes a variation of plus or minus 40% of the atomic number ratio of the metal element contained in the sputtering target.
  • the semiconductor layer has a carrier concentration of 1 ⁇ 10 17 / cm 3 or less, preferably 1 ⁇ 10 15 / cm 3 or less, more preferably 1 ⁇ 10 13 / cm 3 or less, and more preferably 1 ⁇ 10 11 / cm. 3 or less, more preferably less than 1 ⁇ 10 10 / cm 3, it is possible to use an oxide semiconductor of 1 ⁇ 10 -9 / cm 3 or more carrier concentration.
  • Such oxide semiconductors are referred to as high-purity intrinsic or substantially high-purity intrinsic oxide semiconductors. It can be said that the oxide semiconductor is an oxide semiconductor having a low defect level density and stable characteristics.
  • a transistor having an appropriate composition may be used according to the required semiconductor characteristics and electrical characteristics (field effect mobility, threshold voltage, etc.) of the transistor. Further, in order to obtain the required semiconductor characteristics of the transistor, it is preferable that the carrier concentration, impurity concentration, defect density, atomic number ratio of metal element and oxygen, interatomic distance, density, etc. of the semiconductor layer are appropriate. ..
  • the concentration of silicon or carbon in the semiconductor layer is set to 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • Alkali metals and alkaline earth metals may form carriers when combined with components contained in oxide semiconductors, which may increase the off-current of the transistor. Therefore, the concentration of alkali metal or alkaline earth metal in the semiconductor layer (concentration obtained by secondary ion mass spectrometry) is 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less. To.
  • the nitrogen concentration in the semiconductor layer is preferably 5 ⁇ 10 18 atoms / cm 3 or less.
  • the transistor When hydrogen is contained in the oxide semiconductor constituting the semiconductor layer, it reacts with oxygen bonded to the metal atom contained in the oxide semiconductor to become water, so that oxygen deficiency is formed in the oxide semiconductor. There is. If the channel formation region in the oxide semiconductor contains oxygen deficiency, the transistor may have a normally-on characteristic. In addition, a defect containing hydrogen in an oxygen deficiency may function as a donor and generate electrons as carriers. In addition, a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing a large amount of hydrogen tends to have a normally-on characteristic.
  • a defect containing hydrogen in an oxygen deficiency can function as a donor of an oxide semiconductor.
  • the carrier concentration may be evaluated instead of the donor concentration. Therefore, in the present specification and the like, as a parameter of the oxide semiconductor, a carrier concentration assuming a state in which an electric field is not applied may be used instead of the donor concentration. That is, the "carrier concentration" described in the present specification and the like may be paraphrased as the "donor concentration".
  • the hydrogen concentration obtained by secondary ion mass spectrometry is less than 1 ⁇ 10 20 atoms / cm 3 , preferably 1 ⁇ 10 19 atoms / cm. It is less than 3, more preferably less than 5 ⁇ 10 18 atoms / cm 3 , and even more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • Oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • Non-monocrystalline oxide semiconductors include, for example, CAAC-OS, polycrystalline oxide semiconductors, nc-OS (nanocrystalline oxide semiconductor), pseudo-amorphous oxide semiconductors (a-like OS: amorphous-like oxide semiconductor), and There are amorphous oxide semiconductors and the like.
  • CAAC-OS polycrystalline oxide semiconductors
  • nc-OS nanocrystalline oxide semiconductor
  • pseudo-amorphous oxide semiconductors a-like OS: amorphous-like oxide semiconductor
  • the amorphous structure has the highest defect level density
  • CAAC-OS has the lowest defect level density.
  • an oxide semiconductor film having an amorphous structure has a disordered atomic arrangement and has no crystal component.
  • the oxide semiconductor film having an amorphous structure has, for example, a completely amorphous structure and does not have a crystal portion.
  • the semiconductor layer is a mixed film having two or more of an amorphous structure region, a microcrystal structure region, a polycrystalline structure region, a CAAC-OS region, and a single crystal structure region.
  • the mixed film may have, for example, a single-layer structure or a laminated structure including any two or more of the above-mentioned regions.
  • CAC-OS which is one aspect of a non-single crystal semiconductor layer
  • CAC-OS is, for example, a composition of a material in which elements constituting an oxide semiconductor are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 2 nm or less, or a size close thereto.
  • the oxide semiconductor one or more metal elements are unevenly distributed, and the region having the metal elements is 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 2 nm or less, or a size in the vicinity thereof.
  • the state of being mixed with is also called a mosaic shape or a patch shape.
  • the oxide semiconductor preferably contains at least indium. In particular, it preferably contains indium and zinc. Also, in addition to them, aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, or magnesium, etc. One or more selected from the above may be included.
  • CAC-OS in In-Ga-Zn oxide is indium oxide (hereinafter, InO).
  • InO indium oxide
  • X1 is a real number greater than 0
  • In X2 Zn Y2 O Z2 X2, Y2, and Z2 are real numbers greater than 0
  • GaO X3 (X3 is a real number larger than 0)
  • gallium zinc oxide hereinafter, Ga X4 Zn Y4 O Z4 (X4, Y4, and Z4 are real numbers larger than 0)
  • the material is separated into a mosaic-like structure, and the mosaic-like InO X1 or In X2 Zn Y2 O Z2 is uniformly distributed in the film (hereinafter, also referred to as cloud-like). is there.
  • CAC-OS is a composite oxide semiconductor having a structure in which a region containing GaO X3 as a main component and a region containing In X2 Zn Y2 O Z2 or InO X1 as a main component are mixed.
  • the atomic number ratio of In to the element M in the first region is larger than the atomic number ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that of region 2.
  • IGZO is a common name, and may refer to one compound consisting of In, Ga, Zn, and O. As a typical example, it is represented by InGaO 3 (ZnO) m1 (m1 is a natural number) or In (1 + x0) Ga (1-x0) O 3 (ZnO) m0 (-1 ⁇ x0 ⁇ 1, m0 is an arbitrary number). Crystalline compounds can be mentioned.
  • the crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure.
  • the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have a c-axis orientation and are connected without being oriented on the ab plane.
  • CAC-OS relates to the material composition of oxide semiconductors.
  • CAC-OS is a region that is partially observed as nanoparticles containing Ga as a main component and nanoparticles containing In as a main component in a material composition containing In, Ga, Zn, and O.
  • the regions observed in a shape refer to a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in CAC-OS, the crystal structure is a secondary element.
  • CAC-OS does not include a laminated structure of two or more types of films having different compositions. For example, it does not include a structure consisting of two layers, a film containing In as a main component and a film containing Ga as a main component.
  • CAC-OS has a region that is partially observed as nanoparticles containing the metal element as a main component and a nano that contains In as a main component.
  • the regions observed in the form of particles refer to a configuration in which the regions are randomly dispersed in a mosaic pattern.
  • CAC-OS can be formed by a sputtering method, for example, under the condition that the substrate is not heated.
  • a sputtering method one or a plurality of selected gases may be used as the film forming gas: an inert gas (typically argon), an oxygen gas, and a nitrogen gas. Good. Further, the lower the flow rate ratio of the oxygen gas to the total flow rate of the film-forming gas at the time of film formation, the more preferable. ..
  • CAC-OS is characterized by the fact that no clear peak is observed when measured using the ⁇ / 2 ⁇ scan by the Out-of-plane method, which is one of the X-ray diffraction (XRD) measurement methods. Have. That is, from the X-ray diffraction measurement, it can be seen that the orientation of the measurement region in the ab plane direction and the c-axis direction is not observed.
  • XRD X-ray diffraction
  • CAC-OS is an electron diffraction pattern obtained by irradiating an electron beam having a probe diameter of 1 nm (also referred to as a nanobeam electron beam) in a ring-shaped region having high brightness (ring region) and the ring region. Multiple bright spots are observed. Therefore, from the electron diffraction pattern, it can be seen that the crystal structure of CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
  • nc nano-crystal
  • the region in which GaO X3 is the main component is determined by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX).
  • EDX energy dispersive X-ray spectroscopy
  • In X2 Zn Y2 O Z2 , or a region containing InO X1 as a main component can be confirmed to have a structure in which they are unevenly distributed and mixed.
  • CAC-OS has a structure different from that of the IGZO compound in which metal elements are uniformly distributed, and has properties different from those of the IGZO compound. That is, the CAC-OS is a region in which GaO X3 or the like is the main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is the main component are phase-separated from each other and each element is the main component. Has a mosaic-like structure.
  • the region in which In X2 Zn Y2 O Z2 or InO X1 is the main component is a region having higher conductivity than the region in which GaO X3 or the like is the main component. That is, the conductivity as an oxide semiconductor is exhibited by the carrier flowing through the region where In X2 Zn Y2 O Z2 or InO X1 is the main component. Therefore, a high field effect mobility ( ⁇ ) can be realized by distributing the region containing In X2 Zn Y2 O Z2 or InO X1 as the main component in the oxide semiconductor in a cloud shape.
  • the region in which GaO X3 or the like is the main component is a region having higher insulating property than the region in which In X2 Zn Y2 O Z2 or InO X1 is the main component. That is, since the region containing GaO X3 or the like as the main component is distributed in the oxide semiconductor, the leakage current can be suppressed and a good switching operation can be realized.
  • CAC-OS when CAC-OS is used for a semiconductor element, the insulation property caused by GaO X3 and the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act complementarily to be high. On current (I on ) and high field effect mobility ( ⁇ ) can be achieved.
  • CAC-OS Semiconductor devices using CAC-OS are highly reliable. Therefore, CAC-OS is suitable as a constituent material for various semiconductor devices.
  • FIG. 1B shows a configuration different from the pixel 10 shown in FIG. 1A.
  • the transistor 101, the transistor 102, the transistor 103, and the transistor 104 may each have a back gate.
  • the transistor 102 that functions as a drive transistor for the light emitting device 114 preferably has a back gate.
  • FIG. 1B shows a configuration in which the back gate of the transistor 102 is electrically connected to one of the source and the drain, and has an effect of increasing the saturation of the transistor characteristics.
  • the back gates of the transistor 101, the transistor 103, and the transistor 104 are electrically connected to the gate (sometimes called a front gate), and have an effect of increasing the on-current.
  • the back gate of the transistor 102 may be electrically connected to the front gate. Such a configuration has the effect of increasing the on-current of the transistor 102. Further, the back gate may be electrically connected to a wiring capable of supplying a constant potential to control the threshold voltage of the transistor.
  • FIG. 1B shows a configuration in which all the transistors are provided with back gates, one or more transistors without back gates may be provided.
  • the high potential is represented by “High” and the low potential is represented by “Low”.
  • the potential corresponding to the image data is "Vdata”, and the potential of the wiring 161 is "Vref".
  • Vref for example, 0V, GND potential or a specific reference potential can be used.
  • the potential of the wiring 128 is set to "Vano".
  • “Vano” is preferably set to a potential at which the transistor 102 operates in the saturation region, for example, when the brightness of the light emitting device 114 is maximized.
  • the potential of the wiring 129 is set to "Vcat". It is preferable that "Vcat" is a potential at which the light emitting device 114 does not emit light when the potential of the node ND 12 is the lowest potential.
  • the potential of the wiring 121 is "High”
  • the potential of the wiring 122 is “High”
  • the potential of the wiring 123 is “Low”
  • the potential of the wiring 131 is "Vdata”
  • the potential of the wiring 161 is "Vref”.
  • the transistor 101 and the transistor 103 are in a conductive state, and the potential “Vdata” of the wiring 131 is written in the node ND 11 and the potential “Vref” of the wiring 161 is written in the node ND 12.
  • the potential difference V1 can be expressed by the equation (1).
  • the potential difference between both ends of the capacitance element 112 is V2
  • the potential difference V2 can be expressed by the equation (2).
  • the voltage Vgs between the gate and source of the transistor 102 is the difference between the potential V ND12 potential V ND11 and the node ND12 of the node ND11, the voltage Vgs can be represented by the formula (3).
  • V1 Vdata-Vref (1)
  • V2 Vano-Vdata
  • Vgs Vdata-Vref (3)
  • the transistor 101 and the transistor 103 are in a non-conducting state.
  • the voltage Vgs between the gate and the source of the transistor 102 becomes a voltage held by the capacitance element 111 and the capacitance element 112, and a current corresponding to the voltage Vgs flows through the light emitting device 114. Then, the light emitting device 114 lights up.
  • the brightness of the light emitting device 114 can be controlled by the amount of current flowing through the light emitting device 114.
  • the potential V ND 12 of the node ND 12 becomes high until the current flowing through the light emitting device 114 and the current flowing through the transistor 102 become equal.
  • the potential V ND11 of the node ND11 through the capacitor 111 also increases.
  • the increase amount of the potential V ND 11 of the node ND 11 can be reduced by the capacitive element 112. Therefore, the difference in the potential V ND12 potential V ND11 and the node ND12 of the node ND11 is reduced. That is, the voltage Vgs between the gate and source of the transistor 102 can be reduced.
  • the potential V ND 12 of the node ND 12 is determined by the operating point of the transistor 102 and the light emitting device 114. Changes to V0 potential V ND12 of the node ND12 from Vref, C 111 the capacitance of the capacitor 111, the capacitance of the capacitor 112 when the C 112, the potential V ND11 of the node ND11 may be represented by the formula (4) .. Further, the voltage Vgs between the gate and the source of the transistor 102 can be expressed by the equation (5). As shown in the equation (5), the voltage Vgs between the gate and the source of the transistor 102 can be changed by changing the ratio of the capacitance C 111 of the capacitance element 111 and the capacitance C 112 of the capacitance element 112.
  • V ND11 Vdata + (C 111 / (C 111 + C 112 )) ⁇ (V0-Vref) (4)
  • Vgs Vdata- (C 111 / (C 111 + C 112 )) x Vref- (C 112 / (C 111 + C 112 )) x V0 (5)
  • the period P21a between the time T31 and the time T32 is a period for writing data for causing the light emitting device 114 to emit light
  • the period P21b between the time T32 and the time T33 is a period during which the light emitting device 114 is emitting light.
  • the period between the time T31 and the time T33 that is, the period P21 in which the period P21a and the period P21b are combined can be referred to as a lighting period or a light emitting period.
  • the ratio of the period P21 to the one-frame period FP may be referred to as duty.
  • the duty is the ratio of the period for writing data for causing the light emitting device 114 to emit light and the period for which the light emitting device 114 is emitting light in one frame period FP.
  • the light emitting device 114 may emit light during the period P21a. Further, the light emitting device 114 may not emit light during the period P21a. When the light emitting device 114 does not emit light during the period P21a, the potential “Vcat” of the wiring 129 so that the potential difference “Vref-Vcat” between the potential of the wiring 129 and the wiring 161 does not exceed the threshold voltage of the light emitting device 114. ”And the potential“ Vref ”of the wiring 161.
  • the time T35 is the time T31 of the next frame, and the operation of the next frame starts from the time T35.
  • the period P22a between the time T33 and the time T34 is a period for writing data for turning off the light emitting device 114
  • the period P22b between the time T34 and the time T35 is a period during which the light emitting device 114 is turned off. Is.
  • the period between the time T33 and the time T35, that is, the period P22 in which the period P22a and the period P22b are combined can be referred to as an extinguishing period or a non-light emitting period.
  • afterimages can be reduced and display quality can be improved by providing a light-off period (period P22) during one frame period to display black.
  • ⁇ Pixel configuration example 2> A configuration different from the pixel 10 shown in FIG. 1B is shown in FIG. 3A.
  • the pixel 10a shown in FIG. 3A has no capacitive element 112 and one of the source and drain of the transistor 104 is electrically connected to one electrode of the light emitting device 114 without passing through the capacitive element 111.
  • the other of the source or drain of the transistor 104 is electrically connected to the gate of the transistor 102, which is different from the pixel 10 shown in FIG. 1B.
  • the description of the pixel 10 shown in FIG. 1B can be referred to for the connection relationship between these elements and the connection relationship with each wiring. Therefore, a detailed description will be omitted.
  • FIG. 3B An example of the operation of the pixel 10a will be described with reference to the timing chart shown in FIG. 3B. Since the description of FIG. 2 can be referred to with respect to the wiring 161, the wiring 161 is omitted in FIG. 3B.
  • the potential of the wiring 121 is "High”
  • the potential of the wiring 122 is “High”
  • the potential of the wiring 123 is “Low”
  • the potential of the wiring 131 is "Vdata”
  • the potential of the wiring 161 is "Vref”.
  • the transistor 101 and the transistor 103 are in a conductive state, and the potential “Vdata” of the wiring 131 is written in the node ND 11 and the potential “Vref” of the wiring 161 is written in the node ND 12.
  • the transistor 101 and the transistor 103 are in a non-conducting state.
  • the voltage Vgs between the gate and source of the transistor 102 becomes a voltage held by the capacitive element 111, and a current corresponding to the voltage Vgs flows through the light emitting device 114. Then, the light emitting device 114 lights up. Further, the brightness of the light emitting device 114 can be controlled by the amount of current flowing through the light emitting device 114.
  • the transistor 101 and the transistor 103 are in a non-conducting state, and the transistor 104 is moved. It becomes a conductive state.
  • the transistor 104 becomes conductive, the node ND11 and the node ND12 is electrically connected via the transistor 104, the potential V ND12 potential V ND11 and the node ND12 of the node ND11 is the same. That is, since the voltage Vgs between the gate and the source of the transistor 102 becomes 0V, the light emitting device 114 can be turned off and black can be displayed.
  • ⁇ Pixel configuration example 3> A configuration different from the pixel 10 shown in FIG. 1B is shown in FIG. 4A.
  • the pixel 10b shown in FIG. 4A has a point that does not have the capacitance element 112, a point that has the wiring 162, and one of the source and drain of the transistor 104 does not go through the capacitance element 111 and is electrically connected to one electrode of the light emitting device 114. It differs from the pixel 10 shown in FIG. 1B in that it is connected to the wiring 162 and the other of the source or drain of the transistor 104 is electrically connected to the wiring 162.
  • the description of the pixel 10 shown in FIG. 1B can be referred to for the connection relationship between these elements and the connection relationship with each wiring. Therefore, a detailed description will be omitted.
  • the wiring 162 has a function of supplying a specific potential (hereinafter, also referred to as a second potential).
  • a specific potential hereinafter, also referred to as a second potential.
  • a specific potential for example, 0V, GND potential or a specific reference potential can be used.
  • FIG. 4B An example of the operation of the pixel 10b will be described with reference to the timing chart shown in FIG. 4B. Since the description of FIG. 2 can be referred to with respect to the wiring 161, the wiring 161 is omitted in FIG. 4B.
  • the potential of the wiring 121 is "High”
  • the potential of the wiring 122 is “High”
  • the potential of the wiring 123 is “Low”
  • the potential of the wiring 131 is "Vdata”
  • the potential of the wiring 161 is "Vref”.
  • the transistor 101 and the transistor 103 are in a conductive state, and the potential “Vdata” of the wiring 131 is written in the node ND 11 and the potential “Vref” of the wiring 161 is written in the node ND 12.
  • the transistor 101 and the transistor 103 are in a non-conducting state.
  • the voltage Vgs between the gate and source of the transistor 102 becomes a voltage held by the capacitive element 111, a current corresponding to the voltage Vgs flows to the light emitting device 114, and the light emitting device 114 lights up. Further, the brightness of the light emitting device 114 can be controlled by the amount of current flowing through the light emitting device 114.
  • the potential of the wiring 162 is preferably a potential at which the light emitting device 114 does not emit light.
  • the wiring 162 has a function of flowing a current flowing through the transistor 102 during the period P22. During the period when the potential of the wiring 123 is “High”, the light emitting device 114 is turned off.
  • FIG. 4A shows a configuration in which the other of the source or drain of the transistor 101 is electrically connected to the wiring 161 and the other of the source or drain of the transistor 104 is electrically connected to the wiring 162.
  • One aspect of the invention is not limited to this.
  • the other of the source or drain of the transistor 101 and the other of the source or drain of the transistor 104 may both be electrically connected to the wiring 161 without providing the wiring 162.
  • FIGS. 5A and 5B A configuration different from the pixel 10 shown in FIG. 1B is shown in FIGS. 5A and 5B.
  • the pixel 10c shown in FIG. 5A has no capacitive element 112 and one of the source and drain of the transistor 104 is electrically connected to one electrode of the light emitting device 114 without passing through the capacitive element 111. , The other of the source or drain of the transistor 104 is electrically connected to one of the source or drain of the transistor 101, which is different from the pixel 10 shown in FIG. 1B.
  • the pixel 10d shown in FIG. 5B has no capacitive element 112, one of the source or drain of the transistor 104 is electrically connected to the other of the source or drain of the transistor 102, and the source or drain of the transistor 104. It differs from the pixel 10 shown in FIG. 1B in that the other of the drains is electrically connected to the wiring 128.
  • the description of the pixel 10 shown in FIG. 1B can be referred to for the connection relationship between these elements and the connection relationship with each wiring. Therefore, a detailed description will be omitted.
  • the potential of the wiring 121 is "High”
  • the potential of the wiring 122 is “High”
  • the potential of the wiring 123 is “Low”
  • the potential of the wiring 131 is "Vdata”
  • the potential of the wiring 161 is "Vref”.
  • the transistor 101 and the transistor 103 are in a conductive state, and the potential “Vdata” of the wiring 131 is written in the node ND 11 and the potential “Vref” of the wiring 161 is written in the node ND 12.
  • the transistor 101 and the transistor 103 are in a non-conducting state, and the transistor 104 is moved. It becomes a conductive state.
  • the voltage Vgs between the gate and source of the transistor 102 becomes a voltage held by the capacitive element 111, a current corresponding to the voltage Vgs flows to the light emitting device 114, and the light emitting device 114 lights up. Further, the brightness of the light emitting device 114 can be controlled by the amount of current flowing through the light emitting device 114.
  • ⁇ Pixel configuration example 5> A configuration different from the pixel 10 shown in FIG. 1B is shown in FIG. 7A.
  • the pixel 10e shown in FIG. 7A is different from the pixel 10 shown in FIG. 1B in that it does not have the transistor 104, the capacitive element 112, and the wiring 123.
  • the description of the pixel 10 shown in FIG. 1B can be referred to for the connection relationship between these elements and the connection relationship with each wiring. Therefore, a detailed description will be omitted.
  • FIG. 7B An example of the operation of the pixel 10e will be described with reference to the timing chart shown in FIG. 7B. Since the description of FIG. 2 can be referred to with respect to the wiring 161, the wiring 161 is omitted in FIG. 7B.
  • the transistor 101 and the transistor 103 are in a non-conducting state.
  • the voltage Vgs between the gate and source of the transistor 102 becomes a voltage held by the capacitive element 111, a current corresponding to the voltage Vgs flows to the light emitting device 114, and the light emitting device 114 lights up. Further, the brightness of the light emitting device 114 can be controlled by the amount of current flowing through the light emitting device 114.
  • the transistor 101 is in a conductive state and the transistor 103 is in a non-conducting state.
  • the potential "Vref" of the wiring 161 is written to the node ND 12, the light emitting device 114 is turned off, and black can be displayed.
  • the potential of the wiring 129 and the potential of the wiring 161 are set to "Vref” so that the potential difference "Vref-Vcat" of the wiring 129 and the wiring 161 does not exceed the threshold voltage of the light emitting device 114. preferable.
  • the light emitting device 114 is turned off.
  • the pixel 10e shown in FIG. 7A has a smaller number of transistors, capacitive elements, and wirings than the above-mentioned pixels 10 to 10d, it can be suitably used for a high-definition display device having small pixels.
  • the display device has a plurality of pixels arranged in a matrix of m rows and n columns (m and n are independently integers of 1 or more).
  • m and n are independently integers of 1 or more.
  • the above-mentioned pixel 10, pixel 10a, pixel 10b, pixel 10c, pixel 10d or pixel 10e can be used.
  • FIG. 8A A schematic diagram showing the operation of the display device is shown in FIG. 8A.
  • the vertical axis represents the number of rows i of pixels (i is an integer of 1 or more and m or less), and the horizontal axis represents time (Time).
  • the display device can provide a period P22 during one frame period to display black. Further, as shown in FIG. 8A, it is possible to display black for each line.
  • the method of driving a pixel line by line may be described as line sequential drive.
  • the selection time per line for writing image data is compared with the case where all the pixels are displayed in black at the same time by performing black display by sequentially driving lines. (Also called 1 horizontal period) can be lengthened. Therefore, since the image data can be reliably written to the pixels, the display quality of the display device can be improved. For example, it is possible to prevent insufficient writing of image data even during high-speed operation in which the frame frequency is increased.
  • Duty can be any value.
  • FIG. 8A shows a configuration example in which the duty is 80%.
  • FIG. 8B shows a configuration example in which the duty is 50%.
  • FIG. 8C shows a configuration example in which the duty is 20%.
  • FIG. 9A A configuration different from the pixel 10 shown in FIG. 1B is shown in FIG. 9A.
  • the pixel 10f shown in FIG. 9A does not have the transistor 104, the capacitive element 112, the wiring 122, and the wiring 123, and the gate of the transistor 103 is electrically connected to the wiring 121. Different from. In pixel 10f, the gate of the transistor 101 and the gate of the transistor 102 are electrically connected to the wiring 121, respectively.
  • the pixel 10f shown in FIG. 9A has a smaller number of transistors, capacitive elements, and wirings than the above-mentioned pixels 10 to 10e, it can be suitably used for a high-definition display device having small pixels.
  • FIG. 9B An example of the operation of the pixel 10f will be described with reference to the timing chart shown in FIG. 9B. Since the description of FIG. 2 can be referred to with respect to the wiring 161, the wiring 161 is omitted in FIG. 9B.
  • the potential of the wiring 121 is set to "High”
  • the potential of the wiring 131 is set to "Vdata_1”
  • the potential of the wiring 161 is set to "Vref”
  • the transistor 101 and the transistor 103 are in a conductive state, and the wiring 131 is connected to the node ND11.
  • the potential “Vdata_1” of the wiring 161 and the potential “Vref” of the wiring 161 are written in the node ND12.
  • the potential “Vdata_1” of the wiring 131 is a potential corresponding to the image data.
  • the transistor 101 and the transistor 103 are in a non-conducting state.
  • the voltage Vgs between the gate and source of the transistor 102 becomes a voltage held by the capacitive element 111, a current corresponding to the voltage Vgs flows to the light emitting device 114, and the light emitting device 114 lights up. Further, the brightness of the light emitting device 114 can be controlled by the amount of current flowing through the light emitting device 114.
  • the transistor 101 and the transistor 103 are in a conductive state, and the potential of the wiring 131 "Vdata_2" and the node ND12 are connected to the node ND11.
  • the potential "Vref" of the wiring 161 is written in.
  • the transistor 101 and the transistor 103 are in a non-conducting state. Further, the light emitting device 114 is continuously turned off.
  • the potential of the wiring 131 is "Vdata_1" in the period P21 and the potential of the wiring 131 is “Vdata_1" in the period P22.
  • FIG. 9B An example of the operation of the pixel 10f, which is different from the timing chart shown in FIG. 9B, will be described.
  • An example of the timing chart of the pixel 10f is shown in FIG.
  • the potential "Vdata_1" and the potential "Vdata_2" are alternately supplied to the wiring 131. Since the description of FIG. 2 can be referred to with respect to the wiring 161, the wiring 161 is omitted in FIG.
  • the period P21c between the time T31a and the time T32 is a period (1 horizontal period) for selecting a line for writing data for causing the light emitting device 114 to emit light. Further, the period P21c is divided into a period in which the potential “Vdata_1” is supplied from the wiring 131 and a period in which the potential “Vdata_1” is supplied.
  • the transistor 101 and the transistor 103 are in a non-conducting state, and the light emitting device 114 does not emit light.
  • the transistor 101 and the transistor 103 are in a non-conducting state.
  • the voltage Vgs between the gate and source of the transistor 102 becomes a voltage held by the capacitive element 111, a current corresponding to the voltage Vgs flows to the light emitting device 114, and the light emitting device 114 lights up. Further, the brightness of the light emitting device 114 can be controlled by the amount of current flowing through the light emitting device 114.
  • the period P21a between the time T31 and the time T32 is a period for writing data for causing the light emitting device 114 to emit light.
  • the period P22c between the time T33 and the time T34a is a period for selecting a line for writing data for turning off the light emitting device 114. Further, the period P22c is divided into a period in which the potential “Vdata_1” is supplied from the wiring 131 and a period in which the potential “Vdata_1” is supplied.
  • the transistor 101 and the transistor 103 are in a conductive state, and the potential of the wiring 131 "Vdata_2" and the node ND12 are connected to the node ND11.
  • the light emitting device 114 can be turned off and black can be displayed.
  • the transistor 101 and the transistor 103 are in a non-conducting state. Further, the light emitting device 114 is continuously turned off.
  • FIGS. 11A and 11B An example of the layout of the pixel 10 shown in FIG. 1B is shown in FIGS. 11A and 11B.
  • FIG. 11A shows a transistor 101, a transistor 102, a transistor 103, a transistor 104, a capacitance element 111, a capacitance element 112, a wiring 121, a wiring 122, a wiring 123, a wiring 128, a wiring 131, and a wiring 161.
  • the light emitting device 114 and the wiring 129 are omitted in order to clearly show the figure.
  • FIG. 11B shows a configuration when a pixel electrode 53 is provided in addition to the configuration of FIG. 11A.
  • the pixel electrode 53 is electrically connected to the light emitting device 114. Further, the light emitting device 114 can be provided on the pixel electrode 53.
  • the pixel electrode 53 is provided so as to overlap with a part of elements such as a transistor 101 and a capacitance element 111 that make up the pixel 10 and wiring.
  • Such a configuration is particularly effective when a top light emitting type (top emission type) light emitting device is used.
  • a large aperture ratio can be realized even if the occupied area of the pixel 10 is reduced.
  • the pixel electrode 53 does not overlap with the wiring 131 that functions as a signal line. Since the pixel electrode 53 and the wiring 131 do not overlap with each other, it is possible to suppress the change in the potential of the wiring 131 from affecting the potential of the pixel electrode 53.
  • the ratio of the area where these overlap to the area of the pixel electrode 53 may be 10% or less, preferably 5% or less.
  • Example of sub-pixel configuration> 12A, 12B, 13A and 13B show examples of configuration of sub-pixels that can be applied to the display device of one aspect of the present invention.
  • the pixel 10 shown in FIG. 12A has a sub-pixel 10R exhibiting red light, a sub-pixel 10G exhibiting green light, and a sub-pixel 10B exhibiting blue light, and these three sub-pixels are one pixel 10.
  • An example of configuring is shown.
  • the pixel 10 shown in FIG. 12A has a strip-shaped shape in which the length of the sub-pixel is long in the extending direction of the wiring 131, and is arranged in a stripe shape in the extending direction of the wiring 121, the wiring 122, and the wiring 123.
  • the wiring 121, the wiring 122, the wiring 123, and the wiring 131 are also shown together with the sub-pixels (two pixels 10) arranged in a matrix of 2 rows and 3 columns.
  • the wiring 121, the wiring 122, and the wiring 123 on the i-th line are described as wiring 121 [i], wiring 122 [i], and wiring 123 [i], respectively.
  • the wiring 121, the wiring 122, and the wiring 123 on the line (i-1) are described as wiring 121 [i-1], wiring 122 [i-1], and wiring 123 [i-1], respectively.
  • the wiring 131 of the (j-6) th column to the jth column is described as the wiring 131 [j-6] to the wiring 131 [j], respectively.
  • the sub-pixel 10R has a pixel electrode 53a, and the display area 51a of the sub-pixel 10R is located inside the pixel electrode 53a.
  • the sub-pixel 10G has a pixel electrode 53b, and the display area 51b of the sub-pixel 10G is located inside the pixel electrode 53b.
  • the sub-pixel 10B has a pixel electrode 53c, and the display area 51c of the sub-pixel 10B is located inside the pixel electrode 53c.
  • FIG. 12B shows an example in which the pixel electrode 53a, the pixel electrode 53b, and the pixel electrode 53c have the same area, they may have different areas. Further, the display area 51a, the display area 51b, and the display area 51c may have different areas.
  • the pixel 10 shown in FIG. 12B shows an example in which the positions of the sub-pixels of the same color are displaced in the extending direction of the wiring 121 and the wiring 122.
  • sub-pixels of the same color are arranged in a zigzag manner in the extending direction of the wiring 121 and the wiring 122.
  • the pixel 10 shown in FIG. 13A has a strip-shaped shape in which the length of the sub-pixel is long in the extending direction of the wiring 131, and is arranged in a stripe shape in the extending direction of the wiring 121 and the wiring 122. Further, an example is shown in which the sub-pixel 10R, the sub-pixel 10G, and the sub-pixel 10B are aligned in the extending direction of the wiring 121 and the wiring 122.
  • the pixel 10 shown in FIG. 13B shows an example in which the sub-pixels are arranged in a stripe shape and the positions of the sub-pixels of the same color are displaced in the extending direction of the wiring 121 and the wiring 122.
  • sub-pixels of the same color are arranged in a zigzag manner in the extending direction of the wiring 121 and the wiring 122.
  • FIG. 12A, FIG. 12B, FIG. 13A and FIG. 13B examples are shown in which the color combinations of the light emitted by the sub-pixels are red (R), green (G), and blue (B).
  • the combination of colors and the number of colors are not limited to this.
  • the combination of the colors of the light emitted by the sub-pixel is red (R), green (G), blue (B), white (W), or red (R), green (G), blue (B), It may be four colors of yellow (Y).
  • the color elements applied to the sub-pixels are not limited to the above, and cyan (C), magenta (M), and the like may be combined.
  • the blue wavelength region is 400 nm or more and less than 490 nm, and the blue emission has at least one emission spectrum peak in the wavelength region.
  • the green wavelength region is 490 nm or more and less than 580 nm, and the green emission has at least one emission spectrum peak in the wavelength region.
  • the red wavelength region is 580 nm or more and 680 nm or less, and the red emission has at least one emission spectrum peak in the wavelength region.
  • the display device 100 includes a pixel unit 150 having a plurality of pixels 10, a drive circuit unit 130, a drive circuit unit 140a, a drive circuit unit 140b, a wiring 121, a wiring 122, a wiring 123, and a wiring 131. Has.
  • the pixel unit 150 has a plurality of pixels 10, and each pixel 10 can be arranged in a matrix.
  • the drive circuit unit 130 is electrically connected to the pixel 10 via the wiring 121.
  • the drive circuit unit 130 is electrically connected to the pixel 10 via the wiring 122. Further, the drive circuit unit 130 is electrically connected to the pixel 10 via the wiring 123.
  • the drive circuit unit 130 functions as a gate line drive circuit (also referred to as a gate driver). A signal is given from the drive circuit unit 130 to each of the plurality of pixels 10 via the wiring 121 and the wiring 122, and the drive is controlled.
  • the drive circuit unit 140a and the drive circuit unit 140b are each electrically connected to the pixel 10 via the wiring 131.
  • the drive circuit unit 140a and the drive circuit unit 140b each function as a source line drive circuit (also referred to as a source driver).
  • a signal is given from the drive circuit unit 140a or the drive circuit unit 140b via the wiring 131 to each of the plurality of pixels 10, and the drive is controlled.
  • FIG. 14 shows an example in which the odd-numbered rows of pixels 10 are electrically connected to the drive circuit unit 140a, and the even-numbered rows of pixels 10 are electrically connected to the drive circuit unit 140b.
  • the display device according to one aspect of the present invention can be operated at high speed even in a display device having a large number of pixels by having a plurality of drive circuit units that function as source drivers.
  • the display device according to one aspect of the present invention can be suitably used for, for example, a high-definition display device of 1000 ppi or more, 2000 ppi or more, or 5000 ppi or more.
  • FIG. 14 shows an example in which two drive circuit units 140a and 140b are provided as drive circuit units that function as source drivers, but one aspect of the present invention is not limited to this. Three or more drive circuit units that function as source drivers may be provided. Further, one drive circuit unit that functions as a source driver may be provided.
  • FIG. 15 shows a schematic diagram showing a configuration example of the display device 100.
  • the display device 100 has a laminated structure of a first layer 20 and a second layer 30 on the first layer 20.
  • FIG. 15A shows a configuration in which the second layer 30 is provided on the first layer 20, but one aspect of the present invention is not limited to this.
  • the first layer 20 may be provided on the second layer 30.
  • One or more of the interlayer insulating layer and the wiring layer may be provided between the first layer 20 and the second layer 30. Further, the number of interlayer insulating layers and wiring layers provided between the first layer 20 and the second layer 30 may be plural.
  • the first layer 20 has a drive circuit unit 140a and a drive circuit unit 140b.
  • the second layer 30 has a drive circuit unit 130 and a pixel unit 150.
  • FIG. 15B A configuration example of the first layer 20 and the second layer 30 shown in FIG. 15A is shown in FIG. 15B.
  • the positional relationship between the first layer 20 and the second layer 30 is shown by the white circles and the alternate long and short dash lines, and the white circles and the first layer 20 of the first layer connected by the alternate long and short dash lines.
  • the white circles of the two layers 30 overlap.
  • the wiring other than the wiring 121, the wiring 122, the wiring 123 and the wiring 131 is omitted in FIG. 15B.
  • the display device 100 preferably has a region in which each of the drive circuit unit 140a and the drive circuit unit 140b provided in the first layer 20 overlaps with the pixel unit 150.
  • the area of the frame which is the region where the pixel unit 150 is not provided, can be reduced. Therefore, the frame of the display device 100 can be narrowed. Further, by narrowing the frame of the display device 100, the display device 100 can be made smaller.
  • FIG. 15B shows an example in which the sizes of the first layer 20 and the second layer 30 are substantially the same, but the outline of the present invention is not limited to this.
  • the sizes of the first layer 20 and the second layer 30 may be different.
  • the first layer 20 may be larger than the second layer 30.
  • the first layer 20 may be smaller than the second layer 30.
  • a second layer 30 can be formed on the first layer 20 to manufacture the display device 100.
  • the alignment accuracy of the first layer 20 and the second layer 30 can be improved. Therefore, the productivity of the display device 100 can be increased.
  • the first layer 20 and the second layer 30 may be bonded together to produce the display device 100.
  • the display device 100 is manufactured by laminating the first layer 20 and the second layer 30, the sizes of the first layer 20 and the second layer 30 may be different. Therefore, the first layer 20 and the second layer 30 can be formed without being influenced by their sizes.
  • a plurality of first layers 20 are formed on the substrate to be formed of the first layer 20, and after each of the first layers 20 is divided, the display device 100 is bonded to the second layer 30. Can be produced.
  • the second layer 30 also forms a plurality of second layers 30 with respect to the substrate to be formed of the second layer 30, and after dividing into each of the second layers 30, the first layer 20
  • the display device 100 may be manufactured by laminating with the display device 100. That is, the productivity of the first layer 20 and the second layer 30 can be increased, and the productivity of the display device 100 can be increased.
  • ⁇ Display device configuration example 2> 16A and 16B show configuration examples different from the display device 100 shown in FIGS. 15A and 15B.
  • the display device 100 shown in FIGS. 16A and 16B is mainly different from the display device 100 shown in FIGS. 15A and 15B in that the first layer 20 has a drive circuit unit 130.
  • the manufacturing process of the drive circuit unit 130 and the drive circuit unit 140a and the drive circuit unit 140b can be made common. And can increase productivity.
  • FIG. 16B shows an example in which the pixel unit 150 does not have a region overlapping the drive circuit unit 130, but one aspect of the present invention is not limited to this.
  • the pixel unit 150 may have an area that overlaps with the drive circuit unit 130. Further, the pixel unit 150 may have a region that overlaps with any of the drive circuit unit 130, the drive circuit unit 140a, and the drive circuit unit 140b. With such a configuration, the frame of the display device 100 can be narrowed. Further, by narrowing the frame of the display device 100, the display device 100 can be made smaller.
  • Example 1 of cross-sectional configuration of display device A cross-sectional view showing a configuration example of the display device 100 is shown in FIG.
  • the display device 100 has a substrate 701 and a substrate 705, and the substrate 701 and the substrate 705 are bonded to each other by a sealing material 712.
  • a single crystal semiconductor substrate such as a single crystal silicon substrate can be used.
  • a semiconductor substrate other than the single crystal semiconductor substrate may be used as the substrate 701.
  • a transistor 441 and a transistor 601 are provided on the substrate 701.
  • the transistor 441 and the transistor 601 can be a transistor provided in the first layer 20.
  • the transistor 441 and the transistor 601 can be a transistor provided in the drive circuit unit 140a or the drive circuit unit 140b.
  • the transistor 441 and the transistor 601 can be a transistor provided in the drive circuit unit 130, the drive circuit unit 140a, or the drive circuit unit 140b.
  • the transistor 441 is composed of a conductor 443 having a function as a gate electrode, an insulator 445 having a function as a gate insulator, and a part of a substrate 701, and is a semiconductor region 447 including a channel forming region and a source region. Alternatively, it has a low resistance region 449a that functions as one of the drain regions and a low resistance region 449b that functions as the other of the source region or the drain region.
  • the transistor 441 may be either a p-channel type or an n-channel type.
  • the transistor 441 is electrically separated from other transistors by the element separation layer 403.
  • FIG. 17 shows a case where the transistor 441 and the transistor 601 are electrically separated by the element separation layer 403.
  • the element separation layer 403 can be formed by using a LOCOS (LOCOxidation of Silicon) method, an STI (Shallow Trench Isolation) method, or the like.
  • the semiconductor region 447 has a convex shape. Further, the side surface and the upper surface of the semiconductor region 447 are provided so as to be covered with the conductor 443 via the insulator 445. Note that FIG. 17 does not show how the conductor 443 covers the side surface of the semiconductor region 447. Further, a material for adjusting the work function can be used for the conductor 443.
  • a transistor having a convex shape in the semiconductor region such as the transistor 441 can be called a fin type transistor because the convex portion of the semiconductor substrate is used.
  • an insulator which is in contact with the upper part of the convex portion and has a function as a mask for forming the convex portion may be provided.
  • FIG. 17 shows a configuration in which a part of the substrate 701 is processed to form a convex portion, the SOI substrate may be processed to form a semiconductor having a convex shape.
  • the configuration of the transistor 441 shown in FIG. 17 is an example, and the configuration is not limited to the configuration, and an appropriate configuration may be used according to the circuit configuration, the operation method of the circuit, or the like.
  • the transistor 441 may be a planar transistor.
  • the transistor 601 can have the same configuration as the transistor 441.
  • an insulator 405, an insulator 407, an insulator 409, and an insulator 411 are provided.
  • the conductor 451 is embedded in the insulator 405, the insulator 407, the insulator 409, and the insulator 411.
  • the height of the upper surface of the conductor 451 and the height of the upper surface of the insulator 411 can be made about the same.
  • Insulator 413 and insulator 415 are provided on the conductor 451 and the insulator 411. Further, the conductor 457 is embedded in the insulator 413 and the insulator 415. Here, the height of the upper surface of the conductor 457 and the height of the upper surface of the insulator 415 can be made about the same.
  • Insulator 417 and insulator 419 are provided on the conductor 457 and the insulator 415. Further, the conductor 459 is embedded in the insulator 417 and the insulator 419. Here, the height of the upper surface of the conductor 459 and the height of the upper surface of the insulator 419 can be made about the same.
  • Insulator 421 and insulator 214 are provided on the conductor 459 and the insulator 419.
  • the conductor 453 is embedded in the insulator 421 and in the insulator 214.
  • the height of the upper surface of the conductor 453 and the height of the upper surface of the insulator 214 can be made about the same.
  • Insulator 216 is provided on the conductor 453 and on the insulator 214.
  • a conductor 455 is embedded in the insulator 216.
  • the height of the upper surface of the conductor 455 and the height of the upper surface of the insulator 216 can be made about the same.
  • Insulator 222, insulator 224, insulator 254, insulator 244, insulator 280, insulator 274, and insulator 281 are provided on the conductor 455 and the insulator 216.
  • the conductor 305 is embedded in the insulator 222, the insulator 224, the insulator 254, the insulator 244, the insulator 280, the insulator 274, and the insulator 281.
  • the height of the upper surface of the conductor 305 and the height of the upper surface of the insulator 281 can be made about the same.
  • the insulator 361 is provided on the conductor 305 and the insulator 281.
  • a conductor 317 and a conductor 337 are embedded in the insulator 361.
  • the height of the upper surface of the conductor 337 and the height of the upper surface of the insulator 361 can be made about the same.
  • the insulator 363 is provided on the conductor 337 and the insulator 361.
  • a conductor 347, a conductor 353, a conductor 355, and a conductor 357 are embedded in the insulator 363.
  • the height of the upper surface of the conductor 353, the conductor 355, and the conductor 357 can be made the same as the height of the upper surface of the insulator 363.
  • connection electrode 760 is provided on the conductor 353, the conductor 355, the conductor 357, and the insulator 363. Further, an anisotropic conductor 780 is provided so as to be electrically connected to the connection electrode 760, and an FPC (Flexible Printed Circuit) 716 is provided so as to be electrically connected to the anisotropic conductor 780. Various signals and the like are supplied to the display device 100 from the outside of the display device 100 by the FPC 716.
  • FPC Flexible Printed Circuit
  • the low resistance region 449b having a function as the other of the source region and the drain region of the transistor 441 includes a conductor 451 and a conductor 457, a conductor 459, a conductor 453, a conductor 455, and a conductor. It is electrically connected to the FPC 716 via 305, conductor 317, conductor 337, conductor 347, conductor 353, conductor 355, conductor 357, connection electrode 760, and anisotropic conductor 780. ..
  • connection electrode 760 and the conductor 347 shows three conductors having a function of electrically connecting the connection electrode 760 and the conductor 347, that is, the conductor 353, the conductor 355, and the conductor 357, which is one of the present inventions.
  • the aspect is not limited to this.
  • the number of conductors having a function of electrically connecting the connection electrode 760 and the conductor 347 may be one, two, or four or more.
  • the contact resistance can be reduced by providing a plurality of conductors having a function of electrically connecting the connection electrode 760 and the conductor 347.
  • a transistor 750 is provided on the insulator 214.
  • the transistor 750 can be a transistor provided in the second layer 30.
  • the transistor 750 can be a transistor provided in the pixel unit 150.
  • an OS transistor can be preferably used as the transistor 750.
  • the OS transistor has a feature that the off-current is extremely small. Therefore, since the holding time of the image signal or the like can be lengthened, the frequency of the refresh operation can be reduced. Therefore, the power consumption of the display device 100 can be reduced.
  • Conductors 301a and 301b are embedded in the insulator 254, the insulator 244, the insulator 280, the insulator 274, and the insulator 281.
  • the conductor 301a is electrically connected to one of the source or drain of the transistor 750
  • the conductor 301b is electrically connected to the other of the source or drain of the transistor 750.
  • the height of the upper surfaces of the conductors 301a and 301b and the height of the upper surfaces of the insulator 281 can be made about the same.
  • a conductor 311, a conductor 313, a conductor 331, a capacitance element 790, a conductor 333, and a conductor 335 are embedded in the insulator 361.
  • the conductors 311 and 313 are electrically connected to the transistor 750 and have a function as wiring.
  • the conductor 333 and the conductor 335 are electrically connected to the capacitive element 790.
  • the height of the upper surface of the conductor 331, the conductor 333, and the conductor 335 can be made the same as the height of the upper surface of the insulator 361.
  • Conductor 341, conductor 343, and conductor 351 are embedded in the insulator 363.
  • the height of the upper surface of the conductor 351 and the height of the upper surface of the insulator 363 can be made about the same.
  • the 281, the insulator 361, and the insulator 363 have a function as an interlayer film, and may have a function as a flattening film that covers the uneven shape below each of them.
  • the upper surface of the insulator 363 may be flattened by a flattening treatment using a chemical mechanical polishing (CMP) method or the like in order to improve the flatness.
  • CMP chemical mechanical polishing
  • the capacitance element 790 can be the capacitance element 111 or the capacitance element 112 provided in the pixel unit 150.
  • the capacitive element 790 has a lower electrode 321 and an upper electrode 325. Further, an insulator 323 is provided between the lower electrode 321 and the upper electrode 325. That is, the capacitive element 790 has a laminated structure in which an insulator 323 that functions as a dielectric is sandwiched between a pair of electrodes.
  • FIG. 17 shows an example in which the capacitance element 790 is provided on the insulator 281, the capacitance element 790 may be provided on an insulator different from the insulator 281.
  • FIG. 17 shows an example in which the conductor 301a, the conductor 301b, and the conductor 305 are formed in the same layer. Further, an example is shown in which the conductor 311 and the conductor 313, the conductor 317, and the lower electrode 321 are formed in the same layer. Further, an example is shown in which the conductor 331, the conductor 333, the conductor 335, and the conductor 337 are formed in the same layer. Further, an example is shown in which the conductor 341, the conductor 343, and the conductor 347 are formed in the same layer. Further, an example is shown in which the conductor 351 and the conductor 353, the conductor 355, and the conductor 357 are formed in the same layer.
  • the manufacturing process of the display device 100 can be simplified, so that the manufacturing cost of the display device 100 can be reduced. In addition, these may be formed in different layers, and may have different kinds of materials.
  • the display device 100 shown in FIG. 17 has a light emitting device 782.
  • the light emitting device 782 has a conductor 772, an EL layer 786, and a conductor 788.
  • the EL layer 786 has an organic compound or an inorganic compound such as a quantum dot.
  • Examples of materials that can be used for organic compounds include fluorescent materials and phosphorescent materials.
  • Examples of materials that can be used for quantum dots include colloidal quantum dot materials, alloy-type quantum dot materials, core-shell type quantum dot materials, and core-type quantum dot materials.
  • the conductor 772 is electrically connected to the other of the source or drain of the transistor 750 via the conductor 351 and the conductor 341, the conductor 331, the conductor 313, and the conductor 301b.
  • the conductor 772 is formed on the insulator 363 and has a function as a pixel electrode.
  • a material that is transparent to visible light or a material that is reflective can be used.
  • the translucent material for example, an oxide material containing indium, zinc, tin, etc. may be used.
  • the reflective material for example, a material containing aluminum, silver, or the like may be used.
  • the display device 100 can be provided with an optical member (optical substrate) such as a polarizing member, a retardation member, and an antireflection member.
  • an optical member optical substrate
  • polarizing member such as a polarizing member, a retardation member, and an antireflection member.
  • a light-shielding layer 738 and an insulator 734 in contact with the light-shielding layer 738 are provided on the substrate 705 side.
  • the light-shielding layer 738 has a function of blocking light emitted from an adjacent region.
  • the light-shielding layer 738 has a function of blocking external light from reaching the transistor 750 or the like.
  • an insulator 730 is provided on the insulator 363.
  • the insulator 730 can be configured to cover a part of the conductor 772.
  • the light emitting device 782 has a translucent conductor 788, and can be a top emission type light emitting device.
  • the light emitting device 782 may have a bottom emission structure that emits light to the conductor 772 side, or a dual emission structure that emits light to both the conductor 772 and the conductor 788.
  • the light-shielding layer 738 is provided so as to have a region overlapping with the insulator 730. Further, the light-shielding layer 738 is covered with an insulator 734. Further, the space between the light emitting device 782 and the insulator 734 is filled with a sealing layer 732.
  • the structure 778 is provided between the insulator 730 and the EL layer 786. Further, the structure 778 is provided between the insulator 730 and the insulator 734.
  • FIG. 17 A modified example of the display device 100 shown in FIG. 17 is shown in FIG.
  • the display device 100 shown in FIG. 18 is different from the display device 100 shown in FIG. 17 in that a colored layer 736 is provided.
  • the colored layer 736 is provided so as to have a region overlapping with the light emitting device 782.
  • the color purity of the light extracted from the light emitting device 782 can be increased.
  • a high-quality image can be displayed on the display device 100.
  • all the light emitting devices 782 of the display device 100 can be light emitting devices that emit white light, so that the EL layer 786 does not have to be formed by painting separately, and the display device 100 has a high definition. can do.
  • the light emitting device 782 can have a micro optical resonator (microcavity) structure.
  • a predetermined color for example, RGB
  • the display device 100 can perform color display.
  • the display device 100 can display a high-brightness image, and the power consumption of the display device 100 can be reduced.
  • the EL layer 786 is formed in an island shape for each pixel or in a striped shape for each pixel row, that is, when the EL layer 786 is formed by painting separately, it is possible to configure the structure so that the colored layer is not provided.
  • FIG. 17 and 18 show a configuration in which the transistor 441 and the transistor 601 are provided so that a channel forming region is formed inside the substrate 701, and the transistor 750 is laminated on the transistor 441 and the transistor 601 to provide the transistor 750.
  • a modified example of FIG. 18 is shown in FIG.
  • the display device 100 shown in FIG. 19 is mainly different from the display device 100 shown in FIG. 18 in that it has the transistor 602 and the transistor 603 which are OS transistors instead of the transistor 441 and the transistor 601. Further, as the transistor 750, an OS transistor can be used. That is, the display device 100 shown in FIG. 19 is provided with OS transistors stacked.
  • An insulator 613 and an insulator 614 are provided on the substrate 701, and a transistor 602 and a transistor 603 are provided on the insulator 614.
  • a transistor or the like may be provided between the substrate 701 and the insulator 613.
  • a transistor having the same configuration as the transistor 441 and the transistor 601 shown in FIG. 18 may be provided between the substrate 701 and the insulator 613.
  • the transistor 602 and the transistor 603 can be a transistor provided in the first layer 20.
  • the transistor 602 and the transistor 603 can be a transistor provided in the drive circuit unit 140a or the drive circuit unit 140b.
  • the transistor 602 and the transistor 603 can be a transistor provided in the drive circuit unit 130, the drive circuit unit 140a, or the drive circuit unit 140b.
  • the transistor 602 and the transistor 603 can be a transistor having the same configuration as the transistor 750.
  • the transistor 602 and the transistor 603 may be OS transistors having a configuration different from that of the transistor 750.
  • an insulator 616, an insulator 622, an insulator 624, an insulator 654, an insulator 644, an insulator 680, an insulator 674, and an insulator 681 are provided on the insulator 614. ..
  • the conductor 461 is embedded in the insulator 654, the insulator 644, the insulator 680, the insulator 674, and the insulator 681.
  • the height of the upper surface of the conductor 461 and the height of the upper surface of the insulator 681 can be made about the same.
  • the insulator 501 is provided on the conductor 461 and the insulator 681.
  • a conductor 463 is embedded in the insulator 501.
  • the height of the upper surface of the conductor 463 and the height of the upper surface of the insulator 501 can be made about the same.
  • the insulator 503 is provided on the conductor 463 and the insulator 501.
  • a conductor 465 is embedded in the insulator 503.
  • the height of the upper surface of the conductor 465 and the height of the upper surface of the insulator 503 can be made about the same.
  • the insulator 505 is provided on the conductor 465 and the insulator 503. Further, the conductor 467 is embedded in the insulator 505. Here, the height of the upper surface of the conductor 467 and the height of the upper surface of the insulator 505 can be made about the same.
  • the insulator 507 is provided on the conductor 467 and the insulator 505.
  • a conductor 469 is embedded in the insulator 507.
  • the height of the upper surface of the conductor 469 and the height of the upper surface of the insulator 507 can be made about the same.
  • the insulator 509 is provided on the conductor 469 and the insulator 507. Further, the conductor 471 is embedded in the insulator 509. Here, the height of the upper surface of the conductor 471 and the height of the upper surface of the insulator 509 can be made about the same.
  • Insulator 421 and insulator 214 are provided on the conductor 471 and the insulator 509.
  • the conductor 453 is embedded in the insulator 421 and in the insulator 214.
  • the height of the upper surface of the conductor 453 and the height of the upper surface of the insulator 214 can be made about the same.
  • one of the source and drain of the transistor 602 is a conductor 461, a conductor 463, a conductor 465, a conductor 467, a conductor 469, a conductor 471, a conductor 453, a conductor 455, and a conductor. Electrically connected to the FPC 716 via body 305, conductor 317, conductor 337, conductor 347, conductor 353, conductor 355, conductor 357, connection electrode 760, and anisotropic conductor 780. There is.
  • the insulator 613, the insulator 614, the insulator 680, the insulator 674, the insulator 681, the insulator 501, the insulator 503, the insulator 505, the insulator 507, and the insulator 509 have a function as an interlayer film. , It may have a function as a flattening film that covers each of the lower uneven shapes.
  • all the transistors of the display device 100 can be OS transistors while the display device 100 is narrowed and downsized.
  • the transistor provided in the first layer 20 and the transistor provided in the second layer 30 can be manufactured by using the same device. Therefore, the manufacturing cost of the display device 100 can be reduced, and the display device 100 can be made inexpensive.
  • FIG. 20 is a cross-sectional view showing a configuration example of the display device 100. It is mainly different from the display device 100 shown in FIG. 18 in that a layer having the transistor 800 is provided between the layer having the transistor 750 and the layer having the transistor 441 and the transistor 601. Note that FIG. 20 illustrates a configuration in which the transistor 601, the transistor 750, and the transistor 800 each have a region where they overlap each other, but one aspect of the present invention is not limited to this.
  • the transistor 601 and the transistor 750 may not have an overlapping region, and the transistor 800, the transistor 601 and the transistor 750 may not have an overlapping region, respectively.
  • the transistor 601 and the transistor 800 may not have a region where they overlap each other, and the transistor 750, the transistor 601 and the transistor 800 may not have a region where they overlap each other.
  • the first layer 20 shown in FIG. 15A or the like can have a laminated structure of a first circuit layer and a second circuit layer on the first circuit layer.
  • the transistor 441 and the transistor 601 can be transistors provided in the first circuit layer.
  • the transistor 800 can be a transistor provided in the second circuit layer.
  • the transistor 750 can be a transistor provided in the second layer 30.
  • the insulator 821 and the insulator 814 are provided on the conductor 459 and the insulator 419.
  • the conductor 853 is embedded in the insulator 821 and in the insulator 814.
  • the height of the upper surface of the conductor 853 and the height of the upper surface of the insulator 814 can be made about the same.
  • the insulator 816 is provided on the conductor 853 and the insulator 814.
  • a conductor 855 is embedded in the insulator 816.
  • the height of the upper surface of the conductor 855 and the height of the upper surface of the insulator 816 can be made about the same.
  • Insulator 822, insulator 824, insulator 854, insulator 844, insulator 880, insulator 874, and insulator 881 are provided on the conductor 855 and the insulator 816.
  • the conductor 805 is embedded in the insulator 822, the insulator 824, the insulator 854, the insulator 844, the insulator 880, the insulator 874, and the insulator 881.
  • the height of the upper surface of the conductor 805 and the height of the upper surface of the insulator 881 can be made about the same.
  • Insulator 421 and insulator 214 are provided on the conductor 817 and the insulator 881.
  • the low resistance region 449b having a function as the other of the source region and the drain region of the transistor 441 includes a conductor 451 and a conductor 457, a conductor 459, a conductor 853, a conductor 855, and a conductor. 805, conductor 817, conductor 453, conductor 455, conductor 305, conductor 317, conductor 337, conductor 347, conductor 353, conductor 355, conductor 357, connection electrode 760, and anisotropic It is electrically connected to the FPC 716 via a conductor 780.
  • a transistor 800 is provided on the insulator 814.
  • the transistor 800 can be a transistor provided in the first layer 20.
  • the transistor 800 may be a transistor provided in the drive circuit unit 140a or the drive circuit unit 140b.
  • the transistor 800 may be a transistor provided in the drive circuit unit 130, the drive circuit unit 140a, or the drive circuit unit 140b.
  • the transistor 800 is preferably an OS transistor.
  • Conductors 801a and 801b are embedded in the insulator 854, the insulator 844, the insulator 880, the insulator 874, and the insulator 881.
  • the conductor 801a is electrically connected to one of the source or drain of the transistor 800
  • the conductor 801b is electrically connected to the other of the source or drain of the transistor 800.
  • the heights of the upper surfaces of the conductors 801a and 801b and the heights of the upper surfaces of the insulator 881 can be made about the same.
  • the transistor 750 can be a transistor provided in the second layer 30.
  • the transistor 750 can be a transistor provided in the pixel unit 150.
  • the transistor 750 is preferably an OS transistor.
  • An OS transistor or the like may be provided between the layer on which the transistor 441 and the transistor 601 and the like are provided and the layer on which the transistor 800 and the like are provided. Further, an OS transistor or the like may be provided between the layer on which the transistor 800 or the like is provided and the layer on which the transistor 750 or the like is provided. Further, an OS transistor or the like may be provided above the layer on which the transistor 750 or the like is provided.
  • Insulator 405, Insulator 407, Insulator 409, Insulator 411, Insulator 413, Insulator 415, Insulator 417, Insulator 419, Insulator 821, Insulator 814, Insulator 880, Insulator 874, Insulator 881, the insulator 421, the insulator 214, the insulator 280, the insulator 274, the insulator 281 and the insulator 361, and the insulator 363 have a function as an interlayer film and cover the uneven shape below each of them. It may have a function as a flattening film.
  • FIG. 20 shows an example in which the conductor 801a, the conductor 801b, and the conductor 805 are formed in the same layer. Further, an example is shown in which the conductor 811, the conductor 813, and the conductor 817 are formed in the same layer.
  • FIG. 20 shows a configuration in which the transistor 441 and the transistor 601 are provided so that a channel forming region is formed inside the substrate 701, and the transistor 800 and the transistor 750 are provided by laminating the transistor 441 and the transistor 601.
  • FIG. 20 shows a modified example of FIG. 20 in FIG.
  • the display device 100 shown in FIG. 21 is different from the display device 100 shown in FIG. 20 in that the display device 100 has the transistor 602 and the transistor 603 which are OS transistors instead of the transistor 441 and the transistor 601. That is, the display device 100 shown in FIG. 21 is provided with three layers of OS transistors stacked.
  • An OS transistor or the like may be provided between the layer on which the transistor 602 and the transistor 603 and the like are provided and the layer on which the transistor 800 and the like are provided. Further, an OS transistor or the like may be provided between the layer on which the transistor 800 or the like is provided and the layer on which the transistor 750 or the transistor 750 or the like is provided. Further, an OS transistor or the like may be provided above the layer on which the transistor 750 or the like is provided.
  • the transistor 602 and the transistor 603 can be a transistor provided in the first circuit layer of the first layer 20.
  • the transistor 800 can be a transistor provided in the second circuit layer of the first layer 20.
  • the transistor 750 can be a transistor provided in the second layer 30.
  • the insulator 821 and the insulator 814 are provided on the conductor 471 and the insulator 509.
  • the conductor 853 is embedded in the insulator 821 and in the insulator 814.
  • the height of the upper surface of the conductor 853 and the height of the upper surface of the insulator 814 can be made about the same.
  • one of the source and drain of the transistor 602 is a conductor 461, a conductor 463, a conductor 465, a conductor 467, a conductor 469, a conductor 471, a conductor 853, a conductor 855, and a conductor.
  • the display device 100 By configuring the display device 100 as shown in FIG. 21, it is possible to make the display device 100 a narrow frame and a small size. Further, by using all the transistors of the display device 100 as OS transistors, it is not necessary to manufacture different types of transistors, so that the manufacturing cost of the display device 100 can be reduced, and the display device 100 is inexpensive. Can be.
  • an EL element utilizing electroluminescence can be applied.
  • the EL element has a layer containing a luminescent compound (hereinafter, also referred to as an EL layer) between a pair of electrodes.
  • a potential difference larger than the threshold voltage of the EL element is generated between the pair of electrodes, holes are injected into the EL layer from the anode side and electrons are injected from the cathode side. The injected electrons and holes are recombined in the EL layer, and the luminescent substance contained in the EL layer emits light.
  • the EL element is distinguished by whether the light emitting material is an organic compound or an inorganic compound, and the former is generally called an organic EL element and the latter is called an inorganic EL element.
  • the organic EL element In the organic EL element, electrons are injected from one electrode and holes are injected into the EL layer from the other electrode by applying a voltage. Then, when those carriers (electrons and holes) are recombined, the luminescent organic compound forms an excited state, and when the excited state returns to the ground state, it emits light. Due to such a mechanism, such a light emitting device is called a current excitation type light emitting device.
  • the voltage supplied to a display element such as a light emitting device or a liquid crystal element is a potential applied to one electrode of the display element and a potential applied to the other electrode of the display element. Shows the difference between.
  • the EL layer is a substance having a high hole injecting property, a substance having a high hole transporting property, a hole blocking material, a substance having a high electron transporting property, a substance having a high electron injecting property, or a bipolar. It may have a sex substance (a substance having high electron transport property and hole transport property) and the like.
  • the EL layer can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • Inorganic EL elements are classified into dispersed inorganic EL elements and thin film type inorganic EL elements according to their device configurations.
  • the dispersed inorganic EL element has a light emitting layer in which particles of a light emitting material are dispersed in a binder, and the light emitting mechanism is donor-acceptor recombination type light emission utilizing a donor level and an acceptor level.
  • the thin-film inorganic EL element has a structure in which a light emitting layer is sandwiched between dielectric layers and further sandwiched between electrodes, and the light emitting mechanism is localized light emission utilizing the inner-shell electron transition of metal ions.
  • the light emitting device may have at least one of a pair of electrodes transparent in order to extract light emission. Then, a transistor and a light emitting device are formed on the substrate, and a top emission (top emission) structure that extracts light emission from the surface opposite to the substrate, a bottom emission (bottom emission) structure that extracts light emission from the surface on the substrate side, and There is a double-sided emission (dual emission) light emitting device that extracts light from both sides, and any light emitting device with an injection structure can be applied.
  • FIG. 22A to 22E are diagrams showing a configuration example of the light emitting device 572.
  • FIG. 22A shows a structure (single structure) in which the EL layer 786 is sandwiched between the conductor 772 and the conductor 788.
  • the EL layer 786 contains a light emitting material, for example, a light emitting material which is an organic compound.
  • FIG. 22B is a diagram showing a laminated structure of EL layer 786.
  • the conductor 772 has a function as an anode
  • the conductor 788 has a function as a cathode.
  • the EL layer 786 has a structure in which the hole injection layer 721, the hole transport layer 722, the light emitting layer 723, the electron transport layer 724, and the electron injection layer 725 are sequentially laminated on the conductor 772.
  • the conductor 772 has a function as a cathode and the conductor 788 has a function as an anode, the stacking order is reversed.
  • the light emitting layer 723 has a light emitting material or a plurality of materials in an appropriate combination, and can be configured to obtain fluorescent light emission or phosphorescent light emission exhibiting a desired light emitting color. Further, the light emitting layer 723 may have a laminated structure having different light emitting colors. In this case, different materials may be used for the luminescent substance and other substances used for each of the laminated light emitting layers.
  • the conductor 772 shown in FIG. 22B is used as a reflecting electrode
  • the conductor 788 is used as a semi-transmissive / semi-reflective electrode
  • the EL layer 786 has a micro-optical resonator (microcavity) structure.
  • the light emitted from the light emitting layer 723 can be resonated between both electrodes to enhance the light emitted through the conductor 788.
  • the conductor 772 of the light emitting device 572 is a reflective electrode having a laminated structure of a conductive material having a reflective property and a conductive material having a translucent property (transparent conductive film)
  • the thickness of the transparent conductive film is formed.
  • Optical adjustment can be performed by controlling. Specifically, the distance between the electrodes of the conductor 772 and the conductor 788 is adjusted to be close to m ⁇ / 2 (where m is a natural number) with respect to the wavelength ⁇ of the light obtained from the light emitting layer 723. Is preferable.
  • the light emitting region referred to here means a recombination region of holes and electrons in the light emitting layer 723.
  • the spectrum of a specific monochromatic light obtained from the light emitting layer 723 can be narrowed, and light emission with good color purity can be obtained.
  • the optical distance between the conductor 772 and the conductor 788 can be said to be strictly the total thickness from the reflection region of the conductor 772 to the reflection region of the conductor 788.
  • the above-mentioned effect can be sufficiently obtained by assuming an arbitrary position of the conductor 772 and the conductor 788 as the reflection region. It shall be possible.
  • the optical distance between the conductor 772 and the light emitting layer from which the desired light can be obtained is, strictly speaking, the optical distance between the reflection region of the conductor 772 and the light emitting region of the light emitting layer from which the desired light can be obtained. be able to.
  • the reflection region in the conductor 772 and the light emission region in the light emitting layer from which the desired light can be obtained can be obtained at an arbitrary position of the conductor 772 and the desired light can be obtained. It is assumed that the above-mentioned effect can be sufficiently obtained by assuming that an arbitrary position of the light emitting layer is a light emitting region.
  • the light emitting device 572 shown in FIG. 22B has a microcavity structure, it is possible to extract light of different wavelengths (monochromatic light) even if it has the same EL layer. Therefore, it is not necessary to separately paint (for example, RGB) to obtain different emission colors. Therefore, it is easy to realize high definition. It can also be combined with a colored layer. Further, since it is possible to increase the emission intensity in the front direction of a specific wavelength, it is possible to reduce the power consumption.
  • the light emitting device 572 shown in FIG. 22B does not have to have a microcavity structure.
  • the light emitting layer 723 has a structure that emits white light, and by providing the colored layer, light of a predetermined color (for example, RGB) can be extracted. Further, when forming the EL layer 786, if different coatings are performed to obtain different emission colors, light of a predetermined color can be taken out without providing a colored layer.
  • At least one of the conductor 772 and the conductor 788 can be a translucent electrode (transparent electrode, semi-transmissive / semi-reflective electrode, etc.).
  • the electrode having translucency is a transparent electrode
  • the transmittance of visible light of the transparent electrode is 40% or more.
  • the reflectance of visible light of the semi-transmissive / semi-reflective electrode is 20% or more and 80% or less, preferably 40% or more and 70% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10 -2 ⁇ cm or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less. And.
  • the resistivity of this electrode is preferably 1 ⁇ 10 -2 ⁇ cm or less.
  • the configuration of the light emitting device 572 may be the configuration shown in FIG. 22C.
  • two EL layers (EL layer 786a and EL layer 786b) are provided between the conductor 772 and the conductor 788, and a charge generation layer 792 is provided between the EL layer 786a and the EL layer 786b.
  • the light emitting device 572 having a laminated structure (tandem structure) is shown.
  • the current efficiency and the external quantum efficiency of the light emitting device 572 can be improved. Therefore, a high-luminance image can be displayed on the display device 100.
  • the power consumption of the display device 100 can be reduced.
  • the EL layer 786a and the EL layer 786b can have the same configuration as the EL layer 786 shown in FIG. 22B.
  • the charge generation layer 792 injects electrons into one of the EL layer 786a and the EL layer 786b, and injects holes into the other.
  • the charge generation layer 792 injects electrons into one of the EL layer 786a and the EL layer 786b, and injects holes into the other.
  • a voltage is supplied so that the potential of the conductor 772 is higher than the potential of the conductor 788, electrons are injected from the charge generation layer 792 into the EL layer 786a, and holes are injected from the charge generation layer 792 into the EL layer 786b. Will be done.
  • the charge generation layer 792 preferably transmits visible light (specifically, the visible light transmittance of the charge generation layer 792 is 40% or more) from the viewpoint of light extraction efficiency. Further, the conductivity of the charge generation layer 792 may be lower than the conductivity of the conductor 772 or the conductivity of the conductor 788.
  • the configuration of the light emitting device 572 may be the configuration shown in FIG. 22D.
  • three EL layers (EL layer 786a, EL layer 786b, and EL layer 786c) are provided between the conductor 772 and the conductor 788, and between the EL layer 786a and the EL layer 786b, A tandem-structured light emitting device 572 having a charge generation layer 792 between the EL layer 786b and the EL layer 786c is shown.
  • the EL layer 786a, the EL layer 786b, and the EL layer 786c can have the same configuration as the EL layer 786 shown in FIG. 22B.
  • the configuration of the light emitting device 572 may be the configuration shown in FIG. 22E.
  • an n-layer EL layer (EL layer 786 (1) to EL layer 786 (n)) is provided between the conductor 772 and the conductor 788, and an electric charge is generated between the respective EL layers 786.
  • the tandem structure light emitting device 572 having the layer 792 is shown.
  • the EL layer 786 (1) to the EL layer 786 (n) can have the same configuration as the EL layer 786 shown in FIG. 22B.
  • FIG. 22E shows the EL layer 786 (1), the EL layer 786 (m), the EL layer 786 (m + 1), and the EL layer 786 (n) among the EL layers 786.
  • n is an integer of m or more.
  • n is an integer of m or more. The larger the value of n, the higher the current efficiency and the external quantum efficiency of the light emitting device 572. Therefore, a high-luminance image can be displayed on the display device 100. In addition, the power consumption of the display device 100 can be reduced.
  • the constituent materials that can be used for the light emitting device 572 will be described.
  • Conductor 772 and Conductor 788 The following materials can be appropriately combined and used for the conductor 772 and the conductor 788 as long as the functions of the anode and the cathode can be satisfied.
  • metals, alloys, electrically conductive compounds, mixtures thereof, and the like can be appropriately used. Specific examples thereof include In—Sn oxide (also referred to as ITO), In—Si—Sn oxide (also referred to as ITSO), In—Zn oxide, and In—W—Zn oxide.
  • Ni Indium (In), Tin (Sn), Molybdenum (Mo), Tantal (Ta), Tungsten (W), Palladium (Pd), Gold (Au), Platinum (Pt), Silver (Ag), Ittrium (Y) ), Neodymium (Nd) and other metals, and alloys containing these in appropriate combinations can also be used.
  • Other elements belonging to Group 1 or Group 2 of the Periodic Table of Elements eg, Lithium (Li), Cesium (Cs), Calcium (Ca), Strontium (Sr)), Europium (Eu), Ytterbium Rare earth metals such as (Yb), alloys containing these in appropriate combinations, and other graphenes can be used.
  • the hole injection layer 721 is a layer for injecting holes into the EL layer 786 from the conductor 772 which is an anode or the charge generation layer 792, and is a layer containing a material having a high hole injection property.
  • the EL layer 786 includes an EL layer 786a, an EL layer 786b, an EL layer 786c, and an EL layer 786 (1) to an EL layer 786 (n).
  • materials with high hole injection properties include transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide.
  • transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide.
  • phthalocyanine compounds, aromatic amine compounds, polymers and the like can be used.
  • a composite material containing a hole transporting material and an acceptor material can also be used.
  • electrons are extracted from the hole transporting material by the acceptor material, holes are generated in the hole injection layer 721, and holes are injected into the light emitting layer 723 via the hole transport layer 722.
  • the hole injection layer 721 may be formed of a single layer composed of a composite material containing a hole transporting material and an acceptor material (electron acceptor material), but the hole transporting material and the acceptor material (acceptor material) may be formed.
  • the electron acceptor material may be laminated and formed in separate layers.
  • the hole transport layer 722 is a layer that transports the holes injected from the conductor 772 to the light emitting layer 723 by the hole injection layer 721.
  • the hole transport layer 722 is a layer containing a hole transport material.
  • oxides of metals belonging to Groups 4 to 8 in the Periodic Table of the Elements can be used. Specific examples thereof include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide and renium oxide. Of these, molybdenum oxide is particularly preferable because it is stable in the atmosphere, has low hygroscopicity, and is easy to handle.
  • organic acceptors such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can be used.
  • the hole-transporting material used for the hole-injecting layer 721 and the hole-transporting layer 722 is preferably a material having a hole mobility of 10-6 cm 2 / Vs or more. Any substance other than these can be used as long as it is a substance having a higher hole transport property than electrons.
  • the hole transporting material is preferably a ⁇ -electron-rich heteroaromatic compound (for example, a carbazole derivative or an indole derivative) or an aromatic amine compound.
  • the hole-transporting material is not limited to the above, and various known materials can be used as the hole-transporting material in the hole-injecting layer 721 and the hole-transporting layer 722 by combining one or a plurality of known materials. ..
  • the hole transport layer 722 may be formed of a plurality of layers. That is, for example, the first hole transport layer and the second hole transport layer may be laminated.
  • the light emitting layer 723 is a layer containing a light emitting substance.
  • a substance exhibiting a luminescent color such as blue, purple, bluish purple, green, yellowish green, yellow, orange, and red is appropriately used.
  • FIGS. 22C, 22D and 22E when the light emitting device 572 has a plurality of EL layers, different light emitting colors are used by using different light emitting substances for the light emitting layer 723 provided in each EL layer. (For example, white light emission obtained by combining emission colors having a complementary color relationship). For example, when the light emitting device 572 has the configuration shown in FIG.
  • the light emitting substance used for the light emitting layer 723 provided on the EL layer 786a and the light emitting substance used for the light emitting layer 723 provided on the EL layer 786b are made different from each other. Thereby, the emission color exhibited by the EL layer 786a and the emission color exhibited by the EL layer 786b can be made different from each other.
  • one light emitting layer may have a laminated structure having different light emitting substances.
  • the light emitting layer 723 may have one or more kinds of organic compounds (host material, assist material) in addition to the light emitting substance (guest material). Further, one or both of the hole transporting material and the electron transporting material can be used as one or more kinds of organic compounds.
  • the luminescent material that can be used for the light emitting layer 723 is not particularly limited, and a luminescent material that converts singlet excitation energy into light emission in the visible light region or a luminescent material that converts triplet excitation energy into light emission in the visible light region is used. Can be done. Examples of the luminescent substance include the following.
  • the luminescent substance that converts the single-term excitation energy into light emission examples include a substance that emits fluorescence (fluorescent material).
  • examples thereof include derivatives, quinoxalin derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, naphthalene derivatives and the like.
  • the pyrene derivative is preferable because it has a high emission quantum yield.
  • Examples of the light emitting substance that converts triplet excitation energy into light emission include a substance that emits phosphorescence (phosphorescent material) and a thermal activated delayed fluorescence (TADF) material that exhibits thermal activated delayed fluorescence (TADF).
  • phosphorescent material phosphorescent material
  • TADF thermal activated delayed fluorescence
  • the phosphorescent material examples include an organic metal complex, a metal complex (platinum complex), and a rare earth metal complex. Since these exhibit different emission colors (emission peaks) for each substance, they are appropriately selected and used as necessary.
  • a substance having a peak wavelength of photoluminescence of 430 nm or more and 470 nm or less, more preferably 430 nm or more and 460 nm or less may be used.
  • a substance having a peak wavelength of photoluminescence of 500 nm or more and 540 nm or less, more preferably 500 nm or more and 530 nm or less may be used.
  • a substance having a peak wavelength of photoluminescence of 610 nm or more and 680 nm or less, more preferably 620 nm or more and 680 nm or less may be used.
  • the photoluminescence measurement may be either a solution or a thin film.
  • the film thickness of the semi-transmissive / semi-reflective electrode (metal thin film portion) required to obtain the microcavity effect is preferably 20 nm or more and 40 nm or less. More preferably, it is larger than 25 nm and 40 nm or less. If it exceeds 40 nm, the efficiency may decrease.
  • the organic compound (host material, assist material) used for the light emitting layer 723 one or a plurality of substances having an energy gap larger than the energy gap of the light emitting substance (guest material) may be selected and used.
  • the hole-transporting material described above and the electron-transporting material described later can also be used as a host material or an assist material, respectively.
  • the luminescent material is a fluorescent material
  • an organic compound having a large energy level in the singlet excited state and a small energy level in the triplet excited state as the host material.
  • an organic compound having a larger triplet excitation energy than the triplet excitation energy (energy difference between the base state and the triplet excited state) of the luminescent material may be selected as the host material.
  • an organic compound having a larger triplet excitation energy than the triplet excitation energy (energy difference between the base state and the triplet excited state) of the luminescent material may be selected as the host material.
  • oxadiazole derivatives, triazole derivatives, benzoimidazole derivatives, quinoxalin derivatives, dibenzoquinoxalin derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, pyrimidine derivatives, triazine derivatives, and pyridine derivatives , Bipyridine derivatives, phenanthroline derivatives, etc., aromatic amines, carbazole derivatives, etc. can be used.
  • the compound forming the excitation complex When a plurality of organic compounds are used in the light emitting layer 723, it is preferable to mix the compound forming the excitation complex with the light emitting substance.
  • various organic compounds can be appropriately combined and used, but in order to efficiently form an excitation complex, a compound that easily receives holes (hole transporting material) and a compound that easily receives electrons (electrons) can be used. It is particularly preferable to combine it with a transportable material).
  • the hole-transporting material and the electron-transporting material the materials shown in the present embodiment can be used.
  • a TADF material is a material that can up-convert a triplet excited state to a singlet excited state (intersystem crossing) with a small amount of thermal energy, and efficiently exhibits light emission (fluorescence) from the singlet excited state. is there. Further, as a condition for efficiently obtaining thermally activated delayed fluorescence, the energy difference between the triplet excited level and the singlet excited level is 0 eV or more and 0.2 eV or less, preferably 0 eV or more and 0.1 eV or less. Be done.
  • delayed fluorescence in TADF materials refers to emission that has a spectrum similar to that of normal fluorescence but has a significantly long lifetime. Its life is 10-6 seconds or longer, preferably 10-3 seconds or longer.
  • TADF materials include fullerenes and derivatives thereof, acridine derivatives such as proflavine, and eosin.
  • examples thereof include metal-containing porphyrins containing magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), palladium (Pd) and the like.
  • a heterocyclic compound having a ⁇ -electron excess type heteroaromatic ring and a ⁇ -electron deficiency type heteroaromatic ring can be used.
  • a substance in which a ⁇ -electron-rich heteroaromatic ring and a ⁇ -electron-deficient heteroaromatic ring are directly bonded has stronger donor properties of the ⁇ -electron-rich heteroaromatic ring and stronger acceptability of the ⁇ -electron-deficient heteroaromatic ring. , It is particularly preferable because the energy difference between the singlet excited state and the triplet excited state becomes small.
  • TADF material When a TADF material is used, it can also be used in combination with other organic compounds.
  • the electron transport layer 724 is a layer that transports the electrons injected from the conductor 788 to the light emitting layer 723 by the electron injection layer 725.
  • the electron transport layer 724 is a layer containing an electron transportable material.
  • the electron-transporting material used for the electron-transporting layer 724 is preferably a substance having an electron mobility of 1 ⁇ 10-6 cm 2 / Vs or more. Any substance other than these can be used as long as it is a substance having a higher electron transport property than holes.
  • the electron transporting material examples include a quinoline ligand, a benzoquinoline ligand, an oxazole ligand, a metal complex having a thiazole ligand, an oxadiazole derivative, a triazole derivative, a phenanthroline derivative, a pyridine derivative, a bipyridine derivative and the like. Can be mentioned.
  • a ⁇ -electron-deficient heteroaromatic compound such as a nitrogen-containing heteroaromatic compound can also be used.
  • the electron transport layer 724 is not limited to a single layer, but may have a structure in which two or more layers made of the above substances are laminated.
  • the electron injection layer 725 is a layer containing a substance having a high electron injection property.
  • the electron injection layer 725 is filled with alkali metals such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiO x ), alkaline earth metals, or the like. Compounds can be used. In addition, rare earth metal compounds such as erbium fluoride (ErF 3) can be used. Further, an electride may be used for the electron injection layer 725. Examples of the electride include a substance in which a high concentration of electrons is added to a mixed oxide of calcium and aluminum. The substance constituting the electron transport layer 724 described above can also be used.
  • a composite material formed by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer 725.
  • a composite material is excellent in electron injection property and electron transport property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting generated electrons, and specifically, for example, an electron transporting material (metal complex, heteroaromatic compound, etc.) used for the above-mentioned electron transport layer 724. Can be used.
  • the electron donor any substance that exhibits electron donating property to the organic compound may be used.
  • alkali metals, alkaline earth metals and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium and the like can be mentioned.
  • alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxides, calcium oxides, barium oxides and the like can be mentioned.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • the charge generation layer 792 When a voltage is applied between the conductor 772 and the conductor 788, the charge generation layer 792 is attached to the EL layer 786 on the side closer to the conductor 772 of the two EL layers 786 in contact with the charge generation layer 792. It has a function of injecting electrons and injecting holes into the EL layer 786 on the side different from the conductor 788.
  • the charge generation layer 792 has a function of injecting electrons into the EL layer 786a and injecting holes into the EL layer 786b.
  • the charge generation layer 792 may have an electron acceptor added to the hole transporting material or an electron donor added to the electron transporting material. Good. Moreover, both of these configurations may be laminated. By forming the charge generation layer 792 using the above-mentioned material, it is possible to suppress an increase in the drive voltage of the display device 100 when the EL layers are laminated.
  • the electron acceptor when an electron acceptor is added to the hole transporting material, the electron acceptor is 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquino.
  • Jimetan abbreviation: F 4 -TCNQ
  • chloranil and the like can be given.
  • oxides of metals belonging to Group 4 to Group 8 in the Periodic Table of the Elements can be mentioned. Specific examples thereof include vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and renium oxide.
  • the electron donor when an electron donor is added to an electron transporting material, the electron donor is classified into an alkali metal or an alkaline earth metal or a rare earth metal or a group 2 or 13 in the periodic table of elements.
  • the metal to which it belongs, its oxide, and a carbonate can be used. Specifically, it is preferable to use lithium (Li), cesium (Cs), magnesium (Mg), calcium (Ca), ytterbium (Yb), indium (In), lithium oxide, cesium carbonate and the like.
  • an organic compound such as tetrathianaphthalene may be used as an electron donor.
  • a vacuum process such as a vapor deposition method or a solution process such as a spin coating method or an inkjet method can be used to manufacture the light emitting device 572.
  • a physical vapor deposition method such as a sputtering method, an ion plating method, an ion beam vapor deposition method, a molecular beam deposition method, or a vacuum vapor deposition method, or a chemical vapor deposition method (CVD method) is used. be able to.
  • the functional layers (hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer) and charge generation layer included in the EL layer of the light emitting device are subjected to a vapor deposition method (vacuum vapor deposition method, etc.) and coating.
  • a vapor deposition method vacuum vapor deposition method, etc.
  • Method dip coating method, die coating method, bar coating method, spin coating method, spray coating method, etc.
  • printing method inkjet method, screen (hole plate printing) method, offset (flat plate printing) method, flexo (convex printing) method, It can be formed by a method such as a gravure method or a microcontact method).
  • the functional layers (hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer) and the charge generation layer constituting the EL layer of the light emitting device shown in the present embodiment are made of the above-mentioned materials.
  • the materials are not limited to the above, and other materials can be used in combination as long as they can satisfy the functions of each layer.
  • a high molecular compound oligoform, dendrimer, polymer, etc.
  • a medium molecular compound compound in the intermediate region between low molecular weight and high molecular weight: molecular weight 400 to 4000
  • an inorganic compound quantum dot material, etc.
  • a colloidal quantum dot material an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • ⁇ Transistor configuration example 1> 23A, 23B, and 23C are a top view and a cross-sectional view of the transistor 200A and the periphery of the transistor 200A that can be used in the display device according to one aspect of the present invention.
  • a transistor 200A can be applied to the display device of one aspect of the present invention.
  • FIG. 23A is a top view of the transistor 200A.
  • 23B and 23C are cross-sectional views of the transistor 200A.
  • FIG. 23B is a cross-sectional view of the portion shown by the alternate long and short dash line of A1-A2 in FIG. 23A, and is also a cross-sectional view of the transistor 200A in the channel length direction.
  • FIG. 23C is a cross-sectional view of the portion shown by the alternate long and short dash line of A3-A4 in FIG. 23A, and is also a cross-sectional view of the transistor 200A in the channel width direction.
  • some elements are omitted for the sake of clarity.
  • the conductor 200A is composed of a metal oxide 230a arranged on a substrate (not shown), a metal oxide 230b arranged on the metal oxide 230a, and a metal oxide 230b.
  • Insulator 280 arranged above the conductors 242a and 242b separated from each other and on the conductors 242a and 242b and having an opening formed between the conductors 242a and the conductors 242b.
  • the conductor 260 arranged in the opening, the metal oxide 230b, the conductor 242a, the conductor 242b, the insulator 280, the insulator 250 arranged between the conductor 260, and the metal.
  • the conductor 242a and the conductor 242b may be collectively referred to as a conductor 242.
  • the side surfaces of the conductor 242a and the conductor 242b on the conductor 260 side have a substantially vertical shape.
  • the transistor 200A shown in FIG. 23 is not limited to this, and the angle formed by the side surface and the bottom surface of the conductor 242a and the conductor 242b is 10 ° or more and 80 ° or less, preferably 30 ° or more and 60 ° or less. May be. Further, the opposing side surfaces of the conductor 242a and the conductor 242b may have a plurality of surfaces.
  • the insulator 254 is arranged between the insulator 224, the metal oxide 230a, the metal oxide 230b, the conductor 242a, the conductor 242b, the metal oxide 230c, and the insulator 280. Is preferable.
  • the insulator 254 includes a side surface of the metal oxide 230c, an upper surface and a side surface of the conductor 242a, an upper surface and a side surface of the conductor 242b, a metal oxide 230a and a metal oxide 230b. It is preferable to be in contact with the side surface of the insulator and the upper surface of the insulator 224.
  • the transistor 200A has a configuration in which three layers of a metal oxide 230a, a metal oxide 230b, and a metal oxide 230c are laminated in a region where a channel is formed (hereinafter, also referred to as a channel formation region) and in the vicinity thereof.
  • a two-layer structure of the metal oxide 230b and the metal oxide 230c, or a laminated structure of four or more layers may be provided.
  • the conductor 260 is shown as a two-layer laminated structure, but the present invention is not limited to this.
  • the conductor 260 may have a single-layer structure or a laminated structure of three or more layers.
  • each of the metal oxide 230a, the metal oxide 230b, and the metal oxide 230c may have a laminated structure of two or more layers.
  • the metal oxide 230c has a laminated structure composed of a first metal oxide and a second metal oxide on the first metal oxide
  • the first metal oxide is a metal oxide 230b. It has a similar composition
  • the second metal oxide preferably has the same composition as the metal oxide 230a.
  • the conductor 260 functions as a gate electrode of the transistor, and the conductor 242a and the conductor 242b function as a source electrode or a drain electrode, respectively.
  • the conductor 260 is formed so as to be embedded in the opening of the insulator 280 and the region sandwiched between the conductor 242a and the conductor 242b.
  • the arrangement of the conductor 260, the conductor 242a, and the conductor 242b is selected in a self-aligned manner with respect to the opening of the insulator 280. That is, in the transistor 200A, the gate electrode can be arranged in a self-aligned manner between the source electrode and the drain electrode. Therefore, since the conductor 260 can be formed without providing the alignment margin, the occupied area of the transistor 200A can be reduced. As a result, the display device can be made high-definition. Further, the display device can be made into a narrow frame.
  • the conductor 260 preferably has a conductor 260a provided inside the insulator 250 and a conductor 260b provided so as to be embedded inside the conductor 260a.
  • the transistor 200A includes an insulator 214 arranged on a substrate (not shown), an insulator 216 arranged on the insulator 214, and a conductor 205 arranged so as to be embedded in the insulator 216. It is preferable to have an insulator 222 arranged on the insulator 216 and the conductor 205, and an insulator 224 arranged on the insulator 222. It is preferable that the metal oxide 230a is arranged on the insulator 224.
  • an insulator 274 that functions as an interlayer film and an insulator 281 are arranged on the transistor 200A.
  • the insulator 274 is arranged in contact with the upper surface of the conductor 260, the insulator 250, the insulator 254, the metal oxide 230c, and the insulator 280.
  • the insulator 222, the insulator 254, and the insulator 274 have a function of suppressing the diffusion of at least one hydrogen (for example, hydrogen atom, hydrogen molecule, etc.).
  • the insulator 222, the insulator 254, and the insulator 274 preferably have lower hydrogen permeability than the insulator 224, the insulator 250, and the insulator 280.
  • the insulator 222 and the insulator 254 preferably have a function of suppressing the diffusion of at least one oxygen (for example, oxygen atom, oxygen molecule, etc.).
  • the insulator 222 and the insulator 254 preferably have lower oxygen permeability than the insulator 224, the insulator 250, and the insulator 280.
  • the insulator 224, the metal oxide 230, and the insulator 250 are separated from the insulator 280 and the insulator 281 by the insulator 254 and the insulator 274. Therefore, in the insulator 224, the metal oxide 230, and the insulator 250, impurities such as hydrogen contained in the insulator 280 and the insulator 281 and excess oxygen are added to the insulator 224, the metal oxide 230a, and the metal oxide. It is possible to suppress mixing with 230b and the insulator 250.
  • a conductor 240 (conductor 240a and conductor 240b) that is electrically connected to the transistor 200A and functions as a plug is provided.
  • An insulator 241 (insulator 241a and insulator 241b) is provided in contact with the side surface of the conductor 240 that functions as a plug. That is, the insulator 254, the insulator 280, the insulator 274, and the insulator 241 are provided in contact with the inner wall of the opening of the insulator 281. Further, the first conductor of the conductor 240 may be provided in contact with the side surface of the insulator 241, and the second conductor of the conductor 240 may be further provided inside.
  • the height of the upper surface of the conductor 240 and the height of the upper surface of the insulator 281 can be made about the same.
  • the transistor 200A shows a configuration in which the first conductor of the conductor 240 and the second conductor of the conductor 240 are laminated, but the present invention is not limited to this.
  • the conductor 240 may be provided as a single layer or a laminated structure having three or more layers. When the structure has a laminated structure, an ordinal number may be given in the order of formation to distinguish them.
  • the transistor 200A is a metal oxide 230 (metal oxide 230a, metal oxide 230b, and metal oxide 230c) containing a channel forming region, and a metal oxide (hereinafter, also referred to as an oxide semiconductor) that functions as an oxide semiconductor. ) Is preferably used.
  • a metal oxide serving as the channel forming region of the metal oxide 230, it is preferable to use a metal oxide having a band gap of 2 eV or more, preferably 2.5 eV or more.
  • the metal oxide contains at least indium (In) or zinc (Zn). In particular, it preferably contains indium (In) and zinc (Zn). Further, in addition to these, it is preferable that the element M is contained.
  • Elements M include aluminum (Al), gallium (Ga), ittrium (Y), tin (Sn), boron (B), titanium (Ti), iron (Fe), nickel (Ni), germanium (Ge), and zirconium.
  • the element M is preferably one or more of aluminum (Al), gallium (Ga), yttrium (Y), or tin (Sn). Further, it is more preferable that the element M has either or both of Ga and Sn.
  • the film thickness of the region of the metal oxide 230b that does not overlap with the conductor 242 may be thinner than the film thickness of the region that overlaps with the conductor 242. This is formed by removing a part of the upper surface of the metal oxide 230b when forming the conductor 242a and the conductor 242b.
  • a region having low resistance may be formed in the vicinity of the interface with the conductive film. As described above, by removing the region having low resistance located between the conductor 242a and the conductor 242b on the upper surface of the metal oxide 230b, it is possible to prevent the formation of a channel in the region.
  • a display device having a transistor having a small size and a high definition it is possible to provide a display device having a transistor having a large on-current and having a high brightness. Alternatively, it is possible to provide a display device having a fast-moving transistor and fast-moving. Alternatively, it is possible to provide a highly reliable display device having a transistor having stable electrical characteristics. Alternatively, it is possible to provide a display device having a transistor having a small off-current and low power consumption.
  • transistor 200A The detailed configuration of the transistor 200A that can be used in the display device according to one aspect of the present invention will be described.
  • the conductor 205 is arranged so as to have a region overlapping with the metal oxide 230 and the conductor 260. Further, it is preferable that the conductor 205 is embedded in the insulator 216.
  • the conductor 205 has a conductor 205a, a conductor 205b, and a conductor 205c.
  • the conductor 205a is provided in contact with the bottom surface and the side wall of the opening provided in the insulator 216.
  • the conductor 205b is provided so as to be embedded in the recess formed in the conductor 205a.
  • the upper surface of the conductor 205b is lower than the upper surface of the conductor 205a and the upper surface of the insulator 216.
  • the conductor 205c is provided in contact with the upper surface of the conductor 205b and the side surface of the conductor 205a.
  • the height of the upper surface of the conductor 205c is substantially the same as the height of the upper surface of the conductor 205a and the height of the upper surface of the insulator 216. That is, the conductor 205b is wrapped in the conductor 205a and the conductor 205c.
  • the conductor 205a and the conductor 205c have a function of suppressing the diffusion of impurities such as hydrogen atom, hydrogen molecule, water molecule, nitrogen atom, nitrogen molecule, nitrogen oxide molecule (N2O, NO, NO2, etc.) and copper atom. It is preferable to use a sex material. Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one oxygen atom, oxygen molecule, etc.).
  • impurities such as hydrogen contained in the conductor 205b are removed from the metal oxide 230 via the insulator 224 and the like. Can be suppressed from spreading to. Further, by using a conductive material having a function of suppressing the diffusion of oxygen for the conductor 205a and the conductor 205c, it is possible to prevent the conductor 205b from being oxidized and the conductivity from being lowered.
  • the conductor 205a may be a single layer or a laminated material of the conductive material.
  • titanium nitride may be used for the conductor 205a.
  • a conductive material containing tungsten, copper, or aluminum as a main component.
  • tungsten may be used for the conductor 205b.
  • the conductor 260 may function as a first gate (also referred to as a top gate) electrode.
  • the conductor 205 may function as a second gate (also referred to as a bottom gate) electrode.
  • the Vth of the transistor 200A can be controlled by changing the potential applied to the conductor 205 independently without interlocking with the potential applied to the conductor 260.
  • a negative potential to the conductor 205, it is possible to make the Vth of the transistor 200A larger than 0V and reduce the off-current. Therefore, when a negative potential is applied to the conductor 205, the drain current when the potential applied to the conductor 260 is 0 V can be made smaller than when it is not applied.
  • the conductor 205 should be provided larger than the channel formation region in the metal oxide 230.
  • the conductor 205 is also stretched in a region outside the end portion intersecting the channel width direction of the metal oxide 230. That is, it is preferable that the conductor 205 and the conductor 260 are superimposed via an insulator on the outside of the side surface of the metal oxide 230 in the channel width direction.
  • the channel forming region of the metal oxide 230 is formed by the electric field of the conductor 260 having a function as a first gate electrode and the electric field of the conductor 205 having a function as a second gate electrode. Can be electrically surrounded.
  • the conductor 205 is stretched to function as wiring.
  • the present invention is not limited to this, and a conductor that functions as wiring may be provided under the conductor 205.
  • the insulator 214 preferably functions as a barrier insulating film that prevents impurities such as water and hydrogen from being mixed into the transistor 200A from the substrate side.
  • the insulator 214 has a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, nitric oxide molecule (N 2 O, NO, NO 2 , etc.), a function of suppressing diffusion of impurities such as copper atoms (It is difficult for the above impurities to permeate.)
  • an insulating material it is preferable to use an insulating material.
  • the insulator 214 it is preferable to use aluminum oxide, silicon nitride, or the like as the insulator 214. As a result, it is possible to prevent impurities such as water and hydrogen from diffusing from the substrate side to the transistor 200A side of the insulator 214. Alternatively, it is possible to prevent oxygen contained in the insulator 224 or the like from diffusing toward the substrate side of the insulator 214.
  • the insulator 216, the insulator 280, and the insulator 281 that function as the interlayer film have a lower dielectric constant than the insulator 214.
  • a material having a low dielectric constant as an interlayer film, it is possible to reduce the parasitic capacitance generated between the wirings.
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, carbon and nitrogen were added. Silicon oxide, silicon oxide having pores, or the like may be appropriately used.
  • the insulator 222 and the insulator 224 have a function as a gate insulator.
  • the insulator 224 in contact with the metal oxide 230 desorbs oxygen by heating.
  • oxygen released by heating may be referred to as excess oxygen.
  • the insulator 224 silicon oxide, silicon oxide nitride, or the like may be appropriately used.
  • the insulator 224 it is preferable to use an oxide material in which a part of oxygen is desorbed by heating.
  • Oxides that desorb oxygen by heating are those in which the amount of oxygen desorbed in terms of oxygen atoms is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 1 in TDS (Thermal Desolation Spectroscopy) analysis.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or higher and 700 ° C. or lower, or 100 ° C. or higher and 400 ° C. or lower.
  • the film thickness of the region where the insulator 224 does not overlap with the insulator 254 and does not overlap with the metal oxide 230b may be thinner than the film thickness in the other regions.
  • the film thickness of the region that does not overlap with the insulator 254 and does not overlap with the metal oxide 230b is preferably a film thickness that can sufficiently diffuse the oxygen.
  • the insulator 222 preferably functions as a barrier insulating film that prevents impurities such as water and hydrogen from being mixed into the transistor 200A from the substrate side.
  • the insulator 222 preferably has a lower hydrogen permeability than the insulator 224.
  • the insulator 222 has a function of suppressing the diffusion of at least one oxygen (for example, oxygen atom, oxygen molecule, etc.) (the above oxygen is difficult to permeate).
  • the insulator 222 preferably has a lower oxygen permeability than the insulator 224. Since the insulator 222 has a function of suppressing the diffusion of oxygen and impurities, it is possible to reduce the diffusion of oxygen contained in the metal oxide 230 toward the substrate side, which is preferable. Further, it is possible to suppress the conductor 205 from reacting with the oxygen contained in the insulator 224 and the metal oxide 230.
  • the insulator 222 it is preferable to use an insulator containing oxides of one or both of aluminum and hafnium, which are insulating materials.
  • an insulator containing one or both oxides of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate) and the like.
  • the insulator 222 releases oxygen from the metal oxide 230 and mixes impurities such as hydrogen from the peripheral portion of the transistor 200A into the metal oxide 230. It functions as a suppressing layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, and zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxide nitride, or silicon nitride may be laminated on the above insulator.
  • the insulator 222 is a so-called high such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ) or (Ba, Sr) TiO 3 (BST).
  • An insulator containing the ⁇ k material may be used in a single layer or in a laminated manner. As transistors become finer and more integrated, problems such as leakage current may occur due to the thinning of the gate insulator. By using a high-k material for an insulator that functions as a gate insulator, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • the insulator 222 and the insulator 224 may have a laminated structure of two or more layers.
  • the laminated structure is not limited to the same material, and may be a laminated structure made of different materials.
  • an insulator similar to the insulator 224 may be provided under the insulator 222.
  • the metal oxide 230 has a metal oxide 230a, a metal oxide 230b on the metal oxide 230a, and a metal oxide 230c on the metal oxide 230b.
  • the metal oxide 230a under the metal oxide 230b, it is possible to suppress the diffusion of impurities from the structure formed below the metal oxide 230a to the metal oxide 230b.
  • the metal oxide 230c on the metal oxide 230b, it is possible to suppress the diffusion of impurities from the structure formed above the metal oxide 230c to the metal oxide 230b.
  • the metal oxide 230 preferably has a laminated structure of a plurality of oxide layers having different atomic number ratios of each metal atom.
  • the metal oxide 230 contains at least indium (In) and the element M
  • the number of atoms of the element M contained in the metal oxide 230a is relative to the number of atoms of all the elements constituting the metal oxide 230a.
  • the ratio is preferably higher than the ratio of the number of atoms of the element M contained in the metal oxide 230b to the number of atoms of all the elements constituting the metal oxide 230b.
  • the atomic number ratio of the element M contained in the metal oxide 230a to In is larger than the atomic number ratio of the element M contained in the metal oxide 230b to In.
  • the metal oxide 230c a metal oxide that can be used for the metal oxide 230a or the metal oxide 230b can be used.
  • the energy at the lower end of the conduction band of the metal oxide 230a and the metal oxide 230c is higher than the energy at the lower end of the conduction band of the metal oxide 230b.
  • the electron affinity of the metal oxide 230a and the metal oxide 230c is smaller than the electron affinity of the metal oxide 230b.
  • the metal oxide 230c it is preferable to use a metal oxide that can be used for the metal oxide 230a.
  • the ratio of the number of atoms of the element M contained in the metal oxide 230c to the number of atoms of all the elements constituting the metal oxide 230c is the metal with respect to the number of atoms of all the elements constituting the metal oxide 230b. It is preferably higher than the ratio of the number of atoms of the element M contained in the oxide 230b. Further, it is preferable that the atomic number ratio of the element M contained in the metal oxide 230c to In is larger than the atomic number ratio of the element M contained in the metal oxide 230b to In.
  • the energy level at the lower end of the conduction band changes gently.
  • the energy level at the lower end of the conduction band at the junction of the metal oxide 230a, the metal oxide 230b, and the metal oxide 230c is continuously changed or continuously bonded.
  • the metal oxide 230a and the metal oxide 230b, and the metal oxide 230b and the metal oxide 230c have a common element (main component) other than oxygen, so that the defect level density is low.
  • a mixed layer can be formed.
  • the metal oxide 230b is an In-Ga-Zn oxide, In-Ga-Zn oxide, Ga-Zn oxide, gallium oxide or the like may be used as the metal oxide 230a and the metal oxide 230c. ..
  • the metal oxide 230c may have a laminated structure.
  • a laminated structure with gallium oxide can be used.
  • a laminated structure of an In-Ga-Zn oxide and an oxide containing no In may be used as the metal oxide 230c.
  • the metal oxide 230c has a laminated structure
  • the main path of the carrier is the metal oxide 230b.
  • the defect level density at the interface between the metal oxide 230a and the metal oxide 230b and the interface between the metal oxide 230b and the metal oxide 230c can be determined. Can be lowered. Therefore, the influence of interfacial scattering on carrier conduction is reduced, and the transistor 200A can obtain high on-current and high frequency characteristics.
  • the constituent elements of the metal oxide 230c are It is expected to suppress diffusion to the insulator 250 side.
  • the metal oxide 230c has a laminated structure and the oxide containing no In is positioned above the laminated structure, In that can be diffused to the insulator 250 side can be suppressed. Since the insulator 250 functions as a gate insulator, if In is diffused, the characteristics of the transistor become poor. Therefore, by forming the metal oxide 230c in a laminated structure, it is possible to provide a highly reliable display device.
  • a conductor 242 (conductor 242a and conductor 242b) that functions as a source electrode and a drain electrode is provided on the metal oxide 230b.
  • the conductor 242 aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lantern. It is preferable to use a metal element selected from the above, an alloy containing the above-mentioned metal element as a component, an alloy in which the above-mentioned metal element is combined, or the like.
  • tantalum nitride, titanium nitride, tungsten, a nitride containing titanium and aluminum, a nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, and the like are used. Is preferable.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize. It is preferable because it is a conductive material or a material that maintains conductivity even if it absorbs oxygen.
  • the oxygen concentration may be reduced in the vicinity of the conductor 242 of the metal oxide 230. Further, in the vicinity of the conductor 242 of the metal oxide 230, a metal compound layer containing the metal contained in the conductor 242 and the component of the metal oxide 230 may be formed. In such a case, the carrier density increases in the region near the conductor 242 of the metal oxide 230, and the region becomes a low resistance region.
  • the region between the conductor 242a and the conductor 242b is formed so as to overlap the opening of the insulator 280.
  • the conductor 260 can be arranged in a self-aligned manner between the conductor 242a and the conductor 242b.
  • the insulator 250 functions as a gate insulator.
  • the insulator 250 is preferably arranged in contact with the upper surface of the metal oxide 230c.
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, and silicon oxide having pores are used. be able to. In particular, silicon oxide and silicon nitride nitride are preferable because they are stable against heat.
  • the insulator 250 preferably has a reduced concentration of impurities such as water and hydrogen in the insulator 250.
  • the film thickness of the insulator 250 is preferably 1 nm or more and 20 nm or less.
  • a metal oxide may be provided between the insulator 250 and the conductor 260.
  • the metal oxide preferably suppresses oxygen diffusion from the insulator 250 to the conductor 260. As a result, the oxidation of the conductor 260 by oxygen of the insulator 250 can be suppressed.
  • the metal oxide may have a function as a part of a gate insulator. Therefore, when silicon oxide, silicon oxide nitride, or the like is used for the insulator 250, it is preferable to use a metal oxide which is a high-k material having a high relative permittivity.
  • a metal oxide which is a high-k material having a high relative permittivity.
  • aluminum oxide an oxide containing one or both oxides of aluminum or hafnium, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), and the like.
  • the conductor 260 is shown as a two-layer structure in FIG. 23, it may have a single-layer structure or a laminated structure of three or more layers.
  • Conductor 260a is described above, hydrogen atoms, hydrogen molecules, water molecules, nitrogen atom, a nitrogen molecule, nitric oxide molecule (N 2 O, NO, NO 2 , etc.), a function of suppressing diffusion of impurities such as copper atoms It is preferable to use a conductor having the same. Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of at least one oxygen (for example, oxygen atom, oxygen molecule, etc.).
  • the conductor 260a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 260b from being oxidized by the oxygen contained in the insulator 250 and the conductivity from being lowered.
  • the conductive material having a function of suppressing the diffusion of oxygen for example, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • the conductor 260b it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component. Further, since the conductor 260 also functions as wiring, it is preferable to use a conductor having high conductivity. For example, a conductive material containing tungsten, copper, or aluminum as a main component can be used. Further, the conductor 260b may have a laminated structure, for example, a laminated structure of titanium or titanium nitride and the conductive material.
  • the side surface of the metal oxide 230 is covered with the conductor 260 in the region that does not overlap with the conductor 242 of the metal oxide 230b, in other words, in the channel formation region of the metal oxide 230. Have been placed. This makes it easier for the electric field of the conductor 260, which functions as the first gate electrode, to act on the side surface of the metal oxide 230. Therefore, the on-current of the transistor 200A can be increased and the frequency characteristics can be improved.
  • the insulator 254 preferably functions as a barrier insulating film that prevents impurities such as water and hydrogen from being mixed into the transistor 200A from the insulator 280 side.
  • the insulator 254 preferably has lower hydrogen permeability than the insulator 224.
  • the insulator 254 is the side surface of the metal oxide 230c, the upper surface and the side surface of the conductor 242a, the upper surface and the side surface of the conductor 242b, the metal oxide 230a and the metal oxide 230b. It is preferable to be in contact with the side surface and the upper surface of the insulator 224.
  • the insulator 254 has a function of suppressing the diffusion of at least one oxygen (for example, oxygen atom, oxygen molecule, etc.) (the above oxygen is difficult to permeate).
  • the insulator 254 preferably has lower oxygen permeability than the insulator 280 or the insulator 224.
  • the insulator 254 is preferably formed by using a sputtering method.
  • oxygen can be added to the vicinity of the region of the insulator 224 in contact with the insulator 254.
  • oxygen can be supplied from the region into the metal oxide 230 via the insulator 224.
  • the insulator 254 has a function of suppressing the diffusion of oxygen upward, it is possible to prevent oxygen from diffusing from the metal oxide 230 to the insulator 280.
  • the insulator 222 has a function of suppressing the diffusion of oxygen downward, it is possible to prevent oxygen from diffusing from the metal oxide 230 toward the substrate side. In this way, oxygen is supplied to the channel forming region of the metal oxide 230. As a result, the oxygen deficiency of the metal oxide 230 can be reduced, and the normalization of the transistor can be suppressed.
  • the insulator 254 for example, it is preferable to form an insulator containing oxides of one or both of aluminum and hafnium.
  • the insulator containing one or both oxides of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate) and the like.
  • the insulator 280 is covered by the insulator 254, and the insulator 224, the metal oxide 230, And separated from the insulator 250.
  • impurities such as hydrogen can be suppressed from entering from the outside of the transistor 200A, so that good electrical characteristics and reliability can be given to the transistor 200A.
  • the insulator 280 is provided on the insulator 224, the metal oxide 230, and the conductor 242 via the insulator 254.
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, silicon oxide having pores, or the like can be used as the insulator 280. It is preferable to have. In particular, silicon oxide and silicon oxide nitride are preferable because they are thermally stable. In particular, materials such as silicon oxide, silicon oxide nitride, and silicon oxide having pores are preferable because a region containing oxygen desorbed by heating can be easily formed.
  • the concentration of impurities such as water or hydrogen in the insulator 280 is reduced. Further, the upper surface of the insulator 280 may be flattened.
  • the insulator 274 preferably functions as a barrier insulating film that prevents impurities such as water and hydrogen from being mixed into the insulator 280 from above.
  • the insulator 274 for example, an insulator that can be used for the insulator 214, the insulator 254, and the like may be used.
  • the insulator 281 that functions as an interlayer film on the insulator 274.
  • the insulator 281 preferably has a reduced concentration of impurities such as water and hydrogen in the film.
  • the conductor 240a and the conductor 240b are arranged in the openings formed in the insulator 281, the insulator 274, the insulator 280, and the insulator 254.
  • the conductor 240a and the conductor 240b are provided so as to face each other with the conductor 260 interposed therebetween.
  • the height of the upper surfaces of the conductor 240a and the conductor 240b may be flush with the upper surface of the insulator 281.
  • An insulator 241a is provided in contact with the inner wall of the opening of the insulator 281, the insulator 274, the insulator 280, and the insulator 254, and the first conductor of the conductor 240a is formed in contact with the side surface thereof. ing.
  • the conductor 242a is located at least a part of the bottom of the opening, and the conductor 240a is in contact with the conductor 242a.
  • the insulator 241b is provided in contact with the inner wall of the opening of the insulator 281, the insulator 274, the insulator 280, and the insulator 254, and the first conductor of the conductor 240b is formed in contact with the side surface thereof.
  • the conductor 242b is located at least a part of the bottom of the opening, and the conductor 240b is in contact with the conductor 242b.
  • the conductor 240a and the conductor 240b it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component. Further, the conductor 240a and the conductor 240b may have a laminated structure.
  • the conductor 240 has a laminated structure
  • the above-mentioned water is used as the conductor in contact with the metal oxide 230a, the metal oxide 230b, the conductor 242, the insulator 254, the insulator 280, the insulator 274, and the insulator 281.
  • a conductor having a function of suppressing the diffusion of impurities such as hydrogen For example, tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • the conductive material having a function of suppressing the diffusion of impurities such as water and hydrogen may be used in a single layer or in a laminated state.
  • the conductive material By using the conductive material, it is possible to suppress the oxygen added to the insulator 280 from being absorbed by the conductor 240a and the conductor 240b. Further, it is possible to prevent impurities such as water and hydrogen from being mixed into the metal oxide 230 from the layer above the insulator 281 through the conductor 240a and the conductor 240b.
  • the insulator 241a and the insulator 241b for example, an insulator that can be used for the insulator 254 or the like may be used. Since the insulator 241a and the insulator 241b are provided in contact with the insulator 254, impurities such as water or hydrogen from the insulator 280 and the like are suppressed from being mixed into the metal oxide 230 through the conductor 240a and the conductor 240b. it can. Further, it is possible to prevent the oxygen contained in the insulator 280 from being absorbed by the conductor 240a and the conductor 240b.
  • a conductor that functions as wiring may be arranged in contact with the upper surface of the conductor 240a and the upper surface of the conductor 240b.
  • the conductor that functions as wiring it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductor may have a laminated structure, for example, titanium or titanium nitride may be laminated with the conductive material.
  • the conductor may be formed so as to be embedded in an opening provided in the insulator.
  • 24A, 24B, and 24C are a top view and a cross-sectional view of the transistor 200B and the periphery of the transistor 200B that can be used in the display device according to one aspect of the present invention.
  • the transistor 200B is a modification of the transistor 200A.
  • FIG. 24A is a top view of the transistor 200B.
  • 24B and 24C are cross-sectional views of the transistor 200B.
  • FIG. 24B is a cross-sectional view of the portion shown by the alternate long and short dash line of A1-A2 in FIG. 24A, and is also a cross-sectional view of the transistor 200B in the channel length direction.
  • FIG. 24C is a cross-sectional view of the portion shown by the alternate long and short dash line of A3-A4 in FIG. 24A, and is also a cross-sectional view of the transistor 200B in the channel width direction.
  • some elements are omitted for the sake of clarity.
  • the transistor 200B is different from the transistor 200A in that it has an insulator 212 and an insulator 283.
  • the transistor 200B is provided with an insulator 212 on a substrate (not shown). Further, the insulator 283 is provided on the insulator 212 and on the insulator 271.
  • the insulator 283 covers the insulator 214, the insulator 216, the insulator 222, the insulator 224, the insulator 244, the insulator 280, and the insulator 274.
  • the insulator 283 includes an upper surface of the insulator 274, a side surface of the insulator 274, a side surface of the insulator 280, a side surface of the insulator 244, a side surface of the insulator 224, a side surface of the insulator 222, a side surface of the insulator 216, and an insulator 214. In contact with the side surface of the insulator 212 and the upper surface of the insulator 212, respectively. As a result, the metal oxide 230 and the like are isolated from the outside by the insulator 283 and the insulator 212.
  • the insulator 283 and the insulator 212 have a high function of suppressing the diffusion of hydrogen (for example, at least one hydrogen atom, hydrogen molecule, etc.) or water molecule.
  • hydrogen for example, at least one hydrogen atom, hydrogen molecule, etc.
  • the insulator 281 and the insulator 212 it is preferable to use silicon nitride or silicon nitride oxide, which is a material having a high hydrogen barrier property.
  • silicon nitride or silicon nitride oxide which is a material having a high hydrogen barrier property.
  • silicon nitride can be used as the insulator 283.
  • a silicon nitride film having a high density and less likely to form voids can be formed by forming a film by a sputtering method.
  • silicon nitride formed by the ALD method may be further laminated on the silicon nitride formed by the sputtering method.
  • insulator 212 a material that can be used for the insulator 214 can be used.
  • silicon nitride can be used for the insulator 212
  • aluminum oxide can be used for the insulator 214.
  • 25A, 25B, and 25C are a top view and a cross-sectional view of the transistor 200C and the periphery of the transistor 200C that can be used in the display device according to one aspect of the present invention.
  • the transistor 200C is a modification of the transistor 200A.
  • FIG. 25A is a top view of the transistor 200C.
  • 25B and 25C are cross-sectional views of the transistor 200C.
  • FIG. 25B is a cross-sectional view of the portion shown by the alternate long and short dash line of B1-B2 in FIG. 25A, and is also a cross-sectional view of the transistor 200C in the channel length direction.
  • FIG. 25C is a cross-sectional view of the portion shown by the alternate long and short dash line of B3-B4 in FIG. 25A, and is also a cross-sectional view of the transistor 200C in the channel width direction.
  • some elements are omitted for the sake of clarity.
  • the conductor 242a and the conductor 242b have a region where the metal oxide 230c, the insulator 250, and the conductor 260 overlap.
  • the transistor 200C can be a transistor having a high on-current.
  • the transistor 200C can be a transistor that is easy to control.
  • the conductor 260 that functions as a gate electrode has a conductor 260a and a conductor 260b on the conductor 260a.
  • the conductor 260a it is preferable to use a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms.
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one oxygen atom, oxygen molecule, etc.).
  • the conductor 260a Since the conductor 260a has a function of suppressing the diffusion of oxygen, the material selectivity of the conductor 260b can be improved. That is, by having the conductor 260a, it is possible to suppress the oxidation of the conductor 260b and prevent the conductivity from being lowered.
  • the insulator 254 it is preferable to provide the insulator 254 so as to cover the upper surface and the side surface of the conductor 260, the side surface of the insulator 250, and the side surface of the metal oxide 230c.
  • the insulator 254 it is preferable to use an insulating material having a function of suppressing the diffusion of impurities such as water and hydrogen and oxygen.
  • the oxidation of the conductor 260 can be suppressed. Further, by having the insulator 254, it is possible to suppress the diffusion of impurities such as water and hydrogen contained in the insulator 280 to the transistor 200C.
  • 26A, 26B, and 26C are a top view and a cross-sectional view of the transistor 200D and the periphery of the transistor 200D that can be used in the display device according to one aspect of the present invention.
  • the transistor 200D is a modification of the transistor 200A.
  • FIG. 26A is a top view of the transistor 200D.
  • 26B and 26C are cross-sectional views of the transistor 200D.
  • FIG. 26B is a cross-sectional view of the portion shown by the alternate long and short dash line of C1-C2 in FIG. 26A, and is also a cross-sectional view of the transistor 200D in the channel length direction.
  • FIG. 26C is a cross-sectional view of the portion shown by the alternate long and short dash line of C3-C4 in FIG. 26A, and is also a cross-sectional view of the transistor 200D in the channel width direction.
  • some elements are omitted for the sake of clarity.
  • the transistor 200D has an insulator 250 on the metal oxide 230c and a metal oxide 252 on the insulator 250. Further, the conductor 260 is provided on the metal oxide 252, and the insulator 270 is provided on the conductor 260. Further, the insulator 271 is provided on the insulator 270.
  • the metal oxide 252 preferably has a function of suppressing oxygen diffusion.
  • the metal oxide 252 that suppresses the diffusion of oxygen between the insulator 250 and the conductor 260 the diffusion of oxygen into the conductor 260 is suppressed. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the metal oxide 230.
  • the oxidation of the conductor 260 by oxygen can be suppressed.
  • the metal oxide 252 may have a function as a part of the gate electrode.
  • an oxide semiconductor that can be used as the metal oxide 230 can be used as the metal oxide 252.
  • the conductor 260 by forming the conductor 260 into a film by a sputtering method, the electric resistance value of the metal oxide 252 can be lowered to form a conductor. This can be called an OC (Oxide Conductor) electrode.
  • the metal oxide 252 may have a function as a part of the gate insulator. Therefore, when silicon oxide, silicon oxide nitride, or the like is used for the insulator 250, it is preferable to use a metal oxide which is a high-k material having a high relative permittivity as the metal oxide 252.
  • a metal oxide which is a high-k material having a high relative permittivity as the metal oxide 252.
  • the laminated structure it is possible to obtain a laminated structure that is stable against heat and has a high relative permittivity. Therefore, it is possible to reduce the gate potential applied during transistor operation while maintaining the physical film thickness.
  • the equivalent oxide film thickness (EOT) of the insulating layer that functions as a gate insulator can be thinned.
  • the metal oxide 252 is shown as a single layer, but a laminated structure of two or more layers may be used.
  • a metal oxide that functions as a part of the gate electrode and a metal oxide that functions as a part of the gate insulator may be laminated and provided.
  • the metal oxide 252 when it functions as a gate electrode, it is possible to improve the on-current of the transistor 200D without weakening the influence of the electric field from the conductor 260.
  • the physical thickness of the insulator 250 and the metal oxide 252 keeps the distance between the conductor 260 and the metal oxide 230, so that the conductor 260 and the metal are metal. Leakage current with the oxide 230 can be suppressed. Therefore, by providing the laminated structure of the insulator 250 and the metal oxide 252, the physical distance between the conductor 260 and the metal oxide 230 and the electric field strength applied from the conductor 260 to the metal oxide 230 can be determined. , Can be easily adjusted.
  • an oxide semiconductor having a low resistance which can be used for the metal oxide 230, can be used.
  • a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium and the like can be used.
  • an insulating layer containing an oxide of one or both of aluminum or hafnium such as aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), and the like.
  • hafnium aluminate has higher heat resistance than the hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in the heat treatment in the subsequent step.
  • the metal oxide 252 is not an essential configuration. It may be appropriately designed according to the desired transistor characteristics.
  • the insulator 270 it is preferable to use an insulating material having a function of suppressing the permeation of impurities such as water and hydrogen and oxygen.
  • an insulating material having a function of suppressing the permeation of impurities such as water and hydrogen and oxygen For example, it is preferable to use aluminum oxide, hafnium oxide, or the like. As a result, it is possible to prevent the conductor 260 from being oxidized by oxygen from above the insulator 270. Further, it is possible to prevent impurities such as water or hydrogen from above the insulator 270 from being mixed into the metal oxide 230 via the conductor 260 and the insulator 250.
  • Insulator 271 functions as a hard mask.
  • the side surface of the conductor 260 is substantially vertical, specifically, the angle formed by the side surface of the conductor 260 and the surface of the substrate is 75 degrees or more and 100 degrees or less. It can be preferably 80 degrees or more and 95 degrees or less.
  • the insulator 271 may also function as a barrier layer by using an insulating material having a function of suppressing the permeation of impurities such as water and hydrogen and oxygen. In that case, the insulator 270 does not have to be provided.
  • the insulator 271 As a hard mask and selectively removing a part of the insulator 270, the conductor 260, the metal oxide 252, the insulator 250, and the metal oxide 230c, these aspects are substantially matched. It is possible to expose a part of the surface of the metal oxide 230b.
  • the transistor 200D has a region 243a and a region 243b on a part of the surface of the exposed metal oxide 230b.
  • One of the regions 243a or 243b functions as a source region, and the other of the regions 243a or 243b functions as a drain region.
  • the regions 243a and 243b are formed by introducing an impurity element such as phosphorus or boron into the surface of the exposed metal oxide 230b by using, for example, an ion implantation method, an ion doping method, a plasma implantation ion implantation method, or a plasma treatment. It can be realized by doing.
  • the “impurity element” refers to an element other than the main component element.
  • a metal film is formed after exposing a part of the surface of the metal oxide 230b, and then heat-treated to diffuse the elements contained in the metal film into the metal oxide 230b to form regions 243a and 243b. You can also do it.
  • the region 243a and the region 243b may be referred to as an "impurity region” or a "low resistance region”.
  • the region 243a and the region 243b can be formed in a self-alignment manner. Therefore, the region 243a and / or the region 243b and the conductor 260 do not overlap, and the parasitic capacitance can be reduced. Further, an offset region is not formed between the channel forming region and the source / drain region (region 243a or region 243b). By forming the region 243a and the region 243b in a self-alignment manner, it is possible to increase the on-current, reduce the threshold voltage, improve the operating frequency, and the like.
  • the transistor 200D has an insulator 271, an insulator 270, a conductor 260, a metal oxide 252, an insulator 250, and an insulator 272 on the side surface of the metal oxide 230c.
  • the insulator 272 is preferably an insulator having a low relative permittivity.
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, or silicon oxide having pores in the insulator 272 because an excess oxygen region can be easily formed in the insulator 272 in a later step.
  • silicon oxide and silicon oxide nitride are preferable because they are thermally stable.
  • the insulator 272 preferably has a function of diffusing oxygen.
  • An offset region may be provided between the channel formation region and the source / drain region in order to further reduce the off current.
  • the offset region is a region having a high electrical resistivity and is a region in which the above-mentioned impurity elements are not introduced.
  • the formation of the offset region can be realized by introducing the above-mentioned impurity element after the formation of the insulator 272.
  • the insulator 272 also functions as a mask in the same manner as the insulator 271 and the like. Therefore, the impurity element is not introduced into the region of the metal oxide 230b that overlaps with the insulator 272, and the electrical resistivity of the region can be kept high.
  • the transistor 200D has an insulator 272 and an insulator 254 on the metal oxide 230.
  • the insulator 254 is preferably formed by a sputtering method. By using the sputtering method, an insulator having few impurities such as water or hydrogen can be formed.
  • the oxide film using the sputtering method may extract hydrogen from the structure to be filmed. Therefore, the insulator 254 absorbs hydrogen and water from the metal oxide 230 and the insulator 272, so that the hydrogen concentration of the metal oxide 230 and the insulator 272 can be reduced.
  • Transistor constituent materials The constituent materials that can be used for the transistor will be described.
  • the substrate on which the transistor 200A, the transistor 200B, the transistor 200C or the transistor 200D is formed for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (yttria-stabilized zirconia substrate, etc.), a resin substrate, and the like.
  • the semiconductor substrate for example, there are a semiconductor substrate such as silicon and germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide and gallium oxide.
  • the conductor substrate includes a graphite substrate, a metal substrate, an alloy substrate, a conductive resin substrate, and the like.
  • the substrate having a metal nitride there are a substrate having a metal oxide, and the like.
  • a substrate in which a conductor or a semiconductor is provided in an insulator substrate a substrate in which a conductor or an insulator is provided in a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided in a conductor substrate, and the like.
  • those on which an element is provided may be used.
  • Elements provided on the substrate include capacitive elements, resistance elements, switch elements, light emitting devices, storage elements, and the like.
  • insulator examples include oxides, nitrides, oxide nitrides, nitride oxides, metal oxides, metal oxide nitrides, metal nitride oxides and the like having insulating properties.
  • the material may be selected according to the function of the insulator.
  • insulators with high relative dielectric constant gallium oxide, hafnium oxide, zirconium oxide, oxides with aluminum and hafnium, nitrides with aluminum and hafnium, oxides with silicon and hafnium, and nitrides with silicon and hafnium.
  • an insulator with a low relative permittivity it has silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, and vacancies. There are silicon oxide, resin, etc.
  • a transistor using an oxide semiconductor is surrounded by an insulator (insulator 214, insulator 222, insulator 254, insulator 274, etc.) having a function of suppressing the permeation of impurities such as hydrogen and oxygen.
  • an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen for example, boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, tantalum, zirconium, Insulators containing lanthanum, neodymium, hafnium, or tantalum may be used in single layers or in layers.
  • an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, etc.
  • a metal oxide such as tantalum oxide, or a metal nitride such as aluminum nitride, titanium aluminum nitride, titanium nitride, silicon nitride or silicon nitride can be used.
  • the insulator that functions as a gate insulator is preferably an insulator that has a region containing oxygen that is desorbed by heating.
  • an insulator that has a region containing oxygen that is desorbed by heating For example, by forming silicon oxide or silicon oxide nitride having a region containing oxygen desorbed by heating in contact with the metal oxide 230, it is possible to compensate for the oxygen deficiency of the metal oxide 230.
  • ⁇ conductor ⁇ aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum, etc. It is preferable to use a metal element selected from the above, an alloy containing the above-mentioned metal element as a component, an alloy in which the above-mentioned metal element is combined, or the like.
  • tantalum nitride, titanium nitride, tungsten, a nitride containing titanium and aluminum, a nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, and the like are used. Is preferable.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize.
  • a plurality of conductors formed of the above materials may be laminated and used.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element and a conductive material containing oxygen are combined.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element and a conductive material containing nitrogen are combined.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen are combined.
  • the conductor functioning as the gate electrode uses a laminated structure in which the above-mentioned material containing a metal element and a conductive material containing oxygen are combined. Is preferable.
  • a conductive material containing oxygen may be provided on the channel forming region side.
  • a conductor that functions as a gate electrode it is preferable to use a conductive material containing a metal element and oxygen contained in a metal oxide in which a channel is formed.
  • the above-mentioned conductive material containing a metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride and tantalum nitride may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon were added.
  • Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • FIG. 27A is a diagram illustrating classification of crystal structures of oxide semiconductors, typically IGZO (metal oxides containing In, Ga, and Zn).
  • IGZO metal oxides containing In, Ga, and Zn
  • oxide semiconductors are roughly classified into “Amorphous”, “Crystalline”, and “Crystal”.
  • Amorphous includes complete amorphous.
  • Crystalline includes CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned composite).
  • single crystal, poly crystal, and single crystal amorphous are excluded from the classification of "Crystalline”.
  • “Crystal” includes single crystal and poly crystal.
  • the structure in the thick frame shown in FIG. 27A is an intermediate state between "Amorphous” and “Crystal", and belongs to a new boundary region (New crystal line phase). .. That is, the structure can be rephrased as a structure completely different from the energetically unstable "Amorphous” and "Crystal".
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD) spectrum.
  • XRD X-ray diffraction
  • the GIXD spectrum obtained by GIXD (Glazing-Incidence XRD) measurement of a CAAC-IGZO film classified as "Crystalline" is shown in FIG. 27B.
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement shown in FIG. 27B will be simply referred to as an XRD spectrum.
  • the thickness of the CAAC-IGZO film shown in FIG. 27B is 500 nm.
  • a peak showing clear crystallinity is detected in the XRD spectrum of the CAAC-IGZO film.
  • the horizontal axis is 2 ⁇ [deg. ]
  • the vertical axis is the intensity [a. u. ] Is shown.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron diffraction pattern) observed by a micro electron diffraction method (NBED: Nano Beam Electron Diffraction).
  • the diffraction pattern of the CAAC-IGZO film is shown in FIG. 27C.
  • FIG. 27C is a diffraction pattern observed by the NBED in which the electron beam is incident parallel to the substrate.
  • electron diffraction is performed with the probe diameter set to 1 nm.
  • oxide semiconductors When focusing on the crystal structure, oxide semiconductors may be classified differently from FIG. 27A.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, and the plurality of crystal regions are oriented in a specific direction on the c-axis.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS is a layer having indium (In) and oxygen (element M).
  • indium In
  • oxygen element M
  • a layered crystal structure also referred to as a layered structure
  • an In layer and a layer having elements M, zinc (Zn), and oxygen
  • (M, Zn) layer are laminated.
  • the (M, Zn) layer may contain indium.
  • the In layer may contain the element M.
  • the In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam passing through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion because the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the substitution of metal atoms. It is thought that this is the reason.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor that has high crystallinity and no clear grain boundary is confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be lowered due to the mixing of impurities, the generation of defects, etc., CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures (so-called thermal budgets) in the manufacturing process. Therefore, when CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • the nc-OS may be indistinguishable from the a-like OS and the amorphous oxide semiconductor depending on the analysis method. For example, when a structural analysis is performed on an nc-OS film using an XRD apparatus, a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan. Further, when electron beam diffraction (also referred to as limited field electron diffraction) using an electron beam having a probe diameter larger than that of nanocrystals (for example, 50 nm or more) is performed on the nc-OS film, a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron beam diffraction also referred to as limited field electron diffraction
  • nanocrystals for example, 50 nm or more
  • electron diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, a-like OS has lower crystallinity than nc-OS and CAAC-OS. In addition, a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the membrane (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • EDX Energy Dispersive X-ray spectroscopy
  • CAC-OS When CAC-OS is used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function). Can be added to CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS for the transistor, high on-current ( Ion ), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on-current
  • high field effect mobility
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor with high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm -3 or less, preferably 1 ⁇ 10 15 cm -3 or less, more preferably 1 ⁇ 10 13 cm -3 or less, more preferably 1 ⁇ 10 11 cm ⁇ . It is 3 or less, more preferably less than 1 ⁇ 10 10 cm -3 , and more than 1 ⁇ 10 -9 cm -3.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • the impurities include hydrogen, nitrogen, alkali metal, alkaline earth metal, iron, nickel, silicon and the like.
  • the concentration of silicon and carbon in the oxide semiconductor and the concentration of silicon and carbon near the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ . 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal, it may form a defect level and generate carriers. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, and more preferably 1 ⁇ 10 18 atoms / cm 3 or less. , More preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • Hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , and more preferably 5 ⁇ 10 18 atoms / cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • FIG. 28A is a diagram showing the appearance of the camera 8000 with the finder 8100 attached.
  • the camera 8000 is provided with an imaging device.
  • the camera 8000 can be, for example, a digital camera.
  • the camera 8000 and the finder 8100 are separate electronic devices, and these are detachable.
  • a finder including a display device may be built in the housing 8001 of the camera 8000.
  • the camera 8000 has a housing 8001, a display unit 8002, an operation button 8003, a shutter button 8004, and the like.
  • a removable lens 8006 is attached to the camera 8000.
  • the camera 8000 has a configuration in which the lens 8006 can be removed from the housing 8001 and replaced, but the lens 8006 and the housing may be integrated.
  • the camera 8000 can take an image by pressing the shutter button 8004. Further, the display unit 8002 has a function as a touch panel, and it is possible to take an image by touching the display unit 8002.
  • the housing 8001 of the camera 8000 has a mount having electrodes, and in addition to the finder 8100, a strobe device or the like can be connected.
  • the finder 8100 has a housing 8101, a display unit 8102, a button 8103, and the like.
  • the finder 8100 can be an electronic viewfinder.
  • the housing 8101 has a mount that engages with the mount of the camera 8000, and the finder 8100 can be attached to the camera 8000. Further, the mount has electrodes, and an image or the like received from the camera 8000 can be displayed on the display unit 8102 via the electrodes.
  • Button 8103 has a function as a power button. With the button 8103, the display of the display unit 8102 can be switched on / off.
  • the display device of one aspect of the present invention can be applied to the display unit 8002 of the camera 8000 and the display unit 8102 of the finder 8100. Since the display device of one aspect of the present invention has extremely high definition, even if the distance between the display unit 8002 or the display unit 8102 and the user is short, the pixels are not visually recognized by the user and are more realistic. An image with a high feeling can be displayed on the display unit 8002 or the display unit 8102. In particular, since the image displayed on the display unit 8102 provided on the finder 8100 is visually recognized by bringing the user's eyes close to the eyepiece of the finder 8100, the distance between the user and the display unit 8102. Becomes very close.
  • the display device of one aspect of the present invention it is particularly preferable to apply the display device of one aspect of the present invention to the display unit 8102.
  • the resolution of the image that can be displayed on the display unit 8102 can be 4K, 5K, or higher.
  • the resolution of the image that can be captured by the image pickup device provided in the camera 8000 is equal to or higher than the resolution of the image that can be displayed on the display unit 8002 or the display unit 8102.
  • the camera 8000 is provided with an imaging device capable of capturing an image of 4K or more.
  • the camera 8000 is provided with an imaging device capable of capturing an image of 5K or more.
  • FIG. 28B is a diagram showing the appearance of the head-mounted display 8200.
  • the head-mounted display 8200 has a mounting unit 8201, a lens 8202, a main body 8203, a display unit 8204, a cable 8205, and the like. Further, the mounting portion 8201 has a built-in battery 8206.
  • the cable 8205 supplies electric power from the battery 8206 to the main body 8203.
  • the main body 8203 is provided with a wireless receiver or the like, and an image corresponding to the received image data or the like can be displayed on the display unit 8204.
  • the camera provided on the main body 8203 captures the movement of the user's eyeballs and eyelids, and the coordinates of the user's line of sight are calculated based on the information, so that the user's line of sight can be used as an input means. it can.
  • the mounting portion 8201 may be provided with a plurality of electrodes at positions where it touches the user.
  • the main body 8203 may have a function of recognizing the line of sight of the user by detecting the current flowing through the electrodes with the movement of the eyeball of the user. Further, it may have a function of monitoring the pulse of the user by detecting the current flowing through the electrode.
  • the mounting unit 8201 may have various sensors such as a temperature sensor, a pressure sensor, and an acceleration sensor, and may have a function of displaying the biometric information of the user on the display unit 8204. Further, the movement of the user's head or the like may be detected, and the image displayed on the display unit 8204 may be changed according to the movement.
  • a display device can be applied to the display unit 8204.
  • the head-mounted display 8200 can be narrowed to a narrow frame, a high-quality image can be displayed on the display unit 8204, and an image with a high sense of presence can be displayed.
  • the head-mounted display 8300 includes a housing 8301, a display unit 8302, a band-shaped fixture 8304, and a pair of lenses 8305.
  • the user can visually recognize the display of the display unit 8302 through the lens 8305. It is preferable that the display unit 8302 is arranged in a curved shape. By arranging the display unit 8302 in a curved shape, the user can feel a high sense of presence.
  • the configuration in which one display unit 8302 is provided has been illustrated, but the present invention is not limited to this, and for example, a configuration in which two display units 8302 may be provided may be used. In this case, if one display unit is arranged in one eye of the user, it is possible to perform three-dimensional display or the like using parallax.
  • the display device of one aspect of the present invention can be applied to the display unit 8302. Since the display device of one aspect of the present invention has extremely high definition, even if the display device is magnified using the lens 8305 as shown in FIG. 28E, the pixels are not visually recognized by the user, and an image with a higher sense of presence can be obtained. Can be displayed.
  • FIGS. 29A to 29G an example of an electronic device different from the electronic device shown in FIGS. 28A to 28E is shown in FIGS. 29A to 29G.
  • the electronic devices shown in FIGS. 29A to 29G include a housing 9000, a display unit 9001, a speaker 9003, an operation key 9005 (including a power switch or an operation switch), a connection terminal 9006, and a sensor 9007 (force, displacement, position, speed). , Acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared rays. It has a function to measure), a microphone 9008 and the like.
  • the electronic devices shown in FIGS. 29A to 29G have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date, or time, etc., and a function to control processing by various software (programs).
  • Wireless communication function function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded on recording medium It can have a function of displaying on a display unit, and the like.
  • the functions that the electronic devices shown in FIGS. 29A to 29G can have are not limited to these, and can have various functions. Further, although not shown in FIGS.
  • the electronic device may have a configuration having a plurality of display units.
  • a camera or the like is provided in the electronic device, a function of shooting a still image, a function of shooting a moving image, a function of saving the shot image in a recording medium (external or built in the camera), and displaying the shot image on a display unit. It may have a function to perform, etc.
  • FIGS. 29A to 29G The details of the electronic devices shown in FIGS. 29A to 29G will be described below.
  • FIG. 29A is a perspective view showing the television device 9100.
  • the television device 9100 can incorporate a large screen, for example, a display unit 9001 having a size of 50 inches or more, or 100 inches or more.
  • the display device of one aspect of the present invention can be applied to the display unit 9001 included in the television device 9100.
  • the television device 9100 can be narrowed to a narrow frame, a high-quality image can be displayed on the display unit 9001, and an image with a high sense of presence can be displayed.
  • FIG. 29B is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 has one or more functions selected from, for example, a telephone, a notebook, an information browsing device, and the like. Specifically, it can be used as a smartphone.
  • the mobile information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like. Further, the mobile information terminal 9101 can display characters and images on a plurality of surfaces thereof.
  • three operation buttons 9050 also referred to as operation icons or simply icons
  • the information 9051 indicated by the broken line rectangle can be displayed on the other surface of the display unit 9001.
  • information 9051 a display notifying an incoming call of e-mail, SNS (social networking service), telephone, etc., a title of e-mail, SNS, etc., a sender name of e-mail, SNS, etc., date and time, time, There are remaining battery level, antenna reception strength, etc.
  • the operation button 9050 or the like may be displayed instead of the information 9051 at the position where the information 9051 is displayed.
  • the display device of one aspect of the present invention can be applied to the display unit 9001 included in the mobile information terminal 9101.
  • the mobile information terminal 9101 can be miniaturized, a high-quality image can be displayed on the display unit 9001, and an image with a high sense of presence can be displayed.
  • FIG. 29C is a perspective view showing a mobile information terminal 9102.
  • the mobile information terminal 9102 has a function of displaying information on three or more surfaces of the display unit 9001.
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user of the mobile information terminal 9102 can check the display (here, information 9053) with the mobile information terminal 9102 stored in the chest pocket of the clothes.
  • the telephone number or name of the caller of the incoming call is displayed at a position that can be observed from above the mobile information terminal 9102.
  • the user can check the display and determine whether or not to receive the call without taking out the mobile information terminal 9102 from the pocket.
  • the display device of one aspect of the present invention can be applied to the display unit 9001 included in the mobile information terminal 9102.
  • the mobile information terminal 9101 can be miniaturized, a high-quality image can be displayed on the display unit 9001, and an image with a high sense of presence can be displayed.
  • FIG. 29D is a perspective view showing a wristwatch-type portable information terminal 9200.
  • the personal digital assistant 9200 can execute various applications such as mobile phone, e-mail, text viewing and creation, music playback, Internet communication, and computer games.
  • the display unit 9001 is provided with a curved display surface, and can display along the curved display surface.
  • the personal digital assistant 9200 can execute short-range wireless communication standardized for communication. For example, by communicating with a headset capable of wireless communication, it is possible to make a hands-free call.
  • the mobile information terminal 9200 has a connection terminal 9006, and can directly exchange data with another information terminal via a connector. It is also possible to charge via the connection terminal 9006. The charging operation may be performed by wireless power supply without going through the connection terminal 9006.
  • the display device of one aspect of the present invention can be applied to the display unit 9001 included in the portable information terminal 9200.
  • the mobile information terminal 9200 can be narrowed to a narrow frame, a high-quality image can be displayed on the display unit 9001, and an image with a high sense of presence can be displayed.
  • FIG. 29E, 29F and 29G are perspective views showing a foldable mobile information terminal 9201. Further, FIG. 29E is a perspective view of the mobile information terminal 9201 in an unfolded state, and FIG. 29F is a perspective view of a state in which the mobile information terminal 9201 is in the process of being changed from one of the expanded or folded states to the other. FIG. 29G is a perspective view of the mobile information terminal 9201 in a folded state.
  • the mobile information terminal 9201 is excellent in portability in the folded state, and is excellent in display listability due to a wide seamless display area in the unfolded state.
  • the display unit 9001 included in the personal digital assistant terminal 9201 is supported by three housings 9000 connected by a hinge 9055.
  • the portable information terminal 9201 By bending between the two housings 9000 via the hinge 9055, the portable information terminal 9201 can be reversibly deformed from the unfolded state to the folded state.
  • the portable information terminal 9201 can be bent with a radius of curvature of 1 mm or more and 150 mm or less.
  • the display device of one aspect of the present invention can be applied to the display unit 9001 included in the portable information terminal 9201.
  • the mobile information terminal 9201 can be narrowed to a narrow frame, a high-quality image can be displayed on the display unit 9001, and an image with a high sense of presence can be displayed.
  • This embodiment can be implemented by appropriately combining at least a part thereof with other embodiments described in the present specification.
  • circuit simulation was used to confirm the operation of pixels that can be used in the display device, which is one aspect of the present invention.
  • the configuration of the pixel 10 shown in FIG. 1B and the timing chart shown in FIG. 2 were used.
  • the transistor 101, the transistor 102, the transistor 103, and the transistor 104 are OS transistors having a channel length of 200 nm and a channel width of 60 nm, respectively.
  • the capacitance value of the capacitance element 111 was set to 17.0 fF, and the capacitance value of the capacitance element 112 was set to 3.4 fF.
  • High was set to 5V and Low was set to 0V.
  • the simulation was performed with the wiring 131 having "Vdata" of 4.0V, the wiring 161 having "Vref" of 0.5V, the wiring 128 having "Vano" of 11.0V, and the wiring 129 having "Vcat" of -5.0V. .. SPICE was used as the circuit simulation software.
  • FIG. Figure 30 shows the time (Time) in accordance with the timing chart in the horizontal axis, the potential V ND11 of the longitudinal axis node ND11, and shows the potential V ND12 node ND12.
  • the difference between the potential V ND11 and the potential V ND12 became a period P21a 3.23V, a period P21b 0.92 V, a period P22a and 0.00 V.
  • period P21 it was confirmed that less than 4.0V of the difference in electric potential V ND11 and the potential V ND12 "Vdata".
  • period P22 it was confirmed that the difference in electric potential V ND11 and the potential V ND12 becomes 0V.
  • the display device shown in the embodiment was produced.
  • the produced display panel has a display unit size of 0.66 inches diagonally, a number of pixels of 1440 ⁇ 1440, a definition (pixel density) of 3078 ppi, and a pixel size of 2.75 ⁇ m ⁇ 8.25 ⁇ m (2.75 ⁇ m ⁇ ). RGB ⁇ 8.25 ⁇ m), the aperture ratio is 33.7%, and the frame frequency is 90 Hz.
  • the gate driver and the source driver were built-in, the gate driver was an OS transistor, and the source driver was a CMOS using a Si transistor.
  • FIG. 31A A photograph of the produced display device is shown in FIG. 31A.
  • An enlarged photograph of the pixel portion is shown in FIG. 31B.
  • FIGS. 31A and 31B it was confirmed that the entire pixel portion could be displayed satisfactorily.
  • FIG. 32A The brightness was evaluated with different duties on the display device described above.
  • the correlation between duty and brightness is shown in FIG. 32A.
  • the horizontal axis represents the duty and the vertical axis represents the luminance L. Note that FIG. 32A shows the brightness when the entire surface of the pixel portion is displayed in white.
  • the brightness is 5040 cd / m 2
  • the duty is 50%
  • the brightness is 2520 cd / m 2
  • the duty is 20%
  • the brightness is 1008 cd / m 2
  • the duty is 0%
  • the brightness is 0 cd / m 2 . It was confirmed that there is a proportional relationship between brightness and brightness.
  • FIG. 32A a straight line connecting the plot with a duty of 100% and the plot with a duty of 0% is shown by a broken line.
  • FIG. 32B The time change of the brightness during display is shown in FIG. 32B.
  • the horizontal axis represents time (Time) and the vertical axis represents brightness L.
  • FIG. 32B shows data obtained by measuring the brightness when a white line having a width of one pixel is displayed with a duty of 20% with a spectroluminance meter.
  • ND11 Node, ND12: Node, 10a: Pixel, 10B: Sub-pixel, 10b: Pixel, 10c: Pixel, 10d: Pixel, 10e: Pixel, 10f: Pixel, 10G: Sub-pixel, 10R: Sub-pixel, 10: Pixel , 20: 1st layer, 30: 2nd layer, 51a: display area, 51b: display area, 51c: display area, 53a: pixel electrode, 53b: pixel electrode, 53c: pixel electrode, 53: pixel electrode, 100: Display device, 101: Transistor, 102: Transistor, 103: Transistor, 104: Transistor, 111: Capacitive element, 112: Capacitive element, 114: Light emitting device, 121: Wiring, 122: Wiring, 123: Wiring, 128: Wiring 129: Wiring, 130: Drive circuit, 131: Wiring, 140a: Drive circuit, 140b: Drive circuit, 150: Pixel, 161: Wiring, 162: Wiring, 200A:

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

表示品質の高い表示装置を提供する。高精細な表示装置を提供する。 複数の画素を有し、画素はそれぞれ、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有する表示装置とする。発光デバイスの一方の電極は、第1のトランジスタのソースまたはドレインの一方と、第2のトランジスタのソースまたはドレインの一方と、第1の容量素子の一方の電極と、に電気的に接続される。第2のトランジスタのゲートは、第1の容量素子の他方の電極と、第3のトランジスタのソースまたはドレインの一方と、第4のトランジスタのソースまたはドレインの一方と、に電気的に接続される。また、画素それぞれにおいて、1フレーム期間中に、第1のトランジスタ及び第4のトランジスタがそれぞれ導通状態である期間を有する。

Description

表示装置、および電子機器
 本発明の一態様は、表示装置及び電子機器に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野として、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
 トランジスタに適用可能な半導体材料として、金属酸化物を用いた酸化物半導体が注目されている。例えば、特許文献1では、複数の酸化物半導体層を積層し、当該複数の酸化物半導体層の中で、チャネルとなる酸化物半導体層がインジウム及びガリウムを含み、且つインジウムの割合をガリウムの割合よりも大きくすることで、電界効果移動度(単に移動度、μFE、又はμと言う場合がある)を高めた半導体装置が開示されている。
 半導体層に用いることのできる金属酸化物は、スパッタリング法等を用いて形成できるため、大型の表示装置を構成するトランジスタに用いることができる。また、多結晶シリコンや非晶質シリコンを用いたトランジスタの生産設備の一部を改良して利用することが可能であるため、設備投資を抑えられる。また、金属酸化物を用いたトランジスタは、非晶質シリコンを用いた場合に比べて高い電界効果移動度を有するため、駆動回路を設けた高機能の表示装置を実現できる。
 ところで、拡張現実(AR:Augmented Reality)又は仮想現実(VR:Virtual Reality)用の表示装置として、ウェアラブル型の表示装置、及び据え置き型の表示装置が普及しつつある。ウェアラブル型の表示装置として、例えば、ヘッドマウントディスプレイ(HMD:Head Mounted Display)や眼鏡型の表示装置等がある。据え置き型の表示装置として、例えば、ヘッドアップディスプレイ(HUD:Head−Up Display)等がある。
 デジタルカメラ等の撮像装置を有する電子機器において、撮像される画像を撮像前に確認するためにビューファインダーが用いられている。また、ビューファインダーとして、電子ビューファインダーが用いられている。電子ビューファインダーには表示部が設けられ、撮像デバイスにより得られる像を当該表示部に画像として表示することができる。例えば、特許文献2では、画像中心部から画像周辺部にわたって良好な視度状態を得ることができる電子ビューファインダーについて開示されている。
特開2014−7399号公報 特開2012−42569号公報
 HMD等、表示部と使用者の距離が近い表示装置においては、使用者が画素を視認しやすく、粒状感を強く感じてしまうことから、ARやVRの没入感や臨場感が薄れる場合がある。このため、使用者に画素を視認されないように精細な画素を備える、つまり精細度が高い表示装置が望まれる。しかしながら、精細度が高くなるほど個々の画素の面積が小さくなり、画素に設けられるトランジスタ、容量素子等の素子の数が少なくなってしまう場合がある。そのため、精細度が高い表示装置においては、少ない素子数で画素を構成することが望まれる。
 表示装置から発せられる光を見た際に、その光が消えた後もそれまで見ていた光が残って見える現象(残像現象ともいう)が発生する場合がある。残像現象が発生すると、使用者には前に表示された画像が残像として認識され、表示品質を低下させる原因となる。特に、動画の場合は、残像現象の影響が大きくなるため、表示品質を著しく低下させる場合がある。
 上記に鑑み、本発明の一態様は、精細度が高い表示装置を提供することを課題の一つとする。または、本発明の一態様は、残像が少ない表示装置を提供することを課題の一つとする。または、本発明の一態様は、表示品質が高い表示装置を提供することを課題の一つとする。または、本発明の一態様は、消費電力が低い表示装置を提供することを課題の一つとする。または、本発明の一態様は、額縁が狭い表示装置を提供することを課題の一つとする。または、本発明の一態様は、小型の表示装置を提供することを課題の一つとする。または、本発明の一態様は、新規な表示装置を提供することを課題の一つとする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、複数の画素を有する画素部と、第1の配線と、第1の走査線と、第2の走査線と、第3の走査線と、信号線と、を有する表示装置である。画素は、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有する。発光デバイスの一方の電極は、第1のトランジスタのソースまたはドレインの一方と、第2のトランジスタのソースまたはドレインの一方と、第1の容量素子の一方の電極と、に電気的に接続される。第2のトランジスタのゲートは、第1の容量素子の他方の電極と、第3のトランジスタのソースまたはドレインの一方と、第4のトランジスタのソースまたはドレインの一方と、に電気的に接続される。第1のトランジスタのソースまたはドレインの他方、及び第4のトランジスタのソースまたはドレインの他方はそれぞれ、第1の電位を供給する機能を有する第1の配線と電気的に接続される。第1のトランジスタのゲートは、第1の走査線と電気的に接続される。第3のトランジスタのゲートは、第2の走査線と電気的に接続される。第4のトランジスタのゲートは、第3の走査線と電気的に接続される。第3のトランジスタのソースまたはドレインの他方は、信号線と電気的に接続される。また、画素それぞれにおいて、1フレーム期間中に、第1のトランジスタ及び第4のトランジスタがそれぞれ導通状態である期間を有する。
 前述の表示装置において、第2の容量素子を有することが好ましい。第2の容量素子の一方の電極は、第2のトランジスタのゲートと電気的に接続される。第2の容量素子の他方の電極は、第2のトランジスタのソースまたはドレインの他方と電気的に接続される。
 本発明の一態様は、複数の画素を有する画素部と、第1の配線と、第1の走査線と、第2の走査線と、第3の走査線と、信号線と、を有する表示装置である。画素は、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有する。発光デバイスの一方の電極は、第1のトランジスタのソースまたはドレインの一方と、第2のトランジスタのソースまたはドレインの一方と、第4のトランジスタのソースまたはドレインの一方と、第1の容量素子の一方の電極と、に電気的に接続される。第2のトランジスタのゲートは、第1の容量素子の他方の電極と、第3のトランジスタのソースまたはドレインの一方と、第4のトランジスタのソースまたはドレインの他方と、に電気的に接続される。第1のトランジスタのソースまたはドレインの他方は、第1の配線と電気的に接続される。第1のトランジスタのゲートは、第1の走査線と電気的に接続される。第3のトランジスタのゲートは、第2の走査線と電気的に接続される。第4のトランジスタのゲートは、第3の走査線と電気的に接続される。第3のトランジスタのソースまたはドレインの他方は、信号線と電気的に接続される。また、画素それぞれにおいて、1フレーム期間中に、第1のトランジスタ及び第3のトランジスタがそれぞれ非導通状態であり、第4のトランジスタが導通状態である期間を有する。
 本発明の一態様は、複数の画素を有する画素部と、第1の配線と、第2の配線と、第1の走査線と、第2の走査線と、第3の走査線と、信号線と、を有する表示装置である。画素は、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有する。発光デバイスの一方の電極は、第1のトランジスタのソースまたはドレインの一方と、第2のトランジスタのソースまたはドレインの一方と、第4のトランジスタのソースまたはドレインの一方と、第1の容量素子の一方の電極と、に電気的に接続される。第2のトランジスタのゲートは、第1の容量素子の他方の電極と、第3のトランジスタのソースまたはドレインの一方と、に電気的に接続される。第1のトランジスタのソースまたはドレインの他方は、第1の配線と電気的に接続される。第4のトランジスタのソースまたはドレインの他方は、第2の配線と電気的に接続される。第1のトランジスタのゲートは、第1の走査線と電気的に接続される。第3のトランジスタのゲートは、第2の走査線と電気的に接続される。第4のトランジスタのゲートは、第3の走査線と電気的に接続される。第3のトランジスタのソースまたはドレインの他方は、信号線と電気的に接続される。また、画素それぞれにおいて、1フレーム期間中に、第1のトランジスタ及び第3のトランジスタがそれぞれ非導通状態であり、第4のトランジスタが導通状態である期間を有する。
 本発明の一態様は、複数の画素を有する画素部と、第1の配線と、第1の走査線と、第2の走査線と、第3の走査線と、信号線と、を有する表示装置である。画素は、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有する。発光デバイスの一方の電極は、第4のトランジスタのソースまたはドレインの一方と電気的に接続される。第4のトランジスタのソースまたはドレインの他方は、第1のトランジスタのソースまたはドレインの一方と、第2のトランジスタのソースまたはドレインの一方と、第1の容量素子の一方の電極と、に電気的に接続される。第2のトランジスタのゲートは、第1の容量素子の他方の電極と、第3のトランジスタのソースまたはドレインの一方と、に電気的に接続される。第1のトランジスタのソースまたはドレインの他方は、第1の配線と電気的に接続される。第1のトランジスタのゲートは、第1の走査線と電気的に接続される。第3のトランジスタのゲートは、第2の走査線と電気的に接続される。第4のトランジスタのゲートは、第3の走査線と電気的に接続される。第3のトランジスタのソースまたはドレインの他方は、信号線と電気的に接続される。また、画素それぞれにおいて、1フレーム期間中に、第1のトランジスタ、第3のトランジスタ及び第4のトランジスタがそれぞれ非導通状態である期間を有する。
 本発明の一態様は、複数の画素を有する画素部と、第1の配線と、第1の走査線と、第2の走査線と、第3の走査線と、信号線と、を有する表示装置である。画素は、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有する。発光デバイスの一方の電極は、第1のトランジスタのソースまたはドレインの一方と、第2のトランジスタのソースまたはドレインの一方と、第1の容量素子の一方の電極と、に電気的に接続される。第2のトランジスタのゲートは、第1の容量素子の他方の電極と、第3のトランジスタのソースまたはドレインの一方と、に電気的に接続される。第2のトランジスタのソースまたはドレインの他方は、第4のトランジスタのソースまたはドレインの一方と電気的に接続される。第1のトランジスタのソースまたはドレインの他方は、第1の配線と電気的に接続される。第1のトランジスタのゲートは、第1の走査線と電気的に接続される。第3のトランジスタのゲートは、第2の走査線と電気的に接続される。第4のトランジスタのゲートは、第3の走査線と電気的に接続される。第3のトランジスタのソースまたはドレインの他方は、信号線と電気的に接続される。画素それぞれにおいて、1フレーム期間中に、第1のトランジスタ、第3のトランジスタ及び第4のトランジスタがそれぞれ非導通状態である期間を有する。
 前述の表示装置において、第2のトランジスタは、バックゲートを有することが好ましい。バックゲートは、第2のトランジスタのソースまたはドレインの一方と電気的に接続される。
 前述の表示装置において、第2のトランジスタは、バックゲートを有することが好ましい。バックゲートは、第2のトランジスタのゲートと電気的に接続される。
 前述の表示装置において、発光デバイスの他方の電極は、第3の配線と電気的に接続されることが好ましい。第1の配線には、第1の電位が供給される。第3の配線には、第3の電位が供給され、第3の電位は、第1の電位より低いことが好ましい。
 前述の表示装置において、発光デバイスは、有機発光ダイオードであることが好ましい。
 前述の表示装置において、第1の駆動回路部を有し、第1の駆動回路部は、画素部と重なる領域を有し、かつ信号線と電気的に接続されることが好ましい。
 前述の表示装置において、第1の層と、第1の層上の第2の層と、を有することが好ましい。第1の層は、第1の駆動回路部と、第2の駆動回路部と、を有し、第2の層は、画素部を有する。第2の駆動回路部は、第1の走査線と電気的に接続される。
 前述の表示装置において、第1のトランジスタ、第2のトランジスタ、第3のトランジスタ、及び第4のトランジスタはそれぞれ、チャネル形成領域に金属酸化物を有することが好ましい。金属酸化物は、インジウムと、亜鉛と、元素M(アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウムの中から選ばれる一または複数)と、を有する。
 本発明の一態様は、前述の表示装置と、カメラと、を有する電子機器である。
 本発明の一態様により、精細度が高い表示装置を提供できる。または、本発明の一態様により、残像が少ない表示装置を提供できる。または、本発明の一態様により、表示品質が高い表示装置を提供できる。または、本発明の一態様により、消費電力が低い表示装置を提供できる。または、本発明の一態様により、額縁が狭い表示装置を提供できる。または、本発明の一態様により、小型の表示装置を提供できる。または、本発明の一態様により、新規な表示装置を提供できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項等の記載から抽出することが可能である。
図1A及び図1Bは、画素の構成例を示す回路図である。
図2は、画素回路の動作を説明するタイミングチャートである。
図3Aは、画素の構成例を示す回路図である。図3Bは、画素回路の動作を説明するタイミングチャートである。
図4Aは、画素の構成例を示す回路図である。図4Bは、画素回路の動作を説明するタイミングチャートである。
図5A及び図5Bは、画素の構成例を示す回路図である。
図6は、画素回路の動作を説明するタイミングチャートである。
図7Aは、画素の構成例を示す回路図である。図7Bは、画素回路の動作を説明するタイミングチャートである。
図8A乃至図8Cは、表示装置の動作を示す図である。
図9Aは、画素の構成例を示す回路図である。図9Bは、表示装置の動作を示す図である。
図10は、表示装置の動作を示す図である。
図11A及び図11Bは、画素のレイアウト例を示す図である。
図12A、図12Bは、画素の構成例を示す模式図である。
図13A、図13Bは、画素の構成例を示す模式図である。
図14は、表示装置の構成例を示すブロック図である。
図15Aは、表示装置の構成例を示す模式図である。図15Bは、表示装置の構成例を示すブロック図である。
図16Aは、表示装置の構成例を示す模式図である。図16Bは、表示装置の構成例を示すブロック図である。
図17は、表示装置の構成例を示す断面図である。
図18は、表示装置の構成例を示す断面図である。
図19は、表示装置の構成例を示す断面図である。
図20は、表示装置の構成例を示す断面図である。
図21は、表示装置の構成例を示す断面図である。
図22A乃至図22Eは、発光デバイスの構成例を示す図である。
図23Aは、トランジスタの構成例を示す上面図である。図23B及び図23Cは、トランジスタの構成例を示す断面図である。
図24Aは、トランジスタの構成例を示す上面図である。図24B及び図24Cは、トランジスタの構成例を示す断面図である。
図25Aは、トランジスタの構成例を示す上面図である。図25B及び図25Cは、トランジスタの構成例を示す断面図である。
図26Aは、トランジスタの構成例を示す上面図である。図26B及び図26Cは、トランジスタの構成例を示す断面図である。
図27Aは、IGZOの結晶構造の分類を説明する図である。図27Bは、CAAC−IGZO膜のXRDスペクトルを説明する図である。図27Cは、CAAC−IGZO膜の極微電子線回折パターンを説明する図である。
図28A乃至図28Eは、電子機器の例を示す斜視図である。
図29A乃至図29Gは、電子機器の例を示す斜視図である。
図30は、シミュレーション結果を説明する図である。
図31A及び図31Bは、表示装置の写真である。
図32Aは、表示装置のデューティと輝度の相関関係を示す図である。図32Bは、表示装置の輝度の時間変化を示す図である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 本明細書で説明する各図において、各構成の大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。
 本明細書等にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではない。
 本明細書等において、「上に」、「下に」等の配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
 本明細書等において、トランジスタが有するソースとドレインの機能は、トランジスタの極性、又は回路動作において電流の方向が変化する場合等には入れ替わることがある。このため、ソースやドレインの用語は、入れ替えて用いることができるものとする。
 本明細書等において「電極」「配線」「端子」等の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合等も含む。また、例えば、「端子」は「配線」や「電極」の一部として用いられることがあり、その逆もまた同様である。更に、「端子」の用語は、複数の「電極」「配線」「端子」等が一体となって形成されている場合等も含む。そのため、例えば、「電極」は「配線」又は「端子」の一部とすることができ、また、例えば、「端子」は「配線」又は「電極」の一部とすることができる。また、「電極」「配線」「端子」等の用語は、場合によって、「領域」等の用語に置き換える場合がある。
 本明細書等において、「抵抗」とは、配線の長さによって抵抗値を決める場合がある。又は、抵抗は、配線で用いる導電体とは異なる低効率を有する導電体とコンタクトを介して接続して形成する場合等も含む。又は、半導体に不純物をドーピングすることで抵抗値を決める場合がある。
 本明細書等において、「電気的に接続」には、直接接続している場合と、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。よって、「電気的に接続する」と表現される場合であっても、現実の回路においては、物理的な接続部分がなく、配線が延在しているだけの場合もある。また、「直接接続」と表現される場合であっても、異なる導電体にコンタクトを介して配線が形成される場合が含まれる。なお、配線には、異なる導電体が一つ以上の同じ元素を含む場合と、異なる元素を含む場合と、がある。
 本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」や「絶縁層」という用語は、「導電膜」や「絶縁膜」という用語に相互に交換することが可能な場合がある。
 本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低い(pチャネル型トランジスタでは、Vthよりも高い)状態をいう。
 図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は模式的に示したものであり、図面に示す形状又は値等に限定されない。例えば、実際の製造工程において、エッチング等の処理により層やレジストマスク等が意図せずに目減りすることがあるが、理解を容易とするために図に反映しないことがある。また、図面において、同一部分又は同様な機能・材料等を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能・材料等を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductor又は単にOSともいう)等に分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OSトランジスタと記載する場合においては、酸化物又は酸化物半導体を有するトランジスタと換言することができる。
 なお、本明細書等において、画素とは、例えば、明るさを制御できる要素一つ分を示すものとする。よって、一例として、一画素とは、一つの色要素を示すものとし、その色要素一つで明るさを表現する。従って、R(赤)G(緑)B(青)の色要素からなるカラー表示装置の場合は、画像の最小単位は、Rの画素とGの画素とBの画素との三画素から構成されるものとする。この場合、RGBのそれぞれの画素は副画素(サブ画素)と呼び、RGBの副画素を併せて画素と呼ぶ場合がある。
(実施の形態1)
 本実施の形態では、本発明の一態様である表示装置について、説明する。
 本発明の一態様である表示装置は、画素部を有する。画素部は複数の画素を有し、画素はそれぞれ、発光デバイスと、当該発光デバイスに流れる電流量を制御する駆動トランジスタと、を有する。本発明の一態様である表示装置は、1フレーム期間中に発光デバイスが消灯する期間を設けることができる。当該期間を設け、黒を表示させることにより、残像を減らすことができ、表示品質を高めることができる。
 本発明の一態様である表示装置は、画素それぞれに、ソースドライバから画像データに対応する電位”Vdata”が供給される。また、駆動トランジスタを介して発光デバイスに電流が流れ、当該電流の量により発光デバイスの輝度が制御される。つまり、表示装置は、画素に供給される電位”Vdata”の高さにより、画像の階調を表現することができる。
 表示装置の精細度が高くなるほど、各画素の面積が小さくなるため、発光デバイスも小さくなり、発光デバイスを発光させるのに必要な電流も小さくなる。つまり、表示装置の精細度が高くなるほど、駆動トランジスタから発光デバイスに流す電流が小さくなり、駆動トランジスタの動作に必要な電圧も低くなる。しかしながら、画素の供給される電位”Vdata”の範囲を小さくすると1階調あたりの電位が小さく、つまり、階調間の電位差が小さくなることから、階調の制御が困難になってしまう場合がある。
 本発明の一態様である表示装置は、画素に供給される電位”Vdata”より低い電位を、駆動トランジスタに印加する機能を有する。したがって、電位”Vdata”の範囲を小さくすることなく、多階調の画像を表示することができ、表示品質を高めることができる。
<画素の構成例1>
 本発明の一態様の表示装置に用いることができる画素10の構成例を、図1Aに示す。画素10は、発光デバイス114と、トランジスタ101と、トランジスタ102と、トランジスタ103と、トランジスタ104と、容量素子111と、を有する。
 発光デバイス114の一方の電極は、トランジスタ101のソースまたはドレインの一方と、トランジスタ102のソースまたはドレインの一方と、容量素子111の一方の電極と、に電気的に接続される。トランジスタ102のゲートは、容量素子111の他方の電極と、トランジスタ103のソースまたはドレインの一方と、トランジスタ104のソースまたはドレインの一方と、に電気的に接続される。
 トランジスタ101のソースまたはドレインの他方、及びトランジスタ104のソースまたはドレインの他方はそれぞれ、配線161と電気的に接続される。トランジスタ101のゲートは、配線121と電気的に接続される。トランジスタ103のゲートは、配線122と電気的に接続される。トランジスタ104のゲートは、配線123と電気的に接続される。トランジスタ103のソースまたはドレインの他方は、配線131と電気的に接続される。
 配線161は、特定の電位(以下、第1の電位または参照電位とも記す)“Vref”を供給する機能を有する。配線121、配線122及び配線123はそれぞれ、トランジスタ101、トランジスタ103及びトランジスタ104の動作を制御するための走査線としての機能を有する。走査線に与えられる走査信号は、画素10内のスイッチとして機能するトランジスタ101、トランジスタ103及びトランジスタ104の導通状態または非導通状態(オンまたはオフ)を制御するための信号である。配線131は、画像データに対応する電位”Vdata”を供給するデータ線としての機能を有する。
 トランジスタ102のソースまたはドレインの他方は、配線128と電気的に接続される。配線128は、特定の電位を供給する機能を有することが好ましい。また、発光デバイス114の他方の電極は、配線129と電気的に接続される。配線128、及び配線129はそれぞれ、電源電位が与えられる配線(電源線)として機能させることができる。例えば、配線128は、配線129より高い電位を供給する高電位電源線として機能させることができる。配線129は、配線128より低い電位を供給する低電位電源線として機能させることができる。
 トランジスタ102は、発光デバイス114に流す電流量を制御する駆動トランジスタとして機能する。トランジスタ103は、画素を選択する選択トランジスタとして機能する。トランジスタ101及びトランジスタ104はそれぞれ、特定の電位(参照電位)“Vref”を画素10に書き込むためのスイッチとして機能する。
 発光デバイス114として、発光ダイオード(LED:Light Emitting Diode)、有機発光ダイオード(OLED:Organic Light Emitting Diode)、発光層に量子ドットを用いた発光ダイオード(QLED:Quantum−dot Light Emitting Diode)、半導体レーザなどの、自発光性の発光デバイスが挙げられる。
 本発明の一態様である表示装置は、1フレーム期間中に発光デバイスが消灯する期間を設けることができる。当該期間を設け、黒を表示させることにより、残像を減らすことができ、表示品質を高めることができる。
 画素10は、さらに容量素子112を有することが好ましい。容量素子112の一方の電極は、トランジスタ102のゲートと電気的に接続される。容量素子112の他方の電極は、トランジスタ102のソースまたはドレインの他方と電気的に接続される。画素10が容量素子112を有することにより、画素10に供給される電位”Vdata”より低い電位を、駆動トランジスタとして機能するトランジスタ102に印加することができる。したがって、電位”Vdata”の範囲を小さくすることなく、多階調の画像を表示することができ、表示品質を高めることができる。
 ここで、トランジスタ102のゲート、トランジスタ103のソースまたはドレインの一方、容量素子111の他方の電極、及び容量素子112の他方の電極が接続される配線を、ノードND11とする。ノードND11は、駆動トランジスタとして機能するトランジスタ103のゲートの電位を保持する機能を有する。ノードND11の電位によって、発光デバイス114に流れる電流を制御し、発光デバイス114の発光輝度を制御できる。トランジスタ101のソースまたはドレインの一方、トランジスタ102のソースまたはドレインの一方、及び容量素子111の一方の電極が接続される配線を、ノードND12とする。ノードND12は、駆動トランジスタとして機能するトランジスタ102のソースまたはドレインの一方の電位を保持する機能を有する。
 図1Aに示す画素10において、容量素子111を介して、駆動トランジスタとして機能するトランジスタ102のゲートとソースが電気的に接続される。容量素子112を介して、トランジスタ102のゲートとドレインが電気的に接続される。また、ノードND11の電位は、トランジスタ102のゲート・ソース間の容量(容量素子111)とトランジスタ102のゲート・ドレイン間の容量(容量素子112)によって保持される。
 トランジスタ103を導通状態とすることで、配線131に供給された電位をノードND11に書き込むことができる。また、トランジスタ104を導通状態とすることで、配線161に供給された電位をノードND11に書き込むことができる。トランジスタ103及びトランジスタ104を非導通状態とすることで、ノードND11に書き込まれた電位を保持することができる。
 トランジスタ101を導通状態とすることで、配線161に供給されたデータをノードND12に書き込むことができる。トランジスタ101を非導通状態とすることで、ノードND12に書き込まれたデータを保持することができる。
 トランジスタ101、トランジスタ102、トランジスタ103及びトランジスタ104のいずれか一以上に極めてオフ電流の小さいトランジスタを用いることが好ましい。特に、トランジスタ101、トランジスタ103及びトランジスタ104に極めてオフ電流の小さいトランジスタを用いることで、ノードND11、及びノードND12の電位を長時間保持することが可能となる。当該トランジスタには、例えば、チャネル形成領域に金属酸化物を用いたトランジスタ(以下、OSトランジスタ)を好適に用いることができる。
 なお、トランジスタ101、トランジスタ102、トランジスタ103及びトランジスタ104の全てにOSトランジスタを適用すると、さらに好ましい。また、トランジスタ101、トランジスタ102、トランジスタ103及びトランジスタ104以外のトランジスタに、OSトランジスタを適用してもよい。また、リーク電流量が許容できる範囲で動作を行う場合は、チャネル形成領域にシリコンを有するトランジスタ(以下、Siトランジスタ)を適用してもよい。または、OSトランジスタおよびSiトランジスタを併用してもよい。なお、上記Siトランジスタとして、アモルファスシリコンを有するトランジスタ、結晶性のシリコン(微結晶シリコン、低温ポリシリコン、単結晶シリコン)を有するトランジスタなどが挙げられる。なお、図1Aに示すトランジスタは、いずれもnチャネル型のトランジスタであるが、pチャネル型のトランジスタを用いることもできる。
 OSトランジスタに用いる半導体材料として、エネルギーギャップが2eV以上、好ましくは2.2eV以上、より好ましくは2.5eV以上である金属酸化物を用いることができる。代表的には、インジウムを含む酸化物半導体などであり、例えば、後述するCAAC−OS(C−Axis Aligned Crystalline Oxide Semiconductor)またはCAC−OS(Cloud−Aligned Composite Oxide Semiconductor)などを用いることができる。CAAC−OSは安定な結晶構造を有し、信頼性を重視するトランジスタなどに適する。また、CAC−OSは、高移動度特性を示すため、高速駆動を行うトランジスタなどに適する。
 OSトランジスタは半導体層のエネルギーギャップが大きいため、チャネル幅が1μmあたりのオフ電流値が数yA/μm(yは10−24)という極めて小さいオフ電流特性を示すことができる。また、OSトランジスタは、インパクトイオン化、アバランシェ降伏、および短チャネル効果などが生じないなどSiトランジスタとは異なる特徴を有し、信頼性の高い回路を形成することができる。また、Siトランジスタでは問題となる結晶性の不均一性に起因する電気特性のばらつきもOSトランジスタでは生じにくい。
 OSトランジスタが有する半導体層は、例えばインジウム、亜鉛および元素M(Mはアルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウムの一以上)を含むIn−M−Zn系酸化物で表記される膜とすることができる。
 半導体層を構成する酸化物半導体がIn−M−Zn系酸化物の場合、In−M−Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:3、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=10:1:3、In:M:Zn=10:1:6、In:M:Zn=10:1:8等が好ましい。なお、成膜される半導体層の原子数比はそれぞれ、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
 半導体層として、キャリア濃度の低い酸化物半導体を用いる。例えば、半導体層は、キャリア濃度が1×1017/cm以下、好ましくは1×1015/cm以下、さらに好ましくは1×1013/cm以下、より好ましくは1×1011/cm以下、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上のキャリア濃度の酸化物半導体を用いることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。当該酸化物半導体は、欠陥準位密度が低く、安定な特性を有する酸化物半導体であるといえる。
 なお、これらに限られず、必要とするトランジスタの半導体特性および電気特性(電界効果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とするトランジスタの半導体特性を得るために、半導体層のキャリア濃度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
 半導体層を構成する酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸素欠損が増加し、n型化してしまう。このため、半導体層におけるシリコンや炭素の濃度(二次イオン質量分析法により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 アルカリ金属およびアルカリ土類金属は、酸化物半導体に含まれる成分と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増大してしまうことがある。このため、半導体層におけるアルカリ金属またはアルカリ土類金属の濃度(二次イオン質量分析法により得られる濃度)を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 半導体層を構成する酸化物半導体に窒素が含まれていると、酸化物半導体中にキャリアとなる電子が生じてキャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため半導体層における窒素濃度(二次イオン質量分析法により得られる濃度)は、5×1018atoms/cm以下にすることが好ましい。
 半導体層を構成する酸化物半導体に水素が含まれていると、酸化物半導体中に含まれる金属原子と結合する酸素と反応して水になるため、酸化物半導体中に酸素欠損を形成する場合がある。酸化物半導体中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となる場合がある。さらに、酸素欠損に水素が入った欠陥はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。したがって、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。
 酸素欠損に水素が入った欠陥は、酸化物半導体のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、酸化物半導体においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、酸化物半導体のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
 よって、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素などの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体は、例えば、CAAC−OS、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、および非晶質酸化物半導体などがある。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。
 非晶質構造の酸化物半導体膜は、例えば、原子配列が無秩序であり、結晶成分を有さない。または、非晶質構造の酸化物半導体膜は、例えば、完全な非晶質構造であり、結晶部を有さない。
 なお、半導体層が、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のうち、二種以上を有する混合膜であってもよい。混合膜は、例えば上述した領域のうち、いずれか二種以上の領域を含む単層構造、または積層構造を有する場合がある。
 以下では、非単結晶の半導体層の一態様であるCAC−OSの構成について説明する。
 CAC−OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
 例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、およびZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。
 つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。
 なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。
 上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。
 一方、CAC−OSは、酸化物半導体の材料構成に関する。CAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。したがって、CAC−OSにおいて、結晶構造は副次的な要素である。
 なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。
 なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。
 なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。
 CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、および窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
 CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折測定から、測定領域のa−b面方向、およびc軸方向の配向は見られないことが分かる。
 CAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域(リング領域)と、該リング領域に複数の輝点が観測される。したがって、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、および断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
 ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。したがって、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。
 したがって、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することができる。
 CAC−OSを用いた半導体素子は、信頼性が高い。したがって、CAC−OSは、様々な半導体装置の構成材料として適している。
 図1Aに示した画素10と異なる構成を、図1Bに示す。
 図1Bに示すように、トランジスタ101、トランジスタ102、トランジスタ103及びトランジスタ104はそれぞれ、バックゲートを有する構成であってもよい。特に、発光デバイス114の駆動トランジスタとして機能するトランジスタ102は、バックゲートを有すことが好ましい。図1Bは、トランジスタ102のバックゲートが、ソースまたはドレインの一方と電気的に接続される構成を示しており、トランジスタ特性の飽和性を高める効果を有する。また、トランジスタ101、トランジスタ103、及びトランジスタ104それぞれのバックゲートが、ゲート(フロントゲートと呼ぶ場合がある)と電気的に接続される構成を示しており、オン電流を高める効果を有する。
 トランジスタ102のバックゲートが、フロントゲートと電気的に接続されてもよい。このような構成とすることで、トランジスタ102のオン電流を高める効果を有する。また、バックゲートが定電位を供給できる配線と電気的に接続され、トランジスタのしきい値電圧を制御する構成とすることもできる。なお、図1Bにおいては、全てのトランジスタにバックゲートを設けた構成を図示しているが、バックゲートが設けられないトランジスタを一以上有していてもよい。
 図2に示すタイミングチャートを用いて、画素10の動作の一例を説明する。図2では、ノードND11の電位VND11、及びノードND12の電位VND12の変動も示している。
 以下の説明においては、高電位を“High”、低電位を“Low”で表す。画像データに対応する電位を“Vdata”、配線161の電位を“Vref”とする。“Vref”は、例えば0V、GND電位または特定の基準電位を用いることができる。また、配線128の電位を“Vano”とする。“Vano”は、例えば、発光デバイス114の輝度が最大となる場合において、トランジスタ102が飽和領域で動作する電位に設定することが好ましい。また、配線129の電位を“Vcath”とする。“Vcath”は、ノードND12の電位が最も低電位の時に、発光デバイス114が発光しない電位とすることが好ましい。
 まず、時刻T31に、配線121の電位を“High”、配線122の電位を“High”、配線123の電位を“Low”、配線131の電位を“Vdata”、配線161の電位を“Vref”とすると、トランジスタ101及びトランジスタ103が導通状態となり、ノードND11に配線131の電位“Vdata”、ノードND12に配線161の電位“Vref”が書き込まれる。
 このとき、容量素子111の両端にかかる電位差をV1とすると、電位差V1は式(1)で示すことができる。同様に、容量素子112の両端にかかる電位差をV2とすると、電位差V2は式(2)で示すことができる。また、トランジスタ102のゲート・ソース間の電圧VgsはノードND11の電位VND11とノードND12の電位VND12の差であり、電圧Vgsは式(3)で示すことができる。
 V1=Vdata−Vref   (1)
 V2=Vano−Vdata   (2)
 Vgs=Vdata−Vref   (3)
 次に、時刻T32に、配線121の電位を“Low”、配線122の電位を“Low”、配線123の電位を“Low”とすると、トランジスタ101及びトランジスタ103が非導通状態となる。トランジスタ102のゲート・ソース間の電圧Vgsは容量素子111及び容量素子112に保持される電圧となり、電圧Vgsに応じた電流が発光デバイス114に流れる。そして、発光デバイス114が点灯する。発光デバイス114に流れる電流量により、発光デバイス114の輝度を制御することができる。
 このとき、発光デバイス114に流れる電流とトランジスタ102に流れる電流が等しくなるまで、ノードND12の電位VND12は高くなる。また、ノードND12の電位VND12の上昇に伴い、容量素子111を介してノードND11の電位VND11も高くなる。本発明の一態様である画素10では、容量素子112によりノードND11の電位VND11の上昇量を小さくすることができる。したがって、ノードND11の電位VND11とノードND12の電位VND12の差が小さくなる。つまり、トランジスタ102のゲート・ソース間の電圧Vgsを小さくすることができる。
 ノードND12の電位VND12は、トランジスタ102と発光デバイス114との動作点によって決まる。ノードND12の電位VND12がVrefからV0に変化し、容量素子111の容量をC111、容量素子112の容量をC112とすると、ノードND11の電位VND11は式(4)で示すことができる。また、トランジスタ102のゲート・ソース間の電圧Vgsは式(5)で示すことができる。式(5)に示すように、容量素子111の容量C111及び容量素子112の容量C112の比を変えることで、トランジスタ102のゲート・ソース間の電圧Vgsを変えることができる。
 VND11=Vdata+(C111/(C111+C112))×(V0−Vref)   (4)
 Vgs=Vdata−(C111/(C111+C112))×Vref−(C112/(C111+C112))×V0   (5)
 時刻T31と時刻T32との間の期間P21aは、発光デバイス114を発光させるためのデータを書き込む期間であり、時刻T32と時刻T33との間の期間P21bは、発光デバイス114が発光している期間である。また、時刻T31と時刻T33の間の期間、つまり期間P21aと期間P21bを合わせた期間P21を、点灯期間または発光期間ということができる。なお、本明細書等において、1フレーム期間FPに対する期間P21の割合を、デューティ(Duty)と記す場合がある。デューティは、1フレーム期間FPにおいて、発光デバイス114を発光させるためのデータを書き込む期間、および発光デバイス114が発光している期間の割合である。
 なお、期間P21aにおいて、発光デバイス114が発光する構成としてもよい。また、期間P21aにおいて、発光デバイス114が発光しない構成としてもよい。期間P21aにおいて発光デバイス114が発光しない構成とする場合は、配線129の電位と配線161の電位差“Vref−Vcath”が、発光デバイス114のしきい値電圧を超えないような配線129の電位“Vcath”と配線161の電位“Vref”とすればよい。
 次に、時刻T33に、配線121の電位を“High”、配線122の電位を“Low”、配線123の電位を“High”とすると、トランジスタ101及びトランジスタ104が導通状態となり、トランジスタ101及びトランジスタ104が導通状態となる。ノードND11に配線131の電位“Vref”、ノードND12に配線131の電位“Vref”が書き込まれ、ノードND11の電位VND11とノードND12の電位VND12が同じになる。したがって、トランジスタ102のゲート・ソース間の電圧Vgsは0Vとなり、発光デバイス114が消灯し、黒を表示(以下、黒表示または黒挿入とも記す)させることができる。
 次に、時刻T34に、配線121の電位を“Low”、配線122の電位を“Low”、配線123の電位を“Low”とすると、トランジスタ101、トランジスタ103及びトランジスタ104が非導通状態となる。また、発光デバイス114は、引き続き消灯した状態となる。
 そして、時刻T35に1フレームの動作が終了する。時刻T35は次のフレームの時刻T31であり、時刻T35から次のフレームの動作が開始する。
 時刻T33と時刻T34との間の期間P22aは、発光デバイス114を消灯させるためのデータを書き込む期間であり、時刻T34と時刻T35との間の期間P22bは、発光デバイス114が消灯している期間である。また、時刻T33と時刻T35の間の期間、つまり期間P22aと期間P22bを合わせた期間P22を、消灯期間または非発光期間ということができる。
 本発明の一態様である表示装置は、1フレーム期間中に消灯期間(期間P22)を設けて黒表示させることにより、残像を少なくすることができ、表示品質を高めることができる。
<画素の構成例2>
 図1Bに示した画素10と異なる構成を、図3Aに示す。
 図3Aに示す画素10aは、容量素子112を有さない点と、トランジスタ104のソースまたはドレインの一方が容量素子111を介さずに発光デバイス114の一方の電極と電気的に接続される点と、トランジスタ104のソースまたはドレインの他方がトランジスタ102のゲートと電気的に接続される点で、図1Bに示した画素10と異なる。なお、発光デバイス114、トランジスタ101、トランジスタ102、トランジスタ103及び容量素子111については、これらの素子間の接続関係、及び各配線との接続関係は、図1Bに示した画素10の記載を参照できるため、詳細な説明は省略する。
 図3Bに示すタイミングチャートを用いて、画素10aの動作の一例を説明する。なお、配線161に関しては図2の説明を参照できるため、図3Bでは配線161を省略している。
 まず、時刻T31に、配線121の電位を“High”、配線122の電位を“High”、配線123の電位を“Low”、配線131の電位を“Vdata”、配線161の電位を“Vref”とすると、トランジスタ101及びトランジスタ103が導通状態となり、ノードND11に配線131の電位“Vdata”、ノードND12に配線161の電位“Vref”が書き込まれる。
 次に、時刻T32に、配線121の電位を“Low”、配線122の電位を“Low”、配線123の電位を“Low”とすると、トランジスタ101及びトランジスタ103が非導通状態となる。トランジスタ102のゲート・ソース間の電圧Vgsは容量素子111に保持される電圧となり、電圧Vgsに応じた電流が発光デバイス114に流れる。そして、発光デバイス114が点灯する。また、発光デバイス114に流れる電流量により、発光デバイス114の輝度を制御することができる。
 次に、時刻T33に、配線121の電位を“Low”、配線122の電位を“Low”、配線123の電位を“High”とすると、トランジスタ101及びトランジスタ103が非導通状態となり、トランジスタ104が導通状態となる。トランジスタ104が導通状態となることで、ノードND11とノードND12がトランジスタ104を介して電気的に接続され、ノードND11の電位VND11とノードND12の電位VND12が同じになる。つまり、トランジスタ102のゲート・ソース間の電圧Vgsは0Vとなることから、発光デバイス114が消灯し、黒を表示させることができる。
 次に、時刻T34に、配線121の電位を“Low”、配線122の電位を“Low”、配線123の電位を“Low”とすると、トランジスタ101、トランジスタ103及びトランジスタ104が非導通状態となる。また、発光デバイス114は、引き続き消灯した状態となる。
<画素の構成例3>
 図1Bに示した画素10と異なる構成を、図4Aに示す。
 図4Aに示す画素10bは、容量素子112を有さない点と、配線162を有する点と、トランジスタ104のソースまたはドレインの一方が容量素子111を介さずに発光デバイス114の一方の電極と電気的に接続される点と、トランジスタ104のソースまたはドレインの他方が配線162と電気的に接続される点で、図1Bに示した画素10と異なる。なお、発光デバイス114、トランジスタ101、トランジスタ102、トランジスタ103及び容量素子111については、これらの素子間の接続関係、及び各配線との接続関係は、図1Bに示した画素10の記載を参照できるため、詳細な説明は省略する。
 配線162は、特定の電位(以下、第2の電位とも記す)を供給する機能を有する。配線162の電位は、例えば0V、GND電位または特定の基準電位を用いることができる。
 図4Bに示すタイミングチャートを用いて、画素10bの動作の一例を説明する。なお、配線161に関しては図2の説明を参照できるため、図4Bでは配線161を省略している。
 まず、時刻T31に、配線121の電位を“High”、配線122の電位を“High”、配線123の電位を“Low”、配線131の電位を“Vdata”、配線161の電位を“Vref”とすると、トランジスタ101及びトランジスタ103が導通状態となり、ノードND11に配線131の電位“Vdata”、ノードND12に配線161の電位“Vref”が書き込まれる。
 次に、時刻T32に、配線121の電位を“Low”、配線122の電位を“Low”、配線123の電位を“Low”とすると、トランジスタ101及びトランジスタ103が非導通状態となる。トランジスタ102のゲート・ソース間の電圧Vgsは容量素子111に保持される電圧となり、電圧Vgsに応じた電流が発光デバイス114に流れ、発光デバイス114が点灯する。また、発光デバイス114に流れる電流量により、発光デバイス114の輝度を制御することができる。
 次に、時刻T33に、配線121の電位を“Low”、配線122の電位を“Low”、配線123の電位を“High”とすると、トランジスタ101及びトランジスタ103が非導通状態となり、トランジスタ104が導通状態となる。配線162の電位は、発光デバイス114が発光しない電位とすることが好ましい。配線162の電位を発光デバイス114が発光しない電位とすることにより、トランジスタ102に流れる電流がトランジスタ104を介して配線162へ流れ込むため、発光デバイス114が消灯し、黒を表示させることができる。配線162は、期間P22において、トランジスタ102に流れる電流を流し込む機能を有する。なお、配線123の電位が“High”である期間は、発光デバイス114が消灯した状態となる。
 なお、図4Aでは、トランジスタ101のソースまたはドレインの他方が配線161に電気的に接続され、トランジスタ104のソースまたはドレインの他方が配線162に電気的に接続される構成を示しているが、本発明の一態様はこれに限られない。配線162を設けず、トランジスタ101のソースまたはドレインの他方、およびトランジスタ104のソースまたはドレインの他方がともに配線161に電気的に接続されてもよい。
<画素の構成例4>
 図1Bに示した画素10と異なる構成を、図5A及び図5Bに示す。
 図5Aに示す画素10cは、容量素子112を有さない点と、トランジスタ104のソースまたはドレインの一方が容量素子111を介さずに発光デバイス114の一方の電極と電気的に接続される点と、トランジスタ104のソースまたはドレインの他方がトランジスタ101のソースまたはドレインの一方と電気的に接続される点で、図1Bに示した画素10と異なる。
 図5Bに示す画素10dは、容量素子112を有さない点と、トランジスタ104のソースまたはドレインの一方がトランジスタ102のソースまたはドレインの他方と電気的に接続される点と、トランジスタ104のソースまたはドレインの他方が配線128と電気的に接続される点で、図1Bに示した画素10と異なる。
 なお、発光デバイス114、トランジスタ101、トランジスタ102、トランジスタ103及び容量素子111については、これらの素子間の接続関係、及び各配線との接続関係は、図1Bに示した画素10の記載を参照できるため、詳細な説明は省略する。
 図6に示すタイミングチャートを用いて、画素10c及び画素10dの動作の一例を説明する。なお、配線161に関しては図2の説明を参照できるため、図6では配線161を省略している。
 まず、時刻T31に、配線121の電位を“High”、配線122の電位を“High”、配線123の電位を“Low”、配線131の電位を“Vdata”、配線161の電位を“Vref”とすると、トランジスタ101及びトランジスタ103が導通状態となり、ノードND11に配線131の電位“Vdata”、ノードND12に配線161の電位“Vref”が書き込まれる。
 次に、時刻T32に、配線121の電位を“Low”、配線122の電位を“Low”、配線123の電位を“High”とすると、トランジスタ101及びトランジスタ103が非導通状態となり、トランジスタ104が導通状態となる。トランジスタ102のゲート・ソース間の電圧Vgsは容量素子111に保持される電圧となり、電圧Vgsに応じた電流が発光デバイス114に流れ、発光デバイス114が点灯する。また、発光デバイス114に流れる電流量により、発光デバイス114の輝度を制御することができる。
 次に、時刻T33に、配線121の電位を“Low”、配線122の電位を“Low”、配線123の電位を“Low”とすると、トランジスタ101、トランジスタ103及びトランジスタ104が非導通状態となる。トランジスタ104が非導通状態となることで、発光デバイス114に電流が流れなくなり、発光デバイス114が消灯し、黒を表示(黒表示、または黒挿入ともいう)させることができる。
<画素の構成例5>
 図1Bに示した画素10と異なる構成を、図7Aに示す。
 図7Aに示す画素10eは、トランジスタ104、容量素子112及び配線123を有さない点で、図1Bに示した画素10と異なる。なお、発光デバイス114、トランジスタ101、トランジスタ102、トランジスタ103及び容量素子111については、これらの素子間の接続関係、及び各配線との接続関係は、図1Bに示した画素10の記載を参照できるため、詳細な説明は省略する。
 図7Bに示すタイミングチャートを用いて、画素10eの動作の一例を説明する。なお、配線161に関しては図2の説明を参照できるため、図7Bでは配線161を省略している。
 まず、時刻T31に、配線121の電位を“High”、配線122の電位を“High”、配線131の電位を“Vdata”、配線161の電位を“Vref”とすると、トランジスタ101及びトランジスタ103が導通状態となり、ノードND11に配線131の電位“Vdata”、ノードND12に配線161の電位“Vref”が書き込まれる。
 次に、時刻T32に、配線121の電位を“Low”、配線122の電位を“Low”とすると、トランジスタ101及びトランジスタ103が非導通状態となる。トランジスタ102のゲート・ソース間の電圧Vgsは容量素子111に保持される電圧となり、電圧Vgsに応じた電流が発光デバイス114に流れ、発光デバイス114が点灯する。また、発光デバイス114に流れる電流量により、発光デバイス114の輝度を制御することができる。
 次に、時刻T33に、配線121の電位を“High”、配線122の電位を“Low”とすると、トランジスタ101が導通状態となり、トランジスタ103が非導通状態となる。ノードND12に配線161の電位“Vref”が書き込まれ、発光デバイス114が消灯し、黒を表示させることができる。ここで、配線129の電位と配線161の電位差“Vref−Vcath”が、発光デバイス114のしきい値電圧を超えないような配線129の電位“Vcath”と配線161の電位“Vref”とすること好ましい。なお、配線121の電位が“High”である期間は、発光デバイス114が消灯した状態となる。
 図7Aに示す画素10eは、前述の画素10乃至画素10dと比較して、トランジスタ、容量素子及び配線の数が少ないため、画素が小さい高精細度の表示装置に好適に用いることができる。
<表示装置の動作例>
 本発明の一態様である表示装置の動作例について、図8A乃至図8Cを用いて説明する。
 本発明の一態様である表示装置は、m行n列(m、nは、それぞれ独立に1以上の整数)のマトリクス状に配置された複数の画素を有する。当該画素として、前述の画素10、画素10a、画素10b、画素10c、画素10dまたは画素10eを用いることができる。
 表示装置の動作を示す概要図を、図8Aに示す。図8Aは、縦軸に画素の行数i(iは1以上m以下の整数)を示し、横軸に時間(Time)を示す。また、図8Aでは、1フレーム目(FL=1)乃至4フレーム目(FL=4)を抜粋して示している。
 本発明の一態様である表示装置は、1フレーム期間中に期間P22を設け、黒表示を行うことができる。また、図8Aに示すように、行毎に黒表示を行う構成とすることができる。なお、本明細書等において、行毎に画素を駆動する方法を線順次駆動と記す場合がある。本発明の一態様である表示装置は、線順次駆動により黒表示を行うことにより、全ての画素を一斉に黒表示にする場合と比較して、画像データを書き込むための1行あたりの選択時間(1水平期間ともいう)を長くすることができる。したがって、画素への画像データの書き込みを確実に行なうことができるため、表示装置の表示品質を高めることができる。例えば、フレーム周波数を高めた高速動作時においても、画像データの書き込み不足を防ぐことができる。
 デューティは、任意の値とすることができる。図8Aは、デューティが80%である構成例を示している。図8Bは、デューティが50%である構成例を示している。図8Cは、デューティが20%である構成例を示している。デューティを大きくすることで、点灯期間の割合が大きくなり、表示装置の輝度を高くすることができる。デューティを小さくすることで、黒表示となる消灯期間の割合が大きくなり、残像をより低減することができる。
<画素の構成例6>
 図1Bに示した画素10と異なる構成を、図9Aに示す。
 図9Aに示す画素10fは、トランジスタ104、容量素子112、配線122及び配線123を有さない点、トランジスタ103のゲートが配線121と電気的に接続される点で、図1Bに示した画素10と異なる。画素10fにおいて、トランジスタ101のゲート及びトランジスタ102のゲートはそれぞれ、配線121と電気的に接続される。
 図9Aに示す画素10fは、前述の画素10乃至画素10eと比較して、トランジスタ、容量素子及び配線の数が少ないため、画素が小さい高精細度の表示装置に好適に用いることができる。
 図9Bに示すタイミングチャートを用いて、画素10fの動作の一例を説明する。なお、配線161に関しては図2の説明を参照できるため、図9Bでは配線161を省略している。
 まず、時刻T31に、配線121の電位を“High”、配線131の電位を“Vdata_1”、配線161の電位を“Vref”とすると、トランジスタ101及びトランジスタ103が導通状態となり、ノードND11に配線131の電位“Vdata_1”、ノードND12に配線161の電位“Vref”が書き込まれる。配線131の電位“Vdata_1”は、画像データに応じた電位とする。
 次に、時刻T32に、配線121の電位を“Low”とすると、トランジスタ101及びトランジスタ103が非導通状態となる。トランジスタ102のゲート・ソース間の電圧Vgsは容量素子111に保持される電圧となり、電圧Vgsに応じた電流が発光デバイス114に流れ、発光デバイス114が点灯する。また、発光デバイス114に流れる電流量により、発光デバイス114の輝度を制御することができる。
 次に、時刻T33に、配線121の電位を“High”、配線131の電位を“Vdata_2”とすると、トランジスタ101及びトランジスタ103が導通状態となり、ノードND11に配線131の電位“Vdata_2”、ノードND12に配線161の電位“Vref”が書き込まれる。電位“Vdata_2”を、例えば、最小の階調である黒の画像データに対応する電位とすることで、発光デバイス114が消灯し、黒を表示させることができる。
 次に、時刻T34に、配線121の電位を“Low”とすると、トランジスタ101及びトランジスタ103が非導通状態となる。また、発光デバイス114は、引き続き消灯した状態となる。
 なお、期間P21は配線131の電位を“Vdata_1”、期間P22は配線131の電位を“Vdata_2”とすることが好ましい。
 図9Bに示すタイミングチャートと異なる画素10fの動作の一例を、説明する。画素10fのタイミングチャートの一例を、図10に示す。配線131には、電位“Vdata_1”と電位“Vdata_2”が交互に供給される。なお、配線161に関しては図2の説明を参照できるため、図10では配線161を省略している。
 時刻T31aと時刻T32の間の期間P21cは、発光デバイス114を発光させるためのデータを書き込む行を選択する期間(1水平期間)である。また、期間P21cを、配線131から電位“Vdata_1”が供給される期間と、電位“Vdata_2”が供給される期間に分ける。
 時刻T31aに、配線121の電位を“Low”とすると、トランジスタ101及びトランジスタ103が非導通状態となり、発光デバイス114は発光しない。
 次に、時刻T31に、配線121の電位を“High”、配線131の電位を“Vdata_1”、配線161の電位を“Vref”とすると、トランジスタ101及びトランジスタ103が導通状態となり、ノードND11に配線131の電位“Vdata_1”、ノードND12に配線161の電位“Vref”が書き込まれる。
 次に、時刻T32に、配線121の電位を“Low”とすると、トランジスタ101及びトランジスタ103が非導通状態となる。トランジスタ102のゲート・ソース間の電圧Vgsは容量素子111に保持される電圧となり、電圧Vgsに応じた電流が発光デバイス114に流れ、発光デバイス114が点灯する。また、発光デバイス114に流れる電流量により、発光デバイス114の輝度を制御することができる。時刻T31と時刻T32との間の期間P21aは、発光デバイス114を発光させるためのデータを書き込む期間である。
 時刻T33と時刻T34aの間の期間P22cは、発光デバイス114を消灯させるためのデータを書き込む行を選択する期間である。また、期間P22cを、配線131から電位“Vdata_1”が供給される期間と、電位“Vdata_2”が供給される期間に分ける。
 次に、時刻T33に、配線121の電位を“High”、配線131の電位を“Vdata_2”とすると、トランジスタ101及びトランジスタ103が導通状態となり、ノードND11に配線131の電位“Vdata_2”、ノードND12に配線161の電位“Vref”が書き込まれることで、発光デバイス114が消灯し、黒を表示させることができる。
 次に、時刻T34に、配線121の電位を“Low”とすると、トランジスタ101及びトランジスタ103が非導通状態となる。また、発光デバイス114は、引き続き消灯した状態となる。
<画素のレイアウト例>
 以下では、画素10のレイアウト例について、説明する。
 図1Bに示した画素10のレイアウトの一例を、図11A及び図11Bに示す。
 図11Aには、トランジスタ101、トランジスタ102、トランジスタ103、トランジスタ104、容量素子111、容量素子112、配線121、配線122、配線123、配線128、配線131、及び配線161を示している。なお、図11Aでは、図を明瞭に示すために、発光デバイス114及び配線129を省略している。
 図11Bには、図11Aの構成に加えて、画素電極53を設けた場合の構成を示している。画素電極53は、発光デバイス114と電気的に接続される。また、発光デバイス114は、画素電極53上に設けることができる。
 図11Bにおいて、画素電極53は、トランジスタ101、容量素子111等の画素10を構成する素子や配線等の一部と重ねて設けられている。このような構成は、特に上面発光型(トップエミッション型)の発光デバイスを用いる場合に有効である。このように画素電極53よりも下側にトランジスタ101等を配置することで、画素10の占有面積を縮小したとしても、大きな開口率を実現できる。
 図11Bに示すように、画素電極53は、信号線として機能する配線131と重ならないことが好ましい。画素電極53と配線131が重ならないことで、配線131の電位の変化が画素電極53の電位に影響を及ぼすことを抑制することができる。なお、画素電極53を配線131と重ねて配置する必要がある場合には、画素電極53の面積に対して、これらが重なる面積の割合が10%以下、好ましくは5%以下とすればよい。
<副画素の構成例>
 本発明の一態様の表示装置に適用することができる副画素の構成例を、図12A、図12B、図13A及び図13Bに示す。
 図12Aに示す画素10は、赤色の光を呈する副画素10R、緑色の光を呈する副画素10G、及び青色の光を呈する副画素10Bを有し、これらの3つの副画素が1つの画素10を構成する例を示している。図12Aに示す画素10は、配線131の延伸方向に副画素の長さが長い短冊状の形状を有し、配線121、配線122及び配線123の延伸方向にストライプ状に配列している。
 図12Bでは、2行3列のマトリクス状に配置された副画素(2つの画素10)とともに、配線121、配線122、配線123及び配線131も示している。なお、図12A及び図12Bにおいて、i行目の配線121、配線122及び配線123をそれぞれ、配線121[i]、配線122[i]、配線123[i]と記している。(i−1)行目の配線121、配線122及び配線123をそれぞれ、配線121[i−1]、配線122[i−1]、配線123[i−1]と記している。(j−6)列目乃至j列目の配線131をそれぞれ、配線131[j−6]乃至配線131[j]と記している。
 副画素10Rは画素電極53aを有し、副画素10Rの表示領域51aは画素電極53aの内側に位置する。副画素10Gは画素電極53bを有し、副画素10Gの表示領域51bは画素電極53bの内側に位置する。副画素10Bは画素電極53cを有し、副画素10Bの表示領域51cは画素電極53cの内側に位置する。なお、図12Bでは、画素電極53a、画素電極53b及び画素電極53cが同じ面積である例を示しているが、それぞれ異なる面積としてもよい。また、表示領域51a、表示領域51b及び表示領域51c、それぞれ異なる面積としてもよい。
 図12Bに示す画素10は、配線121及び配線122の延伸方向に、同じ色の副画素の位置がずれている例を示している。言い換えると、画素10は、配線121及び配線122の延伸方向に、同じ色の副画素がジグザグに配列している。
 図13Aに示す画素10は、配線131の延伸方向に副画素の長さが長い短冊状の形状を有し、配線121及び配線122の延伸方向にストライプ状に配列している。また、配線121及び配線122の延伸方向に、副画素10R、副画素10G、及び副画素10Bが整列する例を示している。
 図13Bに示す画素10は、副画素がストライプ状に配列し、配線121及び配線122の延伸方向に、同じ色の副画素の位置がずれている例を示している。言い換えると、画素10は、配線121及び配線122の延伸方向に、同じ色の副画素がジグザグに配列している。
 なお、図12A、図12B、図13A及び図13Bでは、副画素が発する光の色の組み合わせが赤色(R)、緑色(G)、青色(B)の3つである例を示したが、色の組み合わせ及び色の数はこれに限定されない。副画素が発する光の色の組み合わせが赤色(R)、緑色(G)、青色(B)、白色(W)の4つの色、または赤色(R)、緑色(G)、青色(B)、黄色(Y)の4つの色としてもよい。副画素に適用される色要素は上記に限定されず、シアン(C)及びマゼンタ(M)などを組み合わせてもよい。
 なお、本明細書等において、青色の波長領域は、400nm以上490nm未満であり、青色の発光は、該波長領域に少なくとも一つの発光スペクトルピークを有する。また、緑色の波長領域は、490nm以上580nm未満であり、緑色の発光は、該波長領域に少なくとも一つの発光スペクトルピークを有する。また、赤色の波長領域は、580nm以上680nm以下であり、赤色の発光は、該波長領域に少なくとも一つの発光スペクトルピークを有する。
<表示装置の構成例1>
 以下では、本発明の一態様の表示装置について、詳細を説明する。
 表示装置100の構成例を示すブロック図を、図14に示す。表示装置100は、複数の画素10を有する画素部150と、駆動回路部130と、駆動回路部140aと、駆動回路部140bと、配線121と、配線122と、配線123と、配線131と、を有する。
 画素部150は、複数の画素10を有し、それぞれの画素10はマトリクス状に配置することができる。駆動回路部130は、配線121を介して画素10と電気的に接続される。駆動回路部130は、配線122を介して画素10と電気的に接続される。また、駆動回路部130は、配線123を介して画素10と電気的に接続される。駆動回路部130は、ゲート線駆動回路(ゲートドライバともいう)として機能する。複数の画素10はそれぞれ、駆動回路部130から配線121及び配線122を介して信号が与えられ、駆動が制御される。駆動回路部140a及び駆動回路部140bはそれぞれ、配線131を介して画素10と電気的に接続される。駆動回路部140a及び駆動回路部140bはそれぞれ、ソース線駆動回路(ソースドライバともいう)として機能する。複数の画素10はそれぞれ、駆動回路部140aまたは駆動回路部140bから配線131を介して信号が与えられ、駆動が制御される。図14では、奇数列の画素10が駆動回路部140aと電気的に接続され、偶数列の画素10が駆動回路部140bと電気的に接続される例を示している。
 本発明の一態様である表示装置は、ソースドライバとして機能する駆動回路部を複数有することにより、画素数の多い表示装置においても高速に動作させることができる。本発明の一態様である表示装置は、例えば、1000ppi以上、2000ppi以上、または5000ppi以上の高精細の表示装置に好適に用いることができる。
 なお、図14ではソースドライバとして機能する駆動回路部として、駆動回路部140a及び駆動回路部140bの2つを設ける例を示したが、本発明の一態様はこれに限られない。ソースドライバとして機能する駆動回路部を3つ以上設けてもよい。また、ソースドライバとして機能する駆動回路部を1つ設けてもよい。
 表示装置100の構成例を示す模式図を、図15に示す。表示装置100は、第1の層20と、第1の層20上の第2の層30と、の積層構造を有する。図15Aでは、第1の層20上に第2の層30を設けた構成を示しているが、本発明の一態様はこれに限られない。第2の層30上に第1の層20を設けてもよい。第1の層20と第2の層30の間に、層間絶縁層及び配線層の一以上を設けてもよい。また、第1の層20と第2の層30の間に設けられる層間絶縁層及び配線層は、それぞれ複数であってもよい。
 第1の層20は、駆動回路部140a及び駆動回路部140bを有する。第2の層30は、駆動回路部130及び画素部150を有する。
 図15Aに示す第1の層20及び第2の層30の構成例を、図15Bに示す。図15Bでは、第1の層20と第2の層30の位置関係を白抜き丸印、及び一点鎖線で示しており、一点鎖線で結ばれた第1の層20の白抜き丸印と第2の層30の白抜き丸印が重なっている。なお、他の図においても、同様の表記を行う。なお、図を明瞭に示すため、図15Bは配線121、配線122、配線123及び配線131以外の配線を省略している。
 表示装置100は、第1の層20に設けられた駆動回路部140a及び駆動回路部140bのそれぞれが、画素部150と重なる領域を有することが好ましい。画素部150と、駆動回路部140a及び駆動回路部140bが重なる領域を有するように積層して設けることで、画素部150が設けられていない領域である額縁の面積を小さくすることができる。よって、表示装置100の額縁を狭くすることができる。また、表示装置100の額縁を狭くすることにより、表示装置100を小型にすることができる。
 図15Bでは第1の層20と第2の層30の大きさが概略同じである例を示したが、本発明の概要はこれに限られない。第1の層20と第2の層30の大きさが異なってもよい。例えば、第1の層20が第2の層30より大きくてもよい。また、第1の層20が第2の層30より小さくてもよい。
 第1の層20を形成した後に、第1の層20上に第2の層30を形成して、表示装置100を作製することができる。第1の層20上に第2の層30を形成することで、第1の層20と第2の層30の位置合わせ精度を高めることができる。したがって、表示装置100の生産性を高めることができる。
 第1の層20及び第2の層30をそれぞれ形成した後で、第1の層20と第2の層30を貼り合わせて、表示装置100を作製してもよい。第1の層20と第2の層30を貼り合わせて表示装置100を作製する場合、第1の層20と第2の層30の大きさが異なってもよい。したがって、第1の層20及び第2の層30は、互いにその大きさに影響されずに形成できる。例えば、第1の層20の被形成基板に対し複数の第1の層20を形成し、そして、各々の第1の層20に分割した後に、第2の層30と貼り合わせて表示装置100を作製できる。第2の層30も同様に、第2の層30の被形成基板に対し複数の第2の層30を形成し、そして、各々の第2の層30に分割した後に、第1の層20と貼り合わせて表示装置100を作製してもよい。つまり、第1の層20、第2の層30の生産性を高めるとともに、表示装置100の生産性を高めることができる。
<表示装置の構成例2>
 図15A及び図15Bに示す表示装置100と異なる構成例を、図16A及び図16Bに示す。図16A及び図16Bに示す表示装置100は、第1の層20が駆動回路部130を有する点で、図15A及び図15Bに示す表示装置100と主に異なる。駆動回路部130を、駆動回路部140a及び駆動回路部140bと同じ第1の層20に設けることにより、駆動回路部130と、駆動回路部140a及び駆動回路部140bの作製工程を共通にすることができ、生産性を高めることができる。
 なお、図16Bでは、画素部150が駆動回路部130と重なる領域を有さない例を示したが、本発明の一態様はこれに限られない。画素部150が駆動回路部130と重なる領域を有してもよい。また、画素部150が、駆動回路部130、駆動回路部140a及び駆動回路部140bのいずれとも重なる領域を有してもよい。このような構成とすることで、表示装置100の額縁を狭くすることができる。また、表示装置100の額縁を狭くすることにより、表示装置100を小型にすることができる。
<表示装置の断面構成例1>
 表示装置100の構成例を示す断面図を、図17に示す。表示装置100は、基板701及び基板705を有し、基板701と基板705はシール材712により貼り合わされている。
 基板701として、単結晶シリコン基板等の単結晶半導体基板を用いることができる。なお、基板701として単結晶半導体基板以外の半導体基板を用いてもよい。
 基板701上にトランジスタ441、及びトランジスタ601が設けられる。トランジスタ441及びトランジスタ601は、第1の層20に設けられるトランジスタとすることができる。例えば、図15A及び図15Bに示した表示装置100において、トランジスタ441及びトランジスタ601は、駆動回路部140aまたは駆動回路部140bに設けられるトランジスタとすることができる。例えば、図16A及び図16Bに示した表示装置100において、トランジスタ441及びトランジスタ601は、駆動回路部130、駆動回路部140aまたは駆動回路部140bに設けられるトランジスタとすることができる。
 トランジスタ441は、ゲート電極としての機能を有する導電体443と、ゲート絶縁体としての機能を有する絶縁体445と、基板701の一部と、からなり、チャネル形成領域を含む半導体領域447、ソース領域又はドレイン領域の一方としての機能を有する低抵抗領域449a、及びソース領域又はドレイン領域の他方としての機能を有する低抵抗領域449bを有する。トランジスタ441は、pチャネル型又はnチャネル型のいずれでもよい。
 トランジスタ441は、素子分離層403によって他のトランジスタと電気的に分離される。図17では、素子分離層403によってトランジスタ441とトランジスタ601が電気的に分離される場合を示している。素子分離層403は、LOCOS(LOCal Oxidation of Silicon)法、又はSTI(Shallow Trench Isolation)法等を用いて形成することができる。
 ここで、図17に示すトランジスタ441は半導体領域447が凸形状を有する。また、半導体領域447の側面及び上面を、絶縁体445を介して、導電体443が覆うように設けられている。なお、図17では、導電体443が半導体領域447の側面を覆う様子は図示していない。また、導電体443には仕事関数を調整する材料を用いることができる。
 トランジスタ441のような半導体領域が凸形状を有するトランジスタは、半導体基板の凸部を利用していることから、フィン型トランジスタと呼ぶことができる。なお、凸部の上部に接して、凸部を形成するためのマスクとしての機能を有する絶縁体を有していてもよい。また、図17では基板701の一部を加工して凸部を形成する構成を示しているが、SOI基板を加工して凸形状を有する半導体を形成してもよい。
 なお、図17に示すトランジスタ441の構成は一例であり、その構成に限定されず、回路構成又は回路の動作方法等に応じて適切な構成とすればよい。例えば、トランジスタ441は、プレーナー型トランジスタであってもよい。
 トランジスタ601は、トランジスタ441と同様の構成とすることができる。
 基板701上には、素子分離層403、並びにトランジスタ441及びトランジスタ601の他、絶縁体405、絶縁体407、絶縁体409、及び絶縁体411が設けられる。絶縁体405中、絶縁体407中、絶縁体409中、及び絶縁体411中に導電体451が埋設されている。ここで、導電体451の上面の高さと、絶縁体411の上面の高さは同程度にできる。
 導電体451上、及び絶縁体411上に絶縁体413及び絶縁体415が設けられる。また、絶縁体413中、及び絶縁体415中に導電体457が埋設されている。ここで、導電体457の上面の高さと、絶縁体415の上面の高さは同程度にできる。
 導電体457上、及び絶縁体415上に絶縁体417及び絶縁体419が設けられる。また、絶縁体417中、及び絶縁体419中に導電体459が埋設されている。ここで、導電体459の上面の高さと、絶縁体419の上面の高さは同程度にできる。
 導電体459上、及び絶縁体419上に絶縁体421及び絶縁体214が設けられる。絶縁体421中、及び絶縁体214中に導電体453が埋設されている。ここで、導電体453の上面の高さと、絶縁体214の上面の高さは同程度にできる。
 導電体453上、及び絶縁体214上に絶縁体216が設けられる。絶縁体216中に導電体455が埋設されている。ここで、導電体455の上面の高さと、絶縁体216の上面の高さは同程度にできる。
 導電体455上、及び絶縁体216上に絶縁体222、絶縁体224、絶縁体254、絶縁体244、絶縁体280、絶縁体274、及び絶縁体281が設けられる。絶縁体222中、絶縁体224中、絶縁体254中、絶縁体244中、絶縁体280中、絶縁体274中、及び絶縁体281中に導電体305が埋設されている。ここで、導電体305の上面の高さと、絶縁体281の上面の高さは同程度にできる。
 導電体305上、及び絶縁体281上に絶縁体361が設けられる。絶縁体361中に導電体317、及び導電体337が埋設されている。ここで、導電体337の上面の高さと、絶縁体361の上面の高さは同程度にできる。
 導電体337上、及び絶縁体361上に絶縁体363が設けられる。絶縁体363中に導電体347、導電体353、導電体355、及び導電体357が埋設されている。ここで、導電体353、導電体355、及び導電体357の上面の高さと、絶縁体363の上面の高さは同程度にできる。
 導電体353上、導電体355上、導電体357上、及び絶縁体363上に接続電極760が設けられる。また、接続電極760と電気的に接続されるように異方性導電体780が設けられ、異方性導電体780と電気的に接続されるようにFPC(Flexible Printed Circuit)716が設けられる。FPC716によって、表示装置100の外部から、表示装置100に各種信号等が供給される。
 図17に示すように、トランジスタ441のソース領域又はドレイン領域の他方としての機能を有する低抵抗領域449bは、導電体451、導電体457、導電体459、導電体453、導電体455、導電体305、導電体317、導電体337、導電体347、導電体353、導電体355、導電体357、接続電極760、及び異方性導電体780を介して、FPC716と電気的に接続されている。ここで、図17では接続電極760と導電体347を電気的に接続する機能を有する導電体として、導電体353、導電体355、及び導電体357の3つを示しているが本発明の一態様はこれに限らない。接続電極760と導電体347を電気的に接続する機能を有する導電体を1つとしてもよいし、2つとしてもよいし、4つ以上としてもよい。接続電極760と導電体347を電気的に接続する機能を有する導電体を複数設けることで、接触抵抗を小さくすることができる。
 絶縁体214上には、トランジスタ750が設けられる。トランジスタ750は、第2の層30に設けられるトランジスタとすることができる。例えば、図15A、図15B、図16A及び図16Bに示した表示装置100において、トランジスタ750は、画素部150に設けられるトランジスタとすることができる。トランジスタ750は、OSトランジスタを好適に用いることができる。OSトランジスタは、オフ電流が極めて小さいという特徴を有する。よって、画像信号等の保持時間を長くすることができるため、リフレッシュ動作の頻度を少なくできる。よって、表示装置100の消費電力を低減することができる。
 絶縁体254中、絶縁体244中、絶縁体280中、絶縁体274中、及び絶縁体281中に導電体301a、及び導電体301bが埋設されている。導電体301aは、トランジスタ750のソース又はドレインの一方と電気的に接続され、導電体301bは、トランジスタ750のソース又はドレインの他方と電気的に接続されている。ここで、導電体301a、及び導電体301bの上面の高さと、絶縁体281の上面の高さは同程度にできる。
 絶縁体361中に導電体311、導電体313、導電体331、容量素子790、導電体333、及び導電体335が埋設されている。導電体311及び導電体313はトランジスタ750と電気的に接続され、配線としての機能を有する。導電体333及び導電体335は、容量素子790と電気的に接続されている。ここで、導電体331、導電体333、及び導電体335の上面の高さと絶縁体361の上面の高さは同程度にできる。
 絶縁体363中に導電体341、導電体343、及び導電体351が埋設されている。ここで、導電体351の上面の高さと、絶縁体363の上面の高さは同程度にできる。
 絶縁体405、絶縁体407、絶縁体409、絶縁体411、絶縁体413、絶縁体415、絶縁体417、絶縁体419、絶縁体421、絶縁体214、絶縁体280、絶縁体274、絶縁体281、絶縁体361、及び絶縁体363は、層間膜としての機能を有し、それぞれの下方の凹凸形状を被覆する平坦化膜としての機能を有してもよい。例えば、絶縁体363の上面は、平坦性を高めるために化学機械研磨(CMP:Chemical Mechanical Polishing)法等を用いた平坦化処理により平坦化されていてもよい。
 例えば、図15及び図16に示した表示装置100において、容量素子790は、画素部150に設けられる容量素子111または容量素子112とすることができる。
 図17に示すように、容量素子790は下部電極321と、上部電極325と、を有する。また、下部電極321と上部電極325との間には、絶縁体323が設けられる。すなわち、容量素子790は、一対の電極間に誘電体として機能する絶縁体323が挟持された積層型の構造である。なお、図17では絶縁体281上に容量素子790を設ける例を示しているが、絶縁体281と異なる絶縁体上に、容量素子790を設けてもよい。
 図17において、導電体301a、導電体301b、及び導電体305が同一の層に形成される例を示している。また、導電体311、導電体313、導電体317、及び下部電極321が同一の層に形成される例を示している。また、導電体331、導電体333、導電体335、及び導電体337が同一の層に形成される例を示している。また、導電体341、導電体343、及び導電体347が同一の層に形成される例を示している。さらに、導電体351、導電体353、導電体355、及び導電体357が同一の層に形成される例を示している。複数の導電体を同一の層に形成することにより、表示装置100の作製工程を簡略にすることができるため、表示装置100の製造コストを削減することができる。なお、これらはそれぞれ異なる層に形成されてもよく、異なる種類の材料を有してもよい。
 図17に示す表示装置100は、発光デバイス782を有する。発光デバイス782は、導電体772、EL層786、及び導電体788を有する。EL層786は、有機化合物、又は量子ドット等の無機化合物を有する。
 有機化合物に用いることのできる材料として、蛍光性材料又は燐光性材料等が挙げられる。また、量子ドットに用いることのできる材料として、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料等が挙げられる。
 導電体772は、導電体351、導電体341、導電体331、導電体313、及び導電体301bを介して、トランジスタ750のソース又はドレインの他方と電気的に接続されている。導電体772は絶縁体363上に形成され、画素電極としての機能を有する。
 導電体772には、可視光に対して透光性の材料、又は反射性の材料を用いることができる。透光性の材料として、例えば、インジウム、亜鉛、スズ等を含む酸化物材料を用いるとよい。反射性の材料として、例えば、アルミニウム、銀等を含む材料を用いるとよい。
 図17には図示しないが、表示装置100は、偏光部材、位相差部材、反射防止部材等の光学部材(光学基板)等を設けることができる。
 基板705側には、遮光層738と、これらに接する絶縁体734と、が設けられる。遮光層738は、隣接する領域から発せられる光を遮る機能を有する。又は、遮光層738は、外光がトランジスタ750等に達することを遮る機能を有する。
 図17に示す表示装置100には、絶縁体363上に絶縁体730が設けられる。ここで、絶縁体730は、導電体772の一部を覆う構成とすることができる。また、発光デバイス782は透光性の導電体788を有し、トップエミッション型の発光デバイスとすることができる。なお、発光デバイス782は、導電体772側に光を射出するボトムエミッション構造、又は導電体772及び導電体788の双方に光を射出するデュアルエミッション構造としてもよい。
 なお、遮光層738は絶縁体730と重なる領域を有するように設けられている。また、遮光層738は、絶縁体734で覆われている。また、発光デバイス782と絶縁体734の間は封止層732で充填されている。
 さらに、構造体778は、絶縁体730とEL層786との間に設けられる。また、構造体778は、絶縁体730と絶縁体734との間に設けられる。
 図17に示す表示装置100の変形例を、図18に示す。図18に示す表示装置100は、着色層736を設けている点で図17に示す表示装置100と異なる。なお、着色層736は、発光デバイス782と重なる領域を有するように設けられている。着色層736を設けることにより、発光デバイス782から取り出される光の色純度を高めることができる。これにより、表示装置100に高品位の画像を表示することができる。また、表示装置100の例えば全ての発光デバイス782を、白色光を発する発光デバイスとすることができるため、EL層786を塗り分けにより形成しなくてもよく、表示装置100を高精細なものとすることができる。
 発光デバイス782は、微小光共振器(マイクロキャビティ)構造を有することができる。これにより、着色層を設けなくても所定の色の光(例えば、RGB)を取り出すことができ、表示装置100はカラー表示を行うことができる。着色層を設けない構成とすることにより、着色層による光の吸収を抑制することができる。これにより、表示装置100は高輝度の画像を表示することができ、また表示装置100の消費電力を低減することができる。なお、EL層786を画素毎に島状又は画素列毎に縞状に形成する、すなわち塗り分けにより形成する場合においても、着色層を設けない構成とすることができる。
 図17及び図18では、トランジスタ441及びトランジスタ601を、基板701の内部にチャネル形成領域が形成されるように設け、トランジスタ441及びトランジスタ601の上に積層して、トランジスタ750を設ける構成を示したが、本発明の一態様はこれに限らない。図18の変形例を、図19に示す。図19に示す表示装置100は、トランジスタ441及びトランジスタ601の代わりに、OSトランジスタであるトランジスタ602及びトランジスタ603を有する点が、図18に示す表示装置100と主に異なる。また、トランジスタ750は、OSトランジスタを用いることができる。つまり、図19に示す表示装置100は、OSトランジスタが積層して設けられている。
 基板701上には絶縁体613及び絶縁体614が設けられ、絶縁体614上にはトランジスタ602及びトランジスタ603が設けられる。なお、基板701と、絶縁体613と、の間にトランジスタ等が設けられていてもよい。例えば、基板701と、絶縁体613と、の間に、図18で示したトランジスタ441及びトランジスタ601と同様の構成のトランジスタを設けてもよい。
 トランジスタ602及びトランジスタ603は、第1の層20に設けられるトランジスタとすることができる。例えば、図15A及び図15Bに示した表示装置100において、トランジスタ602及びトランジスタ603は、駆動回路部140aまたは駆動回路部140bに設けられるトランジスタとすることができる。例えば、図16A及び図16Bに示した表示装置100において、トランジスタ602及びトランジスタ603は、駆動回路部130、駆動回路部140aまたは駆動回路部140bに設けられるトランジスタとすることができる。
 トランジスタ602及びトランジスタ603は、トランジスタ750と同様の構成のトランジスタとすることができる。なお、トランジスタ602及びトランジスタ603を、トランジスタ750と異なる構成のOSトランジスタとしてもよい。
 絶縁体614上には、トランジスタ602及びトランジスタ603の他、絶縁体616、絶縁体622、絶縁体624、絶縁体654、絶縁体644、絶縁体680、絶縁体674、及び絶縁体681が設けられる。絶縁体654中、絶縁体644中、絶縁体680中、絶縁体674中、及び絶縁体681中に導電体461が埋設されている。ここで、導電体461の上面の高さと、絶縁体681の上面の高さは同程度にできる。
 導電体461上、及び絶縁体681上に絶縁体501が設けられる。絶縁体501中に導電体463が埋設されている。ここで、導電体463の上面の高さと、絶縁体501の上面の高さは同程度にできる。
 導電体463上、及び絶縁体501上に絶縁体503が設けられる。絶縁体503中に導電体465が埋設されている。ここで、導電体465の上面の高さと、絶縁体503の上面の高さは同程度にできる。
 導電体465上、及び絶縁体503上に絶縁体505が設けられる。また、絶縁体505中に導電体467が埋設されている。ここで、導電体467の上面の高さと、絶縁体505の上面の高さは同程度にできる。
 導電体467上、及び絶縁体505上に絶縁体507が設けられる。絶縁体507中に導電体469が埋設されている。ここで、導電体469の上面の高さと、絶縁体507の上面の高さは同程度にできる。
 導電体469上、及び絶縁体507上に絶縁体509が設けられる。また、絶縁体509中に導電体471が埋設されている。ここで、導電体471の上面の高さと、絶縁体509の上面の高さは同程度にできる。
 導電体471上、及び絶縁体509上に絶縁体421及び絶縁体214が設けられる。絶縁体421中、及び絶縁体214中に導電体453が埋設されている。ここで、導電体453の上面の高さと、絶縁体214の上面の高さは同程度にできる。
 図19に示すように、トランジスタ602のソース又はドレインの一方は、導電体461、導電体463、導電体465、導電体467、導電体469、導電体471、導電体453、導電体455、導電体305、導電体317、導電体337、導電体347、導電体353、導電体355、導電体357、接続電極760、及び異方性導電体780を介して、FPC716と電気的に接続されている。
 絶縁体613、絶縁体614、絶縁体680、絶縁体674、絶縁体681、絶縁体501、絶縁体503、絶縁体505、絶縁体507、及び絶縁体509は、層間膜としての機能を有し、それぞれの下方の凹凸形状を被覆する平坦化膜としての機能を有してもよい。
 表示装置100を図19に示す構成とすることにより、表示装置100を狭額縁化、小型化させつつ、表示装置100が有するトランジスタを全てOSトランジスタとすることができる。これにより、例えば第1の層20に設けられるトランジスタと、第2の層30に設けられるトランジスタと、を同一の装置を用いて作製することができる。よって、表示装置100の作製コストを削減することができ、表示装置100を低価格なものとすることができる。
<表示装置の断面構成例2>
 図20は、表示装置100の構成例を示す断面図である。トランジスタ750を有する層と、トランジスタ441及びトランジスタ601を有する層との間に、トランジスタ800を有する層を有する点で、図18に示す表示装置100と主に異なる。なお、図20において、トランジスタ601と、トランジスタ750と、トランジスタ800と、がそれぞれ互いに重なる領域を有している構成を図示しているが、本発明の一態様はこれに限定されない。例えば、トランジスタ601と、トランジスタ750と、が重なる領域を有し、トランジスタ800と、トランジスタ601及びトランジスタ750と、がそれぞれ互いに重なる領域を有していなくてもよい。または、トランジスタ601と、トランジスタ800と、が互いに重なる領域を有し、トランジスタ750と、トランジスタ601及びトランジスタ800と、がそれぞれ互いに重なる領域を有していなくてもよい。
 図15A等に示す第1の層20を第1の回路層と、第1の回路層上の第2の回路層との積層構造にすることができる。例えば、トランジスタ441及びトランジスタ601は、第1の回路層に設けられるトランジスタとすることができる。トランジスタ800は、第2の回路層に設けられるトランジスタとすることができる。トランジスタ750は第2の層30に設けられるトランジスタとすることができる。
 導電体459上、及び絶縁体419上に絶縁体821及び絶縁体814が設けられる。絶縁体821中、及び絶縁体814中に導電体853が埋設されている。ここで、導電体853の上面の高さと、絶縁体814の上面の高さは同程度にできる。
 導電体853上、及び絶縁体814上に絶縁体816が設けられる。絶縁体816中に導電体855が埋設されている。ここで、導電体855の上面の高さと、絶縁体816の上面の高さは同程度にできる。
 導電体855上、及び絶縁体816上に絶縁体822、絶縁体824、絶縁体854、絶縁体844、絶縁体880、絶縁体874、及び絶縁体881が設けられる。絶縁体822中、絶縁体824中、絶縁体854中、絶縁体844中、絶縁体880中、絶縁体874中、及び絶縁体881中に導電体805が埋設されている。ここで、導電体805の上面の高さと、絶縁体881の上面の高さは同程度にできる。
 導電体817上、及び絶縁体881上に絶縁体421及び絶縁体214が設けられる。
 図20に示すように、トランジスタ441のソース領域又はドレイン領域の他方としての機能を有する低抵抗領域449bは、導電体451、導電体457、導電体459、導電体853、導電体855、導電体805、導電体817、導電体453、導電体455、導電体305、導電体317、導電体337、導電体347、導電体353、導電体355、導電体357、接続電極760、及び異方性導電体780を介して、FPC716と電気的に接続されている。
 絶縁体814上には、トランジスタ800が設けられる。トランジスタ800は、第1の層20に設けられるトランジスタとすることができる。例えば、図15A及び図15Bに示した表示装置100において、トランジスタ800は、駆動回路部140aまたは駆動回路部140bに設けられるトランジスタとすることができる。例えば、図16A及び図16Bに示した表示装置100において、トランジスタ800は、駆動回路部130、駆動回路部140aまたは駆動回路部140bに設けられるトランジスタとすることができる。トランジスタ800は、OSトランジスタとすることが好ましい。
 絶縁体854中、絶縁体844中、絶縁体880中、絶縁体874中、及び絶縁体881中に導電体801a、及び導電体801bが埋設されている。導電体801aは、トランジスタ800のソース又はドレインの一方と電気的に接続され、導電体801bは、トランジスタ800のソース又はドレインの他方と電気的に接続されている。ここで、導電体801a、及び導電体801bの上面の高さと、絶縁体881の上面の高さは同程度にできる。
 トランジスタ750は、第2の層30に設けられるトランジスタとすることができる。例えば、図15A、図15B、図16A及び図16Bに示した表示装置100において、トランジスタ750は、画素部150に設けられるトランジスタとすることができる。トランジスタ750は、OSトランジスタとすることが好ましい。
 なお、トランジスタ441及びトランジスタ601等が設けられる層と、トランジスタ800等が設けられる層と、の間に、OSトランジスタ等を設けてもよい。また、トランジスタ800等が設けられる層と、トランジスタ750等が設けられる層と、の間に、OSトランジスタ等を設けてもよい。さらに、トランジスタ750等が設けられる層より上層に、OSトランジスタ等を設けてもよい。
 絶縁体405、絶縁体407、絶縁体409、絶縁体411、絶縁体413、絶縁体415、絶縁体417、絶縁体419、絶縁体821、絶縁体814、絶縁体880、絶縁体874、絶縁体881、絶縁体421、絶縁体214、絶縁体280、絶縁体274、絶縁体281、絶縁体361、及び絶縁体363は、層間膜としての機能を有し、それぞれの下方の凹凸形状を被覆する平坦化膜としての機能を有してもよい。
 図20において、導電体801a、導電体801b、及び導電体805が同一の層に形成される例を示している。また、導電体811、導電体813、及び導電体817が同一の層に形成される例を示している。
 図20では、トランジスタ441及びトランジスタ601を、基板701の内部にチャネル形成領域が形成されるように設け、トランジスタ441及びトランジスタ601の上に積層して、トランジスタ800及びトランジスタ750を設ける構成を示したが、本発明の一態様はこれに限らない。図20の変形例を、図21に示す。図21に示す表示装置100が、トランジスタ441及びトランジスタ601の代わりに、OSトランジスタであるトランジスタ602及びトランジスタ603を有する点が、図20に示す表示装置100と異なる。つまり、図21に示す表示装置100は、OSトランジスタが3層積層して設けられている。
 トランジスタ602及びトランジスタ603等が設けられる層と、トランジスタ800等が設けられる層と、の間に、OSトランジスタ等を設けてもよい。また、トランジスタ800等が設けられる層と、トランジスタ750又はトランジスタ750等が設けられる層と、の間に、OSトランジスタ等を設けてもよい。さらに、トランジスタ750等が設けられる層より上層に、OSトランジスタ等を設けてもよい。
 例えば、トランジスタ602及びトランジスタ603は、第1の層20の第1の回路層に設けられるトランジスタとすることができる。トランジスタ800は、第1の層20の第2の回路層に設けられるトランジスタとすることができる。トランジスタ750は、第2の層30に設けられるトランジスタとすることができる。
 導電体471上、及び絶縁体509上に絶縁体821及び絶縁体814が設けられる。絶縁体821中、及び絶縁体814中に導電体853が埋設されている。ここで、導電体853の上面の高さと、絶縁体814の上面の高さは同程度にできる。
 図21に示すように、トランジスタ602のソース又はドレインの一方は、導電体461、導電体463、導電体465、導電体467、導電体469、導電体471、導電体853、導電体855、導電体805、導電体817、導電体453、導電体455、導電体305、導電体317、導電体337、導電体347、導電体353、導電体355、導電体357、接続電極760、及び異方性導電体780を介して、FPC716と電気的に接続されている。
 表示装置100を図21に示す構成とすることにより、狭額縁かつ小型の表示装置100とすることができる。また、表示装置100が有するトランジスタを全てOSトランジスタとすることにより、異なる種類のトランジスタを作製する必要がなくなるため、表示装置100の作製コストを削減することができ、表示装置100を低価格なものとすることができる。
<発光デバイスの構成例>
 発光デバイス572として、例えば、エレクトロルミネッセンスを利用するEL素子を適用することができる。EL素子は、一対の電極の間に発光性の化合物を含む層(以下、EL層ともいう。)を有する。一対の電極間に、EL素子のしきい値電圧よりも大きい電位差を生じさせると、EL層に陽極側から正孔が注入され、陰極側から電子が注入される。注入された電子と正孔はEL層において再結合し、EL層に含まれる発光物質が発光する。
 EL素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
 有機EL素子は、電圧を印加することにより、一方の電極から電子、他方の電極から正孔がそれぞれEL層に注入される。そして、それらキャリア(電子及び正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光デバイスは、電流励起型の発光デバイスと呼ばれる。
 本明細書等において、発光デバイス、液晶素子等の表示素子に供給される電圧とは、当該表示素子の一方の電極に印加される電位と、当該表示素子の他方の電極に印加される電位と、の差を示す。
 なお、EL層は、発光性の化合物以外に、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、又はバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を有していてもよい。
 EL層は、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
 無機EL素子は、そのデバイス構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利用する局在型発光である。
 発光デバイスは発光を取り出すために少なくとも一対の電極の一方が透明であればよい。そして、基板上にトランジスタ及び発光デバイスを形成し、当該基板とは逆側の面から発光を取り出す上面射出(トップエミッション)構造、基板側の面から発光を取り出す下面射出(ボトムエミッション)構造、及び両面から発光を取り出す両面射出(デュアルエミッション)構造の発光デバイスがあり、どの射出構造の発光デバイスも適用することができる。
 図22A乃至図22Eは、発光デバイス572の構成例を示す図である。図22Aには、導電体772と導電体788の間にEL層786が挟まれた構造(シングル構造)を示す。前述のとおり、EL層786には発光材料が含まれ、例えば、有機化合物である発光材料が含まれる。
 図22Bは、EL層786の積層構造を示す図である。ここで、図22Bに示す構造の発光デバイス572では、導電体772は陽極としての機能を有し、導電体788は陰極としての機能を有する。
 EL層786は、導電体772の上に、正孔注入層721、正孔輸送層722、発光層723、電子輸送層724、電子注入層725が順次積層された構造を有する。なお、導電体772が陰極としての機能を有し、導電体788が陽極としての機能を有する場合は、積層順は逆になる。
 発光層723は、発光材料や複数の材料を適宜組み合わせて有しており、所望の発光色を呈する蛍光発光や燐光発光が得られる構成とすることができる。また、発光層723を発光色の異なる積層構造としてもよい。なお、この場合、積層された各発光層に用いる発光物質やその他の物質は、それぞれ異なる材料を用いればよい。
 発光デバイス572において、例えば、図22Bに示す導電体772を反射電極とし、導電体788を半透過・半反射電極とし、微小光共振器(マイクロキャビティ)構造とすることにより、EL層786に含まれる発光層723から得られる発光を両電極間で共振させ、導電体788を透過して射出される発光を強めることができる。
 なお、発光デバイス572の導電体772が、反射性を有する導電性材料と透光性を有する導電性材料(透明導電膜)との積層構造からなる反射電極である場合、透明導電膜の膜厚を制御することにより光学調整を行うことができる。具体的には、発光層723から得られる光の波長λに対して、導電体772と、導電体788との電極間距離がmλ/2(ただし、mは自然数)近傍となるように調整するのが好ましい。
 発光層723から得られる所望の光(波長:λ)を増幅させるために、導電体772から発光層の所望の光が得られる領域(発光領域)までの光学距離と、導電体788から発光層723の所望の光が得られる領域(発光領域)までの光学距離と、をそれぞれ(2m’+1)λ/4(ただし、m’は自然数)近傍となるように調節するのが好ましい。なお、ここでいう発光領域とは、発光層723における正孔(ホール)と電子との再結合領域を示す。
 このような光学調整を行うことにより、発光層723から得られる特定の単色光のスペクトルを狭線化させ、色純度のよい発光を得ることができる。
 但し、上記の場合、導電体772と導電体788との光学距離は、厳密には導電体772における反射領域から導電体788における反射領域までの総厚ということができる。しかし、導電体772や導電体788における反射領域を厳密に決定することは困難であるため、導電体772と導電体788の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができるものとする。また、導電体772と、所望の光が得られる発光層との光学距離は、厳密には導電体772における反射領域と、所望の光が得られる発光層における発光領域との光学距離であるということができる。しかし、導電体772における反射領域や、所望の光が得られる発光層における発光領域を厳密に決定することは困難であるため、導電体772の任意の位置を反射領域、所望の光が得られる発光層の任意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。
 図22Bに示す発光デバイス572は、マイクロキャビティ構造を有するため、同じEL層を有していても異なる波長の光(単色光)を取り出すことができる。従って、異なる発光色を得るための塗り分け(例えば、RGB)が不要となる。従って、高精細化を実現することが容易である。また、着色層との組み合わせも可能である。さらに、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。
 なお、図22Bに示す発光デバイス572は、マイクロキャビティ構造を有していなくてもよい。この場合、発光層723が白色光を発する構造とし、着色層を設けることにより、所定の色の光(例えば、RGB)を取り出すことができる。また、EL層786を形成する際、異なる発光色を得るための塗り分けを行えば、着色層を設けなくても所定の色の光を取り出すことができる。
 導電体772と導電体788の少なくとも一方は、透光性を有する電極(透明電極、半透過・半反射電極等)とすることができる。透光性を有する電極が透明電極の場合、透明電極の可視光の透過率は、40%以上とする。また、半透過・半反射電極の場合、半透過・半反射電極の可視光の反射率は、20%以上80%以下、好ましくは40%以上70%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。
 導電体772又は導電体788が、反射性を有する電極(反射電極)である場合、反射性を有する電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、この電極の抵抗率は、1×10−2Ωcm以下が好ましい。
 発光デバイス572の構成は、図22Cに示す構成としてもよい。図22Cには、導電体772と導電体788との間に2層のEL層(EL層786a及びEL層786b)が設けられ、EL層786aとEL層786bとの間に電荷発生層792を有する積層構造(タンデム構造)の発光デバイス572を示す。発光デバイス572をタンデム構造とすることで、発光デバイス572の電流効率及び外部量子効率を高めることができる。よって、表示装置100に高輝度の画像を表示することができる。また、表示装置100の消費電力を低減することができる。ここで、EL層786a及びEL層786bは、図22Bに示すEL層786と同様の構成とすることができる。
 電荷発生層792は、導電体772と導電体788との間に電圧を供給したときに、EL層786a及びEL層786bのうち、一方に電子を注入し、他方に正孔(ホール)を注入する機能を有する。したがって、導電体772の電位が導電体788の電位より高くなるように電圧を供給すると、電荷発生層792からEL層786aに電子が注入され、電荷発生層792からEL層786bに正孔が注入されることになる。
 なお、電荷発生層792は、光取り出し効率の点から、可視光を透過する(具体的には、電荷発生層792の可視光の透過率が、40%以上である)ことが好ましい。また、電荷発生層792の導電率は、導電体772の導電率、又は導電体788の導電率より低くてもよい。
 発光デバイス572の構成は、図22Dに示す構成としてもよい。図22Dには、導電体772と導電体788との間に3層のEL層(EL層786a、EL層786b、及びEL層786c)が設けられ、EL層786aとEL層786bとの間、及びEL層786bとEL層786cとの間に電荷発生層792を有するタンデム構造の発光デバイス572を示す。ここで、EL層786a、EL層786b、及びEL層786cは、図22Bに示すEL層786と同様の構成とすることができる。発光デバイス572を図22Dに示す構成とすることにより、発光デバイス572の電流効率及び外部量子効率をさらに高めることができる。よって、表示装置100にさらに高輝度の画像を表示することができる。また、表示装置100の消費電力をさらに低減することができる。
 発光デバイス572の構成は、図22Eに示す構成としてもよい。図22Eには、導電体772と導電体788との間にn層のEL層(EL層786(1)乃至EL層786(n))が設けられ、それぞれのEL層786の間に電荷発生層792を有するタンデム構造の発光デバイス572を示す。ここで、EL層786(1)乃至EL層786(n)は、図22Bに示すEL層786と同様の構成とすることができる。なお、図22Eには、EL層786のうち、EL層786(1)、EL層786(m)、EL層786(m+1)、及びEL層786(n)を示している。ここで、mは2以上n未満の整数とし、nはm以上の整数とする。nの値が大きいほど、発光デバイス572の電流効率及び外部量子効率を高めることができる。よって、表示装置100に高輝度の画像を表示することができる。また、表示装置100の消費電力を低減することができる。
 発光デバイス572に用いることができる構成材料について説明する。
〔導電体772及び導電体788〕
 導電体772及び導電体788には、陽極及び陰極の機能が満たせるのであれば、以下に示す材料を適宜組み合わせて用いることができる。例えば、金属、合金、電気伝導性化合物、及びこれらの混合物等を適宜用いることができる。具体的には、In−Sn酸化物(ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、In−Zn酸化物、In−W−Zn酸化物が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)等の金属、及びこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族又は第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属及びこれらを適宜組み合わせて含む合金、その他グラフェン等を用いることができる。
〔正孔注入層721及び正孔輸送層722〕
 正孔注入層721は、陽極である導電体772又は電荷発生層792からEL層786に正孔を注入する層であり、正孔注入性の高い材料を含む層である。ここで、EL層786は、EL層786a、EL層786b、EL層786c、及びEL層786(1)乃至EL層786(n)を含むものとする。
 正孔注入性の高い材料として、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等の遷移金属酸化物が挙げられる。この他、フタロシアニン系の化合物、芳香族アミン化合物、又は高分子等を用いることができる。
 正孔注入性の高い材料として、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料を用いることもできる。この場合、アクセプター性材料により正孔輸送性材料から電子が引き抜かれて正孔注入層721で正孔が発生し、正孔輸送層722を介して発光層723に正孔が注入される。なお、正孔注入層721は、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料からなる単層で形成してもよいが、正孔輸送性材料とアクセプター性材料(電子受容性材料)とをそれぞれ別の層で積層して形成してもよい。
 正孔輸送層722は、正孔注入層721によって、導電体772から注入された正孔を発光層723に輸送する層である。なお、正孔輸送層722は、正孔輸送性材料を含む層である。正孔輸送層722に用いる正孔輸送性材料は、特に正孔注入層721のHOMO準位と同じ、あるいは近いHOMO準位を有するものを用いることが好ましい。
 正孔注入層721に用いるアクセプター性材料として、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。その他、キノジメタン誘導体やクロラニル誘導体、ヘキサアザトリフェニレン誘導体等の有機アクセプターを用いることができる。
 正孔注入層721及び正孔輸送層722に用いる正孔輸送性材料は、10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いることができる。
 正孔輸送性材料は、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体やインドール誘導体)や芳香族アミン化合物が好ましい。
 但し、正孔輸送性材料は、上記に限られることなく公知の様々な材料を1種又は複数種組み合わせて正孔輸送性材料として正孔注入層721及び正孔輸送層722に用いることができる。なお、正孔輸送層722は、各々複数の層から形成されていてもよい。すなわち、例えば第1の正孔輸送層と第2の正孔輸送層とが積層されていてもよい。
〔発光層723〕
 発光層723は、発光物質を含む層である。なお、発光物質として、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色等の発光色を呈する物質を適宜用いる。ここで、図22C、図22D及び図22Eに示すように、発光デバイス572が複数のEL層を有する場合、それぞれのEL層に設けられる発光層723に異なる発光物質を用いることにより、異なる発光色を呈する構成(例えば、補色の関係にある発光色を組み合わせて得られる白色発光)とすることができる。例えば、発光デバイス572が図22Cに示す構成である場合、EL層786aに設けられる発光層723に用いられる発光物質と、EL層786bに設けられる発光層723に用いられる発光物質と、を異ならせることにより、EL層786aが呈する発光色と、EL層786bが呈する発光色と、を異ならせることができる。なお、一つの発光層が異なる発光物質を有する積層構造であってもよい。
 発光層723は、発光物質(ゲスト材料)に加えて、1種又は複数種の有機化合物(ホスト材料、アシスト材料)を有していてもよい。また、1種又は複数種の有機化合物として、正孔輸送性材料や電子輸送性材料の一方又は両方を用いることができる。
 発光層723に用いることができる発光物質は、特に限定は無く、一重項励起エネルギーを可視光領域の発光に変える発光物質、又は三重項励起エネルギーを可視光領域の発光に変える発光物質を用いることができる。なお、上記発光物質は、例えば、以下のようなものが挙げられる。
 一重項励起エネルギーを発光に変える発光物質として、蛍光を発する物質(蛍光材料)が挙げられ、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体等が挙げられる。特に、ピレン誘導体は発光量子収率が高いため、好ましい。
 三重項励起エネルギーを発光に変える発光物質として、例えば、燐光を発する物質(燐光材料)や熱活性化遅延蛍光を示す熱活性化遅延蛍光(TADF:Thermally activated delayed fluorescence)材料が挙げられる。
 燐光材料として、有機金属錯体、金属錯体(白金錯体)、希土類金属錯体等が挙げられる。これらは、物質ごとに異なる発光色(発光ピーク)を示すため、必要に応じて適宜選択して用いる。
 なお、青色の発光物質は、フォトルミネッセンスのピーク波長が430nm以上470nm以下、より好ましくは430nm以上460nm以下の物質を用いればよい。また、緑色の発光物質は、フォトルミネッセンスのピーク波長が500nm以上540nm以下、より好ましくは500nm以上530nm以下の物質を用いればよい。赤色の発光物質は、フォトルミネッセンスのピーク波長が610nm以上680nm以下、より好ましくは620nm以上680nm以下の物質を用いればよい。なお、フォトルミネッセンス測定は溶液、薄膜のいずれでもよい。
 このような化合物と、マイクロキャビティ効果を併用することで、より容易に上述した色度を達成することができる。この時、マイクロキャビティ効果を得るのに必要な半透過・半反射電極(金属薄膜部分)の膜厚は、20nm以上40nm以下が好ましい。より好ましくは25nmより大きく、40nm以下である。なお、40nmを超えると効率が低下してしまう可能性がある。
 発光層723に用いる有機化合物(ホスト材料、アシスト材料)は、発光物質(ゲスト材料)のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。なお、上述した正孔輸送性材料及び後述する電子輸送性材料は、それぞれ、ホスト材料又はアシスト材料として用いることもできる。
 発光物質が蛍光材料である場合、ホスト材料は、一重項励起状態のエネルギー準位が大きく、三重項励起状態のエネルギー準位が小さい有機化合物を用いるのが好ましい。例えば、アントラセン誘導体やテトラセン誘導体を用いるのが好ましい。
 発光物質が燐光材料である場合、ホスト材料として、発光物質の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有機化合物を選択すればよい。なお、この場合には、亜鉛やアルミニウム系金属錯体の他、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ピリミジン誘導体、トリアジン誘導体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体等の他、芳香族アミンやカルバゾール誘導体等を用いることができる。
 発光層723に複数の有機化合物を用いる場合、励起錯体を形成する化合物を発光物質と混合して用いることが好ましい。この場合、様々な有機化合物を適宜組み合わせて用いることができるが、効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。なお、正孔輸送性材料及び電子輸送性材料の具体例については、本実施の形態で示す材料を用いることができる。
 TADF材料とは、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈する材料のことである。また、熱活性化遅延蛍光が効率良く得られる条件として、三重項励起準位と一重項励起準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、10−6秒以上、好ましくは10−3秒以上である。
 TADF材料として、例えば、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。
 その他にも、π電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物を用いることができる。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好ましい。
 なお、TADF材料を用いる場合、他の有機化合物と組み合わせて用いることもできる。
〔電子輸送層724〕
 電子輸送層724は、電子注入層725によって、導電体788から注入された電子を発光層723に輸送する層である。なお、電子輸送層724は、電子輸送性材料を含む層である。電子輸送層724に用いる電子輸送性材料は、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものを用いることができる。
 電子輸送性材料として、キノリン配位子、ベンゾキノリン配位子、オキサゾール配位子、あるいはチアゾール配位子を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ピリジン誘導体、ビピリジン誘導体等が挙げられる。その他、含窒素複素芳香族化合物のようなπ電子不足型複素芳香族化合物を用いることもできる。
 電子輸送層724は、単層のものだけでなく、上記物質からなる層が2層以上積層した構造であってもよい。
〔電子注入層725〕
 電子注入層725は、電子注入性の高い物質を含む層である。電子注入層725には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiO)等のようなアルカリ金属、アルカリ土類金属、又はそれらの化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。また、電子注入層725にエレクトライドを用いてもよい。エレクトライドとして、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層724を構成する物質を用いることもできる。
 電子注入層725に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性及び電子輸送性に優れている。この場合、有機化合物として、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層724に用いる電子輸送性材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体として、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
〔電荷発生層792〕
 電荷発生層792は、導電体772と導電体788との間に電圧を印加したときに、当該電荷発生層792に接する2つのEL層786のうち、導電体772と近い側のEL層786に電子を注入し、導電体788と違い側のEL層786に正孔を注入する機能を有する。例えば、図22Cに示す構成の発光デバイス572において、電荷発生層792は、EL層786aに電子を注入し、EL層786bに正孔を注入する機能を有する。なお、電荷発生層792は、正孔輸送性材料に電子受容体(アクセプター)が添加された構成であっても、電子輸送性材料に電子供与体(ドナー)が添加された構成であってもよい。また、これらの両方の構成が積層されていてもよい。なお、上述した材料を用いて電荷発生層792を形成することにより、EL層が積層された場合における表示装置100の駆動電圧の上昇を抑制することができる。
 電荷発生層792において、正孔輸送性材料に電子受容体が添加された構成とする場合、電子受容体として、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル等を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウム等が挙げられる。
 電荷発生層792において、電子輸送性材料に電子供与体が添加された構成とする場合、電子供与体として、アルカリ金属又はアルカリ土類金属又は希土類金属又は元素周期表における第2、第13族に属する金属及びその酸化物、炭酸塩を用いることができる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、炭酸セシウム等を用いることが好ましい。また、テトラチアナフタセンのような有機化合物を電子供与体として用いてもよい。
 なお、発光デバイス572の作製には、蒸着法等の真空プロセスや、スピンコート法やインクジェット法等の溶液プロセスを用いることができる。蒸着法を用いる場合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法等の物理蒸着法(PVD法)や、化学蒸着法(CVD法)等を用いることができる。特に発光デバイスのEL層に含まれる機能層(正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層)及び電荷発生層については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコンタクト法等)等の方法により形成することができる。
 なお、本実施の形態で示す発光デバイスのEL層を構成する各機能層(正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層)及び電荷発生層は、上述した材料に限られることはなく、それ以外の材料であっても各層の機能を満たせるものであれば組み合わせて用いることができる。一例として、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分子と高分子の中間領域の化合物:分子量400~4000)、無機化合物(量子ドット材料等)等を用いることができる。なお、量子ドット材料として、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料等を用いることができる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、又は図面等と適宜組み合わせて実施することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
 本実施の形態では、本発明の一態様である表示装置に用いることができるトランジスタについて説明する。
<トランジスタの構成例1>
 図23A、図23B、及び図23Cは、本発明の一態様である表示装置に用いることができるトランジスタ200A、及びトランジスタ200A周辺の上面図及び断面図である。本発明の一態様の表示装置に、トランジスタ200Aを適用することができる。
 図23Aは、トランジスタ200Aの上面図である。また、図23B、及び図23Cは、トランジスタ200Aの断面図である。ここで、図23Bは、図23AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200Aのチャネル長方向の断面図でもある。また、図23Cは、図23AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200Aのチャネル幅方向の断面図でもある。なお、図23Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
 図23Bに示すように、トランジスタ200Aは、基板(図示しない。)の上に配置された金属酸化物230aと、金属酸化物230aの上に配置された金属酸化物230bと、金属酸化物230bの上に、互いに離隔して配置された導電体242a、及び導電体242bと、導電体242a及び導電体242b上に配置され、導電体242aと導電体242bの間に開口が形成された絶縁体280と、開口の中に配置された導電体260と、金属酸化物230b、導電体242a、導電体242b、及び絶縁体280と、導電体260と、の間に配置された絶縁体250と、金属酸化物230b、導電体242a、導電体242b、及び絶縁体280と、絶縁体250と、の間に配置された金属酸化物230cと、を有する。ここで、図23B及び図23Cに示すように、導電体260の上面は、絶縁体250、絶縁体254、金属酸化物230c、及び絶縁体280の上面と略一致することが好ましい。なお、以下において、金属酸化物230a、金属酸化物230b、及び金属酸化物230cをまとめて金属酸化物230という場合がある。また、導電体242a及び導電体242bをまとめて導電体242という場合がある。
 図23に示すトランジスタ200Aでは、導電体242a及び導電体242bの導電体260側の側面が、概略垂直な形状を有している。なお、図23に示すトランジスタ200Aは、これに限られるものではなく、導電体242a及び導電体242bの側面と底面がなす角が、10°以上80°以下、好ましくは、30°以上60°以下としてもよい。また、導電体242a及び導電体242bの対向する側面が、複数の面を有していてもよい。
 図23に示すように、絶縁体224、金属酸化物230a、金属酸化物230b、導電体242a、導電体242b、及び金属酸化物230cと、絶縁体280と、の間に絶縁体254が配置されることが好ましい。ここで、絶縁体254は、図23B及び図23Cに示すように、金属酸化物230cの側面、導電体242aの上面と側面、導電体242bの上面と側面、金属酸化物230a及び金属酸化物230bの側面、並びに絶縁体224の上面に接することが好ましい。
 なお、トランジスタ200Aでは、チャネルが形成される領域(以下、チャネル形成領域ともいう。)と、その近傍において、金属酸化物230a、金属酸化物230b、及び金属酸化物230cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、金属酸化物230bと金属酸化物230cの2層構造、又は4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ200Aでは、導電体260を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体260が、単層構造であってもよいし、3層以上の積層構造であってもよい。また、金属酸化物230a、金属酸化物230b、及び金属酸化物230cのそれぞれが2層以上の積層構造を有していてもよい。
 例えば、金属酸化物230cが第1の金属酸化物と、第1の金属酸化物上の第2の金属酸化物からなる積層構造を有する場合、第1の金属酸化物は、金属酸化物230bと同様の組成を有し、第2の金属酸化物は、金属酸化物230aと同様の組成を有することが好ましい。
 ここで、導電体260は、トランジスタのゲート電極として機能し、導電体242a及び導電体242bは、それぞれソース電極又はドレイン電極として機能する。上記のように、導電体260は、絶縁体280の開口、及び導電体242aと導電体242bに挟まれた領域に埋め込まれるように形成される。ここで、導電体260、導電体242a及び導電体242bの配置は、絶縁体280の開口に対して、自己整合的に選択される。つまり、トランジスタ200Aにおいて、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体260を位置合わせのマージンを設けることなく形成することができるため、トランジスタ200Aの占有面積の縮小を図ることができる。これにより、表示装置を高精細にすることができる。また、表示装置を狭額縁にすることができる。
 図23に示すように、導電体260は、絶縁体250の内側に設けられた導電体260aと、導電体260aの内側に埋め込まれるように設けられた導電体260bと、を有することが好ましい。
 トランジスタ200Aは、基板(図示しない。)の上に配置された絶縁体214と、絶縁体214の上に配置された絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216と導電体205の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、を有することが好ましい。絶縁体224の上に金属酸化物230aが配置されることが好ましい。
 トランジスタ200Aの上に、層間膜として機能する絶縁体274、及び絶縁体281が配置されることが好ましい。ここで、絶縁体274は、導電体260、絶縁体250、絶縁体254、金属酸化物230c、及び絶縁体280の上面に接して配置されることが好ましい。
 絶縁体222、絶縁体254、及び絶縁体274は、水素(例えば、水素原子、水素分子等)の少なくとも一の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222、絶縁体254、及び絶縁体274は、絶縁体224、絶縁体250、及び絶縁体280より水素透過性が低いことが好ましい。また、絶縁体222、及び絶縁体254は、酸素(例えば、酸素原子、酸素分子等)の少なくとも一の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222、及び絶縁体254は、絶縁体224、絶縁体250、及び絶縁体280より酸素透過性が低いことが好ましい。
 ここで、絶縁体224、金属酸化物230、及び絶縁体250は、絶縁体280及び絶縁体281と、絶縁体254、及び絶縁体274によって離隔されている。ゆえに、絶縁体224、金属酸化物230、及び絶縁体250に、絶縁体280及び絶縁体281に含まれる水素等の不純物や、過剰な酸素が、絶縁体224、金属酸化物230a、金属酸化物230b、及び絶縁体250に混入することを抑制できる。
 トランジスタ200Aと電気的に接続し、プラグとして機能する導電体240(導電体240a、及び導電体240b)が設けられることが好ましい。なお、プラグとして機能する導電体240の側面に接して絶縁体241(絶縁体241a、及び絶縁体241b)が設けられる。つまり、絶縁体254、絶縁体280、絶縁体274、及び絶縁体281の開口の内壁に接して絶縁体241が設けられる。また、絶縁体241の側面に接して導電体240の第1の導電体が設けられ、さらに内側に導電体240の第2の導電体が設けられる構成にしてもよい。ここで、導電体240の上面の高さと、絶縁体281の上面の高さは同程度にできる。なお、トランジスタ200Aでは、導電体240の第1の導電体及び導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、又は3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
 トランジスタ200Aは、チャネル形成領域を含む金属酸化物230(金属酸化物230a、金属酸化物230b、及び金属酸化物230c)に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。例えば、金属酸化物230のチャネル形成領域となる金属酸化物として、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。
 上記金属酸化物として、少なくともインジウム(In)又は亜鉛(Zn)を含むことが好ましい。特に、インジウム(In)及び亜鉛(Zn)を含むことが好ましい。また、これらに加えて、元素Mが含まれていることが好ましい。元素Mとして、アルミニウム(Al)、ガリウム(Ga)、イットリウム(Y)、スズ(Sn)、ホウ素(B)、チタン(Ti)、鉄(Fe)、ニッケル(Ni)、ゲルマニウム(Ge)、ジルコニウム(Zr)、モリブデン(Mo)、ランタン(La)、セリウム(Ce)、ネオジム(Nd)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、マグネシウム(Mg)又はコバルト(Co)の一以上を用いることができる。特に、元素Mは、アルミニウム(Al)、ガリウム(Ga)、イットリウム(Y)、又はスズ(Sn)の一以上とすることが好ましい。また、元素Mは、Ga及びSnのいずれか一方または双方を有することがさらに好ましい。
 図23Bに示すように、金属酸化物230bは、導電体242と重ならない領域の膜厚が、導電体242と重なる領域の膜厚より薄くなる場合がある。これは、導電体242a及び導電体242bを形成する際に、金属酸化物230bの上面の一部を除去することにより形成される。金属酸化物230bの上面には、導電体242となる導電膜を成膜した際に、当該導電膜との界面近傍に抵抗の低い領域が形成される場合がある。このように、金属酸化物230bの上面の導電体242aと導電体242bの間に位置する、抵抗の低い領域を除去することにより、当該領域にチャネルが形成されることを防ぐことができる。
 本発明の一態様により、サイズが小さいトランジスタを有し、精細度が高い表示装置を提供することができる。又は、オン電流が大きいトランジスタを有し、輝度が高い表示装置を提供することができる。又は、動作が速いトランジスタを有し、動作が速い表示装置を提供することができる。又は、電気特性が安定したトランジスタを有し、信頼性が高い表示装置を提供することができる。又は、オフ電流が小さいトランジスタを有し、消費電力が低い表示装置を提供することができる。
 本発明の一態様である表示装置に用いることができるトランジスタ200Aの詳細な構成について説明する。
 導電体205は、金属酸化物230、及び導電体260と、重なる領域を有するように配置する。また、導電体205は、絶縁体216に埋め込まれて設けることが好ましい。
 導電体205は、導電体205a、導電体205b、および導電体205cを有する。導電体205aは、絶縁体216に設けられた開口の底面および側壁に接して設けられる。導電体205bは、導電体205aに形成された凹部に埋め込まれるように設けられる。ここで、導電体205bの上面は、導電体205aの上面および絶縁体216の上面より低くなる。導電体205cは、導電体205bの上面、および導電体205aの側面に接して設けられる。ここで、導電体205cの上面の高さは、導電体205aの上面の高さおよび絶縁体216の上面の高さと略一致する。つまり、導電体205bは、導電体205aおよび導電体205cに包み込まれる構成になる。
 導電体205aおよび導電体205cは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(N2O、NO、NO2など)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体205aおよび導電体205cに、水素の拡散を低減する機能を有する導電性材料を用いることにより、導電体205bに含まれる水素などの不純物が、絶縁体224等を介して、金属酸化物230に拡散することを抑制できる。また、導電体205aおよび導電体205cに、酸素の拡散を抑制する機能を有する導電性材料を用いることにより、導電体205bが酸化されて導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料として、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。したがって、導電体205aは、上記導電性材料を単層または積層とすればよい。例えば、導電体205aは、窒化チタンを用いればよい。
 導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。例えば、導電体205bは、タングステンを用いればよい。
 ここで、導電体260は、第1のゲート(トップゲートともいう。)電極として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう。)電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と連動させず、独立して変化させることで、トランジスタ200AのVthを制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200AのVthを0Vより大きくし、オフ電流を小さくすることが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 導電体205は、金属酸化物230におけるチャネル形成領域よりも、大きく設けるとよい。特に、図23Cに示すように、導電体205は、金属酸化物230のチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、金属酸化物230のチャネル幅方向における側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。
 上記構成を有することで、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、金属酸化物230のチャネル形成領域を電気的に取り囲むことができる。
 図23Cに示すように、導電体205は延伸させて、配線としても機能させている。ただし、これに限られることなく、導電体205の下に、配線として機能する導電体を設ける構成にしてもよい。
 絶縁体214は、水又は水素等の不純物が、基板側からトランジスタ200Aに混入することを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体214は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NO等)、銅原子等の不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)絶縁性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子等)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料を用いることが好ましい。
 例えば、絶縁体214として、酸化アルミニウム又は窒化シリコン等を用いることが好ましい。これにより、水又は水素等の不純物が絶縁体214よりも基板側からトランジスタ200A側に拡散することを抑制できる。又は、絶縁体224等に含まれる酸素が、絶縁体214よりも基板側に、拡散することを抑制できる。
 層間膜として機能する絶縁体216、絶縁体280、及び絶縁体281は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体216、絶縁体280、及び絶縁体281として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、又は空孔を有する酸化シリコン等を適宜用いればよい。
 絶縁体222及び絶縁体224は、ゲート絶縁体としての機能を有する。
 ここで、金属酸化物230と接する絶縁体224は、加熱により酸素を脱離することが好ましい。本明細書では、加熱により離脱する酸素を過剰酸素と呼ぶことがある。例えば、絶縁体224は、酸化シリコン又は酸化窒化シリコン等を適宜用いればよい。酸素を含む絶縁体を金属酸化物230に接して設けることにより、金属酸化物230中の酸素欠損を低減し、トランジスタ200Aの信頼性を向上させることができる。
 絶縁体224として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、又は3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度は、100℃以上700℃以下、又は100℃以上400℃以下の範囲が好ましい。
 図23Cに示すように、絶縁体224は、絶縁体254と重ならず、且つ金属酸化物230bと重ならない領域の膜厚が、それ以外の領域の膜厚より薄くなる場合がある。絶縁体224において、絶縁体254と重ならず、且つ金属酸化物230bと重ならない領域の膜厚は、上記酸素を十分に拡散できる膜厚であることが好ましい。
 絶縁体222は、絶縁体214等と同様に、水又は水素等の不純物が、基板側からトランジスタ200Aに混入することを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体222は、絶縁体224より水素透過性が低いことが好ましい。絶縁体222、絶縁体254、及び絶縁体274によって、絶縁体224、金属酸化物230、及び絶縁体250等を囲むことにより、外方から水又は水素等の不純物がトランジスタ200Aに侵入することを抑制することができる。
 さらに、絶縁体222は、酸素(例えば、酸素原子、酸素分子等)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体222は、絶縁体224より酸素透過性が低いことが好ましい。絶縁体222が、酸素や不純物の拡散を抑制する機能を有することで、金属酸化物230が有する酸素が、基板側へ拡散することを低減でき、好ましい。また、導電体205が、絶縁体224や、金属酸化物230が有する酸素と反応することを抑制することができる。
 絶縁体222は、絶縁性材料であるアルミニウム及びハフニウムの一方又は双方の酸化物を含む絶縁体を用いるとよい。アルミニウム及びハフニウムの一方又は双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)等を用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、金属酸化物230からの酸素の放出や、トランジスタ200Aの周辺部から金属酸化物230への水素等の不純物の混入を抑制する層として機能する。
 又は、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。又はこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコン又は窒化シリコンを積層して用いてもよい。
 絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)又は(Ba,Sr)TiO(BST)等のいわゆるhigh−k材料を含む絶縁体を単層又は積層で用いてもよい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流等の問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 なお、絶縁体222、及び絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。例えば、絶縁体222の下に絶縁体224と同様の絶縁体を設ける構成にしてもよい。
 金属酸化物230は、金属酸化物230aと、金属酸化物230a上の金属酸化物230bと、金属酸化物230b上の金属酸化物230cと、を有する。金属酸化物230b下に金属酸化物230aを有することで、金属酸化物230aよりも下方に形成された構造物から、金属酸化物230bへの不純物の拡散を抑制することができる。また、金属酸化物230b上に金属酸化物230cを有することで、金属酸化物230cよりも上方に形成された構造物から、金属酸化物230bへの不純物の拡散を抑制することができる。
 なお、金属酸化物230は、各金属原子の原子数比が異なる複数の酸化物層の積層構造を有することが好ましい。例えば、金属酸化物230が、少なくともインジウム(In)と、元素Mと、を含む場合、金属酸化物230aを構成する全元素の原子数に対する、金属酸化物230aに含まれる元素Mの原子数の割合が、金属酸化物230bを構成する全元素の原子数に対する、金属酸化物230bに含まれる元素Mの原子数の割合より高いことが好ましい。また、金属酸化物230aに含まれる元素Mの、Inに対する原子数比が、金属酸化物230bに含まれる元素Mの、Inに対する原子数比より大きいことが好ましい。ここで、金属酸化物230cは、金属酸化物230a又は金属酸化物230bに用いることができる金属酸化物を用いることができる。
 金属酸化物230a及び金属酸化物230cの伝導帯下端のエネルギーが、金属酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、金属酸化物230a及び金属酸化物230cの電子親和力が、金属酸化物230bの電子親和力より小さいことが好ましい。この場合、金属酸化物230cは、金属酸化物230aに用いることができる金属酸化物を用いることが好ましい。具体的には、金属酸化物230cを構成する全元素の原子数に対する、金属酸化物230cに含まれる元素Mの原子数の割合が、金属酸化物230bを構成する全元素の原子数に対する、金属酸化物230bに含まれる元素Mの原子数の割合より高いことが好ましい。また、金属酸化物230cに含まれる元素Mの、Inに対する原子数比が、金属酸化物230bに含まれる元素Mの、Inに対する原子数比より大きいことが好ましい。
 ここで、金属酸化物230a、金属酸化物230b、及び金属酸化物230cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、金属酸化物230a、金属酸化物230b、及び金属酸化物230cの接合部における伝導帯下端のエネルギー準位は、連続的に変化又は連続接合するともいうことができる。このようにするためには、金属酸化物230aと金属酸化物230bとの界面、及び金属酸化物230bと金属酸化物230cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、金属酸化物230aと金属酸化物230b、金属酸化物230bと金属酸化物230cが、酸素以外に共通の元素を有する(主成分とする。)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、金属酸化物230bがIn−Ga−Zn酸化物の場合、金属酸化物230a及び金属酸化物230cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウム等を用いてもよい。また、金属酸化物230cを積層構造としてもよい。例えば、In−Ga−Zn酸化物と、当該In−Ga−Zn酸化物上のGa−Zn酸化物との積層構造、又はIn−Ga−Zn酸化物と、当該In−Ga−Zn酸化物上の酸化ガリウムとの積層構造を用いることができる。別言すると、In−Ga−Zn酸化物と、Inを含まない酸化物との積層構造を、金属酸化物230cとして用いてもよい。
 具体的には、金属酸化物230aとして、In:Ga:Zn=1:3:4[原子数比]、又は1:1:0.5[原子数比]の金属酸化物を用いればよい。また、金属酸化物230bとして、In:Ga:Zn=4:2:3[原子数比]、又は3:1:2[原子数比]の金属酸化物を用いればよい。また、金属酸化物230cとして、In:Ga:Zn=1:3:4[原子数比]、In:Ga:Zn=4:2:3[原子数比]、Ga:Zn=2:1[原子数比]、又はGa:Zn=2:5[原子数比]の金属酸化物を用いればよい。また、金属酸化物230cを積層構造とする場合の具体例として、In:Ga:Zn=4:2:3[原子数比]と、Ga:Zn=2:1[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、Ga:Zn=2:5[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、酸化ガリウムとの積層構造等が挙げられる。
 このとき、キャリアの主たる経路は金属酸化物230bとなる。金属酸化物230a、金属酸化物230cを上述の構成とすることで、金属酸化物230aと金属酸化物230bとの界面、及び金属酸化物230bと金属酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200Aは高いオン電流、及び高い周波数特性を得ることができる。なお、金属酸化物230cを積層構造とした場合、上述の金属酸化物230bと、金属酸化物230cとの界面における欠陥準位密度を低くする効果に加え、金属酸化物230cが有する構成元素が、絶縁体250側に拡散することを抑制することが期待される。より具体的には、金属酸化物230cを積層構造とし、積層構造の上方にInを含まない酸化物を位置させるため、絶縁体250側に拡散しうるInを抑制することができる。絶縁体250は、ゲート絶縁体として機能するため、Inが拡散した場合、トランジスタの特性不良となる。したがって、金属酸化物230cを積層構造とすることで、信頼性の高い表示装置を提供することが可能となる。
 金属酸化物230b上には、ソース電極、及びドレイン電極として機能する導電体242(導電体242a、及び導電体242b)が設けられる。導電体242として、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、又は上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物等を用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、又は、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 金属酸化物230と接するように上記導電体242を設けることで、金属酸化物230の導電体242近傍において、酸素濃度が低減する場合がある。また、金属酸化物230の導電体242近傍において、導電体242に含まれる金属と、金属酸化物230の成分とを含む金属化合物層が形成される場合がある。このような場合、金属酸化物230の導電体242近傍の領域において、キャリア密度が増加し、当該領域は、低抵抗領域となる。
 ここで、導電体242aと導電体242bの間の領域は、絶縁体280の開口に重畳して形成される。これにより、導電体242aと導電体242bの間に導電体260を自己整合的に配置することができる。
 絶縁体250は、ゲート絶縁体として機能する。絶縁体250は、金属酸化物230cの上面に接して配置することが好ましい。絶縁体250は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、及び酸化窒化シリコンは熱に対し安定であるため好ましい。
 絶縁体250は、絶縁体224と同様に、絶縁体250中の水又は水素等の不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
 絶縁体250と導電体260との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体250から導電体260への酸素拡散を抑制することが好ましい。これにより、絶縁体250の酸素による導電体260の酸化を抑制することができる。
 当該金属酸化物は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコン等を用いる場合、当該金属酸化物は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。ゲート絶縁体を、絶縁体250と当該金属酸化物との積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
 具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、又は、マグネシウム等から選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。特に、アルミニウム、又はハフニウムの一方又は双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)等を用いることが好ましい。
 導電体260は、図23では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
 導電体260aは、上述の、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NO等)、銅原子等の不純物の拡散を抑制する機能を有する導電体を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子等)の少なくとも一の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料として、例えば、タンタル、窒化タンタル、ルテニウム、又は酸化ルテニウム等を用いることが好ましい。
 導電体260bは、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構造としてもよい。
 図23A及び図23Cに示すように、金属酸化物230bの導電体242と重ならない領域、言い換えると、金属酸化物230のチャネル形成領域において、金属酸化物230の側面が導電体260で覆うように配置されている。これにより、第1のゲート電極としての機能する導電体260の電界を、金属酸化物230の側面に作用させやすくなる。よって、トランジスタ200Aのオン電流を増大させ、周波数特性を向上させることができる。
 絶縁体254は、絶縁体214等と同様に、水又は水素等の不純物が、絶縁体280側からトランジスタ200Aに混入することを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体254は、絶縁体224より水素透過性が低いことが好ましい。さらに、図23B及び図23Cに示すように、絶縁体254は、金属酸化物230cの側面、導電体242aの上面と側面、導電体242bの上面と側面、金属酸化物230a及び金属酸化物230bの側面、並びに絶縁体224の上面に接することが好ましい。このような構成にすることで、絶縁体280に含まれる水素が、導電体242a、導電体242b、金属酸化物230a、金属酸化物230b及び絶縁体224の上面又は側面から金属酸化物230に侵入することを抑制できる。
 さらに、絶縁体254は、酸素(例えば、酸素原子、酸素分子等)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体254は、絶縁体280又は絶縁体224より酸素透過性が低いことが好ましい。
 絶縁体254は、スパッタリング法を用いて成膜されることが好ましい。絶縁体254を、酸素を含む雰囲気でスパッタリング法を用いて成膜することで、絶縁体224の絶縁体254と接する領域近傍に酸素を添加することができる。これにより、当該領域から、絶縁体224を介して金属酸化物230中に酸素を供給することができる。ここで、絶縁体254が、上方への酸素の拡散を抑制する機能を有することで、酸素が金属酸化物230から絶縁体280へ拡散することを防ぐことができる。また、絶縁体222が、下方への酸素の拡散を抑制する機能を有することで、酸素が金属酸化物230から基板側へ拡散することを防ぐことができる。このようにして、金属酸化物230のチャネル形成領域に酸素が供給される。これにより、金属酸化物230の酸素欠損を低減し、トランジスタのノーマリーオン化を抑制することができる。
 絶縁体254として、例えば、アルミニウム及びハフニウムの一方又は双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウム及びハフニウムの一方又は双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)等を用いることが好ましい。
 水素に対してバリア性を有する絶縁体254によって、絶縁体224、絶縁体250、及び金属酸化物230が覆うことで、絶縁体280は、絶縁体254によって、絶縁体224、金属酸化物230、及び絶縁体250と離隔されている。これにより、トランジスタ200Aの外方から水素等の不純物が浸入することを抑制できるため、トランジスタ200Aに良好な電気特性及び信頼性を与えることができる。
 絶縁体280は、絶縁体254を介して、絶縁体224、金属酸化物230、及び導電体242上に設けられる。例えば、絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、又は空孔を有する酸化シリコン等を有することが好ましい。特に、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコン等の材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
 絶縁体280中の水又は水素等の不純物濃度が低減されていることが好ましい。また、絶縁体280の上面は、平坦化されていてもよい。
 絶縁体274は、絶縁体214等と同様に、水又は水素等の不純物が、上方から絶縁体280に混入することを抑制するバリア絶縁膜として機能することが好ましい。絶縁体274として、例えば、絶縁体214、絶縁体254等に用いることができる絶縁体を用いればよい。
 絶縁体274の上に、層間膜として機能する絶縁体281を設けることが好ましい。絶縁体281は、絶縁体224等と同様に、膜中の水又は水素等の不純物濃度が低減されていることが好ましい。
 絶縁体281、絶縁体274、絶縁体280、及び絶縁体254に形成された開口に、導電体240a及び導電体240bを配置する。導電体240a及び導電体240bは、導電体260を挟んで対向して設ける。なお、導電体240a及び導電体240bの上面の高さは、絶縁体281の上面と、同一平面上としてもよい。
 なお、絶縁体281、絶縁体274、絶縁体280、及び絶縁体254の開口の内壁に接して、絶縁体241aが設けられ、その側面に接して導電体240aの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242aが位置しており、導電体240aが導電体242aと接する。同様に、絶縁体281、絶縁体274、絶縁体280、及び絶縁体254の開口の内壁に接して、絶縁体241bが設けられ、その側面に接して導電体240bの第1の導電体が形成されている。当該開口の底部の少なくとも一部には導電体242bが位置しており、導電体240bが導電体242bと接する。
 導電体240a及び導電体240bは、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240a及び導電体240bは積層構造としてもよい。
 導電体240を積層構造とする場合、金属酸化物230a、金属酸化物230b、導電体242、絶縁体254、絶縁体280、絶縁体274、絶縁体281と接する導電体には、上述の、水又は水素等の不純物の拡散を抑制する機能を有する導電体を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、又は酸化ルテニウム等を用いることが好ましい。また、水又は水素等の不純物の拡散を抑制する機能を有する導電性材料は、単層又は積層で用いてもよい。当該導電性材料を用いることで、絶縁体280に添加された酸素が導電体240a及び導電体240bに吸収されることを抑制できる。また、絶縁体281より上層から水又は水素等の不純物が、導電体240a及び導電体240bを通じて金属酸化物230に混入することを抑制できる。
 絶縁体241a及び絶縁体241bとして、例えば、絶縁体254等に用いることができる絶縁体を用いればよい。絶縁体241a及び絶縁体241bは、絶縁体254に接して設けられるため、絶縁体280等から水又は水素等の不純物が、導電体240a及び導電体240bを通じて金属酸化物230に混入することを抑制できる。また、絶縁体280に含まれる酸素が導電体240a及び導電体240bに吸収されることを抑制できる。
 図示しないが、導電体240aの上面、及び導電体240bの上面に接して配線として機能する導電体を配置してもよい。配線として機能する導電体は、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層としてもよい。当該導電体は、絶縁体に設けられた開口に埋め込むように形成してもよい。
<トランジスタの構成例2>
 図24A、図24B、及び図24Cは、本発明の一態様である表示装置に用いることができるトランジスタ200B、及びトランジスタ200B周辺の上面図及び断面図である。トランジスタ200Bは、トランジスタ200Aの変形例である。
 図24Aは、トランジスタ200Bの上面図である。また、図24B、及び図24Cは、トランジスタ200Bの断面図である。ここで、図24Bは、図24AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200Bのチャネル長方向の断面図でもある。また、図24Cは、図24AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200Bのチャネル幅方向の断面図でもある。なお、図24Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
 トランジスタ200Bは、絶縁体212、及び絶縁体283を有する点が、トランジスタ200Aと異なる。
 トランジスタ200Bは、基板(図示しない)の上に絶縁体212が設けられる。また、絶縁体212上、及び絶縁体271上に絶縁体283が設けられる。
 トランジスタ200Bでは、絶縁体214、絶縁体216、絶縁体222、絶縁体224、絶縁体244、絶縁体280、及び絶縁体274上を、絶縁体283が覆う構成になっている。絶縁体283は、絶縁体274の上面、絶縁体274の側面、絶縁体280の側面、絶縁体244の側面、絶縁体224の側面、絶縁体222の側面、絶縁体216の側面、絶縁体214の側面、絶縁体212の上面とそれぞれ接する。これにより、金属酸化物230等は、絶縁体283と絶縁体212によって外部から隔離される。
 絶縁体283及び絶縁体212は、水素(例えば、水素原子、水素分子等の少なくとも一)又は水分子の拡散を抑制する機能が高いことが好ましい。例えば、絶縁体281及び絶縁体212として、水素バリア性が高い材料である、窒化シリコン又は窒化酸化シリコンを用いることが好ましい。これにより、金属酸化物230に水素等が拡散することを抑制することができるため、トランジスタ200Bの特性低下を抑制できる。よって、本発明の一態様の半導体装置の信頼性を高めることができる。
 絶縁体283として、例えば、窒化シリコンを用いることができる。絶縁体283に窒化シリコンを用いる場合は、スパッタリング法で成膜することで、密度が高く、鬆などが形成されにくい窒化シリコン膜を形成することができる。また、絶縁体283として、スパッタリング法で成膜された窒化シリコンの上に、さらに、ALD法で成膜された窒化シリコンを積層してもよい。このような構造とすることで、スパッタリング法によって成膜する窒化シリコンに欠陥、例えばボイドが生じても被覆性の良好なALD法によって成膜する窒化シリコンによって当該ボイドを埋めて、封止性能を高めることができる。絶縁体212として、絶縁体214に用いることができる材料を用いるができる。例えば、絶縁体212に窒化シリコンを用い、絶縁体214に酸化アルミニウムを用いることができる。
<トランジスタの構成例3>
 図25A、図25B、及び図25Cは、本発明の一態様である表示装置に用いることができるトランジスタ200C、及びトランジスタ200C周辺の上面図及び断面図である。トランジスタ200Cは、トランジスタ200Aの変形例である。
 図25Aは、トランジスタ200Cの上面図である。また、図25B、及び図25Cは、トランジスタ200Cの断面図である。ここで、図25Bは、図25AにB1−B2の一点鎖線で示す部位の断面図であり、トランジスタ200Cのチャネル長方向の断面図でもある。また、図25Cは、図25AにB3−B4の一点鎖線で示す部位の断面図であり、トランジスタ200Cのチャネル幅方向の断面図でもある。なお、図25Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
 トランジスタ200Cでは、導電体242a及び導電体242bが、金属酸化物230c、絶縁体250、及び導電体260と重なる領域を有する。これにより、トランジスタ200Cはオン電流が高いトランジスタとすることができる。また、トランジスタ200Cは制御しやすいトランジスタとすることができる。
 ゲート電極として機能する導電体260は、導電体260aと、導電体260a上の導電体260bと、を有する。導電体260aは、水素原子、水素分子、水分子、銅原子等の不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子等の少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体260aが酸素の拡散を抑制する機能を有することにより、導電体260bの材料選択性を向上することができる。つまり、導電体260aを有することで、導電体260bの酸化が抑制され、導電率が低下することを防止することができる。
 導電体260の上面及び側面、絶縁体250の側面、及び金属酸化物230cの側面を覆うように絶縁体254を設けることが好ましい。なお、絶縁体254は、水又は水素等の不純物、及び酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。
 絶縁体254を設けることで、導電体260の酸化を抑制することができる。また、絶縁体254を有することで、絶縁体280が有する水、水素等の不純物がトランジスタ200Cへ拡散することを抑制することができる。
<トランジスタの構成例4>
 図26A、図26B、及び図26Cは、本発明の一態様である表示装置に用いることができるトランジスタ200D、及びトランジスタ200D周辺の上面図及び断面図である。トランジスタ200Dは、トランジスタ200Aの変形例である。
 図26Aは、トランジスタ200Dの上面図である。また、図26B、及び図26Cは、トランジスタ200Dの断面図である。ここで、図26Bは、図26AにC1−C2の一点鎖線で示す部位の断面図であり、トランジスタ200Dのチャネル長方向の断面図でもある。また、図26Cは、図26AにC3−C4の一点鎖線で示す部位の断面図であり、トランジスタ200Dのチャネル幅方向の断面図でもある。なお、図26Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
 トランジスタ200Dでは、金属酸化物230c上に絶縁体250を有し、絶縁体250上に金属酸化物252を有する。また、金属酸化物252上に導電体260を有し、導電体260上に絶縁体270を有する。また、絶縁体270上に絶縁体271を有する。
 金属酸化物252は、酸素拡散を抑制する機能を有することが好ましい。絶縁体250と導電体260との間に、酸素の拡散を抑制する金属酸化物252を設けることで、導電体260への酸素の拡散が抑制される。つまり、金属酸化物230へ供給する酸素量の減少を抑制することができる。また、酸素による導電体260の酸化を抑制することができる。
 なお、金属酸化物252は、ゲート電極の一部としての機能を有してもよい。例えば、金属酸化物230として用いることができる酸化物半導体を、金属酸化物252として用いることができる。その場合、導電体260をスパッタリング法で成膜することで、金属酸化物252の電気抵抗値を低下させて導電体とすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
 金属酸化物252は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコン等を用いる場合、金属酸化物252は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。当該積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁層の等価酸化膜厚(EOT)の薄膜化が可能となる。
 トランジスタ200Dにおいて、金属酸化物252を単層で示したが、2層以上の積層構造としてもよい。例えば、ゲート電極の一部として機能する金属酸化物と、ゲート絶縁体の一部として機能する金属酸化物とを積層して設けてもよい。
 金属酸化物252を有することで、ゲート電極として機能する場合は、導電体260からの電界の影響を弱めることなく、トランジスタ200Dのオン電流の向上を図ることができる。又は、ゲート絶縁体として機能する場合は、絶縁体250及び金属酸化物252の物理的な厚みにより、導電体260と、金属酸化物230との間の距離を保つことで、導電体260と金属酸化物230との間のリーク電流を抑制することができる。したがって、絶縁体250と金属酸化物252との積層構造を設けることで、導電体260と金属酸化物230との間の物理的な距離、及び導電体260から金属酸化物230へかかる電界強度を、容易に調整することができる。
 具体的には、金属酸化物252として、金属酸化物230に用いることができる酸化物半導体を低抵抗化したものを用いることができる。又は、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、又はマグネシウム等から選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。
 特に、アルミニウム、又はハフニウムの一方又は双方の酸化物を含む絶縁層である、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)等を用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、金属酸化物252は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
 絶縁体270は、水又は水素等の不純物、及び酸素の透過を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウム又は酸化ハフニウム等を用いることが好ましい。これにより、絶縁体270よりも上方からの酸素で導電体260が酸化されることを抑制できる。また、絶縁体270よりも上方からの水又は水素等の不純物が、導電体260及び絶縁体250を介して、金属酸化物230に混入することを抑制することができる。
 絶縁体271はハードマスクとして機能する。絶縁体271を設けることで、導電体260の加工の際、導電体260の側面が概略垂直、具体的には、導電体260の側面と基板表面のなす角を、75度以上100度以下、好ましくは80度以上95度以下とすることができる。
 なお、絶縁体271に、水又は水素等の不純物、及び酸素の透過を抑制する機能を有する絶縁性材料を用いることで、バリア層としての機能を兼ねさせてもよい。その場合、絶縁体270は設けなくともよい。
 絶縁体271をハードマスクとして用いて、絶縁体270、導電体260、金属酸化物252、絶縁体250、及び金属酸化物230cの一部を選択的に除去することで、これらの側面を略一致させて、かつ、金属酸化物230b表面の一部を露出させることができる。
 トランジスタ200Dは、露出した金属酸化物230b表面の一部に領域243a及び領域243bを有する。領域243a又は領域243bの一方はソース領域として機能し、領域243a又は領域243bの他方はドレイン領域として機能する。
 領域243a及び領域243bの形成は、例えば、イオン注入法、イオンドーピング法、プラズマイマージョンイオン注入法、又はプラズマ処理等を用いて、露出した金属酸化物230b表面にリン又はボロン等の不純物元素を導入することで実現できる。なお、本実施の形態等において「不純物元素」とは、主成分元素以外の元素のことをいう。
 金属酸化物230b表面の一部を露出させた後に金属膜を成膜し、その後加熱処理することにより、該金属膜に含まれる元素を金属酸化物230bに拡散させて領域243a及び領域243bを形成することもできる。
 金属酸化物230bの不純物元素が導入された領域は、電気抵抗率が低下する。このため、領域243a及び領域243bを「不純物領域」又は「低抵抗領域」という場合がある。
 絶縁体271及び/又は導電体260をマスクとして用いることで、領域243a及び領域243bを自己整合(セルフアライメント)的に形成することができる。よって、領域243a及び/又は領域243bと、導電体260が重ならず、寄生容量を低減することができる。また、チャネル形成領域とソースドレイン領域(領域243a又は領域243b)の間にオフセット領域が形成されない。領域243a及び領域243bを自己整合(セルフアライメント)的に形成することにより、オン電流の増加、しきい値電圧の低減、動作周波数の向上等を実現できる。
 トランジスタ200Dは、絶縁体271、絶縁体270、導電体260、金属酸化物252、絶縁体250、及び金属酸化物230cの側面に絶縁体272を有する。絶縁体272は、比誘電率の低い絶縁体であることが好ましい。例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、又は樹脂等であることが好ましい。特に、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、空孔を有する酸化シリコンを絶縁体272に用いると、後の工程で絶縁体272中に過剰酸素領域を容易に形成できるため好ましい。また、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため好ましい。また、絶縁体272は、酸素を拡散する機能を有することが好ましい。
 なお、オフ電流を更に小さくするため、チャネル形成領域とソースドレイン領域の間にオフセット領域を設けてもよい。オフセット領域とは、電気抵抗率が高い領域であり、前述した不純物元素の導入が行なわれない領域である。オフセット領域の形成は、絶縁体272の形成後に前述した不純物元素の導入を行うことで実現できる。この場合、絶縁体272も絶縁体271等と同様にマスクとして機能する。よって、金属酸化物230bの絶縁体272と重なる領域に不純物元素が導入されず、当該領域の電気抵抗率を高いままとすることができる。
 トランジスタ200Dは、絶縁体272、金属酸化物230上に絶縁体254を有する。絶縁体254は、スパッタリング法を用いて成膜することが好ましい。スパッタリング法を用いることにより、水又は水素等の不純物の少ない絶縁体を成膜することができる。
 なお、スパッタリング法を用いた酸化膜は、被成膜構造体から水素を引き抜く場合がある。したがって、絶縁体254が金属酸化物230及び絶縁体272から水素及び水を吸収することで、金属酸化物230及び絶縁体272の水素濃度を低減することができる。
<トランジスタの構成材料>
 トランジスタに用いることができる構成材料について説明する。
〔基板〕
 トランジスタ200A、トランジスタ200B、トランジスタ200Cまたはトランジスタ200Dを形成する基板として、例えば、絶縁体基板、半導体基板、又は導電体基板を用いればよい。絶縁体基板として、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板等)、樹脂基板等がある。また、半導体基板として、例えば、シリコン、ゲルマニウム等の半導体基板、又は炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板等がある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板等がある。導電体基板として、黒鉛基板、金属基板、合金基板、導電性樹脂基板等がある。又は、金属の窒化物を有する基板、金属の酸化物を有する基板等がある。さらには、絶縁体基板に導電体又は半導体が設けられた基板、半導体基板に導電体又は絶縁体が設けられた基板、導電体基板に半導体又は絶縁体が設けられた基板等がある。又は、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子として、容量素子、抵抗素子、スイッチ素子、発光デバイス、記憶素子等がある。
〔絶縁体〕
 絶縁体として、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物等がある。
 例えば、トランジスタの微細化、及び高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流等の問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 比誘電率の高い絶縁体として、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウム及びハフニウムを有する酸化物、アルミニウム及びハフニウムを有する酸化窒化物、シリコン及びハフニウムを有する酸化物、シリコン及びハフニウムを有する酸化窒化物、又はシリコン及びハフニウムを有する窒化物等がある。
 比誘電率が低い絶縁体として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、又は樹脂等がある。
 酸化物半導体を用いたトランジスタは、水素等の不純物及び酸素の透過を抑制する機能を有する絶縁体(絶縁体214、絶縁体222、絶縁体254、及び絶縁体274等)で囲うことによって、トランジスタの電気特性を安定にすることができる。水素等の不純物及び酸素の透過を抑制する機能を有する絶縁体として、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、又はタンタルを含む絶縁体を、単層で、又は積層で用いればよい。具体的には、水素等の不純物及び酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、又は酸化タンタル等の金属酸化物、窒化アルミニウム、窒化アルミニウムチタン、窒化チタン、窒化酸化シリコン又は窒化シリコン等の金属窒化物を用いることができる。
 ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコン又は酸化窒化シリコンを金属酸化物230と接する構造とすることで、金属酸化物230が有する酸素欠損を補償することができる。
〔導電体〕
 導電体として、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタン等から選ばれた金属元素、又は上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物等を用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、又は、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイド等のシリサイドを用いてもよい。
 上記の材料で形成される導電体を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
 なお、トランジスタのチャネル形成領域に金属酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素及び酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素及び窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタル等の窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。又は、外方の絶縁体等から混入する水素を捕獲することができる場合がある。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、又は図面等と適宜組み合わせて実施することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(以下、酸化物半導体ともいう。)について説明する。
<結晶構造の分類>
 まず、酸化物半導体における、結晶構造の分類について、図27Aを用いて説明を行う。図27Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
 図27Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、及びCAC(cloud−aligned composite)が含まれる。なお、「Crystalline」の分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、及びpoly crystalが含まれる。
 なお、図27Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、エネルギー的に不安定な「Amorphous(無定形)」や、「Crystal(結晶)」とは全く異なる構造と言い換えることができる。
 なお、膜又は基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。ここで、「Crystalline」に分類されるCAAC−IGZO膜のGIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを図27Bに示す。なお、GIXD法は、薄膜法又はSeemann−Bohlin法ともいう。以降、図27Bに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す。なお、図27Bに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、図27Bに示すCAAC−IGZO膜の厚さは、500nmである。
 図27Bに示すように、CAAC−IGZO膜のXRDスペクトルでは、明確な結晶性を示すピークが検出される。図27Bにおいて、横軸は2θ[deg.]を示し、縦軸は強度(Intensity)[a.u.]を示す。具体的には、CAAC−IGZO膜のXRDスペクトルでは、2θ=31°近傍に、c軸配向を示すピークが検出される。なお、図27Bに示すように、2θ=31°近傍のピークは、ピーク強度が検出された角度を軸に左右非対称である。
 膜又は基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう。)にて評価することができる。CAAC−IGZO膜の回折パターンを、図27Cに示す。図27Cは、電子線を基板に対して平行に入射するNBEDによって観察される回折パターンである。なお、図27Cに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
 図27Cに示すように、CAAC−IGZO膜の回折パターンでは、c軸配向を示す複数のスポットが観察される。
〔酸化物半導体の構造〕
 なお、酸化物半導体は、結晶構造に着目した場合、図27Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体として、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、等が含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、又はCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つ又は複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタン等から選ばれた一種、又は複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°又はその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成等により変動する場合がある。
 例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう。)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形等の格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属原子が置換することで原子間の結合距離が変化すること等によって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下等を引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成等によって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損等)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
〔酸化物半導体の構成〕
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、又はその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つ又は複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、又はその近傍のサイズで混合した状態をモザイク状、又はパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。又は、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物等が主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物等が主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物は、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(SIMSにより得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。又は、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
 本実施の形態では、本発明の一態様である表示装置を備える電子機器について説明する。
 図28Aは、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。カメラ8000には、撮像装置が設けられている。カメラ8000は、例えばデジタルカメラとすることができる。なお、図28Aでは、カメラ8000とファインダー8100とを別の電子機器とし、これらを脱着可能な構成としているが、カメラ8000の筐体8001に、表示装置を備えるファインダーが内蔵されていてもよい。
 カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。
 ここではカメラ8000として、レンズ8006を筐体8001から取り外して交換することが可能な構成としたが、レンズ8006と筐体が一体となっていてもよい。
 カメラ8000は、シャッターボタン8004を押すことにより、撮像することができる。また、表示部8002はタッチパネルとしての機能を有し、表示部8002をタッチすることにより撮像することも可能である。
 カメラ8000の筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、ストロボ装置等を接続することができる。
 ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。ファインダー8100は、電子ビューファインダーとすることができる。
 筐体8101は、カメラ8000のマウントと係合するマウントを有しており、ファインダー8100をカメラ8000に取り付けることができる。また当該マウントには電極を有し、当該電極を介してカメラ8000から受信した画像等を表示部8102に表示させることができる。
 ボタン8103は、電源ボタンとしての機能を有する。ボタン8103により、表示部8102の表示のオン・オフを切り替えることができる。
 カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、極めて精細度が高いため、表示部8002又は表示部8102と、使用者と、の距離が近くても、使用者に画素が視認されることなく、より臨場感の高い画像を表示部8002又は表示部8102に表示することができる。特に、ファインダー8100に設けられる表示部8102に表示される画像は、ファインダー8100の接眼部に使用者の眼を近づけることにより視認されるため、使用者と、表示部8102と、の間の距離が非常に近くなる。よって、表示部8102には本発明の一態様の表示装置を適用することが特に好ましい。なお、表示部8102に本発明の一態様の表示装置を適用する場合、表示部8102に表示できる画像の解像度は、4K、5K、又はそれ以上とすることができる。
 なお、カメラ8000に設けられた撮像装置により撮像できる画像の解像度を、表示部8002又は表示部8102に表示できる画像の解像度と同等、又はそれ以上であることが好ましい。例えば、表示部8102に4Kの解像度の画像を表示できる場合は、カメラ8000には4K以上の画像を撮像できる撮像装置を設けることが好ましい。また、例えば、表示部8102に5Kの解像度の画像を表示できる場合は、カメラ8000には5K以上の画像を撮像できる撮像装置を設けることが好ましい。
 図28Bは、ヘッドマウントディスプレイ8200の外観を示す図である。
 ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリ8206が内蔵されている。
 ケーブル8205は、バッテリ8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した画像データ等に対応する画像を表示部8204に表示させることができる。また、本体8203に設けられたカメラで使用者の眼球やまぶたの動きを捉え、その情報をもとに使用者の視線の座標を算出することにより、使用者の視線を入力手段として用いることができる。
 装着部8201には、使用者に触れる位置に複数の電極が設けられていてもよい。本体8203は使用者の眼球の動きに伴って電極に流れる電流を検知することにより、使用者の視線を認識する機能を有していてもよい。また、当該電極に流れる電流を検知することにより、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能を有していてもよい。また、使用者の頭部の動き等を検出し、表示部8204に表示する画像をその動きに合わせて変化させてもよい。
 表示部8204に、本発明の一態様の表示装置を適用することができる。これにより、ヘッドマウントディスプレイ8200を狭額縁化し、表示部8204に高品位の画像を表示することができ、臨場感の高い画像を表示することができる。
 図28C、図28D及び図28Eは、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
 使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると好適である。表示部8302を湾曲して配置することで、使用者が高い臨場感を感じることができる。なお、本実施の形態においては、表示部8302を1つ設ける構成について例示したが、これに限定されず、例えば、表示部8302を2つ設ける構成としてもよい。この場合、使用者の片方の目に1つの表示部が配置されるような構成とすると、視差を用いた3次元表示等を行うことも可能となる。
 なお、表示部8302に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、極めて精細度が高いため、図28Eのようにレンズ8305を用いて拡大したとしても、使用者に画素が視認されることなく、より臨場感の高い画像を表示することができる。
 次に、図28A乃至図28Eに示す電子機器と、異なる電子機器の一例を図29A乃至図29Gに示す。
 図29A乃至図29Gに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、又は操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン9008等を有する。
 図29A乃至図29Gに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像等)を表示部に表示する機能、タッチパネル機能、カレンダー、日付、又は時刻等を表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。なお、図29A乃至図29Gに示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有することができる。また、図29A乃至図29Gには図示していないが、電子機器には、複数の表示部を有する構成としてもよい。また、該電子機器にカメラ等を設け、静止画を撮影する機能、動画を撮影する機能、撮影した画像を記録媒体(外部又はカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
 図29A乃至図29Gに示す電子機器の詳細について、以下説明を行う。
 図29Aは、テレビジョン装置9100を示す斜視図である。テレビジョン装置9100は、大画面、例えば、50インチ以上、又は100インチ以上の表示部9001を組み込むことが可能である。
 テレビジョン装置9100が有する表示部9001に、本発明の一態様の表示装置を適用することができる。これにより、テレビジョン装置9100を狭額縁化し、表示部9001に高品位の画像を表示することができ、臨場感の高い画像を表示することができる。
 図29Bは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えば電話機、手帳、又は情報閲覧装置等から選ばれた一つ又は複数の機能を有する。具体的には、スマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字や画像をその複数の面に表示することができる。例えば、3つの操作ボタン9050(操作アイコン又は単にアイコンともいう)を表示部9001の一の面に表示することができる。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することができる。なお、情報9051の一例として、電子メールやSNS(ソーシャル・ネットワーキング・サービス)や電話等の着信を知らせる表示、電子メールやSNS等の題名、電子メールやSNS等の送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度等がある。又は、情報9051が表示されている位置に、情報9051の代わりに、操作ボタン9050等を表示してもよい。
 携帯情報端末9101が有する表示部9001に、本発明の一態様の表示装置を適用することができる。これにより、携帯情報端末9101を小型化し、表示部9001に高品位の画像を表示することができ、臨場感の高い画像を表示することができる。
 図29Cは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば、携帯情報端末9102の使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、その表示(ここでは情報9053)を確認することができる。具体的には、着信した電話の発信者の電話番号又は氏名等を、携帯情報端末9102の上方から観察できる位置に表示する。使用者は、携帯情報端末9102をポケットから取り出すことなく、表示を確認し、電話を受けるか否かを判断できる。
 携帯情報端末9102が有する表示部9001に、本発明の一態様の表示装置を適用することができる。これにより、携帯情報端末9101を小型化し、表示部9001に高品位の画像を表示することができ、臨場感の高い画像を表示することができる。
 図29Dは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲーム等の種々のアプリケーションを実行することができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006を有し、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また接続端子9006を介して充電を行うこともできる。なお、充電動作は接続端子9006を介さずに無線給電により行ってもよい。
 携帯情報端末9200が有する表示部9001に、本発明の一態様の表示装置を適用することができる。これにより、携帯情報端末9200を狭額縁化し、表示部9001に高品位の画像を表示することができ、臨場感の高い画像を表示することができる。
 図29E、図29F及び図29Gは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図29Eが携帯情報端末9201を展開した状態の斜視図であり、図29Fが携帯情報端末9201を展開した状態又は折り畳んだ状態の一方から他方に変化する途中の状態の斜視図であり、図29Gが携帯情報端末9201を折り畳んだ状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。ヒンジ9055を介して2つの筐体9000間を屈曲させることにより、携帯情報端末9201を展開した状態から折りたたんだ状態に可逆的に変形させることができる。例えば、携帯情報端末9201は、曲率半径1mm以上150mm以下で曲げることができる。
 携帯情報端末9201が有する表示部9001に、本発明の一態様の表示装置を適用することができる。これにより、携帯情報端末9201を狭額縁化し、表示部9001に高品位の画像を表示することができ、臨場感の高い画像を表示することができる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、又は図面等と適宜組み合わせて実施することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
 本実施例では回路シミュレーションを用いて、本発明の一態様である表示装置に用いることができる画素の動作を確認した。シミュレーションには、図1Bに示す画素10の構成、及び図2に示すタイミングチャートを用いた。
 シミュレーションにおいて、トランジスタ101、トランジスタ102、トランジスタ103及びトランジスタ104はそれぞれ、チャネル長が200nm、チャネル幅が60nmのOSトランジスタとした。容量素子111の容量値を17.0fF、容量素子112の容量値を3.4fFとした。配線121及び配線122に与えられる電位として、Highを5V、Lowを0Vとした。配線131は“Vdata”を4.0V、配線161は“Vref”を0.5V、配線128は“Vano”を11.0V、配線129は“Vcath”を−5.0Vとして、シミュレーションを行った。回路シミュレーションソフトウェアには、SPICEを用いた。
 シミュレーション結果を、図30に示す。図30は、横軸にタイミングチャートに準じた時刻(Time)を示し、縦軸にノードND11の電位VND11、及びノードND12の電位VND12を示している。
 図30に示すように、電位VND11と電位VND12の差は、期間P21aで3.23V、期間P21bで0.92V、期間P22aで0.00Vとなった。期間P21においては、電位VND11と電位VND12の差が“Vdata”の4.0Vより小さくなることを確認できた。また、期間P22においては、電位VND11と電位VND12の差が0Vとなることを確認できた。
 本実施例では、実施の形態で示した表示装置を作製した。
 作製した表示パネルは、表示部のサイズが対角0.66インチ、画素数が1440×1440、精細度(画素密度)が3078ppi、画素のサイズが2.75μm×8.25μm(2.75μm×RGB×8.25μm)、開口率が33.7%、フレーム周波数が90Hzである。また、ゲートドライバ及びソースドライバは内蔵とし、ゲートドライバはOSトランジスタ、ソースドライバはSiトランジスタを用いたCMOSを用いた。
 作製した表示装置の写真を、図31Aに示す。画素部を拡大した写真を、図31Bに示す。図31A及び図31Bに示すように、画素部全面で良好に表示できることを確認できた。
 前述した表示装置で、デューティを異ならせて輝度を評価した。デューティと輝度の相関関係を、図32Aに示す。図32Aにおいて、横軸はデューティ(Duty)を示し、縦軸は輝度Lを示す。なお、図32Aは、画素部全面を白表示させた場合の輝度を示している。
 デューティが100%では輝度が5040cd/m、デューティが50%では輝度が2520cd/m、デューティが20%では輝度が1008cd/m、デューティが0%では輝度が0cd/mとなり、デューティと輝度が比例関係にあることを確認できた。なお、図32Aでは、デューティ100%のプロットと、デューティ0%のプロットを結ぶ直線を、破線で示している。
 表示中の輝度の時間変化を、図32Bに示す。図32Bにおいて、横軸は時間(Time)を示し、縦軸は輝度Lを示す。なお、図32Bは、1画素分の幅の白色の線をデューティ20%で表示させた場合の輝度を、分光輝度計で測定したデータを示している。
 1フレーム期間(FP)中の発光期間(P21)において輝度が高くなり、黒表示から白表示へ切り替わることを確認できた。
ND11:ノード、ND12:ノード、10a:画素、10B:副画素、10b:画素、10c:画素、10d:画素、10e:画素、10f:画素、10G:副画素、10R:副画素、10:画素、20:第1の層、30:第2の層、51a:表示領域、51b:表示領域、51c:表示領域、53a:画素電極、53b:画素電極、53c:画素電極、53:画素電極、100:表示装置、101:トランジスタ、102:トランジスタ、103:トランジスタ、104:トランジスタ、111:容量素子、112:容量素子、114:発光デバイス、121:配線、122:配線、123:配線、128:配線、129:配線、130:駆動回路部、131:配線、140a:駆動回路部、140b:駆動回路部、150:画素部、161:配線、162:配線、200A:トランジスタ、200B:トランジスタ、200C:トランジスタ、200D:トランジスタ、205a:導電体、205b:導電体、205c:導電体、205:導電体、212:絶縁体、214:絶縁体、216:絶縁体、222:絶縁体、224:絶縁体、230a:金属酸化物、230b:金属酸化物、230c:金属酸化物、230:金属酸化物、240a:導電体、240b:導電体、240:導電体、241a:絶縁体、241b:絶縁体、241:絶縁体、242a:導電体、242b:導電体、242:導電体、243a:領域、243b:領域、244:絶縁体、250:絶縁体、252:金属酸化物、254:絶縁体、260a:導電体、260b:導電体、260:導電体、270:絶縁体、271:絶縁体、272:絶縁体、274:絶縁体、280:絶縁体、281:絶縁体、283:絶縁体、301a:導電体、301b:導電体、305:導電体、311:導電体、313:導電体、317:導電体、321:下部電極、323:絶縁体、325:上部電極、331:導電体、333:導電体、335:導電体、337:導電体、341:導電体、343:導電体、347:導電体、351:導電体、353:導電体、355:導電体、357:導電体、361:絶縁体、363:絶縁体、403:素子分離層、405:絶縁体、407:絶縁体、409:絶縁体、411:絶縁体、413:絶縁体、415:絶縁体、417:絶縁体、419:絶縁体、421:絶縁体、441:トランジスタ、443:導電体、445:絶縁体、447:半導体領域、449a:低抵抗領域、449b:低抵抗領域、451:導電体、453:導電体、455:導電体、457:導電体、459:導電体、461:導電体、463:導電体、465:導電体、467:導電体、469:導電体、471:導電体、501:絶縁体、503:絶縁体、505:絶縁体、507:絶縁体、509:絶縁体、572:発光デバイス、601:トランジスタ、602:トランジスタ、603:トランジスタ、613:絶縁体、614:絶縁体、616:絶縁体、622:絶縁体、624:絶縁体、644:絶縁体、654:絶縁体、674:絶縁体、680:絶縁体、681:絶縁体、701:基板、705:基板、712:シール材、716:FPC、721:正孔注入層、722:正孔輸送層、723:発光層、724:電子輸送層、725:電子注入層、730:絶縁体、732:封止層、734:絶縁体、736:着色層、738:遮光層、750:トランジスタ、760:接続電極、772:導電体、778:構造体、780:異方性導電体、782:発光デバイス、786a:EL層、786b:EL層、786c:EL層、786:EL層、788:導電体、790:容量素子、792:電荷発生層、800:トランジスタ、801a:導電体、801b:導電体、805:導電体、811:導電体、813:導電体、814:絶縁体、816:絶縁体、817:導電体、821:絶縁体、822:絶縁体、824:絶縁体、844:絶縁体、853:導電体、854:絶縁体、855:導電体、874:絶縁体、880:絶縁体、881:絶縁体、8000:カメラ、8001:筐体、8002:表示部、8003:操作ボタン、8004:シャッターボタン、8006:レンズ、8100:ファインダー、8101:筐体、8102:表示部、8103:ボタン、8200:ヘッドマウントディスプレイ、8201:装着部、8202:レンズ、8203:本体、8204:表示部、8205:ケーブル、8206:バッテリ、8300:ヘッドマウントディスプレイ、8301:筐体、8302:表示部、8304:固定具、8305:レンズ、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:操作ボタン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9100:テレビジョン装置、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (14)

  1.  複数の画素を有する画素部と、第1の配線と、第1の走査線と、第2の走査線と、第3の走査線と、信号線と、を有し、
     前記画素は、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有し、
     前記発光デバイスの一方の電極は、前記第1のトランジスタのソースまたはドレインの一方と、前記第2のトランジスタのソースまたはドレインの一方と、前記第1の容量素子の一方の電極と、に電気的に接続され、
     前記第2のトランジスタのゲートは、前記第1の容量素子の他方の電極と、前記第3のトランジスタのソースまたはドレインの一方と、前記第4のトランジスタのソースまたはドレインの一方と、に電気的に接続され、
     前記第1のトランジスタのソースまたはドレインの他方、及び前記第4のトランジスタのソースまたはドレインの他方はそれぞれ、前記第1の配線と電気的に接続され、
     前記第1のトランジスタのゲートは、前記第1の走査線と電気的に接続され、
     前記第3のトランジスタのゲートは、前記第2の走査線と電気的に接続され、
     前記第4のトランジスタのゲートは、前記第3の走査線と電気的に接続され、
     前記第3のトランジスタのソースまたはドレインの他方は、前記信号線と電気的に接続され、
     前記画素それぞれにおいて、1フレーム期間中に、前記第1のトランジスタ及び前記第4のトランジスタがそれぞれ導通状態である期間を有する表示装置。
  2.  請求項1において、
     第2の容量素子を有し、
     前記第2の容量素子の一方の電極は、前記第2のトランジスタのゲートと電気的に接続され、
     前記第2の容量素子の他方の電極は、前記第2のトランジスタのソースまたはドレインの他方と電気的に接続される表示装置。
  3.  複数の画素を有する画素部と、第1の配線と、第1の走査線と、第2の走査線と、第3の走査線と、信号線と、を有し、
     前記画素は、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有し、
     前記発光デバイスの一方の電極は、前記第1のトランジスタのソースまたはドレインの一方と、前記第2のトランジスタのソースまたはドレインの一方と、前記第4のトランジスタのソースまたはドレインの一方と、前記第1の容量素子の一方の電極と、に電気的に接続され、
     前記第2のトランジスタのゲートは、前記第1の容量素子の他方の電極と、前記第3のトランジスタのソースまたはドレインの一方と、前記第4のトランジスタのソースまたはドレインの他方と、に電気的に接続され、
     前記第1のトランジスタのソースまたはドレインの他方は、前記第1の配線と電気的に接続され、
     前記第1のトランジスタのゲートは、前記第1の走査線と電気的に接続され、
     前記第3のトランジスタのゲートは、前記第2の走査線と電気的に接続され、
     前記第4のトランジスタのゲートは、前記第3の走査線と電気的に接続され、
     前記第3のトランジスタのソースまたはドレインの他方は、前記信号線と電気的に接続され、
     前記画素それぞれにおいて、1フレーム期間中に、前記第1のトランジスタ及び前記第3のトランジスタがそれぞれ非導通状態であり、前記第4のトランジスタが導通状態である期間を有する表示装置。
  4.  複数の画素を有する画素部と、第1の配線と、第2の配線と、第1の走査線と、第2の走査線と、第3の走査線と、信号線と、を有し、
     前記画素は、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有し、
     前記発光デバイスの一方の電極は、前記第1のトランジスタのソースまたはドレインの一方と、前記第2のトランジスタのソースまたはドレインの一方と、前記第4のトランジスタのソースまたはドレインの一方と、前記第1の容量素子の一方の電極と、に電気的に接続され、
     前記第2のトランジスタのゲートは、前記第1の容量素子の他方の電極と、前記第3のトランジスタのソースまたはドレインの一方と、に電気的に接続され、
     前記第1のトランジスタのソースまたはドレインの他方は、前記第1の配線と電気的に接続され、
     前記第4のトランジスタのソースまたはドレインの他方は、前記第2の配線と電気的に接続され、
     前記第1のトランジスタのゲートは、前記第1の走査線と電気的に接続され、
     前記第3のトランジスタのゲートは、前記第2の走査線と電気的に接続され、
     前記第4のトランジスタのゲートは、前記第3の走査線と電気的に接続され、
     前記第3のトランジスタのソースまたはドレインの他方は、前記信号線と電気的に接続され、
     前記画素それぞれにおいて、1フレーム期間中に、前記第1のトランジスタ及び前記第3のトランジスタがそれぞれ非導通状態であり、前記第4のトランジスタが導通状態である期間を有する表示装置。
  5.  複数の画素を有する画素部と、第1の配線と、第1の走査線と、第2の走査線と、第3の走査線と、信号線と、を有し、
     前記画素は、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有し、
     前記発光デバイスの一方の電極は、前記第4のトランジスタのソースまたはドレインの一方と電気的に接続され、
     前記第4のトランジスタのソースまたはドレインの他方は、前記第1のトランジスタのソースまたはドレインの一方と、前記第2のトランジスタのソースまたはドレインの一方と、前記第1の容量素子の一方の電極と、に電気的に接続され、
     前記第2のトランジスタのゲートは、前記第1の容量素子の他方の電極と、前記第3のトランジスタのソースまたはドレインの一方と、に電気的に接続され、
     前記第1のトランジスタのソースまたはドレインの他方は、前記第1の配線と電気的に接続され、
     前記第1のトランジスタのゲートは、前記第1の走査線と電気的に接続され、
     前記第3のトランジスタのゲートは、前記第2の走査線と電気的に接続され、
     前記第4のトランジスタのゲートは、前記第3の走査線と電気的に接続され、
     前記第3のトランジスタのソースまたはドレインの他方は、前記信号線と電気的に接続され、
     前記画素それぞれにおいて、1フレーム期間中に、前記第1のトランジスタ、前記第3のトランジスタ及び前記第4のトランジスタがそれぞれ非導通状態である期間を有する表示装置。
  6.  複数の画素を有する画素部と、第1の配線と、第1の走査線と、第2の走査線と、第3の走査線と、信号線と、を有し、
     前記画素は、発光デバイスと、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと、第4のトランジスタと、第1の容量素子と、を有し、
     前記発光デバイスの一方の電極は、前記第1のトランジスタのソースまたはドレインの一方と、前記第2のトランジスタのソースまたはドレインの一方と、前記第1の容量素子の一方の電極と、に電気的に接続され、
     前記第2のトランジスタのゲートは、前記第1の容量素子の他方の電極と、前記第3のトランジスタのソースまたはドレインの一方と、に電気的に接続され、
     前記第2のトランジスタのソースまたはドレインの他方は、前記第4のトランジスタのソースまたはドレインの一方と電気的に接続され、
     前記第1のトランジスタのソースまたはドレインの他方は、前記第1の配線と電気的に接続され、
     前記第1のトランジスタのゲートは、前記第1の走査線と電気的に接続され、
     前記第3のトランジスタのゲートは、前記第2の走査線と電気的に接続され、
     前記第4のトランジスタのゲートは、前記第3の走査線と電気的に接続され、
     前記第3のトランジスタのソースまたはドレインの他方は、前記信号線と電気的に接続され、
     前記画素それぞれにおいて、1フレーム期間中に、前記第1のトランジスタ、前記第3のトランジスタ及び前記第4のトランジスタがそれぞれ非導通状態である期間を有する表示装置。
  7.  請求項1乃至請求項6のいずれか一おいて、
     前記第2のトランジスタは、バックゲートを有し、
     前記バックゲートは、前記第2のトランジスタのソースまたはドレインの一方と電気的に接続される表示装置。
  8.  請求項1乃至請求項6のいずれか一において、
     前記第2のトランジスタは、バックゲートを有し、
     前記バックゲートは、前記第2のトランジスタのゲートと電気的に接続される表示装置。
  9.  請求項1乃至請求項8のいずれか一において、
     前記発光デバイスの他方の電極は、第3の配線と電気的に接続され、
     前記第1の配線には、第1の電位が供給され、
     前記第3の配線には、第3の電位が供給され、
     前記第3の電位は、前記第1の電位より低い表示装置。
  10.  請求項1乃至請求項9のいずれか一において、
     前記発光デバイスは、有機発光ダイオードである表示装置。
  11.  請求項1乃至請求項10のいずれか一において、
     第1の駆動回路部を有し、
     前記第1の駆動回路部は、前記画素部と重なる領域を有し、
     前記第1の駆動回路部は、前記信号線と電気的に接続される表示装置。
  12.  請求項11において、
     第1の層と、前記第1の層上の第2の層と、を有し
     前記第1の層は、前記第1の駆動回路部と、第2の駆動回路部と、を有し
     前記第2の層は、前記画素部を有し、
     前記第2の駆動回路部は、前記第1の走査線と電気的に接続される表示装置。
  13.  請求項1乃至請求項12のいずれか一において、
     前記第1のトランジスタ、前記第2のトランジスタ、前記第3のトランジスタ及び前記第4のトランジスタはそれぞれ、チャネル形成領域に金属酸化物を有し、
     前記金属酸化物は、インジウムと、亜鉛と、元素M(アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウムから選ばれる一または複数)と、を有する表示装置。
  14.  請求項1乃至請求項13のいずれか一に記載の表示装置と、カメラと、を有する電子機器。
PCT/IB2020/061798 2019-12-25 2020-12-11 表示装置、および電子機器 WO2021130585A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021566370A JPWO2021130585A1 (ja) 2019-12-25 2020-12-11
US17/787,654 US20220416008A1 (en) 2019-12-25 2020-12-11 Display Apparatus and Electronic Device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019235131 2019-12-25
JP2019-235131 2019-12-25
JP2020067214 2020-04-03
JP2020-067214 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021130585A1 true WO2021130585A1 (ja) 2021-07-01

Family

ID=76575265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/061798 WO2021130585A1 (ja) 2019-12-25 2020-12-11 表示装置、および電子機器

Country Status (3)

Country Link
US (1) US20220416008A1 (ja)
JP (1) JPWO2021130585A1 (ja)
WO (1) WO2021130585A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8247276B2 (en) * 2009-02-20 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US11823614B2 (en) * 2018-05-18 2023-11-21 Semiconductor Energy Laboratory Co., Ltd. Display device and method for driving display device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042822A (ja) * 1999-08-03 2001-02-16 Pioneer Electronic Corp アクティブマトリクス型表示装置
JP2003216110A (ja) * 2001-11-13 2003-07-30 Semiconductor Energy Lab Co Ltd 表示装置
JP2005099715A (ja) * 2003-08-29 2005-04-14 Seiko Epson Corp 電子回路の駆動方法、電子回路、電子装置、電気光学装置、電子機器および電子装置の駆動方法
JP2007179041A (ja) * 2005-12-02 2007-07-12 Semiconductor Energy Lab Co Ltd 半導体装置、表示装置及びに電子機器
US20130088417A1 (en) * 2011-10-11 2013-04-11 Lg Display Co., Ltd. Organic light emitting diode display device and method for driving the same
JP2015025978A (ja) * 2013-07-26 2015-02-05 株式会社ジャパンディスプレイ 駆動回路、表示装置、及び駆動方法
JP2015079241A (ja) * 2013-09-13 2015-04-23 株式会社半導体エネルギー研究所 発光装置
US20150161940A1 (en) * 2013-12-11 2015-06-11 Lg Display Co., Ltd. Pixel circuit of display device, organic light emitting display device and method for driving the same
JP2018010203A (ja) * 2016-07-14 2018-01-18 株式会社半導体エネルギー研究所 表示装置およびその駆動方法、表示モジュールならびに電子機器
JP2018045164A (ja) * 2016-09-16 2018-03-22 株式会社半導体エネルギー研究所 表示システム、電子機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042822A (ja) * 1999-08-03 2001-02-16 Pioneer Electronic Corp アクティブマトリクス型表示装置
JP2003216110A (ja) * 2001-11-13 2003-07-30 Semiconductor Energy Lab Co Ltd 表示装置
JP2005099715A (ja) * 2003-08-29 2005-04-14 Seiko Epson Corp 電子回路の駆動方法、電子回路、電子装置、電気光学装置、電子機器および電子装置の駆動方法
JP2007179041A (ja) * 2005-12-02 2007-07-12 Semiconductor Energy Lab Co Ltd 半導体装置、表示装置及びに電子機器
US20130088417A1 (en) * 2011-10-11 2013-04-11 Lg Display Co., Ltd. Organic light emitting diode display device and method for driving the same
JP2015025978A (ja) * 2013-07-26 2015-02-05 株式会社ジャパンディスプレイ 駆動回路、表示装置、及び駆動方法
JP2015079241A (ja) * 2013-09-13 2015-04-23 株式会社半導体エネルギー研究所 発光装置
US20150161940A1 (en) * 2013-12-11 2015-06-11 Lg Display Co., Ltd. Pixel circuit of display device, organic light emitting display device and method for driving the same
JP2018010203A (ja) * 2016-07-14 2018-01-18 株式会社半導体エネルギー研究所 表示装置およびその駆動方法、表示モジュールならびに電子機器
JP2018045164A (ja) * 2016-09-16 2018-03-22 株式会社半導体エネルギー研究所 表示システム、電子機器

Also Published As

Publication number Publication date
JPWO2021130585A1 (ja) 2021-07-01
US20220416008A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JPWO2019220278A1 (ja) 表示装置、及び電子機器
WO2020229917A1 (ja) 表示装置
US20220223671A1 (en) Display panel, data processing device and method for manufacturing the display panel
WO2021130585A1 (ja) 表示装置、および電子機器
US11417687B2 (en) Display device
WO2021070009A1 (ja) 表示装置、および電子機器
WO2021028755A1 (ja) 表示装置の動作方法
WO2021116816A1 (ja) 電子機器
WO2022208231A1 (ja) 表示装置
WO2022153146A1 (ja) 表示装置および電子機器
WO2023084354A1 (ja) 電子装置
WO2020261036A1 (ja) 表示装置
WO2022214915A1 (ja) 表示装置、電子機器および表示装置の作製方法
WO2022249001A1 (ja) 半導体装置、表示装置、及び電子機器
WO2022189908A1 (ja) 表示装置
US20220320184A1 (en) Display apparatus, display module, electronic device, and method for manufacturing display apparatus
WO2022229775A1 (ja) 表示装置
WO2023073473A1 (ja) 表示装置、及び表示装置の作製方法
WO2023037203A1 (ja) 半導体装置
WO2023105338A1 (ja) 電子装置
WO2022162486A1 (ja) 表示装置
WO2022224091A1 (ja) 表示装置
WO2024033742A1 (ja) シフトレジスタ
US20240224698A1 (en) Display apparatus
WO2022162485A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904363

Country of ref document: EP

Kind code of ref document: A1